
Leiden University
Leiden Institute of Advanced Computer Science

Mathematical Institute of Leiden University

Inference in Markov Networks

Willem Obbens

Supervised by

Siegfried Nijssen

Johannes-Schmidt Hieber

Submitted in partial fulfilment of the requirements for the degree of
Bachelor of Science in Computer Science and Mathematics, August 2014

Abstract

This thesis covers methods for performing exact as well as approximate inference in Markov and Bayesian

networks. Specifically, we study MPE inference where the problem is to find states of probability distributions

with maximal probability. As Markov networks are strictly more general than Bayesian networks, the majority

of the algorithms in this thesis are designed for the former type of network. We propose a methodology

consisting of three components: ant colony optimisation, belief propagation and integer linear programming.

In previous research, [Dar09] considered variable elimination and a branch-and-bound depth first search

algorithm on the assignment tree to compute exact solutions to the problem of MPE inference. Furthermore,

[GBH04] created an ant colony algorithm to find approximate solutions.

Finding an exact solution to this problem is NP-complete in general [Dar09], so exact MPE inference is

intractable in the case of big networks. In this scenario, one would normally resort to approximation algo-

rithms. However, sometimes an exact solution is required, such as when important decisions have to be made

depending on the solution. In that respect it is also useful to be able to quickly compute an approximate so-

lution and use it as a lower bound constraint to compute an exact solution more quickly. The problem is

that the current exact algorithms have no way to easily integrate such a constraint into a problem. As a solu-

tion, this thesis provides a reduction of the problem of MPE inference in Markov networks to integer linear

programming (ILP) problems, where it is straightforward to add a lower bound constraint on the objective

function. There is also a wealth of literature on ILP solvers and several decades of work, something we can

benefit from greatly [Nie].

As for approximation algorithms, we designed a hybrid belief propagation/ant colony algorithm for MPE

inference in Markov networks and a pure ant colony algorithm for MPE inference in Bayesian networks,

inspired by [GBH04]. The hybrid algorithm is exponential in the maximum clique size and its core performs

belief propagation on a spanning tree which is generated by the ant colony spanning tree search component.

The pure ant colony algorithm is linear in the number of network variables.

For benchmarking, the algorithms were programmed in the non-strict functional programming language

Haskell. The experiments, using datasets from the Probabilistic Inference Challenge 2011, show that neither

of these two algorithms outperforms the other and that they perform approximately equally fast on small

datasets. They also show that solutions found by the approximation algorithms can decrease the execution

time of the ILP solver if the approximation is used as a lower bound constraint.

Keywords: MPE inference, Markov network, Bayesian network, belief propagation, ant colony optimisation,

integer linear programming.

i

ii

Acknowledgements

First and foremost, I am indebted to my supervisors Siegfried Nijssen and Johannes Schmidt-Hieber as many

ideas in this thesis were proposed by them. Despite my father’s passing away on July 16th, 2014, his presence

in my mind gave me the strength to complete this thesis. I am also grateful for the encouragement by my

mother who was always there for me and helped me in my life. Finally, I would like to thank the creator of

this very flexible LATEX template.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 3

1.1 What is a Markov network? . 3

1.2 What is inference? . 4

1.3 Applications . 4

1.4 Related work . 5

1.5 Contributions . 6

1.6 Further remarks . 7

2 Background theory 8

2.1 Introduction . 8

2.2 Notation . 8

2.2.1 Unary operators on sets . 8

2.2.2 Functions . 9

2.2.3 Linear algebra . 9

2.2.4 Approximation . 9

2.2.5 General . 10

2.3 Definitions . 10

3 Exact methods 15

3.1 Introduction . 15

3.2 Converting a probabilistic network to an ILP problem . 16

3.2.1 Variables . 16

3.2.2 Objective function . 17

3.2.3 Constraints . 18

v

3.2.4 Incorporating constraints from other networks . 20

3.2.5 Complexity . 20

3.3 Weighted MAX-SAT . 21

4 Approximation methods 23

4.1 Belief propagation for MPE inference . 24

4.1.1 Definition . 24

4.1.2 How the algorithm works . 25

4.2 Ant colony optimisation . 25

4.2.1 What is ant colony optimisation formally? . 25

4.2.2 Applying ant colony optimisation to MPE inference . 26

4.3 Generalising belief propagation . 31

4.3.1 Combining belief propagation and ant colony optimisation 31

4.4 Comparison of BP-ACO and ACO for MPE Inference . 36

4.5 Complexity . 36

4.5.1 Ant colony optimisation for MPE Inference . 37

4.5.2 BP-ACO . 37

5 Experiments 40

5.1 Execution time . 41

5.2 Solution quality . 42

5.3 Convergence . 43

6 Conclusion 46

6.1 Future Work . 47

Bibliography 47

vi

List of Tables

3.1 A table which shows the ordering of the rows in a factor ϕ, with Ω (X1) = {0, 1} and Ω (X2) =

{0, 1, 2}. 16

3.2 The semantics of each set of constraints. 19

1

List of Figures

2.1 An illustrative Bayesian network. 11

2.3 An illustrative Markov network. 12

3.1 A simple Markov network. 19

4.2 A display of the two kinds of message propagation. The network contains the variables A, B

and C and the cliques K, L and M. In Figure (a), µA→K is updated as µA→K(a) := µL→A(a) ·

µM→A(a) for all a ∈ Ω (A), using equation 4.1. In Figure (b), µK→A is updated as µK→A(a) :=

maxx∈Ω(A)×Ω(B)×Ω(C)∧xA=a ϕK(x) · µB→K(xB) · µC→K(xC) for all a ∈ Ω (A), using equation 4.2. 25

4.3 A Bayesian network for example 7. 27

4.5 The assignment tree. Note that variables which are connected in this tree are not necessarily

connected in the Bayesian network. A simple example of this is the network with the variables

A, B and C with C having A and B as parents; A and B have no parents themselves. This

network can be sorted topologically either as (A, B, C) or as (B, A, C). The variables A and B

are thus connected in the assignment tree, but not in the network. 27

4.6 The assignment tree after it has been crossed by the ant in iteration 0. 30

4.7 The assignment tree after it has been crossed by the ant in iteration 1, with updated transition

probabilities. Note that the algorithm would not really calculate the transition probabilities of

all the edges in the assignment tree as this would result in an exponential blow-up that would

defeat the algorithm’s purpose. 30

4.8 A display of the assignment retrieval phase. The set at the bottom is the complete assignment

found by taking the union of all the partial assignments in the subtrees. K1 is the clique

containing {X, Y, Z}; K2 is the clique containing {X, V, W}. 36

5.1 Metadata of the datasets which have been used in the experiments. The number of edges are

given for both the Bayesian network structure as well as the Markov network structure. This

is useful information, because the ant colony algorithm requires Bayesian networks while the

other algorithms require Markov networks. 41

2

Chapter 1

Introduction

In this chapter we give an introduction to the problem addressed in this thesis. We will first explain what

Markov networks are and subsequently what inference means in the context of Markov networks.

Historically, Markov networks were originally used by physicists to analyse interactions of lattices. An im-

portant theorem providing sufficient and necessary conditions for probability distributions to be represented

as Markov networks was proved by [HC71] in 1971.

Later, in 1985, Pearl introduced Bayesian networks as a model for self-activated memory. Bayesian networks

are able to represent causal links between random variables and have various applications in diagnostics.

1.1 What is a Markov network?

A Markov network is a graphical way of representing dependency relations between random variables and

their joint probability distribution. Intuitively, it is a way of cutting a probability distribution into smaller

more approachable pieces. The network is a hypergraph where the nodes are random variables and hyper-

edges are groups of variables which are called cliques. For each clique there exists a unique factor which is

a real-valued function from the variables in the concerned clique. The joint probability distribution of the

random variables in the network is given by the product of all the factors. It follows that every random

variable must be a member of at least one clique, as the joint probability distribution would not depend on

it otherwise. In principal all Markov network distributions are assumed to be strictly positive unless spec-

ified otherwise, due to the Clifford-Hammersley theorem by [HC71]. The theorem states that a probability

distribution can be factored as a product of factors from a Markov network iff the probability distribution is

strictly positive, i.e. its image is R>0.

3

4 Chapter 1. Introduction

In this thesis we mainly consider Markov networks, which are more general than Bayesian networks as any

Bayesian network can be converted into a Markov network.

1.2 What is inference?

Inference comprises several generic operations for extracting information from probability distributions, such

as maximisation or marginalisation. This thesis goes deeper into the former, specifically MPE inference which

is maximisation over all the variables in a network.

1.3 Applications

In general the algorithms in this thesis could be used in classification problems. However, some concrete

applications of this thesis’ achievements include:

• Natural language processing: Semantic role labelling (SRL); find the most likely grammatical meaning

of every word in a sentence. In this application the variables of the network could by represented by the

words in the sentences and the values of the variables are given by all possible grammatical meanings

of a word. Hence, all variables have the same value set.

A simple example, with the three categories “indefinite article”, “noun” and “verb”:

A thesis is being written.

verb verb verb verb verb

indef. article indef. article indef. article indef. article indef. article

noun noun noun noun noun

The correct grammatical meanings of the words are printed in bold.

• Object recognition in images: Highlight the pixels in an image which have the highest probability of

belonging to a certain object.

• Speech recognition: Given recordings of the same word by different people, link the correct person to

future recordings.

1.4. Related work 5

1.4 Related work

Bayesian networks were first defined by Judea Pearl in [Pea85] in 1981, as a model for evidential reasoning.

However, the more general Markov networks had already been described before by Clifford and Hammersley

in [HC71] as early as 1971, mainly motivated as a model that physicists could use for interactions on lattices.

In his first work on Bayesian networks, Pearl describes the belief propagation algorithm for Bayesian networks

with a tree structure, an algorithm that was later generalised to Markov networks that possibly contain loops

(see, for example, [YFW01]).

Keeping in mind the fact that we could easily add constraints to integer linear programs, we proceeded our

research in the direction of approximation algorithms. The solution of this type of algorithm can be used as

a lower bound in an integer linear program and speed up the execution of the ILP solver.

An ant colony MPE algorithm (ANT-MPE) for Bayesian networks was described by [GBH04] and supplied

with a new approach and explanation in this thesis; the approach used in this thesis can be seen as modelling

MPE inference as a Markov model.

We also researched belief propagation in Markov networks (such as defined in [YFW01]) and managed to

amalgamate it with an ant colony algorithm into the BP-ACO algorithm. This combination was motivated

by the probabilistic nature of ant colony algorithms and the success of the belief propagation. The result is

an algorithm which is slightly probabilistic in order to search for a good message propagation order, but still

keeps the good traits from the belief propagation algorithm.

1.5 Contributions

The main contributions of this thesis are:

• A formulation of MPE inference as an integer linear programming problem. Being able to view the

problem of MPE inference as an ILP problem is useful, because we can add different sorts of constraints

to an ILP problem. We could for example add an approximate solution as a lower bound constraint,

which would allow the ILP solver to prune more branches, causing a significant speed-up in cases of

big datasets. Furthermore, if we have multiple networks over the same variables and want to perform

MPE inference in one of them while we have some constraints on the probability distributions of the

other networks, then those constraints can be easily added to the ILP problem.

For example, given three networks over the variables X and Y, this sort of optimisation problem could

6 Chapter 1. Introduction

look like

maxP1(X, Y)

subject to P2(X, Y) ≤ 1
2

and P3(X, Y) ≥ 1
3

.

In this thesis, we mention how this can be done but do not consider it further.

• A new approach for an ant colony procedure to approximate MPE instantiations. The ant colony

algorithm from this thesis was based on the algorithm from [GBH04]. The main difference between the

two algorithms is that the version of this thesis uses a data structure that makes the algorithm a bit

more easily understandable.

• A generalisation of the state-of-the-art belief propagation algorithm. The standard belief propagation

method was modified to maximise a distribution instead of marginalise it and generalised to arbitrary

not necessarily tree-shaped networks by choosing a spanning tree with an ant colony algorithm and

executing the normal belief propagation algorithm on the spanning tree.

This algorithm should not be confused with loopy belief propagation which is also a generalisation of

normal belief propagation to networks without a tree structure.

1.6 Further remarks

In this thesis, we will only consider finitely-valued (discrete) probability distributions induced by the net-

works. Hence, when statistical definitions are given that hold for discrete and continuous distributions alike

in general, the definition is tacitly assumed to be for discrete distributions and only the ∑-variant will be

given, not the
∫

-variant.

Chapter 2

Background theory

2.1 Introduction

In this chapter some basic notation is defined that is necessary to read this thesis. This is also the chapter

where the important concepts of Markov and Bayesian networks are introduced which lie at the heart of

this thesis. The operations and predicates in this section should be familiar to the reader; this section serves

merely as an aid to the reader to disambiguate notation in case of confusion.

The reader is further assumed to be acquainted with the predicate logical vocabulary, i.e. universal quantifi-

cation (∀), existential quantification (∃), logical conjunction and disjunction (∧, ∨, resp.), etc.

2.2 Notation

2.2.1 Unary operators on sets

Let A be a set. The cardinality (number of elements for finite sets) of A is defined to be #A.

If A = {a1, . . . , an} is a set containing numbers, then

∏ A = a1 · a2 · · · · · an, ∑ A = a1 + a2 + · · ·+ an.

If A contains sets, then

∏ A = a1 × a2 × · · · × an,
⋃

A = a1 ∪ a2 ∪ · · · ∪ an,
⋂

A = a1 ∩ a2 ∩ · · · ∩ an.

7

8 Chapter 2. Background theory

2.2.2 Functions

Let f : A→ B be a function, then

im(f) = f (A) = { f (a) : a ∈ A}, dom (f) = A, cod (f) = B.

If B possesses a linear ordering, then

arg maxa∈A f (a) = {a ∈ A : ∀a′ ∈ A (f (a′) ≤ f (a))}.

The operation arg min is defined similarly.

2.2.3 Linear algebra

Let m, n ∈ N and K a field, then the set Matm×n (K) denotes the m× n-matrices over K. As a shorthand, we

define Matn (K) = Matn×n (K).

2.2.4 Approximation

Let f , g : X → K be two functions and K a field, then

f ∝ g

is equivalent to

∃c ∈ K : f = c · g i.e. ∃c ∈ K ∀x ∈ X : f (x) = c · g(x).

In this thesis this equivalence relation will be used exclusively for “equality up to normalisation”. This

means that, if P : X → [0, 1] is a probability distribution and f : X → R then P ∝ f or P(x) ∝ f (x) means that

P(x) = 1
∑y∈X f (y) f (x) for all x ∈ X. Finally, note that ∝ is an equivalence relation.

2.3. Definitions 9

Big-O/Ω/Θ Notation

Let f , g : X → R for some linearly ordered set X. Then

f ∈ O(g) ⇐⇒ ∃x′ ∈ X ∃K ∈ R ∀x > x′ : f (x) ≤ K · g(x),

f ∈ Ω(g) ⇐⇒ ∃x′ ∈ X ∃K ∈ R ∀x > x′ : f (x) ≥ K · g(x),

f ∈ Θ(g) ⇐⇒ ∃x′ ∈ X ∃K, L ∈ R ∀x > x′ : L · g(x) ≤ f (x) ≤ K · g(x).

It should be noted that f ∈ O(g) if f ∝ g.

2.2.5 General

If p is a logical formula, then p ≡α p′ means that p′ and p are α-equivalent, which means that they are equal

up to renaming of bound variables.

Example 1.

∀α : α ∧ β ≡α ∀γ : γ ∧ β

because they are both of the form ∀x : x ∧ β where β is a free variable, but

∃α : α ∨ ζ 6≡α ∃α : α ∨ ψ

because ζ 6= ψ in general. �

2.3 Definitions

Definition 2.1. A Bayesian network B is a finite directed acyclic graph (DAG) with vertices V and edges

E. Every vertex X ∈ V is a finitely-valued variable, with its values represented by Ω (X) and its parents by

par (X) = {Y ∈ V : (Y, X) ∈ E}. Furthermore, X is also associated with a conditional probability table (CPT)

P (X | par (X)) : Ω (X)×∏ Ω (par (X))→ R≥0.

The set of CPTs will be referred to with the symbol Θ.

10 Chapter 2. Background theory

The network induces a joint probability distribution P, given by

P (X1, . . . , Xn) =
n

∏
k=1

P (Xk | par (Xk)) ,

where n = #V. �

Example 2. This example shows a Bayesian network with 4 binary(-valued) variables A, B, C and D. A has

no parents, B and C both have A as their parent and D has both B and C as its parents.

A

B C

D

Figure 2.1: An illustrative Bayesian network.

It has the following CPTs:

A P (B = 0) P (B = 1)

0 1
2

1
2

1 2
3

1
3

P (A = 0) P (A = 1)
2
3

1
3

A P (C = 0) P (C = 1)

0 3
4

1
4

1 5
7

2
7

B C P (D = 0) P (D = 1)

0 0 1
3

2
3

0 1 1
2

1
2

1 0 7
23

16
23

1 1 4
7

3
7

�

Definition 2.2. A Markov network M is a finite undirected graph with vertices V and edges E. Every vertex

X ∈ V is a finitely-valued variable, with its values represented by Ω (X). The network also contains cliques,

denoted by C. A clique is a subset of the nodes in the network. An edge between two variables indicates that

they appear in at least one clique together. Every clique C ∈ C corresponds to a factor ϕC defined by

ϕC : ∏ Ω (C)→ R≥0.

2.3. Definitions 11

The set of factors is denoted by Φ. The network induces a joint probability distribution P, given by

P (X1, . . . , Xn) =
1
Z ∏

C∈C
ϕC(Xi : Xi ∈ C),

where Z is a normalisation constant defined by

Z = ∑
x∈∏ Ω(V)

∏
C∈C

ϕC(xC),

where xC is the vector of all C-components of x. �

Note that in Bayesian networks, the CPTs are in 1-to-1 correspondence with the variables, but in Markov

networks, the factors are in 1-to-1 correspondence with the cliques.

Example 3. This example shows a Markov network with 4 binary variables A, B, C and D. It isomorphic to

the Bayesian network in example 2 and has the cliques C = {{A}, {A, B}, {A, C}, {B, C, D}}.

A

B C

D

Figure 2.3: An illustrative Markov network.

It has the following factors:

A B ϕ(A, B)

0 0 1
2

0 1 1
2

1 0 2
3

1 1 1
3

A ϕ(A)

0 2
3

1 1
3

A C ϕ(A, C)

0 0 3
4

0 1 1
4

1 0 5
7

1 1 2
7

B C D ϕ(B, C, D)

0 0 0 1
3

0 0 1 2
3

0 1 0 1
2

0 1 1 1
2

1 0 0 7
23

1 0 1 16
23

1 1 0 4
7

1 1 1 3
7

�

Definition 2.3. The moral graph of a directed graph G is an undirected graph M (G) such that V(M (G)) =

V(G) and {X, Y} ∈ E(M (G)) iff there is an arrow between X and Y or if they are both parents of some

common node, for all X, Y ∈ V(G). �

12 Chapter 2. Background theory

Corollary 2.1. Let B be a Bayesian network and G its underlying graph, then B can be transformed to a

Markov network M by

• letting the moral graph of G be the graph of N

• letting Φ(M) = Θ(B), i.e. the factors of N are the CPTs of B

The cliques of M then correspond with parents and their children, and the normalisation constant Z is equal

to 1, because B already has a proper probability distribution. �

Definition 2.4. Let N be either a Bayesian or a Markov network and let V ⊆ V be a subset of the variables.

We assume that V = {X1, . . . , X`}. An instantation v ∈ ∏ Ω (V) is called a MAP instantiation if

v ∈ arg maxx∈∏ Ω(V)P (∀1 ≤ i ≤ ` : Xi = xi) .

Finding such a v is called MAP inference. If V = V, then finding such a v is called MPE inference.

Furthermore, v will be called an MPE instantiation instead of a MAP instantiation. �

Example 4. Reusing example 2 for MPE inference, the joint distribution is the product of all the CPTs:

P (A, B, C, D) = P (A) · P (B | A) · P (C | A) · P (D | B, C)

As all the variables are binary, there are only 24 combinations to try. A variable assignment with the highest

probability (solution to the problem of MPE inference) is given by {A = 0, B = 1, C = 0, D = 1}, with

probability

P (A = 0, B = 1, C = 0, D = 1) =
4

23
.

For MAP inference on the variables V = {A, B, C}we first have to marginalise the distribution to the variables

in V (i.e. sum out D) and then maximise the resulting distribution. Taking the CPTs out of the sum which

do not depend on D yields an easier calculation where we only need to sum out the CPT P (D | B, C). This

is also the basis of the variable elimination method in [Dar09].

We have that

∑
d∈Ω(D)

P (A, B, C, D = d) = P (A) · P (B | A) · P (C | A) · ∑
d∈Ω(D)

P (D = d | B, C)

where ∑d∈Ω(D) P (D = d | B, C) is given by

2.3. Definitions 13

B C ∑d∈Ω(D) P (D = d | B, C)

0 0 1

0 1 1

1 0 1

1 1 1

Note that marginalised CPTs do not necessarily represent probability distributions anymore.

Maximising ∑d∈Ω(D) P (A, B, C, D) yields the assignment {A = 0, B = 1, C = 0} with probability

∑
d∈Ω(D)

P (A = 0, B = 1, C = 1, D = d) =
1
4

.

�

Chapter 3

Exact methods

3.1 Introduction

This chapter will introduce various methods for exact calculation of MPE instantiations. First we will show

how the problem of MPE inference in a Markov network (and by extension, in a Bayesian network) can be

converted into a equivalent integer linear program (ILP) and we will give the complexity of this procedure.

We will also give an example network and its translation into an ILP problem.

At the end of the chapter, there is a small section on incorporating constraints from other networks over the

same variables as well as a section on a weighted model counting formulation of MPE inference in Bayesian

networks. These subjects will however not be further elaborated on in the rest of the thesis and are meant

as resp. an example of a benefit which the ILP formulation provides us and as an example of another exact

inference procedure for Bayesian networks.

Definition 3.1. An integer linear program is a mathematical procedure which maximises a linear function

subject to linear constraints. It consists of a vector of positive integer variables x, a linear objective function

over x and linear constraints over x. In canonical form it is expressed as

arg maxx∈Zm
≥0
{〈c, x〉 : Ax ≤ b}.

In the above formulation, the variables are an n-dimensional Z≥0-vector and the objective function is given

by 〈c, x〉 where c ∈ Rn. Moreover, the constraints are expressed by Ax ≤ b, for some A ∈ Matm×n (R) and

b ∈ Rm. Note that the coefficients of the objective function and the constraints are not necessarily integers. �

14

3.2. Converting a probabilistic network to an ILP problem 15

3.2 Converting a probabilistic network to an ILP problem

Some of the ideas in this section were inspired by [Nie]. Given a Markov network M we would like to find the

most probable assignment to the variables. To this end we will convert M to a canonical ILP as defined in the

introductory section. We will first define the necessary variables, then give the constraints and finally find a

linear objective function which is equivalent to the joint distribution of M with respect to maximisation. That

is to say, a variable assignment is maximal in the joint distribution iff it is maximal in the objective function.

Suppose that M contains the variables V = {Xi}n
i=1 where Ω (Xi) = {ai

1, . . . , ai
ni
} for all 1 ≤ i ≤ n. Further-

more, let ` = #C. For all 1 ≤ i ≤ n there exists a mapping γi : Ω (Xi) → {k ∈ Z : 1 ≤ k ≤ ni} defined by

ai
k 7→ k, preserving any ordering Ω (Xi) may have. Without loss of generality we will henceforth identify

Ω (Xi) with γi(Ω (Xi)), i.e. a value will be identified with its index in the ordering.

The factor of the i-th clique is denoted by wi. The value of the j-th row in wi, given an ordering of the

variables in the i-th clique, is denoted by wij. The rows are sorted lexographically, starting from the first

index. Assume that factor wi has ri rows.

row X1 X2 ϕ(X1, X2)

0 0 0 ϕ(X1 = 0, X2 = 0)

1 0 1 ϕ(X1 = 0, X2 = 1)

2 0 2 ϕ(X1 = 0, X2 = 2)

3 1 0 ϕ(X1 = 1, X2 = 0)

4 1 1 ϕ(X1 = 1, X2 = 1)

5 1 2 ϕ(X1 = 1, X2 = 2)

Table 3.1: A table which shows the ordering of the rows in a factor ϕ, with Ω (X1) = {0, 1} and Ω (X2) = {0, 1, 2}.

3.2.1 Variables

There are two kinds of variables, called x and y. They are both binary variables, meaning that they assume

values from {0, 1}.

The variable x relates the network variables to their values. We have that

xij = 1 ⇐⇒ Xi = j

for all 1 ≤ i ≤ n and j ∈ Ω (Xi). Note that for all 1 ≤ i ≤ n there exists a unique j such that xij = 1, because

a variable can assume only one value at a time.

16 Chapter 3. Exact methods

The variable y connects the factors with their instantiations. We have that

yij = 1 ⇐⇒ factor i is active at instantiation j.

Just like with the x variable, for every 1 ≤ i ≤ ` there exists a unique j such that yij = 1, because a factor can

have only one active instantiation at a time.

3.2.2 Objective function

Let x ∈ ∏ Ω (V) be a complete assignment, then the probability distribution of M can be rewritten as follows:

PM(X = x) ∝ ∏
C∈C

ϕC(XC = xC)

= exp

(
log

(
∏

C∈C
ϕC(XC = xC)

))

= exp

(
∑

C∈C
log(ϕC(XC = xC))

)

= exp

 ∑
C∈C

∑
u∈dom(ϕC)

log(ϕC(XC = u))1XC=u(xc)

= exp

 ∑
C∈C

∑
u∈∏ Ω(C)

log(ϕC(XC = u))1XC=u(xc)

 .

The function 1XC=u is an indicator function defined by

1XC=u(u′) =

0, u 6= u′

1, u = u′

for all u′ ∈ ∏ Ω (C).

This representation of the distribution is also known as the Boltzmann distribution. It is useful because it is a

linear function in the “variables” 1XC=u and coefficients log(ϕC(XC = u)) and the goal is to transform the

maximisation of the probability distribution into an ILP problem.

The indicator functions in the derived expression above can be replaced by the y-variables from the previous

section. Furthermore, the exponential function on the outside can be dropped because maximising exp ◦ f is

equivalent to maximising f for any real-valued function f .

3.2. Converting a probabilistic network to an ILP problem 17

We will therefore optimise

z =
`

∑
i=1

ri

∑
j=1

log(wij)yij

given the constraints from the next section.

3.2.3 Constraints

We will require that ∑ni
j=1 xij = 1 for all 1 ≤ i ≤ n, as a variable Xi can assume only one value j at a

time. Furthermore, yij = 1 holds for a unique j for every factor i, while yij = 0 for all other j. This can be

accomplished by the equalities ∑ri
j=1 yij = 1 for all 1 ≤ i ≤ `.

Let ι : {Xi}n
i=1 → Z≥1 be defined by Xi 7→ i, then ι (C) = {j : Xj ∈ C} is the set of all indices of clique C ∈ C.

Let vijk denote the value of variable Xk in row j of factor wi. Then yij = 1 iff the variables assume the values

of the j-th row in CPT wi, if

∑
k∈ι(Ci)

xkv − yij ≤ #ι (Ci)− 1 = #Ci − 1

and

yij − xkv ≤ 0 for all k ∈ ι (Ci)

where v = vijk, 1 ≤ i ≤ ` and 1 ≤ j ≤ ri.

Example 5. Let X1 and X2 be two variables in some factor ϕ(X1, X2) and let y = 1 be synonymous with

X1 = 0 and X2 = 1. If the following constraints hold

x10 + x21 − y ≤ 1, y− x10 ≤ 0, y− x21 ≤ 0,

then y = 1 implies that x10 = 1 and x21 = 1 and y = 0 implies that x10 6= 1 or x21 6= 1. �

18 Chapter 3. Exact methods

Semantics Constraints

Domains of variables.
0 ≤ yij ≤ 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ ri
0 ≤ xij ≤ 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ ni

Ensure that every factor can only
contribute once to the joint distribution. ∑ri

j=1 yij = 1 for all 1 ≤ i ≤ `

Ensure that every network variable
assumes only one value. ∑ni

j=1 xij = 1 for all 1 ≤ i ≤ n

Ensure that yij represents the
correct variable assignment.

∑k∈ι(Ci)
xkv − yij ≤ #Ci − 1

yij − xkv ≤ 0
for all 1 ≤ i ≤ `, 1 ≤ j ≤ ri and v = v(i, j, k)

Table 3.2: The semantics of each set of constraints.

Example 6. A final example to demonstrate the translation of a Markov network to an ILP problem.

A B

Figure 3.1: A simple Markov network.

The network contains two binary variables, A and B. The cliques are C = {{A}, {B}, {A, B}}. The factors are

given by

A ϕ(A)

0 1
2

1 1
2

B ϕ(B)

0 1
3

1 2
3

A B ϕ(A, B)

0 0 1
4

0 1 1
4

1 0 1
4

1 1 1
4

There are 8 binary y-variables: Y = {yA0, yA1, yB0, yB1, yAB,0, yAB,1, yAB,2, yAB,3}, one for every row in every

factor. Using these y-variables, the objective function z can be written as:

z = −yA0 log 2− yA1 log 2− yB0 log 3 + yB1 log
2
3
− yAB,0 log 4− yAB,1 log 4− yAB,2 log 4− yAB,3 log 4.

We have rewritten logarithms of the form log 1
x to − log x.

Similar to the y-variables, we have a set of x-variables of cardinality 4: X = {xA0, xA1, xB0, xB1}, one for every

value assignment to every variable. Note that the second indices of the x-variables denote the values of the

first indices which are variables, whereas the second index of the y-variables denotes a row number in the

associated factor.

3.2. Converting a probabilistic network to an ILP problem 19

This yields the following ILP problem:

max z = −yA0 log 2− yA1 log 2− yB0 log 3 + yB1 log
2
3
− yAB,0 log 4− yAB,1 log 4− yAB,2 log 4− yAB,3 log 4

subject to xA0 + xA1 = 1, xB0 + xB1 = 1

yA0 + yA1 = 1, yB0 + yB1 = 1, yAB,0 + yAB,1 + yAB,2 + yAB,3 = 1,

xA0 − yA0 ≤ 0, xA1 − yA1 ≤ 0, xB0 − yB0 ≤ 0, xB1 − yB1 ≤ 0,

xA0 + xB0 − yAB,0 ≤ 0, xA0 + xB1 − yAB,1 ≤ 0,

xA1 + xB0 − yAB,2 ≤ 0, xA1 + xB1 − yAB,3 ≤ 0

yA0 − xA0 ≤ 0, yA1 − xA1 ≤ 0, yB0 − xB0 ≤ 0, yB1 − xB1 ≤ 0,

yAB,0 − xA0 ≤ 0, yAB,0 − xB0 ≤ 0, yAB,1 − xA0 ≤ 0, yAB,1 − xB1 ≤ 0,

yAB,2 − xA1 ≤ 0, yAB,2 − xB0 ≤ 0, yAB,3 − xA1 ≤ 0, yAB,3 − xB1 ≤ 0

x, y ∈ {0, 1} for all ILP variables x ∈ X and y ∈ Y

�

3.2.4 Incorporating constraints from other networks

Let {Mk}m
k=1 be Markov networks over the same variables as M and θ ∈ [0, 1]m, then we would like to

calculate maxx PM(X = x) subject to PMk (X = x) ≤ θi for all 1 ≤ k ≤ m. The aforementioned constrained

maximisation problem can be solved by extending the ILP problem which we have constructed with the

constraints

n

∑
i=1

ri

∑
j=1

log(wk
ij)y

k
ij ≤ log(θk) for all 1 ≤ k ≤ m,

where wk
ij denotes the j-th row in the factor ϕk

Ci
and where yk

ij is a binary variable similar to yij = y0
ij but

belonging to network Mk.

3.2.5 Complexity

For every variable X, we must create #Ω (X) ILP x-variables, so ∑X∈V #Ω (X) x-variables need to be created

in total. We further need to create ∑C∈C ∏X∈C #Ω (X) ILP y-variables in total.

20 Chapter 3. Exact methods

Creating the objective function takes as many steps as their are y-variable declarations.

Then we must create #C constraints of the form ∑j∈∏ Ω(C) yij = 1 for all cliques i ∈ C and #V constraints of

the form ∑j∈Ω(X) xij = 1 for all variables X ∈ V. Creating these constraints costs as many steps in total as

creating the variables, because each variable only appears in one unique constraint.

Lastly, the constraints which make sure that the ILP variables represent correct assignments require ∑C∈C(#C+

1)∏X∈C Ω (X) and ∑C∈C 2 ∏X∈C Ω (X) steps. The first number of steps corresponds to constraints of the

form ∑k∈ι(Ci)
xkv − yij ≤ #Ci − 1 and the second number of steps is related to the constraints of the form

yij − xkv ≤ 0. Together this yields ∑C∈C(#C + 3)∏X∈C Ω (X) steps in total.

Using the reasoning above, we arrive at a total complexity of

O
(

2 ∑
X∈V

#Ω (X) + 3 ∑
C∈C

∏
X∈C

#Ω (X) + ∑
C∈C

(#C + 3) ∏
X∈C

Ω (X)

)

= O
(

2 ∑
X∈V

#Ω (X) + ∑
C∈C

(#C + 6) ∏
X∈C

Ω (X)

)
.

If we assume that C is the maximum clique size and that ` is the maximum number of values any variable

can assume, then the complexity derived above is bounded by the following complexity:

O(#V · `+ #C · `C).

Hence the translation procedure has a complexity that is exponential in the maximum clique size. Still, the

steps taken by the algorithm are typically very small, so this conversion can still be done quickly.

3.3 Weighted MAX-SAT

This section gives an example of another exact method for MPE inference in Bayesian networks (not Markov

networks). We will provide the details of the weighter MAX-SAT encoding of MPE inference in this section,

but will not use it further in this thesis.

The problem of MPE inference in Bayesian networks can be encoded as a weighted MAX-SAT problem as

follows (from [Dar09]).

For each variable X ∈ V and value x ∈ Ω (X) there exists an indicator variable Ix. If the values of X are

numbered x1, . . . , xn, then the encoding contains the following indicator clauses,

(
n∨

k=1

Ixk

)W

and (¬Ixk ∨ ¬Ixl)
W , for all k < l.

3.3. Weighted MAX-SAT 21

The superscript W signifies the weight assigned to that clause. In this case, W is a special weight given to a

clause if it needs to be satisfied by any maximal truth assignment. Clauses given this weight are called hard

clauses, while clauses which do not are called soft clauses. The weight W is defined to be at least the sum

of weights assigned to all soft clauses. It follows that any optimal truth assignment should satisfy all hard

clauses.

Additionally, the weighted MAX-SAT encoding contains parameter clauses for each instantation of every CPT

θX|par(X) ∈ Θ with m parents,

(
¬Ix ∨

m∨
k=1

¬Ipk

)− log′(θx|p)

, for all x ∈ Ω (X) and p ∈∏ Ω (par (X)) ,

where log′(0) = W and log′(x) = log(x) for all x in the domain of log.

A truth assignment with minimal penalty now corresponds to an instantation with maximal probability. The

penalty of a truth assignment Γ is defined to the sum of all weights of the clauses which are not satisfied by

Γ.

Chapter 4

Approximation methods

This chapter will introduce approximation methods for MPE inference. These algorithms can speed up the

calculations of exact MPE solutions with the ILP method, by adding the approximation as a lower bound to

the ILP problem. These approximations are always a lower bound to the real MPE solution, as every MPE

solution is at least as high as any other assignment.

Specifically, we will discuss two algorithms:

• An ant colony optimisation algorithm tailored to search for high probability variable assignments in

Bayesian networks. It is based on the ANT-MPE algorithm by [GBH04], but uses a new approach which

is meant to give it a clearer explanation and easier programmability.

• An adjusted version of the well-known belief propagation algorithm for Markov networks which is

explained in section 4.1. The regular belief propagation algorithm produces exact solutions for tree-

shaped networks. Our algorithm is a generalisation to arbitrarily shaped networks. Consequently, our

algorithm doesn’t necessarily find an exact solution in every network.

The algorithm we have devised is called BP-ACO, which stands for belief propagation-ant colony opti-

misation. The latter segment of this name is owed to the part of the algorithm which uses ant colony

optimisation to search for “good” spanning trees of the network.

In the rest of this chapter, M shall be a Markov network. Remember that there is a bijective correspondence

between the cliques C and the factors Φ: for every clique C ∈ C there is a factor Φ 3 ϕC : ∏ Ω (C) → R≥0

over the variables in C.

22

4.1. Belief propagation for MPE inference 23

4.1 Belief propagation for MPE inference

Belief propagation was originally created by Judea Pearl in 1985 in his paper [Pea85] as a method for perform-

ing inference in tree-shaped Bayesian networks. It is a remarkable algorithm because it reduces the problem

of inference to a set of smaller problems which use local neighbour information to be computed. Later, the

technique of belief propagation was generalised to arbitrary Bayesian networks (not necessarily trees) and

Markov networks (see, for example, [YFW01]).

4.1.1 Definition

This definition of the belief propagation algorithm for MPE inference was inspired by [YFW01]. In order to

talk about belief propagation for tree-shaped networks we will first need the following definition.

Definition 4.1. The factor graph F(M) of the Markov network M is a bipartite graph with variable nodes

V and factor nodes C. There is an edge between a variable node v ∈ V and a factor node C ∈ C if and only if

v ∈ C. �

A

B C

D

E

Figure 4.1: An example factor graph. The blue vertices are clique nodes; the whitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhite vertices are variable nodes. In this
case there are two cliques: {A, B, C} (left-hand blue dot) and {A, C, D, E} (right-hand blue dot).

For each edge (v, C) ∈ V× C in the factor graph F(M) there exist two real-valued message functions: µv→C

and µC→v. These message functions are defined as

µv→C(x) = ∏
C∗∈C

C∗ 6=C, v∈C∗

µC∗→v(x), ∀x ∈ Ω (v) (4.1)

and

µC→v(x) = max
y∈∏ Ω(C)

yv=x

ϕC(y) ∏
v∗∈V

v∗ 6=v, v∗∈C

µv∗→C(yv∗), ∀x ∈ Ω (v) . (4.2)

Here, yv = x means that the v-component of y is equal to x. When v has no neighbouring factor nodes other

than C, µv→C(x) is set to a uniform distribution, i.e. all assignments have equal probability.

24 Chapter 4. Approximation methods

K

L

∏ A

M

µA→K

µL→A µM→A

(a) A message from variable A to
clique K

A

B

max ∏ K

C

µK→A

µB→K µC→K

(b) A message from clique K to vari-
able A

Figure 4.2: A display of the two kinds of message propagation. The network contains the variables A, B and C and
the cliques K, L and M. In Figure (a), µA→K is updated as µA→K(a) := µL→A(a) · µM→A(a) for all a ∈ Ω (A), using
equation 4.1. In Figure (b), µK→A is updated as µK→A(a) := maxx∈Ω(A)×Ω(B)×Ω(C)∧xA=a ϕK(x) · µB→K(xB) · µC→K(xC)

for all a ∈ Ω (A), using equation 4.2.

Messages are similar to CPTs, but they do not necessarily have to obey all the probability laws; messages are

not probability distributions in general.

4.1.2 How the algorithm works

The algorithm begins by choosing a root node of the tree-shaped network. Then, starting from the leaves,

messages are updated inwards in the direction of the root in the pull phase. The messages only have to be

computed once to arrive at an exact solution. Once all the messages have been propagated to the root, the

MPE assignment is reconstructed from the messages in the push phase. These statements shall be made more

precise in Section 4.3 where we discuss a generalisation of this algorithm.

4.2 Ant colony optimisation

Real-world ants have the ability to cooperate for certain tasks and find short paths in a probabilistic manner

using pheromone1 trails. The more ants follow a certain path, the more attractive that path becomes resulting

in more and more ants following it.

This section is based on [GBH04].

4.2.1 What is ant colony optimisation formally?

Ant colony is a probabilistic optimisation technique used to calculate approximations of optimal paths in

graphs.

1Pheromones are excreted chemicals used by animals as a form of communication.

4.2. Ant colony optimisation 25

It requires the specification of three things:

(1) The graph which needs to be searched, with costs on its edges.

(2) A pheromone table (PT) τ, which contains numbers signifying the attractiveness for every edge in the

graph. Every time a path is found, the pheromones are updated with respect to the costs of this path.

The PT functions as a communication device between the ants and is initialised uniformly at the start

of the algorithm.

(3) A heuristic table (HT) η, which also contains numbers that represent desirability for every edge in the

graph. The difference between the HT and the PT is that the former is a static matrix (i.e. it isn’t

updated by the algorithm), while the latter is updated after every iteration.

The PT and HT are used to calculate transition probabilities for edges in the graph. Higher pheromone and

heuristic values for some edge therefore translate to a higher probability that ants will follow that edge.

We will use ant colony optimisation to find good solutions to the MPE problem in Bayesian networks. In

order to do this, we will not traverse the Bayesian network directly. Instead, we will transform the network

into a Markov model2 which captures all possible assignments to the network variables. For visualisation

we shall use the so-called assignment tree, which will be explained in the next section. The assignment tree

is not explicitly constructed as it is a search tree; only the branches which are used by an ant are in reality

evaluated. This Markov model depends on a particular topological ordering3 of the network variables; any

will do. This remark shall be further explained below. The algorithm that we will discuss now is based on

the ANT-MPE algorithm in [GBH04], but uses a different approach.

4.2.2 Applying ant colony optimisation to MPE inference

Let (X1, X2, . . . , Xm) be such a topological ordering. Each node in the assignment tree denotes a particular

value of a network variable, along with the values of its parents. Level i of the tree corresponds to variable

Xi in the topological ordering and the root node has level 0. Moreover, every node on level i (i < m) has

outgoing edges for every value in Ω (Xi+1) weighted by the transition probabilities defined later.

2A Markov model is (probabilistic) model of random variables which assumes the Markov property. This means that the value of
variable Xi+1 depends only on the value of Xi in a stochastic manner.

3A topological ordering of the partially ordered network variables is an ordering such that every variable appears after its parents. As
a consequence, any variable without parents can appear as the first element in this ordering.

26 Chapter 4. Approximation methods

Example 7. We have a network with a ternary variable A and a binary variable B with values Ω (A) = {0, 1, 2}

and Ω (B) = {0, 1}. The network structure is given by

A

B

Figure 4.3: A Bayesian network for example 7.

with the CPTs

P (A = 0) P (A = 1) P (A = 2)
1
2

1
3

2
3

and

A P (B = 0) P (B = 1)

0 1
2

1
2

1 2
3

1
3

2 5
7

2
7

The assignment tree is displayed in figure 4.5 using the topological ordering (A, B).

root

A = 0

1
2

A = 1 A = 2

1
3

1
6

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1
2

1
2 2

3

1
3 5

7

2
7

Figure 4.5: The assignment tree. Note that variables which are connected in this tree are not necessarily connected in
the Bayesian network. A simple example of this is the network with the variables A, B and C with C having A and B as
parents; A and B have no parents themselves. This network can be sorted topologically either as (A, B, C) or as (B, A, C).
The variables A and B are thus connected in the assignment tree, but not in the network.

There are two optimal paths in this tree with value 1
2 ·

1
2 = 1

4 , corresponding to two MPE assignments:

(A = 0, B = 0) and (A = 0, B = 1). Note that there can be multiple nodes which represent the same value

assignment to some variable, for example there are tree (B = 0)-nodes. This is true in general for any variable

of level i with i > 1. �

The PT is defined up to value equivalence of edges. This means that if we have two different edges e1 = (B =

0, C = 1) and e2 = (B = 0, C = 1) (their parents have had different values assigned to them), they both share

the same pheromone τB=0,C=1. If every unique edge were to have its own pheromones, then no information

is shared between different assignments. In our construction, pheromones let an assignment increase the

attractiveness of any other assignment if they agree on some consecutive variables in the topological ordering.

4.2. Ant colony optimisation 27

The HT is in 1-to-1 correspondence with the network’s CPTs and thus contains an entry for each unique edge.

This is because a CPT can assume different values depending on the parents’ values. For example, if A, B

and C are three binary variables and are associated to a CPT P (C | A, B), then we do not necessarily have

that P (C = 0 | A = 0, B = 0) = P (C = 0 | A = 0, B = 1).

To simplify the formulas, every node in the assignment tree will additionally be labelled with its parents’

assignments. Let Xi and Xi+1 be two variables, xi ∈ Ω (Xi) and xi+1 ∈ Ω (Xi+1), and A the assignments to

their parents. Then the transition probability from s ≡α (Xi = xi) to t ≡α (Xi+1 = xi+1) given assignment A

is given by

pst(A) ∝ (τst)
α(ηst(A))β

i.e.

pst(A) =
(τst)α(ηst(A))β

∑ x′i+1∈Ω(Xi+1)

t′≡α(Xi+1=x′i+1)

(τst′)α(ηst′(A))β
=

(τst)α(P (Xi+1 = xi+1 | Xi = xi, A))β

∑ x′i+1∈Ω(Xi+1)

t′≡α(Xi+1=x′i+1)

(τst′)α
(
P
(

Xi+1 = x′i+1 | Xi = xi, A
))β

, (4.3)

where α, β ∈ R are parameters of the algorithm. Other parameters are the number of ants that traverse the

graph each iteration and either the number of iterations the algorithm has to run or a halting predicate which

judges the current best solution, possibly taking into account previous solutions and other factors.

If we view the topological ordering of variables as a sequence of states, the assignment tree and its transition

probability formulas actually give rise to a Markov model where the value of state k + 1 depends only on the

value of state k.

Now assume that there are a ants. Then ant k which has found the complete assignment A after having

traversed the graph leaves ∆τk pheromones on each edge, defined by

∆τk
st =

P (A) , if s and t are in ant k’s path and t follows s in the topological ordering

0, otherwise

The variables s and t have a similar meaning to the s and t above in the transition probability formula.

The pheromone table is updated as follows:

τst := (1− ρ)τst + ∆τst, (4.4)

where ∆τst = ∑a
k=1 ∆τk

st and ρ ∈ [0, 1] is a constant which controls the rate at which old pheromones dissipate.

28 Chapter 4. Approximation methods

Data: B: Bayesian network.
Result: A complete assignment of the variables in the Bayesian network B.
α, β ∈ R (parameters)
m ∈ Z>0 (number of ants)
t = 1 (iteration counter)
(X1, . . . , X#V) := topologically sorted array of the variables in the network
T := assignment tree using the topologically sorted array
τ := uniform initialisation of the pheromones
B := randomly initialised best assignment
while no satisfactory assignment has been found do

p := calculate the transition probabilities using equation 4.3
foreach ant i from 1 to m do

A := assignment resulting from traversal of the assignment tree with probabilities p
if P (B) < P (A) then

B := A (the best assignment B is not as good as the current assignment A)
end

end
τ := (1− ρ)τ + ∑m

i=1 ∆τi (equation 4.4)
t := t + 1

end
Algorithm 1: The ant colony algorithm.

Example 8. This example reuses the network from example 7 to walk through the ant colony algorithm.

We will use one ant per iteration, α = β = 1, ρ = 0 and as many iterations as necessary (in this case 2).

First we sort the variables topologically: (A, B) is the only way this can be done. Given this ordering of

the variable, we get the same assignment tree as displayed in figure 4.5. There are 9 different branches up

to value equivalence, so to initialise the pheromones, every branch gets a pheromone value of 1
9 . We take

{A = 2, B = 1} to be our initial best assignment, with value 1
6 ·

2
7 = 1

21 .

Iteration 0

The ant is now located at the root node. The transition probabilities are given by the CPT/edge probabilities,

because the pheromones are uniformly initialised, so

proot,A=0 = P (A = 0) =
1
2

, proot,A=1 = P (A = 1) =
1
3

, proot,A=2 = P (A = 2) =
1
6

.

By chance, we choose A = 1. We can now choose beteen B = 0 with probability 2
3 and B = 1 with probability

1
3 , because we are at the node A = 1. By chance, we choose B = 0. The result of this iteration is the

assignment {A = 1, B = 0} with value 2
9 . As for the pheromone update: all edges keep their current

pheromones, except for the edges in this iteration’s ant’s path. We therefore have τroot,A=1 := 1
9 + 2

9 = 1
3 and

τA=1,B=0 := 1
9 + 2

9 = 1
3 .

The path that was traversed by the ant is indicated by the red dots in figure 4.6.

4.2. Ant colony optimisation 29

root

A = 0

1
2

A = 1 A = 2

1
3

1
6

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1
2

1
2 2

3

1
3 5

7

2
7

Figure 4.6: The assignment tree after it has been crossed by the ant in iteration 0.

Iteration 1

The ant is located at the root node again. The transition probabilities are now:

proot,A=0 =
1
2 ·

1
9

1
2 ·

1
9 + 1

3 ·
1
3 + 1

6 ·
1
9
=

1
18
5

27
=

3
10

,

proot,A=1 =
1
3 ·

1
3

1
2 ·

1
9 + 1

3 ·
1
3 + 1

6 ·
1
9
=

1
9
5

27
=

3
5

,

proot,A=2 =
1
6 ·

1
9

1
2 ·

1
9 + 1

3 ·
1
3 + 1

6 ·
1
9
=

1
54
5

27
=

1
10

.

This time, we now choose A = 0 by chance. Because the pheromones did not change for this branch, the

transition probabilities at node A = 0 are equal to the CPT probabilities: pA=0,B=0 = P (B = 0 | A = 0) =

1
2 and pA=0,B=1 = P (B = 1 | A = 0) = 1

2 . By chance, we choose B = 0 and end up with the complete

assignment {A = 0, B = 0} with value 1
2 ·

1
2 = 1

4 . The new pheromones are τroot,A=0 := 1
9 + 1

4 = 13
36 and

τA=0,B=0 := 1
9 + 1

4 = 13
36 ; the other pheromones stay the same as in the previous iteration.

The path that was traversed by the ant is indicated by the red dots in Figure 4.7.

root

A = 0

3
10

A = 1 A = 2

3
5

1
10

B = 0 B = 1 B = 0 B = 1 B = 0 B = 1

1
2

1
2 6

7

1
7 5

7

2
7

Figure 4.7: The assignment tree after it has been crossed by the ant in iteration 1, with updated transition probabilities.
Note that the algorithm would not really calculate the transition probabilities of all the edges in the assignment tree as
this would result in an exponential blow-up that would defeat the algorithm’s purpose.

This assignment is better than the previous assignment because 2
9 < 1

4 and is in fact an MPE assignment, so

we are in luck. The algorithm ends with the best MPE assignment {A = 0, B = 0}. �

30 Chapter 4. Approximation methods

4.3 Generalising belief propagation

As mentioned earlier, the belief propagation procedure given above cannot be used for networks without a

tree structure. In this case, a spanning tree of the factor graph is chosen along which messages are propa-

gated using a push-and-pull schema ([Dar09]), in the generalised belief propagation algorithm from now on

referred to as BP-ACO. After the messages have been calculated in the spanning tree, the solution is recon-

structed and used to update the pheromones for the next iteration. The algorithm halts after it has run for

the specified number of iterations or if the solution is deemed to be good enough.

4.3.1 Combining belief propagation and ant colony optimisation

The core of BP-ACO consists of BP, enhanced by a spanning tree search procedure using ACO. At the begin-

ning of the algorithm, the messages are initialised uniformly, as shown in algorithm 2. In every iteration, an

arbitrary spanning tree of the factor graph is chosen for every ant using the SpanningTree algorithm with

neighbour transition probabilities depending on the pheromones and the messages. Every edge in the tree is

an edge between a variable and a clique by the design of the factor graph. Then the messages of the network

are propagated in the spanning tree from the leaves to the root in the belief propagation phase. Finally, a

variable assignment A ∈ ∏ Ω (V) is collected which may or may not be an improvement to the currently best

assignment.

Data: M: Markov network.
Result: Initialised messages.
foreach v ∈ V do

foreach C ∈ C such that v ∈ C do
foreach x ∈ Ω (v) do

µ1
v→C(x) := 1

#Ω(v) (uniform initialisation)

µ1
C→v(x) := maxy∈∏ Ω(`)

yv=x
ϕC(y)

end
end

end
return µ

Algorithm 2: This algorithm initialises messages for use in algorithm 6.

Ant colony equations for the spanning tree algorithm

Let {v, C} be an edge with v ∈ V and C ∈ C, then

∆τvC = ∆τCv =

P (A) , {v, C} belongs to the spanning tree

0, otherwise
(4.5)

4.3. Generalising belief propagation 31

The pheromone update rule is equivalent to the one given in Section 4.2.

The starting node n of the spanning tree may satisfy

n ∈ arg maxi∈V∪C ∑
j∈N(i)

τji (4.6)

(i.e. a node with the most pheromones on its neighbour edges) and neighbour transition probabilities p given

by

pij =
τα

ij η
β
ij

∑j∈N(i) τα
ij η

β
ij

,

where N(i) = {j ∈ V ∪ C : {i, j} ∈ E(F(M))} is the set of neighbours of i. Recall that E(F(M)) are the edges

of the factor graph of the Markov network M.

The symbol ηij is the heuristic attractiveness of the edge (i, j); it is proportional to some function of the

message passed from i to j. We could for example take the average of a message (µ 7→ 1
n ∑x µ(x) where x

ranges over the n possible inputs) or the maximal value of a message (µ 7→ maxx µ(x)). In algorithm 6, this

function is indicated by f : the heuristic value estimation function. Not that ηij 6= ηji in general, while it is true

that τij = τji.

Spanning tree

The process of creating a spanning tree in a graph with loops will always cause at least one connection

between a clique and a variable node to be “lost”. In such a situation, the algorithm will create dummy

variable nodes for every clique node which has no connections with a subset of its variables. These dummy

variables assume the same values as the real variables. In the variable assignment reconstruction phase of the

algorithm, the values of the dummy variables are discarded while the values of real variables they represent

are kept.

The SpanningTree algorithm (algorithm 3) creates a spanning tree by repeatedly adding an edge from the

current node to an unvisited node to the tree with a certain transition probability. If the current node has no

unvisited neighbours and the spanning tree does not have #nodes− 1 edges, then we backtrack to previously

visited nodes until we reach a node with unvisited neighbours.

32 Chapter 4. Approximation methods

Data: G = (V, E): Graph, p: Matrix of neighbour transition probabilities, n: Starting node.
Result: A spanning tree of G.
V′ := {i} (Used to keep track of the visited nodes)
T := ∅ (Spanning tree)
i := n (Current node)
s := (i) (Stack used for backtracking)
while V′ 6= V do

while i has no unvisited neighbours do
pop previous node l from the stack s
i := l

end
i := j with probability pij
push j onto the stack s
V′ := V′ ∪ {j}
T := T ∪ {{i, j}}

end
return T
Algorithm 3: The SpanningTree algorithm. Given a graph G, a distinguished node n in that graph and
neighbour transition probabilities for every node, it finds a spanning tree of G starting from node n according
to the transition probabilities.

Belief propagation

In the belief propagation phase of the algorithm, messages (which represent the belief) are propagated from

the leaves to the root node of the spanning tree found by algorithm 3. The messages are updated using

equations 4.1 (if the leaf node is a variable node) and 4.2 (if the leaf node is a clique node).

Data: M: Markov network, µ: Messages of M, T: Spanning tree of underlying graph of M, n: Root node of
T, A: Assignment table.

Result: Updated messages µ and assignment table A.
while T 6= {n} do

let ` be a leaf node 6= n of T with neighbour j
T := T \ {{`, j}}
if ` is a variable node then

foreach x ∈ Ω (`) do
µt+1
`→j(x) := ∏ C∗∈C

C∗ 6=j, `∈C∗
µt

C∗→`(x) (equation 4.1)

end
else

foreach x ∈ Ω (j) do
let g : ∏ Ω (`)→ R be defined by y 7→ ϕ`(y)∏ v∗∈V

v∗ 6=j, v∗∈`
µt

v∗→`(yv∗)

At+1
`→j(x) := arg maxy∈∏ Ω(`)

yj=x
g(y)

µt+1
`→j(x) := maxy∈∏ Ω(`)

yj∼x
g(y) (equation 4.2)

end
end

end
Algorithm 4: The BeliefPropagation algorithm for use in algorithm 6. Note that if ` is not a variable node
(i.e. a clique node), µt+1

`→j(xj) can be immediately computed using At+1
`→j(xj).

4.3. Generalising belief propagation 33

Assignment retrieval

In algorithm 6, V = V ∪ C are the vertices of the factor graph. Furthermore, an assignment table A is used

for each message going from a clique to a variable. Given a variable in a clique, for each value it can assume,

an assignment of values to the other variables in the clique is stored which maximises the message from

the clique to variable. When the root node of the spanning tree is reached, the complete assignment can be

reconstructed recursively from A, with a dynamic programming-like procedure.4

If the root node is a variable node X, then we maximise the product of its incoming messages, resulting in

an optimal value x. The maximal assignments with respect to X = x are read from the assignment tables

AC→X(x) belonging to each child C of X. Because of the tree structure, there are no assignment conflicts if

there are multiple children, because the only variable the child cliques have in common is the root node.

If the root node is a clique node C, then the procedure from the preceding paragraph is executed on all C’s

children, collecting all the assignments of the subtrees and merging them.

Starting from the root node, walking down the branches of the spanning tree, there are two cases: either the

current node is a branching node or it is a leaf.

• In a leaf node, nothing needs to be done.

• In a branching node, there are again two cases which need to be distinguished: the node is either a

clique node or a variable node. If the focused node is a clique node C with parent node X which has x

as its optimal value, then the assignment values of the children of C are given by AC→X(x). We continue

repeating this process, culling new variable assignments and extending the assignment, until the leaf

nodes are reached. Note that the variable nodes are skipped, but remembered as parents.

This entire process can be viewed in figure 4.8.

4Dynamic programming is a technique used to efficiently compute answers to problems with many overlapping subproblems. A simple
example is computing the n-th Fibonacci number Fn, defined by the recurrence relation

Fn =

0, n = 0
1, n = 1
Fn−1 + Fn−2, n ≥ 2

.

Computing F4 gives F4 = F2 + F3 = (F0 + F1) + (F1 + F2) = (0 + 1) + (1 + (0 + 1)) = 3. In this example the term F2 is computed twice,
which isn’t very hard to calculate, but the amount of evaluations of a term increases exponentially with n.

Dynamic programming solves this complexity issue by storing every term in memory such that it only has to be computed once. For
successive uses of some term, it can be read from memory again instead of causing a waterfall of evaluations. Of course, this comes at
the cost of increased memory usage.

34 Chapter 4. Approximation methods

Data: M: Markov network, µ: Messages of M, T: Spanning tree of underlying graph of M, n: Root node of
T, A: Assignment table.

Result: A complete assignment to all the variables in the network.
if n is a clique node then

return
⋃

children c of n RetrieveAssignment(M, µ, T, c, A) (take the union of the assignments of the
subtrees)

else if n is a variable node then
x := element of arg maxxn∈Ω(n) ∏C∈C

n∈C
µC→n(xn)

Q := {(n, x)} (assignment set holding pairs of (variable, value))
while T is being traversed from its root node n to its leaf nodes with c being the focused node do

let π(c) be c’s parent in T
let v be π(c)’s value in Q, such that (π(c), v) ∈ Q
Q := Q ∪ Ac→π(c)(v)

end
return Q

end
Algorithm 5: The RetrieveAssignment algorithm which deduces a (locally) optimal assignment to all the
variables for use in algorithm 6. The manner in which the tree T is traversed is implementation-dependent.
Both DFS and BFS could be valid choices for tree traversal.

Data: M: Markov network, f : Heuristic value estimation function.
Result: An MPE approximation of M as a variable assignment.
α, β ∈ R (parameters)
m ∈ Z>0 (number of ants)
t := 1 (message iteration counter)
T := ∅ (spanning tree of the network)

τ := (τij)
#V
i,j=1 with τij =

{
0, {i, j} ∈ E

1
#V , {i, j} /∈ E

(pheromone matrix)

A = assignment table
B = randomly initialised best assignment
initialise messages µ using algorithm 2

while no satisfactory assignment has been found do
foreach ant i from 1 to m do

η := (ηij)
#V
i,j=1 with ηij = f (µi→j) (modify the heuristic values according to updated messages)

p := (pij)
#V
i,j=1 with pij =

τα
ij η

β
ij

∑j∈N(i) τα
ij η

β
ij

T := SpanningTree(M, p, n) with n the root node of the tree satisfying equation 4.6
BeliefPropagation(M, µt, T, n, A) (algorithm 4)
Qi := RetrieveAssignment(M, µt, T, n, A) (algorithm 5)
if P (B) < P (Qi) then

B := Qi (the best assignment B is not as good as the current assignment Qi)
end

end
τ := (1− ρ)τ + ∑m

i=1 ∆τi (equation 4.5)
µt+1 := for example, the messages of the ant with the highest goal function value
t := t + 1

end
return B
Algorithm 6: The BP-ACO algorithm. The parameter ρ ∈ [0, 1] is the evaporation rate of the pheromones and
α and β control the influence of resp. the pheromones and the messages.

4.4. Comparison of BP-ACO and ACO for MPE Inference 35

x0 = arg maxx∈Ω(X) ∏X∈K µK→X(x)
X

{Y = y0, Z = z0} = AK1→X(x0) {V = v0, W = W0} = AK2→X(x0)

Y Z V W

{X = x0, Y = y0, Z = z0, V = v0, W = w0}

Figure 4.8: A display of the assignment retrieval phase. The set at the bottom is the complete assignment found by taking
the union of all the partial assignments in the subtrees. K1 is the clique containing {X, Y, Z}; K2 is the clique containing
{X, V, W}.

4.4 Comparison of BP-ACO and ACO for MPE Inference

ACO is an algorithm that only accepts Bayesian networks, while BP-ACO accepts the more general Markov

networks as input. As every Bayesian network can be converted into a Markov network, BP-ACO accepts

strictly more inputs, i.e. Markov networks which are not Bayesian networks. Bayesian Markov networks can

be translated into Bayesian networks by demoralising the network.

ACO is much less complex than BP-ACO, and should be preferred for smaller Bayesian networks because of

BP-ACO’s higher initialisation costs. Of course, if the input is a non-Bayesian Markov network, only BP-ACO

can be used.

4.5 Complexity

In this section we will try to give the complexities of the theoretical algorithms, not their implementations. It

may however be necessary to fall back to the implementations, because some data structures are unspecified

in the pseudocode and the operations of different data structures may have not have the same complexity.

To study the complexity of the algorithms in this chapter it is useful to quantify the objects used in the

algorithms using the following variables:

• a is the number of ants

• s is the number of iterations

• n = #E is the number of edges

• m = #V is the number of variables

• m+ = #(V∪ C) is the number of nodes in a Markov network

• c = #C is the number of cliques

36 Chapter 4. Approximation methods

• ` = max{#Ω (X) : X ∈ V} is the maximum number of values any variable can assume

• K = max{#C : C ∈ C} is the largest clique size

• L = max{#{X ∈ C : C ∈ C} : X ∈ V} the maximum number of cliques any variable can be contained in

• P = max{#par (X) : X ∈ V} is the highest number of parents a variable can have

Remember that the variables V and cliques C are both nodes in a Markov network, so the set of nodes of the

network is given by V∪ C.

We assume that evaluating a Bayesian joint distribution costs O(Pm) time because there are m CPTs and

looking up a value in a CPT costs O(P) steps. We further assume that evaluating a Markov joint distribution

costs O(Kc) time because there are c cliques and if we want to look up a value in a factor we need to inspect

O(K) values. Both algorithms have a factor sa in their complexity, because they both repeat s times and in

each iteration a ants traverse the graph.

4.5.1 Ant colony optimisation for MPE Inference

A full graph traversal takes m steps and at every step the transition probabilities of ` outgoing edges need

to be evaluated, in the worst case. At the end of an iteration we need to to evaluate the joint distribution for

every ant, which costs O(Pm) time (see above). Then we deposit the created pheromones at m− 1 edges for

every ant. Note in particular that we can avoid iterating over all the edges by just iterating over the edges

which will have a non-zero pheromone increase.

The complete complexity of ACO is therefore

O(sa(m`+ mP + m− 1)) = O(sa((`+ 2 + P)m− 1)) = O(sa(`+ P)m).

Hence, the ACO algorithm performs linearly in the number of network variables, m.

4.5.2 BP-ACO

At the beginning of each iteration, the transition probabilities for the spanning tree algorithm need to be

calculated. There are n edges in the network and for every edge (i, j) we need to calculate 2 transition

probabilities: pij and pji. Calculating the transition probabilities therefore costs 2n steps.

Then, for each ant, we calculate a spanning tree of the network using the transition probabilities. The outer

loop in this algorithm (algorithm 3) consists of m+ iterations and the inner backtracking loop consists of at

most m+ iterations. Hence, the SpanningTree algorithm takes O((m+)2) time in the worst case.

4.5. Complexity 37

Subsequently we calculate the “missing edges”: the edges which are in the network, but not in the spanning

tree. This takes O(cK(m+ − 1)) = O(cKm+) time: for each clique, we need to check for every of its edges if

it is not contained in the spanning tree.

Then we arrive at the inward pull phase (algorithm 4), where the messages are updated from the leaves to

the root. There are two types of messages which can be sent:

• Messages from a variable to a clique: These cost `(L− 1) steps to update in the worst case if we assume

that every variable is in the same number of cliques. The ` factor originates from the domain of the

message, which is at most as big as the maximum number of values of a variable in the network. The

L− 1 comes from the fact that a variable can be at most in L cliques, so for each message from a variable

to a clique we need to multiply at most L− 1 messages from different cliques to the same variable.

• Messages from a clique to a variable: These cost `LK−1K steps to update in the worst case if we assume

that every clique is of the same size. The ` factor has the same meaning as in the other type of message.

The LK−1 is derived from the fact that we need to maximise over the values of the other variables in

the cliques. There are at most K variables in any clique, and any variable can assume at most L values,

so we maximise over LK−1 elements. The last factor K is a result of taking the product of a Markov

network factor (ϕ) and K− 1 messages.

Assume, as a worst case scenario, that the i-th tree (with 1 ≤ i ≤ a) has li leaves which are all variable nodes.

Then we need to compute m − li new variable-to-clique messages, which costs (m − li)`(L − 1) operations

in total, and m+ − 1− (m − li) = m+ − m + li − 1 new clique-to-variable messages for tree i, which costs

(m+ −m + li − 1)`LK−1K operations in total. Calculating all the messages therefore costs `((m− li)(L− 1) +

(m+ −m + li − 1)LK−1K) operations in the worst case.

The next phase is the outward push phase (algorithm 5), where we collect partial variable assignments and

join them together into one complete assignment for the network. There are two cases:

• The root node is a variable node. We need to take the maximum of at most ` values and then we need to

traverse the remaining m+ − 1 nodes of the tree. We assume that looking up an assignment at a clique

node further down the tree is constant time. This means

• The root node is a clique node. We apply the algorithm recursively to the subtrees with the child

variable nodes as root nodes. With similar reasoning as in the other case, there are now m+ − 1 + K`

steps required in the worst case. The K factor is necessary because of the recursive call to the (at most)

K subtrees.

In the worst case, this phase thus consists of max{m+ − 1 + `, m+ − 1 + K`} = m+ − 1 + K` steps, because

K ≥ 1.

38 Chapter 4. Approximation methods

Finally, every ant needs to check if the assignment that was found in the previous phase is better than the

best assignment so far. If we save the joint distribution of the best assignment separately, this requires c steps

because of the evaluation of the retrieved assignment.

At the end of each iteration, the pheromone table needs to be updated. Doing this requires a complete

assignments and spanning trees from the previous phase: one for each ant. For each ant, its assignment is

evaluated using the joint distribution, which requires O(Kc) steps (see above). Then we deposit pheromones

equal to the joint distribution value (equation 4.5) on the m − 1 edges of the spanning tree. Updating the

pheromones hence costs at most a(Kc + m− 1) steps in total each iteration.

Taking the complexities of all the separate sections of the algorithm together, results in a complete complexity

of

O
(

s

(
2n + a

((
m+
)2

+ cKm+
)
+

a

∑
i=1

`
(
(m− li) (L− 1) +

(
m+ −m + li − 1

)
LK−1K

)
+ a (Kc + m− 1)

))

= O
(

s

(
n + a

((
m+
)2

+ cK(m+ + 1) + c + m
)
+ `

a

∑
i=1

(
(m− li) L +

(
m+ −m + li

)
LK−1K

)))
.

If we now assume that the number of leaves of each spanning tree is a constant l, this gigantic expression

reduces to

O
(

s
(

n + a
((

m+
)2

+ cKm+ + c + m
)
+ a`

(
(m− l) L +

(
m+ −m + l

)
LK−1K

)))
= O

(
s
(

n + a
((

m+
)2

+ cKm+ + c + m + `
(
(m− l) L +

(
m+ −m + l

)
LK−1K

))))
.

The dominating section of the algorithm is the belief propagation section. If we assume that the number

of iterations and ants is constant, this leaves us with a complexity of O(` (m+ −m + l) LK−1K), so it is

exponential in the largest clique size but also depends on the amount of edges because of the m+ − m + l

factor.

Chapter 5

Experiments

In Section 4.5 we offered a view on the theoretical performance of the algorithms. In this chapter we show

how the algorithms perform in simulations.

The algorithms have been implemented with the non-strict1 functional programming language Haskell, using

GHC version 7.6.3. The ILP solver that was used for these experiments was SCIP, version 3.1.0 for x86 64

Linux. The experiments were run on laptop with Debian Linux, version Jessie.

To find the parameters for the experiments we generally tweaked them a bit to be suitable for the benchmark

at hand. The parameters α and β are equal to 1 and in all the experiments, but for clarity we have stated the

values of these parameters in the caption of each of the experiments individually. The value 1 was chosen

because these parameters had no observable influence on the benchmarks. In almost all experiments we

chose ρ = 1
10 . Experiment 5.2 is the only experiment where we did not use this value, because changing this

parameter has no influence on the execution time.

In this chapter, “the ILP algorithm” is understood to be the conversion of a Bayesian/Markov network to an

integer linear program together with the execution of the ILP solver.

Not all of the datasets were used in every experiment, as some of them are too small and converge to an

optimal solution too quickly, while others are too big and would cause the experiments to take too much

time. Furthermore, for the rest of this chapter we will assume that BP-ACO uses the mean to calculate the

heuristic value of a message.

1Non-strictness is a reduction strategy where the reduction of an expression is done from the highest level to the lowest level. This is
in contrast to strict reduction, where every subexpression is reduced before its parent expression.

For example, let f (α, β) = α for all α and β. Then f (2, 3 + 5) =⇒ 2 when reduced non-strictly, but f (2, 3 + 5) =⇒ f (2, 8) =⇒ 2
when reduced strictly.

If we denote the undefined expression by ⊥ (it is of type ∀α : α, i.e. it is an element of every type), then we furthermore have
f (2 + 1, 1

0) =⇒ 2 + 1 =⇒ 3 when reduced non-strictly, but f (2 + 1, 1
0) =⇒ f (3,⊥) =⇒ ⊥ when reduced strictly.

39

40 Chapter 5. Experiments

Dataset #Variables #Edges (Bayes) #Edges (Markov) #Cliques Max clique size File size

fire alarm 6 5 11 6 3 196B

spect 23 22 45 23 2 1606B

alarm2 37 46 83 37 5 4282B

emdec6g 168 261 429 168 6 17830B

cpcs54 54 108 162 54 10 19704B

diagnose a 203 298 501 203 9 75235B

barley 48 84 132 48 5 1931828B

Figure 5.1: Metadata of the datasets which have been used in the experiments. The number of edges are given for both
the Bayesian network structure as well as the Markov network structure. This is useful information, because the ant
colony algorithm requires Bayesian networks while the other algorithms require Markov networks.

5.1 Execution time

This section explores the execution times for all algorithms. First, we compare the execution times of the

approximation algorithms using the same parameters. In the second plot we investigate how much a lower

bound reduces the execution time of the ILP solver.

Figure 5.2: This bar plot displays the average execution time of the approximation algorithms on several datasets with
common parameters α = 1, β = 1, ρ = 1

2 , 10 iterations and 15 ants. The datasets are sorted by file size.
Note that ACO takes longer on emdec6g than cpcs54, because it has thrice as many variables and more than twice as many
edges. (table 5.1)

5.2. Solution quality 41

Figure 5.3: This bar plot displays the average execution time of the exact ILP solver on several datasets in three separate
ways, using parameters α = 1, β = 1, ρ = 1

10 , 2 iterations and 1 ant. The red bars show the execution time of just the ILP
algorithm, the green bars show the execution time of the ILP algorithm using the solution from ACO as a lower bound
and the blue bars show the execution time of the ILP algorithm using the solution from BP-ACO as a lower bound.
The ACO and BP-ACO lower bounds do not lower the execution time of the ILP algorithm by much on the smaller
datasets fire alarm and emdec6g and even increase the execution time on spect and alarm2. The biggest dataset (cpcs54)
however has an execution time decrease of 2.4 seconds using the ACO lower bound and a decrease of 3.5 seconds using
the BP-ACO lower bound. The ILP algorithm without lower bound ran for 39 seconds on average.
We conclude from these results that it is worthwhile to run an approximation algorithm for a lower bound that can be
used by the ILP algorithm if the dataset is big.
The datasets are sorted by file size (table 5.1).

5.2 Solution quality

In this section we analyse the degradation of the solution quality, i.e. how the solutions of the approximation

algorithms degrade with respect to the real ILP solution as the dataset grows in size. We find that the solution

quality indeed decreases fairly quickly as the dataset becomes bigger.

42 Chapter 5. Experiments

Figure 5.4: This bar plot shows the solution quality of the approximation algorithms compared to the exact ILP algorithm
on several of the datasets given above. The parameters are α = 1, β = 1, ρ = 1

10 , 5 iterations and 5 ants.
From this plot we can extract that the solution quality degrades rapidly as the dataset grows in size. We can also see
that BP-ACO produces much better solutions than ACO, but they were both given the same amount of iterations and
ants even though BP-ACO puts much more work into each iteration compared to ACO. Hence, the solution qualities
of BP-ACO and ACO should not be compared; this plot only serves to demonstrate the degradation of both solution
qualities with respect to the real solution (given by the ILP algorithm).
The datasets are sorted by file size (table 5.1).

5.3 Convergence

In this section we will show how the approximation algorithms behave asymptotically. We have tested the

algorithm convergence on three datasets: cpcs54, diagnose a and barley. To arrive at the plots in this section

we ran both algorithms 15 times and chose the best representative of the average execution of the respective

algorithm.

5.3. Convergence 43

Figure 5.5: These graphs show the rate of convergence of the algorithms on the cpcs54 dataset with respect to the iteration
count. The parameters are α = 1, β = 1, ρ = 1

10 , 10 iterations and 3 ants.
Both algorithms immediately find a much better assignment in the first iteration, but in later iterations both algorithms
improve slowly. BP-ACO produces notably better assignments than ACO, but performs much more work in each iteration
and is therefore slower.

Figure 5.6: These graphs show the rate of convergence of the algorithms on the cpcs54 dataset with respect to time. The
parameters are α = 1, β = 1, ρ = 1

10 and 3 ants.
In this benchmark, both algorithms ran for approximately 25 seconds, BP-ACO used 10 iterations whereas ACO used 464
iterations. In the first 5 seconds, BP-ACO performed badly in comparison with ACO. The reason for this is that BP-ACO’s
first iteration covered these first 5 seconds, and that there were still some initialisations to be done. Later iterations also
benefit from sharing of data structures in Haskell, meaning that fewer unnecessary copies are done.
We can see that BP-ACO outperforms ACO not only if they are given the same number of iterations to execute (plot 5.5),
but also the same amount of time.
The short period of time of 25 seconds was chosen because it corresponded with 10 iterations of BP-ACO, but also because
after 25 seconds the graphs remained constant.

44 Chapter 5. Experiments

Figure 5.7: This line graph shows the rate of convergence of the algorithms on the diagnose a dataset with respect to time.
The parameters are α = 1, β = 1, ρ = 1

10 and 3 ants.
In this benchmark, both algorithms ran for approximately 25 seconds. In comparison with plot 5.6, BP-ACO performs
consistently worse than ACO.

Figure 5.8: This line graph shows the rate of convergence of the algorithms on the barley dataset with respect to time. The
common parameters are α = 1, β = 1, ρ = 1

10 and 3 ants. In addition, BP-ACO uses the mean to calculate the heuristic
value of a message.
In this benchmark, BP-ACO ran for about 5 hours and 12 minutes while ACO only ran for about an hour and 30 minutes.
ACO was not run for as long as 5 hours and 12 minutes because after running for 1 1

2 hours, the benchmark began to
run slower and slower, possibly caused by a space leak in the implementation. However, the results are still clear: ACO
managed to produce a solution which is several orders of magnitude better BP-ACO’s solution, even 30 minutes before
BP-ACO had found its first solution.

Chapter 6

Conclusion

The goal of this thesis was to research methods for performing MPE inference in Markov and Bayesian

networks. To this end, we have defined three algorithms in this thesis, and given their complexities:

• A procedure for transforming the problem of MPE inference in Markov networks to an ILP problem. It

is exponential in the maximum clique size, but is typically very fast.

• The BP-ACO algorithm, an MPE approximation algorithm which is a combination of belief propagation

and ant colony optimisation. It is exponential in the maximum clique size.

• The ACO algorithm, which is also an MPE approximation and walks down an assignment tree to find its

solutions. It is linear in the number of variables.

The ILP formulation of MPE inference allows for easy addition of extra constraints to the maximisation

problem. We can add constraints based on the probability distribution of other networks over the same

variables and add evidence (i.e. maximise given the knowledge that A = a).

The experiments in the previous section do not show a clear winner among the approximation algorithms.

Currently ACO seems to fare better in general, but with more work on BP-ACO, it can potentially become

nearly as fast as ACO.

The experiments do show that our idea of adding approximate solutions as lower bound constraint to the

ILP versions of MPE inference does make the ILP solver faster.

45

46 Chapter 6. Conclusion

6.1 Future Work

In this section we document some research directions which may be interesting to follow.

• Long-term behaviour analysis of ACO and BP-ACO. To get a theoretical understanding of the conver-

gence of the algorithm, the algorithms must be analysed mathematically. Because of its complexity this

will be a difficult task for BP-ACO, but it could be done for ACO. To analyse the long-term behaviour

of ACO, we need to know how the pheromones evolve. For reference, the pheromones are updated as

follows:

τ0 = uniformly initialised

τk+1 = (1− ρ)τk + ∆τk = (1− ρ)k+1τ0 +
k

∑
i=0

(1− ρ)k−i∆τi(τi)

where the superscript k stands for the iteration counter in τ and ∆τ. We have that ∆τi(τi) = ∆τi

because the value of ∆τi is determined by the solutions which used the pheromones τi to traverse the

tree. Note also that ∆τi(τi) is a stochastic term in the equation, hence the ant colony update equation

gives rise to a stochastic recurrence relation.

• Something we have not considered in the implementations of the algorithms are networks which consist

of independent components (subgraphs). In principal, the algorithms can be run on the separate com-

ponents and the results can be merged together. Performing MPE inference in network consisting of n

independent components is thus equivalent to performing MPE inference on each separate component.

• On the level of the ants, both BP-ACO and ACO can be parallelised because of the independence of

the ants. On the level of belief propagation in BP-ACO, BP-ACO can be parallelised further because

of the independence of the leaves. If the algorithms are optimised in this way, then it would be inter-

esting to see new results from experiments, especially because there two places where BP-ACO can be

parallelised whereas there is only one place for ACO.

• There are various ways in which we can further parametrise BP-ACO. We could for example let the root

node also be chosen by the ant colony algorithm, and look into ways of combining the messages from

the ants in each iteration.

Currently, the messages that have been updated by the ants are discarded every iteration, but we can

envisage scenarios where it would be a good decision to set the messages of the next iterations to the

messages of an ant with the highest solution value.

Bibliography

[Dar09] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. 2009.

[GBH04] Haipeng Guo, Prashanth R. Boddhireddy, and William H. Hsu. An ACO algorithm for the Most

Probable Explanation Problem. 2004.

[HC71] J.M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. 1971.

[Nie] Mathias Niepert. A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in

Markov Logic Networks.

[Pea85] Judea Pearl. Bayesian Networks: A model of self-activated memory. 1985.

[YFW01] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding Belief Propagation and its

Generalizations. 2001.

47

