
Natural Computing 11-08 2014

Universiteit Leiden

Computer Science

Combinatorial Optimization

for

3D Container Loading Problem

Xiaolong Mu

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

Abstract

Two characteristic, in NP-hardness and in widely practical application, of the 3D

bin packing problem continue to attract the attention of academia and industry.

For academia, they are always interested in solving the NP problem. For the

industry, the 3-Dimensional bin packing problem is a problem faced in modern

industrial processes such as container ship loading, pallet loading, plane cargo

management, and warehouse management. The solution of this problem is rep-

resented by a packing sequence. To generate this sequence the packing items are

selected from several item groups, and each of them does not have any connection,

which make the 3-D packing problem a completely discrete optimization problem.

The range of this search space is directly decided by the total number of items.

Furthermore, the difficulty of solving this problem will be dramatically increased

as well when the practical constraints are taken into account, (e.g., Orientation

constraints, Loading stability, and Handling constraints). To solve this problem

the most efficient approaches are meta-heuristics, such as Greedy Randomized

Adaptive Search Procedure, Ant Colony Optimization, and Evolutionary Algo-

rithms because they have a learning component that can help the optimizer find

a search path in the search space. Currently, the best result was produced by the

Biased Random Key Genetic Algorithm (BRKGA)[1]. This algorithm was first

proposed by Bean [2] to tackle the sequencing problems, and was first used to

tackle the 3D-Container Loading Problem by Goncalves JF [1]. By implementing

the BRKGA, it is found that the initialization component and mutation operator

are slightly weak. Thus, in this project, a new initialization method and an ES

type mutation operator are used to replace the original ones within the BRKGA

in order to make it an improvement to produce a better result.

Acknowledgements

During my two yeas master study, I would like to thank Prof. Thomas Bäck and

zhiwei Yang. I own a deep gratitude to them, for their excellent inspiration and

supervision all along my study.

Last but not least, I would like to thank my beloved family, especially my wife

Xiao. It is impossible for me to finish this thesis without their endless love and

support.

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

List of Algorithm ix

Abbreviations x

Preface xi

1 Design Optimization of 3-Dimensional Bin Packing Problem 1

1.1 Problem Definition . 2

1.2 Mathematical Formulations . 5

1.3 Placement Strategy . 8

1.3.1 Maximal-Empty-Space Selection 9

1.3.2 Empty-Spaces Update . 9

1.3.3 The Deep-Bottom-Left Procedure 15

1.3.4 Practical Implementation . 16

1.4 Additional Consideration . 16

1.5 Summary . 18

2 Optimization Approach 20

2.1 Evolutionary Algorithm . 20

2.2 Introduction of Standard Genetic Algorithm 21

2.2.1 Representation and Fitness Evaluation 24

2.2.2 Selection . 24

v

Contents vi

2.2.3 Recombination . 27

2.2.4 Mutation . 29

2.2.5 Theory . 30

2.3 Random Key Representation . 30

2.3.1 The Concept of Random Key 31

2.3.2 Hypercube Sampling . 32

2.3.3 Advantage of Random Key Representation 33

2.3.4 Disadvantage for The Random Key Representation 33

2.4 Divide and Conquar . 33

2.5 Summary . 36

3 Biased Random Key Genetic Algorithm 37

3.1 Representation and Decoding . 38

3.2 Evolutionary Process . 40

3.2.1 Initialization . 41

3.2.2 Fitness Function . 42

3.2.3 Selection Operator . 45

3.2.4 Crossover operator . 45

3.2.5 Mutation Operator . 46

3.3 Modification . 47

3.3.1 Initialization Component Modification 47

3.3.2 Mutation Operator Modification 50

3.4 Summary . 51

4 Experiments 53

4.1 Benchmark Description . 54

4.2 Optimizer Parameter Configuration 55

4.3 Different Components Setting . 56

4.4 Experiment Implementation . 57

4.4.1 The Components Modification 57

4.4.2 Parameter Tuning . 59

4.4.3 The Overall Comparison Experiments 64

5 Conclusion 67

A The Practical Packing Solution and Pattern 69

Bibliography 80

List of Figures

1.1 Example of Placing a box of type i 7

1.2 Example of Difference Process . 10

1.3 Example of 3-Dimensional Difference Process 11

1.4 Example of Elimination Process . 13

2.1 General Crossover model . 28

2.2 Random Mapping Procedure . 31

2.3 HyperCube sample . 32

2.4 Feasible Layer Type . 34

2.5 General-purpose Metaheuristic Framework 36

3.1 First M Gene decoding . 39

3.2 Architecture of BRKGA . 40

3.3 Population Structure . 41

3.4 Example of Crossover Operator . 46

3.5 Original Position Pattern . 48

3.6 New Position Pattern . 49

3.7 Population Structure . 52

4.1 New Position Pattern vs Old Position Pattern 58

4.2 New Mutation Operator vs Old Mutation Operator 58

4.3 Crossover Rate Analysis . 60

4.4 BOT Size Analysis . 61

4.5 Elites Size Analysis . 63

4.6 3 Tuning Step Comparison . 64

A.1 The Benchmark One . 73

A.2 The Benchmark Two . 74

A.3 The Benchmark Three . 75

A.4 The Benchmark Four . 76

A.5 The Benchmark Five . 77

A.6 The Benchmark Seven . 79

vii

List of Tables

2.1 Decoding and Encoding . 24

2.2 Example of Roulette-wheel Selection 25

4.1 Parameters Setting of Problem Generator 55

4.2 The Algorithm Parameter Setting 56

4.3 The Approaches in Comparison . 57

4.4 The Final Comparison Result . 64

4.5 Average Utility Rate (B1-B7) Result 65

A.1 The Best Result in Experiment 4.3 70

A.2 The Best Result in Experiment 4.4 71

A.3 The Best Result in Experiment 4.4 72

A.4 The Best Result in Benchmark One 73

A.5 The Best Result in Benchmark Two 74

A.6 The Best Result in Benchmark Three 75

A.7 The Best Result in Benchmark Four 76

A.8 The Best Result in Benchmark Five 77

A.9 The Best Result in Benchmark Six 78

viii

List of Algorithms

1 Empty Spaces Update(boxj,S) . 14

2 Deepest-Bottom-Left Sorting (S) 15

3 Placement Strategy(BTPS,V LT) 17

4 ItemRotation(boxi,rotateplag) . 18

5 General Schema of an evolutionary Algorithm 21

6 Roulette Wheel Selection [3] . 26

7 Tournament Selection[3] . 27

8 LayerGenerator(boxi, emsi) . 35

9 BRKGA Initialization(problem) . 42

10 Space Utility Rate(solution) . 43

11 Revert(solution,l,r) . 44

12 FitnessFunction(solutionset) . 45

13 CrossoverFunction(parent1,parent2) 47

14 PositionPatternGenerator(Problem) 49

15 ES Mutation . 51

16 BenchmarkGenerator . 54

ix

Abbreviations

NP Non-deterministic Polynomial-time

3D-CLP 3Dimensional Container Loading

EA E Algorithmsvolutionary Algorithms

EP Genetic Programming

TS Tabu Search

SA Simulated Annealing

GA Genetic Algorithms

GRASP Greedy Randomized Adaptive Search Procedure

BRKGA Biased Random Key Genetic Algorithms

SPP Strip Packing Problem

BBP Bin Packing Problem

MCCP Multi Container Loading Problem

KLP Knapsack Loading Problem

MPLP Distributor’s Pallet Loading Problem

MPLP Manufacutrer’s Pallet Loading Problem

EMS Empty Maximal Space

DP Difference Process

DBLP Deep Bottom Left Procedure

BTPS Box Type Packing Sequence

VLT Vector of Layer Type

x

Preface

The 3-Dimensional Bin Packing Problem can be divided into a number of branches

by adding different constraints that are required in practical applications. There

is no any single algorithm which can cover all the problems, so the problem that

is chosen in this project is one branch of them, namely 3 Dimensional Container

Loading Problem (3D-CLP). The details of this problem will be introduced in the

chapter 1. There are two reasons to choose this branch. The first reason is, there

is a widely used benchmark, produced by Bischoff and Ratcliff [4], which offers

a standard to evaluate the performance of an optimizer. The second one is that

this problem can extend to other branches easily by changing or adding necessary

constraints.

The 3D-CLP is NP-hard [5]. Using an exact method to solve this problem is

unrealistic, especially, when there are too many items needed to be packed in

which the search space is too large to search. To date, only a few exact methods

have been suggested in the literature. Fekete and schepers [6] presented a general

framework for an exact solution of multi-dimensional packing problem. Martello

et al.[7] developed an exact branch-and bound method for the 3D-CLP.

To fill the above gaps, the heuristics have been the only viable alternative to find

optimal or near-optimal solution. Many heuristic procedures have been proposed

for solving the 3D-CLP. Fanslau and Bortfeldt [8] classified approaches for the

3D-CLP according to packing heuristics and method type. The packing heuristics

are grouped as the below list.

xi

Preface xii

• The wall building approaches fill the container with vertical layers. This

approach has been used by Loh and Nee [9], Borteldt and Gehring [10],

George and Bobinson [11] and Pisinger [12] as well.

• Stack-building approaches arrange the packing items into different stacks

first. After that, these stacks will be loaded into a container along with the

floor of the container, in a way, that saves the most space. The examples of

the use of this method that can be found in Bischoff and Ratcliff [4], Gehring

and Bortfeldt [13].

• Horizontal layer-build approaches build horizontal layers that are intended

to cover the largest possible part of the load surface underneath, then fill

them into a container from the bottom to top. These approaches have been

implemented by Bischoff et al. [14] and Terno et al. [15].

• Block-building approaches fill the container with cuboid blocks of boxes. The

tree-search method of Eley [16], the tabu search method of Bortfeldt et al.

[17], and the hybrid simulated annealing and tabu search method of Mack

et al. [18] are examples.

• Guillotin-cutting approaches are based on a slicing tree representation of a

packing plan. Each slicing tree corresponds to a successive segmentation

of the container into smaller pieces by guillotine cuts, whereby the leaves

correspond to the boxes to be packed. The graph-search method of Morabito

and Arenales [19] is based on this approaches.

In the below list, Fanslau and Bortfeldt [8] categorized solution methods as meta-

heuristics, tree search methods, and conventional heuristics.

• Meta-heuristics search strategies have been the preferred methods in the last

ten years, which includes the tabu search approaches (TS) of Bortfeldt et

al. [17], the simulated annealing methods (SA) of Mack et al. [18], the

genetic algorithms (GA) of Gehring and Bortfeldt [13, 20], and Bortfeldt

and Gehring [10], the method of Bischoff [21], based on the Nelder and Mead

algorithm, and the greedy randomized adaptive search procedures (GRASP)

of Moura and Oliveira [22] and Parreno et al. [23].

Preface xiii

• Tree-search methods or graph-search methods have been successfully applied

to the 3D-CLP by Morabito and Arenales [19], Eley [16], Hifi [24]. Pisinger

[12], and Fanslau and Bortfeldt [8].

• Conventional heuristics incorporates construction methods and improvement

methods. Examples can be seen in papers by Bischoff et al. [14], Bischoff

and Ratcliff [4], and Lim et al [25].

Additional practical constraints have been considered by other authors. For in-

stance, the weight distribution of cargo within a container was taken into account

by Davies and Bischoff [26], Eley [16], and Gehring and Bortfeldt [13]. The impact

of varying the load-bearing strength was examined by Bischoff [21]. Bortfeldt and

Gehring [10], Bortfeldt et al. [17], and terno et al. [15] considered loading stability

in their research. Other container-related factors, such as orientation constraints

[20] and the grouping of boxes [4, 27], have also been considered.

Currently, the most efficient method to solve the 3D-CLP is the Biased Random

Key Genetic Algorithm (BRKGA)[1]. This project aims at improving the BRKGA

by modifying its mutation operator and initialization component in order to pro-

duce a better result. The relevant background information and the details of the

implementation will be presented in chapters 2 and 3. This document is structured

as follows:

• Chapter 1: The 3-Dimensional container loading problem description.

• Chapter 2: Background information about BRKGA.

• Chapter 3: The details of implementation.

• Chapter 4: Experiment.

• Chapter 5: Concludes and indicates future research directions.

Chapter 1

Design Optimization of

3-Dimensional Bin Packing

Problem

The main goal in the basic form of the three-dimensional container loading problem

is to find a best three-dimensional packing pattern for loading a set of rectangular

boxes into a container so that the total volume of the boxes loaded is maximized,

and the boxes do not overlap. The bin packing problem initially appears fairly

simple. However, scholars have found its behaviour rather complex.

In practical applications, there are several issues in the production and the trans-

portation planning directly modelled by the 3D bin packing problem, which in-

clude pallet loading, warehouse management, container ship loading, plane cargo

management and pallet loading. For these enterprises, possessing an efficient uti-

lization of materials and the transportation capacity is a significant competitive

advantage. Therefore, the requirement to improve the efficiency of maximizing

the utilization is strongly necessary.

The section 1.1 introduces the overall detail of the 3D-CLP. In the section 1.2, we

present the relevant mathematical models. In the section 1.3, we briefly describe

the placement strategy. In the section 1.4, two additional considerations will be

presented.

1

Chapter 1. 3D-Bin Packing Problem Optimization 2

1.1 Problem Definition

The problem of loading boxes into containers can be classified into four variants

[12]: the Strip Packing Problem (SPP), the Bin packing Problem (BBP), the

Multi-Container Loading Problem (MCLP), and the Knapsack Loading Problem

(KLP or CLP). The SPP considers a container of which two dimensions are fixed

(e.g., width and height), and the third dimension (e.g., length) is a variable. The

problem is to decide how to pack all boxes of different sizes inside the container, so

that the variable dimension (length) is minimized (e.g., [28–30]). For the BBP, the

aim is to find a minimal number of container (Bin) to load all boxes of different

sizes (e.g., [15, 31–33]). Unlike the BPP, the containers in the MCLP do not

necessarily have the same sizes and costs, and the problem is to decide how to

load all the boxes so that the total cost of the chosen subset of containers to be

loaded is minimized (e.g.,[34, 35]).

This project mainly focus on the Container Loading Problem (CLP). The number

of the container in this problem is only one with fixed size. There are more than

one groups of packing items, each item in the same group is assigned a same size.

The objective of this problem is to maximize the space utility of the container.

There are many researches on the container loading problem (e.g., [4, 7, 11, 16,

19, 26, 36]). It can be seen as a three dimensional problem of loading rectangular

boxes onto pallets. The problem of carrying boxes on pallets can be divided

into two cases [37]: the Manufacutrer’s pallet loading problem (MPLP) and the

Distributor’s pallet loading problem (DPLP). In the first case, there is only one

type of box (all boxes has a same size) while in the DPLP the types are two or

more. Both problems can be solved in their two- or three- dimensional version,

although the first one is more common in practice. The difference between them is

that in the two dimensional case, the loading pattern is built in horizontal layers on

the pallet, while in the three-dimensional one, the loading pattern can be generic.

The last case can also be seen as a KLP with only one type of box.

Chapter 1. 3D-Bin Packing Problem Optimization 3

Practical Requirements

There are twelve practical considerations in [4], which can be used to model more

realistic container loading problems. It is perhaps necessary to emphasize that no

claim is made that the factors described are of importance in every case. What is

claimed, however, is that there are many cases in which some of the factors listed

below play an important role.

• Orientation Constraints:

The instruction is usually seen, ’This way up’, on cardboard boxes. It is

a simple example of this kind of restriction. However, it may not only be

the vertical orientation which is fixed, but also the horizontal orientation is

restricted. For instance, a two-way entry pallet is loaded by forklift truck.

• Load Bearing Strength of Items:

’Stack no more than x items high’ is another instruction seen on many boxes

in many situations. This constraint can be considered as a straightforward

figure for the maximum weight per unit of area on which a box can support

depended on its construction and also its contents. Usually the side walls of a

cardboard box provides the bearing strength, so that it might be acceptable

to stack an identical box directly on top, whereas placing an item of half the

size and weight in the centre of the top face causes damage. The load bearing

ability of an item may, of course, also depend on its vertical orientation.

• Handling Constraints:

The items of positioning within a container is usually determined by its size,

or weight and the loading equipment. For instance, the large items should

be placed on the container floor, or to fix its position below a certain height.

It may also be desirable from the viewpoint of easy/safe materials handling

to place certain item near the door of the container.

• Load Stability:

If the cargo is easily damaged, to ensure that the load cannot move signif-

icantly during transport is necessary. Also, during loading and (especially)

Chapter 1. 3D-Bin Packing Problem Optimization 4

unloading operations, an unstable load can have important safety implica-

tions. For handling this constraint, some devices will be used to restrict or

prevent cargo movement, such as Straps, Airbags. However, the cost can be

considerable, especially in terms of time and effort spent.

• Grouping of Items:

A load might be easy to operate when the items belong to the same group.

For instance, several items that are defined by a common recipient or the

item type are positioned in close proximity. It may also have advantages in

terms of the efficiency of loading operations.

• Multi-drop Situations:

In order to avoid unloading and reloading a large part of the cargo several

times when the container is to send consignments for a number of differ-

ent destinations, the items have to be loaded within the same consignment

closely and to order the consignments within the container.

• Separation of Items within a Container:

To ensure that cargo which may adversely affect some of the other goods

separate to load is necessary. For instance, if they include both foodstuffs

and perfumery articles, or different chemicals, this constraint has to be taken

into account.

• Complete Shipment of Certain Item Groups:

Functional entities may include a subset of the cargo. For instance, compo-

nents for assembly into a piece of machinery, or may need to be treated as a

single entity for administrative reasons. To guarantee all the relevant items

complete packed is necessary.

• Shipment Priorities:

In the real world, the shipment of some items will be given more priorities to

delivery when these items are more important than the others, for instance,

delivery deadlines or the shelf life of the product concerned. More specifically,

the item might have a priority rating. Depending on the practical context,

this rating may represent an absolute priority. In the sense that no item in a

lower priority class should be shipped if this causes items with higher rating

Chapter 1. 3D-Bin Packing Problem Optimization 5

to be left behind, or it may have a relative character, reflecting the value

placed on inclusion in the shipment without debarring trade-offs between

priority classes merely.

• Weight Distribution within A Container:

From the viewpoint of transporting and handling the loaded container- such

as lifting it onto a ship-, it is desirable that its centre of gravity be close to

the geometrical mid-point of the container floor. If the weight is distributed

very unevenly, certain handling operations may be impossible to carry out.

In cases where a container is transported by road at some stage of its journey,

the implications of its internal weight distribution for the axle loading of a

vehicle can be an important consideration. The same, of course, applies if

the ’container’ is a truck or trailer.

• Container Weight Limit:

If the cargo to be loaded is fairly heavy, the weight limit of a container may

represent a more stringent constraint than the loading space available.

Although the aforementioned studies consider the practical issues described, in

general, mathematical formulation is rarely presented. Some papers, such as [38–

41], present formulations for two-dimensional cutting and packing problems that

can be easily extended to the three dimensional container loading problem.

1.2 Mathematical Formulations

The definition of the mathematical model of the 3 dimensional container loading

problem in this project is to referred the literature [42]. In this definition, the

item can be presented as, the item can be presented as different types of boxes

with given length li, width wi, height hi, value vi, and a maximum quantity bi,

i = 1, · · · ,m, which can be loaded inside the object (container, truck, rail-road

car or pallet) with given length L, width W , and height H (when considering a

pallet, H is the maximum allowed height of the cargo loading). The dimensions of

the boxes are integer, and they can only be placed orthogonally into the container.

Chapter 1. 3D-Bin Packing Problem Optimization 6

This last assumption can be easily relaxed in the models presented and here it is

considered only to simplify the presentation of the formulations.

The back-bottom-left corner of the container can bee seen as the origin of the

Cartesian coordinate system, and the possible coordinate where the back-bottom-

left corner of a box can be placed is represented by (x, y, z). These possible

positions along axes L, W , and H of the container belong to the sets: X =

{0, 1, 2, · · · , L−mini(li)}, Y = {0, 1, 2, · · · ,W −mini(wi)}, Z = {0, 1, 2, · · · , H −
mini(hi)}, respectively. As the view of [38, 43], for a given packing pattern, each

packed box could be moved back and/or down and/or the left, until its back,

bottom and left-hand face are adjacent to other boxes or the container. Due to

each type box can rarely be packed completely, the number of practical packed

items can be represented by εi, εi ≤ bi. Thus, without loss of generality, the sets

X, Y and Z can be expressed as below:

X = {x|x =
m∑
i=1

εili, 0 ≤ x ≤ L−min
i

(li), 0 ≤ εi ≤ bi, i = 1, · · · ,m}. (1.1)

Y = {y|y =
m∑
i=1

εiwi, 0 ≤ y ≤ W −min
i

(wi), 0 ≤ εi ≤ bi, i = 1, · · · ,m}.(1.2)

Z = {z|z =
m∑
i=1

εihi, 0 ≤ z ≤ H −min
i

(hi), 0 ≤ εi ≤ bi, i = 1, · · · ,m}. (1.3)

A possible placement of a box of type i inside the container is depicted by figure 1.1.

To describe the constraints that avoid overlapping of boxes inside the container

we define cixyzx′y′z′ , (i = 1, · · · ,m), (x, x′ ∈ X), (y, y′ ∈ Y), (z, z′ ∈ Z) as

cixyzx′y′z′ =


1 if a box of type i placed with its back-bottom-left corner at

(x, y, z), occupied point(x′, y′, z′);

0 otherwise.

Chapter 1. 3D-Bin Packing Problem Optimization 7

The mapping cixyzx′y′z′ is not a decision variable and it is computed a priori as

below:

cixyzx′y′z′ =



1 if 0 ≤ x ≤ x′ ≤ x+ li − 1 ≤ L− 1;

0 ≤ y ≤ y′ ≤ y + wi − 1 ≤ W − 1;

0 ≤ z ≤ z′ ≤ z + hi ≤ H − 1;

0 otherwise.

Before packing the item in the position (x, y, z), the algorithm can check the

feasibility of this placement based on the above formula. Here, the (x′, y′, z′)

represents the position of packed item. a feasible packing solution should hold all

cixyzx′y′z′ to be zero.

Let Xi = {x ∈ X|0 ≤ x ≤ L − li}, Yi = {y ∈ Y |0 ≤ y ≤ W − wi} and

Zi = {z ∈ Z|0 ≤ z ≤ H − hi}, i = 1, · · · ,m. The decision variables aixyz, i =

1, · · · ,m, x ∈ Xi, y ∈ Yi, z ∈ Zi, of the model are defined as

aixyzx′y′z′ =



1 if a box of type i is placed

with its back-bottom-left corner at the postion(x, y, z)

so that 0 ≤ x ≤ L− li, 0 ≤ y ≤ W − wi and 0 ≤ z ≤ H − hi;

0 otherwise.

The single container loading problem that is without additional considerations

(0,0,0)

z

Z’

x X’

y
y’

li
hi

wi
H

L

W

Figure 1.1: Example of placement of a box of type i inside a container.

can be written as a direct extension of a 0− 1 integer linear programming model

Chapter 1. 3D-Bin Packing Problem Optimization 8

proposed in [38] for the two dimensional non-guillotine cutting problems:

max
m∑
i=1

∑
x∈Xi

∑
y∈Yi

∑
z∈Zi

vi · aixyz (1.4)

100%

∑K
k=1 vkNPk

L×W ×H
→ max (1.5)

m∑
i=1

∑
x∈Xi

∑
y∈Yi

∑
z∈Zi

cixyzx′y′z′ · aixyz ≤ 1,

x′ ∈ X, y′ ∈ Y, z′ ∈ Z,

(1.6)

∑
x∈Xi

∑
y∈Yi

∑
z∈Zi

aixyz ≤ bi, i = 1, · · · ,m. (1.7)

aixyz ∈ {0, 1}, i = 1, · · · ,m.

x ∈ Xi, y ∈ Yi, z ∈ Zi.
(1.8)

For formulations (1.4-1.8), the objective function (1.4) aims to maximize the total

value of the boxes packed inside the container (if vi = (li ·wi ·hi), (1.4) maximizes

the total volume of the boxes). The objective function (1.5) is extended from

(1.4) in order to calculate the maximal container utility rate, in which NPk is the

number of the type k box packed in a solution, vk is the volume of a box of the type

k and the denominator represents the volume of the container. Constraints (1.6)

avoid the overlapping of the boxes packed, constraints (1.7) limit the maximum

number of boxes packed, and constraints (1.8) define the domain of the decision

variables.

1.3 Placement Strategy

In order to calculate the fitness, the space utility rate, of a solution in bin packing

problem, the evaluation component in the relevant algorithm has to simulate the

packing process that packs the item into the container by following particular rule

Chapter 1. 3D-Bin Packing Problem Optimization 9

when the packing pattern is given. In this project, the deep bottom left method

is selected, which is widely used in many literatures. In this placement strategy,

it is divided into three main components: the Maximal-Empty-Spaces Selection,

the Deep Bottom Left Packing Procedure, and the Empty-Spaces Update.

1.3.1 Maximal-Empty-Space Selection

There is a list S, which saves all empty maximal-spaces (EMSs) that are largest

empty parallelepiped spaces available for filling with boxes. The EMSs are rep-

resented by their vertices with the minimum and the maximum coordinates (xi,

yi, zi and Xi, Yi, Zi). When an EMS has been searching in the list S to pack a

box, only the EMS with minimum vertices coordinate (xi, yi, zi) is considered. The

initial stage of list S only has one element, the size of which is equal to the size of

the container. After each time packing a box, this list is updated and reordered

by the Difference Process (DP), shown in the section 1.3.2, and the Deep-Bottom

Left Procedure (DBLP), described in the section 1.3.3.

1.3.2 Empty-Spaces Update

In order to keep track of the EMSs, the Difference Process (DP) is introduced,

which is developed by Lai and Chan [44]. To demonstrate this method we are

assisted by an example of the application of the DP process in a 2D packing

instance as shown in the Fig.1.2.

Chapter 1. 3D-Bin Packing Problem Optimization 10

Container

(a)

BOXi Packing

Container

(b)

BOXi

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)(x2,y4)

(x1,y3)

(x1,y1)

(x4,y2)

Figure 1.2: The Example of Using The Difference Process.

• New Empty Space Generation

As shown in the Fig.1.2(a), the Boxi has to be packed into the container.

Suppose that the bottom left corner of the Boxi can be located in the posi-

tion of the container as shown in the Fig.1.2(b), the bottom-left and the top

right corners of the container and the Boxi are represented by four points,

{(x1, y1),(x4, y4)}, {(x2, y2), (x3, y3)}. After packing Boxi, the current empty

space that was used to load the Boxi was divided into at most four new EMSs.

Each of these EMSs is represented by two points that are calculated by fol-

lowing rules:

Difference: [(x1, y1), (x4, y4)]− [(x2, y2), (x3, y3)]

=

NewEMS1 = [(x1, y1), (x2, y4)]; (1.9)

NewEMS2 = [(x1, y1), (x4, y2)]; (1.10)

NewEMS3 = [(x1, y3), (x4, y4)]; (1.11)

NewEMS4 = [(x3, y1), (x4, y4)]; (1.12)

In the 2D problem, the maximal empty spaces are the area that is between

Chapter 1. 3D-Bin Packing Problem Optimization 11

two sides which are parallel and belong to the container and boxi, respec-

tively. Thus, to extend this rule to the 3D problem a maximal empty space

can be seen as the space between two surfaces which are parallel and belong

to the container and the boxi as depicted by the Fig.1.3.

Container

(a)

PacingBoxi

Container

(b)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

(x4,y4,z4)

Figure 1.3: The Example of Using The 3-Dimensional Difference Process.

In the 3D case, after packing a box, there are at most six EMSs generated. To

implement the 3D DP, the equation (1.3.2) can be rewritten as the following

model:

Difference: [(x1, y1, z1), (x4, y4, z4)]− [(x2, y2, z2), (x3, y3, z3)]

=

NewEMS1 = [(x1, y1, z1), (x2, y4, z4)]; (1.13)

NewEMS2 = [(x1, y1, z1), (x4, y2, z4)]; (1.14)

NewEMS3 = [(x1, y1, z1), (x4, y2, z4)]; (1.15)

NewEMS4 = [(x1, y1, z3), (x4, y4, z4)]; (1.16)

NewEMS5 = [(x1, y3, z1), (x4, y4, z4)]; (1.17)

NewEMS6 = [(x3, y1, z1), (x4, y4, z4)]; (1.18)

Chapter 1. 3D-Bin Packing Problem Optimization 12

• Elimination Process

After generating the new empty spaces, or called intervals, some of them

will be eliminated because they are unavailable to pack any items, and to

eliminate them can save the computer memory storage space. The intervals

with an infinite thinness or those are totally inscribed by the other intervals

will be removed from the list. To implement this process the new empty

spaces have to undergo two types checking:

– Cross-Checking:

Compare each interval with each other in order to check whether it is

totally inscribed by other interval. Suppose that we have two intervals:

[(x1, y1, z1), (x4, y4, z4)], [(x2, y2, z2), (x3, y3, z3)].

Eliminate [(x2, y2, z2), (x3, y3, z3)] from [(x1, y1, z1), (x4, y4, z4)],

If x2 ≥ x1 and y2 ≥ y1 and z2 ≥ z1 and x3 ≤ x4 and y3 ≤ y4 and z3 ≤ z4

– Self-Elimination:

Check whether the interval is infinitely thin or not. Suppose we have

an interval [(x2, y2, z2), (x3, y3, z3)].

Eliminate [(x2, y2, z2), (x3, y3, z3)] from maximal empty spaces listS.

If x2 = x3 or y2 = y3 or z2 = z3

The above checking processes can easily be adapted to the two-dimensional

problem by setting z1 = z2 = z3 = 0.0.

There is a 2-Dimensional instance, depicted by Fig.1.4, used to introduce

this process. For convenience purposes, the coordinates in the Fig 1.4 is

represented by the capital letters. By following the bottom left rule, we

put the boxi into the bottom-left corner of the container as shown in the

Fig 1.4(a). By using the two dimensional DP, the four empty spaces are

generated, which can be presented as below:

[A, I]− [A,E] = {[A,G], [A,C], [D, I], [B, I]}

Chapter 1. 3D-Bin Packing Problem Optimization 13

Container

(a)

BOXi

A B C

D E F

G H I

Container

(b)

A B C

D F

G H I

BOXi

BOXj

E

J K

L

N

M

O P

Figure 1.4: Example of Elimination Process.

Where [A,G] and [A,C] will be eliminated by following the Self-Elimination

process. Thus [D,I] and [B,I] will be saved into the list S. After that, we

assume that the Boxj is the next packing item, which is packed in the space

[B,I] by following the Deep-Bottom-Left rule as illustrated by the Fig.1.4(b).

The space [B,I] is divided into four subspaces as well by following same rules:

[B, I]− [B,K] = {[B,H], [B,C], [J, I], [M, I]}

However, the difference from packing the Boxi is that when the Boxj has

been packed into space [B,I], the space [D,I] was no longer available because

the space [D,I] was intersected by the Boxj. To detect which space will be

intersected by the Boxj, we use the following criteria: suppose there is an

empty space s, which can be represented by their bottom left point and top-

right point:(x1, y1),(x2, y2). Also, a box can be represented by (x3, y3) and

(x4, y4).

Judgement : the space s does not intersect with the current box,

If and only if : x1 ≥ x4 or x2 ≤ x3 or y1 ≥ y4 or y2 ≤ y3

Otherwise : the space will intersect with the box.

Chapter 1. 3D-Bin Packing Problem Optimization 14

To extend this criteria to the 3 dimensional problem we only need to add

coordinate z by the same way. After finding the intersected empty spaces,

it has to be updated by using the DP as well. Thus, there are four more

empty spaces generated.

[D, I]− [B,K] = {[D,H], [D,F], [O, I], [L, I]}

To summarize current empty spaces there are eight successors waiting to

save into the list S. However, before saving them, their availability has to

be checked by using the Elimination Process. In this case, [B,H], [B,C], and

[D,F] will be eliminated by implementing the Self-Elimination process. The

interval [J,I] inscribes within [O,I], so it was eliminated by using the Cross-

Checking process. After elimination, four empty spaces, [M,I], [D,H], [O,I],

and [L,I], were saved into the list S.

To implement the Empty-Spaces updating all above steps are integrated into one

function. During the whole packing procedure, this function will be called at each

packing operation. The algorithm 1 shows the pseudo-code of the Empty-Spaces

update method.

Algorithm 1 Empty Spaces Update(boxj,S)

Initialization:
Define a empty list TS and NS,;
Let (xb, yb, zb) and (x′b, y

′
b, z
′
b) represent the deepest-bottom-left corner and the front-top-

right corner of the boxj .
Iteration:
1: for each element i in the list S do
2: if xb ≥ x′i or x′b ≤ xi or yb ≥ y′i or y′b ≤ yi or zb ≥ z′i or z′b ≤ zi or then
3: //Separate the spaces that are not intersected
4: //by element i from the old list;
5: Save the element i into list TS
6: else
7: Implement 3-Dimensional DP process to element i.
8: Save the new empty spaces into list NS.
9: end if

10: end for
11: Implement Elimination Process to list NS and TS.
12: Clear all element in S.
13: S = NS + TS. // Update the list S;
Output: The new list S.

Chapter 1. 3D-Bin Packing Problem Optimization 15

1.3.3 The Deep-Bottom-Left Procedure

Recall from the section 1.3.1 that the fist step in the placement strategy is to

select an EMS with the minimum coordinates from the list S, all the element in

the list S will be arranged into the lexicographical order. Thus, the Deep-Bottom-

Left procedure is actually a sorting algorithm, which is used to sort the EMSs

into the lexicographical order: EMSi < EMSj if yi < yj, or if yi = yj and zi <

zj, or if yi = yj, zi = zj and xi < xj. After each time of the packing, the list S

will be sorted again by using this method. The algorithm 2 shows the pseudo-code

of the Deep Bottom Left (DBL) procedure.

Algorithm 2 Deepest-Bottom-Left Sorting (S)

Initialization:
Set sw =false;
Let rindex be the maximal index of list S;

Iteration:
1: for i = 0 to rindex− 1 do
2: for j = rindex ; j > i ; j + + do
3: if yj < yj−1 then
4: swap(Sj , Sj−1);//First check the length order;
5: sw=true;
6: else if yj = yj−1 then
7: if zj < zj−1 then
8: swap(Sj , Sj−1);//Second check the height order;
9: sw=true;

10: else if zj = zj−1 then
11: swap(Sj , Sj−1); //Third check the width;
12: if xj < xj−1 then
13: sw=true;
14: end if
15: end if
16: end if
17: end for
18: if not sw then
19: return
20: end if
21: end for

The available loading space will be divided into several subspaces after packing a

layer. The algorithm 2 will be called during each packing procedure, in which the

subspaces will be ranged into a lexicographical order and saved into the list S.

Chapter 1. 3D-Bin Packing Problem Optimization 16

1.3.4 Practical Implementation

According to the above sections, the placement strategy can be considered as an

important part in the fitness function. In the 3-dimensional packing problem,

there does not exit a normal object function as in the standard linear problem.

Thus, the whole packing process has to be simulated in order to calculate the

space utility rate. The functions that were mentioned in the above sections are

integrated together, called the Placement Strategy as shown in the algorithm 3,

which is used to simulate the whole packing process. The layer selection and

packing part in the algorithm 3 are used to group the boxes with the same size

together to produce a new block. In such way, the problem search space will be

reduced. This part details will be introduced in the chapter 2.

1.4 Additional Consideration

The 3D packing problem in this project focuses on the general terms. The practical

constraints are not added because the test sets used are general benchmarks, rather

than practical instances. There are only two points that we want to mention:

• Another Objective Function

The container utility rate is used as the main objective function that is

given in the formulation (1.5). This objective function is widely used in

most literatures. However, in [9], it introduced the packing density function

as shown in the equation 1.19, to evaluate the packing solution, and claims

that this function can improve the final space utility.

100%

∑K
k=1NPk
TNB

→ max (1.19)

Where NPk is the number of the type k box packed in a solution, and the

TNB is the total number of the boxes that can be packed.

Unfortunately, during the experiments in many literatures, even in this

project, this objective function does not have a good performance, and it

Chapter 1. 3D-Bin Packing Problem Optimization 17

Algorithm 3 Placement Strategy(BTPS,V LT)

Initialization:
Let Placedi be a flag that indicates whether the box type given by BTPSi

has already been used to pack a box type or not;
Let S be the list of available empty EMSs;
Let QtRemaink be the remaining quantity of unpacked boxes of type k;
Let Skipk be a flag that indicates whether the box type k should be or not when searching
for the next box type to pack; S ← Container size; QtRemaink ← Nk, Skipk ←false for all
k. //Nk is the number of box in type k

Iteration:
1: while ∃k : Skipk =false do
2: /*Box type selection.*/
3: Let i∗ be the first index in BTPS

for which Placedi =false and SkipBTPS(i) =false;
4: /* Maximal space selection.*/
5: EMS∗ ←0;
6: EMS∗ be the EMS in S in which a box of type k∗ is packed after applied Deepest-

Bottom-Left Process(DBLP);
7: if EMS∗ = 0 then
8: Skipk∗ =true;
9: else

10: /* Layer selection */
11: According to QTRemaink∗ fill the vector Layers

with all the layer-types packable into maximal-space EMS∗;
12: Let MaxLayers be number of layer in vector Layers;
13: Layer∗ = Layers(bV LT (i∗)×MaxLayerc) be the layer type selected

for placing the box type k∗.
14: /* Layer packing */
15: Pack Layer∗ at the origin of maximal space EMS∗;
16: /* Information Update */
17: Let nBox be the number of boxes of type k∗ contained in Layer∗;
18: QtRemaink∗ = QtRemaink∗ − nBox;
19: if QtRemaink∗ = 0 then
20: Skipk∗ =true;
21: end if
22: Placedi∗ =true;
23: EmptySpaceUpdate(S) //By using Algorithm 1;
24: DeepBottomLeft(S) //By using algorithm 2
25: end if
26: end while
Output: All packed box will be assigned a location in the container.

usually will overstate the volume utilization achieved. Thus, the formula-

tion 1.5 are used as the objective function.

• Rotation Consideration

In order to do the fair comparisons with other approaches, the box are al-

lowed to rotate when it simulates the packing procedure. In the 3-Dimensional

Chapter 1. 3D-Bin Packing Problem Optimization 18

container loading problem, each box can generate at most six variants by ro-

tating around its axis (xi, yi, zi). This Rotation method can be implemented

as the algorithm 4.

Algorithm 4 ItemRotation(boxi,rotateplag)

Initialization:
//rotateplag is a flag that indicate if the rotation function is open or not;
Set sw = rotateplag;
// variantset uses to space the variant items;
Let variantset be empty;
Let wi, li, hi be width, length, and high of the itemi;
Let wr, lr, hr be the variant boxi;
Let tempswap be the save buffer;

Iteration:
1: //This function is used to generate rotation variants of the items;
2: if rotateplag=true then
3: //original type;
4: save the xi, yi, zi into variantset;
5: //Rotate around length;
6: xr = zi, zr = xi,yr = yi;
7: save xr, yr, zr into variantset;
8: //Rotate around high;
9: tempswap = yr, yr = xr, xr = tempswap;

10: save xr, yr, zr into variantset;
11: //Rotate around Length;
12: tempswap = zr, zr = xr, xr = tempswap;
13: save xr, yr, zr into variantset;
14: //Rotate around width;
15: tempswap = zr, zr = yr, yr = tempswap;
16: save xr, yr, zr into variantset;
17: //Rotate around high;
18: tempswap = yr, yr = xr, xr = tempswap;
19: save xr, yr, zr into variantset;
20: else
21: //There is only one element in variantset when not support rotation;
22: save the xi, yi, zi into variantset;
23: end if
Output: variantset

1.5 Summary

In this chapter, all relevant knowledges of the container loading problem that

were involved in this project were presented. In order to make more wide com-

parison, the constraints in this problem are set by following the most literatures.

Chapter 1. 3D-Bin Packing Problem Optimization 19

Meanwhile, the algorithms that were presented in the chapter 1 have already been

tested, and can produce a reliable result. All of them compose the fitness part in

our optimizer. As mentioned at the beginning of this chapter, we tend to imple-

ment the evolutionary algorithm to tackle this problem. Thus, a reliable fitness

function has to be guaranteed. The detail about this optimizer will be introduced

in later chapters (2,3).

Chapter 2

Optimization Approach

The 3-Dimensional Container Loading Problem is always a challenge in many fields

because of its practical application and the NP -hard property. Until now, there

is still not an efficient approach to tackle them. In the past, design of packing

solution was based on experience. However, in the last three decades, a signifi-

cant number of computerized methods have been applied to bin packing problem,

ranging from linear programming, dynamic programming, and enumeration tech-

niques in early years, to more recently the Evolutionary Algorithm [10, 13], the

Tabu Search Algorithm [17], the Tree Search Algorithm [8]. In this work, we tend

to choose the GA to be our main algorithm framework.

This chapter is divided into four sections. In the section 2.1, the general structure

of the EA will be introduced. The section 2.2 introduces more detail about the

standard GA. In the section 2.3, the Random Key concept will be presented . In

the section 2.4, the concept of Layer will be added. In the section 2.5, a short

summary will be given.

2.1 Evolutionary Algorithm

The GA is one important branch of EAs, and other two branches are the Evolution-

ary Strategy (ES) and the Genetic Programming (GP). The idea of EAs is inspired

20

Chapter 2. Optimization Approach 21

from the Darwin’s theory of the survival of the fittest and mimic the process of the

organic evolution by using operators ”population”, ”mutation”, ”recombination”

and ”selection” [45]. The better an individual performs, the bigger chance it can

be chosen to survival and generate offspring. Over the course of evolution, this

leads to a penetration of the population with the genetic information of individuals

of the above-average fitness [46]. There is a high level abstraction for evolutionary

algorithms given in the algorithm 5, which include all the essential components

of standard implementations. For the different evolutionary computation models,

such as the GA, the ES and the GP, the reader can obtain more details about

them in books [3, 47].

Algorithm 5 General Schema of an evolutionary Algorithm

Initialization:
Set t := 0
Initialize population with random candidate solutions
Evaluate each candidate solution

Iteration:
1: while terminate condition is not satisfied do
2: Select parents;
3: Recombine pairs of parents
4: Mutate the resulting offspring
5: Evaluate new candidate solution
6: Select individuals for the next generation
7: t := t+ 1
8: end while

Output: variantset

According to this abstraction, we can see that there are several notable characters

included in the EA: Population based, and new candidate solutions are generated

by the recombination or the mutation, and the stochastic method.

2.2 Introduction of Standard Genetic Algorithm

Genetic algorithms (GAs) are search methods based on principles of the natural

selection and genetics (Fraser [48]; Holland [49]). In this section, all relevant in-

formation about the GA and associated terminology will be introduced.

Chapter 2. Optimization Approach 22

The decision variables of the problem will be encoded into a finite-length strings

of alphabets by GAs. The term chromosomes in the GA is seen as a string which

is a candidate solutions to the search problem, the alphabets of it are represented

as genes and the values of genes are called alleles. For example, in the problem

such as bin packing problem, a chromosome could represent a packing pattern,

and a gene may represent a box. Comparing with traditional optimization tech-

niques, instead of working with parameters themselves, GAs work with coding of

parameters.

In order to evolve good solutions and implement a natural selection, a measure

that can distinguish qualified solutions from the solution set have to be provided.

The measure could be an objective function that is a mathematical model or a

computer simulation, or it can be a subjective function where humans choose bet-

ter solutions over worse ones (Vishwanath [50]). Essentially, a candidate solution’s

relative fitness is determined by the fitness measure, which will subsequently be

used by GAs to guide the evolution of qualified solutions.

The population based is an important feature for the GA. Comparing with tra-

ditional search methods, canonical genetic algorithms search a set of candidate

solutions (population) simultaneously. The size of the population is one of impor-

tant factors of the genetic algorithm, which is assigned by user and can affect the

scalability and the performance of the GA. For instance, the premature conver-

gence and suboptimal solutions can be caused by a small population size. However,

unsuitable large population sizes will consume a great deal of valuable computa-

tional resource for nothing.

After encoding the problem into a chromosome and determining the fitness func-

tion, the solutions start to evolve in the search space by following the below steps:

• Initialization

In order to cover the domain knowledge or the correspond information, the

population will be sampled randomly across the search space in the initial

state.

• Evaluation

Once a population is generated, the objective function will be used to eval-

uate each individual in this population by assigning each of them a fitness

Chapter 2. Optimization Approach 23

value.

• Selection

After fitness evaluation, the individuals with high fitness value are selected

selected to survive and generate a new population. To implement this oper-

ator, two selection method can be used, such as the roulette-wheel selection

and the tournament selection. By using these methods, the bad individual

also have an opportunity to survive to generate an offspring. This property

can help the algorithm to escape the local optimal.

• Recombination

In the recombination method, two or more parent individuals will be com-

bined in order to generate new offsprings. These offsprings will inherit a part

of genes from the parent individuals. By following this principle, the new

individual could be a better solution than the parent individual, but this is

not guaranteed. There are several recombination mechanisms which can be

adapted in different type problem. They will be introduced more detail in

the later section.

• Mutation

The mutation operator is used to generate a new individual by changing

several genes of a candidate solution with a small probability. This mutation

operator guides the candidate solution randomly walk in its neighbourhood

search space.

• Replacement

After creating the offspring population , the old population will be replaced

by a new population. To implement this procedure there are many replace-

ment techniques used, such as the elitist replacement, the generation-wise

replacement and the steady-state replacement method.

In the GA, the crossover operators play very important role [51]. This operator

guides the solution to find the optimal position in the search space by following the

informations that are given by the parent individuals. By using this operator, the

algorithm can learn the landscape of the search space, but this is the ideal state.

Chapter 2. Optimization Approach 24

In fact, there does not exist any single crossover operator that can cover all the

problems. Thus, in order to make the GA work on different problems efficiently,

a suitable crossover operator has to be specified. There are several crossover op-

erators that can be used to tackle different problems, which will be introduced in

the section 2.2.3.

2.2.1 Representation and Fitness Evaluation

Normally, the genetic algorithms work on binary strings with a fixed length l,

rather than on the real value space as the ES. Thus, before entering evaluation

part, there are two different processes that could be implemented for each indi-

vidual based on the fitness function type. For the boolean objective function, the

binary type representation can be evaluated directly. However, the fitness function

usually represents a continuous parameter optimization problem, the binary type

representation has to be interpreted as a vector of real value within a specified

range. There is a simple example for the encoding and the decoding as shown in

the table 2.1

Table 2.1: Decoding and Encoding

(a) Decode

Binary Strings Real Value

10101 → 21

11100 → 28

11101 → 29

(b) Encode

Binary Strings Real Value

01011 ← 11

10011 ← 19

10100 ← 20

2.2.2 Selection

For the selection operator, it can be generally classified into two classes:

Chapter 2. Optimization Approach 25

• Fitness Proportionate Selection

The fitness proportionate selection chooses an individual based on the pro-

portion of the individual fitness value comparing with the sum of the to-

tal fitness. Two selection methods are included in this class, namely the

roulette-wheel selection and the stochastic universal selection. Since the

roulette-wheel is widely used, it can be used as an example to explain more

detail about this type selection, as seen in the following list.

1 Evaluate the individuals in the current population by using an objective

function fi.

2 Calculate the proportion (slot size), pi, of choosing each member of the

population: pi = fi/
∑n

j=1 fj, where n presents the population size.

3 Compute qi, the cumulative probability, for each individual: qi =
∑i

j=1 pj.

4 Generate a random number r by using U(0, 1)

5 If r < q1, then the first individual, x1, is selected. Otherwise, the

individual xi such that qi−1 < r ≤ qi is selected.

6 Select n candidates and put into the mating pool by repeating (4− 5)

steps n times.

There is a practical instance in table 2.2 that can be used to illustrate the

above procedure.

Chromosome # 1 2 3 4 5

Fitness :f 35 43 12 9 4

Probability: pi 0.3398 0.4174 0.1165 0.0873 0.0388

Cumulative Probability: qi 0.3398 0.7572 0.8737 0.9161 1.000

Table 2.2: Example of Roulette-wheel Selection

The total fitness,
∑n

j=1 fj = 35 + 43 + 12 + 9 + 4 = 103. The corresponding

selection probability and cumulative probability can be found on the above

table. Suppose that a random number r is 0.64, then the second chromosome

is chosen because of q1 = 0.3398 < 0.64 ≤ q2 = 0.7572. To implement this

selection method the algorithm 6 can be referred.

Chapter 2. Optimization Approach 26

Algorithm 6 Roulette Wheel Selection [3]

Initialization:
Set current member = 1;
Let the ai be the cumulative probability of individual i

1: while current memeber ≤ µ do
2: Pack a random value r uniformly from [0, 1];
3: Set i=1;
4: while r < ai do
5: Set i = i+ 1;
6: Set mating pool[current member]= parents[i];
7: Set current member = current member + 1;
8: end while
9: end while

Output: parent population

• Ordinal Selection

Two selection schemas are involved in this class, namely the tournament

selection and the truncation selection. In the tournament selection, the

individual s are selected randomly and put into a tournament set with size

k, in which all the candidate solutions will compete based on their fitness

value. The individual with the best fitness value in the tournament set will

be selected and put into the mating pool. Normally, this tournament set

will be much smaller than the population size. This tournament procedure

will implement µ times in order to fill a mating pool with size µ. For the

truncation selection, it is almost same as the tournament selection, but it

chooses the top (1/s)th of the individuals to copy them s times into the

mating pool. The implementation of the tournament selection can refer the

algorithm 7

Chapter 2. Optimization Approach 27

Algorithm 7 Tournament Selection[3]

Initialization:
Set current member = 1;

Iteration:
1: while current member ≤ µ do
2: Pick k individuals randomly, with or without replacement;
3: Select the best of these k comparing their fitness values;
4: Denote this individual as i;
5: Set mating pool[current member]=i;
6: Set current member = current member + 1
7: end while

Output: parentpopulation

2.2.3 Recombination

After selection, individuals in the mating pool will be put into the recombination,

or called crossover, procedure in order to generate a new population. This new

population will own part of informations that inherits from the parent population.

Without adding this operator, the GA can not confirm the requirement of the

general EA. Thus, the crossover plays an important role by constructing competi-

tive Genetic Algorithms (GAs) [51] . In the later of this section, several crossover

operators will be introduced. For more crossover methods, they can be referred

by the literature [3].

For the most of crossover operators, to recombine the individuals they follow a

similar process, in which two chromosomes are selected randomly from the mating-

pool and recombined based on a probability pc, named the crossover rate. During

this process, an uniform random number r will be generated, and if r ≤ pc, the

two selected individuals implement the recombination method to produce two off-

springs. Otherwise, generating two offsprings is simply copying this two selected

individuals. A suitable crossover rate pc can either be found by the experiments,

or the schema-theorem principles (Goldberg [52]).

• k-point Crossover

Normally, the simplest and widely used methods are one-point and two-

point crossover models. The one-point crossover is to select a gene site at

random over the chromosome length, the alleles of genes on both sides of the

Chapter 2. Optimization Approach 28

individuals are exchanged. In the two-point crossover model, two gene sites

are randomly selected. The alleles between the two sites of two mating parent

individual are exchanged. The idea of one point model can be modified to

k-point model, in which k crossover points are used, instead of one or two.

Above crossover models were illustrated in the Fig.2.1.

Figure 2.1: k-Point Crossover, Uniform Crossover [53]

• Uniform Crossover

Another extension of the k-point Crossover is the uniform crossover, in which

every allele in the pair of mating parent individuals is exchanged with the

specified crossover rate pc, as seen in the Fig.2.1.

• Order-Based Crossover

Normally, the k-point Crossover is not suitable to handle the permutation

problem, such as the travelling salesman problem, because it usually pro-

duces an infeasible solution. Therefore, to make the Crossover component

adapt these type problems, Davis [54] introduced the order-based crossover

operator, in which two mating parent individual are selected at random, af-

ter that, two crossover sites in the two individuals are randomly selected.

The genes between two sites are copied to the offsprings. Starting from the

second cut point copies the genes that do not appear in the offspring yet from

the alternative mating parent by following the original order they appeared.

Chapter 2. Optimization Approach 29

• Partially Matched Crossover (PMX)

The PMX operator(Goldberg and Lingle [55]) is also an order based crossover

approach that can be used to tackle the permutation search problem. In the

first step of this crossover method, it will select two mating parent individuals

and two crossover sites at random as usual. In the second step, it selects

an allele ai between the two crossover sites of parent individual A, and finds

the allele bi in the parent individual B, which has the same position as the

ai stayed in A. Instead of exchanging allele ai and bi as the typical crossover

done, it exchanges the allele ai with aj that is same as the allele bi, but is in

parent A. After all exchanges, we can obtain two offsprings that include the

order information from the parent individuals and also are feasible solutions.

2.2.4 Mutation

According to the crossover procedure, the solution can hold the desirable infor-

mation that inherits from the parent individuals. However, what the problem is

that the crossover component will reduce the population diversity, in the other

word, this operator will guide the solution into a local optima. To overcome this

disadvantage, the mutation operator is introduced. After crossover, certain genes

of each individual in the new population will be mutated based on a small prob-

ability, called the mutation rate pm. By using this mechanism, the algorithm is

able to add the diversity into the population and explore the entire search space.

The practical implementation for the mutation operators of the GA in the different

search problems is quite similar, in which the gene will randomly choose a value

with respect the domain of this allele. The standard representation of the GA,

for instance, is a binary string. Each allele of a chromosome can either be 0 or 1.

Thus, the mutation operator in the standard GA is to flip the certain bit based

on the mutation rate pm.

Chapter 2. Optimization Approach 30

2.2.5 Theory

To analyse the behaviour of Genetic Algorithms, the most efforts idea is the

schemata, which is a template that determines a subset of strings with similarities

at certain string positions. John Holland proposed this theorem in the 1970s . To

learn more detail the reader can refer to the literature [49].

2.3 Random Key Representation

To address a wide variety of sequencing and optimization problems, such as

scheduling, resource allocation, and quadratic assignment problem, a solution can

naturally be represented by a permutation. This representation is widely used

in Evolutionary Algorithms. However, by using this representation, the solutions

of the algorithm will involve an infeasible issue when they undergo the offspring

generating process. For instance, in the GA, two permutations, x = (1, 2, 3, 4, 5)

and x′ = (5, 3, 4, 2, 1), can directly be used as two chromosomes. By using the

one-point crossover operation, the permutation would be cut at some point. dur-

ing the crossover process, these are two offsprings generated by exchange leading

segments, such as (5, 3, 3, 4, 5) and (1, 2, 4, 2, 1). For these two individuals, the GA

can not accept them because they are not valid tours, or infeasible solutions.

In order to maintain a feasible solution after undergoing this process, the algo-

rithm needs a problem specified operator to overcome the offspring feasibility

difficulty, such as the PMX crossover [55], the subsequence-swap operator [56],

the subsequence-chunk operator [57], edge recombination [58], and the ARGOT

strategy [59]. Although these operators can tackle the infeasible issue, they will

be more time consuming. Furthermore, there is an issue for using the permutation

in the container loading problem, in which the item in the permutation can not

be packed completely. In this case, the order relation ship in the permutation can

not be used efficiently. In addition, the need for specialized representations for the

different problem variation has always been a problem as well.

Therefore, To overcome this disadvantage a robust representation technique, called

random keys, was proposed by James C Bean [2]. It can be used to represent the

Chapter 2. Optimization Approach 31

solutions of many sequencing and optimization problem, and guarantees the fea-

sibility of all offspring without creating additional overhead.

2.3.1 The Concept of Random Key

The solution of a combinatorial problem can be seen as a sequence. By using the

traditional binary representation to encode this solution is quite complicated, and

the decoding part will become very time consuming. The most critical problem

is that the decoding part can not guarantee to produce a feasible solution. In the

random key representation, each bit of a solution will be encoded by a random

numbers. The solution will be decoded by sorting these random numbers into

specified order. Because all of the operations just occur on the random numbers,

all solutions are feasible after decoding.

Therefore, the random key encoding can be considered as tags, which can be used

to map the literal space into a surrogate space, depicted by the Fig.2.2. This space

normally respect with the domain [0, 1]n. The search space usually is more than

Figure 2.2: Decoder used to map solution in the hypercube to solutions in the
solution space where fitness is computed [60]

two dimensions. By using this type encoding, each dimension will be tagged by a

random key. For this reason, the direct search space of the GA is a continuous n-

dimensional unit hypercube as seen in the Fig.2.2. Thus, this encoding can simply

be considered as a hypercube sampling procedure.

Chapter 2. Optimization Approach 32

2.3.2 Hypercube Sampling

the hypercube sampling is a method of sampling that can be used to produce input

values for estimation of expectation of functions of output variables [61]. For the

population based algorithms, in each iteration it will generate a set of solution,

which is a sampling procedure. The distributional situation of the population in

the search space determines whether the algorithm can learn the information of the

search space or not. A qualified sampling method should has a good space filling

properties, which means that the solutions are more uniformly distributed over the

domain, otherwise, it is not. There are two examples shown in the Fig.2.3. Where

the Fig.2.3(a) shows that the random number in each dimension is generated by

normal distribution, and in the Fig.2.3(b), they are produced by the uniform

distribution.

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(a) 2−Dimension N(0,1)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 2−Dimension U(0,1)

Figure 2.3: HyperCube Sample

As mentioned before the solution of the combinatorial problem is a sequence, the

solutions in this type problem space are incomparable. The difference between two

solutions is the permutation, it is unable to say that one permutation is better

than others. Thus, in order to enable them to grasp comprehensive information

of search space of combinatorial problem as much as possible, we have to select a

sample method, in which the solution will uniformly be distributed, seen as in the

Fig.2.3(b).

Chapter 2. Optimization Approach 33

2.3.3 Advantage of Random Key Representation

There are two main advantage by using this representation. The first one is that

the random key encoding is robustness to problem structure. Variations in problem

structure are captured in the mapping and the objective function value passed

back. Mappings are the problem specific, but generally involve sorting the random

keys [2]. The second advantage is offered by the concept of the hypercube, which

provides a flexibility to the search space. For instance, if there are a few dimensions

dropped out, the search space still belong to a hypercube space. Although it could

cause a sub-optimal, it keeps the hypercube design at least. Thus, if one cannot

afford another set of data properly designed for the smaller domain, the existing

data can be reused without reduction in the number of sampled points [62].

2.3.4 Disadvantage for The Random Key Representation

High dimensions are one of characters for the combinatorial problem. In the 3-

Dimensional container loading problem, each item could be considered as a dimen-

sion, in such case, the solution in this problem can have more than 100 dimensions.

Thus, by using the hypercube sampling, it will suffer from the curse of dimension-

ality. While uniformity in each dimension is preserved, the space filling properties

become questionable. As the number of variables increase, it becomes harder to fill

the design space. When the optimization pushes points further apart, the sample

tends to create a vacuum in the center of the design space. For such case, it not

only appear in the hypercube sampling, but also is a normal phenomenon in the

high dimensions problem.

2.4 Divide and Conquar

According to above sections, the central defect of the random key representation

in the 3-dimensional container loading problem was found. In order to overcome

this shortage, we try to reduce the problem dimensions by following the idea of

Chapter 2. Optimization Approach 34

the Divide and Conquer.

Firstly, the packing item with the same size will be assigned to the same group.

During each packing procedure, a set of items with the same size will be packed

into the available space, rather than packing each of them.

Secondly, due to the packing process occur in the 3-dimension space, each available

packing space has at most six different packing patterns, called Layers. The layer

will be used by a constructive heuristic based loading approach. In the packing

procedure, after selecting a packing item and an empty maximal-space, this item

could generate six rectangular arrangements by filling each side of this space in

rows and columns. This rectangular arrangement is called Layer. In this project,

items are allowed to rotate when it is packed, so each item can have six different

variants, and each variant will generate at most six layers. Therefore, there are

at most thirty six layers that can be used to pack the selected item. the layers

generated process can be illustrated by the Fig. 2.4.

Figure 2.4: Six different layer types for an box type rotation variant [1]

Finally, the Placement Strategy will select a layer to pack a set of items with the

Chapter 2. Optimization Approach 35

same size into the container. After that, this group of items will be seen as an

entirety to process. The placement function will assign a location to the packing

layer, rather than each item. To implement this function, the algorithm 8 can be

used.

Algorithm 8 LayerGenerator(boxi, emsi)

Initialization:
Let layerset be a empty set for saving layers;
Let Wnub, Lnub, Hnub be the counters to save the number of packed box in emsi.
Let CW, CL, CH be the width, length, and high of the emsi;
Let (xl, yl, zl) and (x′l, y

′
l, z
′
l) be the DLB and the FRT point of layer;

Let boxnub be the number of unpacked boxi, bw, bl, bc be the width, length, and high
Let (xems, yems, zems) and (x′ems, y

′
ems, z

′
ems) be the DLB and the FRT point of emsi;

Iteration:
1: //Layer ranged from the left to right, and move the front;
2: Wnub = (bCW/bwc > boxnub)?boxnub : bCW/bwc;
3: Lnub = (bboxnub/Wnubc == 0)?1 : bboxnub/Wnubc;
4: if Lnub ∗ bl ≤ CL then
5: xl = xems; yl = yems; zl = zems;
6: x′l = xl + bw ∗Wnub; y′l = yl + Lnub ∗ bl; z′l = zl + bh;
7: the two points builds up a layer and saved into layerset;
8: else
9: Lnub = bCL/blc;

10: xl = xems, yl = yems, zl = zems;
11: x′l = xl + bw ∗Wnub, y′l = yl + Lnub ∗ bl, z′l = zl + bh;
12: The two points builds up a layer and saved into layerset;
13: end if
14: //Layer ranged from deep to front and move to right direction;;
15: Lnub = (bCL/blc > boxnub)?boxnub : bCL/blc;
16: Wnub = (bboxnub/Lnubc == 0)?1 : bboxnub/Lnubc;
17: if Wnub ∗ bw ≤ CW then
18: xl = xems, yl = yems, zl = zems;
19: x′l = xl + bw ∗Wnub, y′l = yl + Lnub ∗ bl, z′l = zl + bh;
20: The two points builds up a layer and saved into layerset;
21: else
22: Wnub = bCW/bwc;
23: xl = xems, yl = yems, zl = zems;
24: x′l = xl + bw ∗Wnub, y′l = yl + Lnub ∗ bl, z′l = zl + bh;
25: the two points builds up a layer and saved into layerset;
26: end if
27: //Using the same procedure to generate the rest layers
28: //Layer ranged from left to right and move to top direction;
29: //Layer ranged from bottom to top and move to right direction;
30: //Layer ranged from deep to front and move to top direction;
31: //Layer ranged from bottom to top and move to front direction;
Output: Layerset

Chapter 2. Optimization Approach 36

In the algorithm 8, the boxi makes certain number copies along with the axis

(x, y, z) of the emsi to generate six different layers respectively. For instance, in

line 1-12, the number of copies of the boxi are ranged from left to right, then

moving front. The Wnub is the maximal number of the boxi which can be packed

along with the x axis of the emsi. The Lnub is the maximal number of the boxi

in the y axis. in the other world, the Wnub, Lnub, and Hnub hold the dimension

constraint of the emsi and quantity constraint of the boxi. For the questions about

how to select the layers, more explanation will be given in the chapter 3.

2.5 Summary

In this chapter, the general framework of the evolutionary algorithm and all

relevant components are introduced. In order to make the GA adapt the 3-

Dimensional container loading problem efficiently, instead of using the traditional

binary representation, a specified representation was used to model this problem,

called random key representation. Furthermore, according to analysing the short-

age of this representation, we proposed a corresponding solution. To combine the

concepts in above sections, the general-purpose metaheuristic framework can be

constructed as depicted in the Fig.2.5

Figure 2.5: General-purpose Metaheuristic Framework[60]

In the next chapter, the standard GA will be modified based on the above structure

to solve the 3-Dimensional Container Loading Problem (3D-CLP).

Chapter 3

Biased Random Key Genetic

Algorithm

Genetic Algorithms (GAs) are adaptive methods that are used to solve optimiza-

tion problems [63, 64] by associating solutions of the optimization problem with

individuals of the population. Over many generations, natural populations evolve

according to the Charles Darwin’s principle of natural selection, called survival of

the fittest [65]. According to simulating this process, solutions to an optimization

problem are able to be evolved by the genetic algorithm if there is a suitable en-

coded. Thus, to define a genetic algorithm an encoding (or representation) for the

problem have to be specified first. Furthermore, a reliably objective function is

also important for the whole evolutionary process, which will guide the solution

into the desirable region.

Currently, the most efficient approach to solve the 3D-CLP is the Biased Ran-

dom Key Genetic algorithm (BRKGA)[1]. In this project, in order to improve the

BRKGA, the original initialization component and mutation operator will be mod-

ified by using a different position pattern generator and an ES mutation operator

respectively.

This chapter will introduce two main aspects: In the section 3.1, the encoding and

decoding procedure will be explained. In the section 3.2, the whole evolutionary

process will be introduced.

37

Chapter 3. Based Random Key Genetic Algorithm 38

3.1 Representation and Decoding

The general framework of our optimizer is referred as the BRKGA [60], the rep-

resentation of which is a string of random real numbers with respect the uniform

random distribution between 0 and 1. The evolve strategy involved is same as the

one proposed by Bean [2], except for the method crossover. The important factor

of this GA is that all the offsprings produced by crossover are feasible solutions,

this is achieved by replacing the feasibility issues into the fitness function evalua-

tion as much as possible. Suppose a feasible solution can be generated according

to decode any random key vector, and any solution after crossover is also a feasible

solution because it can be seen as a random solution as well. By means of the

dynamic of the genetic algorithm, the connection between the random key vectors

and corresponding solution will be comprehended by the system.

• Representation

In this GA, the representation will divided into two steps of random real

number vectors. The first step is used to encode the box type packing

sequence (BTPS). The second step is used to encode the vector of layer

types (VLT). These two steps will be used in the placement procedure. The

structure of this chromosome can be seen below.

Chromosome =

gene1, · · · , geneM︸ ︷︷ ︸
BTPS

, geneM+1, · · · , gene2M︸ ︷︷ ︸
VLT


Where the first M genes are used to encode the box type packing sequence,

and the vector of layer types can be encoded by the second part M genes.

The second part of the chromosome is used as the index indicator. Recalled

the layerset generated in the algorithm 8, it will generate at most 36 layers

and save in the layerset in each packing method. Each random number in

the second part can indicate which layer should be selected from this layerset

during current packing process.

• Decoding

When the chromosome has been put into the fitness function, the first M

Chapter 3. Based Random Key Genetic Algorithm 39

genes will be decoded into the box type packing sequence (BTPS) by sim-

ply sorting the random value with increasing or decreasing order (seen in

Fig.3.1). The placement function will decide which item should be packing

first by using the BTPS.

Figure 3.1: First M Gene Decoding

The second M genes will be saved in the vector of the layer type (VLT),

which will directly be used by layer selection part without any manipula-

tion. These values will be applied in the line 13 of the algorithm 3 as shown

below.

Layer∗ = Layers(bV LT (i∗)×MaxLayerc)

Where the Maxlayer will be a number that equal to the size of the set of

the Layers (Layerset). the V LT (i∗) is the i element of the second part of

chromosome. Since the value of geneM+i is random real number between 0

and 1, the bV LT (i∗) ∗Maxlayerc is the index of the layerset.

It is should be noted that, during the whole evolutionary process, all relevant

operation only work on a random key representation. After each time evaluation,

the packing sequence will be sorted back to its original permutation in order to

keep the random key always fixed in the same position.

Chapter 3. Based Random Key Genetic Algorithm 40

3.2 Evolutionary Process

In this project, the optimizer follows the evolutionary process of the standard GA,

so there are five components involved. The first one is initialization part, in which

the population is initialized with random-key vector, the elements of this vector

are random real numbers uniformly sampled for the interval [0, 1]. The second

one is the fitness component, in which each individual in the population will be

evaluated and assigned a merit value. After that the population will be put into

selection part, a fixed number individuals are selected based on their fitness value.

In this project, we use the elitist strategy [63], so a fixed number of best individuals

will be copied into the next generation directly without change. The fourth part

is the crossover section, in which the selected individuals will be used to produce

new offsprings. In the final part of this optimizer, it is called mutation operator,

in which the several random selected genes of the offspring in the new population

will be mutated by a small probability. However, The mutation operator (Mutant)

in the BRKGA is quite different from one in the standard GA, which generates

a fixed number individuals completely at random by using same way as in the

initialization component. The purpose of using this mutation operator is also to

prevent premature convergence. The Fig.3.2 illustrates the architecture of this

algorithm and the evolutionary process.

Initialization

Evaluation

Selection

Crossover

Mutation

TerminateSTOP

Chromosome

Box Type Packing Sequence
Decoding(BTPS)

Vector of Layer Types
Decoding(VLT)

Build-up Packing Layer by
using BTPS and VLT

Calculate the Space Utility
Rate(SUR)

Feedback the SUR of
Chromosome

Evolutionary Process Evalutation Process

Phase

Generate BTPS

Generate VLT

Placement Procedure

Fitness Evaluation

Figure 3.2: The Architecture of The BRKGA Algorithm

Chapter 3. Based Random Key Genetic Algorithm 41

3.2.1 Initialization

Normally, there are two main tasks in the initialization component. The first task

is to construct the representation based on the rule that have already been defined.

The second task is to build up the initial population by using the representation

model. However, one point should be noted that, in the 3-Dimensional CLP, before

assigning each item a random key, the item in the problem has to be arranged into

a specified pattern, called position pattern. Each individual will hold this pattern

and never change during the whole evolutionary process, except in the decoding

procedure this pattern will be reordered by sorting the random key. However,

after evaluation, this pattern will be restored. Thus, as mentioned before, the

random key representation is just a position tag. There is an example shown the

construction of the individual and population in the Fig.3.3.

1 1 2 3 3 4 4 5

0.44 0.13 0.33 0.21 0.57 0.81 0.11 0.17

Individual 1

Individual 3

1 1 2 3 3 4 4 5

0.64 0.37 0.77 0.19 0.45 0.73 0.23 0.03

Individual 2

1 1 2 3 3 4 4 5

0.36 0.12 0.81 0.22 0.01 0.78 0.32 0.73

Random Key

Random Key

Random Key

Individual n 1 1 2 3 3 4 4 5

0.02 0.18 0.01 0.74 0.22 0.98 0.53 0.17Random Key

Figure 3.3: Population Structure

According to the example, it is clearly seen that the initial patterns in the every

individual are same, the random key is just a tag for each position. To implement

this part function the algorithm 9 can be referred.

Chapter 3. Based Random Key Genetic Algorithm 42

Algorithm 9 BRKGA Initialization(problem)

Initialization:
Define genei be a structure which can save a box item;
Define chromosome be a vector of gene.
Let populationset be the set to save the individuals;
Let boxi be the i type box in the problem;
Set nbcounter be 0;
Let λ be the size of the initial population;
Set a uniform random number generator U(0, 1);
Set V ID be 1, which is ID number generator used to give each item an ID;

Iteration:
1: while size of the populationset! = λ do
2: repeat
3: Let numberbox be the total number of boxi should be packed;
4: while nbcounter ≤ numberbox do
5: Generate a random key by using U(0, 1).
6: Save this random key, boxi,and V ID into genei;
7: nbcounter=nbcounter+1, V ID = V ID + 1;
8: Save the genei into the chromosome;
9: end while

10: nbcounter = 0;
11: until boxi be the last item in the problem
12: Save the chromosome into populationset;
13: Initialize the chromosome;
14: end while
Output: populationset

3.2.2 Fitness Function

The operation procedure of the fitness function has already been illustrated in

the Figure 3.2. The kernel function, the Placement Strategy, was also introduced

by the algorithm 3 in the chapter 2. However, there are still several auxiliary

functions included in the fitness component that have not been mentioned yet.

• Space Utility Rate Calculate

After undergoing the Placement Strategy function, the items will be packed

into a different layer, and the layer will be assigned with the corresponding

position in the container. For the items cannot be packed, they will be

given an unavailable coordinate in order to make it be ignored in the utility

rate calculation function. The Space Utility Rate function calculates the

space utility rate (SUR) by adding volume of each layer together and divide

Chapter 3. Based Random Key Genetic Algorithm 43

the container volume, which can be represented by the equation 1.5. To

implement this function the algorithm 10 can be used.

Algorithm 10 Space Utility Rate(solution)

Initialization:
Let V layeri will be the volume of i layer element in the solutions;
Set packedvolume to save the total packed volume;
Let SUR be the current space utility rate;
Let TotalV olume be the container volume;

Iteration:
1: repeat
2: packedvolume = packedvolume+ V layeri;
3: until
4: SUR = packedvolume/TotalV olume;
Output: SUR

• Pattern Revert Function

In this function, the solution will be sorted to the original order as explained

in the section 3.2.1. By using this function, a random key will always tag

the fixed position of the sequence, which can help the algorithm to learn the

connection between the random key and the corresponding item. To imple-

ment this function is quite simple, it is a sorting algorithm, which reorder

the solution by using the V ID of the gene. It can be implemented as the al-

gorithm 11. To implement this function we use the concept of quick sorting,

proposed by Tony Hoare. This concept can significantly increase running

efficiency of the fitness function because the complexity of this sorting algo-

rithm, on average, is O(n log n). It is faster than other sorting algorithm,

such as the bubble sort (O(n2)).

Chapter 3. Based Random Key Genetic Algorithm 44

Algorithm 11 Revert(solution,l,r)

Initialization:
//The l, r represent the most left index and the most right index of the solution;
//The solution is a individual which have already been evaluated;

Iteration:
1: if l < r then
2: Let temp V ID be the V ID of the most left item in the solution;
3: i = l,j = r, temp V ID = V IDj

4: while i < j do
5: while i < j and V IDj > temp V ID do
6: j + +;
7: end while
8: if i < j then
9: Swap(solutioni++,solutionj);

10: end if
11: while i < j and V IDi ≤ temp V ID do
12: i+ +;
13: end while
14: if i < j then
15: Swap(solutionj−−,solutioni);
16: end if
17: end while
18: Set solutioni to be the element with temp V ID.
19: Revert(solution,l,i-1);
20: Revert(solution,i+1,r); //Recursive call;
21: end if
Output: solution with original order;

All functions mentioned are included in the fitness component. The stability

of this fitness function is guaranteed through running many experiments. The

implementation of this function is described by the algorithm 12. Through the

practical implementation, we found that this fitness function is still very time

consuming, even though we improved some sub components of it by modified their

calculation method. Thus, in order to increase its running speed, it is compiled

as parallelization, but this modification is only limited in the fitness component.

The GA logic is not paralleled. For the paralleled version fitness function, its

computational core is same as the algorithm 12. We just assign several threads to

run it.

Chapter 3. Based Random Key Genetic Algorithm 45

Algorithm 12 FitnessFunction(solutionset)

Initialization:
Let solutioni be one solution in solutionset;

Iteration:
1: repeat
2: Decode solutioni to generate BTPS and V LT ;
3: PlacementStrategy(BTPS,V LT); //Algorithm 3;
4: SpaceUtilityRate(solutioni); //Algorithm 10;
5: Revert(solutioni,l,r) //Algorithm 11;
6: until solutioni to be the last solution in solutionset
Output: SUR

3.2.3 Selection Operator

After the evaluation, each individual in the population will be assigned with a

fitness value, SUR. In this function, the candidate with the qualified fitness value

will be selected to be the parent of the next generation. The different selection

methods have already been introduced in the section 2.2.2 of the chapter 2. To

implement the selection component in this project, we chose the tournament se-

lection. Again, the running efficiency of the sorting method in this selection is an

issue. After each evaluation process, the individual in the population has to be

sorted in a specified sequence in order to be selected as the best candidates. Sup-

pose that a population with 2000 individuals has to be sorted into the decreasing

order, and each reorder operation in C++ is 10−6s. If we use the bubble sort, one

sort process will consume almost 4s on average. Otherwise, if the concept of quick

sort is used, as seen in the algorithm 11, one sorting process will stay with 0.006s

on average. It is a big improvement. Thus, the sorting method in this selection

component also referred the idea of quicksort.

3.2.4 Crossover operator

The parametrized uniform crossover [66] was applied into this algorithm. During

each crossover process, two parent individuals will randomly be selected from

the TOP of population and the old part of population. The construction of the

population will be illustrated in the later section. After selecting two parent

individuals, at each gene we toss a biased coin to select which parent will contribute

Chapter 3. Based Random Key Genetic Algorithm 46

the allele. An example of the crossover operator is presented by the Fig.3.4.

Figure 3.4: Example of Crossover Operator

It is assumed that a coin toss of head selects the gene from the first parent, a tail

chooses the gene from the second parent, and that the probability of tossing a

heads is 0.7, or say the crossover probability is 0.7.

Recall in the begin of this chapter, the random key is considered as a tag for

each packing item, every operator in this algorithm just work on a random key

vector, rather than on the position pattern. It is quite clear shown in this example

that the crossover operator just manipulate the random key between two parent

individuals, but the offspring that is generated by the crossover operator can be

produced a different packing pattern by sorting these random values. This function

can be implemented by means of the algorithm 13.

3.2.5 Mutation Operator

The mutation operator in this project does not work as the traditional mutation

operator. Instead of mutating the gene one by one, this mutation operator simply

creates a set of individuals completely at random, the process of which is same

as the initialization component done. Although the operation procedure of the

mutation operator used in here is changed, the purpose of using this mutation

Chapter 3. Based Random Key Genetic Algorithm 47

Algorithm 13 CrossoverFunction(parent1,parent2)

Initialization:
Let gene1i be the i gene of the parent1;
Let gene2i be the i gene of the parent2;
Let offspring1, offspring2 be the new individual;
Let U(0, 1) be a uniform random number generator; // Use to toss the coin to select.
Set Crossover Rate(pc) be the 0.7.

Iteration:
1: repeat
2: if U(0, 1) ≤ pc then
3: Save the random key of gene1i into offspring1;
4: Save the random key of gene2i into offspring2;
5: else
6: Save the random key of gene1i into offspring2;
7: Save the random key ofgene2i into offspring1;
8: end if
9: until genei be the last element of parent1
Output: offspring1, offspring2

operator does not change. It is also used to hold the diversity of the population

in order to prevent premature convergence. During each evolutionary process,

The BOT of population will be filled by using this mutation operator (seen as the

algorithm 9).

3.3 Modification

In order to make the original version BRKGA CLP an improvement, in this

project, we try to modify certain component of it. According to a series of at-

tempts of modification, we found that by using the different initial position pattern

of packing items, and a different mutation operator, there is a slightly improvement

in some benchmarks.

3.3.1 Initialization Component Modification

As mentioned in the section 3.2.1, every chromosome maintains a specified pattern,

which indicates the initial position of the packing item. Each random key is just a

tag for each position. To build up this pattern by using the original rule, each items

Chapter 3. Based Random Key Genetic Algorithm 48

within the same group will be selected repeatedly until its quantity constraint was

met, and the position order of the each item will be given based on its box type

number. For example, there are three box types, namely BT1, BT2, and BT3.

Each box types has different quantity, suppose they are 3, 2 and 3. The original

position pattern is arranged as depicted by the Fig.3.5.

1 1 1 2 2 3 3 3

Figure 3.5: Original Position Pattern

After this pattern has been constructed, every chromosome will be built up by

assigning two random numbers to each position of this pattern. The two random

numbers are BTPS and VLT, which have already been introduced at beginning of

this chapter.

By observing the above example, it is found that when the problem become more

weakly heterogeneous, the position pattern are divided by several segments, each

of which are occupied by a groups of the items with the same type. Suppose

each box type in the above example has more than forty items, each segment will

include four same items. Thus, using the random key to tag the position in this

position patter is useless because the BTPS is generated by sorting these random

key, but the random key is assigned by following this position pattern, the BTPS

is always same. by using this initial position pattern, the optimizer will easily be

guided into a local optima.

To overcome this defect, the item in each groups has to be randomly selected to

construct the position pattern. To achieve this aim, the concept of roulette-wheel

selection was introduced. Based on the quantity of each box type, the slot size will

be calculated by using the formula: pi = qi/
∑n

i=1 qi, where the qi is the quantity of

the box type i. It should be noted that after each time of selecting a box, each slot

size has to be calculated again because the total number of the packing items has

been changed. By using this method the position pattern in the above example

can be modified as shown in the Fig.3.6.

Chapter 3. Based Random Key Genetic Algorithm 49

2 1 3 1 3 1 2 3

Figure 3.6: New Position Pattern

The function to generate this pattern is called only once in the initialization com-

ponent. This pattern will be hold by every individual and never be changed. To

implement this function the algorithm 14 can be used.

Algorithm 14 PositionPatternGenerator(Problem)

Initialization:
Let totalnub be the total number of the items in Problem;
Let boxi be the box type i in Problem; Let qbi be the set to save the quantity of each box
type
Let typenub be the total number of box type in Problem;
Let proi be the proportion of the box type i in total number items;
Let culpro be the cumulative probability; Let the positionpatter be a set to save the selected
box.
Let U(0, 1) be an uniform random number generator
Set PID = 1, which is a position label;

Iteration:
1: //main loop for position pattern construction;
2: repeat
3: for i = 1 to typenub do
4: proi = qbi/tnub;
5: culpro+ = proi;
6: if U(0, 1) <= culpro then
7: Label boxi with V ID;
8: Save boxi into positionpatter;
9: qbi = qbi − 1;

10: totalnub = totalnub− 1;
11: Break this loop;
12: end if
13: end for
14: V ID = V ID + 1;
15: until all boxes are saved into positionpatter
Output: positionpatter

After generating the position pattern, the individual in the population set will be

initialized by assigning two random keys to each position of this pattern.

Chapter 3. Based Random Key Genetic Algorithm 50

3.3.2 Mutation Operator Modification

In this project, the original mutation operator in the BRKGA was replaced by

the mutation operator of the Evolutionary Strategies. The initial reason of using

the ES mutation operator is that we desire to introduce the idea of the solutions

similarity into our mutation operator in order to control the range of the muta-

tion. Thus, the ES mutation operator is a suitable candidate. However, through

the practical implementation, the results of this modification were unsatisfactory

because we cannot find a suitable mathematical model to add the similarity factor

into the ES mutation operator. In spite of the fact that to add similarity factor

was unsuccessful, there was an unexpectedly result on the weakly heterogeneous

benchmark when the original mutation operator was only replaced by the standard

mutation operator of the ES.

This ES mutation operator is an uncorrelated mutation with n step size. In this

type mutation, each dimension of individual can own an independent mutation

step size, so during the mutation process, all dimensions can be mutated differ-

ently. This is because that the fitness landscape can have a different slope in one

direction than in another direction. This mutation mechanism can be described

as follows:

σ′i = σi · eτ ·N(0,1)+τ ′·Ni(0,1) (3.1)

x′i = xi + σ′i ·Ni(0, 1) (3.2)

where τ and τ ′ are named global and local learning rate respectively. The com-

mon base mutation eτ ·N(0,1) allows an overall change of the mutability, while the

eτ
′·Ni(0,1) offers the flexibility to use different mutation strategies in different direc-

tions.

In the standard ES mutation operator, the new individual is generated by adding

a normal distributed random perturbation, to the old value of the vector (as seen

algorithm 15). The corresponding standard deviation are also subject to the evo-

lution process and are thus multiplied in each step by a logarithmic distributed

random number. Schwefel [67] termed the resulting process as self-adaptive be-

cause the adaptation of the mutation parameters is governed by an evolutionary

Chapter 3. Based Random Key Genetic Algorithm 51

process itself. The general idea behind self-adaptation is that, if a set of different

individuals is generated, each with a different probability distribution, the indi-

vidual with the best object variables is also likely to be the one with the best

probability distribution that lead to the generation of these objective variables.

Thus the parameters of this probability distribution are also inherited by the off-

spring individual.

Algorithm 15 ES Mutation

Initialization:
Input: r1, · · · , rn, σi, · · · , σn;

Iteration:
1: Nc ← N(0, 1) //Generate and store a normally distributed random number;
2: τ ← 1√

2n
; τ ′ ← 1√

2
√
n

//Initialize global and local learning rate;

3: for all i ∈ {1, · · · , n} do
4: σ′i ← σi exp (τNc + τ ′N(0, 1))
5: r′i ← ri + σ′N(0, 1);
6: end for
7: //Interval boundary treatment, it is between 0 and 1 in this project;
8: for all i ∈ {1, · · · , n} do
9: r′i ← T [rmin

i , rmax
i](r′i);

10: end for
Output: r′1, · · · , r′n, σ′, · · · , σ′n;

3.4 Summary

The relevant components in the BRKGA were explained through the above sec-

tions. The whole running procedure follows the standard genetic algorithm. The

differences with the original BRKGA were that a new position pattern generator

was added into the initialization component, while the original mutation operator

was replaced by the mutation operator of the ES. Before closed this chapter, the

construction of the population has to be mentioned that there are three blocks

built up the whole population, namely the TOP , the MID, and the BOT (seen

as the Fig.3.7).

According to the above figure, it can be seen that the entire population will be

sorted after evaluation, the best individuals will be arranged into the TOP block.

Since the elitist strategy is used in this GA, the individuals in the TOP block will

Chapter 3. Based Random Key Genetic Algorithm 52

CrossOver

BEST

WORST

Current Population New Population

TOP

MID

BOT

TOP

RPO

Mutation

Elitist Strategy

Figure 3.7: Population Structure

be copied to the next generation directly without any change. The MID block is

filled by new offspring in the crossover process. The crossover operator selects two

parents, one is always selected from the TOP block, and the other is selected from

the rest of the population, they will mate and generate two new individuals. The

individuals in the BOT block are generated by the mutation operator.

Chapter 4

Experiments

In order to evaluate the performance of our algorithm, a set of experiments were

implemented based on the famous benchmarks, proposed by Bischoff E and Ratcliff

M [4]. This new version BRKGA will run on several small experiments at first in

order to find a relativity good parameter setting, and observe the performance of

the new components.

In the end of this section, an overall test will be arranged to our algorithm, and

the results were produced by this algorithm were compared with several optimizers

presented in table 4.3, they are the most efficient in the literatures to date.

In the section 4.1, The detail of the test benchmark will be introduced. The section

4.2 will present the different parameter configuration. For the section 4.4, the final

experiment result will be shown.

In order to observe a practical packing situation of the solution, the relevant

location data of each layer is organized into a table, and a 3D figure is used to

illustrate the packing pattern. The reader can find these tables and figures in the

Appendix A.

53

Chapter 4. Experiments 54

4.1 Benchmark Description

Currently, There are seven benchmarks used in this project (BR1-BR7), which

totally include 700 problem instances. This test set was proposed by Bischoff E

and Ratcliff M. They are widely used to evaluate the container loading optimiza-

tion algorithm in many literatures. The benchmarks can either be downloaded in

http://paginas.fe.up.pt/~esicup/tiki-index.php or generated by a prob-

lem generator which can be implemented by following the algorithm 16.

Algorithm 16 BenchmarkGenerator

Initialization:
Set Cargo target volume Tc;
Set Number of different Box type n;
Set Lower and upper limits on box dimensions aj , bj , j ∈ [1, 3];
Set Box stability limit L;
Set Seed number s; //using in the random number generator;
Set box type index i = 1;
Initialized random number generator and discard first 10 random number;
Let InstanceNub be the total number of the instance for each problem.

Iteration:
1: // the main loop used to generate different instances for each problem;
2: for j=1 to InstanceNub do
3: // Generate n number type box;
4: for i=1 to n do
5: repeat
6: Generate 3 random number rj , j ∈ [1, 3]
7: Determine box dimensions using:

dij = aj + brj × (bj − aj + 1)c, j ∈ [1, 3];
8: until (All [dij/min(dij)] < L)
9: Initialize box quantity mi for box type i : mi = 1;

10: Let the box volume vi =
∏3

j=1 dij ;
11: end for
12: //Give the quantity to each box type i;
13: repeat
14: Calculate cargo volume:C =

∑n
i=1mivi;

15: Generate the next random number r
and set box type indicator k = 1 + br × nc;

16: mk = mk + 1;
17: until (Tc > C + vk)
18: end for
Output: Problem set;

In order to generate this seven benchmarks, the parameters in the algorithm 16

should be set by following the table 4.1, in which the Tc is defined as the container

volume, which can be represented by L × W × H. In addition, there are 100

http://paginas.fe.up.pt/~esicup/tiki-index.php

Chapter 4. Experiments 55

instances generated for each problem. Thus, there are seven hundreds instances

included in the test set. The random number generator in this algorithm is a

special variant, suggested in [68], of the multiplicative congruential method and,

as pointed out in [69], can be implemented in most programming languages on al-

most any computer. The seed number s is used in this random number generator

in order to reproduce the individual problems without generating the complete

set. To calculate the seed s we use the formula s = 2502505 + 100(p− 1), p is the

problem number.

Table 4.1: Parameters Setting of Problem Generator

PID
Container Box Type

Instance NumberTC
L

Dimension
Quantity

L W H (a1, b1) (a2, b2) (a3, b3)
1

586 233 220 2 (30, 120) (25, 100) (20, 80)

3

100

2 5
3 8
4 10
5 12
6 15
7 20

4.2 Optimizer Parameter Configuration

To find the best parameter setting for the GA is also an optimization problem.

Normally, the Evolutionary Strategy (ES) can be used to tackle the parameter

tuning optimization problem, this is another story in the optimization problem.

In this work, we just arrange a set experiments by tuning the parameter in our

algorithm in order to find a relatively good parameter settings. The corresponding

parameter settings in this algorithm are presented in the table 4.2.

Chapter 4. Experiments 56

Table 4.2: The Algorithm Parameter Setting

Prarameter Interval

POS 20
TOP 0.1 - 0.7
BOT 0.1 - 0.5
PC 0.1 - 0.5
ROTA YES - NO

The POS represents the population size, the PC is the crossover rate, and the

ROTA is a flag that indicates whether the box will be allowed to rotate in this

algorithm. According to the above table, we can see that there are totally 192

possible configurations for each problem, and each problem also has 100 instances.

By following the above setting, there are an enormous number of experiments

needed. Thus, in order to reduce the running time of total experiments, two

computers with Intel 8-core CPU running the Win 8 operating system were used

to carry out these experiments. For each computer, three independent runs of the

algorithm were made.

4.3 Different Components Setting

In this project, the original initialization component and mutation operator of

the BRKGA were modified. For the original initialization, the position pattern

generator was modified by a new method, which can generate a quite random

position pattern. For the mutation operator, the original one will be replaced by

a standard ES type mutation operator. In order to observe the effect of these

modifications, the experiments in this section will be built up by running the

BRKGA with the new components and old version. The results generated are

compared between the new version and the old version. The details of this part

experiments will be seen in the later section.

Chapter 4. Experiments 57

4.4 Experiment Implementation

The average utility rate of 100 instances of each problem that are produced by this

optimizer will be compared with eight efficient methods in the table 4.3. Because

we cannot obtain the code of these algorithms, the results that are produced by

these approaches are directly collected from its corresponding literatures.

Table 4.3: The Approaches in Comparison

Algorithm Source Method

GH L Lim [25] Greedy Heuristic
PTS BO Bortfeldt [17] Parallel Tabu Search
PST M Mack [18] Parallel SA/TS
GRA(200000) P Parreno [23] GRASP
GRA(5000) P Parreno [23] GRASP
VNS P Parreno [70] VNS
TRS FB Fanslau and Bortfeldt [8] TRS
HBS HH He and Huang [71] Heuristic Beam Search

4.4.1 The Components Modification

The experiments in this section are divided into two subsection. The tests in

the first subsections were organized by implementing the new position pattern

generator into the BRKGA while other components were set with the same type,

and its result will be compared with the old version. In experiments of the second

subsection, the ES type mutation operator are used to replace the original one. All

mentioned experiments were implemented based on the seven benchmarks. The

parameters fixed in this algorithm were the TOP with 0.15, the BOT with 0.15,

the POS with 500, and the number of generation with 500.

New Position Pattern Generator

According to analysing the result shown in the Fig.4.1, it can be sees that the

results produced by using the new pattern generator on benchmarks 1, 2, 3, and

4 were better than using the original one, while this four benchmarks are the

Chapter 4. Experiments 58

weakly heterogeneous problem. Thus, it is considered that a more random position

pattern could improve the final results on the weakly heterogeneous benchmarks.

However, for the strongly heterogeneous benchmarks, this pattern generator can

not produce a satisfactory result.

1 2 3 4 5 6 7
0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

The Benchmark Number

T
he

 A
ve

ra
ge

 S
pa

ce
 U

tit
liy

 R
at

e

NewInital
OldInital

Figure 4.1: New Position Pattern vs Old Position Pattern

ES Type Mutation operator

In this part experiments, we fixed the initialization component with using the new

pattern generator, while the two different mutation operators were implemented

respectively on all benchmarks. The final comparison results were shown in the

Fig.4.2.

1 2 3 4 5 6 7
90

90.5

91

91.5

92

92.5

93

93.5

94

94.5

The Benchmark Number

T
he

 A
ve

ra
ge

 S
pa

ce
 U

tit
liy

 R
at

e

OldMutation
EsMutation

Figure 4.2: New Mutation Operator vs Old Mutation Operator

Chapter 4. Experiments 59

According to above experiment results, it is consider that the ES type mutation

operator provided a positive effect for the BRKGA because the algorithm with

the ES type mutation operator can generate a good result on most benchmarks,

especially in the benchmark 1. Thus, in experiments of later sections, The original

mutation operator will be replaced by the ES type mutation operator.

4.4.2 Parameter Tuning

In order to find a relatively good parameter setting before running the overall tests,

we started with implementing several small experiments, which were organized by

tuning the parameters in the table 4.1, but the population size was fixed with

500 in order to reduce the experiment time. For each parameter portfolio in each

benchmark, the algorithm runs five times, and each time had 500 iterations.

Crossover Rate Tuning

The first group experiments were produced by applying nine different crossover

rates from 0.1 to 0.7 with 0.05 interval. Here the population size was set to be

500, the TOP block was 0.15%, the BOT was 0.15%, and the ROTA was allowed.

The two groups experiments were included in the Fig.4.3, which summarised the

result that were produced by implementing this algorithm with different crossover

rates and benchmarks. In order to find a suitable crossover rate, There were nine

experiments illustrated in the Fig.4.3(a), which were generated by applying this

algorithm with tuning crossover rate from 0.1 to 0.7, to process the benchmark 5.

According to the Fig.4.3(a), there was a slightly increasing trend from C01 to C65.

However, after that the results dropped below the average level. Thus, the crossover

rate was set to be 0.65% and applied it to process all benchmarks in order to observe

the overall performance on all benchmarks.

To implement the tests in the Fig.4.3(b), two other crossover settings which are close to

0.65% were introduced, in order to see the comparison result by running on all bench-

marks. Although there was not any significant difference between the results that were

generated by using these crossover rates, the performance of the algorithm with the

Chapter 4. Experiments 60

0.89

0.9

0.91

0.92

0.93

0.94

0.95

C01 C02 C03 C04 C05 C55 C60 C65 C70
The Crossover Rate

T
he

 S
pa

ce
 U

til
ity

 R
at

e
(a)

1 2 3 4 5 6 7
0.9

0.91

0.92

0.93

0.94

0.95

0.96

The Benchmark Number

T
he

 S
pa

ce
 U

til
ity

 R
at

e

(b)

pc55
pc65
pc70

Figure 4.3: Different Crossover Comparison

(a): The labels on x axis represent the different crossover rates. For example, C01
means that the crossover rate is 0.1. Here, all experiments run on benchmarks 5.

(b): The labels on x axis represent the different benchmark. Here, all experiments are
implemented by applying different benchmarks.

crossover rate 0.65% on all benchmarks was slightly better than others. For the experi-

ments in the Fig.4.3(b), there is one more point, and I should touch on, that to handle

the weakly heterogeneous benchmarks a smaller crossover rate would be appreciated,

as mentioned before the heterogeneous strength of benchmarks was raised by increasing

the number of box type in the problem. As an example of on first five benchmarks, the

results of crossover rate with 0.7 are almost always lower than two others because the

heterogeneous strength of rest two benchmarks is significantly stronger than the first five

benchmarks. For a number of box type in first five benchmarks, they are from 3 to 12.

For the rest of two benchmark (6,7), the number of box type are 15 and 20 respectively.

Otherwise, for the strongly heterogeneous problems, a higher crossover rate can be a

good choice.

Chapter 4. Experiments 61

BOT Size Tuning

The individuals in the BOT block are only generated by mutation operator. Thus, the

size of the BOT set can be considered as a control parameter of this genetic algorithm.

By tuning this parameter could build up the experiments in this section. Here, the range

of this parameter was set from 0.1 to 0.5 while the rest of the parameters were fixed

based on the result of previous experiments.

This part of experiments were divided into two steps. The first step of experiments was

to implement this algorithm on a fixed benchmark with tuning the size of the BOT in

order to find a reasonable setting. Here, the benchmark five was still used for generating

the tests in the first step because the best results of different tuning steps were compared

in later of this section. For the second step, the algorithm with three fixed BOT sizes,

one of them was the best setting which was found through the first step experiments,

was applied on all benchmarks in order to observe the overall performance of this best

setting on seven benchmarks.

0.9

0.91

0.92

0.93

0.94

0.95

B01 B15 B20 B25 B30 B35 B40 B45 B50
Mutants Size(BOT)

T
he

 S
pa

ce
 U

til
ity

 R
at

e

(a)

1 2 3 4 5 6 7
0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

The Benchmark Number

T
he

 A
ve

ra
ge

 S
pa

ce
 U

til
ity

 R
at

e

(b)

B20
B35
B45

Figure 4.4: Different BOT Size Comparison

(a): The labels on x axis represent the different BOT Size. For example, B01
means that the mutants size is 10% of whole population size. Here, all experiments
run on benchmark 5.

(b): The labels on x axis represent the different benchmarks. Here, all experiments
with different BOT size are implemented by applying different benchmarks.

Chapter 4. Experiments 62

The results of the two steps tests were demonstrated by the Fig.4.4. For the Fig.4.4(a),

it illustrated the nine experiments which were arranged according to applying this al-

gorithm on benchmark 5 by tuning the size of the BOT from 0.1 to 0.5. Based on

observing the median and the main body of the box in the box-plot, there was a slightly

increasing from B01 to B35 while the point B35 can be considered as a divide, the data

after it illustrated a decreasing trend. Thus, the size of the BOT with be set to 0.35 was

a reasonable setting.

For the second step in the Fig.4.4, three different BOT settings, 0.2, 0.35 and 0.45, were

used into this algorithm to process the seven benchmarks. The reason to choose the

size with 0.2 was that the performance of this setting in the benchmark 5 can be seen

as a second favourable setting, it could have a big opportunity to produce a good result

on different problems,. The size of the BOT with 0.45 was selected because this setting

is close to the best one, and the solution that were generated by this setting can cover

a more wide range. The result, shown in the Fig.4.4(b), was the average space utility

rate of each benchmark. We can see that the setting with 0.35 had reasonably good

performance on overall views, and mainly it can produce a better result than two others

when the benchmark become more strongly heterogeneous such as the problems from 5

to 7. For the weakly heterogeneous problem such as 2 and 3, it worked unsatisfactorily.

Therefore, depending on the result analysis, it was found that setting with low value is

rather appreciated by more weakly heterogeneous problem. However, for more strongly

heterogeneous problem, the setting does not have such discipline.

The Size of Elites Set Tuning (TOP)

To organize the experiments in this portion the algorithm was applied on the benchmark

5 by setting up with two fixed parameters and a variable one. The two fixed parameters

were the crossover rate and the size of the BOT, which were set with 0.65 and 0.35

respectively by referred the previous experiments. The size of the TOP was selected as

the variable one, which was tuned from 10% of the whole population size to 50%. After

finding the best TOP size in the first phase, the setting was used by this algorithm to

process the seven benchmarks. The final results were used to make a comparison with

the results that were generated by applying two different settings within the same type

parameter.

Chapter 4. Experiments 63

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

T01 T15 T20 T25 T30 T35 T40 T45 T50
Elites Size(TOP)

T
he

 S
pa

ce
 U

til
ity

 R
at

e
(a)

1 2 3 4 5 6 7
0.9

0.91

0.92

0.93

0.94

0.95

0.96

The Benchmark Number

T
he

 A
ve

ra
ge

 S
pa

ce
 U

til
ity

 R
at

e

(b)

T10
T25
T30

Figure 4.5: Different Elites Size Comparison

(a): The labels on x axis represent the different Elites Size. For example, the T01
means that the Elites Size is 10% of whole population size. Here, all experiments
run on benchmark 5.

(b): The labels on x axis represent the different benchmarks. Here, all experiments
with different Elites size are implemented by applying different benchmarks.

The Fig.4.5 manifested the result of the two aspects experiments. In the Fig.4.5(a), the

overall trend of the distribution of relevant result was slightly similar with a parabola.

Although the best solution was obtained by implementing the setting with 20%, the

reasonable peak of this parabola should be a setting with 25%. Since the average space

utility of the benchmark five that was generated by the setting with 25% was the biggest,

the TOP size with 25% of population size should be a reasonable setting. For the

Fig.4.5(b), it illustrated three groups of results that were generated by three different

TOP sizes, which were 10%, 25% and 30%, on seven benchmarks. It was clearly seen

that the result produced by the setting with 25% was almost flowing above the two

others on every benchmarks, except the benchmark 7, so to fix the parameter with this

value could be a desirable choice. According to the result of two other settings, it can

also be proved that the settings that are higher or lower than 25% cannot give a valuable

help to our algorithm on these benchmarks.

Chapter 4. Experiments 64

Parameter Overall Comparison

According to the above experiments, the best parameter settings had already been found

as seen in the below table. In order make an overall view about the performance of this

setting, TOP with 25%, the mutants size with 35%, and the crossover rate with 65%,

the best results in each step were illustrated by the Fig.4.6. Through this figure, we

can see that the parameter settings that were found by the experiments 4.5 had more

stability than two others. Thus, we will implement this parameter setting in the later

final experiments to generate the overall final result.

Figure 4.6: Three Tuning Steps Comparison

1 2 3 4 5 6 7
90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

Benchmark Number

T
he

 A
ve

ra
ge

 S
pa

ce
 U

til
ity

 R
at

e

EXP1
EXP2
EXP3

The Best Parameter Setting

Parameter Interval

POS 20
TOP 0.25
BOT 0.35
PC 0.65
ROTA YES

4.4.3 The Overall Comparison Experiments

To implement the experiments in this section, this algorithm will be set with the pa-

rameter found in above sections to solve the seven benchmarks. The overall results in

the table 4.4 were the average space utility rate of 100 instances of each problem, which

are referred from [1].

Table 4.4: The Final Comparison Result

BID GH PTS PST GRA(a) GRA(b) VNS TRS HBS BRKGA NBRKGA

1 88.70 93.52 93.70 93.85 93.27 94.93 95.05 87.57 95.28 95.38
2 88.17 93.77 94.30 94.22 93.38 95.19 95.43 89.12 95.90 95.69
3 87.52 93.58 94.54 94.25 93.39 94.99 95.47 90.32 96.13 95.61
4 87.58 93.05 94.27 94.09 93.16 94.71 95.18 90.57 96.01 95.38
5 87.30 92.34 93.83 93.87 92.89 94.33 95.00 90.78 95.84 95.03
6 86.86 91.72 93.34 93.52 92.62 94.04 94.79 90.91 95.72 94.79
7 87.15 90.55 92.50 92.94 91.86 93.53 94.24 90.88 95.29 94.26

Chapter 4. Experiments 65

According to observing the results in the table 4.4, the new version of BRKGA shows the

best result on BID 1. For rest of test cases, without considering the old version BRKGA,

NBRKGA defected all other algorithms on overall view. However, for the benchmark 6,

result of our optimizer was same as the TRS.

Table 4.5: Average Utility Rate (B1-B7) Result

GH HBS PTS PST GRA(a) VNS TRS NBRKGA BRKGA

Average (1-7) 87.61 90.02 92.65 93.78 93.82 94.53 95.02 95.16 95.74

In order to analyse the performance of each algorithm in all problems, the overall average

utility rate were calculated, and the algorithms will be ranked into an increasing order

by using this result, as shown in table 4.5. Two worst results were produced by the GH

and the HBS, they are much less than rest algorithms. by analysing the two algorithms,

it is found that the GH and the HBS packs each item independently. In GH, boxes are

placed on the wall of the container first so as to construct a base, after that other boxes

will be placed on top of these boxes. For the HBS, in each packing iteration, a packing

item will be put into the packing space first in order to detect a packing layer, after

that the algorithm will based on this layer to pack the different type items. This kind

of packing heuristic will produce too much piecemeal spaces which cannot use to pack

the item, so this two algorithms cannot produce a good result. to compare the results

of this two algorithms, HBS had a better result than the GH because the HBS will pack

the item into layer first, which can reduce the number of piecemeal spaces. For the rest

of algorithms, they will put same items into a same block or layer first, which won not

generate too much piecemeal spaces. Thus, it is considered that the block and layer

concept are more appropriate to handle the 3 dimensional container loading problem.

However, according to observing the PTS, it it found that to put the same items into a

same block can reduce the dimension of the search space, but it will reduce the diversity

of the search space as well. Thus, if the algorithm only depend on the block or layer

concept, the result will easily be trapped into a local optima. From the PST to BRKGA,

all of them have a mechanism to add the diversity into the search space. For instance,

the PST maintain multiple search paths simultaneously. and the GRA will add a ran-

domization strategy to obtain different solution at each iteration. For the VNS and the

TRS, they can combine two blocks or layers to produce new type blocks so that to add

the diversity. In fact, in these algorithms, they try to find a way to balance this two

Chapter 4. Experiments 66

aspect, low dimensional of search space and diversity of search space. The more suitable

balance point it finds, The better result it obtains.

Therefore, for the BRKGA, it is considered that there are three reasons to make it a

better result in all benchmarks. The first one is that its representation includes two

parts, namely BTPS and VLT. The BTPS can be seen as a packing plan. The item in

here can be treated independently, which can offer the diversity of search space. For the

VLT, the block and layer concept can be operated in this part, by which the dimension

of search space will be reduced. The second one is that the GA is a population based

algorithm. It can maintain multiple search paths simultaneously, which means that this

kind of algorithms can have bigger chance to find a better result. The final one is the

random key. The normal representation of solution for the combinatorial problem is the

permutation. the algorithms in the table 4.4 used this kind of representation, except

the BRKGA and NBRKGA. To use the permutation in the 3 dimensional container

loading problem will involve an issue, in which the items in the permutation can not be

packed completely. In this case, the representation can not provide a complete order re-

lationship to the algorithm. To use the random key representation can avoid this defect.

As mentioned, the items in the BRKGA and the NBRKGA will ranged into a position

pattern in the initialization component. This pattern never change. The random key

just tag the each position in this pattern. All the operations in this kind of algorithms

are just on the random keys. During the evolutionary process, the algorithm will find

the relationship between the random key and corresponding position while the balance

point between low dimensional and diversity of search space will be found as well. In this

case, even though certain items can not be packed, the representation still can provide

the useful information.

Chapter 5

Conclusion

In this project, the single container loading problem was tackled, in which several rect-

angular boxes of different sizes are to be loaded into a single rectangular container. The

approach used to solve this problem was to refer the BRKGA-CLP, which is used a

novel multi-population biased random-key genetic algorithm. The representation of it

involved two parts, which are BTPS and VLT respectively. The BRKGA is used to

evolve the order (BTPS) in which the box type are loaded into the container and the

corresponding type of layer (VLT) used in the placement procedure. To test this op-

timizer, the complete set of benchmark problems of Bischoff and Ratcliff [4] was used.

The benchmark set is made up of 700 instance which range from weakly to strongly

heterogeneous cargo. The final results of this algorithm were compared with 9 other

solution techniques.

According to implement the original version BRKGA, it was found that the position

pattern generated by the original initialization component easily guide the solution into

a local optima when the benchmark is a more weakly heterogeneous problem. To tackle

this problem, a new position pattern generator based on the idea of the roulette-wheel

was used to replace the original one in order to generate a new random position pattern.

In addition, the mutation operator in the old version BRKGA just offer the diversity

of the population. For the neighbourhood search, it is just based on the crossover

operator. However, in the container loading problem, the crossover operator usually

will miss to search some quite close neighbourhood solutions, especially in the random

key representation, which means that we need to find a mutation operator, the mutation

67

Chapter 5. Conclusion 68

range of which can be controlled. In order to achieve this purpose, the idea of population

similarity was introduced into this algorithm. Initially, the original mutation operator

was replaced by mutation operator of the ES because the mutation range of this mutation

operator can be controlled by its mutation step size. Thus, we intend to use the similarity

factor to guide the mutation step size. When the population similarity is small, the

mutation step size will be reduced in order to make the algorithm more opportunity to

search in the neighbourhood. Otherwise, the step size will be increased.

However, according to the practical experiments, it is found that to add the similarity

factor into the algorithm could not reach the expected aim because a suitable mathe-

matical model can not be found to implement the similarity factor into this mutation

operator. Although the similarity factor cannot offer a good effect to this algorithm, by

only implementing the standard ES mutation operator, this algorithm can produce an

unexpected good result on first benchmark. Thus, it is considered that a sophisticated

mutation operator can provide a positive effect for the BRKGA. For the bad results

in final experiment, it is considered that the standard mutation operator cannot offer

enough population diversity, which causes the algorithm to trap into a local optima.

Therefore, Future work should involve to develop a suitable mathematical model for

adding the similarity into the mutation operator in order to make this algorithm enable

to perceive the similarity change so that the mutation step size can be modified into a

suitable range.

Appendix A

The Practical Packing Solution

and Pattern

The best results produced in the experiments section for each benchmarks are organized

within a table, and the final packing pattern will be demonstrated by a 3D figure. There

are two figure for each table. The life one shows the result in current table, and the

right one is the worst case in same benchmark, which is used to do the comparison with

the best one.

69

Appendix A. Appendix Title Here 70

Best Packing Pattern for Benchmark 5 in Experiment 4.3

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 103) (0, 267) (0, 219) 6 9 89 103 73 1 3 3
2 (103, 201) (0, 580) (0, 80) 8 10 116 98 40 1 5 2
3 (103, 195) (0, 570) (80, 174) 2 12 95 92 47 1 6 2
4 (195, 233) (0, 585) (80, 124) 5 5 117 38 44 1 5 1
5 (0, 55) (267, 559) (0, 162) 7 12 73 55 54 1 4 3
6 (201, 233) (0, 500) (0, 80) 11 10 100 32 40 1 5 2
7 (55, 102) (267, 457) (0, 184) 2 4 95 47 92 1 2 2
8 (195, 227) (0, 400) (124, 164) 11 4 100 32 40 1 4 1
9 (103, 147) (0, 561) (174, 220) 1 11 51 44 46 1 11 1
10 (147, 191) (0, 51) (174, 220) 1 1 51 44 46 1 1 1
11 (0, 55) (267, 340) (162, 216) 7 1 73 55 54 1 1 1
12 (195, 233) (0, 530) (164, 194) 10 5 106 38 30 1 5 1
13 (147, 193) (51, 102) (174, 218) 1 1 51 46 44 1 1 1
14 (147, 193) (102, 459) (174, 218) 1 7 51 46 44 1 7 1
15 (55, 103) (267, 329) (184, 206) 9 1 62 48 22 1 1 1
16 (0, 53) (340, 514) (162, 188) 12 2 87 53 26 1 2 1
17 (55, 92) (329, 584) (184, 216) 4 5 51 37 32 1 5 1
18 (55, 99) (457, 574) (0, 114) 5 3 117 44 38 1 1 3
19 (0, 38) (340, 446) (188, 218) 10 1 106 38 30 1 1 1
20 (195, 233) (400, 506) (124, 154) 10 1 106 38 30 1 1 1
21 (0, 53) (446, 533) (188, 214) 12 1 87 53 26 1 1 1
22 (193, 232) (0, 580) (194, 217) 3 5 116 39 23 1 5 1
23 (55, 103) (457, 519) (114, 180) 9 3 62 48 22 1 1 3
24 (147, 186) (459, 575) (174, 197) 3 1 116 39 23 1 1 1
25 (201, 227) (500, 587) (0, 53) 12 1 87 26 53 1 1 1
26 (0, 53) (559, 585) (0, 87) 12 1 26 53 87 1 1 1
27 (147, 186) (459, 575) (197, 220) 3 1 116 39 23 1 1 1
28 (0, 48) (514, 576) (162, 184) 9 1 62 48 22 1 1 1
29 (195, 227) (506, 557) (124, 161) 4 1 51 32 37 1 1 1
30 (55, 99) (519, 581) (114, 162) 9 2 62 22 48 2 1 1
31 (48, 96) (519, 581) (162, 184) 9 1 62 48 22 1 1 1
32 (195, 232) (530, 581) (161, 193) 4 1 51 37 32 1 1 1
33 (0, 37) (533, 584) (184, 216) 4 1 51 37 32 1 1 1
34 (0, 48) (559, 581) (87, 149) 9 1 22 48 62 1 1 1

TPB TUPB UPBT Instance ID SUR
126 9 (3,5), (10,1), (12,3) 98 0.951438

Table A.1: The Best Result in Experiment 4.3

• BT: Box type ID.

• BN: Packed box number.

• TPB: Total number of Packed box.

• TUPB: Total number of unpacked box.

• UPBT: Unpacked box type and corresponding number.

• SUR: Space Utility Rate.

Appendix A. Appendix Title Here 71

Best Packing Pattern for Benchmark 5 in Experiment 4.4

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 182) (0, 246) (0, 104) 4 12 41 91 104 2 6 1
2 (0, 210) (0, 567) (104, 178) 2 14 81 105 74 2 7 1
3 (182, 232) (0, 532) (0, 73) 3 7 76 50 73 1 7 1
4 (0, 72) (0, 456) (178, 219) 11 12 38 72 41 1 12 1
5 (72, 226) (0, 456) (178, 220) 1 8 114 77 42 2 4 1
6 (182, 232) (0, 576) (73, 102) 10 8 72 50 29 1 8 1
7 (0, 178) (246, 421) (0, 54) 7 14 25 89 54 2 7 1
8 (0, 73) (246, 550) (54, 104) 3 4 76 73 50 1 4 1
9 (73, 146) (246, 474) (54, 104) 3 3 76 73 50 1 3 1
10 (0, 89) (421, 446) (0, 54) 7 1 25 89 54 1 1 1
11 (210, 230) (0, 93) (102, 169) 6 1 93 20 67 1 1 1
12 (210, 233) (93, 543) (102, 172) 5 6 75 23 70 1 6 1
13 (146, 178) (246, 582) (54, 102) 12 8 84 32 24 1 4 2
14 (89, 156) (421, 514) (0, 40) 6 2 93 67 20 1 1 2
15 (0, 91) (456, 560) (178, 219) 4 1 104 91 41 1 1 1
16 (0, 89) (446, 586) (0, 46) 8 5 28 89 46 1 5 1
17 (156, 180) (421, 505) (0, 32) 12 1 84 24 32 1 1 1
18 (91, 225) (456, 549) (178, 198) 6 2 93 67 20 2 1 1
19 (73, 143) (474, 549) (46, 92) 5 2 75 70 23 1 1 2
20 (89, 164) (514, 584) (0, 46) 5 2 70 75 23 1 1 2
21 (91, 158) (456, 549) (198, 218) 6 1 93 67 20 1 1 1
22 (158, 225) (456, 549) (198, 218) 6 1 93 67 20 1 1 1
23 (178, 228) (532, 561) (0, 72) 10 1 29 50 72 1 1 1
24 (0, 93) (567, 587) (46, 180) 6 2 20 93 67 1 1 2
25 (93, 227) (567, 587) (102, 195) 6 2 20 67 93 2 1 1
26 (93, 129) (549, 584) (46, 94) 9 2 35 36 24 1 1 2
27 (91, 231) (549, 585) (195, 219) 9 4 36 35 24 4 1 1
28 (0, 84) (560, 584) (180, 212) 12 1 24 84 32 1 1 1
29 (164, 200) (561, 585) (0, 35) 9 1 24 36 35 1 1 1
30 (178, 213) (561, 585) (35, 71) 9 1 24 35 36 1 1 1

TPB TUPB UPBT Instance ID SUR
129 9 (5,4), (8,4), (10,1) 83 0.957639

Table A.2: The Best Result in Experiment 4.4

• BT: Box type ID.

• BN: Packed box number.

• TPB: Total number of Packed box.

• TUPB: Total number of unpacked box.

• UPBT: Unpacked box type and corresponding number.

• SUR: Space Utility Rate.

Appendix A. Appendix Title Here 72

Best Packing Pattern for Benchmark 5 in Experiment 4.5

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 83) (0, 560) (0, 70) 5 14 40 83 70 1 14 1
2 (83, 233) (0, 520) (0, 74) 4 15 104 50 74 3 5 1
3 (0, 69) (0, 540) (70, 217) 7 15 108 69 49 1 5 3
4 (69, 109) (0, 83) (74, 214) 5 2 83 40 70 1 1 2
5 (109, 233) (0, 77) (74, 218) 9 12 77 62 24 2 1 6
6 (109, 181) (77, 545) (74, 220) 8 12 78 72 73 1 6 2
7 (181, 230) (77, 509) (74, 143) 7 4 108 49 69 1 4 1
8 (181, 233) (77, 448) (143, 219) 6 14 53 52 38 1 7 2
9 (69, 109) (83, 557) (74, 124) 12 6 79 40 50 1 6 1
10 (69, 107) (83, 564) (124, 173) 11 13 37 38 49 1 13 1
11 (181, 231) (448, 527) (143, 183) 12 1 79 50 40 1 1 1
12 (181, 231) (448, 503) (183, 209) 1 1 55 50 26 1 1 1
13 (181, 233) (509, 562) (74, 112) 6 1 53 52 38 1 1 1
14 (83, 162) (520, 560) (0, 50) 12 1 40 79 50 1 1 1
15 (181, 231) (503, 558) (183, 209) 1 1 55 50 26 1 1 1
16 (181, 231) (509, 564) (112, 138) 1 1 55 50 26 1 1 1
17 (69, 106) (83, 563) (173, 215) 2 10 48 37 42 1 10 1
18 (162, 210) (520, 562) (0, 74) 2 2 42 48 37 1 1 2
19 (181, 228) (527, 579) (138, 172) 3 2 26 47 34 1 2 1
20 (0, 42) (540, 577) (70, 166) 2 2 37 42 48 1 1 2
21 (83, 157) (520, 554) (50, 71) 10 1 34 74 21 1 1 1
22 (109, 159) (545, 585) (71, 150) 12 1 40 50 79 1 1 1
23 (107, 181) (545, 566) (150, 218) 10 2 21 74 34 1 1 2
24 (42, 68) (540, 587) (70, 206) 3 4 47 26 34 1 1 4
25 (0, 148) (560, 581) (0, 68) 10 4 21 74 34 2 1 2
26 (0, 38) (540, 577) (166, 215) 11 1 37 38 49 1 1 1
27 (68, 102) (557, 583) (70, 117) 3 1 26 34 47 1 1 1
28 (148, 222) (562, 583) (0, 68) 10 2 21 74 34 1 1 2
29 (181, 215) (558, 584) (172, 219) 3 1 26 34 47 1 1 1
30 (159, 233) (562, 583) (68, 102) 10 1 21 74 34 1 1 1
31 (159, 233) (564, 585) (102, 136) 10 1 21 74 34 1 1 1
32 (68, 102) (564, 585) (117, 191) 10 1 21 34 74 1 1 1
33 (102, 176) (566, 587) (150, 184) 10 1 21 74 34 1 1 1
34 (102, 176) (566, 587) (184, 218) 10 1 21 74 34 1 1 1

TPB TUPB UPBT Instance ID SUR
151 9 (1,4), (3,1), (8,1),(11,1),(12,1) 64 0.964155

• BT: Box type ID.

• BN: Packed box number.

• TPB: Total number of Packed box.

• TUPB: Total number of unpacked box.

• UPBT: Unpacked box type and corresponding number.

• SUR: Space Utility Rate.

Table A.3: The Best Result in Experiment 4.4

Appendix A. Appendix Title Here 73

Best Packing Pattern for Benchmark 1 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 231) (0, 378) (0, 37) 2 66 63 21 37 11 6 1
2 (0, 208) (0, 25) (37, 217) 1 20 25 52 36 4 1 5
3 (0, 100) (25, 565) (37, 220) 3 45 36 100 61 1 15 3
4 (100, 136) (25, 525) (37, 220) 3 15 100 36 61 1 5 3
5 (136, 172) (25, 525) (37, 220) 3 15 100 36 61 1 5 3
6 (172, 208) (25, 525) (37, 220) 3 15 100 36 61 1 5 3
7 (208, 233) (0, 572) (37, 73) 1 11 52 25 36 1 11 1
8 (0, 61) (378, 578) (0, 36) 3 2 100 61 36 1 2 1
9 (208, 233) (0, 572) (73, 217) 1 44 52 25 36 1 11 4
10 (61, 211) (378, 586) (0, 36) 1 24 52 25 36 6 4 1
11 (100, 204) (525, 550) (36, 216) 1 10 25 52 36 2 1 5
12 (100, 200) (550, 586) (36, 219) 3 3 36 100 61 1 1 3
13 (211, 232) (378, 567) (0, 37) 2 3 63 21 37 1 3 1
14 (0, 63) (565, 586) (36, 73) 2 1 21 63 37 1 1 1
15 (63, 100) (565, 586) (36, 99) 2 1 21 37 63 1 1 1
16 (0, 37) (565, 586) (73, 136) 2 1 21 37 63 1 1 1
17 (37, 100) (565, 586) (99, 210) 2 3 21 63 37 1 1 3
18 (0, 37) (565, 586) (136, 199) 2 1 21 37 63 1 1 1

TPB TUPB UPBT Instance ID SUR
280 4 (1,3), (3,1) 12 0.986502

Table A.4: The Best Result in Benchmark One

Figure A.1: The Benchmark One

Appendix A. Appendix Title Here 74

Best Packing Pattern for Benchmark 2 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 72) (0, 304) (0, 220) 4 40 76 72 22 1 4 10
2 (72, 128) (0, 366) (0, 216) 3 36 61 56 36 1 6 6
3 (128, 200) (0, 31) (0, 220) 2 4 31 72 55 1 1 4
4 (128, 202) (31, 580) (0, 198) 5 27 61 74 66 1 9 3
5 (0, 66) (304, 526) (0, 183) 5 9 74 66 61 1 3 3
6 (202, 233) (0, 72) (0, 220) 2 4 72 31 55 1 1 4
7 (202, 233) (72, 576) (0, 55) 2 7 72 31 55 1 7 1
8 (202, 233) (72, 576) (55, 110) 2 7 72 31 55 1 7 1
9 (202, 233) (72, 576) (110, 220) 2 14 72 31 55 1 7 2
10 (128, 202) (31, 581) (198, 220) 1 20 55 37 22 2 10 1
11 (0, 66) (304, 579) (183, 220) 1 15 55 22 37 3 5 1
12 (66, 128) (366, 438) (0, 220) 2 8 72 31 55 2 1 4
13 (66, 127) (438, 586) (0, 198) 5 6 74 61 66 1 2 3
14 (0, 66) (526, 587) (0, 148) 5 2 61 66 74 1 1 2
15 (66, 121) (438, 586) (198, 220) 1 4 37 55 22 1 4 1
16 (0, 55) (526, 563) (148, 170) 1 1 37 55 22 1 1 1

TPB TUPB UPBT Instance ID SUR
204 5 (1,2), (2,1), (3,1), (4,1) 84 0.981847

Table A.5: The Best Result in Benchmark Two

Figure A.2: The Benchmark Two

Appendix A. Appendix Title Here 75

Best Packing Pattern for Benchmark 3 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 195) (0, 33) (0, 219) 4 15 33 39 73 5 1 3
2 (0, 54) (33, 529) (0, 177) 7 24 62 54 59 1 8 3
3 (54, 143) (33, 537) (0, 180) 1 36 56 89 45 1 9 4
4 (143, 196) (33, 523) (0, 220) 8 25 98 53 44 1 5 5
5 (143, 196) (523, 567) (0, 98) 8 1 44 53 98 1 1 1
6 (143, 197) (523, 585) (98, 157) 7 1 62 54 59 1 1 1
7 (196, 233) (0, 583) (0, 34) 2 11 53 37 34 1 11 1
8 (196, 233) (0, 578) (34, 87) 2 17 34 37 53 1 17 1
9 (197, 232) (0, 575) (87, 141) 3 23 25 35 54 1 23 1
10 (197, 230) (0, 584) (141, 219) 4 16 73 33 39 1 8 2
11 (0, 29) (33, 583) (177, 219) 6 11 50 29 42 1 11 1
12 (29, 105) (33, 544) (180, 219) 5 14 73 38 39 2 7 1
13 (105, 143) (33, 471) (180, 219) 5 6 73 38 39 1 6 1
14 (105, 138) (471, 544) (180, 219) 4 1 73 33 39 1 1 1
15 (143, 197) (523, 548) (157, 192) 3 1 25 54 35 1 1 1
16 (0, 50) (529, 587) (0, 168) 6 8 29 50 42 1 2 4
17 (50, 137) (537, 587) (0, 168) 6 12 50 29 42 3 1 4
18 (138, 192) (523, 558) (192, 217) 3 1 35 54 25 1 1 1
19 (29, 137) (544, 579) (168, 218) 3 4 35 54 25 2 1 2
20 (137, 191) (548, 583) (157, 182) 3 1 35 54 25 1 1 1
21 (137, 191) (558, 583) (182, 217) 3 1 25 54 35 1 1 1

TPB TUPB UPBT Instance ID SUR
229 3 (4,1),(8,2) 38 0.97522

Table A.6: The Best Result in Benchmark Three

Figure A.3: The Benchmark Three

Appendix A. Appendix Title Here 76

Best Packing Pattern for Benchmark 4 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 192) (0, 79) (0, 220) 10 24 79 32 55 6 1 4
2 (0, 68) (79, 503) (0, 189) 5 24 53 68 63 1 8 3
3 (68, 158) (79, 361) (0, 220) 4 15 94 90 44 1 3 5
4 (192, 223) (0, 42) (0, 217) 3 7 42 31 31 1 1 7
5 (192, 233) (42, 586) (0, 180) 1 32 34 41 90 1 16 2
6 (192, 233) (42, 222) (180, 214) 1 2 90 41 34 1 2 1
7 (158, 189) (79, 439) (0, 192) 7 15 72 31 64 1 5 3
8 (0, 64) (79, 151) (189, 220) 7 1 72 64 31 1 1 1
9 (68, 124) (361, 565) (0, 150) 8 12 34 56 75 1 6 2
10 (124, 158) (361, 586) (0, 168) 8 9 75 34 56 1 3 3
11 (68, 124) (361, 586) (150, 218) 8 6 75 56 34 1 3 2
12 (158, 192) (439, 514) (0, 168) 8 3 75 34 56 1 1 3
13 (0, 68) (151, 585) (189, 220) 9 14 62 34 31 2 7 1
14 (158, 190) (79, 527) (192, 220) 2 7 64 32 28 1 7 1
15 (190, 232) (222, 277) (180, 210) 6 2 55 21 30 2 1 1
16 (190, 232) (277, 587) (180, 211) 3 10 31 42 31 1 10 1
17 (124, 158) (361, 547) (168, 199) 9 3 62 34 31 1 3 1
18 (124, 154) (361, 581) (199, 220) 6 4 55 30 21 1 4 1
19 (158, 188) (439, 549) (168, 189) 6 2 55 30 21 1 2 1
20 (0, 64) (503, 587) (0, 96) 2 9 28 64 32 1 3 3
21 (0, 68) (503, 565) (96, 189) 9 6 62 34 31 2 1 3
22 (158, 188) (514, 535) (0, 165) 6 3 21 30 55 1 1 3
23 (158, 192) (535, 566) (0, 62) 9 1 31 34 62 1 1 1
24 (158, 192) (535, 566) (62, 124) 9 1 31 34 62 1 1 1
25 (124, 186) (549, 583) (168, 199) 9 1 34 62 31 1 1 1
26 (154, 184) (527, 582) (199, 220) 6 1 55 30 21 1 1 1
27 (64, 94) (565, 586) (0, 110) 6 2 21 30 55 1 1 2
28 (94, 124) (565, 586) (0, 110) 6 2 21 30 55 1 1 2
29 (158, 189) (535, 566) (124, 166) 3 1 31 31 42 1 1 1
30 (0, 55) (565, 586) (96, 186) 6 3 21 55 30 1 1 3
31 (55, 110) (565, 586) (110, 140) 6 1 21 55 30 1 1 1
32 (158, 188) (566, 587) (0, 165) 6 3 21 30 55 1 1 3

TPB TUPB UPBT Instance ID SUR
226 7 (2,1),(3,1),(9,5) 55 0.975254

Table A.7: The Best Result in Benchmark Four

Figure A.4: The Benchmark Four

Appendix A. Appendix Title Here 77

Best Packing Pattern for Benchmark 5 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 43) (0, 570) (0, 123) 12 15 114 43 41 1 5 3
2 (43, 123) (0, 434) (0, 218) 10 14 62 80 109 1 7 2
3 (123, 232) (0, 195) (0, 219) 8 9 65 109 73 1 3 3
4 (123, 231) (195, 492) (0, 98) 7 11 27 108 98 1 11 1
5 (0, 40) (0, 582) (123, 215) 9 6 97 40 92 1 6 1
6 (123, 197) (195, 525) (98, 220) 5 10 66 74 61 1 5 2
7 (197, 233) (195, 500) (98, 210) 3 10 61 36 56 1 5 2
8 (43, 119) (434, 500) (0, 216) 4 9 22 76 72 1 3 3
9 (119, 228) (492, 565) (0, 65) 8 1 73 109 65 1 1 1
10 (43, 116) (500, 565) (0, 109) 8 1 65 73 109 1 1 1
11 (43, 117) (500, 561) (109, 175) 5 1 61 74 66 1 1 1
12 (119, 229) (492, 564) (65, 96) 2 2 72 55 31 2 1 1
13 (197, 229) (500, 543) (96, 213) 6 3 43 32 39 1 1 3
14 (40, 118) (500, 564) (175, 218) 6 4 32 39 43 2 2 1
15 (117, 174) (525, 582) (96, 141) 11 1 57 57 45 1 1 1
16 (174, 196) (525, 580) (96, 207) 1 3 55 22 37 1 1 3
17 (118, 173) (525, 587) (141, 213) 2 2 31 55 72 1 2 1
18 (196, 233) (543, 587) (96, 206) 1 4 22 37 55 1 2 2
19 (43, 117) (561, 583) (109, 164) 1 2 22 37 55 2 1 1
20 (40, 77) (564, 586) (164, 219) 1 1 22 37 55 1 1 1
21 (43, 119) (565, 587) (0, 72) 4 1 22 76 72 1 1 1
22 (77, 114) (564, 586) (164, 219) 1 1 22 37 55 1 1 1
23 (119, 230) (565, 587) (0, 55) 1 3 22 37 55 3 1 1
24 (119, 174) (565, 587) (55, 92) 1 1 22 55 37 1 1 1
25 (174, 229) (565, 587) (55, 92) 1 1 22 55 37 1 1 1
26 (43, 98) (565, 587) (72, 109) 1 1 22 55 37 1 1 1

TPB TUPB UPBT Instance ID SUR
117 9 (2,3),(6,3),(11,3) 84 0.965213

Table A.8: The Best Result in Benchmark Five

Figure A.5: The Benchmark Five

Appendix A. Appendix Title Here 78

Best Packing Pattern for Benchmark 6 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 101) (0, 350) (0, 180) 15 14 50 101 90 1 7 2
2 (101, 209) (0, 444) (0, 47) 7 12 37 108 47 1 12 1
3 (101, 209) (0, 486) (47, 113) 2 9 54 108 66 1 9 1
4 (101, 170) (0, 480) (113, 200) 14 12 120 69 29 1 4 3
5 (170, 232) (0, 363) (113, 187) 3 11 33 62 74 1 11 1
6 (0, 99) (0, 553) (180, 219) 9 7 79 99 39 1 7 1
7 (0, 99) (350, 429) (0, 117) 9 3 79 99 39 1 1 3
8 (0, 64) (350, 563) (117, 179) 5 6 71 64 31 1 3 2
9 (170, 231) (0, 69) (187, 220) 4 1 69 61 33 1 1 1
10 (170, 231) (69, 552) (187, 220) 4 7 69 61 33 1 7 1
11 (64, 97) (350, 557) (117, 178) 4 3 69 33 61 1 3 1
12 (170, 211) (363, 563) (113, 185) 8 4 100 41 36 1 2 2
13 (209, 231) (0, 83) (0, 110) 10 2 83 22 55 1 1 2
14 (209, 231) (83, 166) (0, 112) 12 2 83 22 56 1 1 2
15 (0, 66) (429, 585) (0, 44) 13 3 52 66 44 1 3 1
16 (0, 99) (429, 478) (44, 116) 11 2 49 99 36 1 1 2
17 (66, 210) (444, 544) (0, 41) 8 4 100 36 41 4 1 1
18 (210, 232) (166, 498) (0, 112) 12 8 83 22 56 1 4 2
19 (0, 99) (478, 527) (44, 116) 11 2 49 99 36 1 1 2
20 (99, 168) (0, 505) (200, 220) 1 5 101 69 20 1 5 1
21 (211, 231) (363, 565) (112, 181) 1 2 101 20 69 1 2 1
22 (99, 168) (480, 581) (113, 153) 1 2 101 69 20 1 1 2
23 (99, 160) (480, 549) (153, 186) 4 1 69 61 33 1 1 1
24 (99, 207) (486, 585) (41, 90) 11 3 99 36 49 3 1 1
25 (66, 166) (544, 580) (0, 41) 8 1 36 100 41 1 1 1
26 (99, 163) (505, 576) (186, 217) 5 1 71 64 31 1 1 1
27 (66, 98) (527, 557) (41, 117) 6 2 30 32 38 1 1 2
28 (99, 209) (486, 569) (90, 112) 10 2 83 55 22 2 1 1
29 (210, 232) (498, 581) (0, 56) 12 1 83 22 56 1 1 1
30 (0, 64) (527, 558) (44, 115) 5 1 31 64 71 1 1 1
31 (209, 231) (498, 581) (56, 111) 10 1 83 22 55 1 1 1
32 (0, 83) (558, 580) (44, 99) 10 1 22 83 55 1 1 1
33 (0, 55) (563, 585) (99, 182) 10 1 22 55 83 1 1 1
34 (168, 223) (565, 587) (112, 195) 10 1 22 55 83 1 1 1
35 (166, 198) (544, 574) (0, 38) 6 1 30 32 38 1 1 1
36 (99, 163) (549, 587) (153, 183) 6 2 38 32 30 2 1 1
37 (64, 96) (553, 583) (178, 216) 6 1 30 32 38 1 1 1
38 (0, 32) (553, 583) (182, 220) 6 1 30 32 38 1 1 1
39 (32, 64) (553, 583) (182, 220) 6 1 30 32 38 1 1 1
40 (64, 96) (557, 587) (99, 175) 6 2 30 32 38 1 1 2

TPB TUPB UPBT Instance ID SUR
145 10 (6,4),(11,1),(11,2),(13,3) 94 0.964554

Table A.9: The Best Result in Benchmark Six

Appendix A. Appendix Title Here 79

Best Packing Pattern for Benchmark 7 in Overall Experiment

Layer ID
Position

BT BN
Box Size Layout

(x, x′) (y, y′) (z, z′) Lb Wb Hb X Y Z
1 (0, 200) (0, 116) (0, 98) 8 5 116 40 98 5 1 1
2 (0, 103) (0, 511) (98, 187) 6 7 73 103 89 1 7 1
3 (103, 198) (0, 564) (98, 190) 2 12 47 95 92 1 12 1
4 (0, 80) (116, 491) (0, 75) 14 5 75 80 75 1 5 1
5 (200, 232) (0, 500) (0, 40) 11 5 100 32 40 1 5 1
6 (200, 232) (0, 555) (40, 128) 15 5 111 32 88 1 5 1
7 (198, 230) (0, 111) (128, 216) 15 1 111 32 88 1 1 1
8 (0, 38) (0, 530) (187, 217) 10 5 106 38 30 1 5 1
9 (80, 197) (116, 420) (0, 44) 5 8 38 117 44 1 8 1
10 (80, 153) (116, 556) (44, 98) 7 8 55 73 54 1 8 1
11 (153, 199) (116, 512) (44, 95) 1 9 44 46 51 1 9 1
12 (38, 76) (0, 424) (187, 217) 10 4 106 38 30 1 4 1
13 (76, 166) (0, 564) (190, 220) 20 6 94 90 30 1 6 1
14 (198, 228) (111, 205) (128, 218) 20 1 94 30 90 1 1 1
15 (166, 198) (0, 560) (190, 220) 19 5 112 32 30 1 5 1
16 (198, 230) (205, 317) (128, 218) 19 3 112 32 30 1 1 3
17 (198, 233) (317, 562) (128, 185) 13 7 35 35 57 1 7 1
18 (80, 196) (420, 529) (0, 42) 16 4 109 29 42 4 1 1
19 (0, 78) (116, 580) (75, 98) 3 8 116 39 23 2 4 1
20 (0, 78) (491, 578) (0, 53) 12 3 87 26 53 3 1 1
21 (0, 100) (511, 551) (98, 130) 11 1 40 100 32 1 1 1
22 (0, 100) (511, 551) (130, 162) 11 1 40 100 32 1 1 1
23 (38, 75) (424, 577) (187, 219) 4 3 51 37 32 1 3 1
24 (78, 194) (529, 552) (0, 39) 3 1 23 116 39 1 1 1
25 (0, 87) (551, 577) (98, 151) 12 1 26 87 53 1 1 1
26 (78, 178) (552, 584) (0, 40) 11 1 32 100 40 1 1 1
27 (196, 233) (500, 551) (0, 32) 4 1 51 37 32 1 1 1
28 (153, 190) (512, 544) (42, 93) 4 1 32 37 51 1 1 1
29 (178, 231) (555, 581) (0, 87) 12 1 26 53 87 1 1 1
30 (0, 92) (511, 576) (162, 185) 18 1 65 92 23 1 1 1
31 (0, 62) (491, 587) (53, 75) 9 2 48 62 22 1 2 1
32 (198, 233) (317, 562) (185, 214) 17 5 49 35 29 1 5 1
33 (0, 35) (530, 587) (185, 220) 13 1 57 35 35 1 1 1
34 (78, 140) (556, 578) (40, 88) 9 1 22 62 48 1 1 1
35 (140, 175) (556, 585) (40, 89) 17 1 29 35 49 1 1 1
36 (87, 179) (564, 587) (89, 154) 18 1 23 92 65 1 1 1
37 (92, 184) (564, 587) (154, 219) 18 1 23 92 65 1 1 1
38 (179, 227) (564, 586) (87, 149) 9 1 22 48 62 1 1 1
39 (184, 232) (564, 586) (149, 211) 9 1 22 48 62 1 1 1

TPB TUPB UPBT Instance ID SUR
137 14 (12,3),(13,1),(16,2),(17,1),(18,1) 98 0.962306

Figure A.6: The Benchmark Seven

Bibliography

[1] Jose Fernando Goncalves and Mauricio G.C. Resende. A parallel multi-population

biased random-key genetic algorithm for a container loading problem. Computers

& Operations Research, 39(2):179 – 190, 2012. ISSN 0305-0548. doi: http://dx.doi.

org/10.1016/j.cor.2011.03.009. URL http://www.sciencedirect.com/science/

article/pii/S0305054811000827.

[2] JC Bean. Genetics and random keys for sequencing and optimization. ORSA

Journal on Computing, 6:154–60, 1994.

[3] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural

Computing Series. Springer, 2003. ISBN 9783540401841. URL http://books.

google.nl/books?id=RRKo9xVFW_QC.

[4] Ratcliff MSW. Bischoff EE. Issues in the development of approaches to container

loading. Omega, International Journal of Management Science, 23(3):377–90, 1995.

[5] Scheithauer G. Algorithm for the container loading problem. In:Operational Re-

search Proceedings, pages 445–52, 1992.

[6] Schepers J Fekete SP. A new exact algorithm for general orthogonal d-dimensional

knapsack problems. Springer, pages 144–56, 1997.

[7] Vigo D Martello S, Pisinger D. Three-dimensional bin packing problem. Operations

Research, pages 256–67, 2000.

[8] Bortfeldt A Fanslau T. A tree search algorithm for solving the container loading

problem. INFORMS Journal on computing, 22(2):222–35, 2010.

[9] Nee AYC Loh TH. A packing algorithm for hexahedral boxes. In :Proceedings of

the conference of industrial automation, pages 115–26, 1992.

80

http://www.sciencedirect.com/science/article/pii/S0305054811000827
http://www.sciencedirect.com/science/article/pii/S0305054811000827
http://books.google.nl/books?id=RRKo9xVFW_QC
http://books.google.nl/books?id=RRKo9xVFW_QC

Bibliography 81

[10] Gehring H Bortfeldt A. A hybrid genetic algorithm for the container loading prob-

lem. European Journal of Operational Research, 131(1):143–61, 2001.

[11] Robinson DF. George AJ. A heuristic for packing boxes into a container. computer

and Operations Research, 7(3):147–56, 1980.

[12] Pisinger D. Heuristics for the container loading problem. European journal of

operational Research, 141:143–53, 2002.

[13] Bortfeldt A Gehring H. A genetic algorithm for solving the container loading

problem. International transactions in Operational Research, pages 401–18, 1997.

[14] Ratcliff MSW Bischoff EE, Janetz F. Loading pallets with nonidentical items.

European Journal of Operational Research, 84:681–92, 1995.

[15] Sommerweiss U Riehme J Terno J, Scheithauer G. An efficient approach for the

multi-pallet loading problem. European Journal of Operational Research, 123(2):

372–81, 2000.

[16] Eley M. Solving container loading problems by block arrangement. European Jour-

nal of operational Research, 141(2):392–409, 2002.

[17] Mack D Bortfeldt A, Gehring H. A parallel tabu search algorithm for solving the

container loading problem. Parallel Computing, 29(5):641–62, 2003.

[18] Gehring H Mack D Bortfeldt A. A parallel hybrid local search algorithm for the

container loading problem. international transactions in operational research, 11:

511–33, 2004.

[19] Arenales M. Morabito R. An and/or-graph approach to the container loading

problem. international transactions in operational research, 1(1):59–73, 1994.

[20] Bortfeldt A Gehring H. A parallel genetic algorithm for solving the container

loading problem. International transactions in Operational Research, 9(4):497–511,

2002.

[21] Bischoff E. Three-dimensional packing of items with limited load bearing strength.

European Journal of operational Research, 168:952–66, 2004.

[22] Oliverira JF Moura A. A grasp approach to the container -loading problem. IEEE

Intelligent Systems, 20(4):50–7, 2005.

Bibliography 82

[23] Tamarit JM Oliveira JF Parreno F, Alvarez-Valdes R. A maximal-space algorithm

for the container loading problem. INFORMS Journal on computing, 20(3):412–22,

2008.

[24] Hifi M. Approximate algorithm for the container loading problem. International

Transcations in operations Research, 9:747–74, 2002.

[25] Wang Y Lim A, Rodrigues B. A multi-faced buildup algorithm for three-dimensional

packing problems. Omega, 31(6):471–81, 2003.

[26] Bischoff EE Davies AP. Weight distribution considerations in container loading.

European Journal of operational research, 114(3):509–27, 1999.

[27] Takahara S. Loading problem in multiple containers and pallets using strategic

search method. In Modeling Decision for artificial intelligence, pages 448–56, Berlin,

Heidelberg, 2005. Springer-verlag.

[28] Wakabayashi Y Miyazawa FK. Approximation aalgorithm for the orthogonal z-

oriented three dimensional packing problem. SIAM Journal on Computing, 29(3):

1008–29, 1999.

[29] Xu B. Lai KK, Xue J. Container packing in a multi-customer delivering operation.

Computers and Industrial Engineering, 35(1-2):323–6, 1998.

[30] Mack D Bortfeldt A. A heuristic for the three-dimensional strip packing problem.

European journal of operational Research, 183(3):1267–79, 2007.

[31] He K. Huang W. A caving degree approach for the single container loading problem.

European Journal of Operational Research, 196(1):93–101, 2009.

[32] Maculan N Silva JLC, Soma NY. A greedy search for the three-dimensional bin

packing problem: the packing static stability case. International Transcations in

operations Research, 123(2):141–53, 2003.

[33] Laporte G Martello S Gendreau M, Lori M. A tabu search algorithm for a routing

and container loading problem. Transportation Science, 40(3):342–50, 2006.

[34] Shen QS. Chen CS, Lee SM. An analytical model for the container loading problem.

European Journal of Operational Rsearch, 80(1):68–76, 1995.

Bibliography 83

[35] Eley M. A bottlenneck assignment approach to the multiple container loading

problem. OR Spectrum, 25(1):45–60, 2003.

[36] Bischoff EE. Ratcliff MSW. Allowing for weight considerations in container loading.

OR Spectrum, 20(1):65–71, 1998.

[37] Thom J. Hodgson. A combined approach to the pallet loading problem. A I

I E Transactions, 14(3):175–182, 1982. doi: 10.1080/05695558208975057. URL

http://www.tandfonline.com/doi/abs/10.1080/05695558208975057.

[38] Beasley JE. An exact two-dimensional non-guillotine cutting tree search procedure.

Operations Research, 33(1):49–64, 1985.

[39] Chistofides N Hadjiconstantinou E. An exact algorithm for general, orthogonal,

two-dimensional knapsack problems. European Journal of Operational Research,

83(1):39–56, 1995.

[40] Martins GHA. Packing in two and three dimensions. PhD thesis, Naval Postgrad-

uate school, Monterey, California, 2003.

[41] Beasley JE. A population heuristic for constrained two-dimensional non-guillotine

cutting. European Journal of Operational Research, 156(3):601–27, 2004.

[42] Leonardo Junqueira, Reinaldo Morabito, and Denise Sato Yamashita. Three-

dimensional container loading models with cargo stability and load bearing

constraints. Computers & Operations Research, 39(1):74 – 85, 2012. ISSN

0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2010.07.017. URL http://www.

sciencedirect.com/science/article/pii/S0305054810001486. Special Issue

on Knapsack Problems and Applications.

[43] Whitlock C. Christofides N. An algorithm for two-dimensional cutting problems.

Operations Research, 44(2):145–59, 1977.

[44] Chan JWM. Lai KK. Developing a simulated annealing algorithm for the cutting

stock problem. Computers and Industrial Engineering, 32:115–27, 1997.

[45] Frank Hoffmeister and Thomas Bäck. Genetic algorithms and evolution strategies:

Similarities and differences. In Hans-Paul Schwefel and Reinhard Männer, editors,

Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer

http://www.tandfonline.com/doi/abs/10.1080/05695558208975057
http://www.sciencedirect.com/science/article/pii/S0305054810001486
http://www.sciencedirect.com/science/article/pii/S0305054810001486

Bibliography 84

Science, pages 455–469. Springer Berlin Heidelberg, 1991. ISBN 978-3-540-54148-6.

doi: 10.1007/BFb0029787. URL http://dx.doi.org/10.1007/BFb0029787.

[46] T. Bäck. Evolutionary computation: A guided tour. In G. Paun et al., editor,

Current Trends in Theoretical Computer Science, volume 1, pages 569–612. World

Scientific, 2004.

[47] D. David K. De Jong and D. B. Fogel H.-P. Schwefel. A history of evolutionary

computation. Handbook of Evolutionary Computation, pages 1–12, 1997.

[48] A. S. Fraser. Simulation of genetic systems by automatic digital computers. II. Ef-

fects of linkage on rates of advance under selection. Australian Journal of Biological

Science, 10:492–499, 1957.

[49] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. MIT

Press, Cambridge, MA, USA, 1992. ISBN 0262082136.

[50] Aparna Vishwanath, Ramesh Vulavala, and Sapna U Prabhu. Task scheduling in

homogeneous multiprocessor systems using evolutionary techniques.

[51] Otman Abdoun and Jaafar Abouchabaka. A comparative study of adaptive

crossover operators for genetic algorithms to resolve the traveling salesman problem.

arXiv preprint arXiv:1203.3097, 2012.

[52] David E. Goldberg and Kumara Sastry. A practical schema theorem for genetic

algorithm design and tuning. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, 328–335. (Also IlliGAL, pages 328–335, 2001.

[53] Kumara Sastry, David Goldberg, and Graham Kendall. Genetic algorithms. In

EdmundK. Burke and Graham Kendall, editors, Search Methodologies, pages 97–

125. Springer US, 2005. ISBN 978-0-387-23460-1. doi: 10.1007/0-387-28356-0 4.

URL http://dx.doi.org/10.1007/0-387-28356-0_4.

[54] Lawrence Davis. Applying adaptive algorithms to epistatic domains. In Proceed-

ings of the 9th International Joint Conference on Artificial Intelligence - Volume 1,

IJCAI’85, pages 162–164, San Francisco, CA, USA, 1985. Morgan Kaufmann Pub-

lishers Inc. ISBN 0-934613-02-8, 978-0-934-61302-6. URL http://dl.acm.org/

citation.cfm?id=1625135.1625164.

http://dx.doi.org/10.1007/BFb0029787
http://dx.doi.org/10.1007/0-387-28356-0_4
http://dl.acm.org/citation.cfm?id=1625135.1625164
http://dl.acm.org/citation.cfm?id=1625135.1625164

Bibliography 85

[55] David E. Goldberg and Robert Lingle, Jr. Alleleslociand the traveling salesman

problem. In Proceedings of the 1st International Conference on Genetic Algorithms,

pages 154–159, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc. ISBN 0-8058-

0426-9. URL http://dl.acm.org/citation.cfm?id=645511.657095.

[56] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic algorithms

for the traveling salesman problem. In Proc. of the International Conference on

Genetic Algorithms and Their Applications, pages 160–168, Pittsburgh, PA, 1985.

[57] J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms.

In Genetic Algorithms and Simulated Annealing, London: Pitman, 1987.

[58] L. Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay. Scheduling prob-

lems and traveling salesmen: The genetic edge recombination operator. In Proceed-

ings of the 3rd International Conference on Genetic Algorithms, pages 133–140, San

Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. ISBN 1-55860-066-3.

URL http://dl.acm.org/citation.cfm?id=645512.657238.

[59] C.Shaefer and S. Smith. The argot strategy ii: Combinatorial optimization. In

Thinking Machinesnical Report, pages RL90–1, 1990.

[60] Jose Fernando Goncalves and MauricioG.C. Resende. Biased random-key genetic

algorithms for combinatorial optimization. Journal of Heuristics, 17(5):487–525,

2011. ISSN 1381-1231. doi: 10.1007/s10732-010-9143-1. URL http://dx.doi.

org/10.1007/s10732-010-9143-1.

[61] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics, 42(1):55–61, February 2000. ISSN 0040-1706. doi: 10.2307/1271432.

URL http://dx.doi.org/10.2307/1271432.

[62] Felipe AC Viana. Things you wanted to know about the latin hypercube design

and were afraid to ask.

[63] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Artificial Intelligence. Addison-Wesley, 1989. ISBN 9780201157673. URL

http://books.google.nl/books?id=3_RQAAAAMAAJ.

[64] David Beasley, RR Martin, and DR Bull. An overview of genetic algorithms: Part

1. fundamentals. University computing, 15:58–58, 1993.

http://dl.acm.org/citation.cfm?id=645511.657095
http://dl.acm.org/citation.cfm?id=645512.657238
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.2307/1271432
http://books.google.nl/books?id=3_RQAAAAMAAJ

Bibliography 86

[65] Charles Darwin. On the origins of species by means of natural selection. London:

Murray, 1859.

[66] William Spears. On the virtues of parameterized uniform crossover, 1991.

[67] Hans-Paul Paul Schwefel. Evolution and Optimum Seeking: The Sixth Generation.

John Wiley & Sons, Inc., New York, NY, USA, 1993. ISBN 0471571482.

[68] S. K. Park and K. W. Miller. Random number generators: Good ones are hard

to find. Commun. ACM, 31(10):1192–1201, October 1988. ISSN 0001-0782. doi:

10.1145/63039.63042. URL http://doi.acm.org/10.1145/63039.63042.

[69] T. Gau and G. Wäscher. Cutgen1: A problem generator for the standard

one-dimensional cutting stock problem. European Journal of Operational Re-

search, 84(3):572 – 579, 1995. ISSN 0377-2217. doi: http://dx.doi.org/10.

1016/0377-2217(95)00023-J. URL http://www.sciencedirect.com/science/

article/pii/037722179500023J. Cutting and Packing.

[70] F. Parreno, R. Alvarez-Valdes, J.F. Oliveira, and J.M. Tamarit. Neighborhood

structures for the container loading problem: a vns implementation. Journal of

Heuristics, 16(1):1–22, 2010. ISSN 1381-1231. doi: 10.1007/s10732-008-9081-3.

URL http://dx.doi.org/10.1007/s10732-008-9081-3.

[71] Kun He and Wenqi Huang. Solving the single-container loading problem by a fast

heuristic method. Optimization Methods Software, 25(2):263–277, April 2010. ISSN

1055-6788. doi: 10.1080/10556780902992761. URL http://dx.doi.org/10.1080/

10556780902992761.

http://doi.acm.org/10.1145/63039.63042
http://www.sciencedirect.com/science/article/pii/037722179500023J
http://www.sciencedirect.com/science/article/pii/037722179500023J
http://dx.doi.org/10.1007/s10732-008-9081-3
http://dx.doi.org/10.1080/10556780902992761
http://dx.doi.org/10.1080/10556780902992761

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithm
	Abbreviations
	Preface
	1 Design Optimization of 3-Dimensional Bin Packing Problem
	1.1 Problem Definition
	1.2 Mathematical Formulations
	1.3 Placement Strategy
	1.3.1 Maximal-Empty-Space Selection
	1.3.2 Empty-Spaces Update
	1.3.3 The Deep-Bottom-Left Procedure
	1.3.4 Practical Implementation

	1.4 Additional Consideration
	1.5 Summary

	2 Optimization Approach
	2.1 Evolutionary Algorithm
	2.2 Introduction of Standard Genetic Algorithm
	2.2.1 Representation and Fitness Evaluation
	2.2.2 Selection
	2.2.3 Recombination
	2.2.4 Mutation
	2.2.5 Theory

	2.3 Random Key Representation
	2.3.1 The Concept of Random Key
	2.3.2 Hypercube Sampling
	2.3.3 Advantage of Random Key Representation
	2.3.4 Disadvantage for The Random Key Representation

	2.4 Divide and Conquar
	2.5 Summary

	3 Biased Random Key Genetic Algorithm
	3.1 Representation and Decoding
	3.2 Evolutionary Process
	3.2.1 Initialization
	3.2.2 Fitness Function
	3.2.3 Selection Operator
	3.2.4 Crossover operator
	3.2.5 Mutation Operator

	3.3 Modification
	3.3.1 Initialization Component Modification
	3.3.2 Mutation Operator Modification

	3.4 Summary

	4 Experiments
	4.1 Benchmark Description
	4.2 Optimizer Parameter Configuration
	4.3 Different Components Setting
	4.4 Experiment Implementation
	4.4.1 The Components Modification
	4.4.2 Parameter Tuning
	4.4.3 The Overall Comparison Experiments

	5 Conclusion
	A The Practical Packing Solution and Pattern
	Bibliography

