Universiteit Leiden

Opleiding Informatica

Video Recommendation

A comparison between collaborative filtering algorithms

Name: Kevin van der Wijden
Studentnr: s1073192
Date: 10/06/2014

st supervisor: Dr. M.S. Lew
2nd supervisor: Dr. E.M. Bakker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Video recommendation is used all over the world. Websites like Netflix and IMDb
use this to recommend movies to their visitors. In video recommendation, collaborative
filtering algorithms are used. Collaborative filtering algorithms find patterns in datasets.
These patterns can be used to make predictions. There are different kinds of collab-
orative filtering algorithms. In this document we will look into the model-based and
memory-based collaborative filtering algorithms. The minimum distance classifier it used
as memory-base collaborative filtering algorithm. Classic neural networks and dynamic
neural networks are used as model-based collaborative filtering algorithms. How well do
these different algorithms perform compared to each other? And what is the difference
between a classic and a dynamic neural network?

Contents

1 Introduction

2 Dataset & Notation

3 Memory-based Collaborative Filtering Algorithm

4 Model-based Collaborative Filtering algorithms
4.1 Normal Neural Network
4.2 Dynamic Neural Network

5 Comparison
5.1 Normal NN & Dynamic NN,
5.2 Neural networks & MDC

6 Conclusion

7 Future work

10

12
12
13

14

14

1 Introduction

Video recommendation is used a lot nowadays. Websites like Netflix and YouTube use video
recommendation to be able to recommend movies, similar to the ones that the user already
has seen. There are several methods to do these recommendations. Some examples are found
in [3], [7], [11] and [16]. These kind of recommendations are not only done for movies, see [6]
and [8] for examples This document is based on the Netflix method for video recommendation
as found in [7], [11] and [16].

From 2006 till 2009 Netflix wanted to improve their recommendation system. To achieve
this they started an annually competition, called the Netflix Grand Prize. This was an open
competition. The team that created the best method, which has to be better than the Netflix
method, would win $1.000.000. Several methods have lead to a better performance. Some of
these methods are described in [7], [11] and [16].

In [16] they used a cluster with 34 nodes, each having 4GB memory. Those nodes were
grouped under a head node with 8GB of memory. When reading this a question raised; how
would normal computers perform on algorithms similar to the ones used for the Netflix Grand
Prize? In this document some collaborative filtering algorithms are tested and compared using
a computer with an Intel i7-4700MQ (2.4GHz) processor and 16GB working memory.

Collaborative filtering algorithms are the algorithms used in video recommendations. These
algorithms use information patterns among multiple users to gain information. The Netflix
Grand Prize is based on video recommendation, which leads to the fact that in [7], [11] and
[16] collaborative filtering algorithms were used to form a better solution.

By filtering datasets corresponding items are used to find patterns or information [2].
Applied on video recommendation the collaborative filtering algorithms are used to make
predictions. Similarities in movie ratings are used to get a predicted rating for another movie.

Collaborative filtering algorithms work as follows. First, users rate items following a scale.
For this research a scale from 1 till 5 is used. Next, the algorithm matches one user with
another user, which is having the most similar ratings. Finally, using these similar ratings, the
algorithm finds the highest rating of a not yet rated movie [2], [15]. In this way predictions
can be made based on all ratings in the dataset, and not only based on the users own ratings.

There are different kinds of collaborative filtering algorithms: memory-based, model-based
and hybrid [2]. Memory-based algorithms directly use the given dataset to find similarities
between users. Memory-based algorithms can use these similarities to make predictions. The
model-based algorithms are first trained on a trainingset to find patterns. Those patterns are
stored and will be used to process the real data. When the real data is processed, the predic-
tions are made based on the found patterns. Hybrid algorithms combine the memory-based
and the model-based algorithms. In this research only the first two algorithms are used.

The main question is how well these algorithms perform compared to each other. This is
what is being researched in this document. To find an answer on the main question, several
collaborative filtering algorithms are runned using the MovielLens database [12]. While run-
ning the algorithms, the root mean squared error (RMSE) will be calculated. The root mean
squared error gives the mean error for a user over all movies. The RMSE is also used in [16],
where similar comparisons are made. This error is calculated using the following formula:

\/ > (Xi = Yy)?

(1)

Where n is the amount of movies in the dataset, X, is the predicted value and Y} is the real
value.

The calculation of the global RMSE, which is the sum of the RMSE divided by the amount of
users, is shown in the following formula:

s 2t (Xat—Yot)?
: (2)
m
Where m is the amount of users in the dataset, n is the amount of movies in the dataset, Xt
is the predicted value for movie t for user x and Yt is the real value for movie t for user x.
This document is organized as follows: in Section 2 the dataset is described, followed by
some information about notations in this paper. The different algorithms are described in

Section 3 and 4. Following, the outcome of running the algorithms using the dataset is in
Section 5. A final conclusion is made in Section 6.

2 Dataset & Notation

The dataset used for this research is created from the MovielLens database. The Movielens
database is build by the GrouplLens group. This database contains users which have rated
movies. As found in the MovieLens documentation [12], there are three different sizes of
databases available. These databases contain a different amount of users and movies as listed
in Table 1. Note: the numbers in Table 1 differ from the numbers in the Moviel.ens documen-
tation. This is because rounded numbers are used in the Movielens documentation.

Table 1: Amount of users and movies in the MovieLens databases

Database name | Amount of users | Amount of movies
MovieLens 100k 934 1682
MovieLens 1M 6040 3952
Movielens 10M 71567 10681

To be able to get reliable predictions, the difference between rated and unrated movies
should be as small as possible. This difference should be as small as possibile, because the more
ratings are given the preciser the predictions will be. After doing some test the 1M database
appeared to give the best results. Even though the 1M database gives the best results when
used in total, experiments have shown that the creation of a subset is needed. The results
when using the total 1M database, on the collaborative filtering algorithms (for the algorithms,
see Chapter 3 and 4) are worse than with random guessing. Random guessing will lead to an
average error of 2.5 for each prediction, while running the algorithms on the whole 1M database
will result in errors > 3. To reduce this error, the difference between rated and unrated movies
has to become smaller. Therefore a subset is created where the users have rated > 25% of
the movies. For the rest of this paper this subset will be referred to as the dataset.

For the model-based collaborative filtering algorithm a training set and test set are needed.
Those sets are created as follows; the training set is created by picking 75% of the dataset,
and the test set is the other 25% of the dataset. For each movie a training set and test set is
created. Those created sets will be constant for all experiments, and will be referred to as the
training set and test set.

To improve the readability of this document, from now on some abbreviations are made:

CF for collaborative filtering

MDC for minimum distance classifier

NN for neural network, NNs for neural networks

RMSE for root mean squared error

3 Memory-based Collaborative Filtering Algorithm

A well known memory-based CF algorithm is the MDC. The MDC finds for user A the nearest
user B. The nearest user B is defined as the user that has the smallest difference in ratings
compared to user A. The specific MDC used here is called k-NN, which is an abbreviation for
k-NearestNeighbour. This classifier finds the 1 till k£ nearest neighbours for a user. In Figure 1
is shown what happens to the RMSE when variating k. Following the MDC in pseudocode:

Algorithm 1 The MDC in pseudocode

setCheck > To set the checked status of all users to 0
fori=1;1 <kyu++ do
best = #Mowvies x b > Maximum possible distance
for j =1;7 < #Users;j + + do
current = 0 > Variable to save the current distance

for x = 1;2 < #Movies;z + + do
if ratings[z] < ratings|i][x] then > Where ratings|] are the ratings given by
a user and rating[z|[] are the ratings given by a user x
current+ = ratings[i|[z] — ratings|z]
else
if ratings[x] > ratingsli][x] then
current+ = ratings|z| — ratings|i|[z]
end if
end if
end for
if current < best&&check[j] # 1 then
best = current

latest = j
end if
end for
checkllatest] =1 > To exclude the last found best neighbour from the dataset

end for

Figure 1: MDC with different k-value.
RMSE for MDC

12345678 921011121314151617181920212225242526 27282

1]

303132333435363738394

[r=]

RMSE Averzge RMSE RMSE random guessing

As shown in Figure 1 the RMSE will globally increase when £ is increased. This is logically
derived from the fact that the higher the £ is, the further away the neighbour is. When
neighbours are further away, the larger distance will lead to a higher RMSE. This is because
bigger differences between ratings lead to a bigger distance between users. The RMSE is only
calculated by using already known ratings. So if an user has not rated a movie, this movie will
not be used for the calculation of the RMSE.

The average RMSE for the MDC is 2,37092. To be able to do a good comparison the
result of the MDC need to be better than the result of random guessing. In Figure 1 is shown
that this is accomplished. There is no need to compare CF algorithms that perform worse
than random guessing. Because in those cases, random guessing leads to a better result and
is easier to implement.

4 Model-based Collaborative Filtering algorithms

As described in [14] a NN is a network of neurons, this is a small model of the human brain.
Within the representation of these networks a neuron is a node, and a connection between
neurons is an edge. Each neuron has an input, an activation function and an output. The
input is calculated by the input function described in formula 3. Using the input the neuron
calculate an output with the activation function. When an activation function has a hard
threshold, the NN is called a perceptron. When the activation function has a soft threshold or
logistic function, the NN is called a sigmoid perceptron.

The edges between neurons have a weight. These weights are used to calculate the input
of the receiving neuron, as shown in Algorithm 3. During the training of the NN the weights
will change based on an error value. This error value is a value based on the difference between
the predicted value an the value that should be given. There are two error values; the first to
update the weights from input to hidden neurons, and the second is to update the weights
from the hidden neurons to the output neuron(s). There are two algorithms for updating the
weights, repectively Algorithm 4 and 5. The first one is for updating the weights from the input

7

neurons to the hidden neurons. The second one is for updating the weights from the hidden
neurons to the output neuron(s) [14]. The updating of the weights is done during the training
phase of the NN. In the training phase the NN updates the weights in such manner that the
output is as close as possible to the actual rating. The actual rating is the rating given by a
user for a movie. Training is done with data of which the input and output is known. In this
way it is possible to calculate an error. This error is the difference between predicted value and
the actual value. This error is used to update the weights as shown in Algrotithms 4 and 5.
Once trained the NNs are ready to make predictions with new datasets. These datasets only
contain input information. So an output has to be calculated using this input.

2”: Wi * a; (3)
=1

Where W;, j is the weight from neuron ¢ to neuron j and a; is the activation value of neuron
i

Wij=Wi;+axa;x A (4)

Where W, ; is the weight from input neuron i to output neuron k, « is the step size (learning
speed),a; is the input of neuron 7 and A; is the error value as described before.

Wik =W+ axa;x (5)

Where W; . is the weight from hidden neuron j to output neuron k, « is the step size (learning
speed), a; is the input of neuron j and A\ is the error value as described before.

NNs can have several layers: an input layer, possibly hidden layers and an output layer.
NNs with only an input and output layer can solve the basic boolean functions AND, OR and
NOT. More difficult problems have to be solved by NNs with a hidden layer[14].

In this research a NN is build for every movie. So there is a NN for each individual movie
of the dataset. This means that #movies NNs have to be trained. It is done this way because
creating a NN for each individual movie make the NNs less complex, than when a large NN
is created for all movies. Instead of creating a NN with #mowvies outputs, #movies NNs are
created with only one output. The training of all these NNs takes some time as described in
Subsection 4.1.

Because NNs are already widely researched and used, serveral libraries can be found to
directly implement NNs. A library that is suitable for the problem of this research is the FANN
library. FANN is an abbreviation for Fast Artificial Neural Network. The FANN library is well
documented and has a lot of different possibilities for creating NNs. The FANN library makes
it possible to create a normal NN and a dynamic NN. Those NNs will be used for this research
and are described in the following Subsections.

4.1 Normal Neural Network

A normal NN is a NN which is build like defined in the introduction of Section 4. These kind of
NNs consist of an input layer, a hidden layer with a certain amount of neurons and an output
layer containing one neuron. This is called a normal NN because the amount of input neurons,
hiddens neurons and output neurons are known. For this particular case the following configu-
ration is used: #inputneurons = #movies—1, #hiddenlayers = 1, #hiddenneurons = 3,

#outputneurons = 1 and #epochs = 500000. The amount of input neurons is set like this
because training is only needed for al ratings of an user, except for the rating of the movie
which is going to be predicted. As defined in [4] an epoch is one pass trough the training set. A
training is allowed to do a maximum amount of epochs. This maximum is set to #epochs. The
NN will not always reach this maximum because when the desired error, here set to 0.0001,
is reached the training will automatically stop.

The training of a normal NN takes a lot of time. In [4] they list two major problems why
this training takes so long. The first problem, called 'the step sized problem'[4], explains that
a normal NN takes small steps when optimizing the weights. In each iteration small changes
are made to the weights to reach a local, in most situation also the global, minimum. These
small steps are the cause of the long duration of the training. When fast training is needed,
the step size has to be as big as possible. With these big steps, the minimum is reached much
faster. If the step size is too big there is a chance that the minimum will never be reached and
that the output of the NN will not be reliable.

Second is " the moving target problem” [4]. Because there is no global co-operation between
the neurons in a NN, the neurons are trying to solve the problem themselves. This is a hard
task, because they only see their inputs and the error signal that is propagated back from the
output [4]. The environment of the neurons is constantly changing. When neurons think they
have reached their best solution, the environment changes and their best solution results into
a worse output. This way the training takes very long, untill all neurons are trained such that
a local minimum is reached. There are some ways to overcome or reduce these two problems,
which is adapted to the Dynamic NNs described in the following subsection.

Nevertheless once the networks are trained, the generation of output is fast. After the
training is done, the created neural networks will be tested with the test set. From this testing
the RMSE can be calculated. The RMSE is calculated only with known values, this means
that if there are unrated movies within the test set that the NN cannot calculate a reliable
prediction. The FANN library has implemented this by ouputting a value representing that the
NN is predicting for an instance of the data which has no real value. The result of the testing
(after training) of the normal neural network is shown in the following Figure 2

Figure 2: RMSE for normal NN

Average RMSE normal NN
4,500000
3,500000
3,000000
2,500000
)
E 2,000000
o
1,500000
1,000000
0,500000
vvvvvvvv 500 1000 1500 2000 2500 3000 3500 4
0,500000
#movies
RMSE per movie Average RMSE Random guessing

Note: there are some negative RMSE values as a result from insufficient data to train the
NN properly. These values are not used for the calculation of the average RMSE.

The next Figure 3 is an example of the topology of a normal NN with four input neurons,
one hidden layer with five neurons and one output neuron.

Figure 3: Topology normal NN
Input Hidden Lawer Output

Input #1 —»

Input #2 —

Input #3 —»

Input #4 —=

4.2 Dynamic Neural Network

Like described in the previous subsection, the normal NN comes with two major problems
which extends the execution time for the training of the normal NN. The dynamic neural
network reduce these two problems and this results in a much smaller execution time for the
training. To achieve this, the dynamic NN uses Cascade-Correlation [4].

According to [4], Cascade-Correlation combines two ideas. The first idea is that hidden
neurons will be added to the network one at a time. Once added they will not be changed.

10

Second is a different learning algorithm which works as follows. It creates and installs the new
hidden units. The correlation between the error signal and the output of the newly installed
hidden unit has to be as high as possible (maximized) [4]. The dynamic NN will be created
as follows. To start there are only input and output neurons. Then these input and output
neurons are trained like a normal neural network using RPROP learning algorithm as described
in [13]. Once a minimal error is reached and no further training is possible, there needs to be
decided if the neural network works good enough or that the remaining error is still too big.
If the error is small enough, the NN is accepted. When the error is still too big, hidden units
will be added one by one to reduce this error.

The adding of the hidden units will be done as follows [4]. First a candidate unit will be
created. This candidate unit will get trained using a few instances of the training set, so the
input and output weights of this candidate unit are set. The candidate unit is linked to all other
units in the NN, which makes it more of a unity than all individual neurons in a network. There
is a good co-operation along the whole NN, which results in the fact that much lesser training
of the neurons is needed. Due to this the time needed to train a dynamic NN compared to
normal NN is clearly lesser.

Because the NN is created dynamically, we have chosen to vary the amount of times
the fann_cascadetrain_on_data function is called, to see if the result changes. The result is
expected to change because there will always be a remaining error which can be reduced. The
improvement is made by adding new hidden units. The result of this experiment is shown in
the following Figure 4.

Figure 4: RMSE for dynamic NN

Average RMSE for Dynamic NN

2 & RMISE

1000 NN1 —NN10 2000 NN40 —Random guessing 00 #movies 0%

Where NNz are the NNs that are trained x times. Because there is a very small difference
between the values of NN10 and NN40, respectively 1.814513 and 1.813125, only the line
of NN40 is visible in Figure 4. The performance of the dynamic NN is better than random
guessing like the previous CF algorithms. This makes it suitable for the comparisons done in
the following chapter.

Because a dynamic NN is created on the run, the topology of the network will be different
from the topology of a normal NN like shown in Figure 3. Following is an example of a topology
of a dynamic neural network with three input neurons, two hidden neurons (which is also the
amount of hidden layers) and two output neurons.

11

Figure 5: Topology dynamic NN

Outputs
o

o
Add
Hidden Unit 2 é/j E‘/lj

/]

1]

,_
=i
=

O
Inputs 5
O

h
i)

m

O
0

+1

Where the vertical lines sum all incoming activation. Boxed connections are frozen, X
connections are trained repeatedly. Figure 5 is taken from [4]. The vertical line having the +1
in front is a so called bias node. Bias nodes are used to store a certain threshold. This threshold
is saved in these bias nodes such that during the training of the network, the adaptation of the
weights is independent of the threshold. Bias nodes have the same definition for normal NNs.
This topology is clearly different than the one in Figure 3. This is the result of the method
used for creating a dynamic NN. Each hidden neuron also has connections with the other
hidden neurons. The hidden neurons in a normal NN only have a connection with their input
and output neurons and not with other neurons in the NN.

5 Comparison

In this section a comparison between the different CF algorithms is made.

For this research the RMSE is calculated for each individual CF algorithm. No combinations
of CF algorithms are made, which results in a higher RMSE. Nevertheless it is interesting to
see how the different CF algorithms perform on a normal computer.

CF algorithms are already widely researched, therefore there are already comparisons made,
some examples are found in [5].

5.1 Normal NN & Dynamic NN

As shown in Table 2 the normal NN performs better than the dynamic NN. This difference
in performance is due to the difference in training. The normal NN is trained intensively on
the training set. The training of the normal NNs takes significantly longer than the training of
the dynamic NNs, respectively serveral days and serveral hours. This difference in time is also
caused by different ways of determine when to stop the training. Like described in Section 4
the neurons in a dynamic NN are added with the weights set. Those weights are not changed
during further evolving of the networks. Opposite to this are the normal NNs where all neurons
are already set. The training is based on the updating of all the weights beween the neurons.
Therefore different ways of determine the conditions to stop the training are needed. For the
normal NN the stop conditions are as follows: or the maximum amount of epochs is reached
(500000) or, the minimum error is reached (0.001). For the dynamic NN a special function is
used to determine if the training has to stop. Such functions are included in the FANN library,
the specific function used is called FANN_STOPFUNC_BIT. This function stops the training

12

when a bit error level is exceeded. A bit error is defined as follows; when an output neuron
differs more then a certain error there is one bit error. The bit error is set to 0.9.

Table 2: Average RMSE

Algorithm Average RMSE
Normal NN 1.352817
Dynamic NN1 1.833228
Dynamic NN10 1.814513
Dynamic NN40 1.813125
Random guessing 2.5

5.2 Neural networks & MDC

In this subsection both NNs are compared to the MDC. In Section 3 and 4 two different
kinds of CF algorithms are described. In those sections is described that the two kinds of CF
algorithms use different ways of computing a prediction. MDC needs all data, or a subset
with all & closest neighbours, to be able to compute a prediction. On the other hand, once
trained the NNs only need the actual data of one user to be able to compute a prediction. The
training of the NNs take some time, but once trained the results will be generated significantly
faster than with MDC. Due to this NNs are more logically to get implemented in a video
recommendation application than a MDC. The results can be calculated on the run with the
NNs, and the MDC takes too long to be runned in runtime. Nevertheless the comparison made
here is not based on execution time, but on the actual results. This is because we want to
know how well these algorithms perform to eachother, when generating results as good as
possible.

As shown in Table 3, the NNs perform better than the MDC. This is as expected; the NNs
get an intensive training before results are calculated, while the MDC directly runs on a subset
of the data containing the ratings of k£ users. As shown in Section 3, it makes no sense to
make k really big because the higher k will be, the higher the RMSE will get. Due to this the
subset used for MDC will be smaller than the training set used for the NNs. This results in a
more precise prediction by the NNs.

Table 3: Average RMSE

Algorithm Average RMSE
Normal NN 1.352817
Dynamic NN1 1.833228
Dynamic NN10 1.814513
Dynamic NN40 1.813125
MDC 2.37092
Random guessing 2.5

13

6 Conclusion

As shown in the previous chapter, NNs perform better than the MDC due to a different
handling of the data. NNs use all the dataset while MDC only uses a subset of the dataset.
Also, NNs get trained on the dataset, after which it can predict, while the MDC immediately
uses the data to make a prediction. These things lead to a better performance of the NNs.

There is also a difference between the two NNs, normal and dynamic, as discussed in
Chapter 4. The two NNs handle their training in a different way. They differ in the stop
criterion of the training and this leads to different results, see Chapter 5.

The main contribution of this work was the comparison between the MDC, a normal NN
and a dynamic NN on a normal computer. Comparisons have been made before, like seen in
[5]. Those comparisons are usually run on clusters, like found in [16]. To give an idea of the
difference between the results of normal computers and clusters we look into the methods of
[7], [11] and [16]. Here are different CF algorithms combined in a specific order and executed
one after another to give a prediction. The calculation is done on a dataset which contains
1% of all possible ratings. This compared to the at least 25% in the dataset used for the
experiments in this work. The less ratings a dataset has, the harder it is to make predictions.
Eventhough it is harder to make predictions on that dataset, the combined algorithms will
reach a RMSE of 0.8563 or lower, as described in [16].

7 Future work

For the future it is interesting to combine the different algorithms to get better results. It
would be nice to do this combining of algorithms on a normal computer, liked used in the
experiments done is this document. In this way it is possible to compare the results created
with dedicated computers, like used in [16], with the results created on a normal computer.

In [7], [11] and [16] is already described that the combining of algorithms will improve the
predictions. The order in which the algorithms are combined is important. An algorithm may
perform better on the outcome of algorithm A, than on the outcome of algorithm B. It would
be interesting to test different orders and different methods of combining.

It would be a challenge to produce a CF algorithm library which is dedicated for usage on
normal computers. The used CF algorithms in this work, were normal implementations without
optimizations. When adjusted for normal computers the performance could be improved, or
the same performance can be reached in less time. This is to improve the efficiency of the
algorithms.

According to [9], Netflix uses 76897 unique labels for movies. In the MovieLens database,
the 10M sized one, there are labels available. These labels are given by the users [12]. The
movies can be grouped using those labels. It would be interesting to see if the outcome of the
CF algorithms will improve if only the ratings for movies with the same label are used, instead
of the ratings of all movies.

14

References

[1]

2]

8]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

Achal Augustine and Manas Pathak. User rating prediction for movies. Technical report,
University of Texas at Austin, 2008.

John S. Breese, David Heckerman, and Carl Kadie. Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, UAI'98, pages 43-52, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas
Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi Sampath. The
YouTube Video Recommendation System. In Proceedings of the Fourth ACM Conference
on Recommender Systems, RecSys '10, pages 293-296, New York, NY, USA, 2010. ACM.

Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture.
Carnegie Mellon University, Computer Science Department Technical Paper no. 1938,
1989.

Zan Huang, Daniel Zeng, and Hsinchun Chen. A comparison of collaborative-filtering rec-
ommendation algorithms for e-commerce. IEEE Intelligent Systems, 22(5):68-78, 2007.

Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gordon,
and John Riedl. GroupLens: Applying Collaborative Filtering to Usenet News. Commun.
ACM, 40(3):77-87, March 1997.

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation,
2009.

G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collab-
orative filtering. Internet Computing, IEEE, 7(1):76-80, Jan 2003.

Alexis Madrigal. How Netflix Reverse Engineered Hollywood. The Atlantic, January, 12,
2014.

Steffen Nissen and others (open source). FANN. n.d. http://http://leenissen.dk/
fann/wp/authors/.

Martin Piotte and Martin Chabbert. The pragmatic theory solution to the netflix grand
prize. Netflix prize documentation, 2009.

GrouplLens Research. MovieLens. nd. http://grouplens.org/datasets/
movielens/.

Martin Riedmiller and Heinrich Braun. RPROP - A Fast Adaptive Learning Algorithm,
1992.

Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Douglas D

Edwards. Artificial intelligence: a modern approach, volume 2. Prentice hall Englewood
Cliffs, 1995.

15

[15] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based Collabo-
rative Filtering Recommendation Algorithms. In Proceedings of the 10th International
Conference on World Wide Web, WWW 01, pages 285-295, New York, NY, USA, 2001.

ACM.

[16] Andreas Toscher, Michael Jahrer, and Robert M Bell. The bigchaos solution to the netflix
grand prize. Netflix prize documentation, 2009.

16

