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Abstract

Large crowds consist of many individuals who might each react

differently to a given situation. We describe a crowd simulator which

models a building evacuation scenario and incorporates several new

types of behavior. Using these new types of behavior, we give the

simulation a more lifelike impression. In addition to this, we also

present a comprehensive summary of collision detection performance

results for various configurations of a spatial hashing algorithm.
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(a) (b)

Figure 1: A crowd simulation in and around a building. In (a) the agents
are browsing and calmly walking around. In (b) an evacuation is in progress

1 Introduction

Human crowds are a very common phenomena in the real world, making
their simulation very useful for a wide range of applications. A reasonably
realistic and correct crowd model is used in virtual environments, emergency
training, urban planning, education and many other areas.

The people in a crowd make their own individual decisions based on their
own goals, obstacles in the area, and other agents within close proximity. The
collective behavior of a human crowd is driven by these complex individual
decisions and creating a model that can simulate all the intricacies of large
crowds has proven to be challenging.

A good crowd model has to produce a reasonably realistic simulation
which can be compared to a crowd in real life. There is a trade-off between
detail and performance. A detailed model which gives incredibly realistic
results has limited applications if it can’t produce these results within a
reasonable execution time for a larger amount of people, so the performance
of the model’s algorithm is very important as well.

In this paper, we describe the implementation of a crowd simulation which
gives believable results for large numbers of people in real-time. To this end,
we use several well-known algorithmic solutions to implement the various
components of the crowd model.
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Existing methods often simplify the problem by dividing it into 3 seper-
ate components for global path planning, local path planning and collision
detection. While most local path planning algorithms try to avoid collisions
between agents or an agent and an obstacle, they do not guarantee all col-
lisions are always avoided. As such, collision detection is still required as
a last line of defense against graphical anomalies where people clip through
walls or each other. The collision detection component has to compare the
position of every person to the position of other people. A naive approach
would be far too computationally expensive for this problem.

We were unable to find much previous work regarding large-scale colli-
sion detection performance for simple cases like thousands of agents moving
around on a simple 2D plane. As such we will be writing our own algorithm
and comparing the performance of various configurations in this paper.

To reduce the execution time of this component, we take a deeper looker
at a spatial hashing solution, which allows us to hash agents to specific areas
based on their position. Using such an algorithm, a list of agents in a specific
area can quickly be retrieved to compare them against a specific agent. To
optimize the algorithm, We tweak the spatial hashing method to determine
the optimal configuration for fast collision calculations.

Another way existing methods simplify the problem of simulating a crowd
is by assuming that agents have homogeneous goals. Usually, these goals can
be described as moving to a specific point. In a lot of applications, this is the
most important type of behavior for a crowd simulation, but more variety
should be able to create more realistic results for specific applications.

Following this observation, we implement and evaluate additional types
of general behavior, called Lost and Panic, which can be thought of as the
agent’s state of mind. As the names suggest, these new types of general
behavior will be useful for evacuation simulations. In addition to these new
types of behavior we also implement a new goal, called RetrieveItem, which
is an extension of the normal MoveToPoint goal. After the implementation,
we compare the simulation with the more complex behavioral model to the
simulation with the basic behavioral model.

While there are other crowd simulators which have implemented some
kind of evacuation mode, our crowd simulator encompasses some new de-
tailed behavioral features. As far as we know, very little research has been
done regarding these kind of features and we feel it is worthwhile to evaluate
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the potential added value of adding more behavioral diversity.

The key results of this work can be summarized as:

• An efficient crowd simulator that can simulate thousands of agents in
real-time with reasonably realistic results. (§3)

• A performance comparison between various configurations of a spatial
hashing algorithm for collision detection. (§6.1)

• A more detailed behavioral model that is optimized for emergency evac-
uation simulations. (§4, §6.2)

2 Related Work

Crowd simulation has received increasing attention in the past 2 decades. In
this section, we take a brief look at some of the previous work relating to
crowd simulation.

In agent-based methods, each individual agent plans its’ own movement.
This is the most natural way to model a human crowd as real humans also
make their own individual decisions based on their surroundings and personal
goal. It is also very intuitive to extend these methods to include a more
detailed cognitive model which approximates the decisions a normal human
would make in similar circumstances.

The work of Funge et al [4] resulted in a simulation in which the agents
have several cognitive features, such as learning and knowledge. This model
was then further expanded again by Shao and Terzopoulos [16] with visibility
and path planning. The result of this work is that agent-based methods can
create very realistic virtual crowds that closely resemble real human crowds.
However, modelling human behavior with this much accuracy carries a large
computational cost per agent, severely limiting the usefulness of these meth-
ods for large-scale crowds with hundreds or thousands of agents.

An effort to simplify crowd models to address this issue has lead to the
use of local models, which use simpler rules while still trying to maintain
a reasonably realistic result. The use of these kind of models can be seen
as early as the work of Reynolds [15] who demonstrated that noticeable
grouping behavior can be generated from simple local rules. Later efforts
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also added support for sociological factors [12], social forces [17], visibility
and pathing [16] and many other models.

Many collision avoidance methods have been proposed for situations with
agents that are close to each other. Among many others, there are geometrically-
based algorithms [5, 21, 20] and force-based algorithms [7]. More recently,
continuum-based models [19] and models based on fluid dynamics [13] have
been developed which can efficiently handle collision avoidance for a larger
number of agents while still producing results in real-time.

Most useful simulations will have some form of obstacle in them. Local
models alone can generally not handle the task of choosing a path which
avoids obstacles as they do not look very far ahead. The result would then
be that an agent has a very high chance of ”bumping” into an obstacle and
unnaturally looking for a way to get to the other side and continue to its’
goal. To enable agents to plan a path around any obstacles, local models are
often combined with global path planners. These are often implemented by
representing the free area in the ”world” as a graph and then searching the
graph for a path from an agent to its’ goal. [1, 8, 10, 17, 18, 9, 14]

Another component that is still very much required for the simulation is
the collision detection component. While most cases of potential collision are
solved by the local collision avoidance models, at very high crowd densities
the collision avoidance models can not always guarantee that no clipping
will take place between 2 agents or an agent and an obstacle. Thus, crowd
simulations that are expected to run for crowds with very high densities
implement some basic form of collision detection. [19, 13]

Collision detection is a very important part of any virtual environment
and because of this not all developments in this area are strictly related to
crowd simulation. Vigueras et al [22] have developed a crowd simulation
collision detection method which is optimized for multi-core and many-core
machines. Luque et al [11] have developed a spatial partitioning algorithm
for quicker neighbour selection using BSP-trees.

There are also collision detection algorithms for many specific complex
problems which are not strictly related to crowd simulation, such as highly
deformable tetrahedal models [3] and large amounts of polytopes [2].
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(a) Global path planning (b) Collision avoidance (c) Collision detection

Figure 2: The 3 main components of the crowd simulation. Blue circles are
agents, red circles are their goals and black line segments are walls

3 Basic crowd simulation

In this section, we describe the implementation of a crowd simulation which
uses simple goal-based agent movement. This is a simple, yet reasonably real-
istic, method of defining human movement on a large scale. Simulating large
amounts of agents moving simultaneously towards their own goals through a
shared environment is a complex problem. Often, a crowd simulation divides
this problem into various components with each component being a step in
the problem’s solution. A commonly used structure is as follows:

Global path planning component. Any virtual environment may con-
tain physical obstacles such as walls which need to be avoided by the agents
that are trying to navigate through the environment. A global path planning
component gives the agent a map of the area and allows him to plot a path
towards his goal. Without a global path planner, agents could get stuck in
local minima of obstacles or at the very least have to follow an unrealistically
complex path to find a way around the obstacle, as can be seen in Fig. 2a.
We describe a roadmap-based implementation of this component in §3.1

Local collision avoidance component. With a functional global path
planner, agents can navigate around the obstacles of an environment and
reach their goals in a timely fashion. However, in a crowd simulation there
are many other agents that also want to reach their goals. If the paths of 2
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agents cross at some point and the agents arrive at this point at around the
same time, then we need to adjust their paths, as we can see in Fig. 2b. The
local collision avoidance component attempts to adjust agents’ paths based
on other nearby agents and its’ goal is to create a smooth representation of
crowd dynamics. This component has a vital role in the perceived realism of
the simulation. We describe an implementation of this component in §3.2.

Collision detection component. While most collision avoidance com-
ponents aim to prevent agents from coming too close to other agents, they
usually can’t guarantee that this does not sometimes happen. The colli-
sion detection component serves as a last validation, ensuring that at any
timestep, agent positions adhere to some basic physical rules. For instance,
the physical space taken by an agent is not allowed to overlap the physical
space of a wall or another agent, so a situation like Fig. 2c is not allowed and
needs to be adjusted. We take a closer look at this component in §3.3.

This is a general outline of how crowd simulation is often implemented.
However, it is important to realise that it’s entirely possible to develop a
simulation which has extra components or combines some of the above into
1 hybrid component. For instance, [19] combines the global path planner and
local collision avoidance into 1 component in a novel way.

In the rest of this section, we will describe our own implementation based
on the above mentioned 3 components.

3.1 Global path planner

The first major component of the crowd simulation is the global path plan-
ner. If an environment does not contain any obstacles, an agent can simply
move in a straight line towards his goal. However, any meaningful virtual
environment will have obstacles, so a more sophisticated procedure is needed.
We will represent the obstacle-free space as a graph and then use this graph
as a roadmap to compute paths for agents. This is a common solution used
in many other simulations (for instance, see [1])

A roadmap-based method can be described as consisting of 2 phases: a
construction phase and a query phase.
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Figure 3: An overview of our global path planning algorithm and how we
use it to calculate a path for an agent.

(a) (b)

Figure 4: A building in our crowd simulation. In (a) the building is shown
without a roadmap. In (b) a roadmap has been generated and is shown on
the ground.
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Algorithm 1 Generate a roadmap

for i := 1 to N do

while !valid point do

new point← rand point();
valid point← true;
for j := 1 to numwalls do

if d(wall[i], new point) < distmin then

valid point← false; {Check distance to obstacles}
end if

end for

for j := 1 to i do
if d(node[i].point, new point) < distnode then

valid point← false; {Check distance to placed nodes}
end if

end for

end while

node[i].point← new point; {Add node if point meets requirements}
end for

for i := 1 to N do

progress← 1;
edges← 0;
while edges 6= k and progress ≤ N do

c← closestNode(i, progress);
increment progress;
valid edge← true;
for j := 1 to numwalls do

if d(wall[i], line(node[i].point, node[c].point)) < distmin then

valid edge← false; {Check distance to obstacles}
end if

end for

if valid edge then

increment edges;
Add an edge to node c to set edgesFrom[i];
Add an edge to node i to set edgesFrom[c];

end if

end while

end for
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Construction phase. A graph which has to be useful as a roadmap needs
to have its’ nodes placed in such a way that any agent in any valid position
can find an unobstructed line to a nearby node.

We use a Probablistic Roadmap Method (PRM) to construct our roadmap.
The algorithm randomly samples N points. Each generated point needs to
fulfill 2 requirements before it can be added as a node: It needs to be no
closer than dmin to any obstacles and it can be no closer than dnode to any
nodes already placed. If one of these requirements is not met, then a new
point is sampled and evaluated again.

Depending on the values of N and dnode, this could mean the algorithm for
node sampling could be an infinite loop! Care must be taken when choosing
appropriate values of N and dnode

If N is sufficiently large and dnode is sufficiently small, the PRM should
be able to create a graph which has reachable nodes for every possible agent
position.

After we have sampled N points and converted them to graph nodes,
edges can be created between the nodes. For each node, we select k nearby
neighbours to which we can plot valid lines. We say that a line is valid if at
any point on the line the distance to any of the obstacles is at least dmin.
In other words, there is a radius of size dmin around the line in which no
obstacles may be present.

For each of those k nearby neighbours to which we can plot valid lines we
add an edge from the current node to the neighbour node. We also add an
edge from the neighbour node back to the current node, as we are creating
an undirected graph. An in-depth description of the procedure is given in
Algo. 1.

We have now generated a graph which is saved as a set of nodes and a
set of edges for each of those nodes. An example of a generated roadmap for
some virtual environment can be seen in the second image of Fig. 3.

Query phase. Our algorithm has now constructed a graph which repre-
sents a roadmap. We can use this graph to plot a path from an agent to its’
goal. In order to do this, the agent and its’ goal must be temporarily con-
nected to the graph. The easiest way to do this is by finding a nearby node
for which the line between the node and the agent or goal is unobstructed
by any obstacles. We find the closest node to the agent which fulfills this
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Figure 5: A possible final calculation of an agent’s path

requirement and find the closest node to the agent’s goal in the same way.

Now we have found the start and end node for the path we want to
calculate. To find a path from the start node to the end node, a graph
search algorithm can be used.

In our implementation we have used A*, a best-first search algorithm
which takes into account both the currently travelled distance and the heuris-
tic estimate of distance that still needs to be travelled. We use the euclidian
distance between the current node and the end node as the heuristic esti-
mate. For further information on the algorithm, we refer the reader to the
original A* paper [6].

A* gives us the needed performance for thousands of agents constantly
in need of path calculations to their new goals. A possible path generated
using some roadmap is shown in the third image of Fig. 3

Finally, we make some final adjustments to add more variance to the path
an agent walks. If we were to use the generated path as-is, then agents who
calculate similar paths would make the same moves. Agents who went into
opposite directions on the same graph edges would directly run into each
other.

In an attempt to create a more natural system, we create a copy of the
calculated path and add an element of randomness to each point in the path.
Given the i-th path point pi and a random vector ~r which has a length
between 0 and dmin

2
, we modify pi as follows:

pi = pi + ~x+ ~r (1)
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where

~x =

{

unit(pi − pi−1) ∗
dmin

2
i > 0

unit(pi − startPos) ∗ dmin

2
i = 0

(2)

The result is that the newly generated point is slightly behind the old
point, relative to the previous point in the path. The new point is also
moved into a random direction for a certain amount. Given our definitions
of ~x and ~r, we know that the newly generated point will never be further
away from the old point than dmin. Our roadmap nodes are not allowed to
be closer to obstacles than dmin, so we know the new points still have to
be inside the obstacle-free space. An example of a path generated by our
procedure can be seen in Fig. 5

When a final path is calculated, the agent saves it and walks through it.
The first node which hasn’t yet been visited in the path is treated as the
current subgoal and the agent moves towards it. A node (including the goal
of the agent) is considered visited when the agent comes closer than a certain
distance value. This generalization ensures that an agent stays flexible and
does not have to reach the exact coordinate if the surrounding agents don’t
allow it. If all path nodes have been visited, the agent’s subgoal is set to his
actual goal. If the agent reaches his goal, a new goal is determined and a
new path is generated to reach this goal. Every timestep, the global planner
assigns a preferred velocity vector to each agent by generating a vector of
size vmax which points from the agent’s postion to his current subgoal.

3.2 Local Collision avoidance

The global path planner component has now returned a preferred velocity for
each agent. If we were simulating a small amount of agents, we could directly
use these velocities to move the agents. As the density would probably be
very low, the chance of collision will also be low and moving the agents in
this blind manner would still give acceptable results.

In our simulation, we want to be able to simulate thousands of agents
in confined areas, so additional work is needed. A local collision avoidance
component is often used to adjust agents velocities based on nearby agents,
in an attempt to anticipate and prevent collision. There are several options
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Figure 6: An example of what our local collision avoidance component does.
Adjusting the velocities and then moving the agents using these newly calcu-
lated velocities

(a) (b)

Figure 7: 2 hallways near exits in our building scenario. Lanes are being
formed by agents moving in opposite directions, avoiding congestion
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available to do this.

First of all, a force-based method (for instance, see [7]) can be used for
the collision avoidance. This kind of method uses repulsion and attraction
forces to adjust the velocity of each individual agent based on his surround-
ings. Crowd behavior emerges as each agent adjusts his path based on nearby
other agents. This method can be easy to implement, can give realistic re-
sults and allows for intuitive implementation of more individuality among
agents. However, force-based models are not known to be very effective for
large scale simulations, as they require too much computation time for a
larger amount of agents.

More recently, a continuum dynamics method [19] was developed which
uses a dynamic potential field to handle both the global path planning and
the local collision avoidance. This kind of method can handle thousands of
agents at real-time framerates while still showing emergent crowd behavior
among its’ agents.

Even more recently, a fluid dynamics method [13] was explored which
converts all agents to a continuous system and then performs all collision
avoidance calculations on this system. The computational cost is decoupled
from the number of agents and because of this simulations of up to a hundred
thousand agents are possible.

The last 2 methods are very efficient for large scale simulations, but they
are much more complex and tend to simplify agents to treat them as small
parts of the much larger crowd. Because of this, adding more individuality
among agents is not as straightforward and intuitive as we would like.

For simplicity, we will use a basic force-based model which includes some
repulsive and attractive forces. This choice will bottleneck our system’s per-
formance for larger amounts of agents, but is simpler to implement and will
allow us to intuitively add more individuality to agents in the crowd later
on.

An important emergent behavior in crowds is lane forming. If 2 groups
of people want to pass each other into opposite directions, they will natu-
rally form 2 lanes next to each other. We want to be able to simulate dense
crowds, so this is an essential behavior to implement into our collision avoid-
ance component. For instance, Figure 6 shows 3 lanes forming so agents
moving in similar directions can move together while avoiding agents going
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in the opposite direction.

We implement a simple form of this behaviour with some simple rules:

• If a nearby agent’s preferred velocity is in the same direction, the cur-
rent agent is attracted to this agent

• If a nearby agent’s preferred velocity is in the opposite direction, the
current agent is greatly repulsed from this agent

• If a nearby agent’s preferred velocity is in another direction, the current
agent is repulsed from this agent

To compare the preferred velocity directions of 2 agents, we take the unit
vector ~vc of the current agent’s preferred velocity and the unit vector vecvn
of the compared neighbour agent’s preferred velocity, and then calculate:

s = ~vn · ~vc (3)

s is essentially the scalar projection of the neighbour’s preferred velocity
vector onto the current agent’s preferred velocity vector. As we used the unit
vector of the neighbour’s velocity vector, we know the scalar projection is
going to be between -1.0 and 1.0. The closer to 1.0, the more the neighbour’s
preferred velocity vector points in the same direction. The closer to -1.0,
the more the neighbour’s preferred velocity vector points in the opposite
direction.

Hardly any neighbour agents are going to have exactly the same direction
or exactly the opposite direction compared to our current agent. If we now
decide on an arbitrary limit, we can decide on scalar projection value ranges
in which we consider a vector to move in approximately the same or opposite
direction.

In our implementation we used the values 0.8 and -0.8. Every vector
whose scalar projection onto the current agent’s vector is above 0.8 is con-
sidered to move in the same general direction while every vector with a scalar
projection under -0.8 is considered to be moving in the opposite direction.
Everything in between is considered to be moving in another direction (to the
sides). An example is given in Figure 8, where every vector that has an end
point above the green line is considered to be moving in the same direction
as the first vector. Similarly, vectors which have an end point below the red
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Figure 8: An agent with his velocity vector, and 3 other agents with their
own velocity vectors. Of the 3 compared agents, the first is considered to
be moving in the same direction, while the second is moving in a different
direction and the third is moving in the opposite direction

line are considered to be moving in the opposite direction of the first vector.

For each neighbour, we calculate the unit vector from the current agent’s
position to the neighbour’s position. Adhering to the rules describes above,
we then add the unit vector to the current agent’s preferred velocity vector if
he’s attracted to the neighbour and substract the vector from the preferred
velocity vector if he’s repulsed from the neighbour. Finally we take the unit
vector of the newly calculated velocity vector and multiply it by vmax, the
maximum agent velocity. We have now calculated the adjusted velocity vec-
tors and can move the agents to their new positions. Our collision avoidance
algorithm is described in Algo. 2 and the agent position update algorithm is
described in Algo. 3.

3.3 Collision detection

After the global path planner and the local collision avoidance correction, we
still need to check if any agents are colliding with other agents or obstacles.
As has previously been indicated, the collision avoidance component does
not guarantee this does not happen.

Collision detection can be implemented using a simple pairwise compar-
ison. As pushing 2 agents away from each other also changes their position
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Algorithm 2 Calculate adjusted velocities

for i := 1 to N do

new v[i] = 10.0*unit vector(agent[i].v); {Add a significant factor so
agent isnt thrown off course for 1 neighbour}

end for

for i := 1 to N do

neighbours← nearbyAgents(); {See §3.3 for selection method}
for j := 1 to neighbourssize do

if sameDirection(agent[neighbours[j]].v, agent[i].v) then
new v[i] += unit vector(agent[neighbour[j]].pos - agent[i].pos);

else if oppositeDirection(agent[neighbours[j]].v, agent[i].v) then
new v[i] -= 2.0*unit vector(agent[neighbour[j]].pos - agent[i].pos);

else

new v[i] -= unit vector(agent[neighbour[j]].pos - agent[i].pos);
end if

end for

end for

for i := 1 to N do

agent[i].v = unit vector(new v[i])*v max;
end for

Algorithm 3 Update agent positions

for i := 1 to N do

agent[i].pos += agent[i].v;
end for

Figure 9: An overview of our spatial hashing algorithm and how we can use
it to select neighbours for comparison.
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(a) (b)

Figure 10: A typical crowd simulation. In (a) the crowd is shown moving
around. In (b) the collision grid is visualised on the ground

relative to other agents, seperation of all pairs is not always guaranteed.
However, if the local collision avoidance component can prevent overcrowd-
ing, this should still give good results, as every pair of agents is checked (and
possibly corrected) at every timestep.

Comparing all agents in the environment to each other is unnecessary and
too computationally expensive. Given N agents, we would have a complexity
of O(N2). For large amounts of agents, this would quickly bottleneck the
performance of the entire simulation.

Agents and walls which arent close to each other cannot possibly collide
and do not have to be compared. Using this observation, we can come up
with a more efficient solution. By placing a virtual grid over the environment,
the simulation can manage data on which agent is in which grid cell. For
each grid cell, we can maintain a list of all agents whose center is currently in
it. Now, finding all the agents or obstacles which can possibly collide with a
specific agent is a matter of knowing the cell ID number which is associated
with the agent’s world coordinates.

We use the following formulas to determine what cell the agent is currently
in, based on his position in the world:

cellx =
⌈ posx

cellsize

⌉

, celly =
⌈ posy

cellsize

⌉

(4)
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cellID = cellx + celly ∗ (gridrowsize+ 1) (5)

Coordinates can now be translated to specific cell identification num-
bers, so it is possible to create a hash table that maps groups of agents
to cells on the grid based on the cell IDs. We implement this using an
std :: unordered multimap, which is a data structure in the STD library of
the C++11 specification. Using this data structure, we can map multiple
values to the same key and retrieve lists based on specific keys or a range of
keys.

We use 2 unordered multimaps in our implementation: one for the agents
and one for the obstacles. The obstacles aren’t added, moved or removed
while the simulation is running, so we can use a simpler multimap for them
which does not need to be constantly updated.

For the agent multimap, we use the cellID as the key and the agentID as
the value for a mapping. For obstacles, we similarly use the cellID as the key
and the wallID as the value.

During environment creation we now map the walls to their respective
cells and the procedure is analogous for agents during initial agent place-
ment. At the end of the collision detection step we now also recalculate all
the agent cell mappings and update them if necessary, as described in Algo. 5.
As the collision detection and resolution is the final step in every frame of
our simulation, this ensures agents are always accurately mapped at the end
of each cycle.

Now we want to look at a selection of agents and obstacles for collision
detection for each agent in the environment. As we map agents to cells
based on their coordinates, which are based on the physical center of the
agent, looking up the list of agents and obstacles in the same cell is not
enough. If a specific agent’s center is close to a cell border, then there is a
chance part of his physical space is on the other side of the border and can
thus collide with another agent’s physical space in the neighbouring cell, and
vice versa. Because of this fringe case, we need to look at not just the agent’s
own cell, but also the up to 8 directly neighbouring cells. We illustrate our
method in Fig. 9 and describe the procedure in Algo. 4.

Finally, we look at resolving situations where we detect agents are collid-
ing with other agents and/or walls. As agents are represented by circles in
our simulation, solving a collision between 2 agents is relatively simple: we
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Algorithm 4 Detect pairwise collisions

for i := 1 to N do

cellID ← calculateCell(agent[i].x, agent[i].y);
neighbours← neighboursInArea(cellID); {An array of agent indices}
for j := 1 to neighbourssize do

if circleCollision(agent[i],agent[neighbours[j]]) then
move apart(agent[i],agent[neighbours[j]]);

end if

end for

walls← wallsInArea(cellID) {An array of wall indices}
for j := 1 to wallssize do

if circleRectCollision(agent[i],wall[walls[j]]) then
move away(agent[i],wall[walls[j]]);

end if

end for

end for

Algorithm 5 Update agent mapping

for i := 1 to N do

cellX ← calculateCellX(agent[i].x, agent[i].y)
cellY ← calculateCellX(agent[i].x, agent[i].y)
if agent[i].cellX 6= cellX or agent[i].cellY 6= cellY then

agents[i].cellX ← cellX;
agents[i].cellY ← cellY ;

end if

end for
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can simply calculate the distance each one needs to be pushed away from the
other as follows:

distactual =
√

((agent1x − agent2x)
2 + (agent1y − agent2y)

2) (6)

distpush =
2 ∗ agentradius − distactual

2
= agentradius −

distactual

2
(7)

If an agent is colliding with a wall, the closest point on the wall to the
agent’s center must be calculated, which can easily be done using vector
projection techniques. Then we perform almost the same operation:

distactual =
√

((agent1x − rectPointx)
2 + (agent1y − rectPointy)

2) (8)

distpush = agentradius − distactual (9)

Effectively, the only difference is that only the agent gets pushed away.

After the collision detection component is done, the entire simulation step
is done and we start at the global planner again.

In §6.1 we take an in-depth look at the performance impact the size of
the collision grid cells has.

4 Behavioral model

In the previous section, we described 3 major components of our crowd sim-
ulation. The global path planner plans movement around obstacles while the
local collision avoidance adjusts movement of agents that are close to each
other. Finally, the collision detection component ensures no physical prop-
erties are violated by the previous 2 components. Essentially, we described
how our agents move, but what we haven’t yet described is why our agents
move.

The behavioral model implements a set of goal assignment rules which
aim to simulate some basic human behavior. The model describes when our
agents get new goals and what these new goals are.

In this section, we will describe the features of our behavioral model.
First of all, we take a look at the normal and evacuation modes we have
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implemented in our model and how these affect the agent goals in our simu-
lation.

Secondly, we describe our implementation of personal items and how our
agents interact with them in evacuation mode.

Finally we talk about the addition of state of mind to our agents. We
will describe our implementation of lost and panicked agents.

Evacuation and normal mode In the examples in the previous sections
(Fig. 7a,7b,10a,10b) we generally assumed that agent goals were somehow
assigned to simulate constant movement throughout a building scenario. This
is our simulation’s ’normal’ mode and we will now precisely describe how this
kind of behavior is created.

Our simulation starts in normal mode by assigning a random goal to
each agent in the simulation. This new goal needs to satisfy 2 conditions:
the goal must not be placed too close or inside an obstacle such as a wall.
Some arbitrary value can be chosen as the minimum distance between goals
and obstacles. Secondly, the new goal must not be further away from an
agent than a certain value dgoal. This restriction is in place to simulate more
of a browsing behavior, where agents look around the area and just decide
on a new place to visit based on nearby points of interest. Generally, dgoal
should be scaled based on the size of the scenario environment. If dgoal is too
big, agents may move across the entire area for seemingly no reason.

The simulation continues in normal mode by assigning a new random
goal to an agent whenever he comes within a certain distance dsuccess of his
current goal. If dsuccess is too low, this will overly constrain agent movement.
If there are many other agents in the immediate area, an agent might not be
able to easily reach the exact point of his goal. If we require him to be very
close or even on top of the goal before we assign him a new goal, there may
be unnatural congestion as a result.

When simulating a browsing behavior, it is a logical condition to only
require that a minimum distance to a goal has been reached. When a person
wants to take a look at a specific piece of an environment, he does not nec-
essarily have to do so from a specific position. On the other hand, if dsuccess
is too high, an agent will constantly get a new goal while he has not been
anywhere near his previous goal.
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Figure 11: An example of how escape goals are calculated for 2 agents. The
blue circles are agents, the red circles are escape goals, the black dot is the
center of the environment and the arrows are vectors with a length equal to
the environment size

The other mode we implement is an evacuation mode. Essentially, this
mode has a start and end point. It can be triggered with the press of a
key and when it is done, the simulation is over as every agent has left the
simulation area. At the start of the evacuation, every agent gets a new goal
calculated which has to be somewhere outside the simulation area so the
agent moves out of the area.

We calculate this new point by adding some kind of reference point, such
as the center of the environment or the center of the building in our scenario.
We can then calculate the vector from this reference point to an agent and
extend this vector by a certain amount, such as the size of the environment,
to get a point which is guaranteed to be outside the environment area. This
method is illustrated in Fig. 11.

This simple point generation method has proven to be effective enough at
generating escape paths for our agents, as shown in Fig. 1b. The only down-
side is that the flow of agents exiting the building may needlessly walk to a
different side of the building, but this could easily be fixed by recalculating
the escape path when an agent reaches an exit.

When an agent reaches a point outside the simulation environment, we
deactivate the agent so he stops being drawn on-screen and is not taken into
account anymore for any calculations. Essentially, the agent never actually
reaches the goal outside the environment and instead gets removed from the
simulation as soon as he’s no longer important to the simulation.

23



Personal items For additional realism, we implement objects which have
a connection to specific agents. At the start of the simulation, each agent
has a chance of being assigned an object. This object is placed in specially
designated object spawn areas and these spawn areas can be thought of as
being, for instance, cloakrooms where some agents hang their jackets. For
simplicity, these objects do not have any collision detection.

Now, we modify the evacuation mode as follows. When the evacuation
is started, agents get assigned an escape goal if they do not have an object
somewhere in the simulation environment. If they do have an object some-
where, they move to retrieve it first by setting the object’s coordinates as
their goal. After retrieving their personal object, they get assigned an escape
goal and carry on with the evacuation.

State of mind Finally, we add a state of mind to each agent. We imple-
ment 3 basic states: normal, lost and panic. The normal state contains all
the behavior we have described up untill now and essentially means that the
agent behaves as expected.

Agents in the lost state ignore the global planner and instead move slowly
and randomly change direction. Agents have a small chance to enter the lost
state at every timestep during the normal mode. When an agent goes back
to the normal state, a path is again calculated to his goal.

As soon as evacuation starts, each agent has a chance to enter the panic

state. When an agent enters the panic state, his movement speed is in-
creased and he runs to his escape goal as quickly as possible. If the agent
has a personal object somewhere in the simulation area, it is ignored and left
behind.

The collision avoidance algorithm of Algo. 2 is modified so nearby agents
are always repulsed from lost and panicking agents, regardless of the direction
they are moving in.

5 Algorithm summary

To summarize the previous 2 sections, we describe the crowd simulation loop
here:

• Agents get assigned new goals if they reached their previous goal in the
last iteration. Goals are based on the agent’s current state of mind and
whether or not an evacuation is in progress(§4)
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• The global path planner assigns a new preferred velocity ~vi to each
agent i, based on their current position, goal, state of mind and any
obstacles in the environment.(§3.1, §4)

• The local collision avoidance component adjusts each agent’s velocity
~vi based on other nearby agents, in an attempt to avoid collision and
create natural crowd motion.(§3.2)

• Each agent updates its’ position using the adjusted velocity as pi =
pi + ~vi∆t.

• The collision detection component detects if any agents are colliding on
their new positions pi and solves any collisions by moving agents away
from each other and/or obstacles.(§3.3)

• For each agent, we calculate the current cell they belong to based on
its’ final position of this iteration pi and for any agents which have
moved to a different cell since the last iteration, we remove their old
mapping and add a mapping to the current cell.(§3.3)

6 Results and discussion

In this section we take a look at the performance of the collision detection
component. By changing the size of the collison grid we can get different
performance results for different numbers of agents. We take a look at some
of the results and try to determine an optimal cell size for the agent mapping.

After that we also evaluate our complete crowd simulation by simulating
a building evacuation scenario and observing the behavioral features we’ve
added to the agents in our model.

Finally, we discuss the limitations of our crowd simulation and collision
detection performance results and provide some idea of how our work could
be improved upon in the future.

6.1 Collision detection performance

In this section we take a closer look at the impact the agent mapping grid has
on the performance of the collision detection component. Our performance
tests were calculated on a machine with the following specification:
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Figure 12: The environment we have used for our collision detection per-
formance experiments. On the left the environment is shown without the
collision grid and on the right a collision grid with cell size 2 is displayed.

• CPU: Intel Core 2 Quad CPU Q9650 @ 3.00GHz x 4

• RAM: 3.99 GB DDR2

• GPU GeForce GTX 560 Ti/PCIe/SSE2

For this experiment we wanted to focus on the basic agent-to-agent colli-
sion, so we used a large environment of 1000 by 1000 units with no obstacles.
We placed a variable amount of agents with a radius of 0.6 in the environ-
ment and let them perform their normal browsing behavior. In Fig. 12 the
test environment is shown with 100k agents.

Global path planning and collision avoidance were disabled for this exper-
iment, as we wanted to focus on the performance of pure collision detection.
The lack of global path planning was not noticeable as there are no obstacles
in the testing environment. The lack of collision avoidance means that agent
clumsily bump into each other to pass each other, but in general they still
reach their goals provided the area isn’t too compact and major congestions
don’t take place.

There are 2 important performance factors for our collision detection
algorithm: the number of agents and the collision grid cell size. In Table 1
we compare the performance of various combinations of agent numbers and
grid cell sizes for the above mentioned test environment. Every row describes
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a different number of agents and every column describes a different grid cell
size.

The No hash column describes a trivial cell size which is equal to the size
of the world. In this case, we don’t actually map the agents to a specific cell
and every agent is compared to every other agent at every timestep. This
is the most computationally expensive method (O(N2)) and is only used to
compare more sophisticated cell sizes.

Columns called Cell-x describe performance results for a collision grid
with cell size x. For instance, as the world size used for this experiment is
1000 by 1000 units, Cell-10 describes a collision grid with cell size 10 and a
grid size of 100 by 100 cells.

Agents No hash Cell-100 Cell-50 Cell-25 Cell-10 Cell-5 Cell-2
100000 86005.20 48143.20 12021.40 2661.93 565.78 261.92 143.00
50000 21755.60 7907.50 1319.65 441.91 131.49 79.23 49.74
10000 875.71 224.51 64.46 27.46 14.35 9.84 7.81
5000 193.08 54.21 28.94 13.87 6.65 4.60 3.91
1000 8.59 3.65 1.94 1.56 0.87 0.74 0.74
500 1.90 1.28 0.80 0.58 0.46 0.41 0.39
100 0.17 0.18 0.16 0.13 0.13 0.14 0.14
50 0.13 0.13 0.13 0.13 0.13 0.13 0.13
10 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Table 1: Performance (in ms/frame) for combinations of agents and grid
cell sizes

We notice that the collision grid has no significant performance impact
on agent numbers up to 100. We anticipated it would actually reduce
the performance for low amounts of agents as the continuously updated
agent mapping should add extra overhead. Apparently, the C++11 std ::
unordered multimap is efficient enough to not negatively impact perfor-
mance at a low number of agents.

The computation time goes noticeably up with more agents. From 1k to
10k agents the time needed is multiplied by 10, but from 10k to 100k agents
computation takes about 20 times longer. This makes sense, as we do not
scale the environment size based on the number of agents. When more agents
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are added to the world, there is an increase in both the number of agents and
their density. A higher density means each agent has more neighbours and
as such needs to do more collision checks. A more linear relation between the
number of agents and computation time would be achieved if we did scale
the environment size based on the number of agents.

Our test environment’s cell size could not go much lower than 2 as it is
bound by the radius of the agents. As we set the agent radius to 0.6, setting
the cell size to something smaller than 1.2 would no longer guarantee we’re
looking at all agents which are candidates for collision by just checking the
agents in the current cell and neighbouring cells. Our method would then
stop being effective and the algorithm would have to be rewritten.

The cell size also has an upper bound which is equal to the size of the
environment. At this trivial cell size the mapping solution is no longer use-
ful and simply comparing every agent to every other agent would be more
efficient.

For lower numbers of agents, the diminishing returns are very noticeable.
Yet, for numbers higher than 5k agents, the decrease in computation time
from Cell-5 to Cell-2 is still significant. Moving from Cell-5 to Cell-2 gives the
best results for 100k agents, as would be expected. In general, using a smaller
cell size does not seem to have any negative effect on performance, while the
performance gains on higher number of agents are significant enough to make
it worthwhile.

Our test environment was created to simulate up to 100k agents. If the
environment was even bigger, it should be possible to simulate even more
agents at a reasonable framerate. The environment should be scaled up in
such a way that the density does not increase by a significant amount. The
machine used for these experiments is by no means considered a high-end
system today, so a more up-to-date machine should be able to run these
experiments significantly faster.

6.2 Behavioral features

We tested our crowd simulation algorithm on a custom made building sce-
nario. Using this scenario, we now take a closer look at the features of our
behavioral model and evaluate them.
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Figure 13: A crowd simulation in normal mode.

In Fig. 13 a screenshot of the simulation’s normal mode is shown. The
agents start with random goals and constantly get assigned new random
nearby goals whenever they come close enough to their current goal. The
result is that agents are exhibiting browsing behavior and moving in all
directions. This often creates significant congestion at the building entrances
as many agents try to enter and exit the building at the same time. The
agents adjust their velocities and form lanes in an attempt to avoid blocking
the agents going in the opposite direction. This is emergent crowd behavior
often seen in real crowds.

In Fig. 14 an evacuation has been started. The agents have been assigned
escape goals outside the simulation environment. As a result, they are all
moving towards the building exits using the fastest possible route and we
can see the building rapidly emptying. This is similar to real evacuations,
where people generally follow the emergency exit signs to take the quickest
route out of the building. Agents are also forming single lanes with their
neighbours as they are all moving in the same direction. At a certain point,
an agent leaves the simulation environment and is removed. Eventually, all
the agents are removed from the environment and the simulation is at an end.

In Fig. 15 an evacuation is shown with people retrieving their belongings
from the cloakroom before actually leaving. These agents were assigned
goals at the locations of their personal items. Most of the other agents have
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Figure 14: A crowd simulation in evacuation mode.

Figure 15: Agents retrieving their objects from the cloakroom before leaving
during an evacuation
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Figure 16: Panicked agents (marked red) during an evacuation.

already left and the building is for the most part empty, but some agents
are still inside the building to get to the cloakroom for their belongings and
are putting themselves in danger. After grabbing their personal objects, the
agents do move for the nearest exit, which is close to the cloakroom. The
most interesting effect is that people may cross the entire building if they
start on the other side, greatly delaying their escape. It is not unheard of
that people sometimes value some of their personal belongings enough to put
themselves in harm’s way to retrieve them before leaving a dangerous place.

In these tests we gave approximately 1 in 8 agents a personal object, but
if we greatly increase this number, major congestion occurs in the room con-
taining the objects.

In Fig. 16 an evacuation with panicked agents is shown. The panicked
agents still have a goal they move to, but they move twice as fast towards
it compared to normal agents. In the first image the evacuation has just
started and the panicked agents are spread out over the group of agents in
the building. In the second image the evacuation has been progressing for
a couple of seconds and we can see the panicked agents have mostly made
their way to the front of the group, as they move faster and can also move
through groups of agents more quickly as other agents are repulsed by them.
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6.3 Limitations and future work

Since our implementation of local collision avoidance is very basic, there are
some limitations to what our current implementation of the crowd simulation
can effectively handle.

At very dense situations, our collision avoidance component is often not
able to effectively prevent deadlocks. Our building scenario tests were done
with 2000 agents, which runs well most of the time, but if we try to place
4000 agents in the scenario, there is a high chance of a deadlock at one of
the entrances at some point. As our pairwise collision detection component
relies on the collision avoidance to prevent high densities, deadlocks can cause
graphical artifacts.

In addition to this, our collision avoidance component creates relatively
unnatural results. Lanes are formed if groups of agents want to move into
opposite directions, but these lanes are often long lines of agents following
each other. Human crowds generally look much more irregular.

Another major downside of our local collision avoidance component is
that it’s relatively slow. Depending on how many neighbours an agent has,
a lot of calculations may have to be done. As such, it does not scale very
well for even larger amounts of agents.

For future work, the collision avoidance component could be extended to
create more natural results which can handle any amount of agents. How-
ever, the current method’s performance is still heavily tied to the number of
agents in the simulation. For a more scalable solution, the collision avoidance
methods of potential fields [19] or fluid dynamics [13] could be implemented
instead. These methods decouple the computational costs from the number
of agents and can be used to perform more efficient, yet still realistic colli-
sion avoidance. As these methods significantly simplify the cognitive model
of agents, the challenge would then be to keep a degree of diversity in the
decision-making of each agent.

The new behavioral features we’ve added are an interesting step towards
crowd simulations with even more heterogenous agents and we anticipate
that it would be worthwhile to continue exploring this area. The current
behavioral features could be further expanded upon with, for instance, more
detailed and specific behavior for panicked or lost agents. Many new features
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could also be added, such as agents searching for other agents before leaving
during an evacuation or reduced vision due to smoke.

Conflicts between agents, such as trampling, could also be a realistic addi-
tion. However, most collision avoidance methods used today are very focused
on perfect, non-colliding crowd movement. The challenge would thus be that
adding in agent conflicts is not very straightforward or intuitive. It might be
worthwhile to research the possibilities in the future.

Finally, we’ve tried out one collision detection method in this work. It
might be worthwhile to instead try many different schemes for mapping
agents to cells. For instance, we could map the agents to all the cells their
physical space is partly in, instead of only cell in which the agent’s center is
located. This way, we’d only have to perform up to 4 cell look-ups instead of
9. It might even be worthwhile to try completly different mapping structures,
such as [11].

7 Conclusion

Simulating large human crowds is a complex problem. Previous work has
almost always focused on creating simulation methods with homogenous sets
of agents which do not display many different kinds of behavior beyond an
universal moveToGoal behavior. We have described a crowd simulator which
specializes in simulating evacuation scenarios with some new special types
of behavior, such as panicking and retrieving personal items before leaving
the building. These new features add a more lifelike experience to the crowd
simulation.

Additionally, we have evaluated the performance of a spatial hashing
algorithm for large scale collision detection. The implementation of this
algorithm uses the std :: unordered multimap data structure of the C++11
specification and we noted that the overhead of accurately maintaining this
hashing is negligible. As such, we have determined that using the smallest
cell size possible results in practically no performance reduction for lower
amounts of agents. On the other hand, the smallest cell size drastically
improves the performance for higher amounts of agents by an compared to
no spatial hashing.
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