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Abstract 
 
Since the Out of Africa Diaspora, humans have genetically adapted to the environments they 
encountered in their migration. As a consequence of this genetic adaptation, the frequency of allelic 
variants providing a selective advantage to a particular environmental factor have increased in these 
populations where the environmental factor was present. However, with the exception of rare cases 
such as milk and selection to adult lactose tolerance phenotype, the environmental factor playing as 
the selective force is usually unknown and its spatial distribution can only be hypothesized by the 
spatial distribution of the genetic variants that are under selection. 
So far, several genomic regions have been suggested to show the fingerprint of strong selective 
sweeps. Nevertheless, identifying genetic variants under soft selective pressures, expected under the 
presence of polygenic adaptation is, more complex.  
In the present study we address the question of whether the spatial distribution of genetic variants in 
genomic areas under strong selective sweeps can help identifying other regions in the genome 
putatively under soft selective pressures. In this study we introduce a novel statistical analysis 
pipeline called Geographic Allelic Association among Populations (GAAP) to indirectly estimate the 
evidence of soft selective pressures by analysing the functional correlation between the genes close 
to genetic variants under strong selective sweeps and the genes close to genetic variants showing a 
similar spatial pattern as the one under strong selective pressures. 
Our results show that there is a statistically significant enrichment of similar biological processes 
between both categories of genes. These results supports the evidence of undetected soft selective 
pressures in the genome and suggest that this proposed methodology could be used to identify such 
selective pressures. 
 

Introduction 
 
According to the Recent Out of Africa (RAO) hypothesis and related ones 1 Homo sapiens is a 
relatively newcomer from an evolutionary point of view. Humans evolved ~200,000 years ago in the 
African continent and spread ~100,000 years ago out of the African continent, colonizing the whole 
world in a relatively short amount of time 2. Genetic variation within the species is estimated to be at 
least 0.5% 3 of which on average approximately 5% is due to differences among populations, ~15% to 
differences among continents and ~80% to genetic differences within. Moreover, the genetic 
variation of different types of genetic variants (autosomal single nucleotide polymorphisms (SNPs) , 
autosomal haplotypes, autosomal Short Tandem Repeats (STRs) ) is larger within the African 
continent than in any other continent 4-7. Conversely, the amount of linkage disequilibrium (LD) is 
smaller within Sub-Saharan African populations compared to the rest of the world 8 (see Figure 1)  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Figure depicting the recent human evolution at a worldwide level and the genomic consequences 

according to the Out of Africa model 
1
. Between ~150-100 kilo years ago (kya), Ancestral Africans experienced 

an expansion, contraction, migration and admixture which led to large different populations (Phase I and Phase 
II). Between ~50-100 kya (Phase III), an African subpopulation spread out of the African continent, colonizing 
the rest of the world. As a result of the Bottleneck effect, the genetic diversity decreased and the amount of LD 
increased in populations out of the African continent. Solid lines indicate gene flow between populations and 
the dashed lines indicates recent gene flow from Asia to Australia/Melanesia. Image adapted from Campbell 
and Tishkoff 
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Overall, such observations have been explained by traditionally larger effective population sizes 
within the African continent 2 and the effect of serial founder bottleneck events out of Africa during 
the human Diaspora 5. As another consequence of the Out of Africa migration, the amount of genetic 
differentiation between continental populations correlates with their geographical distance, showing 
larger differentiation the further the population is geographically located from the suggested RAO’s 
point of origin Addis Ababa (Ethiopia) 9. 
 
During the human Diaspora, populations came in contact to new external factors (such as diet, 
environmental conditions or diseases among others); it has been suggested that these factors would 
have worked as a powerful force of evolutionary adaptation 10. This scenario would have resulted in 
the increase in frequency of genetic variants distributed through the genome giving individuals a 
selective advantage of reproducing compared to the non-carriers. So far, several methods for 
detecting the fingerprint of selection in the genetic variation in the genome of a population or series 
of populations have been proposed 11,12. Depending on the timescale of positive selection events, 
these methods can be differentiated into macroevolutionary (i.e. selective pressures leading to 
speciation 13) and microevolutionary (i.e. selective pressures leading to differential population 
adaptation within the species 13). Methods focusing on microevolutionary processes use different 
approaches to detect positive selection in the human genome. Furthermore, depending on how the 
type of genetic variants are analysed, methods for detecting the fingerprint of recent selective 
sweeps from microevolution have been classified in three main categories 14: (i) site-frequency 
spectrum (SFS) ,(ii) Haplotype and (iii) linkage disequilibrium (LD) methods. SFS based methods aim 
at identifying genomic regions where the allele frequency pattern in either one, or more populations 
differs from the overall pattern observed in the whole genome 15. Examples of SFS methods 
considering one population include Tajima’s D 16 and DH test 17, among others. A particular case of 
SFS among populations is the fixation index (Fst) 18, which estimates the difference in the allelic 
frequencies of one SNP among different populations. Haplotype based approaches use the frequency 
and the length of particular allelic combinations or haplotypes defined in a genomic region to detect 



an excess of frequency differentiation and/or longer haplotypic tracks than expected by neutrality. 
Finally, LD based methods use the expected properties of the decay of LD by recombination with the 
increase of genomic distance from a particular SNP and its expected allelic frequencies under 
neutrality  19. The Extended Haplotype Homozogysity (EHH) 10 and the Integrated Haplotype Score 
(IHS) 20 among others are examples of LD methods. Nowadays, composite likelihood methods 
combining the properties of the three type of approaches have been proposed (i.e. Cross Population 
(XP)-EHH 11). Nevertheless, the selective sweeps detected when using whole genome data tend to 
show little overlap among methods 21. These discrepancies have been explained by different factors 
22. First, the SNP ascertainment bias introduced during marker discovery 23 may lead to false positives 
in haplotype and LD based tests. Second, in regional comparison methods (i.e. LD) the size of the 
region can influence the outcome of the result. The third, and most likely reason for discrepancies, 
may be the different evolutionary assumptions of each model including the different evolutionary 
timescales of the selective event 11. Beside these caveats, several regions under strong positive 
selective sweeps have been proposed in the human genome 4,21,24. Furthermore, bioinformatics 
predictions and/or empirical evidence supporting the functional role of genetic variants in regions 
under positive selection have been reported. In particular, several SNPs showing signals of positive 
selection lead to amino acid changes which are in silico predicted to alter the function of the protein 
24. Functional empirical evidence have been provided in particular cases such as LCT 25, OCA2-HERC2 
26 or EDAR 27 genes among others 28.  
 
However, some authors suggest that classical selective sweeps such as the ones detected by the 
previously introduced methods are rare in the human genome 29. Furthermore, it has been suggested 
that polygenic adaptation of complex traits can be more important than single locus adaptation 30. 
Nevertheless, identifying the fingerprint of polygenic adaptation in the human genome is difficult and 
so far few methods attempt to address some of the aspects of polygenic adaptation in the genome. It 
has been suggested that polygenic adaptations can produce partial selective sweeps in some of the 
involved loci, which could be detected by currently available methods 31. Furthermore, genetic 
variants under positive selective pressures tend to geographically covariate with the spatial 
distribution of the selective factor 7, which in turn tends to follow particular geographic patterns. This 
is particularly evident in the case of skin pigmentation trait, where the skin colour strongly correlates 
with the latitude at a worldwide level 32. In general, the geographic distribution of the selective factor 
is rarely known 33. Moreover, the currently distribution of putative environmental factors can differ 
from past ones at the time when the selective pressure took place. For example, in the case of the 
EDAR gene, the phenotypic changes associated to the 370A SNP suggest a type of selective pressure 
by environmental conditions (high humidity, especially in summers) that are not currently present in 
East China. However, the fact that polygenic adaptation could be potentially detected as strong 
selective sweeps in at least one genomic region, and the suggested dependence between spatial 
distribution of the selective factor and the genetic variants under positive selective pressure could be 
in principle exploited to identify new functional genomic variants or regions under polygenic 
adaptation.  
 

 
 
 
 
 
 
 
 



Material and Methods 
 
InA statistic 
The association between the allelic frequencies of two SNPs among a set of populations is quantified 
by modifying the Informativeness of ancestry (In) statistic 34. Rosenberg’s In was designed to quantify 
the amount of differentiation among K populations using N genetic variants. Using Rosenberg’s 
notation, In is defined as (1): 
 

                         
             

 

 

   

 

 

   

 

 
Where N represents the number of alleles (N = 2 in this case, since we consider biallelic SNPs), K 
represents the number of populations, pij is the frequency of allele j in the population i and pj is the 
mean allele frequency of allele j among all the populations: 
 

    
    

 
   

 
 

 
In case of two biallelic SNPs (N = 2) whose allelic frequencies have been estimated in K populations, 
an association between these SNPs is defined, if the frequency of the alleles of SNP A predicts the 
frequency of the alleles in SNP B among the populations. Using the In framework, this association can 
be estimated by (2): 
 

                          
             

 

 

   

 

 

   

 

 
Where ptj is the weighted frequency (p) of allele j of SNP B over all the populations given the allelic 
frequency (q) of allele t of SNP A: 
 

    
       

 
   

    
 
   

       

 
qit is the allelic frequency t of the A SNP at population i and pit is allelic frequency j of the B SNP for 
each population i. The mean allele frequency of allele j of SNP A overall populations is given by: 
 

   
 

 
    

 

   
  

 
Because the InA is an extension of the In it inherits its basic properties. Namely, it ranges from 0 to 
ln(2) where 0 means no association between A and B and ln(2) is obtained when both SNPs covariate 
perfectly at a population level.  
 
 
 
 
 
 
 
 



Local Moran’s I 
We expect that SNPs in close proximity to each other on the genome tend to show similar InA values 
compared to the rest of the genome due to linkage disequilibrium (LD) 35. To measure this local 
spatial autocorrelation, we use the Local Moran’s I (3), based on the global spatial autocorrelation 
Moran’s statistic 36: 
 

         
 

   
       

   
     

 

      
     

 

       

 
i is the SNP of interest, m is the number of markers in the window surrounding SNP i, j are the SNPs 
in the window and Z is the standardized measurement of the InA variable: 
 
 

    
    

      

  
 

    
      

        
  

    

       

 
InA is the informativeness of ancestry of a given SNP i, µlnA the mean InA over all SNPs and N is the 
number of SNPs considered. 
 
A positive autocorrelation, Lmi > 0, indicates that the SNP is surrounded by SNPs with similar Z (InA) 
values with regards to the rest of the genome. A negative autocorrelation, Lmi < 0, is found when the 
opposite occurs. When Lmi = 0 the SNP is in a neighbourhood with dissimilar Z values based on InA 
values. 
 
The InA and Lmi statistics are implemented in a R pipeline called Geographic Allelic Association among 
Populations (GAAP). The complete R package “PopStat” is described in the supplementary 
information and can be freely obtained by request to the first author.  
 
Databases 
In this study we used 3 previously published genome-wide SNP data sets and 1 in-house dataset 
together comprising a total of 2,415 individuals from 85 worldwide populations 4,37,38 (see Table 
S1,Table S2 and Table S3 in supplemental information for detailed information) and 486,035 SNPs 
after SNP merging. Data cleaning included exclusion of SNPs with a Minor Allele Frequency (MAF) < 
0.01 (519 SNPs), exclusion of individuals from recently admixed populations (Surinam and Mexico) 
and 196 reported as related individuals. Furthermore, five populations (see Table S3) were renamed 
and merged with other populations. The final dataset comprised 78 populations and 488,503 SNPs. 
 
Functional Analysis 
 
SNPs in genomic regions showing selective sweeps (aka Proxy SNPs) were ascertained from the 
genomic regions described in Grossman et al 24 for YRI, CEU and East Asian (CHB and JPT) HapMap 39 
populations. Out of the 412 genomic regions, 177 did not contain any so far described gene and were 
removed from further analyses. 2366 SNPs in the merged dataset could be mapped to 1 or more 
genomic regions under selective pressures (Figure 2 Step 1). Because this study is only focussing on 
within gene SNPs, we excluded the SNPs that could not be mapped to genes ascertained from the 
UCSC database (http://genome.ucsc.edu/) (Figure 2 Step 2). Also SNPs that could be mapped to UCSC 
genes but could not be mapped to Ensembl Transcript IDs were excluded (Figure 2 Step 3). The GAAP 
pipeline was applied to each of the 2301 remaining SNPs (Figure 2 Step 4). For each SNP the top 100 

http://genome.ucsc.edu/


SNPs showing the strongest Lmi genomic association were identified and selected. From these top 
100 SNPs, the SNPs not in the same genomic region showing selective sweeps as the Proxy SNP were 
selected (aka Association SNPs) (Figure 2 Step 5). In order to recover genes genomically close to each 
SNP, a +/-100 kilobase (kb) wide window surrounding each Proxy and Associated SNPs was 
considered, and genes either within or partially overlapping such window were ascertained from the 
UCSC database(Figure 2 Step 6) and subsequently converted to Ensembl Transcript IDs (Figure 2 Step 
7). All Ensembl Transcript IDs were then functionally annotated with the DAVID 6.7 database 
(http://david.abcc.ncifcrf.gov/) to get the Gene Ontology (GO) 40 terms related to biological 
processes (Figure 2 Step 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Outline of the Functional Analysis procedure. 1) Ascertainment of SNP in the Regions under selection. 
2) Mapping ascertained SNP to known UCSC genes. Unmapped SNPs were removed. 3) Mapping UCSC genes to 
Ensembl Transcript IDs. SNPs in unmapped UCSC genes were removed. 4) Performing the GAAP pipeline for 
each Proxy SNP and selection of top 100 SNPs based on the Lmi. 5) SNPs not in the same genomic region under 
selection as the Proxy SNPs were selected. 6) For each Proxy SNP and its Associated SNPs a +-100 kb 
surrounding window was defined and each UCSC gene (partially) in the window was ascertained. 7) Mapping 
UCSC genes to Ensembl Transcript IDs (see step 3). 8) Performing functional annotation analysis for the Proxy 
SNP and its Associated SNPs separate to ascertain GO terms related to Biological processes.  

 
Statistical Analyses 
 
From the genes present in each proxy and associated SNPs window, a two by two contingency table 
was created, counting the number of shared GO terms, GO terms present in either the proxy or the 
associated SNPs, and GO terms absent in the genes of both the proxy and the associated SNPs (i.e. 
rest of the genome). The positive association (one tail p-value) of this two by two contingency table 
was estimated by means of Fisher exact test. The genomic statistical significance of this association 
was estimated by randomly ascertaining 1000 sets of 100 SNPs from the genome and for each set 
repeating the process of identifying the genes in the surrounding 200kb window region, retrieving 
gene transcript IDs and GO terms and computing the two by two contingency table. One tail genomic 
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p-value for each proxy SNP was then computed by comparing how many times the observed GO 
association with the genes in the vicinity of the associated SNPs was smaller than the obtained with 
the randomly sampled SNPs. 
 
All the GO terms from Proxy SNPs showing a significant association with its Associated SNPs were 
ascertained for further enrichment analysis against the GO terms over the whole genome in order to 
statistically quantify which GO terms were enriched in the set of proxy SNPs and Associated SNPs 
showing a p value < 0.05. Positive enrichment was calculated by means of a complementary 
cumulative distribution function (1 tailed p-value) using the observed GO term counts, total amount 
of observed GO terms and the frequency of the GO terms in the whole genome. To account for 
multiple testing problem, a Bonferroni correction was performed on each p-value. 
 

Results and Discussion 
 
Whereas currently available whole genome scan methods have identified a relatively large number 
of regions in the human genome showing strong signals of selective sweeps 24, detecting the 
fingerprint of recent polygenetic adaptation in the genome has so far revealed to be highly complex. 
Previous studies (41,42 among others) have identified additional regions under selective pressures by 
analysing the correlation of environmental variables (i.e. latitude) or phenotypes of interest (i.e. 
height) with the current genetic variation among populations. However, the traits under selection 
and/or the spatial distribution of the selective force are usually unknown 33. Nevertheless, it can be 
assumed that the geographic distribution of genetic variants showing signatures of a strong selective 
sweep, such as the ones identified by currently available methods, is going to be similar to the one of 
the selective factor. Since genetic variants under polygenic adaptation should also tend to follow a 
geographic distribution similar to the spatial distribution of the trait under selection, in this study we 
hypothesize that genetic variants showing the same spatial distribution as variants identified as being 
under strong selective sweeps could be also under selective pressures (see Figure 3). These variants, 
which would not have been detected by means of currently tests for detecting positive selection, 
would indicate soft selective sweeps and could suggest the presence of polygenic adaptation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. A) Map of the hypothetical geographic distribution of a selective force (usually unknown).  
B) Genetic variant under strong selective sweeps (top variant) and two additional variants under selection 
which do not show the fingerprint of strong selective sweeps. C) Map of the geographical distribution of the 
allelic frequency of the variant under strong selective sweeps. The distribution strongly resembles the map of 
the selective force. D) Map of the geographical distribution of the allelic frequency of the variant under 
selective pressure not showing a strong selective sweep. The distribution resembles the map of the selective 
sweep C. 



We recovered the genetic variation of 488,503 SNPs in 78 human populations 4,37,38 and used the 
spatial distribution of the genetic variation in the suggested genomic regions under strong selective  
sweeps identified in Grossman et al 24 as proxies of the selective factor.  
The sub-continental distribution of these 78 worldwide populations is not at random (Chi square test 
between observed and expected, p-value = 1.409e-06); North America, South America and Oceania 
are poorly geographically sampled, whereas Central/South Asia, East Asia and Europe show an excess 
of sampled populations. In principle, better performance of our approach can be expected by using a 
more dense and homogeneous geographic coverage. Nevertheless, in this particular case, the 
expected improvement is limited by the fact that the genomic regions used as proxy of the selective 
factor were identified in populations (HapMap CEU, CHB and YRI) from the continents that are 
overrepresented in our dataset. The reason for using such biased geographic signals of selection in 
contrast to other studies 43 is that Grossman et al 24 study is so far the most comprehensive proposed 
dataset of signals of recent selection in the human genome; it uses full genome sequence variation 
from the 1000 Genomes and the composite of multiple signals (CMS) test 43. Of the 412 genomic 
regions identified in Grossman et al 24, 177 did not contain any known genes and were excluded from 
further analyses. Out of the 488,156 SNPs, 2366 SNPs could be mapped to one or more regions. Of 
these, 2330 SNPs had at least one UCSC gene at a distance <100 kb, and 2301 could be mapped to 
Ensembl Transcript IDs (see Figure 2 point 6 and 7).  
 
We applied the GAAP pipeline for each of the 2301 proxy SNPs and selected from the genome the 
100 SNPs showing the highest genomic association based on the InA and Lmi statistics, excluding SNPs 
in the same region under selective pressures as the proxy SNP. A first disadvantage of this approach 
is that the magnitude of the estimated association can differ among the proxy SNPs, so in some cases 
less than 100 SNPs would be enough (False Positives). A second problem of this procedure is that in 
some cases more than 100 SNPs can be associated, which results in exclusion of possibly informative 
SNPs (True Positives). Therefore, the approach we applied to detect soft selective sweeps can be 
considered as extremely conservative. 
 
For each proxy SNP, and for each of its associated SNP, a 100kb window surrounding the SNP was 
defined. We found that of the 2301 proxy SNPs, 252 did not contain genes with any known GO terms 
related to biological processes and were therefore excluded for further analysis. 
 
We identified 664 out of 2049 SNPs with a significant genome association (p < 0.05) between GO 
terms of the proxy and these from the associated SNPs (see Table S4 in supplementary information). 
The one tail probability of observing at p=0.05 the same or a higher number of significant 
associations among the analysed SNPs is P(≥664) < 10-773, thus indicating a statistically significant 
enrichment of identical biological GO terms among genomic regions whose genetic variation shows a 
similar geographical pattern than these under strong selective sweeps.  Since the presence of 
population substructure has been interpreted as a signal of positive selection in a locus 44 but it could 
be that the SNPs present in the regions under selection were not representative of the whole genetic 
variation of the region, we further analysed to which extent the proxy SNPs showing an empirical 
significant genomic enrichment of GO terms at p<0.05 had a more structured distribution among 
populations than the non-significant ones. We observe that the In distribution of SNPs showing a 
significant empirical association is statistically significantly higher than the SNPs not showing a 
statistically significant GO enrichment (Wilcoxon signed-rank test one tail p-value = 0.000152; see 
Figure 4). 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Boxplot of the Informativeness of ancestry (In) statistic computed at each Proxy SNPs and the genomic 
GO term association between the GO terms recovered from the Proxy SNP and its Associated SNPs. Left blue 
box comprises In values of the Proxy SNPs that show a statistically significant genomic enrichment of GO terms 
with the associated SNPs, whereas the right red box indicates Proxy SNPs showing a non-significant 
enrichment. The median In value of the blue box is statistically significant higher compared to the one of the 
red box (Wilcoxon signed-rank test one tail P value = 0.000152). 
 
Taken together, these results suggest a functional association between genes that are located close 
to SNPs whose genetic variation shows a similar geographic distribution as SNPs in regions showing 
signals of strong selective sweeps, and the genes that are in these genomic regions under selective 
pressures.  
We then focused on which GO terms were enriched among the genes close to the proxy SNPs and to 
the genes close to the geographically associated SNPs. Even with the highly conservative Bonferroni P 
value correction, 164 GO terms are found to be enriched (p<0.05) in the Proxy SNPs compared to the 
whole genome (Table S5 as separate file in the supplementary information). A quick inspection 
showed that a high amount of enriched GO terms are in some way involved in the Immune system 
(i.e. GO:0002327, GO:0002702 and GO:0002637), Muscle development (i.e. GO:0048625 and 
GO:0048745) and Sensory perception (i.e. GO:0007605 and GO:0050953) among others. So far, 
studies 24,45,46 have reported similar results in the case of the Immune System and Sensory 
perception. Herráez explained the overrepresentation of these classes due to how humans interact 
with their environment,  especially in the case of pathogens and diet. 
 
Two possible evolutionary explanations could produce these observed results. The first is that 
different environmental factors showing a similar geographic distribution could apply similar 
selective pressures. One example of such situation could be two different diseases with a similar 
geographic distribution but affecting different pathways of the immune system. A second 
explanation is that the recovered functional signals refer to the same phenotype and pathway, thus 
indicating the presence of polygenic adaptation. Disentangling between both in humans is currently 
cumbersome, as the human protein pathways are not really well known and human protein pathway 
databases still contain numerous incongruence’s (i.e. see 47 ). 
 

Conclusions 
 
Identifying the fingerprint of polygenic adaptation in the human genome has been proven to be 
highly difficult. Here we have introduced a novel approach for identifying genetic variants that show 
a similar geographic distribution as these that are in regions showing evidence of strong selective 
sweeps. Our results have shown that there is a statistically significant positive relationship of 
functional categories between genes that are close to genetic variants showing strong selective 
sweeps and these genes close to variants showing a similar geographic pattern than these under 



selective pressures. Given current status of human protein databases, we cannot rule out the 
possibility that the observed association is due to multiple phenotypes showing the same geographic 
distribution and affecting the same functional categories of proteins. Nevertheless, an additional 
explanation is that these recovered signals are due to polygenic adaptation of genes involved in the 
same phenotype. Further analyses will be required to disentangle between these two hypotheses 
and to functionally identify the genetic variants in the newly identified regions. 
In any case, to the best of our knowledge, this is the first time that empirical evidence of the 
detection of soft selective sweeps acting in the human genome is provided. 
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Supplementary information 
 

Table S1 
 
Population # Samples Dataset Population # Samples Dataset 

Adygei 17 HGDP-CEPH Mbuti Pygmy 13 HGDP-CEPH 

Balochi 24 HGDP-CEPH Melanesian 10 HGDP-CEPH 

Bantu Kenya 11 HGDP-CEPH Miao 10 HGDP-CEPH 

Bantu South East 5 HGDP-CEPH Mongola 9 HGDP-CEPH 

Bantu South West 3 HGDP-CEPH Mozabite 29 HGDP-CEPH 

Basque 24 HGDP-CEPH Naxi 8 HGDP-CEPH 

Bedouin 46 HGDP-CEPH Orcadian 15 HGDP-CEPH 

Biaka Pygmy 21 HGDP-CEPH Oroqen 9 HGDP-CEPH 

Brahui 25 HGDP-CEPH Palestinian 46 HGDP-CEPH 

Burusho 25 HGDP-CEPH Papuan 17 HGDP-CEPH 

Cambodian 10 HGDP-CEPH Pathan 22 HGDP-CEPH 

Colombian 7 HGDP-CEPH Pima 14 HGDP-CEPH 

Dai 10 HGDP-CEPH Russian 25 HGDP-CEPH 

Daur 9 HGDP-CEPH San 5 HGDP-CEPH 

Druze 42 HGDP-CEPH Sardinian 28 HGDP-CEPH 

French 28 HGDP-CEPH She 10 HGDP-CEPH 

Han 23 HGDP-CEPH Sindhi 24 HGDP-CEPH 

Hazara 14 HGDP-CEPH Surui 8 HGDP-CEPH 

Hezhen 8 HGDP-CEPH Tu 10 HGDP-CEPH 

Italian 12 HGDP-CEPH Tujia 10 HGDP-CEPH 

Japanese 28 HGDP-CEPH Tuscan 8 HGDP-CEPH 

Kalash 23 HGDP-CEPH Uygur 10 HGDP-CEPH 

Karitiana 14 HGDP-CEPH Xibo 9 HGDP-CEPH 

Lahu 8 HGDP-CEPH Yakut 25 HGDP-CEPH 

Makrani 25 HGDP-CEPH Yi 10 HGDP-CEPH 

Mandenka 22 HGDP-CEPH Yoruba 21 HGDP-CEPH 

Maya 21 HGDP-CEPH SurinamK 15 In house 

Abkhazians 20 Caucasus Tajiks 15 Caucasus 

Armenians 16 Caucasus TSI 88 Hapmap 3 

ASW 83 Hapmap 3 TurkeyK 11 In house 

Balkans 19 Caucasus Turkmens 15 Caucasus 

Belarusians 6 Caucasus Ukrainians 8 Caucasus 

Sample description Populations Sample size 
 

Platform  Reference 

HGDP-CEPH 53 940  Illumina 650Y Li et al, 2008 

Caucasus 15 204 Illumina 610K Yunusbayev et al, 2011 

Hapmap phase 3 11 1184 Illumina Human1M/ 
Affymetrix SNP 6.0 

Altshuler et al,200 

In house 6 87 Illumina 650Y/ Illumina 
Human1M 

N.A 



Bulgarians 13 Caucasus YRI 167 Hapmap 3 

CEU 165 Hapmap 3 Kumyks 14 Caucasus 

CHB 84 Hapmap 3 Kurds 6 Caucasus 

CHD 85 Hapmap 3 Lithuanians 6 Caucasus 

Chechnya’s 20 Caucasus LWK 90 Hapmap 3 

GIH 88 Hapmap 3 MEX 77 Hapmap 3 

IndiaK 16 In house MKK 171 Hapmap 3 

IraqueK 17 In house MongoliaK 12 In house 

JPT 86 Hapmap 3 Mordvins 15 Caucasus 

SomaliK 16 In house Kuban Nogays 16 Caucasus 

North Ossetians 15 Caucasus    

Table S2: 
ASW: African ancestry in Southwest USA,  CEU: Utah residents with Northern and Western European ancestry 
from the CEPH collection, CHB: Han Chinese in Beijing China, CHD: Chinese in Metropolitan Denver Colorado, 
GIH: Gujarati Indians in Houston Texas, JPT: Japanese in Tokyo Japan, LWK: Luhya in Webuye Kenya, MXL: 
Mexican ancestry in Los Angeles California, MKK: Maasai in Kinyawa Kenya 
TSI: Toscani in Italia, YRI: Yoruba in Ibadan, Nigeria 

 
Original population name Population renamed to 

CHB Han 

MongoliaK Mongola 

JPT Japanese 

TSI Tuscan 

YRI Yoruba 

Table S3 
 
 


