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ABSTRACT

Alzheimer’s disease (AD) is the most common form of dementia

among older people. Although less prevalent before the age of

65 years old, it is still the most frequent cause of early-onset

dementia. Mutations in 3 genes, APP, PSEN1 and PSEN2 (Devi et al.

(2000),Ertekin-Taner (2007), Bertram and Tanzi (2008), Bird (2008)) ,

are known to cause early-onset AD, but a large number of familiar

cases do not have mutations in these genes and several disease

causing genes still need to be identified.

Alzheimer disease causes a variety of clinical symptoms which can

be associated with different forms of dementia. Primary progressive

aphasia (PPA) and posterior cortical atrophy (PCA) constitute two of

the most common representations of atypical AD (von Gunten et al.,

2006). Cerebral amyloid angiopathy (CAA), another brain related

disorder, is also considered to be closely related to AD (Ghiso and

Frangione, 2001). However, the genetic variations that result in the

phenotypic variations within patients, are still unknown. In most of

the cases, there is also phenotypic overlap among AD cases which

makes the distinction between patients even more difficult. It is also

not completely clear whether there should be more AD subtypes or

not.

The exome sequencing data from 400 Dutch patients in early onset

diagnosed with probable AD, PPA, PCA and CAA are used in this

study. The aim is to investigate if there is any genetic variation that

can explain differences in patients’ phenotypes. Another point of

interest is the detection of any possible structure both in genotype

and phenotype space that may indicate the existence of several

subgroups that discriminate between patients diseased with AD.

According to the analysis conducted, it is observed that there

is an underlying structure both in genotype and phenotype space

because there are clusters detected. However, the clusters are

not well defined, probably because the sample population is too

homogeneous. Furthermore, there is no genetic variation identified

as significantly associated with the phenotypes. Nevertheless, there

are 3 genes, HLA-DRB1, HLA-DRB5 and DEFB119 being selected

with consistency by most of the methods tested, as those that better

explain the phenotypic variation among the patients. HLA-DRB1 and

HLA-DRB5 genes have been identified in recent studies as being

related to late onset AD (Lambert et al., 2013). Interestingly, they

interact with CD74 gene which in turn interacts with APP that acts as a

suppressor of amyloid-β. There is no much evidence about DEFB119

gene which is found to be involved in meningioma, a brain carcinoma.

However, it seems to be related to early onset AD as the highest

model performance is succeeded when all the 3 genes are used for

the predictions.
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1 INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is

a degenerative disease of the brain affecting the memory and other

mental abilities (Berchtold and Cotman, 1998). The disorder usually

appears in people older than 65 (late-onset Alzheimer’s) and less

common in people earlier in adulthood (early-onset Alzheimer’s).

There are 3 genes APP, PSEN1 and PSEN2 which have been

previously identified to be related to early-onset Alzheimer disease

(Devi et al. (2000),Ertekin-Taner (2007), Bertram and Tanzi (2008),

Bird (2008)). Mutations occurring in any of these genes result in

accumulation of amyloid-β(Aβ) in brain and in the formation of

amyloid plaques which is the main characteristic of the disease.

However, there is no significant association detected between known

genetic risk factors, including APP, PSEN1 and PSEN2 genes, and

the clinical symptoms in AD as it would be expected.

Patients suffering from AD indicate a variability regarding the

cognitive profiles. In most of the cases, memory impairment

constitutes the main feature, but in some cases patients present

atypical symptoms where other cognitive domains such as language

are more severely impaired than memory (Stopford et al., 2008).

Two of the most common forms of atypical AD are posterior cortical

atrophy (PCA) and primary progressive aphasia (PPA) (von Gunten

et al., 2006). Cerebral amyloid angiopathy(CAA) is also closely

related to Alzheimer disease and it is associated with an increased

number of cerebral microbleeds(Charidimou and Werring, 2011).

Currently, there is no drug treatment that provides cure for

Alzheimer disease but early diagnosis may prolong patient’s life

(Leifer, 2003). Clinical diagnosis is usually achieved through a

number of clinical examinations (eg. Aβ concentration, ApoE

genotype, etc) and neuropsychological tests. There is no evidence

about genotypes associated to the clinical phenotypes apart from

ApoE phenotypes which are directly measured from specific genetic

variations in ApoE gene.

Recent studies have tried to identify additional genes associated

with an increased risk of developing AD by conducting genome-

wide association studies (GWAS). Such studies look for genomic

variation in samples of unrelated patients with AD compared to

unrelated control subjects. These GWAS have resulted in several

new candidate genes that have been identified as potential risk

factors (Bertram et al., 2008). Follow-up studies, further investigate

associations between genetic variation within candidate genes of

interest and disease state (G et al., 2010).

In contrast to GWAS which look for variations occurring in the

whole genome, we concentrate only on variations detected on the

coding part of the DNA (exome) as we eventually are only interested

in changes as they can be targeted by drugs. This approach is much

more powerful because exome sequencing targets all variations in

the coding region of the gene whereas GWAS undersample these

variations.

c© The author. No rights reserved! 1

mailto:zafeiropoulou.dimitra@gmail.com
http://prb.tudelft.nl


D. Zafeiropoulou

In the context of this study, we exome-sequenced 400 Dutch

patients diagnosed with early onset AD, PPA, PCA, and CAA. In

this way, we focus on variations in a homogeneous group of patients

(in disease status as well as ancestry, i.e. only Dutch people) in early

onset AD which is more prone to a genetic origin than late onset

AD or AD in general. Our main aim is to investigate if genotypes

influence phenotypic variation within the patients. Thus, we are

interested in detecting variations in genes other than APP, PSEN1

and PSEN2 that may indicate a significant correlation with the

different clinical profiles. Even if the patients have been diagnosed

with one of the 4 types mentioned above, it is however not known

whether more subtypes exist. Because the subtypes are not truly

known, it is interesting to see whether more subtypes exist, and if so

what the genotype-phenotype relationship would be with respect to

all the subtypes.

2 MATERIALS AND METHODS

2.1 Data

2.1.1 Clinical Data The clinical examination data of 400 Dutch

patients suffering from Alzheimer disease(AD) were collected. The

clinical data consist of 64 different measurements like the amyloid-

β, number of microbleeds in brain, ApoE genotypes, scores of

different kind of diagnostic tests, etc (Table S3). All the patients are

in early onset, with an onset age less than 68 years old. Each patient

is diagnosed as having one or more of the following types of the

disease: probable AD, primary progressive aphasia (PPA), cerebral

amyloid angiopathy (CAA) and posterior cortical atrophy(PCA).

The majority of the patients, 369 out of 400, were diagnosed as

probable AD and only 6, 36 and 67 patients were also diagnosed

with PPA, PCA and CAA respectively.

2.1.2 Exome Sequencing Data All the patients were exome

sequenced using genomic blood (DNA) at a coverage ranging

from 40-fold to 90-fold using Illumina Hiseq 2000 platform. Prior

to variant calling, the dataset is aligned using BWA and hg19

(Kent et al., 2002) reference genome. Picard and Samtools are

used to convert, sort, and index the aligned data files. Duplicate

reads are marked by Picard. The Genome analysis toolkit (GATK)

(McCullagh and Nelder, 1989) is then used to recalibrate the

alignments and to call SNPs (by UnifiedGenotyper).

2.2 Annotation

SNP calls are annotated through Annovar (Wang et al., 2010).

Specifically, SNPs are annotated based on the genomic position,

the genomic function (exonic, intronic, UTR, etc) and the effect on

the exon (synonymous, nonsynonymous, stopgain, stoploss) (Table

S1). Furthermore, nonsynonymous SNPs are annotated based on the

effect of altering protein function. For this reason, SIFT (Ng and

Henikoff, 2003), a variant effect predictor, was used. SIFT assigns

a score that indicates the likelihood of a SNP to be tolerated (i.e

normal function) or not (deleterious). SNPs with a SIFT score less

than 0.05 are presumed to be damaging.

2.3 SNP Selection

Figure 4 gives an overview of the filtering steps that are followed

in order to select a subset of likely disease-causing SNPs that can

be used in the subsequent association analysis. First, SNPs located

on chromosomes X and Y are removed in order to a avoid a sex

related bias. Since we are only interested in SNPs that alter protein

function we then remove SNPs that are not within the exonic region

of the gene or on the splicing sites of the gene, -/+ 10bp before and

after the gene. The remaining SNPs are filtered for SNPs that are

annotated as nonsynonymous, stopgain and stoploss as they result

in an amino acid substitution. SNPs that were predicted as being

tolerated without a damaging effect in the protein function are also

filtered out (i.e having a SIFT score >0.05). As a next step, we

use dbSNP in order to filter out common SNPs within the general

population having a minor allele frequency(MAF) >0.05.

SNPs with more than 70% missing values within the patients are

also removed. This step is required because missing values have to

be imputed and there is no effective method for imputing variables

with high percentage of missing values (Barzi and Woodward,

2004).

Due to the fact that there is no control group and the patients are

both Dutch and diseased, we also remove SNPs that are common

in >90% of the patients. Through this filtering step, we manage

to reduce Dutch related bias and to retain SNPs showing variation

within the patients.

2.4 Gene Scoring

In order to identify genes that may explain the phenotypic variation

among the patients, the SNP data is transformed into a gene score.

Through the gene name annotation provided by Annovar, SNPs are

mapped to the gene that they belong to. SNPs unable to map to any

known Ensemble gene or SNPs mapped to more than one gene were

not taken into consideration. After mapping SNPs to genes, a score

per gene is computed in one of the following ways:

a. By counting the SNPs that are mapped to a gene. (eq. 1)

scoreip=

∑Ni
k=1

SNPkip
∑Mi

j=1
exon

ji
end

−exon
ji
start

,











SNPkip = 1 if mutated

SNPkip = 0 otherwise
(1)

b. By summing up scores(score for each SNP is computed based on

SIFT score assigned to it) of each SNP in a gene. (eq. 2).

scoreip=

∑Ni
k=1

SNPkip
∑Mi

j=1
exon

ji
end

−exon
ji
start

,











SNPkip = 1− SIFT if mutated

SNPkip = 0 otherwise

(2)

,where scoreip is score of gene i for patient p; SNPkip represents

the k-th SNP of gene i mutated or not, in patient p; exon
ji
start is the

start position of j-th exon for gene i and exon
ji

end is the end position

of j-th exon for gene i.

In the case of the scoring function of eq. 1, SNPs contribute in

the same way to the final gene score. So, when two patients have

the same number of SNPs for a particular gene independent to the

genomic position or effect their gene score will be the same. On

the other hand, when the gene scoring is computed by eq. 2, the

damaging effect is also taken into consideration. In this way, two

patients with the same number of SNPs for a particular gene may

have different gene scores because their SNPs can have varying

damaging effect.
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2.5 Clinical Measurement Selection

The clinical dataset consists of 400 patients and 64 clinical

measurements. Clinical measurements with >60% missing values

are removed. Moreover, there are several measurements included in

the clinical data that are not related to patients’ phenotypes (date for

first visit, last date checked alive, MRI date, MRI type, etc) and thus

those are ignored. Some clinical measurements related to different

kind of cognitive tests, although used for clinical diagnosis, tend

to vary by age, education and the time the test are taken. As the

complete set confounding factors for these test are not known we

decided to exclude these measurements also. Finally, 14 out of the

initial 64 clinical measurements were left (Table S3).

2.6 Imputation of Missing Values

Both clinical and SNP data contain missing values. To deal with this

problem, we apply k nearest neighbor (Batista and Monard, 2001)

imputation, with k equal to 1 . The distance measure used to find the

nearest neighbor is euclidean distance.

2.7 Dissimilarity-based representation

A key part of our method is to represent the patients in a dissimilarity

space (Duin et al., 2010) in order to capture their relative

differences. In a dissimilarity space objects initially represented by

their measured values are re-represented by their distances to the

other objects. Formally, given a set of objects X = {o1, o2, ..., on},

i = 1, ..., n, a mapping function D(oi, X) : X→Rn is defined

in which each object in X is a n-dimensional vector, for which

each dimension j describes the dissimilarity of object i with object

j from the set of objects X, d(oi, oj), where d(., .) is a defined

distance measure between two object representations. Hence, every

object is re-represented with a n-dimensional dissimilarity vector

[d(oi, o1)...d(oi, on)]
T .

Often the Euclidean distance is used as a distance measure to

construct the dissimilarity-based representation. That works fine

in case of objects with features of a specific data type. But

when it comes to features with a mixture of different variable

types, the selection of a distance measure is more complicated.

Consequently, we decided to use as the dissimilarity function

the Gower generalized coefficient of dissimilarity (Chatfield and

Collins, 1981), a measure for multivariate data types.

The advantage of using Gower’s coefficient is that the appropriate

dissimilarity score can be calculated for each variable independently

and then combined to give the final value for the dissimilarity

score over all variables. The Gower generalized coefficient of

dissimilarity between two objects oi and oj is defined as follows

(Cox and Cox, 2000),(Chatfield and Collins, 1981):

sij =

∑
k

sijkwijk
∑

k
wijk

(3)

, where: sijk is the dissimilarity score calculated for variable

k and wijk a weight associated with that variable. For the

continuous variables we chose the Euclidean distance measure, and

for the ordinal we chose the City Block distance measure. Before

calculating the distance measures all variables were normalized

to be within the range[0,1]. We chose no special weight for the

different variables (i.e. wijk = 1).

Table 1. Selected Clinical Features and Variable Types

Feature Description Type

age of onset continuous

ApoE genotype ordinal

medial temporal lobe (atrophy) right ordinal

medial temporal lobe (atrophy) left ordinal

phosphorylated tau continuous

parietal (atrophy) right ordinal

parietal (atrophy) left ordinal

global atrophy ordinal

amyloid-beta continuous

white matter abnormalities ordinal

holes in tissue ordinal

infracts continuous

microbleeds in brain continuous

total tau continuous

As for the genotype space, all the features (gene scores) are

continuous. For this reason, the Euclidean distance measure is

defined as the dissimilarity function.

2.8 Regression

To model the association genotype-phenotype we adopt linear

regression (McCullagh and Nelder, 1989):

y = β1 + β2x1 + β3x2 + ...+ βnxN − 1 + e (4)

,where xi’s represent the genotype, in our case the individual gene

scores; y represents the phenotype; and the β’s are the intercepts

explaining the importance of the different genes in predicting the

right phenotype. It is important to notice that the phenotype y is

a one-dimensional representation of the phenotypic relationships

between the patients (2.7). To accomplish this, the n-dimensional

dissimilarity representation of the phenotypic relations between

patients is mapped to 1 dimension using a multi-dimensional

mapping. In our case we chose to use principal component analysis

to do so (Jolliffe, 2002). Hence the principal components of the n-

dimensional phenotypic dissimilarity representation are determined

and the data is mapped onto the first component (the component

with the largest eigenvalue) (Fig. 1).

In regression, the β coefficients are estimated by solving the

following least squares minimization problem:

β̂ = argmin ‖y - βX‖2
2

(5)

,where y is the 1-dimensional phenotypic representation of a set of

training patients, and X represents the genotypes of these training

patients.

An alternative regularized version of least squares is Lasso

(Tibshirani, 1996), which uses an additional penalty factor on

the regression weights to enforce robustness against noise in the

explanatory variables:

β̂ = argmin ‖y - βX‖2
2
+ λ ‖β‖

1
(6)
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Fig. 1: Genotype - Phenotype association

Lasso regularization forces β’s to be zero when the explanatory

variables (xi’s) are not important for the dependent variable (y),

implicitly realizing a variable selection. The amount of variables

selected is controlled by the regularization parameter .

In case of highly correlated predictors, Lasso randomly selects

one of them and discards the other by setting the coefficient to zero.

Elastic net (Zou and Hastie (2005)) allows for grouped selection by

inducing a grouping effect during variable selection which results in

highly correlated variables to have similar (β) coefficients. This is

realized by a mixture of lasso (λ1) and ridge (λ2) penalties:

β̂ = argmin ‖y - βX‖2
2
+ λ1 ‖β‖1 + λ2 ‖β‖

2

2
(7)

, where the λ1 part of elastic net does variable selection, and the

λ2 encourages for grouped selection.

2.9 Non Linear Modeling

To model non linear genotype-phenotype associations we adopt

decision tree regression. A decision tree builds a regression model

in the form of a tree structure: it breaks down a dataset into smaller

and smaller subsets while at the same time an associated decision

tree is incrementally developed. A decision node (gene) has two or

more branches (e.g. gene score values), each representing values for

the feature tested. Leaf node (phenotypes) represents a decision on

the numerical target.The best split is the one minimizing the MSE

of predictions compared to the training data. The final result is a tree

with decision nodes and leaf nodes.

2.10 Dimensionality Reduction and Feature

Selection

Selection of appropriate features is a common problem when fitting

a model to data for which the number of features greatly exceeds

the number of observations. This is exactly the case for our dataset

which consists only of 400 patients, each one characterized by

thousands features (genotypes). There are two main methods to deal

with this problem: dimensionality reduction and feature selection

(Janecek et al., 2008). While in feature selection a subset of the

features is extracted, in dimensionality reduction a new feature

space is created by a combination of the original features. Both

dimensionality reduction and feature selection techniques were

applied to the genotypes and compared in terms of prediction

performance.

To reduce the dimensionality we opted for two different

approaches: a. Dimensionality reduction by PCA: a new feature

space is constructed by linear transformations of the initial features.

The principal components of the genotype space are determined

and the q first principal components, ranked on eigenvalues, are

selected. b. Dimensionality Reduction by Supervised PCA: the same

transformation as in (a) is applied only to a preselected number

of features. Firstly, linear regression is performed to the whole

genotype space and the features are ranked on their β values.

Then those features that have a β > θ, where θ is a to be

determined parameter, are chosen and PCA is performed only on

them, afterwhich regression is done again and the q first principal

components ranked on their eigenvalues are selected. (Bair et al.,

2006)

For feature selection we tested three different methods: a.

Univariate feature ranking: the features are ranked based on their

correlation with the phenotypes. Then the p highest ranked features

are chosen, i.e. those with the best correlation with the phenotype.

b. Lasso feature selection: features are selected implicitly by setting

the regularization term λ1 in Eq.(6). c. Elastic Net:features are

selected implicitly by setting the regularization term λ1 and λ2 in

Eq. 7.

2.11 Parameter Estimation using Double-fold

Cross Validation

Both the dimensionality reduction as well as feature selection

methods have parameters that determine the complexity of the

problem and thus need to be chosen depending on the problem at

hand. The optimal parameter of a model is usually determined by

cross-validation. In the simplest scenario, the number of patients

is split into K equally sized parts, which all but one are used for

training the model and the remaining one is used for validation.

However in this set up, the samples used for validation are also

used for model parameter selection and thus they are not completely

independent.

To overcome this problem, we use double-fold cross validation

which ensures that parameter selection is independent of the final

validation set (Wessels et al., 2005). Briefly (Fig. 2), the data is

split in K1 equally sized parts, one is used for validation and the

remaining ones are used for model construction. To construct the

model, the data K1 (K1-1 parts) is again split in K2 parts. (K2-1)

parts are used to train the model for a particular parameter setting

θ, which can be evaluated with the left out part (K2-2). Based on

the performance estimates in the inner cross validation (K2) we can

compare the performances of different parameter settings θ. We then

can choose the optimal setting in each inner fold (K2) as the one

that minimizes the MSE and estimate the optimal parameter setting

as the average of the minima. The performance of that optimal

setting is evaluated using the outer cross validation (K1). Note that

the parameter setting can be different for each of the outer folds

(K1), yet evaluates a whole procedure of optimizing the parameter

selection as done in the inner cross validation (K2). To arrive at a

final model we can do the parameter selection on the whole data

set (i.e. perform only one cross validation to optimize the parameter

setting).
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To give an example of the procedure consider univariate feature

selection (Fig. 2). For each fold of the inner fold (K2), we do

univariate feature ranking and then build models with an increasing

number of best features in a given range [1,p]. For each parameter

setting (p-best features) we can evaluate the model of choice (e.g.

a linear regression, like in eq. 5). By the end of the inner fold, we

obtain K2 different estimations for the performance of the model

when selecting p features. For each one of the inner folds we detect

the optimum number of features, popt, which minimizes the MSE

and then we choose as the optimal setting q to be the average

of them. By the end of the inner fold, the model is trained with

the optimal parameter setting, q, identified and the performance is

evaluated using the outer fold validation data.

3 RESULTS

3.1 Annotation and SNP Subset Selection

The total number of SNPs detected in 400 early onset AD patients

is 512.292 from which 498.754 are located on chromosomes 1

to 22. After the functional annotation of the variants (Fig. 3),

an appropriate subset of SNPs, 35.729 SNPs, is finally selected

according to the filtering criteria described in section 2.3.

Missing values of the remaining SNPs are imputed as indicated

in section 2.6. The imputation resulted in several SNPs that are

not mutated for all the patients and consequently we remove them

also. Finally, resulting in 35.729 SNPs (Fig. 3) to be used for the

subsequent genotype - phenotype analysis.

The distribution of the number of patients that harbor a unique

SNP is depicted on Fig. 5 where it is obvious that several SNPs

appear only in one or a few patients. These rare SNPs might not

have predictive power on their own but when they mapped to genes

with more that one mutations might contribute to the association

score between genotype and phenotype thus eventually become

interesting in combination with other SNPs.

3.2 SNPs to Genes

The 35.729 SNPs are mapped onto 11.867 genes. The distribution

of the number of patients that harbor a unique gene being mutated

by at least one SNP (Fig. 6) is highly similar to the distribution

of the SNPs (Fig. 5). Due to the inclusion of rare SNPs there are

3.190 genes being mutated only once. It is also interesting to note

that there are still a few genes that are mutated in the majority of

the patients even if SNPs mutated in more than 90% of the patients

have been removed.

Among the genes mutated, there are also genes that are related to

AD according to previous studies. From a list of 114 genes known

as probably related to AD, 67 of them were found to be mutated in

the patients (Table: S2). However, in our patient group the majority

of those genes are mutated just in a small subset of the patients and

not in most of them as it would be expected(Fig. 6). This might be

because we concentrate on early onset AD whereas previous studies

focussed on a more inhomogeneous set of AD patients.

3.3 Outlier detection in genotype space

The genotype space is represented by gene scores (section 2.4). By

constructing the dissimilarity matrix of the patients (section 2.7),

we find that several patients are very dissimilar to all other patients,

suggesting that these patients are outliers (Fig. 7a). After further

inspection we found that these patients have a different ancestry

(i.e. they themselves or their parents are non-Dutch), so that we

decided to excluded them from our dataset as they may lead us to

wrong conclusions. There were also 6 patients that gave identical

gene scores but had completely different clinical measurements.

Although we could not figure out the origin of this phenomena,

we chose to remove one of the duplicates for each identical pair

of patients detected. As a result of these outlier removals we were

left with 358 patients.The dissimilarity scores between the patients

are in a similar range (Fig 7b) which is what is expected because the

patients are both Dutch and diseased with AD.

After the removal of the genotype-based outlier patients, there

were 568 genes detected not to be mutated anymore. Hence, the

number of genes dropped to 11.299.

3.4 Subtyping patients based on Gene Space

We are interested in investigating if there is any clustering of

patients when considering their genotype only. The patients are

clustered based on their gene scores using hierarchical clustering

with complete linkage and as a distance measure the Euclidean

distance.

Fig. 8a shows relative clear clustering of patients in our dataset

when using the SNP counting gene score (eq. 1). Even if the

different AD subtypes are distributed over all the clusters (Fig.

8b), it seems that there are subgroups of patients at least from a

genotypical point of view. It also shows that there are two small

clusters that include patients who have a large dissimilarity towards

other patients. As these patient have a relatively large distance to

all other patients and this is not associated with one of the clinical

parameters, this might indicate that these patients also might have a

different ancestry from the rest of the patients, although not so large

as the previously removed outliers.

We also performed a clustering of the patients when considering

the gene scoring that includes the damaging effect of the SNPs

(eq. 2). In this case, the clustering is even more pronounced, see

Fig. 9a, indicating two prominent large clusters. However, again

patients of different AD subtype are distributed (Fig. 9b) all over

the clusters. Also in this case there is a small cluster (with the same

patients as before) that is dissimilar to all other patients (left most

cluster in Fig 10), enforcing the realisation that these patients are

genetically different from the rest and thus indeed might have a

different ancestry. For this reason, we decided to also remove these

8 patients as probable outliers resulting in the number of patients to

be 350.

Finally, we also tried to identify the genes that significantly

contributed to the observed clusters (in both representations). To do

so we first selected a number of clusters according to the hierarchical

dendrogram. Then we associated individual gene scores with the

detected clusters. However, there was no gene detected as being

significantly correlated with that clustering. Hence, the detected

clusters are not driven by a single gene but in a combinatorial way.
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Fig. 2: Feature Selection - Double cross-validation Scheme

Fig. 3: Distribution of the number of SNPs according to their

functional annotation using Annovar.

3.5 Structure on the Clinical Data

We were also interested in investigating if the patients can be

clustered in different groups based on the clinical examination tests.

First, the dissimilarity matrix is computed using Gower Index (3),

and then hierarchical clustering with complete linkage is performed.

The resulting clustering is depicted in Fig. 10a.

Although only 96 out of the 350 patients are diagnosed with PPA,

PCA and CAA, we observe a clear cluster yet not overlapping with

the AD diagnosis (Fig. 10a). We also do notice that the different

groups, even not well defined, are still detected in a two (and one)

Fig. 4: Filtering steps in order to select a subset of probably disease

causing SNPs. The number of the remaining SNPs are shown after

each step.

dimensional representation of the dissimilarity space (Fig. 10b).

Further, we need to note that, there is always the risk that some

of the clusters formed are related to the imputation of the missing

values but we cannot avoid this. We can only eliminate the chance
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Fig. 5: Distribution of the number of patients with at least one

unique SNP mutated

Fig. 6: Distribution of the number of patients that harbor a unique

gene being mutated by at least one SNP (red indicates the probable

related genes)

that to be the case by removing features having high percentage of

missing values.

3.6 Predicting phenotype from genotype

Next we examined whether we can predict the observed phenotypes

from the genotypes of the patients. For that we make use of either

a linear regression, either without regularization or with LASSO or

Elastic Net regularization (section 2.8), or a decision tree regression

(section 2.9). To determine the proper parameter settings for these

models we make use of a double fold cross-validation as indicated

in section 2.11. Predictive accuracy is expressed in terms of the

pearson correlation of the predicted phenotypic value with the actual

value over the test set, or the mean square error between the real and

(a)

(b)

Fig. 7: Dissimilarity representation of genotypes: a: Patients with

outliers. b: Patients after removing outliers.

predicted values. Different gene scoring methods (section 2.4) to

represent the genotype were tested under the same model settings.

Experiments were performed both in the initial genotype space and

in the dissimilarity genotype space (section 2.7).

In terms of predictive performance, there was no model that

resulted in a really high predictive accuracy. Nevertheless we see

that the gene scoring method based on summing SIFT scores gives

a better performance than just counting the SNPs. This indicates that

the effect of SNP does contribute to the predictive power of a SNP.

Furthermore the LASSO and Elastic Net that make use of an implicit

feature selection method seem to outperform the other methods as

well, hinting towards a better strategy to select the predictive genes.

The average number of features (or dimensions) used to construct

the predictive model is relatively low (in the tens with respect to

the initial 11.299 genes) with Lasso and Elastic net resulting in the

fewest number of features.

On the one hand, by performing simple linear and decision tree

regression with univariate feature selection, we did not observe

any consistency between the top-ranked features (genotypes) that

were discovered within each fold. On the other hand, among the

top features selected by Lasso and Elastic net, three of them,

HLA-DRB5, HLA-DRB1 and DEFB119, are always selected, even

regardless of chosen gene scoring methodology. None of these

features are selected in the case of univariate feature selection. So,

although these genes are not useful individually, they are very useful

when combined with others.
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Table 2. Overview of the different experimental setups tested. Performance is estimated in terms of MSE and correlation between real and predicted values.

Genotype Representation Prediction method Feature Selection PCA Supervised PCA

MSE R Avg of feat. MSE R Avg of dim. MSE R Avg of dim.

Scoring genes by counting SNPs (eq.1) Linear Regression 0.2918 0.0758 77 0.2289 0.1405 39 0.2725 0.1132 52

Decision Tree Regression 0.2567 0.092 68 0.3740 0.1097 44 0.2612 0.1276 55

Lasso 0.2179 0.1422 5

Elastic Net 0.214 0.18 13

Scoring genes by summing SIFT scores of SNPs (eq. 2) Linear Regression 2.5238e+24 0.1575 138 0.2249 0.1202 37 0.2132 0.1486 42

Decision Tree Regression 0.2971 0.1344 186 0.3694 0.1518 45 0.2534 0.1543 58

Lasso 0.2165 0.20190 7

Elastic Net 0.214 0.17 16

(a)

(b)

Fig. 8: Dissimilarity representation of genotypes using gene

scoring of eq. 1: a: Clustering of the genotype space based on

counting SNPs (the color shows the euclidean distance of the genes

scores according to Eq. 1) b: Frequency of the patients’ subtypes

per cluster (after cutting the tree to 4 clusters)

These findings are supported when we use dimensionality

reduction to lower the complexity of the regression models. When

inspecting the loading factors of the chosen principal components

(a)

(b)

Fig. 9: Dissimilarity representation of genotypes using genes

score of eq. 2: a: clustering of patients based on counting SIFT

scores (the color shows the euclidean distance of the genes scores

according to Eq. 2) b: Frequency of the patients’ subtypes per

cluster (after cutting the tree to 3 clusters)

(that indicate the relative importance of the genes in defining these

components), we find two highly ranked genes within almost all the
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(a)

(b)

Fig. 10: Clustering of the phenotype space: a: Clustering

of the dissimilarity space(color indicates the Gower dissimilarity

between patients). b: The dissimilarity space projected onto two

first principal components colored based on 1D projection of the

dissimilarity space.

folds, which are HLA-DRB5 and HLA-DRB1 being in agreement

with the results obtained by Lasso and Elastic net.

It is especially interesting that the HLA genes are known to be

related to late onset AD in other studies (Lambert et al., 2013).

Using STRING (Szklarczyk et al., 2011) we also found that the

HLA genes interact with CD74 gene that interact with APP that

acts as a suppressor of amyloid-β (Fig. 11). On the other hand,

DEFB119 is not related to HLA but it is find to be related to

meningioma.

We further investigated the performance of the HLA-DRB1,

HLA-DRB5 and DEFB119 genes in different combinations.

Remarkably we see a small increase in performance when we use

all 3 genes when compared to the previous results (Table 4). The

highest performance is observed when all 3 genes form the genotype

space, indicating that all three genes together are needed to be

most informative, again supporting the combinatorial nature of AD

(Table 4). The next highest performance is observed when we use a

combination of DEFB119 and one of the HLA genes, leading us to

conclude that DEFB119 might indeed be related to early onset AD.

Fig. 11: HLA-DRB1, HLA-DRB2 and DEFB119 interactions

4 DISCUSSION AND FUTURE WORK

We investigated if genotypes can be associated with phenotypes of

patients diagnosed with early onset AD in order to identify genetic

variants that could explain the phenotypic variation among them.

We also explored the existence of any possible structure both in

phenotypic and genotypic level that may indicate possible new

AD subtypes. To identify subgroups of early onset AD patients,

we clustered the patients based on genotypes and phenotypes

independently. In both cases, we observed a clustering. We could,

however, not find any genetic or phenotypic trait that associates well

with these clusters. This indicates that there is not one variable

explaining the clustering, but that a combination of variables is

necessary to define these subtypes.

To adress the problem of associating genotypes to phenotypes,

we used several regression methods. A common part of all the

approaches is the transformation of the multidimensional phenotype

space to a one-dimensional dissimilarity space. As it is not known

if there are more subgroups of patients apart from PPA, PCA

and CAA, we combined all the phenotypes into a dissimilarity

space ensuring that we make use of all the information available

and hidden structures may be revealed. Through the regression

methods used, we tried to detect the genotypes which best predict

the phenotypes as a whole. Dimensionality reduction and feature

selection techniques were applied to the genotype space in order

to select the most appropriate features (or dimensions) that can

explain the phenotypes. From a performance point of view, none

of the methods resulted in high predictive accuracy. Non-linear

regression methods, such as decision trees regression, have also

been tested in case that the low performance is caused by the

existence of non linear dependencies, but that did not improve

the performance. However, it is particularly interesting that the

majority of the methods tested, identified the same subset of genes,

HLA-DRB1, HLA-DRB5 and DEFB119, as top ranked genes with

consistency within all folds. Both HLA-DRB1 and HLA-DRB5

genes are of great importance as they interact with CD74 gene

which in turn interacts with APP that acts as a suppressor of

amyloid-β. Our findings about HLA-DRB1 and HLA-DRB5 are

also supported from other studies (Lambert et al., 2013). On the

other hand, there is no much evidence for DEFB119 gene (being

9
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Table 3. Performance on Dissimilarity Genotype Space

Initial Representation Regression Dissimilarity MSE R

Gene scores(1) Linear Regression euclidean 0.6579 0.1732

city block 3.0762 0.0928

correlation 0.2984 0.1414

cosine 0.3001 0.1450

Gene scores(2) Linear Regression euclidean 0.2902 0.1438

city block 0.9617 0.1022

correlation 0.2925 0.1352

cosine 0.2926 0.1383

Table 4. Model Performance when only HLA-DRB5,HLA-DRB1,DEFB119 genes (or just a combination of them) form the genotype space

Genes MSE R

HLA-DRB5,HLA-DRB1,DEFB119 0.20 0.29

HLA-DRB5,HLA-DRB1 0.21 0.19

HLA-DRB5,DEFB119 0.2 0.26

HLA-DRB1,DEFB119 0.20 0.25

HLA-DRB5 0.21 0.17

HLA-DRB5 0.21 0.12

DEFB119 0.2 0.23

involved in meningioma, a brain carcinoma) and AD. Nevertheless,

by conducting experiments using only these 3 genes and different

combinations of them, we do notice that the performance was

slightly increased when all 3 genes were used. That indicates

that DEFB119 gene may be also of some importance and further

investigation is needed. To improve prediction performance and

reduce noise in the data, we also opted for an alternative method

in which transform the phenotypic space to a new space (5.5). The

predictive accuracy was improved but there was no consistency in

the genes selected.

Although the results are already interesting by themselves, we

would like to emphasize a few notes with respect to the chosen

experimental setup and analyses. First, it is really important to

include a control group in our analysis. As mentioned, several SNPs

that appear in more than 90% of the patients have been removed so

as to eliminate mutations biased towards Dutch population (2.3).

This step seems reasonable in the current setup but there is a

risk of also removing SNPs that are predictive for early onset

AD. Consequently, the only way to overcome this problem is to

selectively remove SNPs based on a Dutch control group.

Another problem is that the phenotypic information is quite

incomplete, in fact there is no measurement for which we have

measured values for all patients. In order to deal with this and to

be able to impute the missing values, we had to remove a lot of

clinical measurements with high percentage of missing information.

So, again there is a risk of discarding phenotypic features that may

be both descriptive about the disease and strongly correlated with

the genotypes. Apart from this, the large number of imputation that

we had to do could be a cause of detecting clusters which do not

really exist. An option might be to ”remove” the imputation. That is

to remove much more data in case there is missing data. Then see

whether the data still clusters ”in the same way”. If that is the case

than it is not related to the imputation.

Another possible improvement may be related to the gene scoring.

An alternative would be to create a score per pathway instead of a

score per gene. In this way, the features of the genotype space will

be reduced and the prediction task will become easier.

As a last remark, we have also to mention that predicting

phenotypes from genotypes is not an easy task. One reason for this

is that people may have the same mutation but not necessarily the

same phenotypes. In other words, genetics is not the only influence

on phenotypic variation: the environment, life history, and many

other factors also impact on phenotypic variation.
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5 SUPPLEMENTARY FIGURES AND TABLES

Table S1. Variant Annotation

Annotation Explanation

exonic variant overlaps a coding region

splicing variant within a splicing junction

intronic variant overlaps an intron

intergenic variant is in intergenic region

ncRNA variant overlaps a transcript without coding annotation in the gene

UTR5 variant overlaps a 5’ untranslated region

UTR3 variant overlaps a 3’ untranslated region

upstream variant overlaps 1-kb region upstream of transcription start site

downstream variant overlaps 1-kb region downstream of transcription end site

nonsynonymous a single nucleotide change that cause an amino acid change

synonymous a single nucleotide change that does not cause an amino acid change

stopgain a nonsynonymous variant that lead to the immediate creation of stop codon at the variant site.

stoploss a nonsynonymous variant that lead to the immediate elimination of stop codon at the variant site

5.1 Probable related genes detected mutated to the patients

A list of 114 genes (given by Henne Holstage) that may be involved in AD was also used in our analysis. Only 67 of those genes were

detected to be mutated on the patients.

Table S2. List of probable related genes found mutated on patients

Gene List

OR51A4 ATP2C2 ABCA7 FERMT2

NOTCH3 PSEN1 NME8 APOE

TREM2 CST3 TGFB1 CD33

TTR PTK2B FOXP2 EIF2AK4

BIN1 SORL1 PSEN2 EPHA1

CMIP NCSTN PRND EIF2AK3

CNTNAP2 CSF1R MAPT HLA-DRB1

CD2AP HLA-DRB5 CR1 CHMP2B

FUS PLD3 ADAM10 LRRTM3

CASP9 MCL1 TNFRSF1B BCL2L11

CASP10 CASP3 CASP6 BAK1

RIPK1 BNIP3L TNFRSF10B TNFRSF10D

BNIP3 CASP7 BAD BIRC2

APAF1 BCL2L14 CRADD DIABLO

LRP1 MOAP1 AVEN TRADD

TP53 BBC3 CALR BCL2L1

BIK APP ATF4 ATF6

CASS4

5.2 Clustering of patients on genotype space when mutation on chrX and chrY are included

In Fig. S1 is depicted the clustering of the patients when mutations detected in both chrX and chrY are included. In this case there are two

dominant clusters formed which are related to the sex of the patient (male-female). To avoid a sex related bias, we remove them.

12



Fig. S1: Clustering of Genotype Space when chrX and chrY are included

5.3 Clustering of phenotype space using all the 35 remaining measurements after the removing those

having high percentage of missing values

Clustering of the phenotype space (Fig. S2) when no clinical measurements are excluded beforehand apart from those having high percentage

of missing values or those that are not relevant (i.e. date of first visit, MRI type, etc.). In the final analysis, several measurements have been

removed (mainly brain related measurements) due to argumentation. This selection resulted in a better clustering (10a) compared to the

clustering with all the measurements (Fig. S2).

Fig. S2: Clustering of the phenotype space with all the measurements
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5.4 List of all clinical examination measurements

Table S3. All the clinical features measured. Clinical data in green indicate the finla selected measurements that selected to be used in our method heightClinical Feature Description

I dat 1 date of initial screening

I fam dem dementia in family

I fa psy psychiatry in family

I die deceased

I die dat date deceased

I die re cause of death

I live last date checked alive

I live last date checked alive

obd text text autopsy

V dat date of test

duur van klachten duration of symptoms

VaD vascular dementia

FTLD frontotemporal lobar degeneration

age of ons age of onset

V CAMCOG cognitive test

V MMSE cognitive test, especially for memory

V FAB cognitive test, especially for executive functioning

V GDS Geriatric Depression Scale

V GDS Geriatric Depression Scale

D diag diagnosis

D dat date of diagnosis

D txt diagnosis free text

ApoE ApoE genotype

L DATEAFN liquor date decrease

L MNR liquor material number

L AB42 amyloid-beta

L TAU total tau

L PTAU phosphorylated tau

M dat date of MRI test

M scan type of MRI scan

M MTA R Medial temporal lobe (atrophy) right

M MTA L Medial temporal lobe (atrophy) left

M parietal R parietal (atrophy) right

M parietal L parietal (atrophy) left

M atrophy global atrophy

M Fazekas a measure of white matter abnormalities

M lacune holes in tissue

M inf jn infarcts

M mbl to microbleeds in brain

M txt ra radiologist free text

N CRvoor Neuropsychology, number sequence forward

N CRach digit sequence backwards

N LDST 90 etter digit in 90 seconds

N VATA1, N VATA2 visual association test A1 and visual association test A2

N 15WT1, N 15WT2, N 15WT3, N 15WT4,N 15WT5 different word task tests

N 15WTui word Task delayed reproduction

N FL60 NPO Fluency in 60 sec

N FLD NPO Fluency animal names

N FLA NPO Fluency A

N FLT NPO Fluency T

N TMTAt trail making test A

N TMTBt trail making test B

N NumLoc NPO number location

N NumObjDec NPO object detection

N Reyuit NPO figure of Rey delayed reproduction

N N ideationalprx ideational apraxia

N N ideomotorprx ideomotore apraxia

PPA primary progressive aphasia

PCA posterior cortical atrophy

CAA cerebral amyloid angiopathy

MCI mild cognitive impairment

probable AD probable Alzheimer disease

possible AD possible Alzheimer disease

tau ratio ratio of tau and amyloid-beta

5.5 Alternative Aproach: Dimensionality Reduction and Supervised output transormation

To control the noise in the data we propose the transformation into a new space that we are able to predict.

5.5.1 ’Preconditioning’ variable selection In each one of the inner folds(2.11) the features that are weakly correlated with the phenotypes

above a threshold θ, are selected for further transformations. Specifically, the threshold θ is set to be 0.1. This is not a high correlation.

However for our dataset the highest correlation that is detected is approximately 0.3. By setting the threshold θ higher than 0.1, there is a risk

of detecting no correlated features within the fold. For this reason, we set the correlation threshold to be the low aiming at increasing it in the

transformed space.

5.5.2 Transforming Output based on the selected features After selecting a subset of features in each inner fold 5.5.1, we use these

features to create a new phenotype space. If we plot the correlation of each gene with the phenotypes, we notice that each gene score for a

specific gene represents a variety of different phenotypes(Fig. S3). The fact that for one gene score there is wide range of phenotypes, results

in a difficult prediction task. For this reason, we reconstruct the phenotype space into N dimensions by following a supervised approach.

At this point, the one-dimensional phenotypic space is transformed to N-dimensions, where N equals to the number of genes selected. So,
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Fig. S3: Supervised Output Transformation. Assuming that we have one gene represented by 3 scores, Then for each score, we compute the

mean of the phenotypic values correspond to this score. Afterwards, we build the 1st dimension of the new space. For each patient, the first

dimension is setted to be the mean of the phenotypic values for the specific score for the particular gene. The procedure repeated for all the

selected genes. At the end, we compute the phenotype of each patient to be the mean of all the features for this patient.

each dimension is reconstructed based on a specific gene. Specifically, for each patient, each dimension in N is setted to be the mean of

the phenotypic values for the specific score for the particular gene. By repeating this procedure for each gene, a new phenotype space of

N dimensions is formed. At the end, we transform this space to 1 dimensional space by taking the mean for each patient. The test set is

transformed based on the transformation found in training set. In case that a gene score appears in the test set but not in the training set, the

transformation is based on the first closest gene score (Fig. S3). The best transformation found in the inner fold is the one applied to the outer

fold

Due to the fact that the number of features is still high, we follow the same procedure as in (2.10,2.11), in order to reduce the dimensionality

and to succeed in predicting the new genotypic space. The new space cannot be easily converted back to the initial phenotype space. But the

fact that we know the initial representation of the initial space can lead us to identify the closest phenotypic measurements of the uknown

sample patient.

5.5.3 Results When genotype space is represented by 1, the average number of principal components predicted is 71, the MSE is 0.143

and the correlation between the real and predicted values is 0.25. For the gene scoring of (2), the number of components selected equals to 45

and the correlation between real and predicted values to 0.42. Nevertheless, there is no consistency in the features selected within the folds.
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