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Preface

The current document is the end result of the research done on the use of Multiple Instance
Learning (MIL) for the answer of a biological question. The document consists of a paper,
supplementary material and a work log document which describes in detail the work done
throughout the thesis project.
The paper provides an introduction to the biological question and the use of MIL to
answer it, and outlines the developed methods and results. Supplementary material is
included which provides further explanations on the data sources used and additional
figures that support some decisions that were made. The work document is a log of the
work that was done in chronological order, omitting the last months, as all the focus was
put into the writing of the paper.
This research was done in the Pattern Recognition and Bioinformatics group of the Intelli-
gent Systems department in the faculty of Electrical Engineering, Mathematics and Com-
puter Science at the Delft University of Technology under the supervision of Dr. D.M.J.
Tax, MSc Thies Gehrmann and Dr.rer.nat. M.T.M. Emmerich1. The thesis project was
started in July 2013 and will be defended on May 28th 2014 in Delft and May 30th 2014
in LIACS.

1Dr. M.T.M. Emmerich is from the Leiden Institute of Advanced Computer Science
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ABSTRACT
Cell differentiation is a natural process occurring in all higher

organisms, since the early fetal stage of life. It is, also, a part of
disease – such as cancer – as the cell cycle becomes deregulated
and cells behave differently compared to healthy ones. Differentiation
occurs although the genome of all cells is identical across all cell
types of the same organism. The motivation behind the current work
is to understand why this happens.

Cells differentiate because of different gene expression patterns.
The genomic features close or around a gene determine its
expression. One of these genomic features is the binding of
Transcription Factors (TFs), which are proteins that bind in the
promoter region of genes and are responsible for their (non-)
expression. Other genomic features influence the binding of TFs
close to genes, such as the accessibility of DNA, the levels of DNA
methylation or the modification of histones.

The purpose of this study is to identify the genomic features
that influence the binding of the TFs that are responsible for gene
expression. Normal classification cannot express that multiple TFs
need to bind in a gene’s promoter region for it to be expressed and the
number of TFs varies among genes. The TF labels are also unknown,
meaning that it is not known which TF, or TFs, is/are responsible for
gene expression.

For these reasons, this problem – and the data – fits the Multiple
Instance Learning (MIL) framework. A method is formulated, where a
gene is treated as a bag and all the TF binding sites are instances.
The results are promising, as TFs that were selected as important for
gene expression were found to be so in a biological example.
Contact: d.palachanis@gmail.com

1 INTRODUCTION
All cell types of an organism are differentiated from stem cells, to
fulfil their different functions. In cancer, something similar happens,
as a cancerous cell will differentiate from the healthy ones, become
deregulated and start multiplying rapidly. Since the genome of all
cells is the same, ignoring somatic mutations, it is logical to question
what happened during differentiation, which results in cancer in one
cell type, but not in other(s).

Stemming from biological knowledge is the fact that cell
differentiation occurs due to differences in gene expression. Some
genes are expressed in one cell type but not in others and vice versa,
thus producing different proteins and making the cells have different
functions.

The various gene expression patterns are a result of differences
in genomic properties. These properties include: (a) accessibility

∗to whom correspondence should be addressed
†Pattern Recognition and Bioinformatics: http://prb.tudelft.nl

of DNA, (b) binding of proteins to special DNA regions upstream
or downstream of genes (enhancers/ silencers), (c) methylation of
DNA, (d) binding of TFs in the promoter region of genes, (e) histone
modifications, among others.

As can be seen in Fig. 1, the genomic properties can influence
gene expression in many ways. The openness of chromatin makes
the genome more accessible to binding proteins. In general, tightly
compacted chromatin makes the genes inactive (Fig. 1a). TFs that
bind to the promoter region of a gene, may activate it or render
it inert (Fig. 1b). There is also a synergistic effect, as two, or
more, TFs may be required for a gene to be expressed or not. A
variable number of TFs is needed per gene to activate or deactivate
it. Chromatin is an octamer, a protein complex consisting of 8
proteins, called histones. The histones have ”tails” that protrude
to the outside of the complex. These tails can be chemically
modified (methylation, acetylation, phosphorylation) and some of
the modifications have been associated with gene expression or
inactivation. Fig. 1c depicts the N-tail of histone H3 in gray. Specific
modifications of Lysine (K) and Serine (S) of this tail have been
associated to gene silencing or expression. Finally, methylation of
the DNA sequence is generally associated with gene silencing, as it
inhibits TFs from binding (Fig. 1d).

This study focuses on the binding of TFs in the promoter region of
genes. We wish to answer the biological question of which features
of the genome are responsible for TF binding, thus making genes
being expressed in one cell type, but not in others.

Every TF binds on a particular piece of DNA sequence, that is
a TF binding site (TFBS), and that region is conserved across cell
types. It can be considered as an unambiguous mapping of a TF on
the genome. The number of TFBSs – and the corresponding TFs
– varies per gene. For example, one gene may require two TFs to
initiate transcription, while another may need to recruit only one or
more than two.

The TFBSs can be described with their genomic features in a
particular cell type. Focusing on the rest of the genomic properties
in Fig. 1, each TFBS can be characterized with how accessible the
DNA is at that location, with the levels of methylation and with
nearby histone modifications.

If enough information is contained in these features, one would be
able to classify and obtain the TFBSs responsible for the differences
in gene expression. From the meaningfully classified TFBSs, the
differences in the genomic properties can be obtained and be linked
back to, or explain, gene expression patterns.

With a pattern recognition approach, one would try to predict
gene expression. To achieve that, a dataset would be constructed
by describing each gene with features and then a classifier would be
fitted to some example genes and their desired expression labels.
Unfortunately, this standard approach is not directly applicable,
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Fig. 1: Effects of genomic features on gene expression: a: Openness of DNA makes genes more accessible, while closeness makes them
inactive. b: TF binding can aid or inhibit gene expression. The number of TFs that bind per gene is variable. c: Modifications of the N-tail
of histone H3 and their association to gene expression. M, A, P stand for methylation, acetylation and phosphorylation respectively. K, S are
the peptides Lysine and Serine, respectively. The numbers next to the peptides are the positions on the tail peptide sequence. d: An example
of DNA methylation where a TF is inhibited from binding, thus making a gene inactive. The upper part of the figure is reproduced from
https://genome.ucsc.edu/ ENCODE/aboutScaleup.html, c©Darryl Leja (NHGRI). Part (d) is reproduced from Fig. 4-44B of the Molecular
Biology of the Cell, 5th ed., p.226

because it assumes that there is a fixed set of characteristic gene
features that can predict the gene activation well. Here, on the other
hand, gene expression is based on a variable number of TFs. To
overcome this limitation, a more flexible representation of a gene in
terms of TFs is needed.

This more flexible representation is given by Multiple Instance
Learning (MIL) (Dietterich, 1997), introduced in the context of
drug activity prediction. In this framework, an object is represented
by a collection of feature vectors – called a ”bag” of ”instances”
–, instead of a single feature vector. In this way, a gene can be
characterized by a set of feature vectors, each one describing a
TFBS or, subsequently, a TF. When a MIL classifier is trained,
it is able to predict from a bag of instances one label for the
bag. Furthermore, some MIL classifiers are even able to extract/
highlight one single instance that is the most informative for the
prediction of the bag label, also called a ”concept”. This offers,
then, the additional possibility to interpret the classification result.
For the prediction of gene expression, it may highlight the TF that
is responsible for the activation of most genes. From there on, the
genomic properties that cause this TF to be significant can be found.

Two scenarios are considered in this study. (a) The first is to
identify TFs that are responsible for gene expression in one cell
type, as can be seen in Fig. 2. This scenario is more meaningful
for subsets of genes that may be involved in a particular function,

as finding TFs that are meaningful ”globally”, for all genes in a
particular cell type, is not deemed to have much biological merit.
The genomic features of the most interesting TFs in this scenario
can be linked to the particular biological function that the subset of
genes is involved in. (b) The second scenario addresses differential
regulation in multiple cell types. For a certain pattern of expression,
genes are labelled appropriately and the most interesting TFBSs
are found. Thus, the TFs responsible for the differential regulation
of genes are identified. Then, the differences in genomic features
between the cell types are observed to justify the differences in
expression.

The process starts by constructing a dataset (Fig. 2a and 3a).
TFs, that fall within the promoter region of genes, are first mapped
to their corresponding binding sites on the genome. Then, they
are associated to the genes and become the instances, while the
genes themselves become the bags. The instances are described with
features calculated from the biological data. Up to this step, the
process is the same for the two scenarios. For the second scenario,
appropriate horizontal concatenation is used for the features of each
cell type (Fig. 3a).

Afterwards, gene expressions are discretized to be used as the
training labels during classification. For the first scenario, that is
enough (Fig. 2b). For the second scenario, there is an extra step as
the labels are combined according to a pattern of expression (Fig.
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3b). For example, if a gene is expressed in one cell type but not
in another, the pattern ”1-0”, would be combined to a label 1, 0
otherwise.

MIL classification is performed and the output are the predicted
gene expression labels. The secondary output are the concepts, i.e.
the TFs responsible for gene expression (Fig. 2c and 3c), for the
single cell type scenario and the TFs responsible for differential
regulation, for the multiple cell type scenario. By examining
those, the genomic properties that made them significant can be
determined.

In Section 2, the data used to construct the dataset along with
the gene expression discretization strategies and the MILES (Chen
et al., 2006) classifier are discussed. In Section 3, the choice of
a subset of genes is explained and the experiments performed are
presented in detail along with the results. Finally, in Section 4,
discussion points are given for ways that could improve the method
and some future prospects.

2 MATERIALS AND METHODS
In this section, the first steps of the method will be discussed,
namely the available data (Subsection 2.1) and the construction of
the dataset (Subsections 2.1.1 and 2.1.2) and the gene expression
discretization strategies (Subsection 2.1.3). Furthermore, as the
prediction of the instance labels is considered the most interesting
for this study, the MILES classifier, Multiple Instance Learning via
Embedded Instance Selection (Chen et al., 2006), was viewed as
the best candidate for the task, as it can highlight multiple concepts
instead of just one. This will be discussed in Subsection 2.2.

2.1 The data of the ENCODE Project
The Encyclopedia of DNA Elements (ENCODE) Consortium
(Consortium, 2004) is a collective effort between researchers to
create a database containing all the information that describe the
genomic ”landscape”. This is done by identifying and measuring all
the functional and regulatory elements that control gene expression
and determine cell fate.

The data in ENCODE is organized in Tiers of cell types,
according to the priority of each cell type for new experiments.
All cell types, for which experiments have been conducted, are
organized in 3 Tiers, with Tier 1 having top priority. Tier 1 contains
3 cell types; a healthy blood cell (GM12878), a cancerous blood
cell (K562) and a stem cell (H1-hESC, H1 human Endothelial Stem
Cell). Since Tier 1 has top priority, most of the experiments have
already been performed for these 3 cell types. For the purpose of
this study, data for the 3 cell types of Tier 1 was used.

The first information that was needed, was the TF ChIP-seq
uniform peak data, that identify the regions of the genome where
certain proteins were observed to have bound. The gene expression
data (RNA-seq from ENCODE/Caltech) were obtained for all 3
cell types of Tier 1 and, also NHEK, a skin cell. Then, to
construct the features of the dataset, data for DNA methylation
(DNA Methylation by Reduced Representation Bisulfite Seq from
ENCODE/HudsonAlpha), Open Chromatin (DNase-seq peaks) and
Histone Modifications (Uniform Histone peaks) were collected
(Links to all data used are provided in the Supplementary Material,
Section S-1).

2.1.1 Construction of the dataset To associate TFBSs to genes,
a TFBS was called for each binding site in the 1 Kb upstream region
of a gene (Fig. 4). For each TFBS ChIP-seq peak, if the start fell
within the range of the thousand bps of a promoter region, then
the TFBS was associated to that gene. With this criterion, 660,000
TFBSs were associated to genes.

Two filtering steps were needed, one before associating TFBS
peaks to genes, and one after. As a first step, filtering of the peak
data was performed for actual TFs, as not all the binding proteins,
for which ChIP-seq experiments were conducted, are TFs. Based on
a study of human TFs (Vaquerizas et al., 2009), out of 146 unique
experiments, for the 3 cell types of Tier 1, 82 were recognized as
TFs. For these, the complete concatenation of all experiments (4.1
M lines) was filtered.

As a second filtering step, the resulting data was filtered for
duplicates, due to the way ChIP-seq works. Experiments were
performed for a range of conditions, for certain TFs. Also, for the
same TFs and conditions, results may be available from several
institutes. So, for a certain TFBS associated to a certain gene,
multiple locations may be available that differ very little (less than
20 bp). To account for those, only one was selected based on the
highest q-value. This resulted in the final dataset of approximately
230,000 instances (TFBSs) associated to 15,008 bags (genes).

2.1.2 Features

Binary Features The information that ChIP-seq experiments
provide is that a particular TF was observed to be bound on
the genomic location where the peak is observed. A set of 82
binary features was made to represent which TF the TFBS was
associated with. A binary feature that signified whether a TFBS
was ever encountered in a particular cell type was, also, used while
constructing the dataset.

Genomic Distances Two features were calculated. The distance
between a TFBS was measured in two ways; one in terms of
proximity to the TSS relative to the other TFBSs associated to that
gene and one counting the absolute distance in bps, as can be seen
in Fig. 5.

DNA Methylation For this data, which consist of single methylated
bps, 3 features were calculated for each TFBS; the sum of
methylated bps within the TFBS and in windows of 50 and 100 bps
on either side of the TFBS, as can be seen in Fig. 6.

Open Chromatin (OC) For this data, obtained with DNase-seq, the
peaks represent regions where the DNA sequence can be cut by the
enzyme DNase I, implying that this region is open and accessible
by other molecules. These peaks span long DNA regions, so the two
features calculated for each TFBS were the number of OC peaks
under which a TFBS might fall and the distance, in bps, from the
center of the peak. If multiple peaks were assigned to one TFBS,
then the maximum distance would be assigned.

Histone Modifications (HM) The same strategy was employed for
this data as for OC. Three datasets were explored because of their
association to gene activity (Fig. 1c and (Kooistra and Helin, 2012)),
yielding 6 features per unique cell type.
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Fig. 2: Single cell type scenario: Methodology used for TF discovery for a group of – or all – genes in a single cell type. a: Construction of
the dataset from the biological data. b: Discretization of gene expression to use as labels. c: MIL classification and identification of interesting
TFs for gene expression.

Fig. 3: Multiple cell type scenario: Methodology employed for TF discovery for a group of – or all – genes in two cell types, one healthy
and one cancerous. The expression pattern ”1-0”, i.e. expressed in healthy, but not expressed in cancerous cells, is of interest in this example.
a: Construction of the dataset from the biological data. The feature vectors, describing the TFBSs, are concatenated appropriately for the
number of unique cell types. b: Discretization of the expression levels with the extra step of label combination. c: MIL classification and
identification of TFs responsible for differential regulation.
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Fig. 4: The TSSs for two genes on the positive and negative strands
of a short, example DNA sequence. The numbering of bps increases
on the 5’–3’ direction on both strands.

ChIP-seq Features Finally, four features of the original ChIP-seq
peak data were used. These were the peak intensity normalized by
ENCODE, the assigned p-value and q-value of the peak and the peak
centre offset.

Fig. 5: Calculation of genomic distances. Each TF is assigned an
integer, starting with 0, according to its proximity to the TSS. The
absolute distance from the TSS, in bps, is also measured.

Fig. 6: Calculation of the DNA methylation features for each TFBS.

In total, 100 features described each TFBS, with 12 of these being
unique for a certain cell type. Table 1 gives an overview of the
features generated.

2.1.3 Label Discretization Gene expression is measured in real,
positive numbers, called RPKM (Reads per Kilo base per Million
mapped reads). RPKM is proportional to the abundance of each
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Number of Features Type Description
4 Float TFBS ChIP-seq peak data
82 Binary TF IDs
1 Binary Presence of each TF
2 Int Genomic Distances
3 Int Methylation Counts

2 Int & Float
Counts of and distances from

associated OC peaks

6 Int & Float
Counts of and distances from

associated Histone
Modification peaks

Total: 100

Table 1. The features generated from the ENCODE data per cell type.

gene or transcript. It is a normalized value that corrects for the
library size and reference sequence length.

The RPKM values may not be directly comparable between cell
types, as a particular cell may have a higher protein production in
general. For this reason, a pre-processing normalization step was
applied first to equalize the expression values between all cells. For
every cell type, the RPKMs of all genes were added together. This
sum represents the overall RNA production of a cell type. Each
value was normalized by the mean of those sums:

Nc(g) = Rc(g)
C∑

k∈G

Rc(k)
(1a)

where, C =
1

|E|
∑
e∈E

∑
k∈G

Re(k) (1b)

where e ∈ E are the different cell types, with c a cell type of
interest. g is the gene in consideration, over all possible genes
k ∈ G.

This new value, Nc(g), for a gene in a particular cell type,
resembles the TPM (for Transcripts Per Million) values, that can
be generated from RPKM, by dividing with the sum of RPKMs for
all genes and multiplying by a million, that is stated to be a more
accurate measure of RNA total production (Wagner et al., 2012).

The problem with RPKM values is that they are unfit to be used
as labels, since they are continuous. So, two discretization strategies
were tried to discretize these values into binary labels to represent
expression and to use them for classification.

For both strategies a threshold is used. To justify the selection of a
threshold, it must be emphasized that the focus of this study is not on
the performance of classifiers, but on the extraction of meaningful
information that can be linked to biology. To achieve this, it will
be judged if the MIL framework is able to answer such biological
questions. For this reason, the method used here was to measure the
performance, while varying the thresholds, and select the one for
which classification worked best.

yθ Discretization The first strategy to make binary labels out of
RPKM was to set a threshold, θ, to the real values, below which
gene expression would be assigned a 0 label and a 1, otherwise (Eq.
2). The main assumption in this part is that at some point during
the cell cycle, a gene will be expressed. This was used as a rule
of thumb to keep in mind while testing the different thresholds.

The threshold θ was varied between values 0 and 80, in RPKM
(0, 7.5, 12.5, 17.5, 20, 30, 40, 50, 60, 70, 80).

yθ =

{
0 if Eic ≤ θ
1 otherwise

(2)

where Eic is the expression level of gene i for a particular cell type
c.

y010 Discretization The second strategy was to use a comparison
between the expression levels in the 3 cell types of Tier 1 and
another cell type used as reference, in this case NHEK, a human
skin cell type. The comparison scheme tested signified that a gene’s
expression is not significantly different from the one in the reference
(scheme ”010”, Eq. 3).

y010 =


0 if Eir = 0 ∧ Eic = 0

1 if (1− t)Eir ≤ Eic ≤ (1 + t)Eir

0 otherwise

(3)

where Eir is the expression value of gene i in reference cell type
r, Eic is the one in cell type c that is being compared and t is
the similarity threshold as a percentage. The second strategy has
the advantage that the labels are intuitively understood. More genes
having positive labels signifies similar behaviours, or expression
patterns, to the reference skin cell. The threshold t was varied
between a percentage of 0.3 and 0.9 in increments of 0.1.

To investigate the range of the thresholds, a distribution of the
expression levels of all genes of all 4 cell types (3 plus reference
skin cell) was built (Fig. 7). It can be seen that most of the genes are
very lowly expressed.

Fig. 7: Distribution of normalized expression values, in RPKM,
for all 4 cell types. Most of the genes are lowly expressed. The
distribution is zoomed into, in the inlay picture.

For the yθ strategy, as θ increases, it becomes more strict and
more bags are labelled negative (Fig. 8a). For the y010 strategy,
it is the opposite (Fig. 8b). For patterns of expression, such as
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”a gene is expressed in one cell type but not in another”, this can
work in reverse if the pattern contains a zero. For example, for the
yθ strategy, as more genes are labelled negative, they have more
chances of fitting a particular pattern.
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Fig. 8: Number of positive bags to thresholds: a: Inverse
proportionality to θ. b: Proportionality to t.

2.2 MIL and the MILES Classifier
The advantage of the MIL framework is that it can identify a
”concept”, an instance that is the most characteristic, or descriptive,
of the positive class. The advantage of MILES (Chen et al., 2006)
over other classifiers, is that it can perform instance selection and not
select just one, but multiple concepts. This functionality is beneficial
for this study, as multiple TFBSs can be picked out as significant,
thus reflecting the biological truth well, as more than one TFs,
working in unison, may be responsible for gene expression.

What MILES does is firstly mapping all the bags into a similarity
space, by measuring the minimum distance between an instance, xk,
and all other instances, xij , in all bags, Gi. This similarity between
a bag, Gi, and an instance xk is defined as:

s(xk, Gi) = max
j

exp
(
− ||xij − x

k||2

σ2

)
(4)

This creates a space with dimensionality equal to the number of
instances. In this space, every bag is represented by a single point,
making the classification problem easier (Fig. 9). That point has
coordinates m, where m is a vector of length equal to the number
of instances. Each coordinate is one of the similarities s(xk, Gi).
Then MILES tries to find a linear classifier y = sign(wTm + b),
where y are the class labels, w is a vector of weights and b the
distance of the resulting hyperplane from each class. To find a
hyperplane that best separates the two classes, MILES utilizes
an L1-SVM. Any component, wk, of vector w that is non-zero,
indicates the significance of the effect of the kth instance on the
classifier. Therefore, the instances whose weights are non-zero are
more helpful to classification. Fig. 9 illustrates an example of this
process. In Fig. 9a, the 44 instances of 3 positive and 3 negatives
bags can be seen in the original feature space. After calculating the
similarities of each instance, xk, to every bag, Gi, the L1-SVM
returns non-zero weights for s(x10, Gi) and s(x24, Gi), marking
instances 10 and 24 as significant. In the 2D similarity space of these
2 instances (Fig. 9b), the bags are depicted as individual points and
their classification becomes trivial.
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Fig. 9: Mapping of bags in instance space: a: A toy example of
6 bags, 3 of which are positive and 3 negative, with 9,8,7,5,9 and
6 instances respectively (44 in total). Some instances are on top of
each other. b: s(x10, Gi) and s(x24, Gi) had non-zero weights and
were selected from the SVM out of the 44. The 6 bags are mapped
onto this 2D space. Classification becomes trivial.

Usually, SVMs use the squared 2-norm of the weight vector
||w||, but this results in a Quadratic Program to solve. MILES
uses the 1-norm SVM, ||w||1 =

∑
k |wk|, which is easier to

solve, as it is a Linear Program. Slack variables, ξ, η, are used
to account for overlap between positive and negative bags and the
error of these false negatives (FN) and false positives (FP) must be
minimized. Using different penalties between these slack variables,
C1, C2 respectively, can correct for class imbalances, which is the
parameter C =C1 /C2 in the implementation of MILES in the MIL
Toolbox (Tax, 2013). The 1-norm SVM is formulated as:

min
w,b,ξ,η

λ

n∑
k=1

|wk|+ C1

l+∑
i=1

ξi + C2

l−∑
j=1

ηj

s.t.(wTm+
i + b) + ξi ≥ +1, i = 1, . . . , l+,

− (wTm−j + b) + ηj ≥ +1, j = 1, . . . , l−,

ξi, ηj ≥ 0, i = 1, . . . , l+, j = 1, . . . , l−

(5)

where, C1 and C2 are the penalties for FN and FP, respectively,
l+, l− are the numbers of positive and negative bags and i, j are the
indices of the positive and negative bags.

3 RESULTS
3.1 The WNT Pathway
Searching for differences in genomic features throughout the
complete dataset may be meaningful between two cell types for
a specific pattern of expression, but not so for a single cell type.
For the latter, it is more meaningful to search for significant TFs
in a subset of genes related to a specific function. For this reason,
a subset of genes was needed that should have been studied well
enough in order to be able to relate the findings of this study, if any,
back to biology.

The signalling pathway chosen according to these criteria was
the WNT pathway. This pathway is one carrying chemical signals
between cells. As such, it is observed only in multicellular
organisms and is not found in single cell ones, like bacteria. It is
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highly conserved, meaning that it is very similar in very different
organisms. The chemical signal conveyed between cells is that of
β−catenin, a protein that regulates gene transcription inside the
cell nucleus and coordinates cell-cell adhesion. The up- or down-
regulation of the pathway, or its disruption, has been implicated in
various diseases including cancer. It has been studied intensively
for the past 30 years and, as will be seen in Subsection 3.4, there
was some information to link the present findings to the underlying
biology.

From the original dataset of 15K bags (genes) with 230K
associated instances (TFBSs), 125 bags, with 2004 instances, are
associated to GO term GO:0016055, that is the WNT pathway. This
small dataset was used in all of the following experiments as a
validation platform.

3.2 Experiments for Label Discretization
For all 3 cell types of Tier 1, the labelling thresholds were varied
– for both strategies – and the performance of 3 classifiers was
evaluated. The pattern ”G0 K1” was also investigated. This pattern
signifies different things for the two strategies. For the yθ strategy
it means that a gene is not expressed in a healthy blood cell
(GM12878), but it is expressed in a cancerous one (K562). For the
y010 strategy it signifies that a gene is different from the one in the
reference for the healthy blood cell, while it is not so different for
the cancerous blood cell.

The 3 classifiers used were: (a) Citation MIL, (b) Simple
MIL with a log linear classifier and. (c) MILES with a radial
kernel of optimized distance and FN-FP penalty threshold parameter
C = 0.005. Citation MIL is a MIL version of nearest neighbour,
where the classifier uses the Haussdorff distance between the bags
of instances. The final bag label is given by majority voting of
the labels of the K nearest bags. Simple MIL is trained on the
complete dataset, disregarding the fact that it is organized in bags.
When evaluating, all the instances of a bag are classified and, by
combining the labels of the highest 1%, a label is given to the bag.
For Citation MIL and MILES scaling of the features to unit variance
was applied, apart from the binary ones.

For cell type GM12878, the highest performance is achieved by
MILES over the other two classifiers over all experiments, as can be
seen on Fig. 10a. The performance is stable with small standard
deviation over the 5 folds for each cross validation experiment.
Overall, the first strategy of the θ thresholds outperforms the second,
y010, one apart from the second classification scenario of pattern
discovery (pattern ”G0 K1”). An immediate difference between
the two strategies is the number of positive bags (Fig. 8). For the
y010 strategy, even at 90% similarity, i.e. a gene is given label 1 if
its expression is within 10%-190% of the reference, roughly 9500
genes out of 15000, per cell type, are labelled positive (Fig. 8b),
which immediately implies that the cell types are not similar enough
for comparisons.

Considering each cell type (Figs. 10 and 11), the classification
performance varies, because of the differences in genomic features.
Different thresholds work best for each cell type; lower thresholds
θ for the first strategy, allowing more genes to be positive, yield
better performance for the blood cells, while, for the stem cell –
where most of the genes are highly expressed (Fig. 8) – higher

thresholds counteract the positive class imbalance and yield better
performance.

For the second strategy, higher thresholds t, allowing more genes
to be labelled positive, help boost performance as they counteract
the negative class imbalance. The y010 strategy is, overall, more
robust both performance- and threshold-wise, as for all cell types
and the pattern a value of t = 0.7 works reasonably well (almost
75% AUC); even for H1-hESC, where the best performing threshold
was t = 0.3, the next best one was t = 0.7.

A summary of the best performance for MILES and the
corresponding thresholds, θ, t, is given in Table 2.

Discretization Strategies
yθ Strategy y010 Strategy

Cell Type θ AUC t AUC
GM12878 12.5 90.0% (10.5%) 0.9 78.9% (9.0%)

K562 12.5 82.6% (8.8%) 0.8 73.5% (9.8%)
H1-hESC 70 85.0% (9.7%) 0.3 75.9% (9.4%)

G0 K1 20 72.6% (20.1%) 0.9 83.6% (20.8%)

Table 2. Highest MILES performance for each cell type and corresponding
thresholds.

3.3 Experiments for Parameter Optimization
An experiment was conducted for two datasets of the healthy blood
cell, GM12878, for each of the labelling strategies. 5-fold cross-
validation was performed on these datasets varying the penalty
between false positives (FP) and false negatives (FN), which is
a parameter of MILES. C was varied in an exponential manner
(0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100). The
classification performance is given by the AUC (Area under ROC
curve). For the varying of C, the following figures are plotted:
(a) AUC against C (Figs. 12a and 12b), (b) mean error against C
(Fig. 12c and 12d). The distance of the radial kernel is optimized
internally by MILES. Here, it is defined as the first nearest
neighbour distance, of the complete training set.

As can be seen in Figs. 12a and 12b, the performance increases
after the initial values, for both strategies, and stabilizes after C =
0.01 (also, Fig. SF-4 in Supplementary). A similar picture (Figs. 12c
and 12d) is drawn for the mean classification error, as it decreases
and stabilizes after C = 0.01.

3.4 Result Interpretation
The normalization step did not make much difference (Figs. 10, 11
and SF-2, SF-3 in the Supplementary; also Tables 2 and ST-1 in
the Supplementary). In some cases it decreased performance very
slightly. It marginally improved the performance for cell types K562
and H1-hESC, that were the ones with higher total RNA production
and only for y010, the second labelling strategy. For these two cell
types, the normalization step decreased the gene expression levels,
providing a fairer comparison between them and the reference skin
cell, thus labelling the bags more correctly. For the first strategy,
yθ , it shifted the thresholds of best performances, which is logical,
since it shifted the values for every cell type according to total over-
or under-production of RNA. Applying threshold, θ, afterwards
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Fig. 10: Classifier Performance (GM12878): a: For the yθ strategy. b: For the y010 strategy.
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Fig. 11: Classifier Performance for cell types K562, H1-hESC and pattern ”G0 K1”): a, b, c: For the yθ strategy. d, e, f : For the y010
strategy.

resulted in more genes labelled with 0 or 1 according to over- or
under-production, respectively.

The only reversal in performance, is for pattern ”G0 K1”, where
the y010 strategy outperforms the yθ one, for the most relaxed
threshold t = 0.9. For the lower thresholds, t, the y010 strategy
performs worse than random (Fig. 11f).

Fig. 13 depicts: (a) the number of instances (TFBSs) selected
by MILES against C, for both strategies (Fig. 13a and 13b), (b) the
corresponding number of unique TFs selected by MILES, out of 79,
against C (Fig. 13c and 13d). A cut-off for the weight absolute
value of 10−6 was used to only focus on the most significant
instances. Two scatter plots are, also, given of the AUC against the
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Fig. 12: Effects of varying C on performance and mean error
of MILES: Mean 5-fold AUC for: a the yθ labelling strategy at
threshold 7.5 and for b the y010 strategy at threshold 0.8. c, d: The
respective mean errors. The errorbars are the standard deviations of
the 5-fold cross validation.

number of selected instances (Figs. 14a, 14b) and corresponding
TFs (Figs. 14c, 14d).

The varying of C seems to have an effect on the number of
instances that are selected as significant from MILES. With lower
thresholds, MILES is not able to find an optimal solution and the
number of TFs selected as significant is zero or very small. A note
on the standard deviations for Fig. 13 is that the number of selected
features varied greatly between the different folds for every value
of C. That was why a cut-off value of 10−6 was used for the
weights wk and the picture became much clearer. Between the two
discretization strategies, yθ works better, as less TFs are selected on
average (Figs. 13c and 13d) out of the 79 possible.

The best performing threshold was C = 0.005 and was chosen
over C = 0.01, although the error is less (Fig. 12c), and the
performance more stable (Fig. 12a). The number of instances
selected by MILES as important is smaller for C = 0.005 over
5 folds than C = 0.01 (Fig. 13a).

Between the two strategies (Figs. 14a and 14b), fewer selected
instances lead to improved performance. This is the combination of
conclusions from Figs. 12a and 13a, for the yθ strategy and Figs.
12b and 13b, for the y010 strategy, but it does not mean that there is
necessarily a correlation between the selected number of instances
by MILES and performance. While varying C, the performance is
stable, apart from the cases where MILES cannot find any concepts
(C = 10−4 and C = 10−3).

3.4.1 Single Cell Type Scenario For the single cell type
classification scenario, the classifier was retrained for the complete
dataset, without fold separation. MILES returned 792 instances
as important for gene expression, out of 2004. These instances
belonged to 73 unique TFs and 105 genes. Of these instances,
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Fig. 13: Correlation of selected instances to FP-FN penalty
threshold, C: Number of selected instances (TFBSs) by MILES
(weight cut-off, |wk| > 10−6) over 5 folds for various thresholds
of C for a: the yθ labelling strategy and for b: the y010 one. c, d:
Corresponding numbers of selected TFs for both strategies.
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Fig. 14: MILES performance (AUC) to number of selected TFs:
a, b: Mean AUC against mean number of selected instances by
MILES over 5 folds for the yθ and the y010 labelling strategies. c,
d: Corressponding number of selected TFs.

only 21 had weights |wk| > 10−6, out of which 12 were positive
weights. These 21 highly weighted TFBSs belong to 19 unique
genes. As will be seen in Subsection 3.4.2, some of these genes
(HIC1, MITF, AMOTL1) are also important in the two cell type
scenario, suggesting their general importance for the WNT pathway.

MILES performed well and was very flexible. Flexibility here
means that instances were picked as important even when the TFs
were not bound on the promoter region of a certain gene, reflecting
the biological reality of the negative effect some TFs may have
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on gene expression; when a TF is not bound, it allows a gene to
be expressed. Also, instances with negative weights were picked,
meaning that, though they were bound, they were influencing gene
expression also in a negative manner.

3.4.2 Two Cell Type Scenario For the two cell type pattern
classification scenario, the results for pattern ”G0 K1” for the second
strategy, y010, at threshold t = 0.9 will be discussed here in
further detail. The classifier was retrained for the complete dataset,
without fold separation. As a result, 138 instances were selected as
important, belonging to 53 unique TFs and 24 unique genes. Out of
these 138 TFBSs, only 10 had a weight absolute value over 10−6,
i.e. |wk| > 10−6. For these 10 TFBSs that belong to 8 TFs and 9
genes, the differences in genomic features can be seen for the 2 cell
types in Table 3. The 24 unique genes are known genes related to the
(de-)regulation of the WNT pathway and have involvment in cancer
whether as activators or repressors.

As can be seen in Table 3, the most meaningful features for
differential regulation turn out to be whether a TF has been
encountered in one cell type or not, the open chromatin interactions
and the histone modifications. These are given in bold, to signify
that they were different between cell types. There is evidence in
the literature that support the important role of these features both
for cancer and the WNT pathway (Kandoth et al., 2013), (Liu
et al., 2008). The genomic distances can also be considered as an
interesting result. It is believed that the first TF after the TSS is the
most responsible for gene expression. Here others are found that are
further away.

For the 24 genes, whose instances were found important for gene
expression by MILES, a gene enrichment analysis for TFs was
performed with the web-based application ChEA, ChIP Enrichment
Analysis (Lachmann et al., 2010). This application uses a database
of 190K ChIP interactions describing the binding of 92 TFs to
almost 32K genes. With this database, one can find TFs most
likely responsible for gene expression changes by computing the
over-representation of their TFBSs.

After searching in ChEA for the 24 genes whose instances were
found important for gene expression by MILES, the TFs that came
out with corrected p-values lower than 0.05, could not be rejected
as random for gene expression changes. These can be seen in Table
4 with the corresponding weights, wk, assigned by MILES.

The second highest weighted instance by MILES, for TF EZH2
(enhancer of zeste homolog 2), turns out to be likely significant for
the expression of gene HIC1 (ENSG00000177374) in mice. When
the same search was performed for humans only, EZH2 did not
appear in the results, meaning it is a novel finding of the current
research. Evidence of interactions between EZH2, SUZ12 and HIC1
could be found in the literature (Boulay et al., 2012), although the
interaction is not of the same kind, meaning TFs bound on the
promoter region of a gene. In the case of Boulay et al. (2012),
EZH2, SUZ12 and HIC1 form a complex to recruit polycomb
proteins. Their experiments were performed on mice, but their
findings are transferable to humans, since this gene is conserved
between humans and mice 1. Further evidence could be found in the
literature that when EZH2 binds in the promoter region of HIC1,
it causes di- or tri-methylation of H3K27, which silences the gene

1 http://www.ncbi.nlm.nih.gov/homologene/4740

(Svedlund et al., 2012). This explains both the observed features
of that TFBS but also justifies the current findings. This is a very
encouraging result as it shows that the current findings have some
merit in biology.

It is, also, interesting that this result was still obtained, while
the labels do not quite reflect the ”truth” of gene expression. The
expression values of gene HIC1 were 562, 51, 0 and 67, in
RPKM, for GM12878, K562, H1-hESC and NHEK, respectively.
Therefore, with the y010 labelling strategy, gene HIC1 was labelled
0 for GM12878 as it was significantly different from the reference
(0.1 ∗ 67 < 562 ≮ 1.9 ∗ 67), while it was labelled 1 for K562, as it
was similar to NHEK (0.1 ∗ 67 < 51 < 1.9 ∗ 67), therefore falling
into pattern ”G0 K1” and labelled 1.

Other TFs were likely significant as well for humans in the
enrichment analysis, but had been assigned low weights by MILES.
On the other hand, some instances with higher MILES weights, wk,
are not significant in the enrichment analysis (p > 0.05), but they
do appear nonetheless.

4 DISCUSSION
A method was presented to investigate the genomic differences
between different cell types that influence gene expression, using
the MIL framework. To the authors’ knowledge, this is a novel
approach. In general, MIL has started been applied to biological
problems only very recently (Li et al., 2013), (Eksi et al., 2013).

From a performance point of view, the results are promising.
The MIL framework seems an adequate platform to address such
biological questions. The MILES classifier, which was deemed as
the most adequate to address the question of this study, performs
well in all different scenarios. From a biological point of view,
a partial confirmation could be obtained for some instances; they
turn out to be likely significant for gene expression in humans and
mice, just as MILES predicted. This gives motivation for further
investigation.

Some remarks have to be made regarding the data that can lead to
improvements to make the method more robust.

For some experiments in the ENCODE database, an experiment
for a TF may have been done only for one cell type. In this case,
if a TF is found to bind in this one cell type, nothing can be said
for the others, because the information does not exist. On the other
hand, if the experiment was done for all 3 cell types of Tier 1,
the information is there to store in a binary feature. The problem
with such a feature is that a zero has an ambiguous meaning, as
it is not known if the TF was not found to be there or because
the information does not exist. Therefore, this feature must signify
whether a TFBS was ever encountered in a particular cell type,
because this definition accounts for this ambiguity. If a TFBS was
unique, zeros were assigned to the cell types for which information
did not exist. Another way to address this ambiguity could be to
remove the experiments that were not performed for all 3 cell types.
This is true for 27 out of the 146 unique ChIP-seq TF experiments,
though a lot of data would be dismissed.

Another important step, would be to perform the classification
experiments again with the inclusion of the peaks that belonged to
binding proteins that were not TFs according to Vaquerizas et al.
(2009). Some confusion seems to exist on the adequate definition of
a TF, as some proteins that were excluded from the current study,
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TFBS TFBS Characteristics Cell Type Genomic Features Gene ID Label

Weight Position after TSS Observed with Gene Methylation Open Chromatin
Histone Modifications

H3K4 H3K27 H3K36

E2F6 2.029 14
GM12878 No 5% (3%) 2 1 0 0

ENSG00000015133 1
K562 Yes 5% (3%) 2 1 0 0

EZH2 2.003 1
GM12878 No 6% (0%) 3 1 0 0

ENSG00000177374 1
K562 No 6% (0%) 2 1 0 0

CTCF 1.883 1
GM12878 Yes 18% (3%) None 0 1 0

ENSG00000133067 1
K562 Yes 18% (3%) None 0 0 0

ZBTB7 1.71 2
GM12878 No 8% (4%) 1 0 1 0

ENSG00000143816 1
K562 Yes 8% (4%) 1 1 0 0

ZNF143 1.397 3
GM12878 No None 0 0 1 0

ENSG00000153071 1
K562 Yes None 1 1 0 0

E2F6 1.269 2
GM12878 No None 0 0 1 0

ENSG00000165795 1
K562 Yes None 1 1 0 0

ELF1 1.246 7
GM12878 No 6% (2%) 0 0 1 0

ENSG00000166025 1
K562 Yes 6% (2%) 1 1 0 0

ZNF143 1.094 9
GM12878 Yes 8%, (2%) 1 1 1 0

ENSG00000187098 1
K562 Yes 8%, (2%) 1 1 0 0

STAT1 0.691 15
GM12878 Yes None None 1 1 0

K562 No None None 1 0 0

RUNX3 -0.016 13
GM12878 Yes 3% (0%) 2 1 0 0

ENSG00000119509 0
K562 No 3% (0%) 1 1 0 0

Table 3. Summary of the differences in genomic features for the highest weighted instances by MILES, for pattern ”G0 K1” and the y010 strategy at
threshold, t = 0.9. In bold are the features for which differences were observed between the two cell types.

TF Gene wk p-value Organism
EZH2 ENSG00000177374 2.003 0.005 Mouse

EGR1
ENSG00000166025 3.62 ∗ 10−8

10−6 Human
ENSG00000165795 1.89 ∗ 10−8

GATA2 ENSG00000166025 8.9 ∗ 10−9 0.01 Human
SUZ12 ENSG00000177374 2.06 ∗ 10−9 0.003 Mouse

Table 4. TFs that are likely responsible for gene expression, by statistical
enrichment analysis and their corresponding, sorted, MILES weights.

are characterized as TFs in ChEA (Lachmann et al., 2010) and
elsewhere.

Regarding classification, further experimentation with the
classifiers is needed. The results of MILES were investigated
thoroughly, but not so for the other classifiers. For example, Simple
MIL uses a soft labelling scheme, by selecting the upper 1% of
the instances with highest prior probability and then applying the
label of those to the bag label. It would be interesting to see if
the instances that are picked as significant from Simple MIL agree
with the ones from MILES. Another point, would be to change
the internal implementation of MILES in the MIL Toolbox (Tax,
2013) and instead of using an SVM, use the implementation of
the SLEP package, Sparse Learning with Efficient Projections (Liu
et al., 2009), to find concepts. Finally, other MIL classifiers could
also be tested, such as Diverse Density (Maron and Lozano-Pérez,
1998), and their output be compared with that of MILES.

The labelling schemes were a device used to generate appropriate
gene labels to use for classification. Although the classifier
performance was high, a more adequate scheme is needed. Judging
from the differences in performance, between the two strategies,
the increased number of positive bags for the first strategy helps
classification. That is a weak point of the y010 strategy, as a skin

cell must not be the most adequate reference when comparing to two
blood cells and a stem cell. Instead of comparing the 3 cell types of
Tier 1 to a skin cell, for the classification of pattern ”G0 K1”, the
two cell types could be compared to each other to generate the bag
labels. Furthermore, the meaning of the labels could be changed
entirely. A bag label could be generated by counting the numbers of
TFs that are bound and not bound in the promoter region of a gene.
If more are bound, then the bag is labelled with 1 and 0 otherwise.
The instance labels would then signify if a TF is bound or not. This
is, of course, existing information from the ChIP-seq experiments,
but it could be used as a validation platform for the evaluation of the
current findings.

Further testing would also be beneficial. Other small datasets
of known pathways could be used to find if the performance is
consistent in many scenarios. This is judged important, as for the
WNT pathway – although it is well-studied from a biological point
of view – there is not an up-to-date database where all information
is available to be used for bioinformatics analysis. Furthermore, it
would be interesting to test between the other combinations of cell
types for other patterns of expression. The pattern ”G0 K1” was
deemed important, as it signified which genes change expression
patterns due to cancer. Other expression patterns could also be
interesting to study. Finally, testing with the genes for which gene
expression is unknown, due to incompleteness of the ENCODE
data, would be a real-life scenario worth investigating.

As a last remark, some theoretical aspects of MIL could also be
tested for the classification scenarios of this study. One of these
aspects is the increasing bag size. It is natural to expect that a
larger bag size makes a problem harder to solve, increasing its
complexity (Babenko, 2008). But this may not always be the case,
as more TFs binding to the promoter region of a gene may be
relevant for gene expression and be helpful in classification. One
way to test this would be to vertically concatenate the instances for
every bag, thus representing every gene with a single feature vector.
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Then, using the number of instances as an extra feature in the new
vectors, normal classification could be performed. Finally, a second
aspect, related to the first one, could be to try to identify how many
TFs are actually responsible, or needed, for gene expression, from
a MIL point of view. The assumption that one positive instance
can be enough to label a bag positive, may not always be true.
An example of this, is how many image segments – of lava, ash
clouds and a conical shape – one would need to call an image
one of an active volcano (Cheplygina et al., 2013). Similarly here,
many TFs may be responsible together for gene expression and only
when identifying all of these, can a bag be labelled positive. To
test this, different methods of instance concatenation could be used,
to describe the bags in a (dis)similarity space, thus investigating
the informativeness of instances and determining a number for
meaningful classification.
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This document contains further explanations and additional figures which were
deemed unnecessary for an essential understanding of the material but which may

nevertheless be of interest to the reader.

S-1 DATA SOURCES
The data of the ENCODE Project consists of experiments done by different labs. According to the type of experiment, all the results are
organized in data tracks and the combined tracks of all different labs are organized into super-tracks. This can be overwhelming when one is
unfamiliar with the datasets. Here are provided all the links to the data used for the current study.

To associate TFBSs to genes, a gene annotation file was needed. One was downloaded from http://www.gencodegenes.org/releases/3c.html.
It was an older one, but still valid as indicated in release history http://www.gencodegenes.org/releases/. This file was chosen, because of the
use of this annotation by Caltech for RNA-seq.

For gene expression, the experiments of Cold Spring Harbor are more extensive, as were done for more cell types. Unfortunately,
RPKM expression values are not provided for a lot of genes. For this reason, the dataset of Caltech was preferred, although
done for less cell types. The Genes Gencode v3c were downloaded for the 3 cell types of Tier 1 from http://genome.ucsc.edu/cgi-
bin/hgFileUi?db=hg19&g=wgEncodeCaltechRnaSeq.

The TFBS Uniform ChIP-seq peak data were downloaded from http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwg
TfbsUniform#TRACK HTML, in the form of narrowPeak files.

For DNA methylation (by Reduced Representation Bisulfite Seq) the .bed files from ENCODE/HudsonAlpha were downloaded from
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeHaibMethylRrbs.

For Open Chromatin, the DNa-seq data of UW/Duke were downloaded in the form of bigBed (.bb) files from
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration data jan2011/byDataType/openchrom/jan2011/fdrPeaks/.

Finally, for Histone Modifications, the data of ENCODE/Broad was downloaded in the form of narrowPeak files from:
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHistone.

S-2 NON NORMALIZATION OF RPKM VALUES
Here we give the same Figs. as Section 3.2, without the pre-processing step of RPKM normalization. The labelling of the bags for the test
dataset of the WNT pathway changes very slightly for each strategy (Fig. SF-1). The experiments here (Figs. SF-2 and SF-3) were performed
with C = 0.005, which was the best value when doing the parameter optimization experiments.

The highest performances for MILES per cell type can be seen in Table ST-1.

S-3 VARYING OF FP-FN PENALTY THRESHOLD C FOR ALL CELL TYPES
For the highest performing thresholds, θ, t, of every cell type the optimization experiments for parameter C were repeated to justify the
selection of C = 0.005 as the optimal value (Fig. SF-4).
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Fig. SF-1: Number of positive bags to thresholds, for GO:0016055: With normalization: a: Inverse proportionality to θ. b: Proportionality
to t. Without Normalization: c: Inverse proportionality to θ. d: Proportionality to t.

Discretization Strategies
yθ Strategy y010 Strategy

Cell Type θ AUC t AUC
GM12878 20 91.0% (6.6%) 0.8 79.3% (9.6%)

K562 17.5 82.8% (9.0%) 0.9 69.5% (10.0%)
H1-hESC 80 85.2% (10.1%) 0.5 73.2% (11.2%)

G0 K1 20 78.8% (15.4%) 0.9 83.2% (20.5%)

Table ST-1. Highest MILES performance for each cell type and corresponding thresholds, without RPKM normalization.

2



MIL for Differential Regulation

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

100

Threshold, θ

A
U

C

Performance of 3 MIL classifiers with varying labelling

thresholds of the yθ strategy for cell type GM12878

 

 

unit−var, Citation MIL

Simple MIL, loglc2, 0.01

unit−var, MILES, r=opt

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

60

70

80

90

100

Threshold, t

A
U

C

Performance of 3 MIL classifiers with varying labelling
thresholds of the y

010
 strategy for cell type GM12878

 

 

unit−var, Citation MIL

Simple MIL, loglc2, 0.01

unit−var, MILES, r=opt

(b)

Fig. SF-2: Classifier Performance without RPKM Normalization (GM12878): a: For the yθ strategy. b: For the y010 strategy.
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Fig. SF-3: Classifier Performance for cell types K562, H1-hESC and pattern ”G0 K1” without RPKM normalization: a, b, c: For the
yθ strategy. d, e, f : For the y010 strategy.
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Fig. SF-4: Varying of FP-FN penalty threshold C, for all cell types and the pattern ”G0 K1”: a: For the yθ strategy. b: For the y010
strategy.
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0.1 Motivation

Across multiple cell types, genes are expressed differentially and the question as to
why that happens rises. It is of great importance to answer that question and find
the regulatory elements that control gene expression across different cell types. A
corresponding example in cancer research would be why some types of cells can be
deregulated to have a cancerous expression and others do not. Accordingly, in this
paradigm, one would be able to answer why a cell differentiates to a certain cell type,
given only the regulatory elements of the genes involved in differentiation.



1 July 2013

1.1 A Brief Introduction

In the human genome there are about 20.000 genes. In every cell type, some genes are
expressed – and some are not – and this is the reason why cells differentiate. For every
gene (i.e. DNA sequence that is translated to a protein) there is a region upstream of
the gene sequence, that enables RNA polymerase to bind to the DNA and initiate
transcription, which is called a promoter region (PR).

Transcription factors (TFs) are proteins that bind to the DNA and control the flow of
genetic information by activating or repressing the recruitment of RNA polymerase
(Figure 1.1). Transcription factor binding sites (TFBSs) are DNA locations (sequences)

Figure 1.1: Illustration of DNA, TF and RNA polymerase binding. Taken from [1].

where proteins bind to the DNA (e.g. “Enhancers” label or “Insulator” label in Fig.
1.1). Promoter regions can be considered as a special case of TFBS. Promoter re-
gions have the additional feature that RNA polymerase is the binding protein and
the downstream sequence is translated to a protein.

5
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The goal is to be able to predict if a gene will be expressed or not, given only the
features characterizing the TFBSs and determining further which binding site(s) is/
are responsible for the expression pattern. In terms of machine learning and pattern
recognition, this problem fits the criteria to be characterized as a multiple-instance
learning (MIL) problem [2], where one object (bag) is described by multiple feature
vectors (instances) but the label is only known for the object instead of the instances.
In the current study, the object would be a gene and the instances would be the fea-
tures of the TFBSs that are associated to its promoter region.

To solve this problem, data must be collected for every binding site associated to
a gene PR from the ENCODE databases, to construct feature vectors (instances). Af-
terwards, the MILES (Multiple Instance Learning via Embedded Instance Selection)
framework [3] will be used to train a classifier that will be able to predict the gene
label (expressed/ not expressed) and which instances are responsible for this.
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1.2 Data Collection

1.2.1 ChIP-seq Data

Data obtained from "Chromatin immunoprecipitation followed by sequencing" (ChIP-
seq) [4] experiments can be used to detect DNA methylation, histone modifications
or nucleosome distribution. But this data contains only the start and end position of
a read for a specific TF in the form of two distributions. From all the short read align-
ments two distributions are generated. Two peaks form for the positive and negative
strand flanking the binding location of the TF under study (Fig. 1.2). A peak-calling
algorithm is then required to align the peaks to the exact position on the genome.

Figure 1.2: ChIP-seq data generation and preprocessing. The last two blocks corre-
spond to a method for creating a single "profile" out of the 2 distributions,
used to align the region of interest to the genome. Taken from [5].
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In eukaryotes, the problem is that these reads may not be identical between cells of
the same type. So, the two distributions may become very wide making the exact po-
sitioning of the TFBS on the genome impossible. If not impossible, then the position
of a TFBS can be only accepted with a certain level of statistical significance.

1.2.2 Data Selection and Preprocessing

Cell types for the ENCODE Project are separated in 3 categories called Tiers. This
is done for better data integration between groups. The 3 Tiers represent different
priorities with Tier 1 being the highest. Priority is meant for experiments, as data
should be collected from experiments done first for cells of Tier 1, then Tiers 2 and 3.
Tier 1 consists of 3 cell types, GM12878, H1-hESC and K562, with the first two being
normal cell types and the latter a cancerous cell type.

As of May 2013, there is a new browser track 1 that contains 690 datasets of tran-
scription factor (TF) ChIP-seq peaks data. This track covers 161 unique TFs for 91 cell
types. Though this looks promising, the problem is that the data is very sparse. A
visual representation of this sparsity can be seen in the following Figure.

Figure 1.3: The sparsity of existing TF ChIP-seq data for the three cell types of Tier 1.

To collect data, a search for TFBSs was performed. Then, only the TFBSs that were
associated to a gene were kept for further investigation (Fig. 1.4). To achieve this, all
gene start positions were extracted from a gene annotation file and, from these, a list

1http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform#TRACK_HTML

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeAwgTfbsUniform#TRACK_HTML
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of positions 1000 base pairs (bp) upstream were recorded, that represented the PRs.
The positions of TFBSs with recorded ChIP-seq peak data were cross-referenced with
that list. If a TFBS fell into a PR, it was stored in a new list. These are the TFBSs of
interest for which feature vectors will be constructed.

Figure 1.4: A toy example of interesting TFBS according to their position upstream of
genes in the promoter region. TFBS1 and TFBS2 are associated with the
gene on the coding strand. TFBS3 is associated to the gene on the template
strand.

For the preserved TFBSs, data such as ChIP-seq peaks, DNA methylation, histone
modification and open chromatin will be collected to construct a “preliminary” fea-
ture vector (Figure 1.5).

Figure 1.5: Constructing the "preliminary" feature vectors of the TFBSs for every cell
type.

Finally, this will be done for all cell types and the resulting feature vectors will
be concatenated to the feature vectors that will be used as the instances in the MIL
framework.
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Figure 1.6: Instance and Bag construction in the MIL framework.

1.2.3 Visualizing the Data

After data collection and preprocessing the constructed dataset should look like Table
1.1. At present (July 2013), 284295 TFBSs have been assigned to 10055 genes out of
22565 only for one cell type (K562 of Tier1).

Cell Type TF Name Binding Site Features Gene_ID Expression
GM12878 Pol2 398 62.110 4.55

ENSG00000229955

1

GM12878 Atf106325 1000 168.771 3.64 1

GM12878 Atf106325 677 106.042 3.64 1

K562 Pol2 1000 355.866 4.55 0

K562 Atf106325 921 132.929 4.31 0

GM12878 Brf1 266 41.636 3.84
ENSG00000185238

0

K562 Brf1 843 26.308 3.84 1

GM12878 Cfos 144 22.658 3.85
ENSG00000028203

1

K562 Cfos 1000 242.247 3.85 0

K562 Pu1Pcr1x 131 20.579 4.19 ENSG00000270466 0

Table 1.1: The dataset constructed after the collection and preprocessing of data.

To enrich the data and obtain information for the rest of the genes, more cell types
will be added. For the 10055 genes, the number of instances varies between 1 and
179. The number of instances per gene can be seen on Figure 1.7.
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1.3 Using Multiple Instance Learning to Classify
Gene Expression

In an MIL setting, each gene is considered as a bag, Gi, whereG ∈ G = {G1,G2, . . . ,GN}
and G is the training set. Each bag label yi ∈ Y = {y1,y2, . . . ,yn}, where yi is a binary
number. This label represents in how many types of cells the gene is considered as
expressed or not. For example, for the three cell types of Tier1, a gene label could be
"010", indicating that the gene is only expressed in cell type 2. This gives 2n labels,
where n is the number of genes. The bag labels are known, as they are determined
from the biological data.

Each bag contains instances xij, such that Gi = {xi1, xi2, . . . , xij}. Each instance, xij,
contains biological information for a TFBS that lies inside a PR, across all cell types.
The instance labels yij ∈ {0, 1} are unknown. The instance labels express whether a
certain TFBS contains (or does not contain) meaningful information for the expression
of a particular gene.

The goal is, given a gene, to find the instances – the DNA locations where proteins
bind in the promoter regions – that are responsible for the gene being expressed (or
not) in a cell type. To classify gene expression and be able to find which instances are
meaningful for it, MILES2 will be used.

1.3.1 Instance-Based Feature Mapping

If N is the total number of bags, then l+ is the number of positive ones and l− is
the number of negative ones and N = l+ + l−. Grouping all the instances together,
disregarding whether they belong to positive or negative bags, the total number of
instances is k and a random instance can be depicted as xk.

Supposing the instances belong to an n-dimensional space, Rn, the first goal is to
try and map the data to a new instance-based feature space Fc. That is needed, in
order to be able to represents bags as single points.

To do this, a similarity measure is needed between an instance and a bag; and that
is the shortest distance between an instance xk and an instance xij in a bag Gi (Table
1.2) given as:

s(xk,Gi) = max
j

exp
(
−

||xij − x
k||2

σ2

)
(1.1)

A matrix can be constructed, containing all the distances between the instances and
all bags. Each row of the matrix represents one of the features s(xk, ·) in Fc and each
column is the coordinates m(Gi) of a bag Gi in this feature space Fc.

2Multiple-Instance Learning via Embedded instance Selection
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
s(x1,G1) s(x1,G2) . . . s(x1,Gn)

s(x2,G1)
. . . . . .

...
... . . .

. . . ...
s(xk,G1) . . . s(xk,Gn−1) s(xk,Gn)



Table 1.2: The constructed similarity matrix. Each cell is the shortest distance between
instance k and bag n.

With the bags mapped onto Fc, and represented as single points, a classifier can be
trained to differentiate between them.
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Figure 1.8: A toy example of 6 bags, 3 of which are positive and 3 negative, with
9,8,7,5,9 and 6 instances respectively (44 in total).

To perform feature selection and determine which instances are significant for the
bag labels, a 1-norm support vector machine (SVM) will be applied and select rows
from Matrix 1.2.
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Figure 1.9: A toy example of bag mapping to concept feature space. Continuing the
previous example, features 10 and 24 were selected from the SVM out of
the 44. The 6 bags are mapped onto this 2D space.

The SVM tries to solve the problem of finding a linear classifier y = sign(wTm+ b)

in the new feature space Fc, to differentiate between positive and negative bags. w
and b are model parameters and m ∈ Fc are the bag coordinates in Fc.

The weights of the linear classifier are restricted by demanding that: y = wTm+ +

b > +1 for positive bags and y = −(wTm− + b) > 1 for negative bags. In standard
SVMs the squared 2-norm of the weight vectors ||w|| are used as a regularizer, which
makes SVMs quadratic that are harder to solve. For this reason, MILES uses the 1-
norm of w, ||w||1 =

∑
k |wk|, which is linear and therefore easier to solve.

The classifier uses slacks ξi,ηj to account for possible overlap between the bags.
The total error that must be minimized is: C1

∑l+

i=1 ξi + C2
∑l−

j=1 ηj, where C1,C2 are
weights penalizing on false positives and false negatives. They are chosen such that
they are convex, meaning if C1 = µ, then C2 = 1− µ, where 0 < µ < 1. The 1-norm
SVM is formulated as:

min
w,b,ξ,η

λ

n∑
k=1

|wk|+C1

l+∑
i=1

ξi +C2

l−∑
j=1

ηj

s.t.(wTm+
i + b) + ξi > +1, i = 1, . . . , l+,

− (wTm−
j + b) + ηj > +1, j = 1, . . . , l−,

ξi,ηj > 0, i = 1, . . . , l+, j = 1, . . . , l−

(1.2)

To solve this in a linear programming way, wk is rewritten as wk = uk − vk, where
uk, vk > 0. If either of them has to equal zero, then |wk| = uk + vk. The 1-norm SVM
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can be rewritten as:

min
u,v,b,ξ,η

λ

n∑
k=1

(uk + vk) + µ

l+∑
i=1

ξi + (1− µ)

l−∑
j=1

ηj

s.t.[(u− v)Tm+
i + b] + ξi > +1, i = 1, . . . , l+,

− [(u− v)Tm−
j + b] + ηj > +1, j = 1, . . . , l−,

uk, vk > 0,k = 1, . . . ,n,
ξi,ηj > 0, i = 1, . . . , l+, j = 1, . . . , l−

(1.3)

Any optimal solution to 1.3 will have at least one of the two variables uk, vk equal
to zero for all k = 1, . . . ,n. If the optimal solution is w∗ = u∗ − v∗ and b∗, then the
magnitude of wk determines the influence of the k-th feature on the classifier. The
index set of selected features is named I = {k : |w∗k| > 0}. Finally, a bag Gi is classified
by:

y = sign
(∑
k∈I

w∗ks(x
k,Gi) + b∗

)
(1.4)
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2.1 Notes on Implementation

Looking ahead to the data to be added – DNA methylation, histone modification and
open chromatin –, it became apparent that each TFBS will have a variable number of
e.g. methylation sites associated to it. So this data cannot be incorporated directly
to the feature vectors already constructed, because the dataset will end up having
vectors of variable length. So, for now, the decision was made to just count how
many sites are associated to each TFBS.

A toy example of the dataset already constructed, can be seen in the following
Table.

Chromosome Strand TF Start End Features Gene_ID Expression
7 - Pol2(Ifng6h) 72936803 72937047 . . .

ENSG00000009954 0.3045
7 - Pol2(Ifng6h) 72936408 72936590 . . .

Table 2.1: A toy example of the TFBSs that need to be associated with other data.

And an example of methylation data to be added:

Chromosome Strand Start End Reads Percentage
1 + 1000170 1000171 46 35
1 - 1000206 1000207 53 26

Table 2.2: A toy example of methylation data to be associated to TFBSs.

The use of dictionaries in python seemed appropriate for this association task.
Looking at the example data, a problem becomes obvious; that there is no value in
this data that is immediately descriptive and unique to be used as a key. The naive
approach was first tried, where for each TFBS, the whole methylation data would be
cross-checked to see if any can be associated to that TFBS. This approach was very
slow, as there are currently 279178 TFBSs and more than 110000 DNA methylation
peaks.

A different approach was needed, where an effective key would be used. A list of
tuples was created from the information of Table 2.1, [(1,7,-,Pol2,72936803,
72937047),(2,7,-,Pol2,72936408,72936590),...], where the first element of each

16



Chapter 2. August 2013 17

tuple is the unique row number. Then, for every chromosome, a dictionary was con-
structed. For each dictionary, the range of each TFBS peak was broken down to single
nucleotides and each was used as the key. So, for the toy example, the dictionary of
chromosome 7, would have entries like: 72936803:[1,Pol2,-],72936804:[1,Pol2,-]
,...,72937047:[1,Pol2,-], 72936408:[2,Pol2,-], .... This is a one-to-one map-
ping that makes it faster to search for methylation peaks that fall within a TFBS. A
pseudo-code version of this algorithm can be seen below.
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Algorithm 1 Associate data to TFBSs.

TFBS_data = []
with open(dataset) as indata:

data = read file
for i,line in enumerate(data):

get chromosome , start , end , strand
value = (i, chromosome , start , end , strand)
TFBS_data.append(value)

# Create Dictionary as well. The key is row number i.

# List holding all chromosome dictionaries
chrom_dicts = [23*{}]
for name , chrom , strand , start , end in TFBS_data:

# The range of chromosome positions this TFBS overlaps
position_range = xrange(start , end +1)
# Add TFBS name to list that overlap each nucleotide

position.
for p in position_range:

chrom_dicts.setdefault(p,[]).append(name)

# Create a list that will hold the sum of methylation values
for each TFBS

TFBS_meth = [0]* len(BS_dict.keys());
with open(Methylation_data) as methyl:

for line in methyl:
get chromosome , position , strand
if position in chrom_dicts[index]: # lookup position

for TFBS_ID in chrom_dicts[index][start]: # for
all TFBSs associated to that nucleotide ...
TFBS_meth[TFBS_ID] = TFBS_meth[TFBS_ID] + 1;

# ... add 1 for the open chromatin peak

# Create a concatenated list of the dictionary values and
the number of methylation peaks

concat = [ BS_dict[kindex] + [TFBS_meth[kindex ]] for kindex
in xrange(len(TFBS_meth))]

With this method, DNA methylation and open chromatin peaks were associated to
TFBSs. The frequencies of the number of peaks associated to each TFBS are given in
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the following graphs.
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Figure 2.1: Frequency of the number of methylated DNA bases per TFBS. Most in-
stances have 0-50 nucleotides associated to them.
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Figure 2.2: Frequency of the number of associated OC peaks per TFBS. Most instances
have no or one peaks associated to them.
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2.1.1 Collecting Histone Modification Data

Biological Information

Histones are proteins that assist in the tight packing of DNA [6]. Five major families
of histones exist: H1/H5, H2A, H2B, H3 and H4. Histones H2A, H2B, H3 and H4
are known as the core histones, while histones H1 and H5 are known as the linker
histones. Eight histones form an octamer called chromatin, around which DNA can
wind (Figure 2.3).

Figure 2.3: Chromatin forming from eight histones and the DNA packing around it.
Taken from [6].

This complex formed between the chromatin and the DNA is called a nucleosome
and is the first in a series of DNA packing mechanisms. Histones are interesting, as
they play a role in gene regulation. From [7]: Genes, promoter regions or enhancer/-
suppressor elements need to be accessible to fulfill their role during cell cycle. The
composition of chromatin regulates the different genomic functions. But this com-
position is determined by histone modifications, such as methylation, so they are
thought to play a role in cellular processes. The cause of histone modifications and
their biological effects are debatable, but it is clear that different parts of the genome
are associated with different patterns of histone modifications. These patterns were
found with chromatin immunoprecipitation (ChIP) experiments using antibodies to
specific histone modifications.

Histone methylation happens on one amine group of the Lysine amino acid. Lysine
is repeated in multiple positions of the histones’ sequence. According to which Lysine
is methylated in the sequence, there are different association rules. In general:

1. Methylation of Lys4, Lys36 and Lys79 on histone H3 (H3K4, H3K36, H3K79) is
associated with actively transcribed genes.



Chapter 2. August 2013 21

Trimethylated H3K4 is normally found at the promoter region or the tran-
scription start site.

Trimethylated H3K36 is normally found in the gene bodies.

2. Methylation of Lys9, Lys27 on histone H3 (H3K9, H3K27) and Lys20 on H4
(H4K20) is associated with inactive genes.

3. On repressed genes, trimethylated H3K27 (H3K27me3) is associated with the
promoters.

A schematic representation of this can be seen below:

Figure 2.4: Average patterns of histone methylation on (a) actively transcribed and (b)
inactive genes. Taken from [7].

The Datasets

1All ChIP-seq experiments were performed at least in duplicate, and were scored
against an appropriate control. Submitted data was generally expected to meet an

1Taken from Histone Modification Data Description.

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/histone_macs/optimal/hub/uniformHistone.html
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initial standard for inter-replicate consistency developed by the ENCODE Consor-
tium to ensure an acceptable level of reproducibility; four fifths of the top 40% of
the targets identified from one replicate (using an acceptable scoring method) should
overlap the list of targets from the other replicate, or target lists scored using all avail-
able reads from each replicate should share more than 75% of targets in common.

Since every ENCODE dataset is represented by at least two biological replicate ex-
periments, a measure of consistency of peak calling results was used between repli-
cates, known as the irreproducible discovery rate (IDR) [8], in order to determine an
optimal number of reproducible peaks.

Using this measure generated two datasets2; one called conservative and the other
optimal. The optimal dataset contains some peaks that do not pass the original IDR
threshold. The conservative dataset is a subset of the optimal and the one that was
initially used for this study, as it contains a more confident set of peak calls.

The datasets selected were H3K4me3, H3K27me3 and H3K36me3. Two features
were calculated for each TFBS; the first is the number of histone modification peaks
that the TFBS falls into and the second is the distance from the "center" of the peak,
calculated as:

distance =
|TFBSstart −HMcenter|

HMwidth
(2.1)

The results will be shown in the following section, as substantial changes were made
to the dataset.

2Taken from IDR Procedure for Histone Mark Datasets.

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/histone_macs/README.txt
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2.2 Revised Dataset

The initial method used to associate TFBSs to genes was computationally expensive.
Once Python’s xrange iterable was used to construct the features, the assignment of
TFBSs to genes was redone to make the process faster.

In the narrowPeak files, there are almost 2 million ChIP-seq peaks. Of course, not
all of these are going to be associated to gene promoter regions. Using the initial
approach, approximately 284K binding sites were associated to 10K genes. Gene ex-
pression data was not available for all of these, so this dataset was somewhat reduced
to 279K instances for 9.8K genes. With the revised method, 569K binding sites were
associated to almost 17.3K genes. Again excluding genes for which there was no
expression data, the dataset contains 561K binding sites for 16.9K genes.

As a first filtering step for both datasets, binding sites that do not belong to tran-
scription factors were excluded. To achieve this a list of known Human TFs was
collected [9] and if a binding site was in the list, it was assigned as a TF. For the initial
dataset, 121K instances were recognized as TFBSs for 9K genes and for the revised
dataset, 263K instances for 16.1K genes.

For the latter dataset, the statistics of the collected features are given in the follow-
ing histograms.
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Figure 2.5: Frequency of the number of instances per gene. Most genes have 1-75
instances.
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Figure 2.6: Frequency of the number of DNA methylated bases per TFBS. Most TFBSs
have up to 50 methylated bases.
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Most TFBSs have 0-3 peaks assigned to them.
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Figure 2.8: Frequency of the number of associated Histone Modification peaks per
TFBS for Lys4, 27 and 36 on histone H3. Most TFBSs have 0-2 peaks asso-
ciated to them.

A table containing the same data as Figure 2.8:

Number of Peaks H3K4 H3K27 H3K36
0 73750 399184 238523
1 300692 129131 195053
2 139597 26923 88492
3 39909 5519 30468
4 6724 916 7560
5 800 92 1414
6 294 1 201
7 0 0 49
8 0 0 5
9 0 0 1

Sum 561766 561766 561766

Table 2.3: Frequencies of the number of associated Histone Modification peaks per
TFBS.
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3.1 Dataset Re-revisited

The assigning of genes’ promoter regions to ChIP-seq peaks was done in Python. The
dictionary for every chromosome was held in a list. Initializing that list turned out
to be a problem, as Python handles different methods in unique ways. Making a list
of dictionaries with [{}]*len(genes), uses the same reference to the inner list as the
elements of the outer list. But this is problematic, as a gene would be assigned to
all chromosomes that have the same relative position, instead of just one. This means
that the end result would be having a gene assigned to chromosomes 1 and 17, if both
contained a peak at position 10.000. To rectify this, a different initialization method,
[{} for i in xrange(len(genes))], is enough.

This changes the dataset yet again. It now consists of 345185 instances for 11200
genes. After appending gene expression data, the dataset is reduced to 341886 in-
stances for 11035 genes. The procedure for appending DNA methylation, Histone
modification and open chromatin data remained the same. After an initial filtering
for binding proteins that are TFs, the dataset was finally reduced to 147564 instances
for 10261 genes.

3.1.1 Pipeline Order

While constructing the latest dataset, an initial approach was to first filter for binding
proteins that were actually TFs and then continue appending the rest of the features.
This would lose information, as the data for non-TFs would be discarded. Another
approach was to construct the complete dataset and then filter for TFs. Surprisingly,
the end results, after filtering, were not the same. A bug in dictionary construction
was found and corrected, as duplicates were generated by using the same files mul-
tiple times.

3.2 Removal of Duplicates

In the constructed dataset there are two kinds of duplicates. Experiments for the
same binding protein from different institutes yield duplicate ChIP-seq peaks of the
first kind. Experiments conducted for the same binding protein with varying experi-
mental conditions yield duplicate peaks of the second kind.

26
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The first step to remove them, was to bin them according to gene and binding
protein. If the peaks were associated to the same gene and belonged to the same TF,
then they were considered for duplicate removal. The second step was to use the
q-values in the original narrowPeak files for every peak. The peak of lowest q-value
was selected and the rest were considered as duplicates. Thus, the dataset was further
reduced from 147564 instances to 103661.

3.3 Normalizing Data

For every ChIP-seq peak the center is given as an offset from the start. This integer
value was translated to a float between 0-1 to better represent this feature. The other
major alteration was to normalize gene expression.

To achieve this, the genes were binned according to their expression value. This
resulted in the following histogram:
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Figure 3.1: Frequencies of the expression levels of genes. Most of them are very lowly
expressed.

Most genes are very lowly expressed; a threshold of 0.3 was set, below which all
expressions were set to zero and to one above. This resulted in two quite balanced
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classes of 5444 genes with 39566 instances belonging to the negative class (gene is off)
and 4817 genes with 64095 instances belonging to the positive class (gene is on).

3.4 New Dataset Statistics

For the new, corrected dataset, the statistics of the different features are given in the
following histograms.

Figure 3.2: Frequency of the number of instances per gene. Most genes have 1-18
instances.
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Figure 3.3: Frequency of the number of DNA methylated bases per TFBS. Most TFBSs
have up to 50 methylated bases.

Figure 3.4: Frequency of the number of associated Open Chromatin peaks per TFBS.
Most TFBSs have 0-1 peaks assigned to them.
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Figure 3.5: Frequency of the number of associated Histone Modification peaks per
TFBS for Lys4, 27 and 36 on histone H3. Most TFBSs have 0-1 peaks asso-
ciated to them.

Speculation...
Compared to the two previously constructed datasets, the new one has features

that are deemed more meaningful biologically. Especially the number of instances
per bag (gene), was reduced dramatically to a maximum of 45, which leaves roughly
1000/40 = 25 bp per binding protein. It is not known whether this is valid biologically,
but it is seen as more correct compared to 400 instances per gene, previously.
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4.1 Dataset Construction Decisions

Recapitulating, to construct the dataset the following decisions were made:

1. A region of 1000 bp upstream of a gene was considered as the promoter region.

2. A binding site was considered to fall within a promoter region if its start, and
not its end, would be there.

3. Only the binding proteins that are known transcription factors were kept in the
dataset.

4. For the construction of some features certain datasets were used, e.g. for His-
tone modifications the conservative dataset was used.

5. Since different TFBSs can have, for example, a variable number of open chro-
matin peaks, the features constructed were just enumerating these attributes
and not describing them, as this would result in vectors of variable length.

6. Gene expression was discretized to a binary feature at a threshold of 0.3, based
on the frequencies of expression to produce balanced classes.

7. Some features were normalized.

8. Duplicate entries, meaning ChIP-seq peaks for the same transcription factor on
the same gene, were removed by choosing the one with lowest q-value.

Since most features are binary (0/1) or between 0 and 1, having the positions of the
TFBSs on the dataset is not optimal, as these are 6-7 orders of magnitude larger. The
same stands for features such as DNA methylation that are 2 orders of magnitude
larger.

4.2 Reconstructing the Dataset

The omission in all previous datasets was that each TFBS was described by features
for one cell type. The correct way is to describe each TFBS by features of all available
cell types, to incorporate the differences of this one position along cell types. This was
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done by reconstructing the dataset and appending the available information from the
3 cell types of Tier 1, for every TFBS. The only difference is that when the dataset is
cleaned, duplicates are considered among all cell types, so more data is going to be
discarded.

4.3 Normalizing the Dataset

Since most features are binary (0/1) or between 0 and 1, the features that are not
had to be normalized. To achieve this, the mean, µ, and standard deviation, σ of
these features were calculated and the normalized feature would become: featNor =
val−µ
σ . The threshold to discretize gene expression was set to 0.1, but this led to very

imbalanced classes.

4.4 Matlab Experiments

All genes associated to GO term GO:0008284 (Biological Process, activation of cell prolif-
eration), were isolated as a small example of the dataset, to import in MatLab. This
subset contains 192 genes, of which 149 are negative and 43 are positive. There are
1350 instances in total.

The simplest possible setup was used:

• Y,Z,I = milcrossval(A,5), to perform 5-fold cross validation. The only thing
that this does is to generate a training set Y, that is 80% of the original dataset,
and a test set Z, that is 20%. (I have questions on that. Not working!)

• w = classifier(Y,conditions) to train a classifier.

• error = Z*w*testc, to test.

The results can be seen on the following table:
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Classifier Result Conditions
apr_mil 0.7027 (Y,’presence’,0.1,0.99,0.0001,0.1)

maxDD_mil 0.5135 (Y, ’presence’)

clust_mil
0.4116 (Y,1,4)
0.4914 (Y,1,10)
0.1595 (Y,1,100)

citation_mil
0.0531 (Y,1,1,3)
0.0531 (Y,1,1,2)

simple_mil 0.0270 (Y,’presence’,ldc)

MILES
0.1238 (Y,1,’r’,1)
0.1238 (Y,2,’r’,1)

Table 4.1: Some initial (wrong) results!
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5.1 Discretizing Gene Expression

5.1.1 Introduction

Gene expression is measured with RNA-seq, a sequencing assay that can be used for
quantification and transcript discovery. A common work flow of RNA-seq can be
seen in Fig. 5.1.

The process starts by selecting a cell population and extracting total RNA. This term
already implies that are different kinds of RNA that comprise the whole. Total RNA
mostly consists of rRNA (ribosomal RNA) and other kinds such as mRNA (messen-
ger), tRNA (transfer), lncRNA (long non-coding) and others. So, the first step is to
select which kind of RNA will be sequenced. This is a subtractive process, meaning
that the undesired kinds of RNA are depleted from the sample. The resulting sample
is "enriched" in a particular RNA kind, so this step is called enrichment.

For gene expression polyadenylated mRNA is selected. Messenger RNA is the re-
sult of DNA transcription and is the molecule that contains the piece of biological
information from DNA. RNA maturation is the process of adding a long sequence of
adenines on the 3’-end of the RNA molecule, resulting in mRNA that has a poly(A)+
tail. This molecule can then leave the nucleus to be translated to a protein in the
cytosol. mRNAs that are not matured are signified as poly(A)- and can include tR-
NAs, miRNAs (micro), piRNAs (piwi-interacting), siRNAs (small interfering), snR-
NAs (small nuclear) and lncRNAs.
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Figure 5.1: RNA-seq work flow (Taken from [10]).

After a sample is enriched for a certain RNA kind, the RNA molecules are frag-
mented evenly to ensure even coverage of whole transcripts, which means that every
transcript must be encountered (read) roughly the same number of times [11]. After
this is done RNA is reverse transcribed to complementary DNA (cDNA), so that it
can be mapped to a reference sequence (e.g. known gene, exon sequence or whole
genome). Finally, cDNA molecules are labeled with certain chemicals and thus, a
library is constructed.

Gene expression values are usually represented with RPKMs, which stands for
Reads per Kilobase per Million mapped reads. RPKMs are proportional to the abun-
dance of each gene or transcript. This is a normalized value that corrects for the
library size and reference sequence length [12]. It is given by the formula:

RPKM =
Nreads

Lkb ∗Nreads/million

(5.1)
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5.1.2 Data Selection

The ENCODE Project contains RNA-seq data from 16 cell types, including the 3 of
Tier1. These are separated in long (200 bp) poly(A)+ and poly(A)- experiments con-
ducted with the standard RNA-seq protocol [13]. The poly(A)+ ones were selected
for this study. Since all values for gene expression are given in RPKM units, they had
to be discretized to a binary 0-1 value, to indicate if a gene is expressed or not.

5.1.3 Discretization Strategy

RPKM values are real, positive numbers that had to be descritized and used as gene
labels for classification. To this end, a normalization step was first applied to the data.
For every cell type, the RPKMs of all genes were added together. This sum represents
the overall RNA production of a cell type. Each value was normalized by the mean
of those sums:

Nc(g) = Rc(g)
C∑

k∈G
Rt(k)

(5.2a)

where,C =
1

|T |

∑
t∈T

∑
k∈G

Rt(k) (5.2b)

where t ∈ T are the different cell types in set T , with c a cell type of interest. g is the
gene in consideration, over all possible genes k ∈ G.

This new value, Nc(g), for a gene in a particular cell type, resembles the TPM (for
Transcripts Per Million) values, that can be generated from RPKM, by dividing with
the sum of RPKMs for all genes and multiplying by a million, that is stated to be a
more accurate measure of RNA molar concentration [12].

After this preprocessing step, a list of 16 normalized expression values was created
for every gene. The data of this list, was fitted to a log-normal distribution. There
are two paths that can be considered here. One is to assume the values are already
in log-space and fit to a log-normal distribution or to take the logarithm of the values
and assume fitness to a normal distribution. The first path was considered, as the
frequencies of expression, for every cell type, are equal to one per gene. Secondly, as
a lot of genes have zero expressions for a certain cell type, using the logarithm can be
problematic. Even compensating with a very negative value instead of 0, for the log,
the resulting distribution is slightly shifted to the left.

After constructing this log-normal distribution, the second Pearson’s skewness co-
efficient, 3(µ−median)/σ, was used to calculate which way, left or right, most of the
probability lies. That in turn signifies a state for the gene, whether it is mostly off or
on.

For a new gene expression value, the decision to discretize it as expressed or not
works as follows:
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1. If the skew is positive, most of the probability is relatively closer to zero, so the
gene is assumed to be mostly not expressed. For a new value, if it falls under
the fourth quantile, assign a label of 1, 0 otherwise.

2. If the skew is negative, most of the probability is relatively away from zero, so
the gene is mostly expressed. If a new value falls under the first quantile, assign
a label of 0, 1 otherwise.

This strategy can be seen in the following figure.

Figure 5.2: Inferred probability and cumulative distribution functions for two genes
of the dataset with positive and negative skews. The decision boundaries
(fourth and first quantiles) are shaded in light blue. Means, µ, are also
depicted in red.

This method yielded the results seen in the following Table.

Cell Type Positives Genes Positive Genes across all 3 Cell Types
GM12878 3249

419H1-hESC 4356
K562 3221

Table 5.1: Positive genes for the 3 cell types of Tier1 (out of 12570).
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5.1.4 Matlab Experiments

With cross-validation working properly and with the new labels, the previous dataset
changed slightly. Out of the 192 genes (bags) 42 are now positive and 150 negative.
The previous experiment of a 5-fold cross-validation was repeated. The results are as
follows.

classifier
error Citation MIL Simple MIL (Bayes-Normal-1, q=0.01) MILES r=5.000000
AUC 59.6 (10.7) 59.6 (11.0) 62.1 (12.7)
cl.error 28.7 (5.3) 27.6 (5.5) 21.9 (1.1)

Table 5.2: MIL results of a 5-fold CV experiment for 3 classifiers. For citation MIL and
MILES the variances of the features were scaled to one.

5.2 New Discretization Strategy

5.2.1 Additional Features

To hopefully increase classification performance, additional features were constructed
from the existing data. Two important ones are genomic distances. One is the distance
of each TF from the transcription start site (TSS) in bp and the other is the in-between
neighbours between a certain TF and the TSS. Finally, the DNA methylation was ex-
panded to look for bp that were methylated 50 and 100 bp away on either side of a
TFBS.

5.2.2 Two Strategies

Since the previous method yielded poor results a new one was introduced and a
previous one (used in Section 3.3) was reused. The first is to compare gene expression
in the cell types of Tier1 to another, similar cell type. For this purpose, cell type CD20
of Tier2 was used, as it is a blood cell and relates to two out of the three cell types of
Tier1; GM12878 and K562 are respectively a healthy and a cancerous blood cell. An
initial threshold t = 0.7 was used. If a gene in one of the three cell types of Tier1 is
lower than t ∗ RCD20(g), then a 0 label is assigned, 1 otherwise. In this case, the labels
do no longer represent the expression or non-expression of a gene, but the significant
over- or under-expression in relation to cell type CD20.

The second, reused method is setting an arbitrary threshold, based on the frequen-
cies of gene expressions (Figure 3.1). A threshold t ′ = 0.007 was used. The outputs of
the two methods can be seen below.
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Positive Genes (out of 12570)
Cell Type Comparison to CD20(t = 0.7) Arbitrary Threshold (t ′ = 0.007)
GM12878 6583 8995

K562 6935 8954
H1-hESC 8591 10709

Table 5.3: Output labels of the two different discretization schemes.

With the new labels in place, two sets of experiments were designed, one per la-
belling scheme.

5.2.3 Evaluating Strategies

Both labelling techniques were tested with two GO annotation terms, GO:0030198
(Biol. process, extracellular matrix organization), containing 273 genes and GO:0008284
(Biol. process, up regulation of cell proliferation), containing 158 genes. These two GO
terms were selected, because the labels do not change significantly for GO:0030198,
but do so for GO:0008284, especially for the stem cell (H1-hESC). The differences in
labels are as follows.

Comparison to CD20(t = 0.7)
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 132(-), 141(+) 77(-), 81(+)

K562 121(-), 152(+) 78(-), 80(+)
H1-hESC 84(-), 189(+) 19(-), 139(+)

Arbitrary Threshold (t ′ = 0.007)
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 114(-), 159(+) 81(-), 77(+)

K562 110(-), 163(+) 77(-), 81(+)
H1-hESC 56(-), 217(+) 20(-), 138(+)

Table 5.4: Output labels of the two different discretization schemes.

The results of the two 5-fold cross validation experiments are given in Tables 5.5
and 5.6. For each GO term tested, the idea is to perform 5-fold cross validation on the
dataset of each individual cell type and then vertically concatenate the datasets. In
this way, the labels will be mixed on purpose, to reduce classification performance.
And this is indeed what can be observed on all 4 cases. An initial observation is
that the comparison scheme does not work as well as the arbitrary one across all cell
types. The performance is marginally better or even worse than random. What is
astonishing is that, for GO:0030198 that labels are almost the same between the two
schemes, the arbitrary threshold t ′ significantly outperforms the comparing one. The
next step is to change these thresholds slightly, to evaluate robustness.
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GO:0008284
Comparison to CD20(t = 0.7)

GM12878 AUC error
Citation MIL 51.3 (8.3) 48.3 (7.8)

Simple MIL (Bayes-Normal-1, q=0.01) 55.1 (6.6) 43.2 (3.8)
MILES (r=5.0) 51.0 (5.7) 48.3 (0.4)

K562 AUC error
Citation MIL 56.7 (3.6) 43.6 (2.1)

Simple MIL (Bayes-Normal-1, q=0.01) 63.8 (7.5) 42.9 (6.1)
MILES (r=5.0) 52.6 (7.9) 44.3 (0.4)

H1-hESC AUC error
Citation MIL 61.4 (7.0) 31.9 (3.6)

Simple MIL (Bayes-Normal-1, q=0.01) 60.0 (8.9) 30.1 (1.9)
MILES (r=5.0) 52.0 (4.5) 30.8 (0.3)

All 3 Cell Types (43(-), 230(+)) AUC error
Citation MIL 47.4 (11.0) 22.0 (4.4)

Simple MIL (Bayes-Normal-1, q=0.01) 44.3 (9.4) 15.7 (0.8)
MILES (r=5.0) 49.9 (6.2) 15.7 (0.8)

Arbitrary Threshold (t ′ = 0.007)
GM12878 AUC error

Citation MIL 80.3 (6.2) 23.5 (2.6)
Simple MIL (Bayes-Normal-1, q=0.01) 89.1 (4.0) 18.0 (3.1)

MILES (r=5.0) 88.2 (4.5) 21.9 (5.1)
K562 AUC error

Citation MIL 81.9 (8.3) 21.6 (8.1)
Simple MIL (Bayes-Normal-1, q=0.01) 90.5 (5.1) 17.2 (3.8)

MILES (r=5.0) 88.5 (4.1) 20.9 (4.2)
H1-hESC AUC error

Citation MIL 72.7 (11.6) 23.0 (6.0)
Simple MIL (Bayes-Normal-1, q=0.01) 86.7 (5.4) 20.5 (3.9)

MILES (r=5.0) 70.4 (16.4) 20.5 (0.5)
All 3 Cell Types (39(-), 234(+)) AUC error

Citation MIL 73.0 (14.4) 14.7 (4.1)
Simple MIL (Bayes-Normal-1, q=0.01) 88.9 (6.6) 13.6 (1.7)

MILES (r=5.0) 66.0 (16.6) 14.6 (0.6)

Table 5.5: Classification outcomes for GO:0008284.
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GO:0030198
Comparison to CD20(t = 0.7)

GM12878 AUC error
Citation MIL 55.3 (4.4) 46.3 (7.4)

Simple MIL (Bayes-Normal-1, q=0.01) 45.6 (11.5) 49.5 (10.0)
MILES (r=5.0) 47.1 (9.4) 48.7 (0.7)

K562 AUC error
Citation MIL 59.3 (10.7) 39.9 (9.3)

Simple MIL (Bayes-Normal-1, q=0.01) 62.9 (13.0) 36.8 (8.8)
MILES (r=5.0) 51.2 (13.2) 49.4 (0.9)

H1-hESC AUC error
Citation MIL 52.0 (10.3) 17.1 (3.8)

Simple MIL (Bayes-Normal-1, q=0.01) 56.2 (11.2) 12.0 (1.1)
MILES (r=5.0) 55.3 (10.9) 12.0 (1.1)

All 3 Cell Types (15(-), 143(+)) AUC error
Citation MIL 46.0 (11.1) 15.2 (2.9)

Simple MIL (Bayes-Normal-1, q=0.01) 45.0 (20.6) 9.5 (0.2)
MILES (r=5.0) 47.8 (4.9) 9.5 (0.2)

Arbitrary Threshold (t ′ = 0.007)
GM12878 AUC error

Citation MIL 71.4 (9.5) 29.4 (8.1)
Simple MIL (Bayes-Normal-1, q=0.01) 77.7 (7.3) 27.7 (6.6)

MILES (r=5.0) 72.6 (9.1) 22.7 (6.0)
K562 AUC error

Citation MIL 77.2 (6.8) 24.7 (4.8)
Simple MIL (Bayes-Normal-1, q=0.01) 87.5 (8.5) 18.4 (7.4)

MILES (r=5.0) 83.5 (8.8) 22.7 (6.9)
H1-hESC AUC error

Citation MIL 62.6 (9.7) 14.6 (3.6)
Simple MIL (Bayes-Normal-1, q=0.01) 75.1 (12.8) 15.2 (3.3)

MILES (r=5.0) 42.8 (13.0) 12.7 (0.2)
All 3 Cell Types (15(-), 143(+)) AUC error

Citation MIL 57.6 (2.9) 10.8 (2.8)
Simple MIL (Bayes-Normal-1, q=0.01) 68.9 (12.6) 12.6 (3.8)

MILES (r=5.0) 64.8 (14.7) 9.5 (0.2)

Table 5.6: Classification Results for GO:0030198.
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5.2.4 Perturbing the thresholds

The decision for setting the new thresholds is twofold. On one hand, the intuition
from biology is that most of the genes should be expressed at some point during
the life cycle of a cell, resulting in a larger positive class. On the other hand, with
the previous settings, the labels differed greatly between the two schemes. So, the
threshold t was decreased to 0.4, to allow more genes to be labelled positive, while
the threshold t ′ was increased to 0.03, to decrease the number of positive genes. The
results can be seen in the Table 5.7. The numbers are quite similar across the same cell
type.

Positive Genes (out of 12570)
Cell Type Comparison to CD20(t = 0.4) Arbitrary Threshold (t ′ = 0.03)
GM12878 7818 8074

K562 8040 8096
H1-hESC 9874 9653

Table 5.7: Output labels of the two different discretization schemes with the new
thresholds.

The labels for the two GO term datasets are given below. They are identical for the
two methods.

Comparison to CD20(t = 0.4)
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 107(-), 166(+) 66(-), 92(+)

K562 103(-), 170(+) 71(-), 87(+)
H1-hESC 60(-), 213(+) 15(-), 143(+)

Arbitrary Threshold (t ′ = 0.03)
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 107(-), 166(+) 66(-), 92(+)

K562 103(-), 170(+) 71(-), 87(+)
H1-hESC 60(-), 213(+) 15(-), 143(+)

Table 5.8: Output labels of the two different discretization schemes for the two GO
terms.

The classification results are given in Tables 5.9 and 5.10. The results are identi-
cal across the two methods for each GO term. Overall, they are very poor, but at
least they demonstrate that the high performance of the initial setting of the arbitrary
threshold was a coincidence. Furthermore, the new results show that, as more bags
become positive, there is a slight improvement in performance. This fact does not
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explain the vast difference in performance between the two methods in the previ-
ous section for GO:0030198, where the bag labels are almost identical. The bags that
change labels may be the most significant for classification.

GO:0008284
Comparison to CD20(t = 0.4)

GM12878 AUC error
Citation MIL 53.6 (8.1) 43.9 (5.8)

Simple MIL (Bayes-Normal-1, q=0.01) 61.2 (3.2) 40.3 (2.3)
MILES (r=5.0) 57.2 (9.4) 39.2 (0.5)

K562 AUC error
Citation MIL 61.7 (5.2) 36.6 (2.1)

Simple MIL (Bayes-Normal-1, q=0.01) 68.9 (9.9) 35.5 (10.5)
MILES (r=5.0) 53.8 (6.1) 37.7 (0.6)

H1-hESC AUC error
Citation MIL 65.5 (6.5) 24.5 (2.7)

Simple MIL (Bayes-Normal-1, q=0.01) 68.7 (4.9) 26.0 (4.1)
MILES (r=5.0) 55.4 (5.7) 22.0 (0.2)

Arbitrary Threshold (t ′ = 0.03)
GM12878 AUC error

Citation MIL 53.6 (8.1) 43.9 (5.8)
Simple MIL (Bayes-Normal-1, q=0.01) 61.2 (3.2) 40.3 (2.3)

MILES (r=5.0) 57.2 (9.4) 39.2 (0.5)
K562 AUC error

Citation MIL 61.7 (5.2) 36.6 (2.1)
Simple MIL (Bayes-Normal-1, q=0.01) 68.9 (9.9) 35.5 (10.5)

MILES (r=5.0) 53.8 (6.1) 37.7 (0.6)
H1-hESC AUC error

Citation MIL 65.5 (6.5) 24.5 (2.7)
Simple MIL (Bayes-Normal-1, q=0.01) 68.7 (4.9) 26.0 (4.1)

MILES (r=5.0) 55.4 (5.7) 22.0 (0.2)

Table 5.9: Classification outcomes for GO:0008284 with the new thresholds.
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GO:0030198
Comparison to CD20(t = 0.4)

GM12878 AUC error
Citation MIL 61.2 (1.7) 37.3 (5.6)

Simple MIL (Bayes-Normal-1, q=0.01) 50.1 (4.2) 46.2 (3.5)
MILES (r=5.0) 46.3 (2.4) 41.8 (0.7)

K562 AUC error
Citation MIL 58.9 (12.1) 39.2 (8.0)

Simple MIL (Bayes-Normal-1, q=0.01) 66.2 (7.9) 35.5 (4.6)
MILES (r=5.0) 50.2 (12.7) 44.9 (0.7)

H1-hESC AUC error
Citation MIL 52.6 (9.1) 12.7 (3.3)

Simple MIL (Bayes-Normal-1, q=0.01) 66.5 (13.9) 10.8 (1.9)
MILES (r=5.0) 48.7 (1.9) 9.5 (0.2)

Arbitrary Threshold (t ′ = 0.03)
GM12878 AUC error

Citation MIL 61.2 (1.7) 37.3 (5.6)
Simple MIL (Bayes-Normal-1, q=0.01) 50.1 (4.2) 46.2 (3.5)

MILES (r=5.0) 46.3 (2.4) 41.8 (0.7)
K562 AUC error

Citation MIL 58.9 (12.1) 39.2 (8.0)
Simple MIL (Bayes-Normal-1, q=0.01) 66.2 (7.9) 35.5 (4.6)

MILES (r=5.0) 50.2 (12.7) 44.9 (0.7)
H1-hESC AUC error

Citation MIL 52.6 (9.1) 12.7 (3.3)
Simple MIL (Bayes-Normal-1, q=0.01) 66.5 (13.9) 10.8 (1.9)

MILES (r=5.0) 48.7 (1.9) 9.5 (0.2)

Table 5.10: Classification Results for GO:0030198 with the new thresholds.

5.2.5 Investigating Two Cell Type Classification

To further investigate the previous results, classification of a pattern was attempted
with all 4 thresholds. The pattern under consideration was a gene not being expressed
in GM12878 (0 label) but being expressed in K562 (1 label). This was deemed interest-
ing as it would help determine differences between the healthy and cancerous blood
cells.

For the two GO terms, the gene labels for this pattern across two cell types can be
seen in Table 5.11.
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Arbitrary Thresholds Comparison to CD20
GO Term 0.007 0.03 0.4 0.7

0008284 (273 genes) 242(-), 31(+) 245(-), 28(+) 238(-), 35(+) 227(-), 46(+)
0030198 (158 genes) 135(-), 23(+) 137(-), 21(+) 133(-), 25(+) 133(-), 25(+)

Table 5.11: Output labels of all 4 thresholds for the pattern "G0K1" (GM12878 = 0,
K562 = 1).

For GO term GO:0008284 the results are as follows:

GO:0008284
Comparison to CD20(t = 0.7)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 52.8 (5.3) 29.3 (2.7)

Simple MIL (Bayes-Normal-1, q=0.01) 59.9 (13.7) 28.9 (7.3)
MILES (r=5.0) 51.2 (2.2) 16.8 (0.6)

Arbitrary Threshold (t ′ = 0.007)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 64.7 (10.0) 16.1 (4.5)
Simple MIL (Bayes-Normal-1, q=0.01) 76.8 (10.8) 19.8 (5.4)

MILES (r=5.0) 49.8 (0.5) 11.3 (0.6)
GO:0008284

Comparison to CD20(t = 0.4)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 63.7 (8.4) 18.3 (4.2)
Simple MIL (Bayes-Normal-1, q=0.01) 64.8 (12.5) 19.1 (5.2)

MILES (r=5.0) 55.3 (7.6) 12.8 (0.1)
Arbitrary Threshold (t ′ = 0.03)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 52.6 (10.2) 17.2 (3.5)

Simple MIL (Bayes-Normal-1, q=0.01) 64.3 (4.5) 18.3 (3.4)
MILES (r=5.0) 49.4 (2.6) 10.2 (0.9)

Table 5.12: Classification outcomes for GO:0008284 for a specific pattern and both sets
of thresholds.

As can be seen in Table 5.12, the classification performance for the comparing strat-
egy (thresholds t = 0.7 and t = 0.4) is overall quite poor. Despite this, it is consistent
with the performance of the same strategy for single cell types and the same GO term
(0008284), as can be seen in top parts of Tables 5.5 and 5.9. The same does hold for
the arbitrary threshold. While the lower threshold, t ′ = 0.007, performs really well on
single cell types (Table 5.5), the performance drops significantly for pattern classifica-
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tion. With the higher threshold, t ′ = 0.03, performance is similar (Table 5.9), but does
not behave as well as the comparison scheme.

For GO:0030198 the corresponding results tell a similar tale.

GO:0030198
Comparison to CD20(t = 0.7)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 55.2 (5.5) 23.4 (4.9)

Simple MIL (Bayes-Normal-1, q=0.01) 65.2 (15.6) 21.5 (9.3)
MILES (r=5.0) 51.2 (7.6) 15.8 (0.3)

Arbitrary Threshold (t ′ = 0.007)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 66.6 (10.8) 17.1 (6.1)
Simple MIL (Bayes-Normal-1, q=0.01) 71.8 (12.3) 18.3 (4.0)

MILES (r=5.0) 52.9 (18.4) 14.5 (1.5)
GO:0030198

Comparison to CD20(t = 0.4)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 56.7 (13.6) 25.9 (4.1)
Simple MIL (Bayes-Normal-1, q=0.01) 63.0 (14.5) 22.7 (4.4)

MILES (r=5.0) 52.6 (3.7) 15.8 (0.3)
Arbitrary Threshold (t ′ = 0.03)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 54.4 (10.3) 19.5 (6.6)

Simple MIL (Bayes-Normal-1, q=0.01) 67.7 (12.6) 15.7 (6.7)
MILES (r=5.0) 57.0 (11.7) 13.3 (1.1)

Table 5.13: Classification outcomes for GO:0030198 for a specific pattern and all
thresholds.

The performance is consistent between single cell type and pattern classification
(compare t = 0.7 of Table 5.13 to top of Table 5.6 and t = 0.4 of Table 5.13 to top of Table
5.10). For the arbitrary thresholds, t ′ = 0.007 and t ′ = 0.03, the performance is not the
same across the two scenarios. For the lower threshold,t ′ = 0.007, the performance
decreases (compare to middle of Table 5.10), while for the higher threshold, t ′ = 0.03,
it is similar (compare to middle of Table 5.10).

From this analysis, it can be seen that there is an increasing trend in the single cell
type, as well as the pattern, classification performance for the comparison to another
cell type scheme, as more genes migrate to the positive class. The same cannot be
said for the arbitrary thresholds, as the performance either deteriorates severely (t ′ =
0.007), or stays similar (t ′ = 0.03) between the single cell and pattern classifications.
This makes the comparison scheme more robust and promising for pattern search.
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6.1 Discretization Strategies

6.1.1 0-1-0 Scheme

Since the first comparative scheme did not yield very good results, another one was
devised. If a gene of interest is expressed at the same level as in the reference cell type,
then assign a label 1, otherwise assign a label 0, if it is significantly over- or under-
expressed. The scheme can be visualized in the following Figure.

Figure 6.1: The new comparison scheme with reference cell type CD20.

Comparison to CD20(t = 1− 0.3 and t = 1+ 0.3)
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 19(-), 254(+) 11(-), 147(+)

K562 21(-), 252(+) 18(-), 140(+)
H1-hESC 5(-), 268(+) 3(-), 155(+)

Table 6.1: Output labels of the 0-1-0 discretization scheme for the two GO terms.
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Comparison to CD20(t = 1− 0.3 and t = 1+ 0.3)
GO:0008284

GM12878 AUC error
Citation MIL 48.9 (9.9) 9.2 (1.3)

Simple MIL (Bayes-Normal-1, q=0.01) 86.0 (8.6) 12.1 (4.8)
MILES (r=5.0) 69.4 (11.7) 7.0 (0.7)

K562 AUC error
Citation MIL 70.1 (5.9) 11.4 (1.7)

Simple MIL (Bayes-Normal-1, q=0.01) 83.9 (11.3) 9.5 (2.4)
MILES (r=5.0) 40.2 (8.6) 7.7 (0.7)

H1hESC AUC error
Citation MIL 66.8 (27.0) 2.6 (2.1)

Simple MIL (Bayes-Normal-1, q=0.01) 88.4 (7.5) 2.2 (0.8)
MILES (r=5.0) 76.4 (16.2) 1.8 (0.0)

GO:0030198
GM12878 AUC error

Citation MIL 62.1 (14.9) 9.5 (2.3)
Simple MIL (Bayes-Normal-1, q=0.01) 77.6 (10.0) 10.8 (3.6)

MILES (r=5.0) 49.3 (13.0) 6.9 (1.2)
K562 AUC error

Citation MIL 61.1 (14.7) 15.2 (5.2)
Simple MIL (Bayes-Normal-1, q=0.01) 83.4 (10.4) 15.7 (7.2)

MILES (r=5.0) 51.0 (2.2) 11.4 (1.5)
H1hESC AUC error

Citation MIL - -
Simple MIL (Bayes-Normal-1, q=0.01) - -

MILES (r=5.0) - -

Table 6.2: Classification outcomes for GO:0008284 with thresholds 0.7-1.3. For cell
type H1hESC, only 3 bags were negative and CV could not be performed.

6.1.2 Absolute Zero

Here the discretization is the same as using an absolute threshold, with the only dif-
ference that the threshold is zero. If a gene has 0 RPKM expression value, give 0 label,
1 otherwise.
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Absolute Zero
Cell Type GO:0008284 (273 Bags) GO:0030198 (158 Bags)
GM12878 32(-), 241(+) 17(-), 141(+)

K562 43(-), 230(+) 27(-), 131(+)
H1-hESC 13(-), 260(+) 3(-), 155(+)

Table 6.3: Output labels of the zero discretization scheme for the two GO terms.

Absolute zero
GO:0008284

GM12878 AUC error
Citation MIL 63.8 (10.5) 14.6 (2.2)

Simple MIL (Bayes-Normal-1, q=0.01) 84.0 (6.4) 16.8 (6.8)
MILES (r=5.0) 70.7 (15.3) 11.7 (0.8)

K562 AUC error
Citation MIL 70.8 (7.4) 19.8 (5.8)

Simple MIL (Bayes-Normal-1, q=0.01) 83.2 (10.3) 18.3 (8.6)
MILES (r=5.0) 50.0 (0.7) 15.7 (0.8)

H1hESC AUC error
Citation MIL 69.0 (6.1) 5.5 (1.3)

Simple MIL (Bayes-Normal-1, q=0.01) 77.4 (8.8) 6.2 (2.0)
MILES (r=5.0) 62.8 (20.9) 4.8 (1.0)

GO:0030198
GM12878 AUC error

Citation MIL 59.1 (16.9) 17.7 (3.2)
Simple MIL (Bayes-Normal-1, q=0.01) 73.8 (16.6) 11.3 (3.9)

MILES (r=5.0) 54.8 (10.0) 10.7 (1.4)
K562 AUC error

Citation MIL 52.5 (12.3) 24.0 (4.7)
Simple MIL (Bayes-Normal-1, q=0.01) 80.6 (11.0) 23.3 (8.8)

MILES (r=5.0) 59.7 (10.9) 17.1 (1.3)
H1hESC AUC error

Citation MIL - -
Simple MIL (Bayes-Normal-1, q=0.01) - -

MILES (r=5.0) - -

Table 6.4: Classification outcomes for both GO terms with the absolute zero thresh-
olds. Because of too few negative bags, CV could not be done for H1hESC.
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6.1.3 Tables for 2 Cell Types

GO:0008284
Comparison to CD20(t = 0.7)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 52.8 (5.3) 29.3 (2.7)

Simple MIL (Bayes-Normal-1, q=0.01) 59.9 (13.7) 28.9 (7.3)
MILES (r=5.0) 51.2 (2.2) 16.8 (0.6)

Comparison to CD20(t = 0.4)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 63.7 (8.4) 18.3 (4.2)
Simple MIL (Bayes-Normal-1, q=0.01) 64.8 (12.5) 19.1 (5.2)

MILES (r=5.0) 55.3 (7.6) 12.8 (0.1)
Comparison to CD20(t = 1− 0.3 and t = 1+ 0.3)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 52.1 (12.1) 4.0 (1.5)
Simple MIL (Bayes-Normal-1, q=0.01) 77.8 (10.1) 15.0 (5.9)

MILES (r=5.0) 50.2 (0.4) 2.6 (1.0)
Arbitrary Threshold (t ′ = 0.007)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 64.7 (10.0) 16.1 (4.5)

Simple MIL (Bayes-Normal-1, q=0.01) 76.8 (10.8) 19.8 (5.4)
MILES (r=5.0) 49.8 (0.5) 11.3 (0.6)

Arbitrary Threshold (t ′ = 0.03)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 52.6 (10.2) 17.2 (3.5)
Simple MIL (Bayes-Normal-1, q=0.01) 64.3 (4.5) 18.3 (3.4)

MILES (r=5.0) 49.4 (2.6) 10.2 (0.9)
Absolute zero

GM12878 = 0, K562 = 1 AUC error
Citation MIL 55.4 (18.4) 9.5 (2.7)

Simple MIL (Bayes-Normal-1, q=0.01) 78.4 (6.2) 18.0 (4.2)
MILES (r=5.0) 50.0 (0.0) 5.1 (0.8)

Table 6.5: Classification outcomes for GO:0008284 for a specific pattern and all thresh-
olds. Repeating results from Table 5.12.
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GO:0030198
Comparison to CD20(t = 0.7)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 55.2 (5.5) 23.4 (4.9)

Simple MIL (Bayes-Normal-1, q=0.01) 65.2 (15.6) 21.5 (9.3)
MILES (r=5.0) 51.2 (7.6) 15.8 (0.3)

Comparison to CD20(t = 0.4)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 56.7 (13.6) 25.9 (4.1)
Simple MIL (Bayes-Normal-1, q=0.01) 63.0 (14.5) 22.7 (4.4)

MILES (r=5.0) 52.6 (3.7) 15.8 (0.3)
Comparison to CD20(t = 1− 0.3 and t = 1+ 0.3)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 76.1 (27.6) 6.3 (2.2)
Simple MIL (Bayes-Normal-1, q=0.01) 54.4 (16.4) 7.0 (1.5)

MILES (r=5.0) 50.0 (0.0) 3.2 (0.1)
Arbitrary Threshold (t ′ = 0.007)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 66.6 (10.8) 17.1 (6.1)

Simple MIL (Bayes-Normal-1, q=0.01) 71.8 (12.3) 18.3 (4.0)
MILES (r=5.0) 52.9 (18.4) 14.5 (1.5)

Arbitrary Threshold (t ′ = 0.03)
GM12878 = 0, K562 = 1 AUC error

Citation MIL 54.4 (10.3) 19.5 (6.6)
Simple MIL (Bayes-Normal-1, q=0.01) 67.7 (12.6) 15.7 (6.7)

MILES (r=5.0) 57.0 (11.7) 13.3 (1.1)
Absolute zero

GM12878 = 0, K562 = 1 AUC error
Citation MIL 57.4 (18.1) 13.3 (5.0)

Simple MIL (Bayes-Normal-1, q=0.01) 66.8 (19.3) 17.0 (6.1)
MILES (r=5.0) 54.3 (6.0) 6.9 (1.2)

Table 6.6: Classification outcomes for GO:0030198 for a specific pattern and all thresh-
olds. Repeating results from Table 5.13.

6.1.4 Looking at different thresholds.

To see how performance varies when the label discretization threshold is perturbed
the test dataset that performed best was selected. That was for GO term 0008284 and
for cell type K562 (Table 5.5). This dataset was relabelled using the following thresh-
olds: 0, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08.
Then the 5-fold cross validation experiment was repeated for the three classifiers and
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the results can be in Figure 6.2.

Figure 6.2: The new comparison scheme with reference cell type CD20.

ATTENTION: For this experiment, I made the test data files again. The results of
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0.007 are identical between this experiment and the original one (Table 5.5). For abso-
lute threshold 0.03 though, the results are NOT the same (Table 5.9 and 83.0 (0.6), 89.4
(4.3), 86.1 (3.1)). The labels differ (originally 103(-), 170(+), but now 129(-), 144(+)). I
am looking into my code.

6.2 Updated Dataset

As of this point, the promoter regions for all genes were considered from the tran-
scription start site plus or minus a thousand base-pairs according to the strand. But
this is not correct, as the bases on the negative strand are still increasing from the 5’
end to the 3’ end, but are read in reverse. So, the end of a gene on the negative strand
is the actual transcription start site. With this consideration in mind, the association
of TFs to genes was run again using a file generated from BioMart that contains only
the beginning and end of genes without considering transcripts. This resulted in a
new dataset containing 18579 genes and 192K instances.

For this dataset, the 1-0-1 labelling scheme (significantly different from reference)
was used, with NHEK (skin cells) from Tier 3 used as reference, as CD20 did not
contain expression data for all the genes in the updated dataset.

There are 82 distinct TFs associated to the genes of the dataset. For those, 82 new
binary features were constructed and added to each instance in the dataset. For the
presence of a certain TF, the corresponding feature gets value 1, while the rest re-
main 0. At this point, the features of open chromatin and histone modifications were
modified. For the open chromatin, an extra column was added with the maximum
distance of the TF from the peak. For histone modifications, the maximum was used
instead of the average.

With these features added, resulting to 100 features, the linear classifier used in
Simple MIL could not work. Some tweaks were needed for the current Matlab instal-
lation.

6.2.1 Matlab Tweaks

The linear classifier used with Simple MIL was crushing with the addition of the extra
features. For this reason, the logistic linear classifier was used instead. To do so, PR
Tools was updated to the current version 5. The minFunc package by Mark Schmidt
was added. The SLEP (Sparse Learning with Efficient Projections)1 package [14] was
also added to use with the implementation of a sparse logistic classifier.

1http://www.public.asu.edu/ jye02/Software/SLEP/

http://www.public.asu.edu/~jye02/Software/SLEP/
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This month was solely devoted to writing the article form of the thesis. The switch
from focus on the details to the more high-level and abstract thinking was a real
challenge. The most important figures describing the overview of the implementation
were created and are given below.

Figure 7.1: The overview for significant TF discovery in a single cell type.

Figure 7.2: The overview for significant TF discovery in multiple cell types. In this
case, the search is done for a pattern, e.g. "1-0", i.e. a gene is expressed in
a healthy cell, but is not expressed in a cancerous one.
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8.1 Updated Dataset

8.1.1 Correct TFBSs association to genes

As was mentioned before, the counting of bps on the genome is done from left to
right. This is the same on the positive strand, but on the negative strand, where the
genome is read in reverse, this means that the start and end of a characteristic are, in
reality, reversed. As an example, this is illustrated for the transcription start site (TSS)
in Fig. 8.1.

Figure 8.1: A toy example of the TSS for two genes, one on each strand. For the gene
on the negative strand, the TSS is the given end of the gene.

The assumption made in this study is that, if the start of a TF peak falls within 1000
bps of the TSS, then this TFBS is associated to a particular gene. This means that, on
the negative strand, the position given as the end of the peak is the actual start. With
this consideration, an updated version of the dataset was generated.

8.1.2 Gene Expression Data

As a new dataset was created, TFBSs were associated to 15782 protein-coding genes.
Since the start of this study, the RNA-seq data used for gene expression were from
the Cold Spring Harbor Lab. But, this database turned out to be incomplete. When
trying to associate a gene expression value, 603 genes were omitted. For this reason,
an alternate to this was used, namely the database from Caltech. This contains data
for fewer cell types, but for larger gene sets. The only difference is that the values
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are not normalized over all biological replicates, so the mean was used. Only 5 genes
were omitted.

The labelling scheme was 0-1-0, significantly similar to the reference, using gene
expression from NHEK (a skin cell) as reference. The resulting labels can be seen in
Table 8.1.

Positive Genes (out of 15008)
Cell Type
GM12878 8365

K562 8223
H1-hESC 8699

Table 8.1: Output labels of the 0-1-0 comparison discretization scheme.

8.1.3 Classification Results

As before, 82 binary features, representing the presence of each of the unique TFs,
were added to the dataset. When scaling the dataset to unit variance, for the Citation
MIL and MILES classifiers, these features remain unscaled. For GO term 0016055,
representing the WNT pathway, 125 genes of the dataset were identified with 2004
instances in total. The labels for this subset of genes can be seen in Table 8.2.

Comparison to NHEK(t = 1− 0.6 and t = 1+ 0.6)
Cell Type GO:0016055 (125 Bags)
GM12878 50(-), 75(+)

K562 53(-), 72(+)
H1-hESC 44(-), 81(+)

G0K1 117(-), 8(+)

Table 8.2: Output labels of the 0-1-0 comparison discretization scheme for GO term
0016055.

The classification results using partial scaling, and a nearest neighbour distance for
the radial kernel of MILES can be seen in Table 8.3.
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Comparison to NHEK(t = 1− 0.6 and t = 1+ 0.6)
GO:0016055

GM12878 AUC error
Citation MIL 65.9 (16.6) 29.6 (7.8)

Simple MIL (Logistic2, q=0.01) 77.5 (10.4) 25.6 (8.8)
MILES (r=NaN) 69.1 (18.4) 37.6 (17.6)

K562 AUC error
Citation MIL 52.0 (12.2) 41.4 (12.6)

Simple MIL (Logistic2, q=0.01) 67.3 (8.0) 31.9 (6.2)
MILES (r=NaN) 60.6 (9.0) 44.8 (7.1)

H1hESC AUC error
Citation MIL 63.9 (10.4) 34.5 (6.3)

Simple MIL (Logistic2, q=0.01) 68.1 (9.3) 31.1 (3.6)
MILES (r=NaN) 63.7 (7.1) 36.1 (7.8)

GM12878 = 0, K562 = 1 AUC error
Citation MIL 70.1 (25.7) 8.0 (2.8)

Simple MIL (Logistic2, q=0.01) 54.3 (34.6) 13.6 (3.5)
MILES (r=NaN) 57.8 (31.1) 6.3 (2.0)

Table 8.3: Classification outcomes for GO term 0016055 with the 0-1-0, NHEK com-
paring, 0.6 threshold.

Naming Decisions

While writing the paper, the decision was made to dub the absolute arbitrary thresh-
old as θ and the strategy yθ and the 0-1-0 strategy as y010. Henceforth, all references
to the two strategies will use these names.

8.2 Best Results

8.2.1 RPKM value distribution

With the new values from Caltech, the distribution of expression values for all genes
from the 4 cell types (GM12878, K562, H1-hESC and NHEK) was rebuilt.

Based on this distribution, the thresholds used for the yθ strategy were 0, 7.5, 12.5,
17.5, 20, 30, 40, 50, 60, 70, 80. For the y010 strategy, the threshold, t, was varied between
0.3− 0.9 in increments of 0.1.

From this point on, all the work that was done was put directly in the paper and the writing
of the log was abandoned. If not acceptable, it will be completed with the major experiments
done in more detail.
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Figure 8.2: Distribution of normalized expression values, in RPKM, for all 4 cell types.
Most of the genes are lowly expressed.
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