
 Universiteit Leiden  
 

Computer Science  
 
 

 
 

Interactive Visualization and Mining  
of Massive Time Series 

 
 
 
 
 
Name:   Alberto Baggio 
Student-no: s1209000 
 
Date: 30/01/2014 
 
1st supervisor: Arno Knobbe 
2nd supervisor: Ugo Vespier 
 
 
 
 
 
 
 
 
 
MASTER'S THESIS 
 
Leiden Institute of Advanced Computer Science (LIACS) 
Leiden University 
Niels Bohrweg 1 
2333 CA Leiden 
The Netherlands 

 



 



Acknowledgements

I am highly indebted to my academic supervisors Ugo Vespier and Arno Knobbe for
their feedbacks, time, e�ort and constant guidance throughout the work.

Last but not least, I would like to express my gratitude towards my parents, brother
Riccardo, girlfriend Ilaria, aunt Mary and friends Andrea, Laura, Francesca.





Abstract

When large amount of data is collected from complex time-evolving system, inter-
active time-series visualization showed to be really useful to perform exploratory
analysis and form an intuition of the system behavior. The literature proposes sev-
eral tools, but none of these provides high interactivity, centralized data collection
and open experiments sharing. VizTool, the novel time series visualization software
we propose, bridges this gap allowing for interactive and exploratory dataanalysis.
When visualizing time series, some sort of data approximation is needed since this
is plotted in a viewport with a pixel width typically smaller than t he number of
points in the series. Many approximation algorithms have been proposedbut none
of these presents a satisfying trade-o� between the compression ratio and the abil-
ity to preserve perceptual features in the data. Our work tackles the problem by
presenting a method to select a data adaptive hybrid approximationobtained by
composing diverse techniques.
Finding unknown patterns from time series data, known as motif discovery, resulted
to be one of the most relevant topic in the �eld related to our work. Due to its
expensive computational cost, quadratic in the number of points, several algorithms
which compute the motifs over data approximation have been proposed.However,
such algorithms exclude exact results in any case. Therefore, as additional con-
tribution we propose an anytime motif discovery algorithm which returns a result
anytime its termination is invoked, and which progressively converges to the exact
result.





Contents

1 Introduction 1

2 Related work 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data Mining tasks for time series . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2.1 Piecewise Aggregate Approximation . . . . . . . . . 7
2.2.2.2 Piecewise Linear Approximation . . . . . . . . . . . 7
2.2.2.3 Ramer-Douglas-Peucker . . . . . . . . . . . . . . . . 7
2.2.2.4 Maxima Extrema . . . . . . . . . . . . . . . . . . . 8
2.2.2.5 Discrete Fourier Transform . . . . . . . . . . . . . . 8
2.2.2.6 SAX . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Time series motif discovery . . . . . . . . . . . . . . . . . . . 9
2.2.3.1 Muen-Keogh exact motif discovery . . . . . . . . . . 13
2.2.3.2 Mueen, all lengths motifs . . . . . . . . . . . . . . . 13
2.2.3.3 Castro mrMotif . . . . . . . . . . . . . . . . . . . . 13
2.2.3.4 Top-k motif discovery . . . . . . . . . . . . . . . . . 14

2.3 Interactive time series data mining . . . . . . . . . . . . . . . . . . . 14
2.3.1 A visual analytics for peak preserving prediction of seasonal

time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 LiveRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 ChronoLenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Kronominer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 XmdvTool, prefetching for visual data exploration . . . . . . 17
2.3.6 Cypress, managing time series streams with multi-scale com-

pressed trickless . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.7 Multi-resolution techniques for visual exploration of large time

series data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.8 Visual interactive preprocessing of data . . . . . . . . . . . . 19
2.3.9 Stackzooming . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.10 VizTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



2.3.11 ATLAS, maintaining interactivity while exploring massive time
series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Open platforms for sharing and analyzing dataset and experiments
collaboratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 TimeViz 23
3.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Client-server web-based solution . . . . . . . . . . . . . . . . 23
3.1.2 Technologies and overall design . . . . . . . . . . . . . . . . . 24
3.1.3 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3.1 Data export and import . . . . . . . . . . . . . . . . 25
3.1.3.2 Sharing functionalities and data annotation . . . . . 25
3.1.3.3 Ubiquitous, scalable and portable solution . . . . . 26
3.1.3.4 Data bu�ering . . . . . . . . . . . . . . . . . . . . . 26
3.1.3.5 Data range bands . . . . . . . . . . . . . . . . . . . 27
3.1.3.6 Data Mining tasks . . . . . . . . . . . . . . . . . . . 27

3.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Hierarchy based visualization . . . . . . . . . . . . . . . . . . 28
3.2.2 Locating subsequences . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Data-adaptive hybrid approximation . . . . . . . . . . . . . . . . . . 32
3.3.1 Peak preserving side-e�ect . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Some observations over common segmentation algorithms . . 33
3.3.3 Hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3.1 Pseudo-Code . . . . . . . . . . . . . . . . . . . . . . 38

4 Resolution-aware motif discovery 41
4.1 Anytime resolution-aware motif discovery . . . . . . . . . . . . . . . 44

4.1.1 Induced pairs analysis . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Linear Pair Ranking . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Induced pairs ranking . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Anytime motif discovery . . . . . . . . . . . . . . . . . . . . . 48
4.2.4 Some remarks on the pseudo code . . . . . . . . . . . . . . . 49

4.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Precision and recall . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Matching rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion and future work 60

ii



List of Figures

2.1 Segmentation techniques example. Piecewise Aggregate Ap-
proximation, Gaussian Approximation, Fast Fourier Transform, Ramer-
Douglas-Peucker, Maxima Extrema. . . . . . . . . . . . . . . . . . . 10

2.2 Time series visualization tools. a. Chronolenses.b. LiveRAC. . 11

2.3 Time series visualization tools. a. Stackzooming. b. XmdvTool.
c. VizTree. d. Kronominer. . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 VizTool screenshot. a. The right side depicts the massive time
series visualization structure. The left menu allows the usage of sev-
eral data-mining components to the displayed time series.b. Data
import form detail. c. Data export form detail. d. Detail of motifs
discovered by using the tool. . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Dominant frequencies loss. The approximations obtained by us-
ing peak preserving algorithms miss the dominant frequencies of the
original signal. The right side of the chart plots the frequencies re-
tained by applying a low-pass �lter to the approximated series. . . . 31

3.3 Linear Blending. The data-adaptive algorithms show better perfor-
mances at low compression ratios. When the compression is high it is
true the other way around. Moreover, non data-adaptive algorithms
show similar behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Observations. The �rst chart outlines the signal shape. The second
outlines the points used respectively by PAA and RDP, according to
the standard deviation in each window. The third depicts the error
introduced by RDP and PAA in each aggregation window. . . . . . . 35

3.5 Optimization. The chart outlines the hybrid approximation error
obtained by using di�erent values for the threshold parameter, at
di�erent compression ratios. The chart below outlines the optimal
parameter value, achieved by performing linear regression over the
optimal path points. Computed the variance inside each aggregation
window, the algorithm uses thethreshold to select the segmentation
algorithm used to approximate the region. . . . . . . . . . . . . . . . 36

iii



4.1 a. Motif discovery example. Motifs discovered in an industrial
dataset, where data from a wire winding process are collected. The
motifs have been discovered by using the exact match discovery al-
gorithm. The �fth discovered motif (yellow) depicts the importan ce
of subsequences normalization, in order to remove o�set and scaling
e�ects.
b. Anytime resolution-aware motif discovery. The algorithms
step-by-step discovers the motifs over all the hierarchy levels. It starts
from the last level in the hierarchy and progressively climbs it. Af-
ter the �rst level has been performed, the algorithm returns result
anytime is terminated. Every step takes O(8) times the operations
performed in the previous one. . . . . . . . . . . . . . . . . . . . . . 43

4.2 Anytime motif discovery precision vs execution time. Preci-
sion (blue) vs execution time (red) for EEG, EOG, Randow Walk and
Insect behavior datasets. The parameter� used in theprecision and
recall computation is set to 0:4. The results are really promising,
for each dataset the algorithm obtains a precision equal or greater
then 0:8 in at least 10 times less the time required by the exact motif
discovery algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Mueen EEG. Motif discovered at di�erent resolutions in a dataset
where an electroencephalography sampling is collected. . . . . . . . . 54

4.4 Mueen EOG. Motif discovered at di�erent resolutions in a dataset
where an electrooculogram sampling is collected. . . . . . . . . . . . 55

4.5 Mueen Insect B. Motif discovered at di�erent resolutions in a series
sampling insect behaviors. . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Mueen random walks. Motif discovered at di�erent resolutions in
an synthetic dataset simulating random walks. . . . . . . . . . . . . 57

4.7 Mueen ECG. Motif discovered at di�erent resolutions in a series
sampling ECG data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Infrawatch strain sensor (101). Motifs discovered at di�erent
series resolutions in an industrial dataset, where data coming from a
strain sensor embedded into a bridge are collected. . . . . . . . . . . 59

iv



Chapter 1

Introduction

Over the last years, there has been a rapid increase in the amount of databeing
collected. We witnessed a real data explosion which drastically changed the way
we work and do research in a big variety of disciplines, such as biology,medicine,
telecommunications, sensor network. Within this context, time series collection and
analysis have become one of the most relevant �elds of study. When dealing with
large amounts of data measured from complex time evolving systems, interactive
time series showed to be an e�ective way to perform exploratory analysis and form
an intuition of the system's behavior. The studies and developments within the �eld
have been numerous, but we experienced a lack of easy-to-access tools, supplying
centralized data collections and open sharing of experiments.
In order to bridge this gap, our work proposes VizTool, a novel time series visual-
ization tool that o�ers interactive and exploratory data analysis. It is a p latform
that fosters community e�orts by providing a place to share and analyzedatasets
and experiments collaboratively over common testbeds. We are convinced that
transparency and comparability of experiments are crucial elements ofthe research
improvement process.
The tool adopts a subsampling hierarchy that makes the platform scalableto datasets
of any size: this is a solution which exhibits an e�cient resource usage by adapt-
ing the displayed data resolution to the client capabilities. The �nal outcome is a
portable, ubiquitous and safe tool which implements a web client-server architecture,
where the data is stored in a unique, safe and centralized server. Several state-of-
the-art techniques able to boost the overall interactivity (such as data prefetching
and data bu�ering) have been applied. Moreover, several components,such as data
annotation and data import/export, have been integrated for data management and
data sharing.

The main challenge when visualizing large time series is to maintain interactivity
while allowing the user to quickly zoom in and retrieve detailed portions of the
data. Moreover, since the data is plotted in a viewport with a pixel width which is

1



typically much smaller than the number of points in the time series, some sort of
approximation of the original data needs to be performed. The best approximation
for this task is the one with the best trade-o� between compression ratio and the
ability to preserve important perceptual features in the data. The literature contains
many examples of approximation algorithms for time series, from frequency-domain
methods, such as Discrete Fourier Transform and Discrete WaveletTransforms, to
time-domain methods such as Piecewise Aggregate Approximation, AdaptiveCon-
stant Approximation and Gaussian Aggregation. These are however focused on
minimizing the Euclidean distance between the original data and thereduced one.
There are few algorithms which actually aim at preserving the perceptual features
of the original data. Ramer-Douglas-Peucker, Perceptually Important Points and
Important Extrema are the most widely cited. However, while at low compres-
sion ratios, they model the data pretty well, their approximation er ror (in terms of
Euclidean distance) becomes considerable at high compression ratios. Considering
these limitations, we claim that there is not a single existing technique which behaves
well under the interactive visualization requirements depicted above. Therefore, we
propose a method to select a data-adaptive hybrid approximation obtained by com-
posing various techniques.

Time series motif discovery, i.e. the task of �nding unknown patterns from time se-
ries data, is one of the most relevant topics in the research �eld related to our work.
Indeed, it is one of the fundamental time series mining components provided by our
tool. The obvious solution to such a problem has a worst-case quadratic cost in the
number of points in the series, which compromises the overall interactivity. From
our experience, in the majority of cases, the domain expert looks just for a brief
overview of the motifs, while the exact report is required only in sporadic circum-
stances. The literature proposes several algorithms that compute the motifs over
approximation of the data, but these exclude the exact result in any case. Therefore,
as additional contribution, we propose an anytime motif discovery algorithm which
progressively improves the obtained results, a solution which adapts the execution
time to the user's needs without compromising the software interactivity.
The data collected from the InfraWatch Project, where a big number of sensors
were embedded and attached to the Hollandse Brug by Strukton, has beenthe main
industrial dataset we used in our experimentations.

The �rst chapter of this thesis introduces the work which has beenconducted so far:
time series data mining tasks and visualization tools will be discussed. Moreover,
the principal techniques for time series motif discovery and time series segmentation
will be discussed. In Chapter 2, we will outline the software architecture and the
main components that it provides. The conceptual choices we made willbe proposed
as well. The observations and the many steps which brought us to the formulation
of the data adaptive hybrid approximation algorithm will be outlined in C hapter

2



3. Chapter 4 outlines the motivations and the concepts behind the resolution-aware
motif discovery algorithm we propose. Finally, in Chapter 5 our conclusions are
presented and some proposals for future work are made.

Part of the research in this thesis has been presented at Benelearn 2013,the annual
machine learning conference of Belgium and the Netherlands, in Nijmegen. This
master thesis is written as a partial ful�llment of the requirements of the degree
Master of Science in the Leiden Institute of Advanced Computer Science (LIACS)
of Leiden University, and is supervised by Arno Knobbe and Ugo Vespier.

3



Chapter 2

Related work

Three main research �elds are related to the content of this thesis. The main
outcome of the work is a novel web-based tool to explore and mine high dimensional
time-series. Therefore, our research focussed mainly on interactive time series data
mining. Here, we analyze the methods proposed so far to interactivelyinvolve the
domain experts, and so, make them more e�cient and e�ective while performing
data mining tasks on massive time series data. Hence, topics such as ubiquitous and
anytime computing will be looked at closely.
The aforementioned research �elds involve all the studies which concern data mining
tasks for time series. Indeed, we will focus mainly on two relevantproblems: data
sub-sampling and time series motif discovery. We will analyze prosand cons of
several segmentation techniques mentioned in the literature, and we will propose an
anytime approach to perform time series motif discovery.
Finally, the analysis of all the open platforms to share and analyze time series and
experiments collaboratively is intrinsically related to the content of this thesis.

2.1 Background

The following section introduces some basic notions and terminology wewill use
throughout the entire thesis. Moreover, we de�ne some assumptions we make and
which will be valid henceforth.
A time series is a collection of values collected over time.

De�nition. A time series T is an ordered sequence of n real-valued variablesT =
f t1; t2; : : : ; tng, t i 2 R

In many data mining tasks, as motif discovery, we will often work with subsequences
of a given time series.

De�nition. Given a time seriesT = f t1; t2; : : : ; tng of length n, a subsequenceS
of T is a series of lengthm � n consisting of contiguous time instant from T,
S = f tk ; tk+1 ; : : : ; tk+ m� 1g, with 1 � k � n � m + 1 .

4



Often, time series are too big to be analyzed and data approximation isnecessary.
The aim of data approximation is to reduce the size of data while retaining the
signal fundamental shape and characteristics.

De�nition. Given a time seriesT = f t1; t2; : : : ; tng of length n, a representation of
T is a model T̂ of reduced dimensionalityd̂ << n such that T̂ closely approximates
T.

Most of the data mining tasks such as clustering, classi�cation, prediction and motif
discovery, involve the concept of similarity. The notion of similarity should be based
on perceptual criteria.

De�nition. The similarity measure D(T; U) between time seriesT and U, is a
function taking two time series as inputs and returning the distance between them.

Every evaluation which involves the concept of similarity in our work, will use the
Euclidian Distance. Although we know it is not the best measure to assess the
intuitive notion of shape, it has shown to be e�ective when working with really
large datasets.

De�nition. Given two time-series P = f p1; p2; : : : ; png and Q = f q1; q2; : : : ; qng,
the Euclidian Distance between them is de�ned as:

L 2(P; Q) =

vu
u
t

nX

i =1

(pi � qi )2 (2.1)

In many cases, we have to compare a time series with its approximatedrepresenta-
tion. In such a case, being the points in the second fewer than the points in the �rst,
we need to up-sample the approximation. We will always perform the up-sampling
process by using Linear Interpolation.

De�nition. Given pi a point in the original series P = f p1; p2; : : : ; png and pt i its
timestamp, qi the commensurate point in the reduced signalQ = f q1; q2; : : : ; qm g is
computed as:

qi =

8
<

:

ql +
qr � ql

qt r � qt l

� (pt i � qt l ) if qt l 6= qt r

ql � qr if qt l � qt r

(2.2)

l = max(qt1 ; : : : ; qtm ) � pt i , r = min (qt1 ; : : : ; qtm ) � pt i

2.2 Data Mining tasks for time series

This section gives a brief overview of the main data mining tasks related to time
series. We will focus on data segmentation and time series motif discovery, as both

5



are deeply analyzed in our work.
According to [7], the purpose of time series data mining is to try to extract all mean-
ingful knowledge from the data. Therefore, the most prominent problems arise from
the high dimensionality of data and the di�culty of de�ning a form of sim ilarity-
measure, based on human perception. We totally agree with this formalization
of the problem, hence as Esling does, we organize the time series datamining in
three major areas: representation techniques, similarity measurement and indexing
method.
The �rst data mining task for time series we mention is clustering , i.e. the process
of grouping di�erent time series in such a way that time series inside the same group
(cluster) are most similar to each other than the ones into a di�erent group. That
is to say that clustering aims to compose groups of time series which are similar to
each other and dissimilar to time series in other groups. Formally, clustering works
in order to minimize intra-cluster variance and maximize inter-cluster variance. The
problem is extended even to non-overlapping subsequences of a given time series.
The main approaches taken to solve clustering problems are:Self Organized Maps
(SOM), Hidden Markov Models (HMM) and Support Vector Machines (SVM).
Given a set of time series, theclassi�cation task aims to assign a label to each
one of these, using the knowledge gained from a set of time series for which the
labels are already known (training set). Formally, given an unlabeled time seriesT,
classi�cation assigns it to one classci from a set C = f c1; c2; : : : ; cm g of prede�ned
class. In classi�cation, di�erently from clustering, the set of classes is already known
and the model is trained on an example dataset.
The last two data mining tasks we mention areprediction and anomaly detec-
tion . The �rst aims to build models out of the current data in order to fore cast the
next incoming data. The second seeks abnormal subsequences in a series. Usually,
the standard approach to detecting anomalies in the data is to build a model which
describes the series, and successively, mark as anomalies sequences that exhibit dif-
ferent behavior from the one modeled.

2.2.1 Similarity measures

Almost each data mining task involves the concept of distance among signals. Hence,
a de�nition of similarity between time series which takes into account the percep-
tual criteria is required. Several time series similarity measures can be found in the
literature, and they can be classi�ed in four categories.Shape baseddistances com-
pare the overall shape of the series.Edit based metrics compute the total number
of steps which need to be taken to transform one series into another one. Feature
baseddistances extract features from the series and compare them with any kind of
distance function. Finally, structure-based similarity measures extract higher level
structure from the series and compare them each other.

6



2.2.2 Segmentation

Segmentation seeks for accurate approximations of time series by reducing its di-
mensionality, while retaining the shape and the characteristics of the data [7]. From
a mathematical point of view, the aim of such a task is to minimize the error be-
tween the approximated signal and its original version.
The literature presents a plethora of segmentations techniques. According to [12], we
can divide them in two categories:non data-adaptive, which keep constant the num-
ber of points used to reduce every region in the series;data-adaptive, which adapt
the points used to reduce a given region, according to some features itexhibits.

2.2.2.1 Piecewise Aggregate Approximation

Surely, thePiecewise Aggregate Approximation(PAA) is one of the non-data-adaptive
most-used dimensionality reduction technique; it is also known asspan-based aver-
aging and simply averaging. It approximates the signal by using the mean values
of equally sized frames obtained by splitting the series with a constant-size slid-
ing window. Given a signal P = f p1; p2; png and a sliding window of sizem, it
approximates the signal asQ = f ŝ1; ŝ2; ŝm g, where s1 = f p1; : : : ; p n

m
g; : : : ; sm =

f p ( m � 1) n
m +1

; : : : ; png. The compression ratio is given byn=m. As we previously

analyzed in [1], while it keeps relatively low the Euclidian Distance between approx-
imation and original series even at high compression ratio, the perceptualfeatures of
the signal are largely lost. Therefore, the signal results to be progressively smoothed.
A slightly modi�ed version of the PAA can be found, instead of computing the arith-
metic average of the aggregation intervals, it computes the weighted average. The
weight of each point is its normal distribution g(x) in the interval.

2.2.2.2 Piecewise Linear Approximation

The Piecewise Linear Approximation (PLA) is probably the main undertaken ap-
proach over the past years. As the PAA, it approximates the series with aset of
straight lines. But, here each one of the segments is obtained by linking the �rst
and the last point in the interval. PLA is an adaptive-method, i.e. the segments
are not equally sized. Starting from two points, those are recursively joined until a
given euclidean error threshold is reached. The top-down version of the algorithm
works the other way around: starting from one segment linking the �rst and the
last point in the series, it recursively splits it in di�erent s egments, until each one of
these presents an error below the threshold. A sliding window version is available
as well. It grows a window left to right until the threshold is exceed.

2.2.2.3 Ramer-Douglas-Peucker

The Ramer-Douglas-Peucker algorithm, also known as end-point �t algorithm or
split-and-merge-algorithm, is one of the earliest data-adaptive algorithm. Shortly,

7



it uses more points to approximate regions of the series where the standard devia-
tion is higher. Given a time-seriesP = f p1; p2; : : : ; png, the method starts marking
the �rst and the last point in the series. Then, it �nds the furthe st point from
the segment merging the two marked points, we call this pointpf . If pf is closer
than epsilon to the segment, all the not marked points are discarded. Otherwise,
the algorithm recursively calls itself twice with the subsetssl = f pstart ; : : : ; pf g and
sr = f pf ; : : : ; pendg, respectively as arguments. When the recursion is completed,
the approximated series is the one composed of the only marked points. The point-
segment distance is computed by using the perpendicular distance. As shown in [1],
at reasonable compression ratios RDP has a really high capability of preserving the
perceptual features of the signal, better than the algorithms previously mentioned.
But, as the compression grows the approximated series result to be anunreal rep-
resentation of the original one.

2.2.2.4 Maxima Extrema

Fink et al in [8], propose Maxima Extrema a fast lossy compression technique,
based on assignment of importance levels to the time series minima andmaxima.
The authors de�ne four type of extrema: strict, left, right and 
at ext rema. They
suggest how every time series can be compressed by selecting its strict, left and
right extrema. Moreover, in order to achieve higher compression ratios, Fink et. al
formalize the concept of important extremum. Given a distance function d and a
positive value R, the point ai of the time seriesP = f a1; a2; : : : ; ang is an important
minimum if it exist indexes i l and i r , where i l < i < i r , such that, ai is a minimum
among ail ; : : : ; air , dist (ai ; ail ) � R and dist (ai ; air ) � R. The de�nition of impor-
tant maximum is the other way around. Therefore, we can derive the formalization
of importance of a given point as the maximal value of R for which the point is still
an important extrema. By using this formalization, we can easily reducea given
series by picking the required number of points after having ordered them accord-
ing their importance value. Maxima Extrema presents characteristics similar to the
Ramer-Douglas-Peucker algorithm.

2.2.2.5 Discrete Fourier Transform

The Discrete Fourier Transform is another widely-used technique. It reduces a time
series of lengthn to a set of n sine/cosine waves, which composed together recon-
struct the original data. The algorithms converts the series from the time domain
to the frequency domain. Each one of the obtained waves has an associated fre-
quency, which is composed of an integer multiple of the fundamental frequency and
a complex number named the Fourier coe�cient. The FFT costs O(n2) operation,
but by using the Fast Fourier Algorithm, we can compute it in O(nlog(n)) time.
According to our experiments [1], the FFT approximation unveils the best trade-o�
between Euclidian Distance and perceptual features preserving. In [1], given a time

8



series of lengthn, in order to reduce it to m < n= 2 points, we computed the FFT
coe�cients and calculated the inverse of the coe�cients trimmed to m values. By
doing this, we ensured a reduced signal of lengthm.

2.2.2.6 SAX

In [15], Lin et al present the Symbolic Aggregate Approximation (SAX), a symbolic
representation composed of equiprobable symbols, which allows for dimensionality
reduction and indexing. As PAA, it splits the series in equally sizedregions and
compute the mean of the value in each one of these. Then, according to themean
amplitude, it assigns to each one a symbol from the alphabet. The iSAX represen-
tation extends SAX by allowing di�erent resolutions for the same word.

2.2.3 Time series motif discovery

Time series motif discovery is the task of �nding unknown patterns from time series
data, that is to say �nding every subsequences that appear recurrently in a longer
time series [7]. Motif Discovery is a relevant problem to a big variety of disciplines
like biology, medicine, telecommunications, sensor network. This relevance comes
from the utility motifs have in the generation of insights about the system behavior
from a domain expert point a view.
Di�erent formalizations of the problem can be found in the literature, and among
others two are the most common-used. The �rst formalization, aims to �nd the
top-K motifs ranked according to the number of instances, i.e. the number of times
a given subsequence appears in the time-series. This formalizationaligns the motif
discovery problem to the clustering problem. In many of the proposed solutions,
two or more time series constitute a motif if their distances is less than a user given
parameter R.
The second formalization aims to �nd the top-K subsequences matches in the time
series, ranked according to their similarity. It does not considerthe patterns number
of occurrences. The latter is the one used in our work.
Given the relevance of the problem many time series motif discovery algorithms have
been proposed. We can classify them into two categories, the exact match discov-
ery and the approximated ones. The �rsts rely their research on the original data
and ensure exact results, while the seconds use series approximations and therefore
give approximated result. The high research on approximated algorithmsis given
to the high computational cost of such a task. Given a time-seriesP of length n
and a motif of length m, the obvious algorithm to perform exact match discovery
costsO(n2m). A task which presents quadratic cost in the number of items, clearly,
cannot be used with massive series.
Before to describe the most relevant motif discovery techniquesproposed, we have
to mention that every algorithm assumes normalization of the time seriesor subse-
quences, in order to remove o�set and scaling e�ects. Moreover, each one of them

9



Figure 2.1: Segmentation techniques example. Piecewise Aggregate Approxi-
mation, Gaussian Approximation, Fast Fourier Transform, Ramer-Douglas-Peucker,
Maxima Extrema.

10



Figure 2.2: Time series visualization tools. a. Chronolenses.b. LiveRAC.

11



Figure 2.3: Time series visualization tools. a. Stackzooming. b. XmdvTool.
c. VizTree. d. Kronominer.

12



excludes from the results the trivial matches, i.e. all the motifscomposed of over-
lapping windows.

2.2.3.1 Muen-Keogh exact motif discovery

In [19], Mueen et al. propose MK, probably the most cited exact algorithm in the
literature. The main concept behind it is that, in most of the cases, it is possible to
discard a-priori matches to be analyzed. Basically, it makes sense to test just the
promising matches and skip the other. The authors exploit the triangular inequality
in order to de�ne a lower bound and prune the computation. The idea isthat, given
a subsequenceref as reference, for any pair of windows (a; b) in the signal, we know
that D(ref; a ) � D (ref; b) � D (a; b). So, we can use the distances between the
reference sequence and the windows in the signal to de�ne lower bounds for every
possible windows match. Now, by knowing the best-so-far match, we can prune
the research by a-priori discarding matches with lower bounds greater than what
we have so far. In the worst case, i.e. when at each step every lower bound is less
than the best so far, the computational cost keeps to be quadratic in thenumber of
elements. In [19], the authors adopt a technique widely-used, the early abandoning:
when computing the distance between two time-series or subsequences, it is possi-
ble to abandon the computation as soon as the error exceed the best-so-far distance.

2.2.3.2 Mueen, all lengths motifs

In [18], Mueen proposes an algorithm which allows the discovery of exact motif for
every possible length of the window. An obvious implementation of suchan algo-
rithm would have a computational cost equal to O(n3m). But, with the use of a
lower bound, the author is able to prun the computation by freeing it from discov-
ering the same motif at di�erent lengths. We will not go to much in det ail with
the description of the constructed bound, since it would need a deep mathematical
discussion. However, we mention that the basic idea behind it is that we can build
bound for error of longer sequences by using the error between shorterdistances.
Basically, at each step with windows of lengthm, the algorithm is able to prun the
computation by using the knowledge gained at the step before, with windows of
length m � 1.

2.2.3.3 Castro mrMotif

In [3], Castro et al exploit iSAX symbolic representation to obtain motif s at di�erent
resolutions. The iSAX segmentation converts each window to a symbolicstring as
described in the previous section. Two windows constitute the same motif if their

13



symbolic representations �t each other. In order to extract motifs at di�erent reso-
lution, each window is converted to multiple iSAX representation. The conversion
is performed by adopting di�erent alphabet lengths, which are all power of 2 in
the range [2; 64]. Di�erently from MK where the authors look for the best match,
Castro et. al seek for the best top-k matches, ordered according the number of in-
stances in the signal. The same authors in [4], make an extension to this work which
uses Markov Chain models in order to estimate the expected frequency of a motif.
This knowledge is obtained regarding a reference model that re
ects the background
distribution of the motifs. By using it, the domain experts have an instrument to
evaluate the degree of relevance of the found motifs.

2.2.3.4 Top-k motif discovery

Usually, we force the top-k motif discovery algorithms to produce a set of results
such that they are not overlapping each other. From this con�guration, arises a big
memory issue. Every time a new motif enters the top-k list, up to four other motifs
could be removed. Therefore, we need to keep into memory the scores of the pre-
viously checked matches. They are approximatelyO(n2) pairs of windows, a huge
number when working with long series. In [14], Lam et al tackle the problem. The
work, by doing some assumptions, proposes an online algorithm which consumes

( w + 2klog(w)) 
oat number on average (w is the motif length). The proposed
online-algorithm implements early abandoning as well.

Finally, we just mention that, a plethora of techniques which compute approximated
motifs by using random projection algorithm, as [24], have been proposed.These
are usually outperformed from aforementioned algorithms, so, we skip theanalysis
of them.

2.3 Interactive time series data mining

In the last few years, several time series visualization and mining tools have been
proposed, but none of them combines interactive and intuitive approaches with the
problem of handling large datasets. We can identify two typologies of products. The
�rst is composed of those tools which supply an interactive time series visualization
and in few cases allow on-the-
y data transformation. The second is about those
platform which allow algorithms and �lters composition (work
ow engine) , without
providing any data visualization interface. This section describes the most relevant
tools proposed, and in the majority of the cases developed (there are few white
papers).

14



2.3.1 A visual analytics for peak preserving prediction of seasonal
time series

In [9], Hao et al. present a time series approximation and prediction algorithm,
ables to preserve the most relevant peaks and motifs in the signal. Thealgorithm is
a modi�ed version of the Ramer-Douglas-Peucker approximation technique, where
a simpli�ed distance metric is used in order to narrow down the computational cost.
The proposed algorithms assigns a di�erent weight to each one of the pointsin the
signal, in relation to its age. This is due to the authors assumptions thatmore
recent points should always a�ect more the prediction. In [9], Hao et al. stress the
e�ectiveness of the algorithm, but as we observed in [1], time seriesapproximations
techniques which reduce the signal by extracting most relevant peaks from it, achieve
satisfying results only at low compression ratios. At relatively high reduction, the
euclidian distance between original data and approximation explode. So, it cannot
be considered a right approach when dealing with large data.
The aforementioned technique is used into a visualization tool which uses a high-
resolution cell-based visualization, in order to concisely depict the time series. The
predictions are outlined into a detached window by using line charts; on the left side
are visible historical data, on the right side predictions embedded into a certainty
band. The band draws indicators which according to the their color, point out
the prediction accuracy. The data zoom-out is constrained within �xed limit by
the platform; this is because if exceed a reasonable threshold, the on-the-
y data
aggregation would become too expensive, a�ecting the overall interactivity. It is
straightforward, but necessary, to observe that the zoom-out limitation end up with
considerably narrow down the user exploratory possibilities.

2.3.2 LiveRAC

In [17], McLachlan et al. present LiveRac a visualization tool implemented in Java
which supports big time series analysis and exploration. As many other tools, the
system uses matrix layout and semantic zooming, i.e. visualization techniques which
displays charts by using an order-able matrix, and where the displayed objects adapt
their graphic representation according to the screen available space. The authors
suggest how the user interface design and architecture has been driven by a set
of principles. The �rst of them is the observation that simultaneous visualization
of di�erent levels-of-detail provides deep and useful context information. Secondly,
the user, when possible, should be fed with graphical representations he is used to.
Therefore, the tools depicts the data by using standard line and bar chart. The
spatial positioning is the strongest perceptive impression, so theuser is supported
by a side-by-side comparison rather than remember the previously seen information.
Moreover, the overplotting results to be misleading. The simultaneous visualization
of several views becomes more e�ective when these are connected eachother, i.e.
the zooming of one time-series is propagated to all the other. Finally, McLachLan

15



et al. stress the importance of presenting a data overview before allowing it to be
zoomed and �ltered.
What we are mainly concern about, is the fact that although the tool copes with
massive dataset, it does not make any data pre-elaboration. That is to say that
the data aggregation (they are implemented 4 di�erent typologies: min, max, mean
and cardinality) is performed on the 
y, and so it is time consuming. As stated by
authors, when the user changes the time windows or �rst expands a cell from a block
chart, the server query to obtain more data may takes seconds. The toolfaces this
and keeps interactivity by disjoining server querying and graphical rendering into
two di�erent threads. But, we are still concerning about the e�ect iveness of these
with really massive data. The tools does not allow data composition or the use of
on-the-
y �lters/algorithms. Figure 2.2.a depicts a screenshot of the tool.

2.3.3 ChronoLenses

In [26], Zhao et al. present one of the most interesting tools we analyzed: ChronoLenses,
a technique for interactive time series visualization and exploratory analysis, which
enables time series derivation and composition and allows interactiveparameters
and functions experimentation. The tool introduces the concept of lenses, used to
select and zoom portions of data which can be �ltered and transformed. Allthis
takes place on-the-
y and gives immediate feedback to the user, which is enabled
to progressively and iteratively build pipelines. The tool supplies mainly two func-
tionalities: the time-series transformation by using operators; and the time-series
computation as composition of other time series. The tool implements allthe func-
tionalities the authors list as necessary: the dynamic selection of interesting region
as input; the dynamic transformation of used parameters; immediate visual feed-
back of the build pipeline; the possibility of reusing intermediate results and going
back to earlier steps in the pipeline. We did not test the behaviorof the tool when
dealing with massive data sets, so we do not know the e�ective scalability of it. In
Figure 2.2.b, is visible a screenshot of the tool.

2.3.4 Kronominer

In [25], Zhao et al. present KronoMiner a multi-aim tool for the visual exploration
of multivariate time series, mainly focused on non-intrinsically-periodic linear se-
quence of points. The tool has been developed earlier than ChronoLenses[26], by
the same authors. It presents many common points with the afore-mentioned tool,
but it di�ers in the visualization-technique used. KronoMiner di splays the data by
using a radial display, where circular and linear layout are combinedtogether. The
tool claims to be an instrument ables to deal with multivariate data sets, where
di�erent views facilitate the user exploration. It makes this possible, by proposing
di�erent perspectives of the data, such as: large scale overview; temporal multi-foci
hierarchies, side-by-side comparison, etc. Besides data scrolling, zooming and pan-

16



ning, the user exploration is supported by data static analysis. The work introduces
the concept of lenses, later on introduced even in ChronoLenses. Here, the authors
introduce MagicAnalytics Lens, an interactive visualization technique which allows
for on-the-
y computation and visualization of functions involving two t ime series.
As many other tools, it does not clarify the e�ective scalability when dealing with
massive datasets. We really concern about the e�ective responsiveness of it, given
the on-the-
y computation of many operations as zoom, pan or the use of the
MagicAnalytics Lens. Moreover, we strongly believe that the standard line-graph
visualization is still more intuitive and readable. Conversely, theradial visualization
helps patterns identi�cation, but loses the immediate temporal feeling given by the
�rst. Figure 2.3.d depicts the graphical-layout used in the time series visualization.

2.3.5 XmdvTool, prefetching for visual data exploration

In [6], Doshi et al. tackle the scalability problems encountered whenthe tools have
to deal with massive datasets. They show how interactivity involves the necessity
of real time responses. To solve the aforementioned problem, the paperproposes
semantic caching and several prefetching techniques, which are embedded into a
freely publicly available tool: XmdvTool. The semantic caching is de�ned as the
dynamic caching of objects which logically belong to a same entity, and so it can be
described by a unique semantic descriptor.
The necessity for semantic caching is justi�ed by the fact that client queries are
not causality driven, but follow a clear pattern. Moreover, given the exploratory
structure of the tool, these tend to be contiguous each other rather than ad-hoc.
Shortly, the authors motivate semantic caching and prefetching withseveral reasons:
database queries are usually contiguous each other; usually, the exploration tends
to be localized into a region for long periods; the tool structure facilitate the users
behavior prediction; user performed operations occurs within substantial temporal
intervals, so there is temporal-room to load data.
The several prefetching strategies, one of the key focus for the work, show an
evolutive behavior which progressively, achieves better performances. The system
achieves this mainly by analyzing the user most relevant scroll direction and by
guessing the region of interest in the data (statistical analysis). From these assump-
tions, 5 di�erent prefetching strategies are formalized: random, the next direction
and so the data to be loaded is randomly choose; same direction, the nextdirection
is equal to the previous one, this according to the observation that theuser usually
scroll in the same direction for a while; focus strategy, the data belonging to the
most interesting region is loaded, where the most interesting regions are established
by analyzing the chronological browsing data collected from other users; vector
strategy, the next direction is computed as a three-dimensional vector, where the
dimensions respectively refer to movement start, movement end and level-of-detail.
Two di�erent techniques are used to predict the next user direction in the last strat-
egy. The �rst technique average the historical user movement, thesecond performs

17



a weighted average, giving progressively higher weights to the recent movements.
The authors mention that the bene�ts gained by using a prefetching strategy to-
gether with semantic caching, are really higher than the ones obtained byjust using
semantic caching. Figure 2.3.b depicts the tool.

2.3.6 Cypress, managing time series streams with multi-scale com-
pressed trickless

In [21], Reves et al. present Cypress a framework to archive and querymassive
time series streams. [21] does not present any visualization tool, butwe mention
it because it proposes a technique which results to be interesting to the aim of
maintaining interactive and responsive any hypothetical tool. Cypress tackles the
problem of e�ciently storing the data and quickly perform statistic al queries and
data mining tasks on it. In particular, the authors suggest that many stati stical
queries can be solved over compressed data, and so propose three di�erent data
compression methodologies.
The work proposes a multi-scale technique to decompose the data and obtain sparse
representations of these in several domains (time domain, frequencydomain). Each
incoming stream is separated into three sub-streams, named trickles, focalized on
di�erent time scales.
The �rst sub-stream (LoF trickles) is composed of the signi�cant frequencies in the
signal. It is obtained by applying a low-pass �lter to the original signal with cut
frequency equal tof s=2M; where f s is the sampling frequency andM a parameter
which needs to be tuned according to the data. A further step is taken, the LoF
trickles is subsampled toM values by using another low-pass �lter. The second sub-
stream (Spike trickles) extracts the peaks from the signal obtained by subtracting
the LoF trickles to the original signal, where the noise has been removed. Finally,
the third sub-stream (HiF trickles) is the signal residual, obtained by performing
random projection of the signal obtained by subtracting LoF and Spike sub-streams
to the original series. The random projection is the compressive random projection
by Johnson-Lindenstrauus.
The three sub-streams, focused on di�erent scales (base frequencies, peaks and resid-
ual), decompose the original data in a sparse and compressed representation. The
authors show the solutions of many statistical queries over the compressed data, so
optimizing time and space consumption.

2.3.7 Multi-resolution techniques for visual exploration of large
time series data

In [10], Hao et al use not linear time distortion techniques in order to generate
aggregate visual layout, named multi-resolution grid layouts. So, the not-linear
scaling of the temporal axis is the main innovation introduced by their work. The
authors formalize the concept of DOI, Degree Of Interest, and use it inthe procedure

18



of drawing multi-resolution charts, i.e. higher is the interest of a data region, higher
is the resolution used to display it. Precisely, the DOI of any element x in the
data, is de�ned as its a-priori degree of interest (API[x]) minus the distance it has
from the current point of focus. [7] outlines two di�erent formalizat ion of DOI:
time-dependent, which it is not a�ected by the data features but just by time; and
data-dependent, the other way around. In order to compute the data-dependent
Degree Of Interest, the data is split between di�erent bins and, by using a speci�c
function (the standard deviation could be one), a DOI is assigned to eachone of
these. The �nal graphical outcome is a matrix layout which uses chromatic scales
to outline the amplitude of data inside each cell. Moreover, the bigger is the Degree
Of Interest of a given region, the bigger it will be the associated cellwidth and will
be the data resolution.
Despite the space e�ciency, we do not consider this an e�ective solution, because
with a not-linear scaling of the temporal axis, the human capability of abstraction,
gained by data visualization, results to be partially lost. That is to say that the
charts become much less readable and intuitive.

2.3.8 Visual interactive preprocessing of data

In [2], Bernard et al propose a framework which allows explorative and visual anal-
ysis of preprocessing pipelines, integrating both data diagnosis anddata transfor-
mation functionalities. As stressed by the authors, before the explorative analysis
phase, the data always needs some preprocessing. But, despite theimportance of
this, the majority of tools handle the data only after a preprocessing phase carried
out in a black-box approach by the domain experts. So, the works aims to tackle
the problem by supplying a framework, where data is interactivelypreprocessed by
arbitrarily composing the provided components, and where the results of each step
are graphically displayed. At each step, the user is driven and facilitated by the
tool.
The framework supplies to the user �ve components. The �rst is a preprocessing
toolbox which provides instruments to clean, reduce, normalize, segment, measure
similarity and build descriptors of the data. Analytical operations like time series
composition are not supplied, because the authors consider this aside from data
preprocessing. The work
ow-view displays and allows navigation of the composed
pipeline. The detail-view displays the intermediate results of the preprocessing.
The raw-data-selection-view displays the original data. Finally, the statistics-view
presents a set of statics over the data and their change in relation to the taken steps.

2.3.9 Stackzooming

In [11], Javed and Elmqvist propose Stackzooming a technique which allows for
multi-foci interaction, i.e. the simultaneous high-resolution visualization of sev-
eral and di�erent regions of the same time series, while the context and temporal

19



awareness are preserved. The tool works as follow: the user interactively builds
a hierarchical stack of time series strips. Strips at di�erent stack levels represent
di�erent zooming levels (increase the top to the bottom) and same level strips (sib-
lings) represent branch of the visual exploration. The work tackles the same problem
presented in LiveRac, the multi-foci interaction, but instead of using a unique view
combined with data visual distortion, it exploits the mono-dimensional nature of the
data in order to show hierarchical strips. The presented technique is implemented
and tested in Trackxplorer tool.
We consider the usefulness of such a technique constrained, since according to our
experience, it is not a key issue the simultaneous visualization of several views of
the same time series. Conversely, we consider much more useful the simultaneous
comparison of di�erent time series, feature implemented by stackzooming with the
use of the un-readable and overwhelming overplotting. In Figure 2.3.a,is visible an
screenshot of the tool.

2.3.10 VizTree

In [16], Lee et al present VizTree a time series pattern discovery andvisualization
system, based on augmenting su�x trees. The data are approximated through a
symbolic representation and codi�ed into a modi�ed su�x tree, wh ere patterns fre-
quencies and other properties are mapped with the use of di�erent colors and other
visual features. The used symbolic representation is SAX, Symbolic Aggregate Ap-
proximation. It transforms the time series into a sequence of equiprobable symbols.
This is achieved by splitting the signal in di�erent regions of same size to be trans-
formed. The signal is split with the use of a sliding window. The strings obtained
are inserted into a su�x tree which has k leafs per node, where eachone of these
k-leafs value is one of the symbol from the k element chosen alphabet. Every time a
new string is inserted, the frequency of the related path is updated by increasing its
thickness. By using this technique, it is possible to identify motifs just by locating
the thick paths in the su�x tree. The same methodology allows the location of
anomalies by identifying the thin paths.
The authors propose even an extension to the su�x-tree in the di�-tr ee, which al-
lows di�erent time series comparison. It is obtained by computing the di�erence
between the branches thickness of the two time series su�x trees. The thick paths
inside the su�x-tree represent anomalies.
To conclude, the works propose an interesting technique to quickly perceptually lo-
cate patterns and anomalies in the data, able to scale when dealing with massive
datasets. A screenshot of the tool is visible in Figure 2.3.c.

20



2.3.11 ATLAS, maintaining interactivity while exploring massive
time series

In [5], Chan et al present ATLAS, the most complete system we encountered so far.
It combines high performance databases with predictive caching and LOD(Level
Of Detail) handling, both solution coming from computer graphics and database
systems. The authors outlines three necessary features into a visualization tool:
the possibility of using �lters, aggregations and trending over the data; the load
balancing when dealing with massive datasets; the responsiveness even when big
data fetching is requested. Several techniques from database systems are proposed,
like the use of column-oriented database, in order to boost operations like data
aggregation, and load balancing. From computer graphics, is taken the principle
of Level-of-Details; according to it, di�erent levels of details are loaded in relation
to the current zoom and the space available in the viewport. By doing this, the
workload is moved from the client to the server.
ATLAS supports scrolling, zooming, panning, �ltering, ordering and groupi ng of
time series, which are displayed through line or bar-chart. Many of these operations
are constrained, so the interactivity it is not a�ected. An example of t his is the
panning, it is constrained to a maximum speed in order to keep constantthe tool
responsiveness. Moreover, the tool uses many expedients to boostthe performances,
as the prefetching (same concept as in XmdvTool, i.e. if the user at the time t is
scrolling from left to right, probably even a the time t+1 it will be scrolling from left
to right) or the loading of data which are actually visible in the client window. To
keep at the best the responsiveness, the system keeps active theinteractivity with
the user even when data is been loaded, marking with apposite labels the sections
which are waiting for data.
ATLAS seems to us the most e�ective tool under the responsiveness point of view. It
does not allow time series composition and components usage as Chronolenses, but
it combines optimal solutions on both client and server side, which make it probably
the most scalable tool we looked at. There is a big aspect we are concerning about:
the data aggregations necessary to the LOD it is performed on-the-
y by the server,
it might compromise the responsiveness when using really big timeseries.

2.4 Open platforms for sharing and analyzing dataset
and experiments collaboratively

In this section, we brie
y review the online platforms which allows algorithms and
experiments sharing. Given the extent and the heterogeneity of theconsidered envi-
ronment, we narrow it to the only platforms which collect and organize data related
to machine learning and data mining tasks.
The UCI Machine Learning Repository1 is one of the several repositories which col-

1http://archive.ics.uci.edu

21



lect databases, domain theories and data generator shared by the machine learning
community. MLOSS2, the Machine Learning Open Source Software is a Java library
which implements several machine learning tasks.
The MLComp3 platform, which collects algorithm and dataset, exhibits charac-
teristics similar to what we propose. By supplying several datasets, it allows the
comparison of user submitted algorithms with the ones already uploaded into the
platform. The user target is the complete machine learning community, so it does
not supply any time series focused tool, which allows for explorative and iterative
analysis.
OpenML [23], combines the functionalities supplied by MLComp with new ones, but
it does not allow user-submitted algorithm execution. OpenML4 proposes a standard
format to describe experiments con�guration, algorithms and results. This format
relies on Expose, an anthology which gives a formal model to describe di�erent
types of experiments. Within the platform a set of APIs is provided, by allowing
automatic data upload. Finally, the tool allows direct SQL interaction w ith the
underlying database. Many other web-platforms can be found, but the majority
of these collects result achieved with the standard algorithm con�gurations, which
constrains reusability and usefulness of them.
Di�erently from all the aforementioned platforms, our work supplies a repository
where experimental results and algorithm are collect, but at the same time provides
an e�ective interface to explore and navigate the data.

2http://mlos.org
3http://mlcomp.org
4http://exdp.cs.kuleuven.be

22



Chapter 3

TimeViz

This chapter analyzes all the technical aspects related to our softwareimplementa-
tion and outlines the motivations behind every choice we made. A brie
y descrip-
tion of the functionalities provided, their implementation and the ir usefulness will
be given. We will mention even some functionalities and strategies wedid not adopt,
explaining the reasons of such a choice.
Furthermore, we will discuss some experiments and studies we performed over sev-
eral segmentation techniques available in the literature. As resultof these analysis,
a model selection technique is proposed. It performs model selection in order to ap-
proximate di�erent regions of a given series using di�erent segmentation strategies,
according to some each one of these regions exhibits.

3.1 Overall architecture

Here, we describe the overall architecture of the platform, mentioning solution and
technologies adopted. The last part of the section describes the main functionalities
and components provided by the tool. The description of the data mining compo-
nents is left to the next chapter, where we propose an implementation of an anytime
motif discovery algorithm.

3.1.1 Client-server web-based solution

The time series visualization has been proven to be an e�ective wayto exploit
the human capability of abstraction, so it has become a really-used approach in
a lot of areas as di�erent as medicine, web, telecommunications, �nancial market,
sensor-network. In many of these scenarios the displayed and analyzeddata is re-
ally sensitive (medicine is just an example), so a safe and centralized location where
safely store the data is, in our opinion, a prerogative. Moreover, on dailybasis the
size of this data is exponentially growing and would be really inconvenient, often
impossible, to move them across di�erent laptops/desktops. These are the main

23



motivations which strongly enforced us to adopt a client-server solution, where the
former serves only the necessary data to the clients, allowing safety, portability,
ubiquity and scalability. We have to notice that really few of the tool s previously
analyzed in chapter 1, adopt a solution similar to our. We are really concerned about
the scalability of those solutions with series coming from projects like Infrawatch
[13], where about 5GB of data is daily collected. Just one year of data from the
aforementioned project is about 1:5T B, which would not �t in the drive of the ma-
jority of the standard laptops. In our opinion, the adopted client-server solution
provides a relevant set of convenient characteristics:safety, all the sensitive data is
stored in a safe and centralized server, which performs authentication and privileges
checking;portability , the client runs on web-browser and uses all standard web com-
ponents; ubiquity, the same reasons which makes it portable, makes it ubiquitous
as well; scalability, the platform copes with any data size and any client viewport;
usability, it does not need any installation procedure and presents a simple and clear
user interface.
The client accesses the data by using a set of RESTful APIs provided by the web-
server. Every call returns JSON packages. We will not examine in depth the APIs
implementation being this just a technical aspect which is aside from our disser-
tation. But, we mention that every call is performed by using AJAX, and pol ling
techniques are adopted every time computationally expensive tasks are submitted.

3.1.2 Technologies and overall design

The platform so far presents many functionalities and provides a goodoverall stabil-
ity, but we consider the work still at a prototyping phase. Due to thi s, we mainly-
used the programming language Python in the back-end development. We know
that Python it is not one of the languages with fastest execution time, but it allows
for easier and faster prototyping than the majority of existing ones. Speci�cally, the
server relies on Django, a high-level Python web framework which strongly drives
the user to the use of clean and pragmatic design, based on the Model View Con-
troller pattern. The �nal outcome is a not blocking server, which keeps running and
serving the data even when exceptions are generated. The software bottlenecks, as
the motif discovery algorithm, have been implemented using C/C++.
The server implements a wrapper over the data storage, easily expandable in order
to allow the communication with any database management system or data format.
The data used in our experiments, is stored by using HDF5 data model, supplied by
the pyTables Python library. Several motivations drove us to such a choice: HDF5
is a standard format; it is really suitable when working with numeric data, like time
series; it allows a good data compression; it is organized in a �lesystem like struc-
ture, which makes the data easy to be accessed and managed.
The client runs over the standard web browser, therefore in the development of it we
used standard web libraries, languages and protocols such as: HTML, CSS, AJAX,
Javascript, JSON. To give a well-de�ned structure we relied on AngularJS, an open-

24



source JavaScript framework, maintained by Google. It assists us withrunning
our single-page applications, forcing us to adopt the same Model View Controller
(MVC) pattern adopted with the server. All the data visualizations and interaction
relies on the pure JavaScript library Highcharts. We made several modi�cations to
it, especially, to add bu�ering and prefetching features.

3.1.3 Functionalities

From a tool, which allows the interactive and explorative data visualization we
would expect data import/export functionalities and experiments sharing capabili-
ties. Here, we describe how we achieved these requirements.

3.1.3.1 Data export and import

What we noticed from our personal experience is that the domain expertsare used
to perform simple tasks, like data export, in naive ways. Often we saw them man-
ually copy-pasting portions of data from �les to other. Given that, we believe
data-export a really necessary feature into a visualization tool. We implemented a
solution which does not only allow data export for any given time-range, but which
allows the resolution selection as well. The generation of the CSV export �les is
performed server-side and it could require several time. So, to keep the user aware-
ness and interactivity the client adopts polling techniques which constantly check
the operation status. We set some constraints regarding the maximal sizeof the ex-
porting �le. In the cases, where the time-range and resolution combination exceeds
a server-set threshold, we force the user to decrease the export resolution. Every
generated �le is temporary kept on the server until the requesting-user download it.
Our platform aims to be a place where users can share and analyze experiments
collaboratively. With such an aim driving our mind-set, in order to im prove user
experience and to boost the tool utility, we implemented data import functionalities.
Any user can create and share collections of data-sets and import time-series into
them. The tool graphical interface allow the user to set several data import con�g-
urations. Figure 3.1.a and Figure 3.1.b depict the graphical interfaces supplied to
export and import datasets.

3.1.3.2 Sharing functionalities and data annotation

Every time a user submits a task computation to the server, the results are perma-
nently stored and become explorable by the all users. This is an e�ective functional-
ity when working and analyzing collaboratively the same data. Moreover, aunique
location where all the experiments results are stored and collected, is a productive
way of organizing and tracing the work done.
What we propose is an e�ective tool to explore massive time series. Insuch a con-
text, would be useful to be able to store interesting views we found while analyzing

25



the data. Would be even better to be able to share these with other user. Our tool
satis�es this by implementing a permanent links generator, whichgenerates static
URLs linking to views representing data the users found interesting. Each one of
these URLs is composed of a unique hash. We adopted such a solution becausean
URL is easy to be shared and stored, it allows the users to refer and share interesting
data portions just by using string. Each permanent link has associatedsome ex-
plicit and implicit information: time series and time-interval of t he displayed data;
date and user of creation; some notes related to it, like the motivations ofinterest.
In order to trace of all the �ndings, all the generated links are stored and can be
consulted by all the users.

3.1.3.3 Ubiquitous, scalable and portable solution

The solution we propose is a client-server web-based solution, where the client uses
all standard technologies and libraries. Moreover, as we will explain later on, the
points loaded into the client are always related to its viewport and soonly trivial
aggregation need to be performed. Mobile and other devices with weak hardware
performances will always have to deal with constrained data, renderings and com-
putations. All this characteristic make our work usable with any devices and from
everywhere, de facto making it ubiquitous, portable and scalable to any dataset.

3.1.3.4 Data bu�ering

The charting library we use, fully reloads the new data from the server, acting a busy
wait, every time the user performs a zoom or scroll operation on the plot.In order
to avoid this and ensure a more 
uid user experience, we implemented a client-side
data bu�ering. The basic concept we adopt comes from video-games environment:
the client has always loaded several versions of the currently displayed data, which
defer each other in the data resolution and temporal-range. We call this parallel
versions of the displayed data, bu�ers. The total number of bu�ers is a customizable
parameter. Let's saybis the bu�er containing the currently displayed data, the client
always has two bu�ers list, respectively back and front . The �rst bu�er in back
contains data in the same temporal-range ofb but at double the resolution. Each
successive bu�er in back contains data in the same temporal-range but at double
the resolution of the previous one. Instead, the �rst bu�er in f ront contains data
in a temporal range three times larger thanb and centered inb. The resolution of
this data is half the one in b. Each successive bu�er inf ront contains data with
half the resolution of the previous one and into a temporal-range three time larger.
By adopting this solution, every time a zoom-in, zoom-out or scroll operation is
performed, there are high probability that the data is fetched from oneof the bu�er,
avoiding so a data-loading busy wait. Clearly, thef ront and back lists need to be
updated every time one of the mentioned operations is performed. More bu�er we
have, higher is the probability of already having the data, but higher is the client

26



memory consumption as well.
After a deep testing, using data from totally di�erent contexts, we can con�rm that
the advantages achieved by using such a bu�ering technique are totally smoothed
by the rapidity our tool has in loading the data. So, the default con�guration of
our software has the data bu�ering disabled. We advise to enable it onlyin context
where the infrastructure bandwidth is limited.

3.1.3.5 Data range bands

A direct consequence of displaying massive dataset in constrained viewports is the
loss of many local information. Let's say we are displaying into a screen of a thousand
pixels width, a time-series originally composed of a million of points. All the sporadic
peaks in the series will be lost and omitted from the visualization. Wecould trace
these peaks by using segmentation techniques which focus the approximation on the
peak-preserving, as the Ramer-Douglas-Peucker, but as side e�ect wewould have
an overwhelming representation of the signal. To give the user, the awareness of
the range inside which the original series is distributed, we storemaximum and
minimum values inside each aggregate interval and display it as max and minbands
containing the approximated signal. The next section contains a deeper analysis of
the problem.

3.1.3.6 Data Mining tasks

The tool implements a set of data mining tasks such as motif discovery, correlation
matrix computation and similarity computations. All of them exploit a hie rarchy-
based visualization in order to prune the computation. Speci�cally, we propose
an anytime motif discovery algorithm which return at any moment the best top-k
matches found so far. The next chapter describes with more details the results we
had and experimentations we did during the implementation of this algorithm.

3.2 Visualization

When working with high dimensionality datasets, all the explorative tools have to
tackle a big issue: how is it possible to narrow down the size of thevisualized data
and keeping their meaning? How is it possible to do this in smart and e�ective way?
The majority of the tools tackle the problem by using a naive approach: given a
client viewport and a time-interval to be displayed, all the point s in the range are
aggregated on-the-
y according to the number of points in the viewport. Clearly
this approach totally compromises the scalability of the tool. Let's say we have
the same scenario presented before: a viewport of a thousands of pixels and a time
series of one million points. It is pretty obvious that the approximati on of such a
series to a thousands of points is extremely time consuming, and cannotbe done in
a period of time which does not a�ect the tool interactivity. In VizT ool, we tackle

27



the problem by making preprocessing of the data. Precisely, we built a hierarchy of
the data at di�erent resolutions.
This section introduces the hierarchy-based visualization solution we adopted. The
second part presents a model selection technique to e�ciently approximate large
time series.

3.2.1 Hierarchy based visualization

The solution we propose adopts a logic similar to the one adopted to Google Maps.
What we experience when browsing through a map, is that at any instant the dis-
played image resolution is directly related to the zoom level, i.e. more we zoom,
higher is the ground resolution. Our solution does exactly the same: lower is the
displayed temporal-interval, higher is the resolution of the loaded data. This a tech-
nique widely-used in the video games �eld, where closer is a rendered object, higher
are the polygons which compose it.
So, on-the-
y aggregation of large time-series is too expensive and totallycompro-
mise the interactivity and responsivity of the software. We tackle the problem by
adopting an approach we did not �nd anywhere else in the literature. Every time
new data are imported into the platform, a sub-sampling hierarchy isbuilt. Each hi-
erarchy level contains the data approximated at a di�erent resolution. Given a time-
series composed ofn sampled values, the structure containslog2(n) segmentations.
Each one of these segmentations is composed ofn=2i points, where i 2 [0; log2(n)]
is the level number.

Hierarchy summary
Computational cost O(n)

Total levels log2(n)
jlevel0j original data
jleveli j jleveli � 1j=2

jlevellog2 (n) j 1

Speci�cally, given any i th hierarchy level, each point in it is the aggregation of 2i

points in the original sampling. Such aggregations are performed by using arithmetic
average of the points in the intervals. That is to say that every levelis approximated
at half the point of the previous one, by using Pairwise Aggregate Approximation.
So, any point x in the i th level is the aggregation of the points in the interval
[x � 2i ; (x + 1) � 2i ], where x 2 [0; n=2i ]. In order to avoid the propagation of the
computational error, every approximation is performed using the original data, even
though it can be more time consuming.
Any given time series will always be displayed in a viewport composed of a-de�ned
number of pixels. Such a straightforward observation completely motivates the
reliability of our solution. The basic concept is that it does not make any sense
to load more points than the pixels in the viewport, otherwise data aggregation
is needed. The best scenario is the one where we have approximately one point

28



per pixel. In our solution, we can assure this by fetching the data from the level
containing approximately a number of points, in the selected time-range, equals to
the viewport ones. We assure that by fetching the data from the level:

R = log2(
expectedvalues

w
) (3.1)

Where w is the number of pixels in the viewport andexpectedvalues are the expected
values in the selected temporal-range, computed as the temporal-interval times the
series sampling rate. The expected value are an approximations, due to the fact
that the sampling rate is not always constant and there could be missingvalues.

Algorithm 1: Subsampling Hierarchy.
Data : T, time series of lengthn
Result : H, sub sampling hierarchy composed oflog2(n) levels
i  0;
sum  0;
while i � log2(n) do

for j=0 to n do
sum  sum + T[j ];
if j mod 2i = 0 then

H [i ][j=2i ]  sum=2i ;
sum  0;

end
end
i = i + 1;

end

What we propose and adopt is a fully scalable solution, which copes with anydata
size and device viewport. Our platform allows for interactive exploration of the
data by decreasing resolution and size of massive time-series according to the cur-
rent zooming level.

3.2.2 Locating subsequences

The segmentations of the original series are obviously stored according totheir
chronological order. Moreover, each one of these segmentations has an index.Every
time we fetch the data related to a given temporal-range, from one of the hierarchy
level, we need to look for the position of this interval in the approximation. Basically,
we need to �nd the index of the �rst value in the range. The inconsistency of the
sampling-rate, prevents us from computing that index as the samplingrate times
the gap, we have between the interval starting date and the approximation starting
date. It would have constant time O(1). We need to compute the index in an

29



Figure 3.1: VizTool screenshot. a. The right side depicts the massive time
series visualization structure. The left menu allows the usage of several data-mining
components to the displayed time series.b. Data import form detail. c. Data
export form detail. d. Detail of motifs discovered by using the tool.

30



Figure 3.2: Dominant frequencies loss. The approximations obtained by using
peak preserving algorithms miss the dominant frequencies of the original signal. The
right side of the chart plots the frequencies retained by applying alow-pass �lter to
the approximated series.

31



alternative way. Scrolling through all the data and checking each pointtimestamp
seems to be so expensiveO(n). We have to remember that low levels keep to be
massive and so, anO(n) operation compromises the interactivity. Therefore, due
to its logarithm cost O(log2(n)) and the easy implementation, we perform such a
research by using the Binary Search. It needs to be pointed out that with just 30
iteration we are able to scroll a massive series of 1 billion points.

3.3 Data-adaptive hybrid approximation

In the process of building the sub-sampling hierarchy, we use the Piecewise Aggre-
gate Approximation segmentation algorithm. Our experiments show how incom-
parison to many other algorithms, such an algorithm keeps low the error between
the approximated signal and the original one even at really high compressionratios.
However, when the compression ratio increases, it gradually smooths the signal with
the consequent loss of the perceptual features in it.
It has been widely proved how these perceptual features are a fundamental compo-
nent to exploit the abstraction capabilities humans have. We tackle the problem
by proposing a method to select a data-adaptive hybrid approximation obtained
by composing diverse techniques. This algorithm produces approximations which
preserve the perceptual features of the signal while keeping low the approximation
error.

3.3.1 Peak preserving side-e�ect

The literature presents several algorithms which focus time series approximation on
preserving the perceptually important points of the series. As we already mentioned,
such techniques lose their e�ectiveness with the increasing ofthe compression ratio.
It happens because the peak-preserving algorithms do not ful�ll a basic concept:
higher is the compression ratio, lower must be the local information preserved in the
reduced representation. While at high compression ratios algorithms as the Pairwise
Aggregate Approximation focus the reduction on the main shape of the signal, the
peak preserving ones keep focusing on the peaks in the signal. Consequently, the
main shape of the signal is progressively lost.
A simple and e�ective method to extract the main shape of any given signal is to
apply a low-pass �lter to it. To do so, we compute and trim to a �xed fr equency the
Fast Fourier Transform inverse of our signal. By extracting the dominant frequencies
in the series, we evaluate the capability any given method has to preserve the main
of the signal. Figure 3.2 outlines the experiments we performed witha synthetic
time series of sinusoidal form, where random peaks have been added. Foreach
one approximation techniques, the signal is compressed 100 times. As expected,
non-data-adaptive algorithms as PAA completely loss the perceptual features of the
signal but keep intact their main shape. Data-adaptive algorithms like Maxima

32



Extrema preserve the peaks, but come up with an approximation whichis totally
not representative of the original series.
As we will see, the algorithm we propose at high compression ratios mainly select
not-data adaptive algorithms, which totally preserve the signal fundamental shape.

3.3.2 Some observations over common segmentation algorithms

Here, we outline some observations we made by using some standard machinelearn-
ing techniques. We used them in the design of a data-adaptive model selection
algorithm. We, brie
y, review the experiments we performed and results we had.
For a deeper understanding and a more complete dissertation, refer to [1].
The �rst step we took was the analysis of the performances in terms of approxi-
mations error, for several of the segmentation algorithms available in the literature.
Clearly, given the structure of our software, we were interested inthe only algo-
rithms which produce as outcome a numeric representation of the signal. We did
not consider methods like SAX, which produces symbolic representations. What we
observe from such an experiment is that the not-data adaptive approximations show
a really similar behavior each other.
A standard technique to improve the performances of a set of models is the ensemble
of them in a unique and comprehensive model. Such a model cannot be used to
approximate data: it requires the computationally expensive computation of all
the ensembled approximations. But, it can be used as mathematical proof of the
observation we just mentioned. The analysis of the weight each algorithm assumes,
at di�erent compression ratios, gives us a better understanding and aproof of that.
Therefore, we performed a linear blending of the approximated series at diverse
compression ratios.

x i = w0 +
X

k2 K

wk � r k i (3.2)

Linear Blending where r k i is the i th value of the reduced signal up-sampled to
the original one, and k 2 K is one of the dimensionality reduction techniques.
Within the blending operation, the following algorithms have been used: Piecewise
Aggregate Approximation, Gaussian Weighted Average, Ramer-Douglas-Peucker,
Fast-Fourier-Transform and Maxima-Extrema. To learn the involved weights, we
minimized the regularized square error using the linear gradient descent. Figure 3.3
depicts the achieved results. It proves the insight we had by comparing the Euclidean
Distance error of the several representations. Speci�cally, we measured how PAA,
Gauss and FFT produce really similar results. As consequence of this, and of the
weak results Maxima Extrema achieves at every compression ratio, we removed from
the analyzed algorithm list all the redundant and weak ones, retaining only the
Piecewise Aggregate Approximation and the Ramer-Douglas-Peucker algorithms.
Brie
y, by using the linear blending technique, we removed from our lists al the
redundant and ine�cient algorithms. At this point, by plotting the d istribution

33



Figure 3.3: Linear Blending. The data-adaptive algorithms show better perfor-
mances at low compression ratios. When the compression is high it is true the other
way around. Moreover, non data-adaptive algorithms show similar behavior.

of several dataset, we made a basic observation: in the series often happens to
have aggregation windows with low data standard deviation and other where the
standard deviation is really high. It suggested us a basic idea: instead ofcorrelating
the performance each technique has to the compression ratios, we should correlate
them with the features the data exhibits. According to the data variability (we have)
in a given window, we should be able to identifying an algorithm more suitable to
approximate the data in it.
This assumption has been tested and experimented by using binnedlinear regression.
The idea arise from the Feature-Weighted Linear Stacking proposed by Sil et al. [8]
during the Net
ix competition: \FWLS combines model predictions li nearly using
coe�cients that are themselves linear functions of meta-features" [22]. In our case,
the meta-feature is the standard deviation inside the sliding windows. For any
compression ratio, instead of computing a single weight per method, wecomputed
w di�erent weights. Basically, the aggregations intervals were split acrossw bins,
each one containing aggregation windows with data standard deviation insidea

34



Figure 3.4: Observations. The �rst chart outlines the signal shape. The second
outlines the points used respectively by PAA and RDP, according to the standard
deviation in each window. The third depicts the error introduced by RDP and PAA
in each aggregation window.

35



Figure 3.5: Optimization. The chart outlines the hybrid approximation error
obtained by using di�erent values for the threshold parameter, at di�erent com-
pression ratios. The chart below outlines the optimal parameter value,achieved
by performing linear regression over the optimal path points. Computed the vari-
ance inside each aggregation window, the algorithm uses thethreshold to select the
segmentation algorithm used to approximate the region.

36



certain range, and later, linear blending of them was performed.

x i = w0b( i ) +
X

k2 K

wkb( i )
� r k i (3.3)

Weighted Least Squares Regression where:b(i ) represents the bin containing the
window enclosingx i ; k 2 f 0; 1g represents the dimensionality reduction technique
(PAA ^ RDP ); r k i is the i t h points of the k-technique reduction up-sampled to the
original signal time-shape.
From the results, we observed that aggregation windows with high standarddevia-
tion are better approximated by the Ramer-Douglas-Peucker algorithm and, on the
other hand, windows with low data variance are better reduced by PAA. Moreover,
this performance are highly in
uenced by the compression ratio, at lowcompression
ratio RDP performs better, at high is true the other way around.
This can be explained by observing that the data-adaptive approximationtechnique
uses more points in portions of data which present high 
uctuation in those points,
as depicted in Figure 3.4. We can even note that the rapid change of the standard
deviation between adjacent windows, it is not instantaneously propagated to the
number of points used by RDP, which exhibits a slow adaptation.
We need to highlight that to observe the aforementioned phenomena in aclear and
pronounced means, it is essential to select the aggregation-window size properly.

3.3.3 Hybrid algorithm

In the previous section, we outlined some observation we made. It can besumma-
rized as follows: the data adaptive algorithm uses more points where thestandard
deviation is higher, and by focusing the approximation on the signal peaks, it has a
higher capability of preserving the perceptual important points; at low compression
ratios RDP achieves better result, while at high compression ratios PAAis better;
�nally, RDP slowly adapts the number of points used when the standard devia-
tion rapidly changes. These phenomena lead us to ensemble in a singlemethod the
data-adaptive Ramer-Douglas-Peucker algorithm and the non-data-adaptive Piece-
wise Aggregate Approximation.
Now we know that we should exploit RDP where the standard deviation is high and
PAA in the other cases, but we still have to cope with a some uncertainty. Given
a series and a compression ratio, which size should have the window used to check
the standard deviation (window=ratio )? Computed the standard deviation, how is
selected the segmentation algorithm to be used (threshold)? How many points have
to use the two techniques per window approximationkRDP k=kPAA k?
Several experiments we performed [1] suggest that the threshold linearly decreases
with the resolution. Moreover, for any compression ratio the optimal ratio between
the points used respectively by RDP and PAA is always included among10 and 20;
i.e. RDP uses from 10 to 20 times the points used by PAA. We found more complex

37



to establish the optimal ratio between the size of the window used to compute the
standard deviation and the compression ratio. Intuitively, we noticed that at low
compression ratios the optimal window seemed to have big size, while it was reduc-
ing with the increasing of the ratio.
Figure 3.5 depicts the optimal path of the threshold parameter.

Q = f Reduce(s1); Reduce(s2); : : : ; Reduce(st )g (3.4)

Reduce(si ) =

(
PAA (si ) if � (si ) < T r

RDP (si ) if � (si ) � T r

where
T r = min (V ) + [ max(V ) � min (V )] � threshold

V = f � (s1); : : : ; � (st )g

t � n
windows � n

ratio

The tests we conducted outlined better performance of our Hybrid Algorithm in
almost every cases. It was partially true, because at really low compression ratios
this was not happening. That was due to the fact that at low compression ratios
our algorithm was splitting the series in small windows. But, we observed as RDP
works better with a unique big aggregation window, due to the fact that it is ables to
catch the correlation between the bounding data of the adjacent windows. Therefore,
at this point we added a further step to our algorithm: after having selected the
segmentation technique for every aggregation window, we merged all the adjacent
windows, to be approximated with RDP.
The last step we conducted was the optimization of the aforementioned parameters,
as visible in Figure 3.4 and Figure 3.5 we used linear regression in orderto optimize
the threshold in relation to the compression ratio. We stress that their correlation
coe�cient is approximately equal to 96%, so, it really makes sense to linearly map
the ratio-threshold correlation. Other experiments suggest how theratio between
the point used by RDP and PAA slightly a�ects the �nal results. So we s uggest to
use an optimal ratio of 20.

3.3.3.1 Pseudo-Code

Here we present the pseudo-code of the data adaptive hybrid model selection algo-
rithm we propose.

38



Algorithm 2: Data-adaptive hybrid algorithm.
Data : T, time series of lengthn. n, the length of the returned signal.
w, sliding window inside which the standard deviation is checked.
rdpP oints , ratio between the point used per window by PAA and RDP.
threshold, parameter used to perform the model selection.
Result : A, approximated series
hybRatio  len(T)/(n/w);
V  [];
count  0;
H  [];
rdp  0;
paa  0;
for i=0 to len(T)/w do

V[count]  � (T[i*hybRatio:(i+1)*hybRatio]);
count  count + 1 ;

end
tr  min(V) + ((max(V) - min(V))*threshold);
for i=0 to len(V) do

if V[i] � threshold then
regionRDP  rdp + 1;

else
regionPAA  paa + 1;

end
end
unit  len(T) / (paa + rdp � rdpPoints);
paa  round(unit);
rdp  round(unit*rdpPoints);
count  0;
while count < len(T)/w do

a  count;
while (count + 1) < len(T)/w and V[count+1] � threshold do

count  count + 1;
end
if V[a] � threshold then

H  H + RDP(V[a �hybRatio:(count+1) �hybRatio],rdp*(count-a+1) );
else

H  H + PAA(V[count �hybRatio:(count+1) �hybRatio], paa);
end

end
return H

It accepts as input: a time seriesT; a sliding window w inside which the standard

39



deviation is checked; a ratio between the point used respectively by PAA and RDP
segmentation techniques; a threshold used to perform the model selection. The �nal
outcome is a representation ofT, approximated by n points.
The �rst step the algorithm performs, is the computation of the data standard
deviation for each one of the windows of lengthm, composing the signal. According
to this, the number of windows to be segmented, respectively byusing RDP and
PAA approximation techniques, is calculated. By using it as reference, the number
of points to be used per unit are established. At this point, the adjacent windows to
be split with RDP are merged together and the signal is approximated. PAAuses a
number of points per window equal to the unit, while RDP uses a number of points
equal to the unit times the RDP/PAA ratio parameter.

40



Chapter 4

Resolution-aware motif
discovery

Time series motif discovery is the task of �nding unknown patterns from time-series
data. Speci�cally, we de�ne a motif every subsequence that appears recurrently in
a longer time-series [7]. Figure 4.7.a illustrates an example of motifs discovered in
an industrial dataset, where data from a wire winding process are collected [20].
Since is formalization, motif discovery has been used by a lot of researchers in a big
variety of domains like biology, medicine, telecommunications, sensornetwork. Such
a relevance comes from the utility the technique has in the process of generating
insights about the system behavior, from a domain expert point of view.
The problem is usually tackled into two di�erent scenarios: one copes with a time-
series dataset and looks for recurring time-series in it; the otherlooks for recurring
subsequences in a unique time-series. We will always refer tothe second scenario,
which is more general and more challenging, since it deals with more problematics
aspects, as the trivial matches or the not-overlapping matches condition. As previ-
ously mentioned in the related work, two are the mostly-used formalizations of the
motif discovery problem. The �rst looks for the top-k motifs ranked according their
number of instances, i.e. the number of times the motif appears in the time-series.
Basically, it researches subsequences or time-series which score, an each other sim-
ilarity, contained inside a given range (the literature usually de�n es it as R). This
formalization aligns the motif discovery problem to the clustering one. The second
formalization looks for the top-K subsequences pairs in the time series, ranked ac-
cording to their similarity. Therefore, it considers only pairs of windows and does
not take into account the motif number of occurrences. We formalize the problem
we want to solve as:

Top-k pairs query. Given a time-seriesT = f t1; t2; ::; tng, a top-k pairs query
Q(k; w) takes two parametersk and w, and considersP the set of all possible not
trivial matches of length w in T. The query Q(k; w) returns an answer set fromP

41



that consists of k pairs, such that for every p in the answer set and for any other
pair p0 2 P, p:score� p0:score and p is not overlapping with p0. The score are com-
puted by using the Euclidian Distance similarity measure after each subsequence is
normalized, in order to remove o�set and scaling e�ects.

The problem has been tackled by adopting mainly two approaches: the exact motif
discovery and the approximated motif discovery. The �rst relies the research on
the original data and mathematically guarantees the return of the best matches.
Instead, the second relies the computation on an approximation of the data,and
so guarantees the return of a list of matches, but cannot guarantee that they are
the best even in the original representation of the series. The deepresearch in the
approximated motif discovery �eld is motivated by the quadratic cost of such a task.
The obvious exact match discovery, given a time seriesT of length n and a motif of
length m, costsO(n2m) operations. Several algorithms have been proposed, which
use bounds on the similarity function with the aim of pruning the computation. The
idea is that it is possible to use the knowledge gained from the previous matches
computation, in order to stop a current match computation, as soon as it results
to be not promising. The problem of such algorithms is that they keep having
quadratic cost in the worst case, and many of these do not deal with the condition
that the top-k matches list has to contain only not overlapping motifs.
From our experience, we can observe that in the majority of the cases the domain
expert looks for a brie
y overview of the motifs in the series, while in just few of
these he looks for the exact motifs list. Therefore, we do not consider a reliable so-
lution the implementation of an exact motif discovery algorithm, into a tool which
allows interactive and explorative time series analysis, since theuser would always
have to wait a big amount of time to get the results. However, not even anapprox-
imated motif discovery is the right choice in our opinion, since sucha solution does
not allow for exact results in any case.
Both exact motif discovery and approximated discovery provide theanswer after a
�xed amount of time, and either run to completion or they not provide any result.
However, frequently, it may would be useful to terminate the algorithm before com-
pletion. It is possible to do such an operation and have signi�cant results by using
anytime algorithms, which return results whose quality depends on the amount of
time they have been able to run. Given this, we experimented andconsequently
implemented in our software a solution which combines both the approximated and
exact algorithms: an anytime motif discovery algorithm which step by step re�nes
the results converging to the exact ones. A solution which adapts the execution
time to the user needs.

Anytime algorithm. An algorithm that even if interrupted at any moment before
the end, returns a valid solution to the problem. Moreover, it exhibits an evolutive
behavior, which progressively improves the returned result.

42



Figure 4.1: a. Motif discovery example. Motifs discovered in an industrial
dataset, where data from a wire winding process are collected. The motifs have
been discovered by using the exact match discovery algorithm. The�fth discovered
motif (yellow) depicts the importance of subsequences normalization, in order to
remove o�set and scaling e�ects.
b. Anytime resolution-aware motif discovery. The algorithms step-by-step
discovers the motifs over all the hierarchy levels. It starts fromthe last level in the
hierarchy and progressively climbs it. After the �rst level has been performed, the
algorithm returns result anytime is terminated. Every step takes O(8) times the
operations performed in the previous one.

43



4.1 Anytime resolution-aware motif discovery

We propose an anytime algorithm which solves the top-k motifs discoveryproblem.
Each time is terminated, it returns the best-so-far top-k discovered matches. It ex-
ploits the sub-samplings hierarchy adopted by our tool, where the �rst level contains
the original series and any other level contains the original series subsampled at half
the points of the previous level.
The concept behind the algorithm is that we can solve the top-k motif discovery
problem by �nding out the motifs over approximations of the original sign al, which
step-by-step are increased in their resolution with the consequent results improving.
The algorithm starts the motif discovery from the second to last level in the hier-
archy, composed exactly by two points. Such points are the best match atthe time
t = 1. The second step goes up a hierarchy level and computes the motifs in it. The
third and any successive level do the same. Therefore, step-by-step the algorithms
climbs the hierarchy till the last level containing the original data is reached. At
this level, the exact matches discovery is performed. Given any step si which looks
for the motifs of length w, the previous step si � 1 looks for motifs with half the
length, since it presents the signal approximated with half the points of the ones in
si . Basically, at each step the motif length is doubled.
The algorithm is anytime, because after the �rst step has been done, itcan be ter-
minated anytime and still produces results. We want to stress thatour approach
step-by-step converges to the exact match solution, so it is an exact algorithm when
it runs till completion.
If we analyze the complexity, we notice that the last step has a worst computa-
tional cost equal to O(n2m). The previous one, since works over an approximation
composed of half the points, presents a worst case computational cost equalto
O((n=2)2(m=2)). The same consideration is valid for every step taken by the algo-
rithm. Therefore, every step requiresO(8) times the computations performed in the
previous one, approximately one order of magnitude.
We have to observe that in many cases the starting point is not the last level in the
hierarchy, but the highest level i th such that, given a sliding window of length w in
the original data, we have that w

2i > 1; i.e. the motifs lengths at each step must be
greater or equal to that one.
Given a time seriesT of length n and a sliding window of length w, used to discover
motifs, our algorithm computes the motif discovery in a decreasing order over all
the hierarchy levels such that:

w
2i > 1; i 2 f 0; 1; ::; log2(n)g (4.1)

Given a hierarchy leveli and a time series of lengthn, every step has a computational
cost equal to:

O(
n
2i

2 m
2i ) (4.2)

44



4.1.1 Induced pairs analysis

An anytime task can be terminated at any moment, and it should always returns the
best results it has been able to discover during the execution time. In our case, if the
algorithm termination is invoked while this is computing the motif di scovery over
one of the hierarchy levels, for such a level we would have just partial results. An
obvious idea would be to merge the results obtained from the partial level analysis
with the one gained at the previous step, where the full discovery process over an
approximation with half the resolution was conducted. That it is not possible, since
we cannot compare matches obtained from di�erent hierarchy levels, being their
Euclidian Distance di�erently scaled.
But, we can observe that there is a high probability that the top-k matches obtained
at the step si are similar to the ones obtained at the stepsi +1 . So we can use the
ranking achieved at the stepsi to induce the order used to check the matches at the
step si +1 . By doing this, in all the cases where the interrupted step computation has
checked at leastk matches, we can use this more accurate partial results, which are
based on the previous step ranking, but reordering it according to thecomputation
performed over a more accurate signal segmentations.
We can clarify the idea with a simple example. Suppose a scenario where we are
looking for the top-4 motifs in a massive time-series. Our anytime algorithm has
been terminated at the stepsi , after he has been able to check the �rst 10 windows
pairs, following the order induced by si � 1. At this point, our solution returns the
top-4 element obtained by re-ordering, according to more precise calculations, the
top-10 matches list achieved atsi � 1.
That is not enough. The total pairs of windows to be compared at any stepsi are
related to the motifs length and approximated data length. So, they are equal to:

jPsi j =
(n � m)(n � m � 1)

2

These are the induced matches at any stepsi +1 which presents doubled motifs and
approximations length in comparison to si , and so a number of total matches equal
to:

�
�Psi +1

�
� =

(2n � 2m)(2n � 2m � 1)
2

�
�Psi +1

�
�

jPsi j
=

4(n � m)(n � m � 1
2)

(n � m)(n � m � 1)
� 4

Every step presents approximately O(4) times the matches induced by the previous
one. Therefore, after having compared all the induced ranking, the algorithm for
each step compares linearly, from left to right, the remaining matches.

45



Induced matches comparison order. The order used to compare pairs of win-
dows at each step, is induced by the ranking achieved at the previousstep. After
the induced ranking computation is completed, the remaining matches are computed
following the linear order from left to right. The �rst step in the al gorithm compares
all the possible matches, by using a sliding window which moves from left to right.

4.2 Pseudo-code

Here, we present the pseudo code of the anytime motif discovery algorithm we pro-
pose. The two functions used to rank the subsequences matches are presented as
well. We stress that in order to maintain compact the code, the outlined algorithm
does not perform the additional step which checks and removes the overlapping mo-
tifs, in the rankings returned by LinearPairRanking and InducedPairRanking. Such
operation can be done by scoring the rankings from left to right and removeeach
pairs overlapping with one or more of the ones previously encountered.
The function norm normalizes each subsequences passed as parameter. Such op-
eration is necessary in order to avoid o�set and scaling e�ects. The function L 2

computes the Euclidian Distance between the two passed subsequences. In this
version of the algorithm, it adopts early abandoning in order to prune the compu-
tation.
We do not report the code which makes the algorithm implementation a thread
which can be terminated anytime. But, we just use the variableinterrupt assum-
ing it can be set to true from a daemon checking for user interruption. Therefore,
the variable interrupt noti�es the user interruptions to the anytime motif discovery
algorithm.

4.2.1 Linear Pair Ranking

The LinearPairsRanking function ranks all the possible matches in thetime-series
T, by using a sliding window which moves from left to right. The function is called
just once, when the ranking of the matches in the smallest hierarchylevel is per-
formed. Therefore, it has to be executed till completion and it doesnot present any
synchronization point which checks for the user interruption. The sort function or-
ders the tuples in P according to the last value in them: the similarity score between
two windows pointed by the �rst two index in the tuples.

46



Algorithm 3: Linear Pairs Ranking (T, w).
Data : T, time series of lengthn. w, motifs length
Result : P, ranking of all the possible pairs in T
count  0;
P  [];
for a = 0 to len(T) - w + 1 do

for b = a + w to len(T) - w + 1 do
P[count]  f a, b, L 2(norm(T[a:a+w]), norm(T[b:b+w])) g;
count  count + 1 ;

end
end
return sort(P)

4.2.2 Induced pairs ranking

Algorithm 4: InducedPairsRanking(T, ranking, w, k).
Data : T, time series approximation of lengthn. w, motifs length. ranking ,

ranking induced by the previous step.
Result : P, ranking of all the possible pairs in T
count  0;
P  [];
for a = 0 to len(ranking ) do

i1  ranking[a][0];
i2  ranking[a][1];
P[count]  (i1, i2, L 2(norm(T[i1:i1+w]), norm(T[i2:i2+w])) );
if interrupt then

if a � k then
return sort(P);

else
return ranking;

end
end

end
for a = 0 to len(T) - w + 1 do

for b = a + w to len(T) - w + 1 do
if (a,b) 62ranking then

P[count]  f a, b, L 2(norm(T[a:a+w]), norm(T[b:b+w])) g;
count  count + 1;

end
if interrupt then

return sort(P);
end

end
end
return sort(P)

47



The InducedPairsRanking function is composed of two loops. The �rstcomputes
the matches ranking following the orders induced from the algorithm-previous-step
ranking. The second step computes the ranking of all the remaining matches linearly
from left to right, and merges this with the one obtained in the �rst lo op. Both the
loops, at the conclusion of each iteration, check if the user asked for the algorithm
interruption. If that is the case, if the algorithms has been able to check more than
k matches, then the new partial ranking is returned. Otherwise theprevious step
ranking is returned.

4.2.3 Anytime motif discovery

Algorithm 5: AnytimeMotifDiscovery(H, w, k).
Data : H , time series approximations hierarchy.w, motifs length. ranking ,

ranking induced by the previous step.
Result : top-k ranking
M  [];
t  m;
count  0;
complete = false;
while t > 1 do

M[count]  t;
t  t/2;
count  count + 1;

end
count  count - 1;
topk  LinearPairsRanking(H[count-1], w);
while !(interrupt) and !(count = 0) do

count  count -1;
topk  InducedPairsRanking(H[count], map(topk), w, k);

end
return topk[0:k]

The AnyTimeMotifDiscovery algorithm accepts as input a time seriessub-samplings
hierarchy H , a motif length w, a parameter k and returns the top-k motifs within
the time series. After having computed the motifs ranking, for the highest level
i in the hierarchy, such that m=2i > 1, it starts climbing the hierarchy. At each
step of the climb, the level matches-ranking is computed by inducing the matches
order obtained at the step before. Since each step, presents a signal approximation
which has twice the points of the one at the previous step, themap function maps
the indexes of the matches to be induced to the higher resolution approximation.
It does this by multiply each index by two. The algorithm ends when the �rst

48



hierarchy level ranking operation has been complete. At any moment thealgorithm
termination can be invoked, by setting to true the interrupt variab le.

4.2.4 Some remarks on the pseudo code

The proposed dissertation proves that it makes sense to use our subsampling hier-
archy in order to provide a scalable anytime motif discovery algorithm. In order
to keep the explanation simple, we did not care about the algorithm performance
optimization, therefore the presented pseudo-code makes several assumptions which
do not hold when working with massive datasets. Speci�cally, it assumes that both
the time-series representation and the matches ranking can �t in the main memory.
We took such an approach because we wanted to keep clear, simple and compact
the presented code.
According to the design of our platform, it would be pretty easy to refactor the
presented code to a version able to read the data directly form the disk. We stress
that we used the HDF5 data format due to its fast data access and �lesystem like
data structure, which allows us to access the data as if it are stored in the main
memory. De facto, the presented code would remain pretty similar.
As previously outlined, at each algorithm step the total number of analyzedmatches
is quadratic with the number of points in the series approximation, so each step in-
duces anO(n2) ranking list to the next one. By using a lower bound over the
similarity measures, it is possible to discard all the not-promising matches and so
retain on average just O(w + 2klog(w)) matches [14].

4.3 Experimental Analysis

In this section, we outline some experiments we conducted. They prove that after
few iterations our algorithm achieves results which are really satisfying. Therefore,
the use of the a sub-samplings hierarchy, in an anytime approach, is an e�ective way
of supplying high user interactivity while retaining high the qual ity of the provided
results.

49



Experiments Datasets
Dataset Source Series length Used points Motifs Length k
Poem Rakthant 1 351 1 351 32 7
ECG Rakthant 1 000 1 000 32 7

Winding Rakthant 2 500 2 500 128 7
EEG (LFSS) Mueen-Keogh 182 124 40 000 256 20

EOG Mueen-Keogh 8 000 000 40 000 256 20
ECG (ECGT) Mueen-Keogh 60 000 40 000 256 20

Insect (B) Mueen-Keogh 78 254 40 000 256 20
Random Walk Mueen-Keogh 40 000 40 000 256 20
Strain sensor Infrawatch 28 000 28 000 256 20

We implemented the anytime motif discovery algorithm in C. We run all the pro-
grams in a 2.0 GHz quad core Mac OSx platform with 4GB of RAM. The datasets
we use in the experiments include real time series and synthetic ones. From [19], we
use the provided code which generates synthetic random walks datasets. As in [19]
and many other works, we use a time series of length 180 124 which is a sampled
EEG data, a series sampling insect behavior and a series sampling EOG data. From
[20], we use: a sampled poem; an industrial dataset where data from a wire wind-
ing process are collected; a heart beat time series (ECG) from PhysioBank ATM.
Finally, we use the data coming the Infrawatch project [13], where atotal of 145
sensors were embedded and attached to the Holand Brug by Strukton. Thetable
above summarizes the experiments datasets, con�gurations and parameters.

4.3.1 Precision and recall

For each one of the analyzed datasets, we recorded the top-k patterns obtained by
using the exact motif discovery algorithm over the original data, and used these as
the ground truth for our study. Then, by using the information retrie val metrics
precision and recall, we assessed the quality of the top-k rankings returned at each
step of the algorithm execution. These measures were computed by using the num-
ber of true positive (TP), false positive (FP) and false negatives (FN): the TP are
the number of motifs present in the results obtained by using the original signal and
its approximation; the FP are the motifs which are incorrectly in the approximated
version; and the FN are the motifs which are in the ground truth but are not in the
approximated ranking. Given this, precision and recall are de�ned as:

precision =
T P

T P + F N
recall =

T P
T P + F N

(4.3)

We recall that each motif is composed of two windows, respectively pointed by the

50



indexes a and b. In order to be compared with the ground truth, the indexes of
any motif computed over a series approximation need to be mapped to the original
series scale, since the last presents more points. So, given an approximated motif
in the series-segmentation retrieved from thel i hierarchy level, its indexes (a; b) are
mapped to the original space by multiplying them by two at the power of i . Recall-
ing that the level l i = 0 contains the original sampled series.

map(a; b) = ( a � 2i ; b� 2i ) (4.4)

4.3.2 Matching rule

Given one motif gi in the ground truth and one motif t i in any series approximation,
precision and recall are highly a�ected by the rule used to asses ifgi and t i can be
considered the same motif. The obvious rule would check the equalityof the motifs
indexes, after having mapped the indexes oft i to the original sampling scale; i.e. the
motifs are equal if (agi = at i ) and (bgi = bt i ). Clearly such a rule is too strict, since
each point in the series approximation is the aggregation of a window in theoriginal
sampling, and so any motif starting from any arbitrary point in the middle of the
aggregation window, would never match any approximated motif. A trivial example
are all the ground truth motifs having an odd index, these will nevermatch indexes
mapped from an approximated motif, since it will be even for sure. Therefore, we
adopt a constant � which introduces some 
exibility in the rule. It de�nes the
number of units, expressed as percentage of the motif length, that thetwo indexes
can defer each other to still be consider equal. So, given a motifgi in the ground
truth and a motif t i in the series approximation, they are considered the same motif
if: mod (agi � at i ) < � � w and mod (bgi � bt i ) < � � w.
Given our formalization of the top-k motif discovery problem, we do not count the
number of times each motif appears. From this, in the top-k ranking achieved with
our approach there could be the same motif appearing many times. That happens
when the motif appears more than two times in the series. Hence, a motif in the
approximation could be the same as a motif in the ground truth but do not share
the indexes. In order to partially consider this case and to introduce more 
exibility,
we adjust the matching rule by changing the logicand in the rule with a logic or.
The �nal matching rule follows.

Precision and recall motifs matching rule. Given a motif gi of length w in
the ground truth and a motif t i in any series approximation, they are considered
the same motif if:

mod (agi � at i ) � � � w _ mod (bgi � bt i ) � � � w (4.5)

51



where a and b point respectively at the two windows in the motif and the indexes
(a; b) in t i are mapped to the original series scale.

4.3.3 Results

Precision , recall and execution times were recorded for each one of the experiments.
Figure 4.2 compares the precision of the results, obtained at each algorithm step,
with the execution time needed to achieve them. The outcome is really promising:
for any dataset the algorithm achieves result with precision equal or greater than
0:75, in a time which is at least 10 times faster the one needed by the exactmatch
discovery to run to completion. We consider it a really e�ective solution in all the
cases where the user asks for high interactivity.

Electrocephalography sampling (EEG, Figure 4.3) and Elegtrooculogram sampling
(EOG, �gure 4.4) are two of the most-used datasets in the motif discovery liter-
ature, since it is well-known the existence of well-de�ned patterns in them. So
unsurprisingly, the results achieved with such time series areeven better than the
ones presented before. As visible, precision and recall greater than 0:9 are obtained
in up to 64 times less the time required by the exact match discovery to run to
completion.
Figure 4.8 depicts the motifs discovered in the Infrawatch sensor101, where data
coming from a strain sensor, embedded into the Hollandse bridge by Strukton, are
collected. The algorithm has been left running till completion. The charts outlines
the results achieved at the last �ve executed steps. These are surprising, precision
and recall are better at the level using an approximation compressed by25 times
than the ones obtained at the levels where the signal has been reduced by 24 and
23. That is the only dataset which presents such a behavior.
Finally, the results obtained with the synthetic random walks dataset (4.6) are more
than surprising. But, as previously mentioned, this is a dataset generated ad-hoc
to test the behavior of motif discovery algorithms. So, the outcomes achieved from
such a dataset can not be considered a valid representation of real datasets.

The anytime motif algorithm we propose is an e�ective way to keep high interactivity
in the data mining tool. It provides a solution which does not exclude exact results
but which is able to return a solution to the problem at any moment it is terminated.

52



Figure 4.2: Anytime motif discovery precision vs execution time. Precision
(blue) vs execution time (red) for EEG, EOG, Randow Walk and Insect behavior
datasets. The parameter � used in the precision and recall computation is set
to 0:4. The results are really promising, for each dataset the algorithm obtains a
precision equal or greater then 0:8 in at least 10 times less the time required by the
exact motif discovery algorithm.

53



Figure 4.3: Mueen EEG. Motif discovered at di�erent resolutions in a dataset
where an electroencephalography sampling is collected.

54



Figure 4.4: Mueen EOG. Motif discovered at di�erent resolutions in a dataset
where an electrooculogram sampling is collected.

55



Figure 4.5: Mueen Insect B. Motif discovered at di�erent resolutions in a series
sampling insect behaviors.

56



Figure 4.6: Mueen random walks. Motif discovered at di�erent resolutions in an
synthetic dataset simulating random walks.

57



Figure 4.7: Mueen ECG. Motif discovered at di�erent resolutions in a series sam-
pling ECG data.

58



Figure 4.8: Infrawatch strain sensor (101). Motifs discovered at di�erent se-
ries resolutions in an industrial dataset, where data coming from a strain sensor
embedded into a bridge are collected.

59



Chapter 5

Conclusion and future work

In this work we proposed VizTool, a time series visualization tool which allows for
interactive and explorative data analysis. By adopting a subsampling hierarchy, we
implemented a scalable and e�cient platform, which copes with any dataset size and
o�ers e�cient resources usage, adapting the displayed data-resolution according to
the client capabilities.
What we propose adopts a web client-server solution where the data is stored in a
unique, safe and centralized server, being therefore portable and ubiquitous. Sev-
eral state of the art techniques, able to boost the overall interactivity, have been
applied and integrated in the tool; data pre-fetching and data-bu�eri ng are some of
these. We increased the tool e�ectiveness by integrating severaldata management
and annotation components, such as data import-export and sharing functionalities.

Being aware of the importance the signal's perceptual features have in the pro-
cess of forming an intuition about the system behavior, in the second part of the
work we studied and experimented several segmentation techniques. From such an
analysis, we observed how reduction techniques that focus their approximation on
preserving the peaks in the signal, do not achieve satisfactory representation at high
compression ratios. This is due to the approximation of the original series missing
the fundamental frequencies. Conversely, as the compression ratioincreases, non-
data-adaptive algorithms progressively smooth the series and lose the perceptually
important points in it. Due to this, we suggested a method to selecta data-adaptive
hybrid approximation, obtained by composing diverse techniques.

Finally, the last part of the work presents an anytime motif discovery algorithm, able
to return results whenever it is interupted. It is an algorithm th at progressively re-
�nes and improves the achieved results. By using information retrieval metrics such
as precision and recall, we tested the algorithm over several datasets highly used in
the literature. The experiments prove the e�ectiveness that the proposed method
has in increasing the tool's interactivity, while retaining a high quality of the results.

60



VizTool provides several functionalities, but a lot of work can still be done. Here we
outline some improvements and features which could be implemented. The current
software version builds the subsampling-hierarchy by using the Piecewise Aggregate
Approximation technique; the proposed hybrid method should be used as well. To
do so, it would be necessary to develop a module which automatically optimizes the
algorithm parameters over a small subset (training-set) of the dataset which needs
to be reduced.

VizTool allows the exploration of already collected data, but it lacks a set of
streaming-data APIs which provide realtime-collected data exploration. The adop-
tion of such a solution requires real-time data subsampling, therefore several adjust-
ments to our hybrid algorithm are needed since it is still not an online-algorithm.
This solution would allow the triggering of alarms over real-time monitored data, no-
tifying when user-set thresholds are exceeded. These can be inserted as future work.

Several data mining and data management components have been integratedin
VizTool. However a component allowing the composition of series and mathematical
operators is still missing. The current version implies that the massive data can �t
in the storage supplied by one single node server: since this is not always the case,
the integration of a map-reduce layer would be a useful feature.

Our work proposed a data-adaptive algorithm able to preserve the perceptual fea-
tures in the series, as well. An e�ective metric, which allows usto asses the capabil-
ity of each algorithm to preserve these important points needs to be proposed. Our
assessment is therefore still based on perceptual evaluation and on theEuclidean
similarity measures.

Currently, the hybrid algorithm splits the aggregation windows into t wo di�erent
groups, which are respectively reduced with Piecewise Aggregate Approximation
and Ramer-Douglaus-Peucker algorithms. A di�erent number of points per window
is used by each one of the two segmentation techniques. As we did with the Weighted
Least Square Regression, it would be useful to split the windows over more than
two bins, and associate each bin with a number of points to be used. Basically, we
would like to increase the resolution of the model selection.

Our tool is very e�ective to explore and analyze massive time series, since it can
remain highly interactive by adopting novel and state of the art techniques, such as
prefetching, bu�ering and anytime data mining tasks.

61



Bibliography

[1] Alberto Baggio, Ugo Vespier, and Arno Knobbe. Automated selection of data-
adaptive approximations for large time-series visualization. Benelearn, 2013.

[2] Jurgen Bernard, Tobias Ruppert, Oliver Goroll, Thorsten May, and Jorn
Kohlhammer. Visual-interactive preprocessing of time series data.In Andreas
Kerren and Stefan Seipel, editors,SIGRAD, volume 81 ofLinkoping Electronic
Conference Proceedings, pages 39{48. Linkoping University Electronic Press,
2012.

[3] Nuno Castro and Paulo Azevedo. Multiresolution motif discovery in time series.

[4] Nuno Castro and Paulo J. Azevedo. Time series motifs statistical signi�cance.

[5] Sye-Min Chan, Ling Xiao, J. Gerth, and P. Hanrahan. Maintaining interact ivity
while exploring massive time series. InVisual Analytics Science and Technology,
2008. VAST '08. IEEE Symposium on, pages 59{66, 2008.

[6] Punit R. Doshi, Elke A. Rundensteiner, and Matthew O. Ward. Prefetching
for visual data exploration.

[7] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput.
Surv., 45(1):12:1{12:34, December 2012.

[8] Eugene Fink and Harith Suman Gandhi. Compression of time series by ex-
tracting major extrema. Journal of Experimental and Theoretical Arti�cial
Intelligence, 23(2):255{270, 2011.

[9] M. C. Hao, H. Janetzko, S. Mittelst•adt, W. Hill, U. Dayal, D. A. Keim, M. Mar-
wah, and R. K. Sharma. A visual analytics approach for peak-preserving pre-
diction of large seasonal time series. InProceedings of the 13th Eurographics /
IEEE - VGTC Conference on Visualization , EuroVis'11, pages 691{700, Aire-
la-Ville, Switzerland, Switzerland, 2011. Eurographics Association.

[10] Ming Hao, Umeshwar Dayal, Daniel Keim, and Tobias Schreck. Multi-resolution
techniques for visual exploration of large time-series data. InProceedings of the

62



9th Joint Eurographics / IEEE VGTC Conference on Visualization , EURO-
VIS'07, pages 27{34, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurograph-
ics Association.

[11] W. Javed and N. Elmqvist. Stack zooming for multi-focus interaction in time-
series data visualization. InPaci�c Visualization Symposium (Paci�cVis), 2010
IEEE , pages 33{40, 2010.

[12] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. To-
wards parameter-free data mining. InProceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD '04,
pages 206{215, New York, NY, USA, 2004. ACM.

[13] Arno Knobbe, Hendrik Blockeel, Arne Koopman, Toon Calders, Bas Obladen,
Carlos Bosma, Hessel Galenkamp, Eddy Koenders, and Joost Kok. Infrawatch:
Data management of large systems for monitoring infrastructural performance.
6065:91{102, 2010.

[14] Hoang Thanh Lam, Toon Calders, and Ninh Pham. Online discovery of top-k
similar motifs in time series data. In SDM, pages 1004{1015. SIAM / Omni-
press, 2011.

[15] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic repre-
sentation of time series, with implications for streaming algorithms. In Proceed-
ings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, DMKD '03, pages 2{11, New York, NY, USA, 2003.
ACM.

[16] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Je�rey P. Lankford, and
Daonna M. Nystrom. Viztree: a tool for visually mining and monitoring mas-
sive time series databases. InIn Proceedings of International Conference on
Very Large Data Bases, pages 1269{1272, 2004.

[17] Peter McLachlan, Tamara Munzner, Eleftherios Koutso�os, and Stephen North.
Liverac: Interactive visual exploration of system management time-series data.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI '08, pages 1483{1492, New York, NY, USA, 2008. ACM.

[18] Abdullah Mueen. Enumeration of time series motifs of all lengths.

[19] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, and Sydney Cash. Exact discov-
ery of time series motifs. InSDM, 2009.

[20] Thanawin Rakthanmanon, Eamonn J. Keogh, Stefano Lonardi, and Scott
Evans. Time series epenthesis: Clustering time series streams requires ignoring
some data. In Diane J. Cook, Jian Pei, Wei Wang 0010, Osmar R. Zaiane, and
Xindong Wu, editors, ICDM , pages 547{556. IEEE, 2011.

63



[21] Galen Reeves, Jie Liu, Suman Nath, and Feng Zhao. Managing massive time se-
ries streams with multi-scale compressed trickles.Proc. VLDB Endow. , 2(1):97{
108, August 2009.

[22] Joseph Sill, G�abor Tak�acs, Lester Mackey, and David Lin. Feature-weighted
linear stacking. CoRR, abs/0911.0460, 2009.

[23] Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and Geo�rey
Holmes. Experiment databases.Machine Learning, 87(2):127{158, 2012.

[24] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan.
Detecting time series motifs under uniform scaling. InProceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining , KDD '07, pages 844{853, New York, NY, USA, 2007. ACM.

[25] Jian Zhao, Fanny Chevalier, and Ravin Balakrishnan. Kronominer: Using
multi-foci navigation for the visual exploration of time-series data. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
'11, pages 1737{1746, New York, NY, USA, 2011. ACM.

[26] Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and Ravin Balakrishnan. Ex-
ploratory analysis of time-series with chronolenses.

64


