
Internal Report 2010–08 August 2013

Universiteit Leiden

Opleiding Informatica

On Derandomization

in

Evolution Strategies

Hao Wang

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

The derandomized techniques are frequently applied to improve the performance of stochas-
tic optimization algorithms. The evolution strategy (ES), a subfield of evolutionary algo-
rithm, is one of stochastic optimization algorithms. In the ES history, the derandomiza-
tion of the ES parameter tuning has already been proved to give a big performance leap.
Consequently, the state-of-art ES algorithm has “evolved” from the mutative-self-adaption
framework (MSC-ES) to the covariance-matrix-adaptation technique (CMA-ES). Recently,
the derandomization techniques are applied to the mutation operator to improve the qual-
ity of mutation samples and reduce sampling errors. Following the recent trend, this thesis
firstly discusses and analyzes the newly derandomized sampling method, mirrored sampling
in detail. Then the drawbacks of mirrored sampling are explained. A possible improvement,
“noisy” mirrored sampling is proposed. Secondly, the idea of mirrored sampling is general-
ized into two concepts, the direction derandomization and the step-size derandomization.
Two new mutation operators are proposed based on these two concepts. Finally, those newly
proposed mutation operators are implemented into ES algorithms and tested on BBOB-2012
benchmark to investigate and verify their abilities.

Contents

1 Introduction 1

2 Background 3
2.1 A hierarchical view of evolution strategy . 3
2.2 Review of (µ, λ)-MSC-ES . 5

2.2.1 Implicit covariance matrix . 5
2.2.2 The algorithm . 6
2.2.3 Drawbacks . 7
2.2.4 Biasness of the recombination . 8
2.2.5 Cumulative parameter adaptation . 11

2.3 From (µ, λ)-MSC-ES to (µ/µw, λ)-CMA-ES 12
2.3.1 Covariance matrix adaptation . 13
2.3.2 Step-size adaptation . 14

3 Mirrored sampling technique 17
3.1 Intuition and the algorithm . 17
3.2 Theoretical aspects of (1, λm)-ES . 21

3.2.1 The properties of the mutation vector 22
3.2.2 The (1, λm) evolution strategy . 23

3.3 Mirrored sampling and recombination . 27
3.4 The “noisy” mirrored sampling technique . 28

4 Derandomized sampling 31
4.1 Direction derandomization . 31

4.1.1 A measure on mutation direction . 32
4.1.2 A completely derandomized direction approach 33
4.1.3 Orthogonal Sampling . 35

4.2 Step-size derandomization . 37
4.2.1 Motivation . 37
4.2.2 The algorithm . 38
4.2.3 Limitation . 39
4.2.4 Application . 39

4.3 Theoretical results on step-size derandomization 40
4.3.1 Prerequisite on probability distribution 41
4.3.2 (1 + 1)-ES on Linear Model . 42

4.3.3 (1 + 1)-ES on Sphere Model . 43

5 Empirical results 45
5.1 Performance measure . 45
5.2 Experiment details . 46

5.2.1 BBOB features . 46
5.2.2 Experiment objects . 46
5.2.3 Test functions . 47
5.2.4 Parameter Setting and Implementation Issue 48

5.3 Explanation on the BBOB figures . 49
5.4 Results on BBOB-2012 benchmark . 52

5.4.1 Cu-Simple-(µ, λ)-MSC-ES . 52
5.4.2 Noisy−(µ/µw, λm)-CMA-ES . 56
5.4.3 Derandomized-stepsize-(µ, λ)-CMSA-ES 60
5.4.4 Cu-Simple-(µ, λ)-MSC-ES vs Simple-(µ, λ)-MSC-ES 64
5.4.5 Noisy−(µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES 70
5.4.6 Orthogonal1− (µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES 76
5.4.7 Orthogonal2− (µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES 82
5.4.8 BBOB result of derandomized step-size 88

6 Conclusion 94

List of Figures

2.1 The hierarchical structure of evolution strategy algorithm. 4
2.2 Step-size σ versus number of function evaluations of 20 runs on a purely

random fitness function in dimension 10. x-axis: evaluation counts, y-axis:
global step-size. 10

3.1 Sampling process of mirrored sampling. 19
3.2 The improvement after applying mirrored sampling. 20
3.3 Projection of n-dimensional sphere landscape onto the two-dimensional plane

after the rotation. 23
3.4 Comparison of the progress coefficients. 26
3.5 Step-size σ versus number of function evaluations of 30 runs on a purely

random fitness function in dimension 10. x-axis: evaluation counts. 30

4.1 Step-size σ versus number of function evaluations of 30 runs on a purely
random fitness function in dimensions 2, 3, 5, 10, 20, 40. x-axis: evaluations. . . 33

4.2 Convergence velocity comparison of (1 + 1)-ES on the sphere model. 44

5.1 An Example of running time figures. 49
5.2 An Example of Empirical cumulative distribution function figures. 50
5.3 An Example of ERT ratio figures. 51
5.4 Expected number of f -evaluations to reach fopt + ∆f for Cu-Simple-(µ, λ)-

MSC-ES . 53
5.5 Empirical cumulative distribution functions (ECDFs) for Cu-Simple-(µ, λ)-

MSC-ES . 54
5.6 Expected number of f -evaluations to reach fopt +∆f for (µ/µw, λ̃m)-CMA-ES 57

5.7 Empirical cumulative distribution functions (ECDFs) for (µ/µw, λ̃m)-CMA-ES 58
5.8 Expected number of f -evaluations to reach fopt + ∆f for Derandomized-

stepsize CMSA . 61
5.9 Empirical cumulative distribution functions (ECDFs) for Derandomized-stepsize

CMSA . 62
5.10 Expected running time divided by dimension versus dimension. 65
5.11 Ratio of ERT for Cu-Simple-(µ, λ)-MSC-ES over ERT for Simple-(µ, λ)-MSC-

ES versus log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸ 66
5.12 Expected running time of Simple-(µ, λ)-MSC-ES versus Cu-Simple-(µ, λ)-

MSC-ES. 67
5.13 Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios. 68

5.14 Expected running time divided by dimension versus dimension. 71
5.15 Ratio of ERT for “Noisy” mirrored sampling over ERT for Mirrored sampling

versus log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸ 72
5.16 Expected running time of Mirrored sampling versus “Noisy” mirrored sampling. 73
5.17 Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios. 74
5.18 Expected running time divided by dimension versus dimension. 77
5.19 Ratio of ERT for Orthogonal-Sampling1 over ERT for CMA-ES versus log10(∆f)

in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸ . 78
5.20 Expected running time of CMA-ES versus Orthogonal-Sampling1. 79
5.21 Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios. 80
5.22 Expected running time divided by dimension versus dimension. 83
5.23 Ratio of ERT for Orthogonal-Sampling2 over ERT for CMA-ES versus log10(∆f)

in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸ . 84
5.24 Expected running time of CMA-ES versus Orthogonal-Sampling2. 85
5.25 Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios. 86
5.26 Expected running time divided by dimension versus dimension. 89
5.27 Ratio of ERT for Derandomized-stepsize CMSA over ERT for CMSA versus

log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸ 90
5.28 Expected running time of CMSA versus Derandomized-stepsize CMSA. . . . 91
5.29 Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios. 92

List of Algorithms

1.1 Outline of an evolutionary algorithm . 1
2.1 (µ, λ)-msc-es . 6
2.2 simple-(µ, λ)-msc-es . 11
2.3 Cu-simple-(µ, λ)-msc-es . 12
3.1 sampling(x, σ,C, λ) . 18
3.2 mirrored-sampling(x, σ,C, λ) . 18
3.3 noise-generation(N) . 29
3.4 noisy-mirrored-sampling(x, σ,C, λ) . 29
4.1 complete-derandomized-direction-sampling(x, σ,C, λ) 34
4.2 orthogonal-sampling1(x, σ,C, λ) . 36
4.3 gram-schmidt(v1, . . . ,vk) . 36
4.4 orthogonal-sampling2(x, σ,C, λ) . 37
4.5 derandomized-stepsize-sampling(x, σ,C, λ) 39
4.6 (µ, λ)-CMSA-ES . 40

Chapter 1

Introduction

Evolution strategy (ESs) is an optimization technique based on ideas of adaptation and evo-
lution. It belongs to the general class of evolutionary algorithms (EAs). A very primitive EA
algorithm structure is shown in Algorithm 1.1. The evolution strategy optimization tech-
nique was created in the early 1960s and developed further in the 1970s by Ingo Rechenberg,
Hans-Paul Schwefel and their co-workers.

Evolution Strategies can be applied in all fields of optimization including continuous, dis-
crete, combinatorial search spaces and even mixed search spaces without/with constraints.
It directly uses the solution vectors of the optimization problem as representation of itself.
Normally various solution vectors (offspring) are created by the mutation operator. Then
their corresponding function values (fitnesses) are calculated by the object function. The
selection operator are used to select some good offspring based on their fitness and the
selected offspring are further recombined in order to generate offspring again. In common
with evolutionary algorithms, the operators are applied in a loop. An iteration of the loop
is called a generation. The sequence of generations is continued until a termination criterion
is met. Although there is a huge diversity in this field, most of the ES algorithms share
the same characteristics: they are using a mutation operator based on multivariate normal
distribution and their functionalities are largely dependent on and affected by a upper level
adaptation mechanism of the covariance matrix of the the normal distribution. The latter
is called self-adaptation.

Algorithm 1.1 Outline of an evolutionary algorithm

1 Initialization
2 repeat
3 Recombination
4 Mutation
5 Evaluation
6 Selection
7 until termination criterion fulfilled.

As a special class of computer algorithms, there are some criteria to measure the per-
formance of ESs. The most common one is the time complexity of the algorithm. This is
the standard criterion to measure the performance of a computer algorithm and also appli-

1

cable for ESs. The computational overheads are mainly due to the numerical computation
of the covariance matrix, possible time-consuming adaptation mechanism and maybe so-
phisticated mutation operators. However, the time complexity or the space complexity (the
memory space consumed by ESs) is not the most important criterion for ESs due to the
increasing computational power. Instead, the evaluations in a ES algorithm are very pre-
cious. The fitness function itself could be so complicated that it would take a while for one
evaluation. Or, it could be a computational program which takes the solution vectors as its
parameter and gives a real number as fitness value after a long run (Consider an ES algo-
rithm is used to optimize the structure of a neural network). In the worst case, the fitness
value could only be retrieved from a real-world experiment, like the optimization of shape
of a car or a quantum control experiment. In such case, one evaluation corresponds to one
real experiment, which does not only consume our time. Loosely speaking, the prominent
criterion of ES performance is the expected number of evaluations it takes to give a good
solution vector. The formal terminology is the convergence velocity, which is of importance
in our analysis.

As the result of continuous effort towards improving the ES algorithms, a lot of well-
known ES algorithms are developed, tested, analyzed and exploited in real optimization
problems. The very first successful one is called the (1 + 1)-ES with 1/5-success rule, which
is developed by Schwefel [36] and Rechenburg [35]. It is just a single point (one offspring)
search algorithm using an external rule to tune the global step-size. Later, the significances of
multi-offspring and parameter self-adaptation are discovered and the first ES able to adapt
all the endogenous strategy parameters, (µ, λ)-MSC-ES was proposed by Schwefel [37] in
1981. It is a successful algorithm based on the elegant intuition: mutative self-adaptation
of parameters, which is discussed in details in Section 2.2. Despite the success of MSC-ES,
there are some unpleasant randomnesses which are first discussed and removed by Oster-
meier et. al. [31] in 1993, resulting in the very first derandomized ES algorithm, DR1. The
derandomization of ES algorithm, which means discovering the unpleasant or useless ran-
domnesses and replacing them by much more deterministic logic, targets at improving the
ES performance (saving evaluations) efficiently and enormously. Following such goal, the
derandomized ES has also “evolved” to DR2 [32], then DR3 [26] and finally CMA-ES [25].
They have achieved great successes both experimentally and theoretically. Due to the im-
portance of derandomization in ES, this thesis would be devoted to re-visiting the harmful
randomnesses in history and their derandomized solutions, discussing and generalizing the
recently development and trend in derandomization and to give some possible improvements
following the trend. For more about the history of classic evolution strategies, the survey
by Bäck [8] or the comprehensive introduction by Beyer and Schwefel [12] should meet you
favor.

The structure of this thesis is as follows: Chapter 2 gives a detailed introduction and dis-
cussion about the knowledge basis and summarizes the essence of the CMA-ES algorithm.
In Chapter 3, a new derandomized technique named mirrored sampling is introduced and
analyzed. We give its advantages as well as its drawbacks. A possible improvement is also
shown. In Chapter 4, the idea introduced by mirrored sampling is then generalized, result-
ing in two new ES variants. The motivation and possible analysis are performed. Finally, in
Chapter 5, all the newly proposed ES variants are tested on BBOB-2012 benchmark. The
detailed results are provided.

2

Chapter 2

Background

In this chapter, the background knowledge of the discussions in Chapter 3, 4 are introduced
in detail. First, a hierarchical view of the evolution strategy is given as the basis of this
chapter. Second, (µ, λ)-MSC-ES, which is the first ES able to adapt the covariance ma-
trix successfully, is introduced and discussed in depth. In addition, a problem about the
recombination in MSC-ES is proposed and a possible improvement is given to relieve the
problem. Finally, the leap from MSC-ES to the completely derandomized ES, CMA-ES, is
introduced in a comparable manner. Another purpose of this chapter is to summarize the
history of the derandmomization in evolution strategy and to explain the functionalities of
the derandomized techniques.

2.1 A hierarchical view of evolution strategy

Since the development of the derandomized evolution strategy algorithms (DR1, DR2, DR3,
CMA-ES), a lot of the derandomization techniques have been proposed to improve the
algorithm performance. Because of the diversity of those approaches, it is not a easy job to
clearly argue which parts of randomness in ES is derandomized and why such randomness is
undesirable. Therefore, it is crucial to begin with a ES framework which could characterize
and categorize the different derandomization techniques.

The author argues that most of evolution strategies could be presented in a hierarchical
way such that the ES algorithm is divided into two levels interacting with each others.
These two levels could be formalized such that their interfaces (inputs and outputs) are
standardized. In this way, different ES algorithm could be organized in a uniform structures.
Such framework is shown in Figure 2.1.

Each ES algorithm can be organized in two levels, shown by level 1 and Level 2 in the
figure. Prior to level 1, the level 0 stands for the fitness function. It just evaluates the vectors
given by level 1 and could be even a back box. Level 1 is the body of ES and in essence
is a population-based stochastic optimization using mutation, selection and recombination
operators. The stochastic search is then parametric and controlled by a parameter set Ψ.
It is also a functional block which can work alone with predefined Ψ. Level 2 is managing
to tune the parameter set Ψ. Its only information source is the ordered offspring {xi:λ}λi=1.

Then some methods are exploited to offer Level 1 a reasonable prediction Ψ̂ for the next

3

generation. The interactions between these three levels is also shown in Fig. 2.1.
The author also argues that a “good” ES algorithm should resemble this framework in the

structure. The functionality of every component is clear and dependences between different
components are reduced as much as possible so that the alternative of a component could be
put in without too much violation of the overall algorithm. Due to such advantage, if we view
the known algorithms in this hierarchical structure, it is easier to compare the a component
in one algorithm to its counterpart in another algorithm. The following introduction and
discussion will base on this hierarchical structure.

Level 1: stochastic search controlled by parameter Ψ,

using mutation, selection and recombination in RN space.

Level 2: parameter tuning of Ψ (method varies).

Input: {xi:λ}λi=1 from Level 1, Output: tuned parameter Ψ̂

Level 0: fitness function.

Input:x, Output: f(x)

Ψ̂

x

{xi:λ}λi=1

f(x)

Figure 2.1: The hierarchical structure of evolution strategy algorithm.

4

2.2 Review of (µ, λ)-MSC-ES

2.2.1 Implicit covariance matrix

The (µ, λ)-MSC-ES (MSC is the abbreviation of mutative self-adaptation of covariances)
is the first evolution strategy that successfully adapts the covariance matrix and is widely
used. The algorithm is developed by Schwefel in [37]. The motivation is quite natural: if
we do not know the rules to adapt the covariance matrix, we could simply treat it in the
same way as the solution vector and let it evolve. This is named self-adaptation. In order
to mutate a covariance matrix, we should manipulate it in an implicit form. Given the
eigen-decomposition of the covariance matrix C,

C = BD2BT , C
1
2 = BDBT

where

• B is an orthogonal matrix containing eigenvectors, BBT = I,

• D2 = diag(d21, . . . , d
2
N) = diag(d1, . . . , dN)2 is a diagonal matrix and d21, . . . , d

2
N are N

positive eigenvalues of C.

Then the normal mutation N (0, σ2C) can be written in different ways,

N (0, σ2C) ∼ σC
1
2N (0, I)

∼ σBDBTN (0, I)

∼ σBDN (0, I).

Note that the last equivalence above is because BT represents a rotation matrix while
N (0, I) is rotation-invariant (see Section 3.2.1 for detail). BecauseD is a diagonal matrix, the
multiplication DN (0, I) is just multiplying the square root of the N eigenvalues, d1, . . . , dN
to each component of the mutation vector. The effect is rescaling the mutation vector in
each dimension, which is realized by the so-called individual step-size σ1, . . . , σN in MSC-ES.
Note that the global step-size σ above is also realized by individual step-size σ1, . . . , σN .

Then due to the orthogonality ofB, it represents a rotation matrix1. A rotation operation
in high-dimensional space can be determined byN(N−1)/2 rotation angles which correspond
to N(N − 1)/2 2-dimensional subspaces and dictate the rotation component at each 2-
dimensional subspace. The rotation matrix Rij in 2-dimensional subspace formed by axis i
and j is given by an identity matrix, extended by the entries R(i, i) = R(j, j) = cosαij and
R(i, j) = −R(j, i) = − sinαij (αij is the rotation angle in this subspace). Furthermore, the
overall rotation matrix in the search space is computed as the product of all the Rij ,

B =

n−1∏

i=1

n∏

j=i+1

Rij . (2.1)

Given the relation of the eigenvector B and the rotation angles above, every covariance
matrix can be decomposed into two quantities: rotation angles and the square root of eigen-
values, which are manipulated much easier in ES. They are further treated the same as the
solution vector and participate in the evolution process.

1Normally an orthogonal matrix B represents a rotation matrix when |B| = 1. When |B| = −1, it
represents a reflection transformation, which also holds for our discussion here.

5

2.2.2 The algorithm

The (µ, λ)-MSC-ES introduced here is basically the same as the one proposed in [37]. How-
ever, only intermediate recombination operator is allowed here while some alternatives are
possible in the original literature. According to the self-adaptation principle, the individual
step-sizes and rotation angles also evolve every generation. If the individual step-sizes are
denoted by a vector σ of length N , the mutation rules for it is defined as

σi ← σ̄ exp (τ ′N (0, 1) + τN (0, I)) , 1 ≤ i ≤ λ (2.2)

where σ̄ is the mean individual step-size vector obtained in the last generation. τ and τ ′

are two constants controlling the strength of mutation. Note that this mutation rule is
the product of two log-normal distributions. The first one is a scalar exp (τ ′N (0, 1)) which
mutates all the dimensions at the same amount and is called global step-size. Another one
is a random vector exp (τN (0, I)) mutating each dimension differently and in fact adapting
the eigenvalues of the covariance matrix. The rotation angles are also packed into a vector
α of length N(N − 1)/2. The mutation rule for it reads basically the same as that for the
solution vector,

αi ← ᾱ+ βN (0, I), 1 ≤ i ≤ λ (2.3)

where ᾱ is the mean rotation angle vector obtained in the last generation. Constant β is the
standard deviation of this mutation. τ, τ ′ and β arre called learning rates. As recommended
by Schwefel [37], the setting τ = 1√

2
√
N
, τ ′ = 1

2
√
N

and β = 5
180π are reliable.

Algorithm 2.1 (µ, λ)-msc-es

1 Initialize population
2 P (0) ← {(xi,σi,αi)}λi=1

3 t← 0
4 repeat
5 t← t+ 1
6 x̄ = 1

µ

∑µ
i=1 xi

7 σ̄ = 1
µ

∑µ
i=1 σi

8 ᾱ = 1
µ

∑µ
i=1 αi

9 for i = 1→ λ do
10 η ← τ ′N (0, 1)
11 σi ← σ̄ exp (η + τN (0, I))
12 αi ← ᾱ+ βN (0, I)

13 B←∏n−1
i=1

∏n
j=i+1 Rij

14 xi ← x̄+B · σi ⊕N (0, I)
15 φi ← f(xi)
16 end for
17 Select µ best from (xi,σi,αi)
18 until termination criterion fulfilled.

In the next step, the rotation angles α is used to calculate component B of the covariance
matrix as shown in Equation 2.1. In addition, σ represents the square root of the eigenvalues.

6

Therefore, offspring are generated as

xi ← x̄+B · σi ⊕N (0, I), 1 ≤ i ≤ λ

Note that symbol ⊕ means the element-wise multiplication and x̄ is the parental vector.
In the selection step, the goodness of αi and σi are determined by the fitness of xi. Then
the pair (xi,αi,σi) are ranked with respect to its goodness. The intermediate recombina-
tion is uniformly used for the µ best pairs, yielding the parental pair (x̄, ᾱ, σ̄) of the next
generation. The complete algorithm is listed in Algorithm 2.1 and should be self-explanatory.

2.2.3 Drawbacks

Although the concept of making strategy parameters mutate and survive from the envi-
ronment seems a good way to adjust the strategy parameters, such approach has lots of
drawbacks due to the disturbed and limited information source of the strategy parameter
adaptation and an intrinsic conflict involving the mutation strength setting of parameters.

There are two evolution processes at the different levels. The mutation, selection and
recombination of solution vectors is the evolution dynamics in problem space, namely level
1 in Figure 2.1. We term it as the first level evolution process here. This is the standard
stochastic search process parameterized by strategy parameters, (σi,αi). To control and
optimize the parameters, MSC-ES facilitates the second level evolution dynamics in the pa-
rameter space (level 2 in Figure 2.1). We term it as the second level evolution process here.
The main drawbacks are due to this level 2 evolution process, most of which are argued
below:

1. The reliability of adaptation information. Any adaptation mechanism works
based on some information source. For the first level evolution process, the information
is merely the fitness values of the population, which is precise in the noiseless fitness
case. However, in the second level, the real information needed is the goodness of
a strategy parameter mutant, which is neither provided directly nor possibly to be
inferred accurately by the first level. Instead, the goodness is determined by the fitness
rank of the corresponding offspring. However, it is possible to assemble a good realized
standard normal vector and a bad strategy parameter setting to make a good offspring,
which implies that a good offspring does not always imply a good parameter setting.
Therefore, the second level evolution process is working on a noisy landscape in fact.

2. Indirect selection of strategy parameter setting. Despite the noisy information
fed to the second level, the mutative parameter control mechanism is also loosing
information by its nature. A good mutation containing good strategy parameters (σ,α)
in the first level is selected not to directly adapt the strategy parameters. Instead, such
information is used to adapt the parameters of the mutation distribution (σ̄, ᾱ) in the
second level so that the probability of realizing good strategy parameters (σ,α) again
is increased. In this manner, comparing two different strategy parameter settings, the
better one has (only) a higher probability to be selected. Differences between these
selection probabilities can be quite small.

3. Changing landscape. The optimal setting of strategy parameters depends on the
current search location in the problem space. Fixing the search point in problem space,

7

the mapping from all possible strategy parameters to the performance of the first level
search can be found at least theoretically, which leads to a strategy parameter land-
scape depending on the search point in the lower level. The second level is actually
working on this landscape. As the evolution of the first level, the landscape is chang-
ing. Thus, the MSC approach has to optimize a dynamic landscape, which should be
inefficient.

4. Conflicts involving the mutation strength. Mutation strength in the second level
is controlled by the so-called learning rate and is usually kept constant throughout the
search process. It is already really difficult to facilitate an effective mutation strength
that is virtually independent of the actual position in strategy parameter space. In
addition, the landscape of strategy parameters seems changing during the evolution
of the first level, which makes the problem even harder. Another issue, the strategy
parameter change rate defined as the difference between the strategy parameters of
two consecutive generations, is an indicator of the adaptation speed. Moreover, the
mutation strength in the second level that obtains optimal change rate is typically
smaller than the one that obtains good diversity among the mutants, as a desired effect
of the mutation operator. Such a conflict can not be solved by any tuned learning rates.

2.2.4 Biasness of the recombination

Despite the well-known unsatisfactory aspects listed above, there is another question with
the recombination operator of the strategy parameters. The idea of MSC scheme seems bio-
logically plausible and can be easily understood. However, we argue that it is very important
to understand its underlying statistical properties. The statistical analysis of its mechanism
can actually act as a proof to the biological intuition, may offer some clues of improvements
and at least gives challenging questions which helps our understanding about itself.

The recombination of individual step-sizes is considered here. Due to Equation 2.2 the
individual step-size vectors are generated as,

σ
(g+1)
i ← σ̂(g) exp (τ ′N (0, 1) + τN (0, I)) , 1 ≤ i ≤ λ

It is the sum of two log-normal distributions rescaled by σ̂. The superscript (g) is the gener-
ation index. Then individual step-sizes are ranked based on the fitness of their corresponding

offspring. We will use the notation σ
(g)
i:λ to represent the i-th best parameter in such ranking.

Finally the recombination takes place to guess a good parameter based on µ best individual
step-size,

σ(g+1) =
1

µ

µ∑

i=1

σ
(g)
i:λ

This mutation-selection-recombination cycle above could be treated as a statistics estima-
tion procedure, which manages to “guess” a optimal parameter setting from limited sources.

In our case, we denoted the optimal individual step-size vector in generation g as σ∗(g)

. Then

the first step of the standard procedure to estimate σ∗(g)

is sampling, which generates a pop-

ulation distributed by a certain distribution having σ∗(g)

as its parameter (the log-normal
distribution is used for our case). However, it is not possible to generate such population

due to the unknown optimal σ∗(g)

. Instead, a reasonable guess σ̂(g), which is obtained in

8

the last generation, is considered as a approximation of σ∗(g)

and used to generated the

individual step-size population {σ(g+1)
i }1≤i≤λ. For the standard estimation procedure, all

the λ individuals are used in the estimation. However, the collection {σ(g+1)
i }1≤i≤λ is not

directly related to σ∗(g)

. We suppose that the samples that are highly related to the opti-
mum should share similar behavior with the optimum, which is measured by their fitnesses.
Then it is reasonable to use the best µ individual step-size vectors to make an approximate
estimation. This is the essential functionality of selection operator in terms of estimation.

Given such procedure above, the rest task is to prescribe a “good” estimator. In the
standard MSC, the most popular method to generate the new σ is the intermediate recom-
bination, namely the sample mean, which is

σ̄(g+1) =
1

µ

µ∑

i=1

σ
(g)
i:λ . (2.4)

This estimation seems really natural and plausible because that is the same the way in
which the solution vectors are recombined. However, recall that the sample of σ is log-
normally distributed while the sample mean σ̄ is the maximum likelihood estimator for
normal distribution instead of log normal. Furthermore, the maximum likelihood estimator
of log-normal distribution for the mean is [27, Chapter 14]:

σ
(g+1)
MLE = exp

(
1

µ

µ∑

i=1

lnσ
(g)
i:λ

)
. (2.5)

At this moment we would like to propose the question: which of these two estimators
should we choose? The original σ̄ or σMLE. An important design criterion for stochastic
search procedure (also a theoretical aspect for judging the goodness of estimator) is the
unbiasedness of variations of strategy parameters. A parameter φ is considered unbiased in
a given procedure if and only if its expected value remains unchanged in the next generation
under random selection (e.g. the objective function f(x) = rand or f(x) = const, to be
independent of x).

Under the random selection, all the samples are accepted for the recombination or esti-
mation as argued before, which means all the samples are believed to be generated from a

distribution involving σ∗(g)

. Then the expected estimates should be σ∗(g)

. For ES aspects,
under random selection, there is no “gain” from the landscape teaching the algorithm how
to evolve. The best option is to remain the parameter unchanged. From experience, it is
usually the case that the logarithm of individual step-size should be unbiased. Thus, we
analyze the biasness of these two estimators as below. Note that the expectations of log
normal distributions we are facing are [27],

E [exp (τ ′N (0, 1))] = exp

(
τ ′2

2

)

E [exp (τN (0, I))] = exp

(
τ2

2

)
1N×1

9

where 1N×1 is the a length N column vector with all its entries equal to 1. We first calculate
the conditional expectation of ln σ̄:

E
[
ln σ̄(g+1) | σ̄(g)

]
= E

[
ln

(
1

µ

µ∑

i=1

σ
(g)
i:λ

) ∣∣∣ σ̄(g)

]

≤ ln E

[
1

µ

µ∑

i=1

σ
(g)
i:λ

∣∣∣ σ̄(g)

]
(Jensen’s inequality)

= ln

{
1

µ

µ∑

i=1

σ̄(g) E [exp (τ ′N (0, 1))] E [exp (τN (0, I))]

}

= ln σ̄(g) +
τ ′2 + τ2

2
.

Thus, ln σ̄ is not guaranteed to be unbiased. On the contrary, lnσMLE is unbiased because

E
[
lnσ

(g+1)
MLE | σ

(g)
MLE

]
= E

[
1

µ

µ∑

i=1

lnσ
(g)
i:λ

∣∣∣ σ(g)
MLE

]

=
1

µ

µ∑

i=1

E
[
lnσ

(g)
MLE + τ ′N (0, 1) + τN (0, I)

]

= lnσ
(g)
MLE.

The arguments above can also be verified from experimental aspect. To compare the

0 1000 2000 3000 4000 5000
10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

107

108

109

1010

1011

Figure 2.2: Step-size σ versus number of function evaluations of 20 runs on a purely random
fitness function in dimension 10. x-axis: evaluation counts, y-axis: global step-size.

10

behaviors of two estimators experimentally, a simplified (µ, λ)-MSC-ES algorithm (shown
in Algorithm 2.2), in which the covariance matrix does no exist and only global step-size
σ is self-adaptive, is tested on a random fitness function and the random walk of log σ is
recorded and plotted in Figure 2.2. The dynamics of log σ under recombination operator σ̄
is shown in 10 red curves while that under recombination operator σMLE is shown in 10 blue
curves. It is pretty clear that there is a huge positive bias when using σ̄ for recombination.
Such observation shows the original suggestion of recombination operator may not behave
as what we want despite its great success. The difference between the effects of these two
recombination operators on performance needs to be investigated further.

2.2.5 Cumulative parameter adaptation

As discussed in the last section, the adaptation mechanism of global step-size σ suffers a
positive bias. The newly obtained σ after recombination is getting larger quickly. In order to
reduce such unsatisfactoriness, we could update the global step-size cumulatively instead of
replacing the old one with the new one, like the updating rules in CSA and CMA techniques
(see the next section). The cumulative updating rule reads,

σ̄(g+1) = (1 − c)σ̄(g) +
c

µ

µ∑

i=1

σ
(g)
i:λ . (2.6)

The notations above is the same as the last section. The changing speed of σ̄ is controlled
by a constant c. Using this updating rule, the variation of the newly recombined parameter
has relatively small effect on σ̄, compared to the original updating method. Such updating
rule could also be applied to the individual step-size σ̄. However, in order to make a quick,
simple investigation of the functionality of this new updating rule, we just apply Eq. 2.6 to
the simplest self-adaptive ES, in which the covariance matrix does not exits at all. This ES
algorithm is named Simple-(µ, λ)-MSC-ES here and is shown in the following algorithm.

Algorithm 2.2 simple-(µ, λ)-msc-es

1 Initialize population
2 t← 0
3 repeat
4 t← t+ 1
5 x̄ = 1

µ

∑µ
i=1 xi

6 σ̄ = 1
µ

∑µ
i=1 σi

7 for i = 1→ λ do
8 σi ← σ̄ exp (τN (0, 1))
9 xi ← x̄+ σiN (0, I)

10 φi ← f(xi)
11 end for
12 Select µ best from (xi, σi)
13 until termination criterion fulfilled.

The suggested setting of τ is 1/
√
N . The cumulative version of it is termed Cumulative-

Simple-(µ, λ)-MSC-ES, or Cu-Simple-(µ, λ)-MSC-ES for short and is listed in Algorithm 2.3
below.

11

Algorithm 2.3 Cu-simple-(µ, λ)-msc-es

1 Initialize population
2 t← 0
3 repeat
4 t← t+ 1
5 x̄ = 1

µ

∑µ
i=1 xi

6 σ̄ = (1− c)σ̄ + c
µ

∑µ
i=1 σi

7 for i = 1→ λ do
8 σi ← σ̄ exp (τN (0, 1))
9 xi ← x̄+ σiN (0, I)

10 φi ← f(xi)
11 end for
12 Select µ best from (xi, σi)
13 until termination criterion fulfilled.

The parameter τ is still 1/
√
N and c should be set to 1/ 4

√
N/2 by the author. There are

two other motivations for this new updating rule. First, the local information is not reliable as
discussed in Section 2.2.3. However, cumulated information over history sometimes gives us
a improvement on the accuracy of the information. Second, the standard step-size updating
rule somehow suffers an over fit effect (discussed in detail in Section 2.3.1). The newly
recombined global step-size fits the current selected step-size population most. If we just
replace the old parameter with the new one, the information contained in the old parameter
is lost. Then it is reasonable to combine both of the parameters. The empirical comparison
of the two algorithms is shown in Chapter 5.

2.3 From (µ, λ)-MSC-ES to (µ/µw, λ)-CMA-ES

As the result of continuing efforts to rectify the unpleased aspects in (µ, λ)-ES, (µ/µw, λ)-
CMA-ES was proposed in 1996 [25], and is considered as the state-of-the-art evolution
strategy algorithm. This algorithm tries to adjust and adapt the strategy parameters based
on much reliable information even the population is small. The history from (µ, λ)-MSC-ES
to (µ/µw, λ)-CMA-ES is quite important and reflects the evolution of people’s intuitions
and viewpoints on ES adaptation. Although there are three other ESs between them, DR1,
DR2, DR3, CMA-ES is considered as the “ultimate” version of DR-ES series and their ideas
are consistent. Therefore, only the CMA-ES is discussed here. The introduction of CMA-
ES here is built on the comparison with the essence of MSC-ES. The purpose is to make
the difference between MSC-ES and CMA-ES clear and to facilitate the the discussion of
new ES variants later in this thesis. There are already some comprehensive introduction to
CMA-ES. For detailed explanation of CMA-ES, please read [24].

The key mechanism in evolution strategy is how to adjust the strategy parameters prop-
erly. The strategy parameters for most of the ES algorithm is the global step-size σ and the
covariance matrix C, as the mutation of solution vector is usually generated by N (0, σ2C).
The adaptation mechanism of (σ,C) always begins with obtaining the information related
to the parameters, and then decides the new parameters based on the information. The
performance of such procedure is highly dependent on two questions:

1. How to obtain the information that the adaptation mechanism needed precisely?

2. How to use to information to guide the parameter adjustment reasonably?

Indeed, the method to get the information is highly dependent on the adaptation mechanism
we choose. Note that the only precise and reliable information is the fitness values. If other
type of information is needed, it could only be inferred from the raw fitness values.

12

2.3.1 Covariance matrix adaptation

In MSC-ES, the mechanism of covariance matrix adaptation is to construct a evolution
process for the covariance matrices as illustrated in Equation 2.2, 2.3. Then the fitness in-
formation of the covariance matrices are necessary for the later selection operator. However,
the fitness values of the solution vectors is the only information source, which are trusted as
the fitness of covariance matrices and used again by the evolution dynamics of covariance
matrices. As discussed before, such fitness information for covariance matrices is highly dis-
turbed. The mutative-self-adaptation mechanism simply fails to obtain reliable information
for the covariance adaptation at the beginning. Building a second level evolution dynam-
ics (an evolution process of endogenous strategy parameters) within a evolution strategy
algorithm seems not a quite good approach because the first level evolution dynamics (the
evolution of the solution vectors) could not provide the fitness value required by the second
level.

In (µ/µw, λ)-CMA-ES, σ and C does not mutate at all and is fixed for all the solution
vectors generation within one generation. The solution vector read,

x
(g+1)
i = x(g) + σ(g)z

(g)
i , 1 ≤ i ≤ λ

where z
(g)
i ∼N (0,C(g)), x(g) is the parent and the superscript (g) is the generation index.

After the evaluation, we could order the solution vectors as {xi:λ}1≤i≤λ based on their
corresponding fitness value. At this time, the mechanism in CMA-ES manages to investigate
what information the best µ solution vectors can give. By the maximal likelihood estimation
method, the covariance generating the best µ mutations of solution vectors with maximal
probability reads [25],

C(g+1)
µ =

1

µ

µ∑

i=1

(
x
(g)
i:λ − x(g)

)(
x
(g)
i:λ − x(g)

)T
, (2.7)

where
P (x

(g)
1:λ, . . . ,x

(g)
µ:λ | C(g+1)

µ) −→ max.

The information needed by estimation Equation 2.7 is just the goodness ordering of the
solution vectors, which is directly obtained from evaluation and reliable. Compared to MSC,
the guess for good covariance matrices is done by choosing the covariance matrices related
to the µ best solution vectors, which is based on the unreliable information as discussed
before. At this moment, the new estimation method is already better.

The next question is how to use the estimation C
(g)
µ to adjust the current covariance.

Although C
(g)
µ is the optimal choice for the µ best solutions, there are many other possible

good solutions which are not realized in one generation. The current covariance matrix may

generate other possible good mutations at high probability. Thus it is reasonable to add C
(g)
µ

to the current covariance to keep both the new information and the old one. The updating
rule reads,

C(g+1) = (1 − ccov)C
(g) + ccov

1

σ2
C(g+1)

µ , (2.8)

where the good choice for ccov ismin(1, µ/N2) according to [25]. This mechanism is termed as
covariance matrix adaptation. Let’s turn to another viewpoint to compare this new method
to the covariance matrix adaptation in MSC-ES. The covariance matrix can be treated as

13

a probabilistic model for mutation generation. The target of fitting this model is to find a
good covariance matrix which could generate a possible good mutation at relatively high
probability. The µ best mutations is the training set. In this sense, Equation 2.7 is the simple
learning rule and it is over fitting the model to the training set. Cumulating the over fitted
parameter to the current parameters can largely relieve the over fitting problem. Thus, the
updating rule above seems reasonable.

For MSC-ES, its adaptation mechanism suffers from the over fitting problem. As the in-
termediate recombination is also applied to the covariance matrix (individual step-size and
rotation angles), the recombined covariance matrix is simply the maximal likelihood estima-
tion for µ best covariance matrix mutants and faces the same problem with Equation 2.7.

There is actually another component in the Equation 2.8, named rank-one-update, which
cumulates the selected mutation vectors and increases the reliability of the covariance matrix
adaptation. It is not relevant to the comparison here and is omitted.

2.3.2 Step-size adaptation

In MSC-ES, the adaptation mechanism of global step-size is the same with that of covariance
matrix and is realized as part of individual step-size (see Section 2.2.2). Thus, it suffers from
the same problem. As for the CMA-ES, the difference of two consecutive parental vectors
disregarding step-size is termed as step and reads,

x(g+1) − x(g)

σ(g)
=

1

µ

µ∑

i=1

z
(g)
i:λ

The relation above is established under random selection because summation on a sequence
of the independent normal vector is summing their mean and covariance in effect. The
step-size adaptation based on the following observations on steps [24]:

1. If the sequence of successive steps are anti-correlated, the length of the sum sequen-
tial steps would be relatively small. Because the anti-correlated steps are canceling
each other. In this situation, the algorithm is inefficient and the step-size should be
decreased.

2. If the sequence of successive steps are correlated, the length of the sum sequential steps
would be relatively large. Because they are roughly pointing to the similar directions.
This indicates the same distance can be covered by fewer but longer steps into the
same directions. Thus, the step-size should be increased.

3. If the sequence of successive steps are approximately perpendicular to each other,
namely uncorrelated, then the situation is desired and there is no need to adjust the
step-size.

Thus, the sum of sequence of successive steps is regarded as the indicator of how ES performs
on landscapes in the recent history. It is termed as (conjugate) evolution path. To decide
whether the evolution path is “long” or “short”, we compare the length of the evolution path
to the expected path length situation 3 above. Under random selection (or random fitness)
consecutive steps are independent and uncorrelated. Therefore, the expected evolution path
length under random selection is used to represent the situation 3. In order to make the

14

steps realized by different covariance matrices comparable, the steps are first conjugated

with C(g)−
1
2 then added to the evolution path [25],

p(g+1)
σ = (1− cσ)p

(g)
σ +

√
cσ(2− cσ)µ C(g)−

1
2 x

(g+1) − x(g)

σ(g)
. (2.9)

The factor
√
cσ(2− cσ)µ is chosen such that

p(g+1)
σ ∼ N (0, I)

if the right-hand side of Equation 2.9 satisfies the following conditions,

p(g)
σ ∼N (0, I) and

x(g+1) − x(g)

σ(g)
∼ 1√

µ
N (0,C(g)),

which could only be achieved under the random selection. Therefore, the evolution path
computed by Equation 2.9 under random selection is a standard normal vector and its
expectation is E ||N (0, I)|| =

√
2Γ(N+1

2)/Γ(N2). Therefore we can update σ(g) by comparing

||p(g+1)
σ || with E ||N (0, I)||, which is [25],

σ(g+1) = σ(g) exp

(
cσ
dσ

(
||p(g+1)

σ ||
E ||N (0, I)|| − 1

))
(2.10)

where the standard setting of parameter cσ, dσ is,

cσ =
µ+ 2

N + µ+ 3
, dσ = 1 + 2max

(
0,

√
µ− 1

N + 1

)
+ cσ

This elegant technique is well-known as cumulative step length adaptation(CSA). Unlike the
step-size adaptation in MSC, the CSA technique completely is built on reliable information
and therefore considered more advanced. In addition, the updating rule (Equation 2.10) is
unbiased under random selection due to,

E
[
lnσ(g+1) | σ(g)

]
= E

[
lnσ(g) +

(
cσ
dσ

(
||p(g+1)

σ ||
E ||N (0, I)|| − 1

)) ∣∣∣ σ(g)

]

= lnσ(g) +
cσ
dσ

(
E ||p(g+1)

σ ||
E ||N (0, I)|| − 1

)

= lnσ(g)

Compared to the biased adaptation of MSC argued in Section 2.2.4, the CSA technique
seems more plausible again.

15

Chapter 3

Mirrored sampling technique

All the derandomization techniques discussed in Chapter 2 are working and designed for
the level 2 of a ES, namely the control mechanism. These techniques have already been
extensively exploited to improve the ES performance. Furthermore, the randomness in level
1 of the ES, which mainly involves the mutation operator, can also been reduced in certain
degree to improve the performance.

The general idea is that the realized mutations in high dimensional space could be ill-
generated such that the search direction and search step-sizes implied by the covariance
matrix are not realized with satisfaction, due to the nature of random sampling. Such bad
sampling case will be illustrated in this chapter. The “mirrored” sampling technique serves
as the first example of level 1 derandomization technique, aiming at improving the mutation
sampling.

The mirrored sampling technique has been formalized and extensively analyzed under
the extremely simple case ((1, λ)-ES) in [15] and benchmarked in the special case of the
(1, 2)- and the (1, 4)-CMA-ES in [1, 2, 3, 4]. In this chapter, the basic mirrored sampling
technique is introduced, and then its advantages and disadvantages are summarized. Some
theoretical results on simple fitness function is also given and compared to the that of the
standard ES. Finally, a possible improvement of mirrored sampling is proposed.

3.1 Intuition and the algorithm

The mirrored sampling, a modification made on the offspring generation process (or sam-
pling, mutation), is quite a simple and elegant idea in which a single random vector is used
to create two offspring, one by adding and the other by subtracting the vector. In order
to compare the mirrored idea to the standard offspring generation in ES, it is better to
formalize them both with a uniform representation and make themselves independent of
the rest of the ES algorithm. In addition, by doing this, we could construct a pool of basic
operators having the same purpose, like what we are going to build, a pool of mutation
operators. Such pools may act as the repertoire for an algorithm designer. Once we have our
pool of mutation operators, of recombination and of selection, the whole ES algorithm could
be realized as the combination of the operators from these pools. In this way, the standard
mutation and the mirrored alternative are formalized in Algorithm 3.1 and 3.2 uniformly.

17

Algorithm 3.1 sampling(x, σ,C, λ)

1 given: zi,xi ∈ Rd

2 B,D← eigen-decomposition(C)
3 for i = 1→ λ do
4 zi ← N (0, I)
5 xi ← x+ σBDzi
6 end for

Algorithm 3.2 mirrored-sampling(x, σ,C, λ)

1 given: zi,xi ∈ Rd

2 B,D← eigen-decomposition(C)
3 if λ 6= 0 (mod 2) and zlast is present then
4 x1 ← x− σBDzlast
5 λ← λ− 1
6 Delete static variable zlast.
7 end if
8 for i = 1→ λ do
9 if i ≡ 0 (mod 2) then

10 xi ← x− σBDzi−1

11 else
12 zi ← N (0, I)
13 xi ← x+ σBDzi
14 end if
15 end for
16 if λ 6= 0 (mod 2) then
17 Create static variable zlast.
18 zlast ← zλ
19 end if

The Algorithm 3.1 gives the process of the standard mutation operator. It takes the
parental vector x, the global step-size σ, the current covariance matrix C and the number of
the offspring λ as inputs, samples λ i.i.d (independently and identically distributed, we will
use such abbreviation in the context) mutation vectors following N (0, σ2C) and returns the
sum of x and each mutation vector. The functionality of the standard mutation operator,
as shown in this sampling procedure, is decomposed and decoupled from other components
of ESs. Furthermore, its interfaces (inputs and outputs) with other components are formal-
ized such that it could be compared to or replaced by a alternative formalized in the same
manner without violating the rest of ES algorithms. Note that the eigen-decomposition
in the algorithm stands for the numerical eigen decomposition procedure which is irrelevant
to our concerns here.

As an alternative, the mirrored sampling procedure is shown in Algorithm 3.2. Dur-
ing each ES generation, only half of the vectors are sampled, namely {x2i−1}1≤i≤λ/2 ,xi ∼
N (0, σ2C) for even λ. Each random vector x2i−1 is used to generate two offspring, the usual
one 〈x〉+x2i−1 and the mirrored offspring 〈x〉−x2i−1. Those two offspring are symmetric or
mirrored to the current centre mass 〈x〉, from which this technique gets its name. In order
to make the argument here clearer, the mutations sampled from the distribution are termed
as realized mutations while the mirrored mutations are termed as mirrored mutations. For
odd λ, we begin to generate ⌈λ/2⌉ realized offspring in the first generation and results in
⌈λ/2⌉ mirrored offspring. Then all of the realized offspring and ⌈λ/2⌉ − 1 mirrored ones
are used immediately while the extra one mirrored mutation is kept to the next generation.
Then in the next generation the extra mirrored offspring is used and only ⌊λ/2⌋ realized

18

mutations are needed to be drawn. The following generations would repeat this procedure.
Please check the static variable zlast in Algorithm 3.2, which facilitates the extra realized
mutation vector. The pseudo-code is pretty much self-explanatory. We followed the notation
proposed in [15] such that any ES algorithm using mirrored sampling would be denoted as
(µ, λm)-ES. Consequently, in the (1+1m)-ES, a mirrored mutation is used if and only if the
iteration index is even. Note that in the (µ, λm)-ES an offspring and its mirrored counterpart
are entirely dependent. In order to convey the mirrored idea clearer, a typical situation of
ES evolution when applying mirrored sampling is shown below.

m

I

II

A

B

m

xopt

Figure 3.1: Sampling process of mirrored sampling.

In Figure 3.1 we draw the sampling process of a ES algorithm on a 2-dimensional uni-
modal function. The landscape (or contours) of 2-dimensional unimodal object function is
shown with the dashed ellipses. The solid black ellipse centred at m is one example of the
lines of equal mutation probability density and also represents the shape of the current co-
variance matrix. A mirrored pair of offspring are shown by A and B. If a new offspring is
generated in the light green area marked as I (like the offspring A in the figure), then the
fitness of the offspring is better than the parent. Otherwise, any new offspring drawn on
light gray area marked by II is going to be worse. Let us term region I as progress region.

The intuition of the idea comes from the observation of the following extreme case of
offspring generation. The left part of Figure 3.2 illustrates a glimpse of the bad realized
high-dimensional mutations of a (1, 4)-ES served as our “extremely bad case”. The progress

19

region is the light gray area while all four offspring are out of the progress region. After
crushing the high dimension search space into a plane, the mutations are actually uniformly
distributed on the the solid black ellipse which represents the covariance matrix (see Section
3.2.1 for detail). In such extreme case no mutation makes progress and renders this genera-
tion inefficient. In addition, the chance of being in this situation is not as low as expected.
If the length of fraction of the ellipse surrounding the progress region is l and the total
length of the ellipse is L, the probability of being in the bad case is (1 − l/L)λ, due to the
uniformity on hyper ellipse of mutations. Given the progress region is usually small, the
probability simply can not vanish.

Then the mirrored sampling gives a simple and elegant trick. The reason is as follows:
the realized random vectors and their mirrored counterparts would locate in the space more
evenly. Therefore the population mixture of realized offspring and their mirrored counter-
parts would increase the probability of hits in the progress region even without any informa-
tion about the progress region. The right part of Figure 3.2 provides a brief situation after
applying mirrored sampling to the left part. The red mutations x3 and x4 are the mirrored
mutations from ill-generated x1,x2 and x4 hits the progress region. The actual effects can
be thought as the progress region is “mirrored” (region I is mirrored to II in the figure) so
that the probability to generate a good offspring is increased.

x1

x2

x3

x4

After mirroring

x1

x2

x3

x4

III

Figure 3.2: The improvement after applying mirrored sampling.

All the discussions above are based on small λ value. When the offspring population is
really big, the realized population would converge to the expectation. If λ/2 offspring (take
the even population as the simplest cases, for odd population, the following argument still
holds) are realized from the distribution, then the realized offspring would contribute λl/2L
good offspring. Then again the realized offspring are mirrored, which transforms λl/2L bad
offspring from λ(1 − l/S)/2 to good one. Combining these two contributions, the total ex-
pected good offspring would be

λ

2

l

L
+

λ

2

l

L
=

λl

L
,

20

which has no difference with standard sampling. Therefore, the performance of mirrored
sampling ES is expected to better than that of standard ES in case of small offspring
population and converge to that of standard ES when λ gets large.

Mirrored sampling could adjust the bad-realized samples to much more reasonable cases
so that the probability of drawing samples in the “good” area is increased. When λ value is
very large, the mirrored sampling method makes no difference with the standard sampling
method. Due to the convexity of the unimodal contour lines, the size of the progress region is
always much smaller than the non-progress region. Consequently, the probability of drawing
all the offspring in the non-progress region can not be neglected. This observation could lead
to the result that mirrored sampling could work at any unimodal fitness function under a
small offspring population to improve the convergence velocity.

3.2 Theoretical aspects of (1, λm)-ES

The theoretical analysis of (1, λm)-ES on the sphere function has already been developed by
Auger et. al. [15], their sophiscated derivation is based on an artificial step-size (global σ)
setting named scale-invariant step-size, where σ(g) of the g-th generation is proportional to
the distance to the optimum, namely, σ(g) = σ ·

∥∥X(g) − xopt

∥∥ (X(g) is the parent at gener-
ation g) for σ > 0. In addition, they argue that the logarithm of progress on the distance to
the optimum since the first generation is linearly related to the number of function evalua-
tions consumed so far. Let Tk be the number of the evaluations consumed until generation k
and suppose the optimum is 0 w.l.o.g, the almost sure (a.s.) linear convergence looks like [7,
Eq. 10.10]

1

Tk
ln

∥∥X(k)
∥∥

∥∥X(0)
∥∥ → c a.s.

Note that the valid constant c should be negative to make “convergence” meaningful and the
smaller c is, the faster the ES algorithm performs. Furthermore, the c value for (1, λm)-ES
on sphere function is derived as [15]

1

λk
ln

∥∥X(k)
∥∥

∥∥X(0)
∥∥ −−−−→k→∞

1

2λ
E

[
ln

(
1 + σ min

1≤i≤λ/2

(
−2|[N i]1|+ σ

∥∥N i
∥∥2
))]

a.s.,

where (N i)1≤i≤λ/2 are λ/2 i.i.d. Gaussian vectors and [N i]1 represents the first dimension

of random vectorN i. In order to make a reasonable comparison with the standard (1, λ)-ES,
the convergence formula of (1, λ)-ES on sphere is also given in [15]. The summary of their
results is not going to be presented in the following. For more detail of their approach and
proofs, we suggest to read [15] and they also provide the theoretical result of (1 + λm)-ES
in [5].

Despite the elegance of their theoretical work, some unpleasant facts still remain. For ex-
ample, whether such artificial step-size setting can approximate the real evolution adaptation
process in ES is not clear yet. Besides this unsatisfactoriness, we are much more interested
in how mirrored sampling actually effects an evolution cycle treating global step-size σ as
an variable or a parameter of our progress model. The pre-set scale-invariant step-size rule
simply contradicts our purpose, which makes it difficult to compare their theoretical results
to the classical results of standard ES by Beyer [10]. In addition and what is most impor-
tant, through their derivation, how mirrored sampling outperforms the standard sampling

21

in essence is still not very clear. Thus, it is quite necessary to use standard progress rate
theoretical framework to analyze.

3.2.1 The properties of the mutation vector

It is important to get familiar with some asymptotic properties of the N -dimensional Gaus-
sian mutation vector z ∼ N (0, σ2I). The density function of z is [29]

p(z) =
1

(2π)n/2σ
exp

(
−zT z

2σ2

)
. (3.1)

The first nice property is that z is spherical symmetry invariant against any rotation matrix
O. In other words, the multivariate Gaussian distribution depends only on the length of z
instead of the direction. The random variable z′ = Oz has the same distribution as z. The
proof is quite simple: Using the Jacobian transformation [29] of the probability distribution,
we could substitute z by O−1z′ into Equation 3.1 and then the distribution of z′ reads,

p(z′) =
1

(2π)n/2σ|J | exp
(
− (O−1z′)TO−1z′

2σ2

)
|J | =

∣∣∣∣det
(
∂z′

∂z

)∣∣∣∣ = | detO|,

where |J | = | detO| is the absolute value of Jacobian determinant. Due to the orthogonality
of O, |J | = 1 and O−1 = OT , we have

p(z′) =
1

(2π)n/2σ
exp

(
−z′

T

z′

2σ2

)
.

Such rotation-invariant property would be critical to our analysis. The length of mutation
vector z/σ, χ =

√
zT z/σ , follows the χ-distribution [29]

p(χ;N) =
2χN−1eχ

2/2

2N/2Γ(N2)

where N is the dimensionality of z and is called degrees of freedom. Its expectation and
variance are,

E[χ] =
√
2σ

Γ
(
N+1
2

)

Γ
(
N
2

) ≃
√
N, Var[χ] ≃ 1

2

If the degree of freedom is big enough (N → ∞), the asymptotic form of the expectation
and the variance of χ-distribution above are valid [11]. Consequently, the mean and variance
of mutation vector z reads,

E[||z||] = E[σχ] ≃ σ
√
N, Var[||z||] = Var[σχ] ≃ 1

2
σ2.

This is the second property we need in the following: compared to the expectation of muta-
tion length, the standard deviation σ/

√
2 is relatively small and independent of dimension-

ality N . Therefore, for approximation purpose, the standard deviation could be ignored so
that mutation vectors end at the hypersphere with radius σ

√
N when N is large enough.

22

3.2.2 The (1, λm) evolution strategy

The following derivations are based on the framework by Beyer [10, 9]. The general approach
of (1, λ)-ES is introduced at first. Then some modifications are made to apply the analysis
to the mirrored situation. Finally, the comparison of the results of mirrored sampling and
the standard (1, λ) algorithm is shown. The basis of the analysis is shown in Figure 3.3. Let
m be the current parent which is at a distance R from the optimum xopt. The hypersphere

centered at m has a radius of σ
√
N and represents all the possible offspring. A mutation is

indicated by vector z. Because of the rotation-invariant property of multivariate Gaussian
distribution, the vector p = m−xopt could be rotated around xopt such that p is parallel to
the first canonical basis e1 (other bases are the same) of the space, namely pTe1 = ±‖p‖.
After such rotation, the projection of any mutation vector z onto p is exactly the first
element of the mutation vector which is denoted by z in the figure. As a basic property of
multivariate normal vector, every element of the vector is again normally distributed. This
can be proved simply by marginalizing out all other dimensions except the dimension we
want, in the density function in Equation 3.1. Thus, projection z is N (0, σ2) distributed
with the density,

p(z) =
1√
2πσ

exp

(
− z2

2σ2

)
. (3.2)

z

z2...n

z h r
R

xoptm

Figure 3.3: Projection of n-dimensional sphere landscape onto the two-dimensional plane
after the rotation.

After the rotation of landscape and the mutations, the following relations hold for any
mutations,

z = h+ ze1 and eT1 h = 0,

23

based on which the distance of the offspring to the optimum r can be calculated as

r =
√
h2 + (R − z)2

=
√
z2 +R2 − 2Rz

However, z is χ distributed while z is normal distributed, which makes it difficult to deter-
mine the distribution of r. Therefore we replace z by its expectation σ

√
N . The asymptotic

r reads
r ≃

√
σ2N +R2 − 2Rz. (3.3)

The validity of this approximation can be found in [11, Page 63]. This asymptotic form also
brings another benefit in (1, λ)-ES. Consider the collection of the distance to the optimum
of each offspring, {ri}1≤i≤λ. The selected offspring would be the one with smallest r value,
namely the smallest order statistic r1:λ. Due to Equation 3.3, selecting the offspring with
the largest projection z is to select that with r1:λ. Therefore, the distribution and the or-
der statistics of r are uniquely determined by z, which is much easier to manipulate. The
convergence velocity (or progress rate) is defined as the expected change of fitness value or
distance to the optimum in one generation. For the sphere function, it reads

ϕ1,λ = E[R2 − r21:λ]

= E[2Rzλ:λ − σ2N] (3.4)

In order to calculate the expectation above, the integral limits and the p.d.f of zλ:λ needs to
be determined. For (1, λ)-ES the domain of zλ:λ is (−∞,∞). The p.d.f of zλ:λ is [17, Page
8]

pλ:λ(z) = λp(z)Φ
(z
σ

)λ−1

, (3.5)

where Φ(z) is the cumulative probability distribution of Gaussian distribution having the
form,

Φ(z) :=
1√
2π

∫ z

−∞
e−

1
2 t

2

dt.

Putting all the ingredients together, the convergence velocity of (1, λ)-ES can be obtained.
As for the (1, λm)-ES, all the arguments for (1, λ)-ES above are still valid expect the density
function of zλ:λ. In (1, λm)-ES, only λ/2 of the mutation vectors are realized from the
distribution and the formula of pλ:λ(z) above only works for this half of the population.
Obviously, we need another equation in the mirrored case.

We derived the largest order statistics of the mirrored Gaussian population of size λ as
follows. We denote the cumulative probability distribution of the largest order statistic as
P̂λ:λ(Z ≤ z). Suppose for every z ≥ 0, in order to facilitate condition in P̂λ:λ(Z ≤ z), namely
the largest order statistic is less than or equals to z, all the realized mutation points are
required to be realized less than or equal to z. In addition, consider, in the final population,
that the remaining mirrored mutations are generated by reversing the signs. All the realized
mutations also need to be bigger than −z, otherwise the mirrored counterpart of one outlier

24

would be larger than z and fails the condition of largest order statistic. The argument reads,

P̂λ:λ(Z ≤ z) = Pλ/2(−z < Z ≤ z)

=
[
Φ
(z
σ

)
− Φ

(
− z

σ

)]λ/2

=
[
2Φ
(z
σ

)
− 1
]λ/2

, ∀z ≥ 0.

Then in case of z < 0, the cumulative probability should be always 0. The reason is if
a realized mutation is sampled negative, then its mirrored counterpart would be positive.
Therefore you could never make the largest order statistics below 0. In total, the cumulative
probability function of the largest order statistic is summarized as,

P̂λ:λ(Z ≤ z) =

{[
2Φ
(
z
σ

)
− 1
]λ/2 ∀z ≥ 0,

0 otherwise.

And its probability density function is

p̂λ:λ(z) =

{
λp(z)

[
2Φ
(
z
σ

)
− 1
]λ/2−1 ∀z ≥ 0,

0 otherwise.
(3.6)

Compared to Equation 3.4, the key difference made by mirrored sampling is the distribution
of the order statistics of z. Putting Equations 3.2, 3.4, 3.6 together, the convergence velocity
of (1, λm)-ES reads,

ϕ1,λm =

∫ ∞

−∞

(
2Rz − σ2N

)
p̂λ:λ(z) dz

= 2R

∫ ∞

0

λzp(z)
[
2Φ
(z
σ

)
− 1
]λ/2−1

dz − σ2N

∫ ∞

0

d

([
2Φ
(z
σ

)
− 1
]λ/2)

= 2Rσ

∫ ∞

0

λz′p(z′)[2Φ(z′)− 1]λ/2−1 dz′ − σ2N
[
2Φ
(z
σ

)
− 1
]λ/2 ∣∣∣

∞

0
(let z = σz′)

= 2Rσc1,λm − σ2N,

where z′ ∼ N (0, 1) and c1,λm is the expectation of the largest order statistic of a mirrored
standard normal population and is well-known as progress coefficient, having the specific
form,

c1,λm =
λ√
2π

∫ ∞

0

te−
t2

2 [2Φ(t)− 1]λ/2−1 dt. (3.7)

By the usage of normalized quantities

ϕ∗ =
N

2R2
ϕ and σ∗ =

N

R
σ,

the final normalized form of convergence velocity of (1, λm)-ES reads,

ϕ∗
1,λm

= c1,λmσ
∗ − (σ∗)2

2
(3.8)

25

This form is already comparable to the progress rate of (1, λ)-ES, which is given in the
equation below [9].

ϕ∗
1,λ = c1,λσ

∗ − (σ∗)2

2
(3.9)

Note that the only difference to Equation 3.8 is the progress coefficient which is the expec-
tation of the largest order statistic of a standard normal population,

c1,λ =
λ√
2π

∫ ∞

−∞
te−

t2

2 Φ(t)λ−1 dt. (3.10)

In the convergence velocity formula, the progress coefficient acts as the “gain” while the
“loss” term −(σ∗)2/2 is the same in Equation 3.8 and 3.9. Therefore, the comparison of
the convergence velocities can be replaced by the comparison of the progress coefficients.
The analytical treatments of both Equation 3.7 and 3.10 are difficult so that we just plot
the two progress coefficients as a function of λ numerically in Figure 3.4. Both two progress
coefficients are slowly increasing as λ increases.

0 10 20 30 40 50
λ

0.5

1.0

1.5

2.0

2.5

p
ro
g
re
ss

co
e
ffi
ci
e
n
t

c1,λm

c1,λ

Figure 3.4: Comparison of the progress coefficients.

Due to the investigation by Beyer [9], The progress coefficient c1,λ can be approximated

26

by,
c1,λ ∼

√
2 lnλ

However, there is no approximation for c1,λm currently. From the numerical comparison,
c1,λm is obviously better than c1,λ if λ is small. When λ is larger than 30, the advantage
of c1,λm begins to vanish and finally these two coefficients become roughly the same after
40. This theoretical result actually coincides with our argument of mirrored sampling in
Section 3.1. In summary, the mirrored sampling technique changes the distribution of the
largest order statistic of standard normal population, leading to a improvement on the
progress coefficient under small population. When the population size is greater than 30, the
improvement of mirrored sampling can be neglected. In addition, the fast evolution search
(e.g. CMA-ES) always exploits small populations. The mirrored sampling could bring a
satisfactory improvement on the performance of those fast searches.

3.3 Mirrored sampling and recombination

Despite the great success of (1, λm), the mirrored sampling has encountered a critical bot-
tleneck when applied to (µ/µw, λ)-ES algorithm where the µ best out of the λ offspring are
used to compute the new search point via weighted recombination. The direct application
in such algorithm always results in an undesired bias on the step-size. In recombination, a
mirrored pair of offspring could be selected (it is possible specially in the multi-modal land-
scape) and neutralize each other so that their contribution to the recombined search point
is either none (equal weights) or smaller than what we expected (unequal weights). As one
design principle of ES, unbiasedness dictates that ES states should remain unchanged in ex-
pectation under random selection, which is reasonable because random selection means the
search space is identical everywhere so that the best evolving decision should be stay where
we are. However, the behavior of mirrored pair in recombination is undesirable because it
leads to a systematic reduction of the recombination variance under random selection (ran-
dom fitness, equivalently). To see this, consider the simplest case: we have a population of
mutations {zi}1≤i≤λ where zi ∼ N (0, I) and the equal weights are used in recombination.
Under random selection, the distribution of selected mutations are still normal so that the
recombined mutation 〈z〉 is still normally distributed as,

〈z〉 = 1

µ

µ∑

i=1

zi:λ ∼
1

µ
N (0, µ2I) ∼N (0, I)

Then in the mirrored case, if one pair of mirrored mutations are selected, then such pair
would disappear in the summation above. The recombined mutation 〈zm〉 is then distributed
as follows:

〈zm〉 =
1

µ

µ−2∑

i=1

zi:λ ∼N
(
0,

(
1− 2

µ

)2

I

)

It is now obvious to see that the variance of recombined mutation is reduced under random
selection. The more pairs of mirrored mutations are selected, the more undesirable bias we
would have. In addition, if mirrored sampling is implemented into (µ/µw, λ)-CMA-ES or any
other ES algorithm using CSA technique, there is also a reduction of the expected step-size
under random selection due to the pairwise cancellation in recombination, as was shown

27

in [15, Fig. 4].
To fix this unsatisfactory effect, two further heuristics are introduced in [6]: pairwise

selection and selective mirroring. Pairwise selection allows only the better one of a mirrored
offspring pair to possibly contribute to the weighted recombination such that the pairwise
cancellation during recombination is avoided.

Another improvement, selective mirroring sets the number of the realized offspring to λiid

and the number of mirrored offspring to λm. The mirrored offspring are created from the λm

worst realized offspring. The parameter λiid is larger than λm and they are both exogenous
strategy parameters. The idea is that: First, if we limit the number of mirrored pairs, the
probability of recombining such pair is decreased. Second, the best of λiid offspring is not
expected to be improved by mirrored sampling on fitness landscapes with convex contours.
In such case, the realized offspring and its mirrored counterparts can not be better than the
parent at the same time. Thus, mirroring the λm worst offspring from λiid seems a good
design. The detailed discussion and analysis of those two improvement of mirrored sampling
are presented in [6].

3.4 The “noisy” mirrored sampling technique

As to solve the bottleneck problem in the last section, we also try to make the mirroring
work with recombination with our new variant, the “noisy” mirrored sampling. The idea is
really simple: Due to the unpleasant behaviour of mirroring actually is the possible pairwise
cancellation during recombination, if we rotate the mirrored vector a little bit, a mirrored
pair is not cancelling each other any longer. The idea looks like there is a noise interfering
the mirroring process. That is why it is named “noisy” mirroring and we use the notation
(µ, λ̃m)-ES to denoted such ES variant. However, the amount of the rotation is really critical
here. The rotations could neither be too small so that there is no difference with mirroring,
or be too large so that a possible “good” mirrored offspring is rotated out of the progress
region. The information on high dimensional progress region depends on many facts and can
not be inferred from the fitness. Therefore, it seems there is no reasonable basis on which
the amount of rotation is determined. Instead, we try to generate small random rotations.

The rotation generation is exactly the same approach used in (µ, λ)-MSC-ES to generate
correlated mutations. The vector rotation in N -dimensional space can be represented by
N(N − 1)/2 rotation angles corresponding to N(N − 1)/2 2-dimensional subspaces. The
rotation matrix Rij for a rotation angle αij between axis i and j, is given by an identity
matrix, extended by the entries R(i, i) = R(j, j) = cosαij and R(i, j) = −R(j, i) = − sinαij .
Then the overall rotation matrix, or noise matrix C for the vector is simply the multiplica-
tion of all N(N−1)/2 Rij matrices. The rotation angles is generated by uniform distribution
over [−1, 1] rescaled by the rotation range η. This rotation generation procedure is shown
in Algorithm 3.3 named noise-generation(N).

For practical purpose, the computational complexity is also a import criterion of ES algo-
rithm. However, the “noisy” mirrored sampling method has to call the noise-generation(N)
procedure which normally makes N(N − 1)/2− 1 matrix multiplication of size N , at least
once a generation. In order to reduce such overheads, a very low change rate pm is exploited
to control the process. Before the generation of each rotation angle, a uniform number a over
[0, 1] is generated and if a < pm, the rotation angle is generated, otherwise this rotation angle
is skipped so that one matrix multiplication is saved (check lines 6 and 7 in Algorithm 3.3).

28

Algorithm 3.3 noise-generation(N)

1 η ← π/
√
N/2

2 pm ← 0.2
3 M← identity-matrix(N)
4 for i = 1→ N − 1 do
5 for j = i + 1→ N do
6 a← U(0, 1)
7 if a < pm then
8 z ← η · U(−1, 1)
9 R← identity-matrix(N)

10 Rii ← cos z
11 Rjj ← Rii

12 Rij ← − sin z
13 Rji ← −Rij

14 M← RM
15 end if
16 end for
17 end for
18 return M

Algorithm 3.4 noisy-mirrored-sampling(x, σ,C, λ)

1 given: zi,xi ∈ Rd

2 B,D← eigen-decomposition(C)
3 N← noise-generation(d)
4 if λ 6= 0 (mod 2) and zlast is present then
5 x1 ← x− σBDNzlast
6 λ← λ− 1
7 Delete static variable zlast.
8 end if
9 for i = 1→ λ do

10 if i ≡ 0 (mod 2) then
11 xi ← x− σBDNzi−1

12 else
13 zi ← N (0, I)
14 xi ← x+ σBDzi
15 end if
16 end for
17 if λ 6= 0 (mod 2) then
18 Create static variable zlast.
19 zlast ← zλ
20 end if

Finally, The “noisy” mirrored sampling algorithm is given in Algorithm 3.4 to show how
to use the “noise” matrix. In case the covariance matrix or correlated mutation is incorpo-
rated, the key operation order is that we should first generate standard normal mutations,

29

then noisily mirror them, finally rescale and rotate them by the covariance matrix (check
lines 8 and 12 in Algorithm 3.4). The reason is that any rotation matrix only makes the end
points of vectors transformed on hypersphere. If we first generate the correlated mutations,
they are essentially on a hyper-ellipsoid which is not suitable for a rotation operation.

Prior to the benchmark results of performance in Chapter 5, we would like to verify
if our new variant actually solve the problem in the last section. After both the mirrored
sampling and “noisy” mirrored sampling method are implemented into CMA-ES, we test
both (µ/µw, λm)-CMA-ES and (µ/µw, λ̃m)-CMA-ES on random fitness function and plot
the logarithm of the global step-size σ against each other in Figure 3.5.

0 1000 2000 3000 4000 5000
Evaluations

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

St
ep

-s
iz
e

Figure 3.5: Step-size σ versus number of function evaluations of 30 runs on a purely random
fitness function in dimension 10. x-axis: evaluation counts.

The random walk of log σ of CMA-ES is shown in 10 red curves. Another 10 green curves
show the situation in (µ/µw, λm)-CMA-ES and reveal a strong bias. Such strong bias is rec-
tified for some degree in the last ten blue curves which are for the (µ/µw, λ̃m)-CMA-ES. In
addition, the experiment also shows the degree of such rectification is controlled by parame-
ters η and a. η = π/

√
N/2, a = 0.2 are used to generate Figure 3.5 and should be manually

tuned to maximize the ES performance. As explained in the last section and in [6] before,
the expected behaviour of σ remain unchanged in expectation. The more bias observed in σ,
the more undesirable recombination we would get. Thus our new method has certain degree
of correction of the biases. The detailed performance measurement will be done in Chapter
5.

30

Chapter 4

Derandomized sampling

The mirroring intuition in the last chapter, which distributes random samples much evenly,
is a special case of the much more general concept: derandomized sampling. The task is the
same as mirrored sampling while the approaches are more general and diverse. Much of the
current progresses on derandomized sampling are based on quasi-random-search in which
the quasi-random numbers are used in the evolution, such as the application in GA (genetic
algorithm) [28] and in CMA-ES [39]. These techniques usually take some complicated meth-
ods for quasi-random number generation and will not be discussed here. The goal of this
chapter is to introduce two new intuition to generate the derandomized samples by simply
manipulating the normal random numbers. The starting point of everything in this chapter
is based on the following consideration: The functionality of search space exploration in
evolution strategy can be separated to,

1. Exploration of a good local direction to move the parent in Rn search space, namely
the adjustment of the eigenvectors of covariance matrix.

2. Exploration of a good local step-size to move the parent in Rn search space, namely
the tuning of eigenvalues and the global step-size.

Intuitively, the sampling (mutation) process can be separated into two components, the
determination of the direction and determination of step-size.

4.1 Direction derandomization

We first concern the direction aspect in sampling. The previous derandomized sampling
method, mirrored sampling renders the directions of half of the mutations (mirrored vectors)
opposite to the other half (realized normal vectors). It is trying to avoid all the mutations in
one generation roughly head to the similar direction, by derandomizing the direction of half
the mutations. As the consequence of such direction derandomization process, the mutations
are distributed in the Rn Euclidean space much more evenly so that the exploration of search
space is seemingly much better. Despite its success, the direction of the realized mutations is
still completely random while the direction of the mirrored mutations are too deterministic.

31

4.1.1 A measure on mutation direction

In the effort to compare the strategy parameter adaptation mechanisms, lots of measures
or principles (unbiasedness e.g.) are defined to judge the goodness. Following the previous
research method, it is very important to establish a quality measure of the mutation direc-
tions before any discussion or improvement on the direction derandomization method. Such
measure would make any comparison based on quantities instead of blurred intuition. The
effect of the derandomized direction could be measured as the mean of the angles formed
by each pair of the mutation vectors. Let angle φij represents the angle formed by mutation
vector xi and xj , where

cosφij =
xT
i xj

||xi|| ||xj ||
.

Then the measure of the degree of derandomized direction read,

M(P) =
1

λ

λ−1∑

i=1

λ∑

j=i+1

xT
i xj

||xi|| ||xj ||
, xi,xj ∈ P. (4.1)

Not that the P is a population of realized mutations and therefore is not a measure on the
expected direction derandomization ability of a specific distribution. This measure would be
meaningless if we take the expectation. Consider that the multivariate Gaussian distribution
is used in the sampling. Then the expected measure would be

E[M] = E


 1

λ

λ−1∑

i=1

λ∑

j=i+1

xT
i xj

||xi|| ||xj ||




≈ 1

λ

λ−1∑

i=1

λ∑

j=i+1

1

||xi|| ||xj ||
E

[
N∑

k=1

xikxjk

]

= 0

Because the measure is the mean cos values, the result 0 above means the mutation vector
are approximately perpendicular to each other in expectation, which is the basic property
of Gaussian distribution. Therefore, M should be applied to realized mutations to observe
the worst case that a certain sampling technique would lead to.

During the execution of an ES algorithm, we could calculate such measure generation
by generation and record the worst value ever happened. After multiple trials, the worst
measure can be averaged, yielding a quality measure on how bad a mutation operator would
be in the sense of direction derandomization.

For a population of realized mutations, we examine the worst measure value Mw a mu-
tation operator would give. Then the closer such worst case is to 0, the more desirable the
mutation vectors are arranged. If Mw = 0, the mutations are guaranteed to be orthogonal
and thus sparse in the search space. such mutations are considered as completely deran-
domized. If Mw > 0, then the mutations are supposed to roughly concentrate to the same
direction and is named as under derandomized or correlated. The closer Mw to 1, the are
heading to the similar direction. If the measure is negative, then most of the angles formed
by mutations are greater than π

2 , which indicates that the mutations are approximately
anti-parallel to each other (consider the mirrored sampling). This situation is called over

32

derandomized.
For example, the situation and degree of direction derandomization are explored by the

measure above. The expected worst measure for CMA-ES and its mirrored version are com-
puted by 15 trials each and compared in Figure 4.1

0 5 10 15 20 25 30 35 40
Evaluations

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p
e
ct

e
d
 w

o
rs

t
m

e
a
su

re

original CMA_ES

mirrored sampling

Figure 4.1: Step-size σ versus number of function evaluations of 30 runs on a purely random
fitness function in dimensions 2, 3, 5, 10, 20, 40. x-axis: evaluations.

From the figure, the value of mirrored sampling method (the green curve) is always nega-
tive. This is because half of the mutations are anti-parallel to another half, which contributes
λ
2 − 1s to the measure calculation and therefore reduce the worst measure.

4.1.2 A completely derandomized direction approach

As a naive investigation, the author is thinking whether it is possible to distribute the
directions of mirrored mutations more evenly. A possible idea can be formalized as follows.
If we completely derandomize the direction, in other words, prescribe a rule to setting the
directions of all λ mutations in a deterministic may, the measure on such mutations would
be very good. A native idea is to align the mutation vectors with the eigenvectors of the
covariance matrix C. As the eigendecomposition is usually needed in the derandomized ES,
such approach seems quite cheap in computational cost.

The eigendecomposition of covariance matrix C reads,

C = BD2BT , B = [b1, . . . ,bN]

where b1, . . . ,bN are N eigenvectors, representing the principal axises of the hyper ellip-
soid contour of the distribution. The directions of the N mutation vectors are exactly the

33

directions of eigenvectors. First we assign the N mutation vectors to the N canonical bases,

[s1, . . . , sN] = IN×N ,

IN×N is a N × N identity matrix. Then N χ-distributed random numbers (its degree of
freedom is N) are generated and used to rescale N mutations,

zi = aiηisi, ai ∼ U , ηi ∼ χ(N), 1 ≤ i ≤ N

Note that ai is sampled from a discrete uniform distribution on points −1, 1 and used
to make possible reverse of the direction of the vector. After this operation, zi is again
normally distributed due to the argument in Section 4.3.1. Finally, we use matrices D and
B to rescale and rotate the mutations so that they are N (0,C) distributed and aligned with
the eigenvectors.

si = BDzi, 1 ≤ i ≤ N

The procedure works if λ ≤ N . If the population is larger than dimensionality, which is the
common case, the rest λ−N offspring are generated using the standard sampling method as
dictated in Algorithm 3.1. Because there are N mutations whose directions are completely
determined by the eigenvector of C, we named such idea as completely deradomized direction
sampling. The pseudo code of this idea is shown in Algorithm 4.1 below.

The benefits of such idea is that there are N pairs of the mutation vectors orthogonal
to each other due to the orthogonality of the eigenvectors. The measure M for any muta-
tions generated in this manner is really low because all there are N(N − 1)/2 summands in
Equation 4.1 equal to 0. The exploration of the space is very diverse.

The disadvantage of this idea seems dominating its performance. After a naive implemen-
tation into CMA-ES, the completely derandomized direction is compared to the standard
CMA-ES on several fitness functions. The new method requires more evaluations than the
standard CMA-ES and therefore decreases the convergence velocity. The reason may be
that we are derandomizing too much from the sampling procedure and the corresponding
mutations are too “neutral”.

Algorithm 4.1 complete-derandomized-direction-sampling(x, σ,C, λ)

1 given: zi,xi ∈ Rd, si ∈ R
2 B,D← eigen-decomposition(C)
3 [s1, . . . , sd]← Id×d

4 for i = 1→ λ do
5 if i ≤ d then
6 ai ← U , ηi ← χ(d)
7 zi ← aiηisi
8 else
9 zi ← N (0, I)

10 end if
11 xi ← x+ σBDzi
12 end for

34

4.1.3 Orthogonal Sampling

The completely derandomized direction sampling method seems removing too much ran-
domnesses and its performance is getting worse consequently. The N mutation vectors are
aligned withN eigenvectors of the covariance matrixC. Such mutation generation procedure
renders the directions of N mutation vectors deterministic and prescribed by the covariance
C uniquely. This would imply that we fully trust the direction information encoded in C
for mutation. There are mainly two reasons why such scheme does not work:

1. Due to the noisy adaptation process (CMA, MSC), the covariance matrix C can not
approximate the local landscape (by the convex quadratic form 1

2x
TCx) as accurate

as its maximal ability. Thus, the directions indicated by the covariance matrix are in
no way reliable.

2. There is no effective exploration of directions even if the covariance matrix were accu-
rate. No new information on good mutation directions can be to the covariance matrix,
which aggravates the covariance adaptation mechanism. The direction randomness of
mutation vector is useful and should not be removed completely.

Although the completely derandomized direction method is not a successful attempt to
direction derandomization, its intuition, generating orthogonal mutation vectors, could be
promising for our further development. The problem of completely derandomized direction
approach is that the orthogonal mutations generated are totally deterministic in direction.
Therefore, the solution is to add some randomness in direction to all the mutations uniformly,
which leads to a random orthogonal mutation operator.

The first method to add the exploration effects back is simply rotating all the orthogonal
mutations under a randomly generated rotation matrix. The random rotation matrix R
is obtained by the noise-generation procedure which is formalized in noisy-mirrored
sampling technique. The steps of the new method are roughly the same as that of completely
derandomized direction sampling, except that after generating an N ×N identity matrix I,
we multiply it by the random rotation matrix R,

S = RIN×N = [Re1, ...,ReN] = [s1, . . . , sN].

Note the e1, . . . , eN are N canonical basis of the N -dimensional space. The random rotation
matrix R actually randomizes the directions of the orthogonal mutations uniformly. Hereon,
the direction derandomization between mutation vectors and the directional randomness of
all the mutations are achieved uniformly. Such method is named as orthogonal sampling.

The method above only works if the population size λ = N . If λ ≥ N , the rest λ −N
mutations are sampled directly from the Gaussian distribution. If λ ≤ N , we pick λ columns
(rotated bases) from S uniformly as our samples. We can achieve this by generating a discrete
uniform random number a ∼ U(1, N)1 on the set {1, 2, . . . , N} at the beginning. Then the
ath column of S is selected as our first sample and removed from S. The rest N − 1 column
vectors are reassigned with index {1, 2, . . . , N − 1}. After that a is generated again from
U(0, N−1) and used to select and remove the ath column from S. We just need to repeat this
cycle until λ mutations are obtained. The details of this approach is listed in Algorithm 4.2.

1Here the notation U(a, b) is used to represent the discrete uniform distribution on set {a, a+ 1, . . . , b}.
It may conflict with the notation of continuous uniform distribution in other literatures.

35

Algorithm 4.2 orthogonal-sampling1(x, σ,C, λ)

1 given: zi,xi ∈ Rd, si ∈ R
2 B,D← eigen-decomposition(C)
3 R← noise-generation(d)
4 S← [s1, . . . , sd]← RId×d

5 for i = 1→ λ do
6 if i ≤ d then
7 ai ← U , ηi ← χ(d), u← U(1, d− i+ 1)
8 zi ← aiηisu
9 Remove Su from S and reassign the index {1, 2, . . . , d− i} to the rest d− ivectors.

10 else
11 zi ← N (0, I)
12 end if
13 xi ← x+ σBDzi
14 end for

Note that U still denotes the discrete uniform distribution on set {−1, 1} as in the
previous section. When λ > N , pure random mutation samples are taken as dictated in Line
10 above.The drawbacks of this algorithm is that the parameters η, a of noise-generation
procedure (see Section 3.4) is yet to be determined. After a linear search based on sphere

function, we found that a = 1, η = π
√
8N

30 could be a reasonable parameter setting, which
will be an standard setting in the later testing.

Our second attempt to generate the random orthogonal mutations is to exploit the Gram-
Schmidt process [14]. The Gram-Schmidt process is a method for orthonormalising a set of
vectors in an inner product space, most commonly the Euclidean space RN . The Gram-
Schmidt process takes a finite, linearly independent set S = {v1, . . . ,vk} for k ≤ N and
generates an orthogonal set S′ = {u1, . . . ,uk} that spans the same k-dimensional subspace
of RN as S. The pseudo code is listed below.

Algorithm 4.3 gram-schmidt(v1, . . . ,vk)

1 for i = 2→ λ do
2 for i = 1→ i− 1 do
3 vi ← vi − vj · 〈vi,vj〉/||vj || (〈., .〉 denotes the vector inner product)
4 end for
5 end for
6 for i = 1→ λ do
7 vi ← vi/||vi||
8 end for

Based on the functionality of Gram-Schmidt process, if we first sample λ mutation vectors,

S = [s1, . . . , sλ], si ∼ N (0, I),

then, processing S by Gram-Schmidt process would give us a collection of random orthonor-
mal vectors,

[s′1, . . . , s
′
λ] = gram-schmidt(S).

Note that each vector of s′1, . . . , s
′
λ is of unit length and orthogonal to the rest. Finally,

rescaling the length of si by χ random number renders them normally distributed again, as
we we have done in completely direction derandomization. The detailed algorithm is shown
in Algorithm 4.4.

36

Algorithm 4.4 orthogonal-sampling2(x, σ,C, λ)

1 given: zi,xi ∈ Rd, si ∈ R
2 B,D← eigen-decomposition(C)
3 for i = 1→ λ do
4 si ←N (0, I)
5 end for
6 [s′1, . . . , s

′
λ] = gram-schmidt(s1, . . . , sλ).

7 for i = 1→ λ do
8 ai ← U , ηi ← χ(d)
9 zi ← aiηis

′
i

10 xi ← x+ σBDzi
11 end for

This alternative orthogonal sampling method, Algorithm 4.4 is theoretically the same
with Algorithm 4.2. However, it has same advantages. First, it exploits the Gram-Schmidt
process which is much faster than the noise-generation procedure used in Algorithm 4.2 and
therefore reduce much time complexity. Second, There is no additional parameters needed
in this method. We will denote the CMA-ES with orthogonal-sampling1 (orthogonal-
sampling2) as Orthogonal1-(µ/µw, λ)-CMA-ES (Orthogonal2-(µ/µw, λ)-CMA-ES).The em-
pirical results of both of the orthogonal sampling methods can be found in Chapter 6.

4.2 Step-size derandomization

4.2.1 Motivation

The opposite face of the our coin would be: derandomization of the step-size of mutation
vectors. The goal of performing step-size derandomization is to render the length of mutation
vector deterministic. The motivation actually comes from an observation of the covariance
matrix adaptation technique. In the standard (µ/µw, λ)-CMA-ES, a decreasing weights is
used to given more “trust” to the offspring having better fitness. It is not only used in
recombination operator but also in covariance matrix estimation. Adding the weight effect
into Equation 2.7, the covariance matrix estimation read [25],

C(g+1)
µ =

µ∑

i=1

wi

(
x
(g)
i:λ − x(g)

)(
x
(g)
i:λ − x(g)

)T
,

where the weight vector is suggested as [24],

wi =
w′

i∑µ
j=1 w

′
j

, w′
i = ln

(
λ+ 1

2

)
− ln i for i = 1, . . . , µ.

Such weights decreases very fast as the rank of offspring increases. Now let’s rearrange the

estimation equation above. By denoting the mutation vector as y
(g)
i = x

(g)
i − x(g), we have

C(g+1)
µ =

µ∑

i=1

wiy
(g)
i:λy

(g)
i:λ

T
, (4.2)

where y
(g)
i:λ ∼ σ(g)N (0,C(g)) under the random selection. Note that each summand in the

formula above defines a the covariance matrix of a singular distribution si having the form

si ∼ wiN (0,y
(g)
i:λy

(g)
i:λ

T
)

37

Its covariance matrix has rank one, only one eigenvector y
(g)
i:λ and eigenvalue

(
wi||y(g)

i:λ ||
)2

.

Therefore, as the sum of all the singular distributions, C
(g+1)
µ has rank µ. Its eigenvectors are

y
(g)
1:λ, . . . ,y

(g)
µ:λ and the square root of corresponding eigenvalues are w1||y(g)

1:λ||, . . . , wµ||y(g)
µ:λ||.

Therefore, accumulating C
(g+1)
µ to the current matrix C(g) is tuning its the eigenvec-

tors and eigenvalues towards that of C
(g+1)
µ . Recall that the suppose of covariance matrix

adaptation is to tune its eigenvectors and eigenvalues so that the longest principal axis of
its contours roughly points to the optimum. Then, a critical problem arise here: There is no
guarantee that the better fitness a mutation vector has, the better direction it is heading. The
same fitted point could be reached by combination of a worst direction and a long vector
length. Recall again that the length of multivariate Gaussian vector, has expectation and
variance as

E[||N (0, σ2I)||] ≃ σ
√
N, Var[||N (0, σ2I)||] ≃ 1

2
σ2,

The variance is not vanishing with the increasing dimensionality such that a shorter mutation
having a better direction may not outperforms a longer mutation having a worse direction.
The effect is somehow undesirable because the better fitted mutation vector is assigned a
much bigger weight during the covariance estimation and therefore affects the covariance
adaptation more. This observation simply suggests that the covariance matrix estimation
may be over fitted and some information is wasted.

4.2.2 The algorithm

As the simplest solution to the problem, we could transform the mutation vector so that they
are distributed on the hyper-ellipsoid for sure. In other words, we are trying to eliminate the
disturbing variance of the normal vector. This specific method can be formalized as followed.
First, λ standard normal vector are sampled

si = N (0, I), 1 ≤ i ≤ λ

Then we normalize and rescale si so that they are now lying uniformly on the hyper sphere
having the radius E[χ],

s′i = E[χ] · si
||si||

Note that the normalization would be invalid if the length if ||si|| = 0. However, the prob-
ability of sampling 0 for all the entries of si is infinitesimal. There is no need to consider
that extreme case. Finally, the mutations are transformed again by the eigenvalues and
eigenvectors of C,

zi = σBDs′i

The pseudo-code the derandomized step-size sampling is listed in Algorithm 4.5. The de-
randomized step-size sampling method above distributed all the mutations uniformly on the
hyper-ellipsoid representing the covariance matrix. Because the full randomness of direction
is still kept, the direction exploration is not restricted. At this time, a mutation roughly
heading to the direction of the longest principal axis of the covariance matrix is guaranteed
to be longer than the mutations heading to other directions. Consequently, if the direction of
the longest principal axis is not pointing to the optimum, the mutation vectors aligned with

38

it could perform much worse so that the ill-tuned eigenvectors could be discovered by selec-
tion and adjusted by the adaptation mechanism quickly. In total, the potential ambiguity
in the selection of mutation directions has been avoided as much as possible.

Algorithm 4.5 derandomized-stepsize-sampling(x, σ,C, λ)

1 given: si, zi,yi,xi ∈ Rd

2 B,D← eigen-decomposition(C)
3 β ← E[χ]
4 for i = 1→ λ do
5 si ← N (0, I)
6 zi ← β · si/‖si‖
7 xi ← x+ σBDzi
8 end for

4.2.3 Limitation

It would be really nice if derandomized step-size sampling could be inserted into advanced
ES algorithms (like CMA-ES) to save evaluations. However, the author realizes that imple-
menting this sampling method in CMA-ES is not possible. Furthermore it does not work
with any ES algorithm using CSA (cumulative step-size adaptation) as their step-size con-
trol mechanism. The reason is deeply rooted in the foundation of CSA technique.

Recall that the key part of CSA is the evolution path cumulation. The evolution path
is acting as a indicator of the local landscape encountered currently and historically. By
comparing this indicator to the “neutral case”, the path length under random selection, the
decision on tunning the step-size can be calculated. The mathematical foundation of this
procedure is that the sum of normal vector is again a normal vector so that the evolution
path cumulation is well-defined.

In our case, due to the normalization of the normal vectors, the result is not normally
distributed any more. Instead, they follow the multiuniform distribution (see Section 4.3.1),
which does not preserve the nice property of normal distribution any more. Thus, the pre-
liminary condition of CSA is not met. Currently, this new sampling method only works with
the MSC adaptation mechanism.

4.2.4 Application

Due to the limitations in the last section, the application of derandomized step-size sam-
pling is restricted. The original motivation, which is trying to avoid the undesired cases in
covariance adaptation, could not be tested if it we do not apply it into the CMA-ES. Thanks
to a variant of CMA-ES, (µ, λ)-CMA-σSA-ES (or CMSA-ES for short) introduced by Beyer
in [13], we could verify and test our new sampling method.

The (µ, λ)-CMSA-ES algorithm replace the CSA mechanism in CMA-ES by the mutative-
self-adaptation of step-size, just like in the (µ, λ)-MSC-ES algorithm. This algorithm is very
suitable for our case because it keeps the covariance matrix adaptation as covariance control
while using mutative-self-adaptation of step-size. The experiment on derandomized step-size
sampling is in Chapter 5 actually performed on the (µ, λ)-CMSA-ES. For the self-consistency
of this thesis, the CMSA-ES is briefly introduced here.

39

The mutation operator is a mixture of the CMA-ES and the MSC-ES. The offspring xi

and their step-size σi are created from the parent x̄, σ̄, the matrices B and D (from the
eigen decomposition of the covariance matrix C) as follows:

σi = σ̄ · exp(τN (0, 1))

si = BDN (0, I)

xi = x̄+ σisi

Recombination operator is based on equal weights as in the MSC-ES, applied to selected
solution vectors and step-sizes. The covariance matrix adaptation rule looks roughly the
same as Equation 2.7,

C′ =

(
1− 1

τC

)
C+

1

µτC

µ∑

i=1

si:λsi:λ
T

where the suggested setting of extraneous parameters are τ = 1√
2N

and τC = 1 + N(N+1)
2µ

according to [13]. The pseudo-code is presented in Algorithm 4.6.

Algorithm 4.6 (µ, λ)-CMSA-ES

1 Initialize x̄
2 Initialize σ̄
3 C← I
4 repeat
5 B,D← eigen-decomposition(C)
6 for i = 1→ λ do
7 σi ← σ̄ · exp(τN (0, 1))
8 si ← BDN (0, I)
9 xi ← x̄+ σisi

10 fi ← f(xi)
11 end for
12 Section the µ best of (xiσi)
13 x̄← 1

µ

∑µ
i=1 xi:λ

14 σ̄ ← 1
µ

∑µ
i=1 σi:λ

15 C′ ←
(
1− 1

τC

)
C+ 1

τCµ

∑µ
i=1 si:λsi:λ

T

16 until

4.3 Theoretical results on step-size derandomization

In this section, some analytical results on step-size derandomization sampling are gradually
established. In order to make a mathematical analysis possible and focus on the comparison
of mutation operator, we restrict our investigation to very simple cases, namely simple
evolution strategy on simple fitness models, due to the difficulty on manipulating the new
distribution. The analysis approach is the same as Section 3.2.

40

4.3.1 Prerequisite on probability distribution

To facilitate the theoretical analysis of this new method, we must figure out the distribution
of the new random variable obtained by normalizing a Gaussian vector. Fortunately, there
exists a nice theorem describing the relation between multivariate normal distribution and
the new artificial one in [18, 21, 38]. Intuitively, given a multivariate Gaussian vector, x ∼
N (0, I), the resulting vector after the normalization:

y =
x

‖x‖

is uniformly distributed on a unit hyper sphere. This is due to the rotation-invariant property
of multivariate Gaussian distribution (Section 3.2.1), which means x and Ox should have
the same distribution provided x ∼ N (0, I) and O is an orthogonal matrix. Then the
multivariate Gaussian samples are “uniformly” distributed in each direction.

We follow the notation in [18], let u denote a random vector distributed uniformly on
the unit sphere surface in RN and O(N) denote the set of N × N orthogonal matrices.
Then it is obvious that u and Γu have the same distribution for every Γ ∈ O(n), namely
rotation-invariant. It has been termed as multiuniform distribution.

Then the next theorem (rendered from [18, Theorem 2.2]) gives the relation between the
multivariate normal distribution and the multiuniform distribution.

Theorem 1. Given a N×1 random vector x distributed as N (0, I), then x has a stochastic
representation

x = ru

where r is independent of u, and r ∼ χN and u follows multiuniform distribution.

r is the length of the Gaussian vector as discussed before. The density function of it
reads,

p(r) =
2rN−1e−

r2

2

2N/2Γ(N2)

The normalization in derandomized direction sampling is exactly x/r and therefore the
resulting random variable is multiuniformly distributed. If we denote such random vector as
u = [u1, . . . , u2]

T , where
∑n

i=1 u
2
i = 1 (distributed on unit sphere), then the joint probability

density function of u1, u2, . . . , uk, 1 ≤ k ≤ N , is given by [18]

p(u1, . . . , uk) =
Γ(N2)

πk/2Γ
(
N−k
2

)
(
1−

k∑

i=1

u2
i

)N−k
2 −1

where Γ stands for the Gamma function. In addition, marginal density function for any
elements of u, ui, is given as

p(ui) =
Γ(N2)√

π Γ
(
N−1
2

) (1− u2
i

)N−3
2 (4.3)

41

4.3.2 (1 + 1)-ES on Linear Model

Due to the difficulty of manipulating the multiuniform distribution function. The following
discussions are based on simple (1+1)-ES to investigate whether the new distribution makes
a difference to the normal distribution. The first analysis is performed on linear model on
which the progress can only be made in one direction. Since the most important condition of
the analytical approach in Section 3.2.2, the rotation-invariant property of mutation vector
has already been established for multiuniform random variables in the last section, we will
apply such analytical approach here.

We first rotate the coordinate system so that the first canonical basis e1 is heading
toward the optimum. Then the progress of the algorithm is uniquely determined by the first
component U1 of the mutation vector U. Consider the rescaling factor E[χ], the relation
between the mutation vector and the standard multiuniform vector u reads,

U = E[χ]u, U1 = E[χ]u1

The marginal density of u1 is given in Equation 4.3. Let’s denote E[χ] as β. Then the
convergence velocity on linear model reads,

ϕ1+1 = E(U1)

= σβ E(u1)

= σβ

∫ 1

0

u1p(u1) du1

= σβ

∫ 1

0

u1

Γ(N2)√
π Γ
(
N−1
2

) (1− u2
1

)N−3
2 du1

= −σβ Γ(N2)

2
√
π Γ
(
N−1
2

)
∫ 1

0

(
1− u2

1

)N−3
2 d(1− u2

1)

= −σβ Γ(N2)√
π(N − 1)Γ

(
N−1
2

) (1− u2
1

)N−1
2

∣∣∣
1

0

= σβ
Γ(N2)√

π(N − 1)Γ
(
N−1
2

) .

Substituting β =
√
2Γ(N+1

2)/Γ(N2) to the equation above, the result can be simplified as,

ϕ1+1 =

√
2

π
σ

Γ(N+1
2)Γ(N2)

(N − 1)Γ
(
N−1
2

)
Γ(N2)

=

√
2

π
σ

N−1
2 Γ(N−1

2)

(N − 1)Γ
(
N−1
2

)

=
σ√
2π

(4.4)

Note that the range of u1 is [−1, 1] due to its distribution definition and therefore the
upper limit of the integral above is 1 instead of infinity. The lower limit is 0 because we are
dealing with “+” strategy. Such simplified result can be compared to the classic derivation

42

of Gaussian mutation on linear model,

ϕ′
1+1 = E(Z1)

= σE(z1)

= σ

∫ ∞

0

z1φ(z1) dz1

=
σ√
2π

, (4.5)

where Z1 ∼ N (0, σ2). The Equation 4.4 and 4.5 are exactly the same. Therefore, on linear
function, the multiuniform mutation vector does not make any differences of theoretical
performance for (1 + 1)-ES.

4.3.3 (1 + 1)-ES on Sphere Model

The next fitness is the sphere model. The arguments here is basically the same as Section
3.2.2 except that (1 + 1)-ES is the subject. As the first step, we rotate the mutation vector
U (or coordinate system equivalently) such that the first component U1 is aligned with the
direction to the optimum, w. l. o. g. Given the distance from the parent to optimum is R,
the distance from the offspring to optimum reads,

r2 = (R − U1)
2 + (σβ)2 − U2

1 = R2 + (σβ)2 − 2RU1

Using this relation, the convergence velocity of derandomized step-size on sphere model
reads,

ϕ = E(R2 − r2) = E(2RU1 − l2)

= E(2Rσβu1 − σ2β2)

= 2Rσβ

∫ 1

umin

u1p(u1) du1 − σ2β2

∫ 1

umin

p(u1) du1

= 2Rσβ

∫ 1

umin

u1

Γ(N2)√
π Γ
(
N−1
2

) (1− u2
1

)N−3
2 du1 − σ2β2

∫ 1

umin

Γ(N2)√
π Γ
(
N−1
2

) (1− u2
1

)N−3
2 du1

= −2Rσβ
Γ(N2)√

π(N − 1)Γ
(
N−1
2

) (1− u2
1

)N−1
2

∣∣∣
umin

1
− σ2β2 Γ(N2)√

π Γ
(
N−1
2

)
∫ π

2

sin−1 umin

cosN−2 α dα

=
2Rσ√
2π

(
1− σ2β2

4R2

)N−1
2

− σ2β(N − 1)√
2π

∫ π
2

sin−1 umin

cosN−2 α dα

≃ 2Rσ√
2π

(
1− σ2N

4R2

)N−1
2

− σ2
√
N(N − 1)√

2π

∫ π
2

sin−1 umin

cosN−2 α dα (4.6)

where the lower limit the integral umin = σβ/2R which is obtained from boundary condition
r2 ≤ R2 of (1 + 1)-ES. Compared to the convergence velocity on sphere Model for standard
(1 + 1)-ES,

ϕ̃ =
2Rσ√
2π

exp

(
−σ2N2

8R2

)
− σ2n

(
1− Φ

(
σN

2R

))
, (4.7)

43

There is no possible analytical work furthermore. Instead we compare Equation 4.6 and 4.7
numerically. The following figure shows the comparison when σ = 1. The difference between
these two convergence velocities is roughly 0.73 and remain unchanged as the dimension
increases, as shown in Figure 4.2.

0 5 10 15 20 25 30 35 40

dimension n

140

145

150

155

160

C
o
n

v
e
rg

e
n

ce
V

e
lo

ci
ty

Comparison on Sphere Model

Multivariate Gaussian distribution

Multiuniform distribution

Figure 4.2: Convergence velocity comparison of (1 + 1)-ES on the sphere model.

44

Chapter 5

Empirical results

The goal of this chapter is to test the proposed ES variants systematically. In order to conduct
a reliable and comparable test, we adopt the BBOB (Black-Box Optimization Benchmark-
ing) softeware as our testbed and benchmark. The BBOB is a benchmark for systematic
and sound comparisons of real parameter global optimizers. The benchmark currently con-
tains 24 test functions which enable to change optimal point and optimal value under some
constraints from trial to trial. It also provides pretty handy tools for post-processing and
visualization of the experiment data.

This chapter is organized as follows. In Section 5.1, the reasonable quantitative measure
of the ES performance, expected running time (ERT), is introduced. Section 5.2 explains
some detailed aspects of BBOB benchmark and the overall setup of the our experiment.
Section 5.3 gives some instructions on reading the BBOB figures and tables. Finally, Section
5.4 contains the specific results obtained by BBOB post-processing procedures, both for
single ES variants and the comparisons among them.

5.1 Performance measure

The performance of any ES algorithm could be conceived by its speed of approaching the
global optimum, which means using as few function evaluations as possible. A quantitative
measure is needed to make how fast a ES variant is, which is always critical. It should
reflect most of the aspects of the algorithm performance. In BBOB, expected running time
(ERT) is used as the most prominent performance measure. It is introduced in [34] as the
average of the expected number of function evaluations per success and the expected number
of function evaluations per unsuccessful trial. Due to the numerical precision, the success of
one trial is defined as reaching the optimal value f∗ under a given precision ∆f , namely the
current fitness f ≤ f∗ +∆f . After multiple trials, the success rate ps can be obtained. Let
RTS and RTUS denote the average number of function evaluations among the successful and
unsuccessful trials, respectively. If ps 6= 0, then ERT is defined as

ERT(ftarget) = RTS +
1− ps
ps

RTUS

=
〈FEs〉
ps

45

where 〈FEs〉 is the mean of all the function evaluations performed in the experiment. It
is quite obvious that the ERT measure is positively correlated to the number of evalua-
tions consumed while negatively correlated to the success rate. Given the same success rate,
the more function evaluation consumed, the worse the algorithm performs. Given the same
function evaluation, the more success trial algorithm makes, the better the algorithms. The
practical reason for defining the ERT measure is that the global optimums of some test
functions (highly multimodal) can only be reached by enormous number of function evalu-
ations. However, the evaluation budget prescribed in the real experiment is relatively small
in order to reduce the computational overheads. Therefore, many trials in an experiment
are unsuccessful and the ERT measure is a reasonable quantity which is able to handle the
unsuccessful trials.

5.2 Experiment details

5.2.1 BBOB features

The experiment is conducted on BBOB-20121 software, in which a collection of selected
test functions and the interfaces to programming languages C/C++, Java, Python, Mat-
lab/Octave are provided. In addition, real-time experiment data and configurations, like the
number of function evaluations consumed or the current evaluation budget are governed
and recorded by the software automatically. These disturbing details of the experiment are
hidden from the user and the method to construct a experiment is quite standardized2.
Using BBOB for a large benchmark work could save us a lot of efforts. In the test, the real-
parameter search algorithm is run on a testbed of benchmark functions to be minimized.
On each function and for each dimensionality Ntrial trials are carried out. In each trial, a
function instance is created by performing some operations to the function base. The details
about the operations involved in the test function generation can be found in [20].

5.2.2 Experiment objects

All the ES algorithm covered in this thesis and their first occurrence are listed in Table 5.1

ES name tested? First occurrence Section of results
(µ, λ)-MSC-ES No Section 2.2.2 None
Simple-(µ, λ)-MSC-ES Yes Section 2.2.5 None
Cu-Simple-(µ, λ)-MSC-ES Yes Section 2.2.5 Section 5.4.1
(µ/µw, λm)-CMA-ES Yes Section 3.1 None
Noisy−(µ/µw, λm)-CMA-ES Yes Section 3.4 Section 5.4.2
Orthogonal1− (µ/µw, λm)-CMA-ES Yes Section 4.1.3 Section 5.4.6
Orthogonal2− (µ/µw, λm)-CMA-ES Yes Section 4.1.3 Section 5.4.7
(µ, λ)-CMSA-ES Yes Section 4.2.4 None
Derandomized-stepsize-(µ, λ)-CMSA-ES Yes Section 4.2.4 Section 5.4.3

Table 5.1: All the ES variants covered in this thesis.

1The exact version is v11.06.
2There is an example in the BBOB software showing how to construct you own experiment.

46

Note that we do not given the results of some tested ES algorithms. The reason is that
these algorithms have already been tested extensively and their results can be found easily
from web. In addition, the goal of this chapter is not to benchmark and rank all well-
known ES variants. We focus on validating whether our new ES variants actually improve
the performance by comparing them to the standard ES algorithms. Thus, some standard
ES algorithms are still tested here and their results are not listed in this chapter. In this
manner, three empirical comparisons, Cu-Simple-(µ, λ)-MSC-ES against Simple-(µ, λ)-MSC-
ES, Noisy-(µ/µw, λm)-CMA-ES against (µ/µw, λm)-CMA-ES, Orthogonal1/2− (µ/µw, λm)-
CMA-ES against (µ/µw, λm)-CMA-ES and Derandomized-stepsize-CMSA-ES against (µ, λ)-
CMSA-ES, are shown from Section 5.3.4 to 5.3.8.

5.2.3 Test functions

The following table provides a summary of all 24 test functions with their commonly used
names and some of their features. The detailed description of the test functions can be found
on BBOB web page3.

Symbol Name Characteristic
f1 sphere unimodal, high symmetric
f2 ellipsoid unimodal, separable, condition > 106

f3 Rastrigin multimodal
f4 Buche-Rastrigin multimodal
f5 linear slope unimodal
f6 attractive sector unimodal, high asymmetric
f7 step ellipsoid unimodal with many plateaus
f8 Rosenbrock multimodal
f9 rotated Rosenbrock multimodal
f10 ellipsoid unimodal, non separable version of f2
f11 discus unimodal, condition > 106

f12 bent cigar unimodal, condition > 106

f13 sharp ridge unimodal
f14 different powers unimodal
f15 Rastrigin unimodal, non separable version of f3
f16 Weierstrass multimodal
f17 Schaffers F7 highly multimodal
f18 ill-conditioned Schaffers F7 highly multimodal
f19 composite Griewank-Rosenbrock highly multimodal
f20 Schwefel function multimodal
f21 Gallagher’s Gaussian 101-me peaks multimodal with randomly

distributed local optima
f22 Gallagher’s Gaussian 21-hi peaks multimodal

distributed local optima
f23 Katsuura highly multimodal
f24 Lunacek bi-Rastrigin Function highly multimodal

Table 5.2: 24 test functions in BBOB-2012

3http://coco.gforge.inria.fr/doku.php?id=downloads

47

All the test function bases are defined everywhere in RN (N is the dimensionality) and
have their global optimum in [−5, 5]N . Most functions have their global optimum in [−4, 4]N ,
which could be used as a reasonable setting for the initial parent. As introduced before, the
optimization algorithm reaches the global optimum if and only if the difference between its
current fitness f and the optimal fitness f∗ is less than ∆f = 10−8, namely f∗ − f < ∆f .
Such condition value ∆f is called the target precision value.

Note that there are two versions of each function in the table above, the noiseless and
noisy one are both implemented in the BBOB. In our experiment, only noiseless functions are
exploited. As listed in the third column of the table above, these test functions have different
properties, such as ill-conditioning, separability and symmetry. Each property stands for a
certain type of difficulty that ES algorithm would encounter. We introduce those properties
here briefly.

1. Ill-Conditioning. Ill-conditioning is a typical challenge in real-parameter optimiza-
tion. If the function contour lines around the global (or local) optimum can be ap-
proximated by a convex quadratic function, f(x) = 1

2x
THx, then the conditioning of

a function can be rigorously formalized as the condition number of the Hessian ma-
trix H, namely the ratio between the largest eigenvalue and the smallest eigenvalue.
Because contour lines associated to a convex quadratic function are ellipsoids, the con-
dition number corresponds to the square of the ratio between the length of the largest
axis of the ellipsoid and the shortest axis. The BBOB testbed contains ill-conditioned
functions with a typical conditioning of 106.

2. Separability. A high dimensional separable functions can be reformulated into a
product or sum of univariate functions which takes one dimension component as its
input. This implies that the separable functions pose an essentially different search
problem to solve, because the search process can be reduced to N one-dimensional
search procedures. Therefore, non-separable functions must be considered much more
difficult and most benchmark functions are non-separable.

3. Symmetry. Most of the ES algorithms are built on the Gaussian mutation opera-
tor, which is symmetric in high dimensional space (or rotation-invariant as discussed
before). Consequently, the symmetric benchmark functions could be in favor of these
operators. In order to test the real performance of a ES, some asymmetric functions are
needed to show how the ES performs in its less favorable case. Thus, a good benchmark
should include both symmetric functions and asymmetric functions.

5.2.4 Parameter Setting and Implementation Issue

The parameter setting of the experiment is the same for all the tested ES variants. The
initial global step-size σ is set to 1. The maximal function evaluations is set to 1e6×N (N
is the dimensionality). The initial solution vector (initial parent) is a uniformly distributed
random vector restricted in hyper box [−4, 4]N . The dimensionality used in the experiment
are 2, 3, 5, 10, 20, 40. The maximal function evaluations is somehow different. For the most
of the algorithms tested, the evaluation budget is set to 105 ×N (N is the dimensionality)
except for Cu-Simple-(µ, λ)-MSC-ES and Simple-(µ, λ)-MSC-ES in which maximal function
evaluations is set to 5× 104 ×N .

48

All the tested ES algorithms are coded in Python and thus the Python version of BBOB-
2012 is used in the benchmarking. In the algorithm code, the Numpy [30], the numeric
Python package is extensively used to improve the efficiency. The time-consuming sub-
procedure, noise-generation is implemented in C and then imported and invoked by the
other algorithms. The example testing code in BBOB-2012 is just a sequential execution from
the first test function to the last one, which would take too long if we need a very big test
(large function evaluation budget). Thus, the author changes it into the parallel execution
mode in which 24 processes are created for 24 test functions. In such way, all the test function
can perform parallel on multi-core computers, clusters or grid. Our experiment is basically
conducted on the DAS-44 cluster located in LIACS5 (Leiden Institute of Advanced Computer
Science). The experiment usually occupies two DAS-4 nodes, each of which contains an
Intel R© Xeon R© 2.67GHz hexadeca-core CPU X5650. For the detailed code for the algorithm,
the author is likely to provide you. Please contact: wangronin@gmail.com if you need.

5.3 Explanation on the BBOB figures

The experiment results presented in the following are generated by the post-processing
procedure in BBOB software. They are quite scientific and need some explanations. Each
type of the figures in the results is explained in this section to make themselves readable.

1. Running time figure. The running time figures resemble the example below. The

2 3 5 10 20 40
0

1

2

3 1 Sphere

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 5.1: An Example of running time figures.

Expected number of f -evaluations (ERT measure) to reach fopt+∆f , is plotted against
the dimensionality in such type. Different numerical precisions (∆f = 10{1,0,−1,−2,−3,−5,−8})
are also shown. The title of the figure gives the function on which the raw are obtained.

4http://www.cs.vu.nl/das4/clusters.shtml
5http://www.liacs.nl/home-en/

49

2. Empirical cumulative distribution function. This type of the figure does not
directly show the ERT data of the experiment. Instead, the probability that a ES al-
gorithm make a successful trial on a certain test function is investigated. Considering
the number of the function evaluations on one test function as a random variable, then
its cumulative probability distribution could be very usefully since it characterizes the
probability that certain amount of function evaluations are enough to reach the global
optimum. The function evaluation consumed in one trial running can be considered
as one sample of such distribution. Thus the approximate distribution function can
be calculated though the multiple trials on one function, and is called the empirical
cumulative distribution function (ECDF). The more trials conducted, the more accu-
rate the ECDFs would be. However, due to the computational complexity, 15 trials
are conducted for each test function and are sufficient to make relevant performance
differences statistically significant. A typical ECDF figure is shown below.

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D+1:24/24
-1:15/24
-4:11/24
-8:6/24

Figure 5.2: An Example of Empirical cumulative distribution function figures.

The real random variable in practice is the logarithm of the number of the function
evaluations normalized by the dimensionality as can be seen in Figure 5.2. Four empir-
ical cumulative distribution functions for four different ∆f are shown in each figure. In
addition, such statistical analysis is performed for dimension 5 and 20, and for certain
group of the test functions (e.g. unimodal functions, separable functions).
The implication of ECDFs on ES performance is quite straightforward. The less func-
tion evaluations a ES algorithm likely to consume when reaching the optimum, the
better this ES performs. Consequently, if an ECDF curves increasing faster than oth-
ers, it is considered better. Or, in another viewpoint, for a given number of function
evaluations, the bigger probability an ECDF gives, the better its corresponding ES
performs. ECDFs play a vital role in the ES comparison scenario.

50

3. ERT ratio figure. The comparison of two ES algorithms is mainly done in the ERT
ratio figure type. A typical one looks like,

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D
5D
8/6
1/140D

6 Attractive sector

Figure 5.3: An Example of ERT ratio figures.

Given the ERT measures for two ES .algorithm, ERT1 and ERT2 for each dimension
and each ∆f . The log ERT1

ERT2 are plotted against log∆f in Figure 5.3. Multiple curves
shows the comparisons for different dimensions. From this type of figure, it is obvious
to verify whether an ES algorithm is better than another on one test function. In
Figure 5.3, all the curves are below 0 for every ∆f . This means log ERT1

ERT2 is always
negative and therefore ERT1 is always smaller. The maximum or minimum of one
curve illustrates the condition under which one ES beats its adversary the most and
the amount of its advantages in performance.

51

5.4 Results on BBOB-2012 benchmark

5.4.1 Cu-Simple-(µ, λ)-MSC-ES

The characteristic of Cu-Simple-(µ, λ)-MSC-ES is shown in Figure 5.4, 5.5 and in Ta-
ble 5.3, 5.4. The expected number of function evaluations (ERT) for all 24 test functions
are shown in Figure 5.4. For one test function, the ERT numbers are illustrated for each
dimension and for each target precision. 7 target precisions ∆f = 10{1,0,−1,−2,−3,−5,−8}are
provided to characterize the ability of the optimizer. The specific ERT value for precision
10−8 is shown in Table 5.4.

The empirical cumulative distribution functions of function evaluations divided by search
space dimension are shown in the left part of Figure 5.5 while the empirical distributions
of target precisions are shown in the right. The ERT loss ratio is compared to that of
BBOB-2009 best in Table 5.3.

Table 5.3: ERT loss ratio compared to the respective best result from BBOB-2009 for budgets
given in the first column. The last row RLUS/D gives the number of function evaluations in
unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile,
75%-ile and 90%-ile value (smaller values are better). The ERT Loss ratio equals to one for
the respective best algorithm from BBOB-2009. Typical median values are between ten and
hundred.

f 1–f 24 in 5-D, maxFE/D=49999
#FEs/D best 10% 25% med 75% 90%

2 2.1 3.0 3.8 6.5 10 10
10 1.6 1.8 2.7 3.3 5.1 18
100 1.2 2.5 5.6 9.7 20 34
1e3 6.7 8.1 28 62 98 3.0e2
1e4 8.2 57 1.4e2 3.9e2 8.1e2 1.3e3
1e5 8.2 57 3.3e2 1.2e3 2.5e3 6.1e3

RLUS/D 5e4 5e4 5e4 5e4 5e4 5e4

f 1–f 24 in 20-D, maxFE/D=49999
#FEs/D best 10% 25% med 75% 90%

2 1.0 3.9 8.9 31 40 40
10 0.94 1.7 2.9 4.6 6.6 28
100 1.7 1.9 3.7 6.3 24 74
1e3 6.9 11 22 39 88 4.7e2
1e4 14 54 83 1.9e2 6.3e2 2.7e3
1e5 14 1.1e2 3.1e2 7.9e2 4.8e3 1.4e4
1e6 14 2.1e2 8.6e2 4.4e3 1.1e4 5.7e4

RLUS/D 5e4 5e4 5e4 5e4 5e4 5e4

52

2 3 5 10 20 40
0

1

2

3 1 Sphere

 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40
0

1

2

3

4

5

6 2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6 3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

64 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2 5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

14

8

16 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6 17 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

12 11

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

6

14 12

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

6 10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6 11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6 12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6 13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

6 14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6 2 15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6 16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6 17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

618 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6 1 119 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6
4

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6
4

1
3 221 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6 2 1 122 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6 23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6 24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 5.4: Expected number of f -evaluations (ERT, with lines, see legend) to reach
fopt + ∆f , median number of f -evaluations to reach the most difficult target that was
reached at least once (+) and maximum number of f -evaluations in any trial (×), all
divided by dimension and plotted as log10 values versus dimension. Shown are ∆f =
10{1,0,−1,−2,−3,−5,−8}. Numbers above ERT-symbols indicate the number of successful trials.
The light thick line with diamonds indicates the respective best result from BBOB-2009 for
∆f = 10−8. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

53

D = 5 D = 20

se
p
a
ra
b
le

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,5-D+1:5/5
-1:2/5
-4:2/5
-8:2/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,5-D
0 1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,20-D+1:2/5
-1:2/5
-4:2/5
-8:2/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,20-D

m
o
d
er
a
te

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,5-D+1:4/4
-1:4/4
-4:4/4
-8:2/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,5-D
1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,20-D+1:4/4
-1:3/4
-4:1/4
-8:1/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,20-D

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,5-D+1:5/5
-1:3/5
-4:2/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,5-D
0 1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,20-D+1:3/5
-1:3/5
-4:2/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,20-D

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19,5-D+1:5/5
-1:4/5
-4:1/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,5-D
0 1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f15-19,20-D+1:5/5
-1:2/5
-4:0/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,20-D

w
ea
k
st
ru
ct
u
re

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,5-D+1:5/5
-1:2/5
-4:2/5
-8:2/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,5-D
0 1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,20-D+1:4/5
-1:1/5
-4:1/5
-8:1/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,20-D

a
ll
fu
n
ct
io
n
s

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D+1:24/24
-1:15/24
-4:11/24
-8:6/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,5-D
0 1 2 3 4

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D+1:18/24
-1:11/24
-4:6/24
-8:4/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,20-D

Figure 5.5: Empirical cumulative distribution functions (ECDFs), plotting the fraction of
trials with an outcome not larger than the respective value on the x-axis. Left subplots:
ECDF of number of function evaluations (FEvals) divided by search space dimension D, to
fall below fopt+∆f with ∆f = 10k, where k is the first value in the legend. Right subplots:
ECDF of the best achieved ∆f divided by 10−8 for running times of D, 10D, 100D, . . .
function evaluations (from right to left cycling black-cyan-magenta). The thick red line rep-
resents the most difficult target value fopt+10−8. Legends indicate the number of functions
that were solved in at least one trial. Light brown lines in the background show ECDFs for
∆f = 10−8 of all algorithms benchmarked during BBOB-2009.

54

5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
3.5(3) 6.6(5) 13(5) 25(6) 40(9) 55(10) 15/15

f2 83 87 88 90 92 94 15/15
20624(22001) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f3 716 1622 1637 1646 1650 1654 15/15
234(349) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f4 809 1633 1688 1817 1886 1903 15/15
271(463) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f5 10 10 10 10 10 10 15/15
5.5(3) 7.6(3) 8.1(4) 8.2(4) 8.2(4) 8.2(4) 15/15

f6 114 214 281 580 1038 1332 15/15
2.6(1) 2.5(1) 3.0(2) 5.7(3) 7.3(3) 16(3) 14/15

f7 24 324 1171 1572 1572 1597 15/15
4.4(4) 770(973) 1568(1814) 2360(2465) 2360(2624) 2323(2505) 1/15

f8 73 273 336 391 410 422 15/15
13(8) 348(468) 334(380) 540(335) 2247(2438) ∞2.5e5 0/15

f9 35 127 214 300 335 369 15/15
5.0(2) 1158(1968) 889(1175) 970(838) 11171(11926) ∞2.5e5 0/15

f10 349 500 574 626 829 880 15/15
1848(1800) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f11 143 202 763 1177 1467 1673 15/15
24545(29803) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f12 108 268 371 461 1303 1494 15/15
2026(2311) 1869(2334) 1857(2361) ∞ ∞ ∞2.5e5 0/15

f13 132 195 250 1310 1752 2255 15/15
13(14) 102(90) 184(160) 293(326) 658(714) 1600(1830) 0/15

f14 10 41 58 139 251 476 15/15
2.2(3) 2.6(1) 3.4(1) 14(9) ∞ ∞2.5e5 0/15

f15 511 9310 19369 20073 20769 21359 14/15
247(490) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f16 120 612 2662 10449 11644 12095 15/15
5.6(5) 2659(3063) 1315(1549) ∞ ∞ ∞2.5e5 0/15

f17 5.2 215 899 3669 6351 7934 15/15
4.1(5) 1.2(0.9) 102(139) 954(1090) ∞ ∞2.5e5 0/15

f18 103 378 3968 9280 10905 12469 15/15
1.4(1) 242(331) 55(79) ∞ ∞ ∞2.5e5 0/15

f19 1 1 242 1.2e5 1.2e5 1.2e5 15/15
18(20) 4694(5056) 14858(16515) ∞ ∞ ∞2.5e5 0/15

f20 16 851 38111 54470 54861 55313 14/15
3.3(3) 4115(4702) ∞ ∞ ∞ ∞2.5e5 0/15

f21 41 1157 1674 1705 1729 1757 14/15
437(3) 432(540) 2090(2314) 2053(2493) 2025(2386) 1992(2277) 1/15

f22 71 386 938 1008 1040 1068 14/15
1762(3521) 1780(2264) 1734(2133) 1619(1921) 1577(1802) 1545(1755) 1/15

f23 3.0 518 14249 31654 33030 34256 15/15
2.0(3) 153(199) ∞ ∞ ∞ ∞2.5e5 0/15

f24 1622 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
58(87) ∞ ∞ ∞ ∞ ∞2.5e5 0/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
6.2(2) 14(2) 22(2) 39(2) 55(3) 72(3) 15/15

f2 385 386 387 390 391 393 15/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f3 5066 7626 7635 7643 7646 7651 15/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f4 4722 7628 7666 7700 7758 1.4e5 9/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f5 41 41 41 41 41 41 15/15
11(3) 13(3) 14(3) 14(3) 14(3) 14(3) 15/15

f6 1296 2343 3413 5220 6728 8409 15/15
1.6(0.5) 65(106) 136(164) 367(454) 2088(2527)1672(1843) 1/15

f7 1351 4274 9503 16524 16524 16969 15/15
725(859) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f8 2039 3871 4040 4219 4371 4484 15/15
61(17) 167(134) 220(127) ∞ ∞ ∞1.0e6 0/15

f9 1716 3102 3277 3455 3594 3727 15/15
75(32) 171(165) 230(155) 4285(4342) ∞ ∞1.0e6 0/15

f10 7413 8661 10735 14920 17073 17476 15/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f11 1002 2228 6278 9762 12285 14831 15/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f12 1042 1938 2740 4140 12407 13827 15/15
242(480) 776(1032) 1461(1825) ∞ ∞ ∞1.0e6 0/15

f13 652 2021 2751 18749 24455 30201 15/15
4.1(0.7) 11(14) 47(54) 109(116) 583(654) ∞1.0e6 0/15

f14 75 239 304 932 1648 15661 15/15
3.3(0.8) 2.6(0.3) 3.5(0.5) 19(6) ∞ ∞1.0e6 0/15

f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
461(576) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15
118(362) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f17 63 1030 4005 30677 56288 80472 15/15
2.1(1) 1.6(0.8) 69(128) ∞ ∞ ∞1.0e6 0/15

f18 621 3972 19561 67569 1.3e5 1.5e5 15/15
1.5(1) 44(126) 209(231) ∞ ∞ ∞1.0e6 0/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
114(48) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15
3.9(1) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f21 561 6541 14103 14643 15567 17589 15/15
648(891) 306(382) 284(355) 273(341) 257(321) 228(284) 3/15

f22 467 5580 23491 24948 26847 1.3e5 12/15
1429(2142) 1165(1389) ∞ ∞ ∞ ∞1.0e6 0/15

f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15
2.5(3) ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

Table 5.4: Expected running time (ERT in number of function evaluations) divided by
the best ERT measured during BBOB-2009 (given in the respective first row) for different
∆f values for functions f1–f24. The median number of conducted function evaluations is
additionally given in italics, if ERT(10−7) =∞. #succ is the number of trials that reached
the final target fopt + 10−8.

55

5.4.2 Noisy−(µ/µw, λm)-CMA-ES

The characteristic of Noisy−(µ/µw, λm)-CMA-ES is shown in Figure 5.6, 5.7 and in Ta-
ble 5.5, 5.6. The expected number of function evaluations (ERT) for all 24 test functions
are shown in Figure 5.6. For one test function, the ERT numbers are illustrated for each
dimension and for each target precision. 7 target precisions ∆f = 10{1,0,−1,−2,−3,−5,−8}are
provided to characterize the ability of the optimizer. The specific ERT value for precision
10−8 is shown in Table 5.6.

The empirical cumulative distribution functions of function evaluations divided by search
space dimension are shown in the left part of Figure 5.7 while the empirical distributions
of target precisions are shown in the right. The ERT loss ratio is compared to that of
BBOB-2009 best in Table 5.5.

Table 5.5: ERT loss ratio compared to the respective best result from BBOB-2009 for budgets
given in the first column. The last row RLUS/D gives the number of function evaluations in
unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile,
75%-ile and 90%-ile value (smaller values are better). The ERT Loss ratio equals to one for
the respective best algorithm from BBOB-2009. Typical median values are between ten and
hundred.

f 1–f 24 in 5-D, maxFE/D=99998
#FEs/D best 10% 25% med 75% 90%

2 1.1 2.2 3.7 6.1 8.3 10
10 1.9 2.2 2.8 3.5 5.3 37
100 0.68 1.7 3.8 7.9 23 98
1e3 1.1 2.9 6.6 29 75 1.1e2
1e4 1.1 2.9 7.1 37 82 4.5e2
1e5 1.1 2.9 7.1 37 1.4e2 4.6e2

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

f 1–f 24 in 20-D, maxFE/D=99999
#FEs/D best 10% 25% med 75% 90%

2 1.0 1.6 7.8 31 40 40
10 0.79 1.8 2.6 3.7 6.0 2.0e2
100 0.13 0.52 2.4 3.0 11 2.5e2
1e3 0.21 1.5 4.4 15 51 2.3e2
1e4 1.00 2.0 6.1 54 2.1e2 6.0e2
1e5 1.00 2.0 6.1 72 4.5e2 5.9e3
1e6 1.00 2.0 6.1 96 9.8e2 7.9e3

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

56

2 3 5 10 20 40
0

1

2

3 1 Sphere
 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40
0

1

2

3

4

5 2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

13
8
3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

11

2

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2 5 Linear slope

2 3 5 10 20 40
0

1

2

3 6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

14
12 8

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5 8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5 9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5 10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5 11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6
13

212 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7
1

12
2

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5 14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

9

1
15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

10

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

14
8

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

9

1
18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

4
1

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

10
2 1
20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

14 13 11 9 6
321 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

14
11 9

5
22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6
9
23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7
1

24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 5.6: Expected number of f -evaluations (ERT, with lines, see legend) to reach
fopt + ∆f , median number of f -evaluations to reach the most difficult target that was
reached at least once (+) and maximum number of f -evaluations in any trial (×), all
divided by dimension and plotted as log10 values versus dimension. Shown are ∆f =
10{1,0,−1,−2,−3,−5,−8}. Numbers above ERT-symbols indicate the number of successful trials.
The light thick line with diamonds indicates the respective best result from BBOB-2009 for
∆f = 10−8. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

57

D = 5 D = 20

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,5-D+1:5/5
-1:3/5
-4:3/5
-8:3/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,20-D+1:3/5
-1:3/5
-4:3/5
-8:3/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,20-D

m
o
d
er
a
te

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,5-D+1:4/4
-1:4/4
-4:4/4
-8:4/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,5-D
1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,20-D+1:4/4
-1:4/4
-4:3/4
-8:3/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,20-D

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,5-D+1:5/5
-1:5/5
-4:5/5
-8:5/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,20-D+1:5/5
-1:5/5
-4:5/5
-8:5/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,20-D

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19,5-D+1:5/5
-1:5/5
-4:4/5
-8:4/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f15-19,20-D

+1:4/5
-1:2/5
-4:0/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,20-D

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,5-D+1:5/5
-1:4/5
-4:4/5
-8:4/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,20-D+1:4/5
-1:3/5
-4:2/5
-8:2/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,20-D

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D+1:24/24
-1:21/24
-4:20/24
-8:20/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D+1:20/24
-1:17/24
-4:13/24
-8:13/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,20-D

Figure 5.7: Empirical cumulative distribution functions (ECDFs), plotting the fraction of
trials with an outcome not larger than the respective value on the x-axis. Left subplots:
ECDF of number of function evaluations (FEvals) divided by search space dimension D, to
fall below fopt+∆f with ∆f = 10k, where k is the first value in the legend. Right subplots:
ECDF of the best achieved ∆f divided by 10−8 for running times of D, 10D, 100D, . . .
function evaluations (from right to left cycling black-cyan-magenta). The thick red line rep-
resents the most difficult target value fopt+10−8. Legends indicate the number of functions
that were solved in at least one trial. Light brown lines in the background show ECDFs for
∆f = 10−8 of all algorithms benchmarked during BBOB-2009.

58

5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
3.6(3) 9.0(2) 14(2) 24(4) 35(5) 46(6) 15/15

f2 83 87 88 90 92 94 15/15
18(6) 22(3) 23(3) 25(2) 26(2) 27(2) 15/15

f3 716 1622 1637 1646 1650 1654 15/15
21(50) 674(774) ∞ ∞ ∞ ∞5.0e5 0/15

f4 809 1633 1688 1817 1886 1903 15/15
39(50) 4335(5204) ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 10 15/15
6.2(3) 8.5(4) 8.7(4) 8.7(4) 8.7(4) 8.7(4) 15/15

f6 114 214 281 580 1038 1332 15/15
1.7(0.7) 1.6(0.4) 1.8(0.4) 1.4(0.4) 1.1(0.2) 1.1(0.1)15/15

f7 24 324 1171 1572 1572 1597 15/15
4.2(2) 48(80) 130(172) 202(258) 202(186) 199(185) 12/15

f8 73 273 336 391 410 422 15/15
2.7(1) 3.1(1) 4.0(0.9) 4.4(0.8) 4.6(0.7) 4.9(0.7)15/15

f9 35 127 214 300 335 369 15/15
4.2(1) 44(2) 28(1) 21(1) 20(1) 18(1) 15/15

f10 349 500 574 626 829 880 15/15
3.4(1) 3.4(1.0) 3.6(0.3) 3.6(0.3) 2.9(0.2) 3.0(0.2)15/15

f11 143 202 763 1177 1467 1673 15/15
10(4) 11(3) 3.5(0.7) 2.6(0.4) 2.2(0.4) 2.1(0.3)15/15

f12 108 268 371 461 1303 1494 15/15
8.8(7) 6.6(5) 7.0(6) 7.7(4) 3.5(2) 3.5(2) 15/15

f13 132 195 250 1310 1752 2255 15/15
2.0(0.6) 5.1(5) 7.5(6) 4.2(6) 8.1(7) 8.3(11) 15/15

f14 10 41 58 139 251 476 15/15
1.8(2) 2.0(1) 2.9(0.9) 3.7(1) 5.9(0.9) 5.5(0.7)15/15

f15 511 9310 19369 20073 20769 21359 14/15
21(68) 115(107) 384(426) 370(386) 358(397) 348(375) 1/15

f16 120 612 2662 10449 11644 12095 15/15
41(2) 49(75) 70(81) 34(36) 36(43) 35(32) 10/15

f17 5.2 215 899 3669 6351 7934 15/15
8.0(8) 25(26) 17(40) 15(22) 51(57) 83(82) 8/15

f18 103 378 3968 9280 10905 12469 15/15
44(0.9) 26(87) 17(27) 170(189) ∞ ∞5.0e5 0/15

f19 1 1 242 1.2e5 1.2e5 1.2e5 15/15
16(14) 2758(562) 1486(2064) 61(62) 61(68) 60(68) 1/15

f20 16 851 38111 54470 54861 55313 14/15
2.0(1) 462(449) 186(203) 130(147) 129(137) 128(156) 1/15

f21 41 1157 1674 1705 1729 1757 14/15
97(302) 91(128) 193(222) 189(202) 187(215) 184(196) 11/15

f22 71 386 938 1008 1040 1068 14/15
118(176) 184(279) 134(146) 124(136) 121(132) 118(128) 15/15

f23 3.0 518 14249 31654 33030 34256 15/15
2.8(3) 13(19) 11(14) 15(17) 14(17) 14(15) 9/15

f24 1622 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
13(23) 34(39) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
7.0(1) 12(1) 17(1) 26(2) 36(2) 45(2) 15/15

f2 385 386 387 390 391 393 15/15
43(8) 55(9) 62(7) 68(4) 71(4) 73(4) 15/15

f3 5066 7626 7635 7643 7646 7651 15/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7628 7666 7700 7758 1.4e5 9/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 41 15/15
6.2(0.9) 7.1(0.9) 7.2(0.7) 7.3(0.7) 7.3(0.7) 7.3(0.7) 15/15

f6 1296 2343 3413 5220 6728 8409 15/15
1.2(0.2) 1.0(0.2) 0.93(0.1) 0.89(0.1) 0.95(0.1) 0.99(0.1)15/15

f7 1351 4274 9503 16524 16524 16969 15/15
119(214) 1528(1482) 1498(1544) ∞ ∞ ∞2.0e6 0/15

f8 2039 3871 4040 4219 4371 4484 15/15
3.5(0.9) 49(85) 48(82) 46(78) 45(76) 44(74) 15/15

f9 1716 3102 3277 3455 3594 3727 15/15
3.8(0.7) 4.5(0.5) 4.8(0.4) 4.9(0.4) 4.9(0.4) 4.9(0.3) 15/15

f10 7413 8661 10735 14920 17073 17476 15/15
2.2(0.8) 2.6(0.8) 2.5(0.4) 2.1(0.2) 1.9(0.2) 1.9(0.2) 15/15

f11 1002 2228 6278 9762 12285 14831 15/15
11(2) 6.9(1) 2.9(0.4) 2.3(0.2) 2.1(0.2) 2.0(0.2) 15/15

f12 1042 1938 2740 4140 12407 13827 15/15
2.0(2) 3.8(4) 5.0(4) 5.4(2) 2.5(0.8) 2.6(0.8) 15/15

f13 652 2021 2751 18749 24455 30201 15/15
1.9(0.4) 41(60) 42(43) 32(50) 119(153) 141(175) 2/15

f14 75 239 304 932 1648 15661 15/15
3.3(1.0) 2.4(0.4) 2.8(0.5) 2.8(0.3) 6.4(1) 2.1(0.3) 15/15

f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15
0.39(0.1) 35(37) ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 1030 4005 30677 56288 80472 15/15
2.2(1) 139(0.2) 125(250) 194(228) ∞ ∞2.0e6 0/15

f18 621 3972 19561 67569 1.3e5 1.5e5 15/15
0.81(0.2) 126(252) 306(358) ∞ ∞ ∞2.0e6 0/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
99(48) 1.4e5(4e5) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15
3.4(0.9) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 6541 14103 14643 15567 17589 15/15
398(544) 315(333) 269(334) 259(273) 244(302) 216(238) 6/15

f22 467 5580 23491 24948 26847 1.3e5 12/15
125(167) 217(321) 207(245) 195(230) 181(213) 36(43) 5/15

f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15
2.7(3) 5.3(0.4) 26(30) ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.6: Expected running time (ERT in number of function evaluations) divided by
the best ERT measured during BBOB-2009 (given in the respective first row) for different
∆f values for functions f1–f24. The median number of conducted function evaluations is
additionally given in italics, if ERT(10−7) =∞. #succ is the number of trials that reached
the final target fopt + 10−8.

59

5.4.3 Derandomized-stepsize-(µ, λ)-CMSA-ES

The characteristic of Derandomized-stepsize-(µ, λ)-CMSA-ES is shown in Figure 5.8, 5.9 and
in Table 5.7, 5.8. The expected number of function evaluations (ERT) for all 24 test functions
are shown in Figure 5.8. For one test function, the ERT numbers are illustrated for each
dimension and for each target precision. 7 target precisions ∆f = 10{1,0,−1,−2,−3,−5,−8}are
provided to characterize the ability of the optimizer. The specific ERT value for precision
10−8 is shown in Table 5.8.

The empirical cumulative distribution functions of function evaluations divided by search
space dimension are shown in the left part of Figure 5.9 while the empirical distributions
of target precisions are shown in the right. The ERT loss ratio is compared to that of
BBOB-2009 best in Table 5.7.

Table 5.7: ERT loss ratio compared to the respective best result from BBOB-2009 for budgets
given in the first column. The last row RLUS/D gives the number of function evaluations in
unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile,
75%-ile and 90%-ile value (smaller values are better). The ERT Loss ratio equals to one for
the respective best algorithm from BBOB-2009. Typical median values are between ten and
hundred.

f 1–f 24 in 5-D, maxFE/D=99998
#FEs/D best 10% 25% med 75% 90%

2 1.1 3.3 5.3 8.3 10 10
10 1.6 3.1 3.6 5.4 8.1 18
100 1.2 2.5 4.3 6.8 13 50
1e3 0.84 1.2 3.4 9.8 26 1.0e2
1e4 1.2 1.8 3.6 11 41 7.2e2
1e5 1.2 1.8 3.6 10 3.1e2 1.6e3

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

f 1–f 24 in 20-D, maxFE/D=99999
#FEs/D best 10% 25% med 75% 90%

2 1.0 3.9 11 31 40 40
10 1.5 2.7 4.3 6.0 8.4 2.0e2
100 1.3 2.3 3.9 5.9 24 71
1e3 2.2 4.7 8.9 19 59 2.8e2
1e4 2.0 5.7 13 44 4.0e2 2.4e3
1e5 2.0 5.7 26 1.1e2 6.5e2 6.7e3
1e6 2.0 5.7 26 6.0e2 4.3e3 1.1e4

RLUS/D 1e5 1e5 1e5 1e5 1e5 1e5

60

2 3 5 10 20 40
0

1

2

3 1 Sphere

 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40
0

1

2

3

4

5 2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

6
13

5

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6 2
8

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2 5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5 126 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7 1
7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5 8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5 9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5 10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4 11 Discus

2 3 5 10 20 40
0

1

2

3

4

5 12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6 13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5 14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

7
13

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

9
14

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5 17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

14

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7 19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6
11

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

12
9

2 1 1
21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

9
4

1 1
22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6 23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7 24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 5.8: Expected number of f -evaluations (ERT, with lines, see legend) to reach
fopt + ∆f , median number of f -evaluations to reach the most difficult target that was
reached at least once (+) and maximum number of f -evaluations in any trial (×), all
divided by dimension and plotted as log10 values versus dimension. Shown are ∆f =
10{1,0,−1,−2,−3,−5,−8}. Numbers above ERT-symbols indicate the number of successful trials.
The light thick line with diamonds indicates the respective best result from BBOB-2009 for
∆f = 10−8. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

61

D = 5 D = 20

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,5-D+1:5/5
-1:4/5
-4:4/5
-8:4/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5,20-D+1:4/5
-1:3/5
-4:3/5
-8:3/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-5,20-D

m
o
d
er
a
te

1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,5-D+1:4/4
-1:4/4
-4:4/4
-8:4/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,5-D
1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of
 tr
ia
ls

f6-9,20-D+1:4/4
-1:3/4
-4:3/4
-8:3/4

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f6-9,20-D

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,5-D+1:5/5
-1:5/5
-4:5/5
-8:5/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14,20-D+1:5/5
-1:5/5
-4:5/5
-8:4/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f10-14,20-D

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19,5-D+1:5/5
-1:5/5
-4:5/5
-8:4/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f15-19,20-D+1:5/5
-1:2/5
-4:0/5
-8:0/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f15-19,20-D

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,5-D+1:5/5
-1:3/5
-4:3/5
-8:3/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24,20-D+1:4/5
-1:1/5
-4:1/5
-8:1/5

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f20-24,20-D

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,5-D+1:24/24
-1:21/24
-4:21/24
-8:20/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,5-D
0 1 2 3 4 5

log10 of FEvals / DIM
0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24,20-D+1:22/24
-1:14/24
-4:12/24
-8:11/24

0 2 4 6 8 10 12 14 16 18
log10 of Df / Dftarget

f1-24,20-D

Figure 5.9: Empirical cumulative distribution functions (ECDFs), plotting the fraction of
trials with an outcome not larger than the respective value on the x-axis. Left subplots:
ECDF of number of function evaluations (FEvals) divided by search space dimension D, to
fall below fopt+∆f with ∆f = 10k, where k is the first value in the legend. Right subplots:
ECDF of the best achieved ∆f divided by 10−8 for running times of D, 10D, 100D, . . .
function evaluations (from right to left cycling black-cyan-magenta). The thick red line rep-
resents the most difficult target value fopt+10−8. Legends indicate the number of functions
that were solved in at least one trial. Light brown lines in the background show ECDFs for
∆f = 10−8 of all algorithms benchmarked during BBOB-2009.

62

5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
5.4(4) 13(4) 23(4) 42(5) 63(8) 85(10) 15/15

f2 83 87 88 90 92 94 15/15
13(5) 15(6) 17(5) 20(5) 22(5) 24(5) 15/15

f3 716 1622 1637 1646 1650 1654 15/15
2.9(3) 83(95) 735(792) 732(826) 730(805) 728(822) 5/15

f4 809 1633 1688 1817 1886 1903 15/15
2.4(0.6) 990(1092) ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 10 15/15
11(3) 17(7) 19(8) 19(8) 19(8) 19(8) 15/15

f6 114 214 281 580 1038 1332 15/15
2.4(0.8) 2.6(0.5) 2.8(0.6) 2.2(0.2) 1.7(0.2) 1.8(0.2)15/15

f7 24 324 1171 1572 1572 1597 15/15
5.9(2) 15(35) 15(21) 13(15) 13(15) 13(15) 15/15

f8 73 273 336 391 410 422 15/15
4.5(1) 5.9(3) 7.7(3) 8.3(2) 8.6(2) 8.9(2) 15/15

f9 35 127 214 300 335 369 15/15
10(3) 12(8) 12(6) 11(4) 10(3) 10(3) 15/15

f10 349 500 574 626 829 880 15/15
2.9(1) 2.5(0.6) 2.5(0.6) 2.8(0.6) 2.4(0.4) 2.5(0.4)15/15

f11 143 202 763 1177 1467 1673 15/15
6.1(2) 5.4(2) 1.6(0.4) 1.3(0.2) 1.2(0.2) 1.2(0.2)15/15

f12 108 268 371 461 1303 1494 15/15
10(5) 8.2(7) 11(7) 14(10) 6.4(5) 7.6(8) 15/15

f13 132 195 250 1310 1752 2255 15/15
3.8(1) 4.7(2) 4.8(2) 1.5(0.5) 1.7(0.5) 1.6(0.4)15/15

f14 10 41 58 139 251 476 15/15
3.7(3) 4.1(1) 5.5(2) 5.2(0.8) 5.4(1) 4.3(0.6)15/15

f15 511 9310 19369 20073 20769 21359 14/15
4.5(2) 4.0(4) 11(13) 11(13) 10(13) 10(12) 13/15

f16 120 612 2662 10449 11644 12095 15/15
2.6(3) 16(15) 7.0(7) 5.7(4) 7.2(5) 7.2(5) 15/15

f17 5.2 215 899 3669 6351 7934 15/15
7.0(9) 1.8(1.0) 0.84(0.3) 0.94(1) 1.5(1) 3.0(4) 15/15

f18 103 378 3968 9280 10905 12469 15/15
2.3(2) 2.3(2) 0.84(0.8) 0.93(0.8) 2.2(3) 2.8(3) 15/15

f19 1 1 242 1.2e5 1.2e5 1.2e5 15/15
29(25) 2471(3448) 5114(5405) 60(66) ∞ ∞5.0e5 0/15

f20 16 851 38111 54470 54861 55313 14/15
4.6(3) 18(24) 8.9(12) 6.2(7) 6.2(7) 6.1(7) 11/15

f21 41 1157 1674 1705 1729 1757 14/15
24(3) 723(879) 2115(2293) 2077(2226) 2049(2169) 2016(2186) 2/15

f22 71 386 938 1008 1040 1068 14/15
1209(3521) 2589(3235) 7465(9064) 6944(7439) 6729(6969) 6558(7026) 1/15

f23 3.0 518 14249 31654 33030 34256 15/15
1.7(2) 97(104) ∞ ∞ ∞ ∞5.0e5 0/15

f24 1622 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
23(30) ∞ ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
7.9(1) 14(2) 19(2) 31(2) 42(3) 55(4) 15/15

f2 385 386 387 390 391 393 15/15
128(31) 164(41) 185(38) 221(34) 235(46) 244(52) 15/15

f3 5066 7626 7635 7643 7646 7651 15/15
5819(6711) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7628 7666 7700 7758 1.4e5 9/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 41 15/15
13(4) 16(3) 17(4) 17(4) 17(4) 17(4) 15/15

f6 1296 2343 3413 5220 6728 8409 15/15
1.7(0.6) 2.1(2) 3.9(4) 17(26) 34(24) 63(80) 12/15

f7 1351 4274 9503 16524 16524 16969 15/15
211(262) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f8 2039 3871 4040 4219 4371 4484 15/15
17(7) 23(5) 24(5) 25(5) 25(4) 25(4) 15/15

f9 1716 3102 3277 3455 3594 3727 15/15
19(5) 26(4) 28(4) 29(4) 28(4) 28(4) 15/15

f10 7413 8661 10735 14920 17073 17476 15/15
7.4(4) 8.2(2) 7.7(2) 6.2(0.7) 5.7(0.7) 5.8(0.7)15/15

f11 1002 2228 6278 9762 12285 14831 15/15
10(0.9) 5.9(1) 2.4(0.5) 2.1(0.4) 2.0(0.6) 2.0(0.8)15/15

f12 1042 1938 2740 4140 12407 13827 15/15
4.5(0.2) 13(11) 15(11) 15(9) 6.6(3) 6.8(3) 15/15

f13 652 2021 2751 18749 24455 30201 15/15
10(16) 12(12) 28(17) 24(26) 200(202) ∞2.0e6 0/15

f14 75 239 304 932 1648 15661 15/15
3.6(1.0) 2.8(0.5) 3.3(0.4) 5.3(0.6) 10(2) 2.8(0.8)15/15

f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
101(127) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15
4.3(2) 78(86) ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 1030 4005 30677 56288 80472 15/15
3.0(2) 5.2(11) 6.5(5) 16(16) ∞ ∞2.0e6 0/15

f18 621 3972 19561 67569 1.3e5 1.5e5 15/15
1.2(0.4) 6.2(9) 6.7(8) ∞ ∞ ∞2.0e6 0/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
139(36) 6.3e6(7e6) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15
4.3(1) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 6541 14103 14643 15567 17589 15/15
1782(3563) 4281(4740) ∞ ∞ ∞ ∞2.0e6 0/15

f22 467 5580 23491 24948 26847 1.3e5 12/15
3750(6427) 986(1434) 1192(1362) 1123(1303) 1043(1192) 208(230) 1/15

f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15
2.7(3) ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
∞ ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.8: Expected running time (ERT in number of function evaluations) divided by
the best ERT measured during BBOB-2009 (given in the respective first row) for different
∆f values for functions f1–f24. The median number of conducted function evaluations is
additionally given in italics, if ERT(10−7) =∞. #succ is the number of trials that reached
the final target fopt + 10−8.

63

5.4.4 Cu-Simple-(µ, λ)-MSC-ES vs Simple-(µ, λ)-MSC-ES

The goal of the comparison is to verify if the cumulative parameter updating rule actually
is better. The straight forward comparison is shown in the following three four graphs. Fig-
ure 5.10 plots the expected function evaluation against dimension for both the competitive
ESs. However, this figure is useless because both of the ES algorithms are not going to find
the global optimum within the evaluation budget. There is no effective comparisons in most
of the subfigures.

In Figure 5.11, more information on ERT comparison is given. The logarithm of the
ratio between two competitive ESs are plotted against decreasing target precision. Most
of the curves in each subfigures are quite noisy. If most of the curves in one subfigure are
roughly below 0, then we could consider that the newly purposed algorithm is perform-
ing better than the original algorithm in that subfigure. From figure 5.11, the cumula-
tive variant actually dominates the test functions f5, f6, f7, f8, f14, f17, and gets worse in
f1, f2, f15, f19, f20, f22, f23. There is no decision for the rest functions. Figure 5.12 changes
to another manner to compare the ERTs and basically tells the same story as Figure 5.11.

Then the most important characteristic is shown in Figure 5.13. This the comparison of
empirical cumulative distributions of function evaluations. Given a fixed function evaluation
number, the bigger size of the area under the distribution curve, the better performance a
optimizer would have. For target precision 10{1,−1,−4}, the distribution curve for the new ES
variant is increasing faster than the standard MSC-ES in every dimension and every group
of th functions. Finally, the specific ERT numbers under precision 10−8 are compared in
Table 5.9.

64

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

1 Sphere

standard

CuMSC

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

standard

CuMSC

Figure 5.10: Expected running time (ERT in number of f -evaluations) divided by dimension
for target function value 10−8 as log10 values versus dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal lines
give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate statisti-
cally better result compared to all other algorithms with p < 0.01 and Bonferroni correction
number of dimensions (six). Legend: ◦:Simple-(µ, λ)-MSC-ES, ▽:Cu-Simple-(µ, λ)-MSC-ES

65

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D

5D10D
20D40D

1 Sphere

 2-D

 3-D

 5-D

10-D

20-D

40-D

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

1/13D5D10D2/1
1/1

2 Ellipsoid separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D

3D
5D10D

9/2
4/1

3 Rastrigin separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D

5D10D

20D
40D

4 Skew Rastrigin-Bueche separ

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

3D5D10D20D40D

5 Linear slope

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D
5D
8/6
1/140D

6 Attractive sector

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D

1/4
10D

20D40D

7 Step-ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

3D

5D

10D

20D40D

8 Rosenbrock original

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D
3D

5D

10D

20D
40D

9 Rosenbrock rotated

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D
20D1/2

10 Ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D5D2/1
1/2

3/2

11 Discus

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D
5D10D
20D

40D

12 Bent cigar

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D 3D5D
10D

20D40D

13 Sharp ridge

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D

7/1

20D40D

14 Sum of different powers

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3
lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2/8

3D
1/210D

20D40D

15 Rastrigin

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D
10D
20D40D

16 Weierstrass

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D 5D10D20D40D

17 Schaffer F7, condition 10

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D
5D10D20D40D

18 Schaffer F7, condition 1000

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

1/13D5D

10D20D40D

19 Griewank-Rosenbrock F8F2

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc
4/15
3D

1/2

5/4
2/1

40D

20 Schwefel x*sin(x)

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

4/15

3D

5D
10D

20D40D

21 Gallagher 101 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

2/13

1/11/12/33/5

22 Gallagher 21 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D
5D

10D

20D40D

23 Katsuuras

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D1/1
10D20D

40D

24 Lunacek bi-Rastrigin

 2-D

 3-D

 5-D

10-D

20-D

40-D

Figure 5.11: Ratio of ERT for Cu-Simple-(µ, λ)-MSC-ES over ERT for Simple-(µ, λ)-MSC-ES
versus log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸. Ratios < 100 indicate an advantage of
Cu-Simple-(µ, λ)-MSC-ES, smaller values are always better. The line becomes dashed when
for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f -
evaluations for the same algorithm on this function. Filled symbols indicate the best achieved
∆f -value of one algorithm (ERT is undefined to the right). The dashed line continues as
the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis
limits mean 100%, values below zero for Cu-Simple-(µ, λ)-MSC-ES. The line ends when no
algorithm reaches ∆f anymore. The number of successful trials is given, only if it was in
{1 . . .9} for Cu-Simple-(µ, λ)-MSC-ES (1st number) and non-zero for Simple-(µ, λ)-MSC-ES
(2nd number). Results are significant with p = 0.05 for one star and p = 10−#⋆ otherwise,
with Bonferroni correction within each figure.

66

1 2 3 41

2

3

4

1
 S

p
h
e
re

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

2
 E

lli
p
so

id
 s

e
p
a
ra

b
le

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

3
 R

a
st

ri
g
in

 s
e
p
a
ra

b
le

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

4
 S

ke
w

 R
a
st

ri
g
in

-B
u
e
ch

e
 s

e
p
a
r

0 1 2 3 40

1

2

3

4

5
 L

in
e
a
r

sl
o
p
e

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

6
 A

tt
ra

ct
iv

e
 s

e
ct

o
r

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

7
 S

te
p
-e

lli
p
so

id

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

8
 R

o
se

n
b
ro

ck
 o

ri
g
in

a
l

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

9
 R

o
se

n
b
ro

ck
 r

o
ta

te
d

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

1
0

 E
lli

p
so

id

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

1
1

 D
is

cu
s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
2

 B
e
n
t

ci
g
a
r

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
3

 S
h
a
rp

 r
id

g
e

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
4

 S
u
m

 o
f

d
if
fe

re
n
t

p
o
w

e
rs

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
5

 R
a
st

ri
g
in

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
6

 W
e
ie

rs
tr

a
ss

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
7

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
8

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0
0

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
9

 G
ri

e
w

a
n
k-

R
o
se

n
b
ro

ck
 F

8
F2

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
0

 S
ch

w
e
fe

l
x
*s

in
(x

)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
1

 G
a
lla

g
h
e
r

1
0

1
 p

e
a
ks

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

2
2

 G
a
lla

g
h
e
r

2
1

 p
e
a
ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
3

 K
a
ts

u
u
ra

s

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

2
4

 L
u
n
a
ce

k
b
i-

R
a
st

ri
g
in

Figure 5.12: Expected running time (ERT in log10 of number of function evaluations) of
Simple-(µ, λ)-MSC-ES (x-axis) versus Cu-Simple-(µ, λ)-MSC-ES (y-axis) for 46 target values
∆f ∈ [10−8, 10] in each dimension on functions f1–f24. Markers on the upper or right edge
indicate that the target value was never reached. Markers represent dimension: 2:+, 3:▽,
5:⋆, 10:◦, 20:✷, 40:✸.

67

5-D 20-D

se
p
a
ra
b
le

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,5-D

+1: 5/5

-1: 2/2

-4: 2/2

-8: 2/2

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-1 0 1
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,20-D

+1: 2/2

-1: 2/2

-4: 2/2

-8: 2/2
m
o
d
er
a
te

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,5-D

+1: 4/4

-1: 4/4

-4: 4/4

-8: 2/2

1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,20-D

+1: 3/4

-1: 3/3

-4: 1/1

-8: 1/1

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,5-D

+1: 4/5

-1: 3/3

-4: 2/2

-8: 0/0

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,20-D

+1: 3/3

-1: 3/3

-4: 2/2

-8: 0/0

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,5-D

+1: 5/5

-1: 2/4

-4: 0/1

-8: 0/0

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,20-D

+1: 4/5

-1: 1/2

-4: 0/0

-8: 0/0

w
ea
k
st
ru
ct
u
re

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,5-D

+1: 5/5

-1: 1/2

-4: 1/2

-8: 1/2

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,20-D

+1: 4/4

-1: 0/1

-4: 0/1

-8: 0/1

a
ll
fu
n
ct
io
n
s

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,5-D

+1: 23/24

-1: 12/15

-4: 9/11

-8: 5/6

0 1 2 3 4
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,20-D

+1: 16/18

-1: 9/11

-4: 5/6

-8: 3/4

Figure 5.13: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios
in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations
divided by dimension D (FEvals/D) to reach a target value fopt+∆f with ∆f = 10k, where
k ∈ {1,−1,−4,−8} is given by the first value in the legend, for Simple-(µ, λ)-MSC-ES (◦)
and Cu-Simple-(µ, λ)-MSC-ES (▽). Light beige lines show the ECDF of FEvals for target
value ∆f = 10−8 of all algorithms benchmarked during BBOB-2009. Right sub-columns:
ECDF of FEval ratios of Simple-(µ, λ)-MSC-ES divided by Cu-Simple-(µ, λ)-MSC-ES, all
trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one
trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of
functions that were solved in at least one trial (Simple-(µ, λ)-MSC-ES first).

68

5-D 20-D

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 15/15

1: simple 3.5(2) 11(4) 20(4) 29(5)⋆2 39(7)⋆3 15/15
2: Cu 3.5(3) 13(5) 25(6) 40(9) 55(10) 15/15

f2 83 88 90 92 94 15/15
1: simple43620(47961) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 20624(23019) ∞ ∞ ∞ ∞2.5e5 0/15

f3 716 1637 1646 1650 1654 15/15
1: simple 1020(1223) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 234(350) ∞ ∞ ∞ ∞2.5e5 0/15

f4 809 1688 1817 1886 1903 15/15
1: simple 1237(1390) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 271(463) ∞ ∞ ∞ ∞2.5e5 0/15

f5 10 10 10 10 10 15/15
1: simple 6.1(3) 9.2(4) 9.4(4) 9.4(4) 9.4(4) 15/15
2: Cu 5.5(3) 8.1(4) 8.2(4) 8.2(4) 8.2(4) 15/15

f6 114 281 580 1038 1332 15/15
1: simple 4.5(2) 110(148) 70(117) 59(102) 61(101) 12/15
2: Cu 2.6(1) 3.0(2) 5.7(3) 7.3(3) 16(3) 14/15

f7 24 1171 1572 1572 1597 15/15
1: simple 20(9) 672(766) 525(545) 525(578) 517(542) 4/15
2: Cu 4.4(4) 1568(1584) 2360(2504) 2360(2703) 2323(2505) 1/15

f8 73 336 391 410 422 15/15
1: simple 26(22) 357(386) 644(363) ∞ ∞2.5e5 0/15
2: Cu 13(8) 334(380) 540(335) 2247(2133) ∞2.5e5 0/15

f9 35 214 300 335 369 15/15
1: simple 3.6(1) 316(587) 652(421) ∞ ∞2.5e5 0/15
2: Cu 5.0(2) 889(1172) 970(837) 11171(10994) ∞2.5e5 0/15

f10 349 574 626 829 880 15/15
1: simple10579(11806) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 1848(1800) ∞ ∞ ∞ ∞2.5e5 0/15

f11 143 763 1177 1467 1673 15/15
1: simple ∞ ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 24545(27173) ∞ ∞ ∞ ∞2.5e5 0/15

f12 108 371 461 1303 1494 15/15
1: simple 2968(3466) 9445(11130) ∞ ∞ ∞2.5e5 0/15
2: Cu 2026(3466) 1857(2361) ∞ ∞ ∞2.5e5 0/15

f13 132 250 1310 1752 2255 15/15
1: simple 9.5(16) 253(241) 391(385) 2119(2212) ∞2.5e5 0/15
2: Cu 13(14) 184(160) 293(318) 658(700) 1600(1802) 0/15

f14 10 58 139 251 476 15/15
1: simple 1.6(2) 3.3(1) 30(19) ∞ ∞2.5e5 0/15
2: Cu 2.2(3) 3.4(1) 14(9) ∞ ∞2.5e5 0/15

f15 511 19369 20073 20769 21359 14/15
1: simple 429(490) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 247(489) ∞ ∞ ∞ ∞2.5e5 0/15

f16 120 2662 10449 11644 12095 15/15
1: simple 1.3(1) 1321(1502) ∞ ∞ ∞2.5e5 0/15
2: Cu 5.6(5) 1315(1408) ∞ ∞ ∞2.5e5 0/15

f17 5.2 899 3669 6351 7934 15/15
1: simple 3439(16) 417(556) ∞ ∞ ∞2.5e5 0/15
2: Cu 4.1(5) 102(139) 954(1056) ∞ ∞2.5e5 0/15

f18 103 3968 9280 10905 12469 15/15
1: simple 880(1209) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 1.4(1) 55(94)⋆ ∞ ∞ ∞2.5e5 0/15

f19 1 242 1.2e5 1.2e5 1.2e5 15/15
1: simple 22(16) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 18(20) 14858(16515) ∞ ∞ ∞2.5e5 0/15

f20 16 38111 54470 54861 55313 14/15
1: simple 2.9(2) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 3.3(3) ∞ ∞ ∞ ∞2.5e5 0/15

f21 41 1674 1705 1729 1757 14/15
1: simple 1526(3050) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 437(3) 2090(2314) 2053(2419) 2025(2242) 1992(2277) 1/15

f22 71 938 1008 1040 1068 14/15
1: simple 3084(5282) 3738(4199) 3488(3844) 3389(3485) 3312(3630) 1/15
2: Cu 1762(3521) 1734(2265) 1619(2045) 1577(1801) 1545(1755) 1/15

f23 3.0 14249 31654 33030 34256 15/15
1: simple 3.2(2) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 2.0(3) ∞ ∞ ∞ ∞2.5e5 0/15

f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: simple 105(154) ∞ ∞ ∞ ∞2.5e5 0/15
2: Cu 58(88) ∞ ∞ ∞ ∞2.5e5 0/15

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 15/15

1: simple 6.2(1) 14(2)⋆3 23(2)⋆3 32(2)⋆3 41(3)⋆3 15/15
2: Cu 6.2(2) 22(2) 39(2) 55(3) 72(3) 15/15

f2 385 387 390 391 393 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f3 5066 7635 7643 7646 7651 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f4 4722 7666 7700 7758 1.4e5 9/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f5 41 41 41 41 41 15/15
1: simple 11(5) 16(7) 16(7) 16(7) 16(7) 15/15
2: Cu 11(3) 14(3) 14(3) 14(3) 14(3) 15/15

f6 1296 3413 5220 6728 8409 15/15
1: simple 189(387) 594(651) 2688(3209)2088(2527)1674(1903) 1/15

2: Cu 1.6(0.5)⋆2 136(164) 367(452) 2088(2378)1672(1724) 1/15

f7 1351 9503 16524 16524 16969 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15

2: Cu 725(837)⋆2 ∞ ∞ ∞ ∞1.0e6 0/15

f8 2039 4040 4219 4371 4484 15/15
1: simple 75(12) 189(21) 3444(3674) ∞ ∞1.0e6 0/15
2: Cu 61(17) 220(127) ∞ ∞ ∞1.0e6 0/15

f9 1716 3277 3455 3594 3727 15/15
1: simple 80(30) 262(154) ∞ ∞ ∞1.0e6 0/15
2: Cu 75(32) 230(155) 4285(4486) ∞ ∞1.0e6 0/15

f10 7413 10735 14920 17073 17476 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f11 1002 6278 9762 12285 14831 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f12 1042 2740 4140 12407 13827 15/15
1: simple 241(480) 5111(5657) ∞ ∞ ∞1.0e6 0/15
2: Cu 242(480) 1461(1825) ∞ ∞ ∞1.0e6 0/15

f13 652 2751 18749 24455 30201 15/15
1: simple 31(41) 102(104) 390(373) 603(613) ∞1.0e6 0/15

2: Cu 4.1(0.7)⋆2 47(54) 109(107) 583(675) ∞1.0e6 0/15

f14 75 304 932 1648 15661 15/15
1: simple 3.7(2) 3.3(1) 31(4) ∞ ∞1.0e6 0/15

2: Cu 3.3(0.8) 3.5(0.5) 19(6)⋆3 ∞ ∞1.0e6 0/15

f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 461(551) ∞ ∞ ∞ ∞1.0e6 0/15

f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: simple 112(361) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 118(362) ∞ ∞ ∞ ∞1.0e6 0/15

f17 63 4005 30677 56288 80472 15/15
1: simple 3.2(2) 3496(4119) ∞ ∞ ∞1.0e6 0/15

2: Cu 2.1(1) 69(127)⋆2 ∞ ∞ ∞1.0e6 0/15

f18 621 19561 67569 1.3e5 1.5e5 15/15
1: simple 251(806) ∞ ∞ ∞ ∞1.0e6 0/15

2: Cu 1.5(1) 209(231)⋆2 ∞ ∞ ∞1.0e6 0/15

f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: simple 117(56) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 114(48) ∞ ∞ ∞ ∞1.0e6 0/15

f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: simple 3.4(1) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 3.9(1) ∞ ∞ ∞ ∞1.0e6 0/15

f21 561 14103 14643 15567 17589 15/15
1: simple 648(891) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 648(891) 284(355) 273(341) 257(321) 228(284) 3/15

f22 467 23491 24948 26847 1.3e5 12/15
1: simple5892(7498) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 1429(2142) ∞ ∞ ∞ ∞1.0e6 0/15

f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: simple 2.8(2) ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu 2.5(3) ∞ ∞ ∞ ∞1.0e6 0/15

f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: simple ∞ ∞ ∞ ∞ ∞1.0e6 0/15
2: Cu ∞ ∞ ∞ ∞ ∞1.0e6 0/15

Table 5.9: ERT in number of function evaluations divided by the best ERT measured during
BBOB-2009 given in the respective first row with the central 80% range divided by two in
brackets for different ∆f values. #succ is the number of trials that reached the final target
fopt + 10−8. 1:simple is Simple-(µ, λ)-MSC-ES and 2:Cu is Cu-Simple-(µ, λ)-MSC-ES. Bold
entries are statistically significantly better compared to the other algorithm, with p = 0.05
or p = 10−k where k ∈ {2, 3, 4, . . .} is the number following the ⋆ symbol, with Bonferroni
correction of 48. A ↓ indicates the same tested against the best BBOB-2009.

69

5.4.5 Noisy−(µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES

Results from experiments according to [22] on the benchmark functions given in [19, 23]
are presented in Figures 5.14, 5.15, 5.16, 5.17 and Table 5.10. The expected running
time (ERT), used in the figures and table, depends on a given target function value,
ft = fopt + ∆f , and is computed over all relevant trials as the number of function eval-
uations executed during each trial while the best function value did not reach ft, summed
over all trials and divided by the number of trials that actually reached ft [22, 33]. Statis-
tical significance is tested with the rank-sum test for a given target ∆ft using, for each
trial, either the number of needed function evaluations to reach ∆ft (inverted and multi-
plied by −1), or, if the target was not reached, the best ∆f -value achieved, measured only
up to the smallest number of overall function evaluations for any unsuccessful trial under
consideration if available.
Figure 5.14 plots the expected function evaluation against dimension for both the com-
petitive ESs. The “noisy” mirrored sampling method actually is getting worse on function
f10, f11, f12, f13, f14 under the target precision 10−8.

In Figure 5.15, the observation above is presented in details. The logarithm of the ra-
tio between two competitive ESs are plotted against decreasing target precision. Most of
the curves in each subfigures are quite noisy. If most of the curves in one subfigure are
roughly below 0, then we could consider that the newly purposed algorithm is performing
better than the original algorithm in that subfigure. From figure 5.15, the “noisy” sampling
method gets worse on functions f10, f11, f12, f13, f14. There is no decision for the rest func-
tions. Figure 5.16 changes to another manner to compare the ERTs and basically tells the
same story as Figure 5.15.

Then the most important characteristic is shown in Figure 5.17. The distribution curves
for the “noisy” mirrored sampling method are roughly the same as that of mirrored sam-
pling method on most functions, indicating the same performance characteristics of two
competitive ESs. Finally, the specific ERT numbers under precision 10−8 are compared in
Table 5.10.

70

2 3 5 10 20 40
0

1

2

3

ftarget=1e-08

1 Sphere

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40
0

1

2

3

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

Figure 5.14: Expected running time (ERT in number of f -evaluations) divided by dimension
for target function value 10−8 as log10 values versus dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal
lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate
statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ◦:Mirrored sampling, ▽:“Noisy” mirrored
sampling

71

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D3D5D10D20D40D

1 Sphere
 2-D
 3-D
 5-D
10-D
20-D
40-D

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D3D5D10D20D

40D

2 Ellipsoid separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D8/95/5
1/3

20D
7/8

3 Rastrigin separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D2/25D10D20D
8/5

4 Skew Rastrigin-Bueche separ

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D3D
5D10D20D40D

5 Linear slope

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D3D5D10D20D40D

6 Attractive sector

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D3D5D
8/2

20D
1/2

7 Step-ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D3D5D

10D
20D

40D

8 Rosenbrock original

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D3D5D
10D

20D
40D

9 Rosenbrock rotated

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D

3D

5D10D
20D

40D10 Ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D

3D

5D10D20D
40D

11 Discus

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D

3D

5D10D20D

2/15
12 Bent cigar

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D

1/15

5D

10D2/15

40D

13 Sharp ridge

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D

3D

5D10D20D

40D14 Sum of different powers

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2
lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D9/8
1/13/320D

40D

15 Rastrigin

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1
0(
ER
T1
/E
RT
0)
 o
r ~
#
su
cc

2D
3D5D10D20D

4/2

16 Weierstrass

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D
3D8/710D20D40D

17 Schaffer F7, condition 10

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

9/93D
5D10D1/1

40D

18 Schaffer F7, condition 1000

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D

4/5
5D

10D1/240D

19 Griewank-Rosenbrock F8F2

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D
2/5
5D10D

20D

40D

20 Schwefel x*sin(x)

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D3D5D
9/126/63/4

21 Gallagher 101 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D
3D
5D9/55/2

5/6

22 Gallagher 21 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1
0(
ER
T1
/E
RT
0)
 o
r ~
#
su
cc

2D
3D9/9

10D2/3
1/4

23 Katsuuras

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

1/13D
5D1/14/46/5

24 Lunacek bi-Rastrigin
 2-D
 3-D
 5-D
10-D
20-D
40-D

Figure 5.15: Ratio of ERT for “Noisy” mirrored sampling over ERT for Mirrored sampling
versus log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸. Ratios < 100 indicate an advantage of
“Noisy” mirrored sampling, smaller values are always better. The line becomes dashed when
for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f -
evaluations for the same algorithm on this function. Filled symbols indicate the best achieved
∆f -value of one algorithm (ERT is undefined to the right). The dashed line continues as
the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis
limits mean 100%, values below zero for “Noisy” mirrored sampling. The line ends when no
algorithm reaches ∆f anymore. The number of successful trials is given, only if it was in
{1 . . .9} for “Noisy” mirrored sampling (1st number) and non-zero for Mirrored sampling
(2nd number). Results are significant with p = 0.05 for one star and p = 10−#⋆ otherwise,
with Bonferroni correction within each figure.

72

0 1 2 3 40

1

2

3

4

1
Sp

he
re

2 3 4 5 62

3

4

5

6

2
El

lip
so

id
 s

ep
ar

ab
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

3
Ra

st
rig

in
 s

ep
ar

ab
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

4
Sk

ew
 R

as
tr

ig
in

-B
ue

ch
e

se
pa

r

1 2 31

2

3

5
Li

ne
ar

 s
lo

pe

1 2 3 4 51

2

3

4

5

6
At

tr
ac

tiv
e

se
ct

or

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

7
St

ep
-e

lli
ps

oi
d

1 2 3 4 5 61

2

3

4

5

6

8
Ro

se
nb

ro
ck

 o
rig

in
al

1 2 3 4 5 61

2

3

4

5

6

9
Ro

se
nb

ro
ck

 ro
ta

te
d

2 3 4 5 62

3

4

5

6

10
 E

lli
ps

oi
d

2 3 4 5 62

3

4

5

6

11
 D

is
cu

s

2 3 4 5 6 7 82

3

4

5

6

7

8

12
 B

en
t c

ig
ar

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

13
 S

ha
rp

 ri
dg

e

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

14
 S

um
 o

f d
iff

er
en

t p
ow

er
s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

15
 R

as
tr

ig
in

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

16
 W

ei
er

st
ra

ss

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

17
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

18
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10
00

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

19
 G

rie
w

an
k-

Ro
se

nb
ro

ck
 F

8F
2

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

20
 S

ch
w

ef
el

 x
*s

in
(x

)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

21
 G

al
la

gh
er

 1
01

 p
ea

ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

22
 G

al
la

gh
er

 2
1

pe
ak

s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

23
 K

at
su

ur
as

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

24
 L

un
ac

ek
 b

i-R
as

tr
ig

in

Figure 5.16: Expected running time (ERT in log10 of number of function evaluations) of
Mirrored sampling (x-axis) versus “Noisy” mirrored sampling (y-axis) for 46 target values
∆f ∈ [10−8, 10] in each dimension on functions f1–f24. Markers on the upper or right edge
indicate that the target value was never reached. Markers represent dimension: 2:+, 3:▽,
5:⋆, 10:◦, 20:✷, 40:✸.

73

5-D 20-D

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f1-5,5-D

+1: 5/5
-1: 3/3
-4: 3/3
-8: 3/3

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5+1
-1
-4
-8

-1 0 1
log10 of FEvals ratio

pr
op

or
tio

n

f1-5,20-D

+1: 3/3
-1: 3/3
-4: 3/3
-8: 3/3

m
o
d
er
a
te

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9+1
-1
-4
-8

-2 -1 0 1 2
log10 of FEvals ratio

pr
op

or
tio

n

f6-9,5-D

+1: 4/4
-1: 4/4
-4: 4/4
-8: 4/4

1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f6-9,20-D

+1: 4/4
-1: 3/4
-4: 3/3
-8: 3/3

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14+1
-1
-4
-8

-2 -1 0 1 2
log10 of FEvals ratio

pr
op

or
tio

n

f10-14,5-D

+1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f10-14,20-D

+1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f15-19,5-D

+1: 5/5
-1: 5/5
-4: 4/4
-8: 3/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f15-19+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f15-19,20-D

+1: 5/4
-1: 3/2
-4: 0/0
-8: 0/0

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24+1
-1
-4
-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

pr
op

or
tio

n

f20-24,5-D

+1: 5/5
-1: 3/4
-4: 3/4
-8: 3/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f20-24,20-D

+1: 4/4
-1: 3/3
-4: 2/2
-8: 2/2

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24+1
-1
-4
-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

pr
op

or
tio

n

f1-24,5-D

+1: 24/24
-1: 20/21
-4: 19/20
-8: 18/20

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f1-24,20-D

+1: 21/20
-1: 17/17
-4: 13/13
-8: 13/13

Figure 5.17: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios
in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations
divided by dimension D (FEvals/D) to reach a target value fopt+∆f with ∆f = 10k, where
k ∈ {1,−1,−4,−8} is given by the first value in the legend, for Mirrored sampling (◦) and
“Noisy” mirrored sampling (▽). Light beige lines show the ECDF of FEvals for target value
∆f = 10−8 of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF
of FEval ratios of Mirrored sampling divided by “Noisy” mirrored sampling, all trial pairs
for each function. Pairs where both trials failed are disregarded, pairs where one trial failed
are visible in the limits being > 0 or < 1. The legends indicate the number of functions that
were solved in at least one trial (Mirrored sampling first).

74

5-D 20-D
∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 15/15
1: Mi 2.2(1) 12(3) 22(3) 33(2) 44(3) 15/15
2: NMi 3.6(3) 14(2) 24(4) 35(5) 46(6) 15/15

f2 83 88 90 92 94 15/15
1: Mi 15(5) 22(2) 23(2) 24(2) 25(2) 15/15
2: NMi 18(6) 23(3) 25(2) 26(2) 27(2) 15/15

f3 716 1637 1646 1650 1654 15/15
1: Mi 0.40(0.1) ∞ ∞ ∞ ∞5.0e5 0/15
2: NMi 21(50) ∞ ∞ ∞ ∞5.0e5 0/15

f4 809 1688 1817 1886 1903 15/15
1: Mi 64(79) ∞ ∞ ∞ ∞5.0e5 0/15
2: NMi 39(50) ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 15/15
1: Mi 5.9(2) 8.0(2) 8.0(2) 8.0(2) 8.0(2) 15/15
2: NMi 6.2(3) 8.7(4) 8.7(4) 8.7(4) 8.7(4) 15/15

f6 114 281 580 1038 1332 15/15
1: Mi 1.8(1.0) 1.9(0.5) 1.5(0.2) 1.2(0.2) 1.1(0.1) 15/15
2: NMi 1.7(0.7) 1.8(0.4) 1.4(0.4) 1.1(0.2) 1.1(0.1) 15/15

f7 24 1171 1572 1572 1597 15/15
1: Mi 4.0(3) 171(231) 263(320) 263(315) 259(245) 10/15
2: NMi 4.2(2) 130(172) 202(186) 202(186) 199(187) 12/15

f8 73 336 391 410 422 15/15
1: Mi 2.6(0.9) 3.7(0.6) 4.0(0.7) 4.2(0.6) 4.4(0.5) 15/15
2: NMi 2.7(1) 4.0(0.9) 4.4(0.8) 4.6(0.7) 4.9(0.7) 15/15

f9 35 214 300 335 369 15/15
1: Mi 5.5(2) 24(53) 18(38) 17(34) 16(31) 15/15
2: NMi 4.2(1) 28(1) 21(1) 20(1) 18(1) 15/15

f10 349 574 626 829 880 15/15

1: Mi 3.3(1) 3.2(0.8) 3.2(0.3)⋆ 2.6(0.2)⋆2 2.6(0.2)⋆215/15
2: NMi 3.4(1) 3.6(0.3) 3.6(0.3) 2.9(0.2) 3.0(0.2) 15/15

f11 143 763 1177 1467 1673 15/15

1: Mi 7.9(5) 2.8(0.4)⋆ 2.1(0.2)⋆2 1.8(0.2)⋆2 1.6(0.2)⋆215/15
2: NMi 10(4) 3.5(0.7) 2.6(0.4) 2.2(0.4) 2.1(0.3) 15/15

f12 108 371 461 1303 1494 15/15
1: Mi 7.5(8) 7.0(7) 7.2(6) 3.1(3) 3.1(3) 15/15
2: NMi 8.8(7) 7.0(6) 7.7(4) 3.5(2) 3.5(2) 15/15

f13 132 250 1310 1752 2255 15/15
1: Mi 4.9(5) 7.7(3) 1.9(0.8) 2.6(1) 2.3(1) 15/15
2: NMi 2.0(0.6)⋆ 7.5(6) 4.2(6) 8.1(7) 8.3(11) 15/15

f14 10 58 139 251 476 15/15
1: Mi 2.9(2) 3.1(1.0) 3.6(0.9) 5.5(1) 4.9(0.7) 15/15
2: NMi 1.8(2) 2.9(0.9) 3.7(1) 5.9(0.9) 5.5(0.7) 15/15

f15 511 19369 20073 20769 21359 14/15
1: Mi 9.1(0.3) 378(445) 364(399) 352(391) 343(339) 1/15
2: NMi 21(68) 384(400) 370(436) 358(421) 348(363) 1/15

f16 120 2662 10449 11644 12095 15/15
1: Mi 0.84(0.6) 27(47) 36(41) 40(40) 38(36) 10/15
2: NMi 41(2) 70(81) 34(38) 36(43) 35(32) 10/15

f17 5.2 899 3669 6351 7934 15/15
1: Mi 8.4(14) 21(31) 18(32) 57(68) 99(114) 7/15
2: NMi 8.0(8) 17(40) 15(22) 51(55) 83(82) 8/15

f18 103 3968 9280 10905 12469 15/15
1: Mi 43(0.5) 11(11) 98(108) 316(344) ∞5.0e5 0/15
2: NMi 44(0.9) 17(27) 170(186) ∞ ∞5.0e5 0/15

f19 1 242 1.2e5 1.2e5 1.2e5 15/15
1: Mi 18(20) 1767(2064) ∞ ∞ ∞5.0e5 0/15
2: NMi 16(14) 1486(2064) 61(62) 61(67) 60(66) 1/15

f20 16 38111 54470 54861 55313 14/15
1: Mi 3.2(2) ∞ ∞ ∞ ∞5.0e5 0/15
2: NMi 2.0(1) 186(203) 130(142) 129(134) 128(136) 1/15

f21 41 1674 1705 1729 1757 14/15
1: Mi 1.2(0.6) 364(483) 357(440) 352(407) 347(458) 8/15
2: NMi 97(302) 193(222) 189(218) 187(199) 184(211) 11/15

f22 71 938 1008 1040 1068 14/15
1: Mi 260(439) 324(377) 301(351) 292(340) 285(331) 12/15
2: NMi118(176) 134(146) 124(136) 121(132) 118(128) 15/15

f23 3.0 14249 31654 33030 34256 15/15
1: Mi 2.2(2) 13(20) 15(17) 15(17) 14(15) 9/15
2: NMi 2.8(3) 11(14) 15(18) 14(19) 14(16) 9/15

f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: Mi 14(40) ∞ ∞ ∞ ∞5.0e5 0/15
2: NMi 13(23) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 15/15
1: Mi 6.7(0.8) 17(2) 26(3) 36(3) 45(2) 15/15
2: NMi 7.0(1) 17(1) 26(2) 36(2) 45(2) 15/15

f2 385 387 390 391 393 15/15

1: Mi 34(5)⋆ 44(3)⋆3 48(1)⋆3 49(1)⋆3 50(1)⋆3 15/15
2: NMi 43(8) 62(7) 68(4) 71(4) 73(4) 15/15

f3 5066 7635 7643 7646 7651 15/15
1: Mi ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7666 7700 7758 1.4e5 9/15
1: Mi ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 15/15
1: Mi 6.2(0.8) 7.5(0.9) 7.5(0.9) 7.5(0.9) 7.5(0.9) 15/15
2: NMi 6.2(0.9) 7.2(0.7) 7.3(0.7) 7.3(0.7) 7.3(0.7) 15/15

f6 1296 3413 5220 6728 8409 15/15
1: Mi 1.2(0.3) 0.90(0.2) 0.91(0.2) 0.97(0.2) 0.98(0.2) 15/15
2: NMi 1.2(0.2) 0.93(0.1) 0.89(0.1) 0.95(0.1) 0.99(0.1) 15/15

f7 1351 9503 16524 16524 16969 15/15
1: Mi 127(139) ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi119(214) 1498(1578) ∞ ∞ ∞2.0e6 0/15

f8 2039 4040 4219 4371 4484 15/15
1: Mi 3.2(0.7) 20(0.4) 19(0.4) 19(0.4) 19(0.4) 15/15
2: NMi 3.5(0.9) 48(82) 46(78) 45(76) 44(74) 15/15

f9 1716 3277 3455 3594 3727 15/15
1: Mi 4.3(1) 39(0.8) 37(0.7) 36(0.7) 35(0.7) 15/15
2: NMi 3.8(0.7) 4.8(0.4) 4.9(0.4) 4.9(0.4) 4.9(0.3) 15/15

f10 7413 10735 14920 17073 17476 15/15

1: Mi 1.8(0.3) 1.6(0.1)⋆3 1.2(0.1)⋆3 1.1(0.0)⋆3 1.1(0.0)⋆315/15
2: NMi 2.2(0.8) 2.5(0.4) 2.1(0.2) 1.9(0.2) 1.9(0.2) 15/15

f11 1002 6278 9762 12285 14831 15/15

1: Mi 7.8(2)⋆3 2.1(0.1)⋆3 1.7(0.1)⋆3 1.5(0.1)⋆3 1.3(0.1)⋆315/15
2: NMi 11(2) 2.9(0.4) 2.3(0.2) 2.1(0.2) 2.0(0.2) 15/15

f12 1042 2740 4140 12407 13827 15/15
1: Mi 2.7(3) 3.4(3) 3.5(2) 1.6(0.7) 1.7(0.8) 15/15
2: NMi 2.0(2) 5.0(4) 5.4(2) 2.5(0.8) 2.6(0.8) 15/15

f13 652 2751 18749 24455 30201 15/15
1: Mi 4.4(7) 33(62) 13(15) 12(12)⋆ 10(10) 15/15
2: NMi 1.9(0.4) 42(43) 32(50) 119(130) 141(199) 2/15

f14 75 304 932 1648 15661 15/15

1: Mi 2.7(1) 2.7(0.3) 2.7(0.2) 5.4(0.6) 1.2(0.1)⋆315/15
2: NMi 3.3(1.0) 2.8(0.5) 2.8(0.3) 6.4(1) 2.1(0.3) 15/15

f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: Mi 922(1020) ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: Mi 0.44(0.2) 364(416) ∞ ∞ ∞2.0e6 0/15
2: NMi 0.39(0.1) ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 4005 30677 56288 80472 15/15
1: Mi 1.9(1) 3.7(0.2) 121(130) ∞ ∞2.0e6 0/15
2: NMi 2.2(1) 125(250) 194(228) ∞ ∞2.0e6 0/15

f18 621 19561 67569 1.3e5 1.5e5 15/15
1: Mi 0.83(0.2) 75(84) ∞ ∞ ∞2.0e6 0/15
2: NMi 0.81(0.2) 306(407) ∞ ∞ ∞2.0e6 0/15

f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: Mi 115(46) ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi 99(44) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: Mi 3.6(0.7) ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi 3.4(0.9) ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 14103 14643 15567 17589 15/15
1: Mi 513(536) 266(292) 256(279) 241(262) 213(232) 6/15
2: NMi398(544) 269(284) 259(273) 244(269) 216(228) 6/15

f22 467 23491 24948 26847 1.3e5 12/15
1: Mi 699(863) 601(668) 566(601) 526(559) 105(114) 2/15
2: NMi125(167) 207(245) 195(230) 181(221) 36(43) 5/15

f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: Mi 1.5(1) 35(39) ∞ ∞ ∞2.0e6 0/15
2: NMi 2.7(3) 26(30) ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: Mi ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: NMi ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.10: ERT in number of function evaluations divided by the best ERT measured
during BBOB-2009 given in the respective first row with the central 80% range divided by
two in brackets for different ∆f values. #succ is the number of trials that reached the final
target fopt+10−8. 1:Mi is Mirrored sampling and 2:NMi is “Noisy” mirrored sampling. Bold
entries are statistically significantly better compared to the other algorithm, with p = 0.05
or p = 10−k where k ∈ {2, 3, 4, . . .} is the number following the ⋆ symbol, with Bonferroni
correction of 48. A ↓ indicates the same tested against the best BBOB-2009.

75

5.4.6 Orthogonal1 − (µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES

Results from experiments according to [22] on the benchmark functions given in [19, 23]
are presented in Figures 5.18, 5.19, 5.20, 5.21 and Table 5.11. The expected running
time (ERT), used in the figures and table, depends on a given target function value,
ft = fopt + ∆f , and is computed over all relevant trials as the number of function eval-
uations executed during each trial while the best function value did not reach ft, summed
over all trials and divided by the number of trials that actually reached ft [22, 33]. Statis-
tical significance is tested with the rank-sum test for a given target ∆ft using, for each
trial, either the number of needed function evaluations to reach ∆ft (inverted and multi-
plied by −1), or, if the target was not reached, the best ∆f -value achieved, measured only
up to the smallest number of overall function evaluations for any unsuccessful trial under
consideration if available.

Figure 5.18 plots the expected function evaluation against dimension for both the com-
petitive ESs. The “noisy” mirrored sampling method actually is getting worse on function
f7, f16, f19, f23 under the target precision 10−8.

In Figure 5.19, the observation above is presented in details. The logarithm of the ratio
between two competitive ESs are plotted against decreasing target precision. Most of the
curves in each subfigures are quite noisy. If most of the curves in one subfigure are roughly
below 0, then we could consider that the newly purposed algorithm is performing better than
the original algorithm in that subfigure. From figure 5.19, the “noisy” sampling method gets
worse on functions f2, f5, f6, f10, f14. There is no decision for the rest functions. Figure 5.20
changes to another manner to compare the ERTs and basically tells the same story as Fig-
ure 5.19.

Then the most important characteristic is shown in Figure 5.21. The distribution curves
for the “noisy” mirrored sampling method are roughly the same as that of mirrored sam-
pling method on most functions, indicating the same performance characteristics of two
competitive ESs. Finally, the specific ERT numbers under precision 10−8 are compared in
Table 5.11.

76

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

1 Sphere

Standard

DeDirection1

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

Standard

DeDirection1

Figure 5.18: Expected running time (ERT in number of f -evaluations) divided by dimension
for target function value 10−8 as log10 values versus dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal
lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate
statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ◦:CMA-ES, ▽:Orthogonal-Sampling1

77

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

1 Sphere

 2-D

 3-D

 5-D

10-D

20-D

40-D

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

2 Ellipsoid separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D
8/56/3

10D

20D40D

3 Rastrigin separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D
5D

9/2

20D

40D

4 Skew Rastrigin-Bueche separ

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

5 Linear slope

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

6 Attractive sector

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D

3D

9/13

6/2
20D40D

7 Step-ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D

5D

10D
20D40D

8 Rosenbrock original

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D5D

10D

20D

40D

9 Rosenbrock rotated

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

10 Ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D5D10D20D40D

11 Discus

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D
10D20D40D

12 Bent cigar

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D5D10D
20D

40D

13 Sharp ridge

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

14 Sum of different powers

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2
lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D
5D

10D
20D

40D

15 Rastrigin

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D
3D
5D10D20D40D

16 Weierstrass

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D
8/410D20D40D

17 Schaffer F7, condition 10

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

7/7
9/5

3/1

10D
20D

40D

18 Schaffer F7, condition 1000

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

7/75D10D
20D40D

19 Griewank-Rosenbrock F8F2

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

3/1

1/2
10D
20D
9/5

20 Schwefel x*sin(x)

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

6/153/13

6/11
1/5
1/81/6

21 Gallagher 101 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

8/15
4/142/13
2/620D

2/3

22 Gallagher 21 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D6/10
10D2/240D

23 Katsuuras

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D
5D

10D
3/4

40D

24 Lunacek bi-Rastrigin

 2-D

 3-D

 5-D

10-D

20-D

40-D

Figure 5.19: Ratio of ERT for Orthogonal-Sampling1 over ERT for CMA-ES versus
log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸. Ratios < 100 indicate an advantage of
Orthogonal-Sampling1, smaller values are always better. The line becomes dashed when
for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f -
evaluations for the same algorithm on this function. Filled symbols indicate the best achieved
∆f -value of one algorithm (ERT is undefined to the right). The dashed line continues as the
fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits
mean 100%, values below zero for Orthogonal-Sampling1. The line ends when no algorithm
reaches ∆f anymore. The number of successful trials is given, only if it was in {1 . . . 9} for
Orthogonal-Sampling1 (1st number) and non-zero for CMA-ES (2nd number). Results are
significant with p = 0.05 for one star and p = 10−#⋆ otherwise, with Bonferroni correction
within each figure.

78

0 1 2 3 40

1

2

3

4

1
 S

p
h
e
re

2 3 4 52

3

4

5

2
 E

lli
p
so

id
 s

e
p
a
ra

b
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

3
 R

a
st

ri
g
in

 s
e
p
a
ra

b
le

0 1 2 3 4 5 6 70

1

2

3

4

5

6

7

4
 S

ke
w

 R
a
st

ri
g
in

-B
u
e
ch

e
 s

e
p
a
r

1 2 31

2

3

5
 L

in
e
a
r

sl
o
p
e

1 2 3 4 51

2

3

4

5

6
 A

tt
ra

ct
iv

e
 s

e
ct

o
r

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

7
 S

te
p
-e

lli
p
so

id

1 2 3 4 5 61

2

3

4

5

6

8
 R

o
se

n
b
ro

ck
 o

ri
g
in

a
l

1 2 3 4 5 61

2

3

4

5

6

9
 R

o
se

n
b
ro

ck
 r

o
ta

te
d

2 3 4 52

3

4

5

1
0

 E
lli

p
so

id

2 3 4 52

3

4

5

1
1

 D
is

cu
s

2 3 4 52

3

4

5

1
2

 B
e
n
t

ci
g
a
r

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

1
3

 S
h
a
rp

 r
id

g
e

0 1 2 3 4 5 60

1

2

3

4

5

6

1
4

 S
u
m

 o
f

d
if
fe

re
n
t

p
o
w

e
rs

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
5

 R
a
st

ri
g
in

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
6

 W
e
ie

rs
tr

a
ss

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
7

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
8

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0
0

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
9

 G
ri

e
w

a
n
k-

R
o
se

n
b
ro

ck
 F

8
F2

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
0

 S
ch

w
e
fe

l
x
*s

in
(x

)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
1

 G
a
lla

g
h
e
r

1
0

1
 p

e
a
ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
2

 G
a
lla

g
h
e
r

2
1

 p
e
a
ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
3

 K
a
ts

u
u
ra

s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
4

 L
u
n
a
ce

k
b
i-

R
a
st

ri
g
in

Figure 5.20: Expected running time (ERT in log10 of number of function evaluations) of
CMA-ES (x-axis) versus Orthogonal-Sampling1 (y-axis) for 46 target values ∆f ∈ [10−8, 10]
in each dimension on functions f1–f24. Markers on the upper or right edge indicate that the
target value was never reached. Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40:✸.

79

5-D 20-D

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,5-D

+1: 5/5

-1: 3/4

-4: 3/4

-8: 3/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-1 0 1
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,20-D

+1: 3/4

-1: 3/3

-4: 3/3

-8: 3/3
m
o
d
er
a
te

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,5-D

+1: 4/4

-1: 4/4

-4: 4/4

-8: 4/4

1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,20-D

+1: 4/4

-1: 3/4

-4: 3/3

-8: 3/3

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14 +1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,5-D

+1: 5/5

-1: 5/5

-4: 5/5

-8: 5/5

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,20-D

+1: 5/5

-1: 5/5

-4: 5/5

-8: 5/5

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,5-D

+1: 5/5

-1: 4/5

-4: 3/4

-8: 2/3

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,20-D

+1: 5/5

-1: 2/3

-4: 0/1

-8: 0/0

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,5-D

+1: 5/5

-1: 3/3

-4: 3/3

-8: 3/3

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,20-D

+1: 4/4

-1: 3/2

-4: 2/1

-8: 2/1

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,5-D

+1: 24/24

-1: 19/21

-4: 18/20

-8: 17/19

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,20-D

+1: 21/22

-1: 16/17

-4: 13/13

-8: 13/12

Figure 5.21: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios
in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations
divided by dimension D (FEvals/D) to reach a target value fopt+∆f with ∆f = 10k, where
k ∈ {1,−1,−4,−8} is given by the first value in the legend, for CMA-ES (◦) and Orthogonal-
Sampling1 (▽). Light beige lines show the ECDF of FEvals for target value ∆f = 10−8 of
all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios
of CMA-ES divided by Orthogonal-Sampling1, all trial pairs for each function. Pairs where
both trials failed are disregarded, pairs where one trial failed are visible in the limits being
> 0 or < 1. The legends indicate the number of functions that were solved in at least one
trial (CMA-ES first).

80

5-D 20-D
∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 15/15
1: CMA 3.4(2) 15(5) 28(5) 41(4) 54(6) 15/15
2: OS1 3.4(2) 15(4) 28(5) 41(6) 54(6) 15/15

f2 83 88 90 92 94 15/15
1: CMA 17(6) 21(3) 22(3) 24(3) 25(3) 15/15
2: OS1 17(5) 21(4) 23(2) 25(2) 26(2) 15/15

f3 716 1637 1646 1650 1654 15/15
1: CMA 18(44) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS1 18(26) ∞ ∞ ∞ ∞5.0e5 0/15

f4 809 1688 1817 1886 1903 15/15
1: CMA 34(40) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS1 25(43) 4300(4887) 3994(4402) 3849(4176) 3814(3809) 1/15

f5 10 10 10 10 10 15/15
1: CMA 7.2(3) 9.2(3) 9.3(3) 9.3(3) 9.3(3) 15/15
2: OS1 6.1(2) 8.7(3) 8.7(3) 8.7(3) 8.7(3) 15/15

f6 114 281 580 1038 1332 15/15
1: CMA 2.3(0.9) 2.2(0.5) 1.6(0.2) 1.2(0.1) 1.2(0.1) 15/15
2: OS1 2.0(0.8) 2.0(0.4) 1.6(0.3) 1.1(0.2) 1.1(0.2) 15/15

f7 24 1171 1572 1572 1597 15/15
1: CMA 5.6(3) 71(55) 118(162) 118(165) 116(163) 13/15
2: OS1 213(3) 318(352) 376(423) 376(432) 370(415) 9/15

f8 73 336 391 410 422 15/15
1: CMA 3.2(1) 4.1(0.9) 4.6(1) 4.9(1.0) 5.1(1) 15/15
2: OS1 3.2(1) 11(1) 11(1) 11(1) 11(1) 15/15

f9 35 214 300 335 369 15/15
1: CMA 7.1(5) 7.6(3) 6.8(2) 6.7(2) 6.5(2) 15/15
2: OS1 5.2(2) 6.3(2) 5.9(1) 5.9(1) 5.9(1) 15/15

f10 349 574 626 829 880 15/15
1: CMA 4.2(0.9) 3.2(0.3) 3.2(0.3) 2.6(0.2) 2.6(0.2) 15/15
2: OS1 3.9(0.9) 3.2(0.6) 3.3(0.4) 2.7(0.3) 2.7(0.3) 15/15

f11 143 763 1177 1467 1673 15/15
1: CMA 10(2) 2.3(0.3) 1.7(0.1) 1.5(0.1) 1.4(0.1)⋆ 15/15
2: OS1 10(4) 2.6(0.4) 1.9(0.2) 1.6(0.1) 1.5(0.2) 15/15

f12 108 371 461 1303 1494 15/15
1: CMA 12(15) 9.0(10) 8.8(9) 3.7(4) 3.5(4) 15/15
2: OS1 13(17) 10(9) 10(9) 4.3(3) 4.2(3) 15/15

f13 132 250 1310 1752 2255 15/15
1: CMA 3.6(3) 5.8(1) 1.5(0.5) 1.8(0.3) 1.6(0.2) 15/15
2: OS1 3.7(2) 6.6(3) 1.7(0.5) 1.8(0.4) 1.9(0.3) 15/15

f14 10 58 139 251 476 15/15

1: CMA 2.5(2) 3.8(0.8) 4.3(0.9) 5.8(0.8) 4.7(0.5)⋆215/15
2: OS1 1.6(2) 3.6(0.9) 4.9(1) 6.5(0.7) 5.3(0.4) 15/15

f15 511 19369 20073 20769 21359 14/15
1: CMA 17(58) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS1 26(40) 179(194) 173(192) 167(193) 162(187) 2/15

f16 120 2662 10449 11644 12095 15/15
1: CMA 1.4(1) 39(48) 45(48) 52(54) 50(54) 9/15
2: OS1 1.8(1) 27(47) 33(23) 37(34) 41(41) 10/15

f17 5.2 899 3669 6351 7934 15/15
1: CMA 3.2(3) 6.6(18) 13(16) 48(58) 202(239) 4/15
2: OS1 4.0(4) 4.4(9) 5.1(7) 25(30) 81(95) 8/15

f18 103 3968 9280 10905 12469 15/15
1: CMA 18(1) 12(15) 43(54) 668(757) ∞5.0e5 0/15
2: OS1 17(1) 6.8(8) 29(21) 198(225) ∞5.0e5 0/15

f19 1 242 1.2e5 1.2e5 1.2e5 15/15
1: CMA 17(14) 2405(3097) ∞ ∞ ∞5.0e5 0/15
2: OS1 19(9) 9045(11155) ∞ ∞ ∞5.0e5 0/15

f20 16 38111 54470 54861 55313 14/15
1: CMA 2.5(2) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS1 2.6(2) ∞ ∞ ∞ ∞5.0e5 0/15

f21 41 1674 1705 1729 1757 14/15
1: CMA 159(433) 263(267) 259(248) 255(259) 251(255) 11/15
2: OS1 1.4(1) 472(659) 464(586) 458(578) 450(580) 6/15

f22 71 938 1008 1040 1068 14/15
1: CMA 478(1096) 245(268) 228(253) 221(251) 216(235) 13/15
2: OS1 1761(3521) 3466(4266) 3224(3720) 3125(3845) 3045(3513) 2/15

f23 3.0 14249 31654 33030 34256 15/15
1: CMA 1.8(1) 19(21) 13(15) 13(14) 12(15) 10/15
2: OS1 1.4(2) 30(36) 31(32) 30(32) 29(31) 6/15

f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: CMA 33(76) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS1 30(46) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 15/15
1: CMA 7.8(1) 20(2) 33(3) 46(3) 58(3) 15/15
2: OS1 7.3(1) 19(2) 31(2) 44(2) 56(2) 15/15

f2 385 387 390 391 393 15/15
1: CMA 35(3) 44(4) 47(2) 48(2) 50(2) 15/15
2: OS1 38(7) 45(3) 47(2) 48(2) 49(2) 15/15

f3 5066 7635 7643 7646 7651 15/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 5555(6316) ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7666 7700 7758 1.4e5 9/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 15/15
1: CMA 6.6(2) 7.7(1) 7.7(1) 7.7(1) 7.7(1) 15/15
2: OS1 6.5(1.0) 7.8(1.0) 7.8(1.0) 7.8(1.0) 7.8(1.0) 15/15

f6 1296 3413 5220 6728 8409 15/15
1: CMA 1.7(0.5) 1.2(0.2) 1.1(0.1) 1.2(0.1) 1.2(0.1) 15/15

2: OS1 1.4(0.2) 1.00(0.1)⋆2 0.96(0.1)⋆2 0.97(0.1)⋆3 0.96(0.1)⋆315/15

f7 1351 9503 16524 16524 16969 15/15
1: CMA 22(78) ∞ ∞ ∞ ∞2.0e6 0/15

2: OS1 7.9(0.5) 3117(3420)⋆2 ∞ ∞ ∞2.0e6 0/15

f8 2039 4040 4219 4371 4484 15/15
1: CMA 4.1(1.0) 16(38) 15(36) 15(35) 15(34) 15/15
2: OS1 3.7(0.9) 5.3(0.5) 5.4(0.4) 5.4(0.4) 5.4(0.4) 15/15

f9 1716 3277 3455 3594 3727 15/15
1: CMA 4.5(1) 10(0.6) 10(0.5) 10(0.5) 9.4(0.5) 15/15
2: OS1 4.4(1) 9.5(11) 9.4(11) 9.2(10) 9.1(10) 15/15

f10 7413 10735 14920 17073 17476 15/15
1: CMA 1.8(0.3) 1.6(0.1) 1.2(0.0) 1.1(0.0) 1.1(0.0) 15/15
2: OS1 1.9(0.3) 1.7(0.1) 1.2(0.0) 1.1(0.0) 1.1(0.0) 15/15

f11 1002 6278 9762 12285 14831 15/15

1: CMA 10(0.7) 1.9(0.1)⋆3 1.4(0.0)⋆3 1.2(0.0)⋆3 1.0(0.0)⋆3 15/15
2: OS1 12(4) 2.7(0.2) 1.9(0.1) 1.5(0.0) 1.3(0.0) 15/15

f12 1042 2740 4140 12407 13827 15/15
1: CMA 5.0(4) 5.6(3) 5.0(2) 2.1(0.7) 2.2(0.7) 15/15
2: OS1 3.0(2) 5.1(2) 4.7(2) 2.0(0.6) 2.0(0.6) 15/15

f13 652 2751 18749 24455 30201 15/15
1: CMA 3.9(5) 30(56) 5.3(8) 5.0(6) 4.7(5) 15/15
2: OS1 2.7(0.5) 10(11) 3.0(2) 4.6(3) 8.3(8) 15/15

f14 75 304 932 1648 15661 15/15
1: CMA 3.5(2) 3.6(0.6) 4.1(0.5) 6.0(0.6)⋆ 1.2(0.1) 15/15
2: OS1 3.2(0.9) 3.3(0.4) 3.8(0.4) 7.3(1) 1.2(0.2) 15/15

f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: CMA 934(1103) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 483(494) ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: CMA 0.96(0.2) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 1.3(0.7) 367(416) ∞ ∞ ∞2.0e6 0/15

f17 63 4005 30677 56288 80472 15/15
1: CMA 2.8(1) 8.4(19) 447(488) ∞ ∞2.0e6 0/15

2: OS1 2.4(2) 2.6(5) 19(22)⋆3 ∞ ∞2.0e6 0/15

f18 621 19561 67569 1.3e5 1.5e5 15/15
1: CMA 1.5(0.6) 65(64) ∞ ∞ ∞2.0e6 0/15

2: OS1 1.1(0.5) 4.9(7)⋆3 ∞ ∞ ∞2.0e6 0/15

f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: CMA 112(50) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 103(40) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: CMA 4.5(1) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 4.0(1) ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 14103 14643 15567 17589 15/15
1: CMA 568(1107) 171(213) 165(195) 155(199) 137(181) 8/15
2: OS1 549(1781) 1985(2340) 1912(2254) 1799(1991) 1592(1848) 1/15

f22 467 23491 24948 26847 1.3e5 12/15
1: CMA 862(1067) 384(397)⋆ 361(401)⋆ 336(376)⋆ 67(76)⋆ 3/15
2: OS1 6428(8569) ∞ ∞ ∞ ∞2.0e6 0/15

f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: CMA 2.5(2) 92(104) ∞ ∞ ∞2.0e6 0/15
2: OS1 3.2(3) 70(79) ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS1 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.11: ERT in number of function evaluations divided by the best ERT measured
during BBOB-2009 given in the respective first row with the central 80% range divided by
two in brackets for different ∆f values. #succ is the number of trials that reached the final
target fopt+10−8. 1:CMA is CMA-ES and 2:OS1 is Orthogonal-Sampling1. Bold entries are
statistically significantly better compared to the other algorithm, with p = 0.05 or p = 10−k

where k ∈ {2, 3, 4, . . .} is the number following the ⋆ symbol, with Bonferroni correction of
48. A ↓ indicates the same tested against the best BBOB-2009.

81

5.4.7 Orthogonal2 − (µ/µw, λm)-CMA-ES vs (µ/µw, λm)-CMA-ES

Results from experiments according to [22] on the benchmark functions given in [19, 23]
are presented in Figures 5.22, 5.23, 5.24, 5.25 and Table 5.12. The expected running
time (ERT), used in the figures and table, depends on a given target function value,
ft = fopt + ∆f , and is computed over all relevant trials as the number of function eval-
uations executed during each trial while the best function value did not reach ft, summed
over all trials and divided by the number of trials that actually reached ft [22, 33]. Statis-
tical significance is tested with the rank-sum test for a given target ∆ft using, for each
trial, either the number of needed function evaluations to reach ∆ft (inverted and multi-
plied by −1), or, if the target was not reached, the best ∆f -value achieved, measured only
up to the smallest number of overall function evaluations for any unsuccessful trial under
consideration if available.

Figure 5.22 plots the expected function evaluation against dimension for both the com-
petitive ESs. The “noisy” mirrored sampling method actually is getting worse on function
f13, f21, f22, f23 under the target precision 10−8.

In Figure 5.23, the observation above is presented in details. The logarithm of the ra-
tio between two competitive ESs are plotted against decreasing target precision. Most of
the curves in each subfigures are quite noisy. If most of the curves in one subfigure are
roughly below 0, then we could consider that the newly purposed algorithm is performing
better than the original algorithm in that subfigure. From figure 5.23, the “noisy” sampling
method gets worse on functions f21, f22, f23. There is no decision for the rest functions. Fig-
ure 5.24 changes to another manner to compare the ERTs and basically tells the same story
as Figure 5.23.

Then the most important characteristic is shown in Figure 5.25. The distribution curves
for the “noisy” mirrored sampling method are roughly the same as that of mirrored sam-
pling method on most functions, indicating the same performance characteristics of two
competitive ESs. Finally, the specific ERT numbers under precision 10−8 are compared in
Table 5.12.

82

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

1 Sphere

Standard

DeDirection2

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40

0

1

2

3

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

Standard

DeDirection2

Figure 5.22: Expected running time (ERT in number of f -evaluations) divided by dimension
for target function value 10−8 as log10 values versus dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal
lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate
statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ◦:CMA-ES, ▽:Orthogonal-Sampling2

83

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

1 Sphere

 2-D

 3-D

 5-D

10-D

20-D

40-D

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

2 Ellipsoid separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

3D
5D

10D
20D40D

3 Rastrigin separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

7/10

3D

5D10D

20D
40D

4 Skew Rastrigin-Bueche separ

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

5 Linear slope

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

6 Attractive sector

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D
3D5D
1/2

20D40D

7 Step-ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D
3D

5D

10D
20D40D

8 Rosenbrock original

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D
3D

5D
10D

20D

40D

9 Rosenbrock rotated

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D3D5D10D20D40D

10 Ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D5D10D20D40D

11 Discus

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D
3D
5D10D20D40D

12 Bent cigar

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D5D10D

20D

40D

13 Sharp ridge

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D3D5D10D20D40D

14 Sum of different powers

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3
lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

8/45/2
10D

20D

40D

15 Rastrigin

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D
5D

10D20D40D

16 Weierstrass

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D5D
10D20D40D

17 Schaffer F7, condition 10

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

8/7

3D

5D
10D

20D

40D

18 Schaffer F7, condition 1000

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su
cc

2D

3D5D
1/1

20D40D

19 Griewank-Rosenbrock F8F2

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

2D

4/1

1/2

2/1

20D

9/5

20 Schwefel x*sin(x)

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E

R
T
1
/E

R
T
0
)
o
r
~

#
su

cc

7/155/13
1/11
1/5

20D
40D

21 Gallagher 101 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

9/156/14

5D

10D
20D

4/3

22 Gallagher 21 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1

0
(E

R
T
1

/E
R
T
0

)
o
r

~
#

su
cc

2D3D7/10
10D20D40D

23 Katsuuras

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g
1
0
(E
R
T
1
/E
R
T
0
)
o
r
~
#
su

cc

2D3D

3/1

10D20D40D

24 Lunacek bi-Rastrigin

 2-D

 3-D

 5-D

10-D

20-D

40-D

Figure 5.23: Ratio of ERT for Orthogonal-Sampling2 over ERT for CMA-ES versus
log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸. Ratios < 100 indicate an advantage of
Orthogonal-Sampling2, smaller values are always better. The line becomes dashed when
for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f -
evaluations for the same algorithm on this function. Filled symbols indicate the best achieved
∆f -value of one algorithm (ERT is undefined to the right). The dashed line continues as the
fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits
mean 100%, values below zero for Orthogonal-Sampling2. The line ends when no algorithm
reaches ∆f anymore. The number of successful trials is given, only if it was in {1 . . . 9} for
Orthogonal-Sampling2 (1st number) and non-zero for CMA-ES (2nd number). Results are
significant with p = 0.05 for one star and p = 10−#⋆ otherwise, with Bonferroni correction
within each figure.

84

0 1 2 3 40

1

2

3

4

1
 S

p
h
e
re

2 3 4 52

3

4

5

2
 E

lli
p
so

id
 s

e
p
a
ra

b
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

3
 R

a
st

ri
g
in

 s
e
p
a
ra

b
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

4
 S

ke
w

 R
a
st

ri
g
in

-B
u
e
ch

e
 s

e
p
a
r

1 2 31

2

3

5
 L

in
e
a
r

sl
o
p
e

1 2 3 4 51

2

3

4

5

6
 A

tt
ra

ct
iv

e
 s

e
ct

o
r

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

7
 S

te
p
-e

lli
p
so

id

1 2 3 4 5 61

2

3

4

5

6

8
 R

o
se

n
b
ro

ck
 o

ri
g
in

a
l

1 2 3 4 5 61

2

3

4

5

6

9
 R

o
se

n
b
ro

ck
 r

o
ta

te
d

2 3 4 52

3

4

5

1
0

 E
lli

p
so

id

2 3 4 52

3

4

5

1
1

 D
is

cu
s

2 3 4 52

3

4

5

1
2

 B
e
n
t

ci
g
a
r

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
3

 S
h
a
rp

 r
id

g
e

0 1 2 3 4 50

1

2

3

4

5

1
4

 S
u
m

 o
f

d
if
fe

re
n
t

p
o
w

e
rs

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
5

 R
a
st

ri
g
in

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
6

 W
e
ie

rs
tr

a
ss

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
7

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
8

 S
ch

a
ff

e
r

F7
,
co

n
d
it

io
n
 1

0
0

0

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

1
9

 G
ri

e
w

a
n
k-

R
o
se

n
b
ro

ck
 F

8
F2

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
0

 S
ch

w
e
fe

l
x
*s

in
(x

)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
1

 G
a
lla

g
h
e
r

1
0

1
 p

e
a
ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
2

 G
a
lla

g
h
e
r

2
1

 p
e
a
ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
3

 K
a
ts

u
u
ra

s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

2
4

 L
u
n
a
ce

k
b
i-

R
a
st

ri
g
in

Figure 5.24: Expected running time (ERT in log10 of number of function evaluations) of
CMA-ES (x-axis) versus Orthogonal-Sampling2 (y-axis) for 46 target values ∆f ∈ [10−8, 10]
in each dimension on functions f1–f24. Markers on the upper or right edge indicate that the
target value was never reached. Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40:✸.

85

5-D 20-D

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,5-D

+1: 5/5

-1: 3/4

-4: 3/4

-8: 3/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1

-1

-4

-8

-1 0 1
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-5,20-D

+1: 3/4

-1: 3/3

-4: 3/3

-8: 3/3
m
o
d
er
a
te

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,5-D

+1: 4/4

-1: 4/4

-4: 4/4

-8: 4/4

1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f6-9,20-D

+1: 4/4

-1: 3/3

-4: 3/3

-8: 3/3

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14 +1

-1

-4

-8

-2 -1 0 1 2
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,5-D

+1: 5/5

-1: 5/5

-4: 5/5

-8: 5/5

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f10-14,20-D

+1: 5/5

-1: 5/5

-4: 5/5

-8: 5/5

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,5-D

+1: 5/5

-1: 4/4

-4: 3/3

-8: 2/2

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1

-1

-4

-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f15-19,20-D

+1: 5/4

-1: 2/3

-4: 0/1

-8: 0/0

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,5-D

+1: 5/5

-1: 3/2

-4: 3/2

-8: 3/2

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f20-24,20-D

+1: 4/4

-1: 3/1

-4: 2/0

-8: 2/0

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,5-D

+1: 24/24

-1: 19/19

-4: 18/18

-8: 17/17

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1

-1

-4

-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

p
ro

p
o
rt

io
n

f1-24,20-D

+1: 21/21

-1: 16/15

-4: 13/12

-8: 13/11

Figure 5.25: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios
in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations
divided by dimension D (FEvals/D) to reach a target value fopt+∆f with ∆f = 10k, where
k ∈ {1,−1,−4,−8} is given by the first value in the legend, for CMA-ES (◦) and Orthogonal-
Sampling2 (▽). Light beige lines show the ECDF of FEvals for target value ∆f = 10−8 of
all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios
of CMA-ES divided by Orthogonal-Sampling2, all trial pairs for each function. Pairs where
both trials failed are disregarded, pairs where one trial failed are visible in the limits being
> 0 or < 1. The legends indicate the number of functions that were solved in at least one
trial (CMA-ES first).

86

5-D 20-D
∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 15/15
1: CMA 3.4(2) 15(5) 28(5) 41(4) 54(6) 15/15
2: OS2 3.1(2) 15(5) 29(5) 42(4) 54(4) 15/15

f2 83 88 90 92 94 15/15
1: CMA 17(6) 21(3) 22(3) 24(3) 25(3) 15/15
2: OS2 17(7) 22(3) 23(3) 25(3) 26(2) 15/15

f3 716 1637 1646 1650 1654 15/15
1: CMA 18(44) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS2 18(26) 2211(2281) 2200(2430) 2194(2272) 2189(2414) 2/15

f4 809 1688 1817 1886 1903 15/15
1: CMA 34(40) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS2 23(21) ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 15/15
1: CMA 7.2(3) 9.2(3) 9.3(3) 9.3(3) 9.3(3) 15/15
2: OS2 5.6(1) 8.2(1) 8.2(1) 8.2(1) 8.2(1) 15/15

f6 114 281 580 1038 1332 15/15
1: CMA 2.3(0.9) 2.2(0.5) 1.6(0.2) 1.2(0.1) 1.2(0.1) 15/15
2: OS2 2.2(0.7) 2.0(0.3) 1.5(0.2) 1.1(0.2) 1.1(0.1) 15/15

f7 24 1171 1572 1572 1597 15/15
1: CMA 5.6(3) 71(55) 118(166) 118(166) 116(163) 13/15
2: OS2 4.2(3) 84(71) 147(168) 147(168) 145(165) 13/15

f8 73 336 391 410 422 15/15
1: CMA 3.2(1) 4.1(0.9) 4.6(1) 4.9(1.0) 5.1(1) 15/15
2: OS2 3.2(1) 17(45) 16(39) 15(37) 15(36) 15/15

f9 35 214 300 335 369 15/15
1: CMA 7.1(5) 7.6(3) 6.8(2) 6.7(2) 6.5(2) 15/15
2: OS2 5.7(2) 15(2) 12(1) 11(1.0) 11(0.9) 15/15

f10 349 574 626 829 880 15/15
1: CMA 4.2(0.9) 3.2(0.3) 3.2(0.3) 2.6(0.2) 2.6(0.2) 15/15
2: OS2 4.4(1) 3.3(0.5) 3.3(0.4) 2.7(0.3) 2.8(0.3) 15/15

f11 143 763 1177 1467 1673 15/15

1: CMA 10(2) 2.3(0.3) 1.7(0.1)⋆ 1.5(0.1)⋆2 1.4(0.1)⋆215/15
2: OS2 11(3) 2.6(0.3) 1.9(0.2) 1.6(0.2) 1.5(0.1) 15/15

f12 108 371 461 1303 1494 15/15
1: CMA 12(15) 9.0(10) 8.8(9) 3.7(4) 3.5(4) 15/15
2: OS2 12(15) 7.8(10) 8.2(9) 3.5(3) 3.4(3) 15/15

f13 132 250 1310 1752 2255 15/15
1: CMA 3.6(3) 5.8(1) 1.5(0.5) 1.8(0.3) 1.6(0.2) 15/15
2: OS2 3.6(2) 6.0(3) 1.8(0.4) 1.8(0.4) 1.8(0.4) 15/15

f14 10 58 139 251 476 15/15
1: CMA 2.5(2) 3.8(0.8) 4.3(0.9) 5.8(0.8) 4.7(0.5)⋆ 15/15
2: OS2 1.7(2) 3.4(1) 4.5(1.0) 6.0(0.9) 5.3(0.5) 15/15

f15 511 19369 20073 20769 21359 14/15
1: CMA 17(58) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS2 5.5(0.8) ∞ ∞ ∞ ∞5.0e5 0/15

f16 120 2662 10449 11644 12095 15/15
1: CMA 1.4(1) 39(48) 45(45) 52(54) 50(52) 9/15
2: OS2 1.2(0.9) 38(47) 23(25) 23(30) 22(30) 12/15

f17 5.2 899 3669 6351 7934 15/15
1: CMA 3.2(3) 6.6(18) 13(16) 48(58) 202(221) 4/15
2: OS2 2.2(1) 9.2(18) 9.3(12) 20(18) 43(44) 11/15

f18 103 3968 9280 10905 12469 15/15
1: CMA 18(1) 12(15) 43(60) 668(757) ∞5.0e5 0/15
2: OS2 1.5(0.8) 4.3(6) 24(23) ∞ ∞5.0e5 0/15

f19 1 242 1.2e5 1.2e5 1.2e5 15/15
1: CMA 17(14) 2405(2507) ∞ ∞ ∞5.0e5 0/15
2: OS2 20(14) 1512(1607) ∞ ∞ ∞5.0e5 0/15

f20 16 38111 54470 54861 55313 14/15
1: CMA 2.5(2) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS2 2.6(2) ∞ ∞ ∞ ∞5.0e5 0/15

f21 41 1674 1705 1729 1757 14/15
1: CMA 159(433) 263(253)⋆ 259(263)⋆ 255(259)⋆ 251(256)⋆ 11/15
2: OS2 325(833) 4203(4778) 4127(4692) 4071(4483) 4006(4411) 1/15

f22 71 938 1008 1040 1068 14/15

1: CMA 478(1096) 245(297)⋆3 228(259)⋆3 221(245)⋆3 216(245)⋆3 13/15
2: OS2 1762(3521) ∞ ∞ ∞ ∞5.0e5 0/15

f23 3.0 14249 31654 33030 34256 15/15
1: CMA 1.8(1) 19(21) 13(17) 13(12) 12(14) 10/15
2: OS2 2.1(2) 15(15) 25(28) 25(29) 24(27) 7/15

f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: CMA 33(76) ∞ ∞ ∞ ∞5.0e5 0/15
2: OS2 14(20) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 15/15
1: CMA 7.8(1) 20(2) 33(3) 46(3) 58(3) 15/15
2: OS2 7.5(2) 19(2) 31(2) 43(3) 54(3)⋆ 15/15

f2 385 387 390 391 393 15/15
1: CMA 35(3) 44(4) 47(2) 48(2) 50(2) 15/15
2: OS2 35(5) 44(5) 47(2) 49(1) 50(1) 15/15

f3 5066 7635 7643 7646 7651 15/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 5741(6711) ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7666 7700 7758 1.4e5 9/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 15/15
1: CMA 6.6(2) 7.7(1) 7.7(1) 7.7(1) 7.7(1) 15/15
2: OS2 6.4(0.6) 7.4(0.9) 7.5(1) 7.5(1) 7.5(1) 15/15

f6 1296 3413 5220 6728 8409 15/15
1: CMA 1.7(0.5) 1.2(0.2) 1.1(0.1) 1.2(0.1) 1.2(0.1) 15/15

2: OS2 1.4(0.2) 1.0(0.1)⋆ 1.00(0.1)⋆ 1.0(0.1)⋆2 1.0(0.1)⋆315/15

f7 1351 9503 16524 16524 16969 15/15
1: CMA 22(78) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 37(54) ∞ ∞ ∞ ∞2.0e6 0/15

f8 2039 4040 4219 4371 4484 15/15
1: CMA 4.1(1.0) 16(38) 15(36) 15(35) 15(34) 15/15
2: OS2 3.5(0.9) 5.3(0.8) 5.4(0.8) 5.4(0.8) 5.4(0.8) 15/15

f9 1716 3277 3455 3594 3727 15/15
1: CMA 4.5(1) 10(0.6) 10(0.5) 10(0.5) 9.4(0.5) 15/15
2: OS2 4.3(1.0) 6.6(0.6) 6.6(0.5) 6.6(0.5) 6.6(0.5) 15/15

f10 7413 10735 14920 17073 17476 15/15
1: CMA 1.8(0.3) 1.6(0.1) 1.2(0.0) 1.1(0.0) 1.1(0.0) 15/15
2: OS2 1.9(0.2) 1.6(0.1) 1.2(0.0) 1.1(0.0) 1.1(0.0) 15/15

f11 1002 6278 9762 12285 14831 15/15

1: CMA 10(0.7)⋆3 1.9(0.1)⋆3 1.4(0.0)⋆3 1.2(0.0)⋆3 1.0(0.0)⋆315/15
2: OS2 11(0.6) 2.2(0.1) 1.5(0.0) 1.3(0.0) 1.1(0.0) 15/15

f12 1042 2740 4140 12407 13827 15/15
1: CMA 5.0(4) 5.6(3) 5.0(2) 2.1(0.7) 2.2(0.7) 15/15
2: OS2 2.8(2) 3.9(3) 3.8(2) 1.7(0.7) 1.8(0.7) 15/15

f13 652 2751 18749 24455 30201 15/15
1: CMA 3.9(5) 30(56) 5.3(8) 5.0(6) 4.7(5)⋆ 15/15
2: OS2 2.3(0.1)⋆ 13(11) 4.1(4) 12(11) 31(36) 10/15

f14 75 304 932 1648 15661 15/15
1: CMA 3.5(2) 3.6(0.6) 4.1(0.5) 6.0(0.6) 1.2(0.1) 15/15
2: OS2 2.8(1) 3.3(0.4) 4.1(0.5) 6.3(0.4) 1.3(0.1) 15/15

f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: CMA 934(1053) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: CMA 0.96(0.2) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 1.4(1) 377(390) ∞ ∞ ∞2.0e6 0/15

f17 63 4005 30677 56288 80472 15/15
1: CMA 2.8(1) 8.4(19) 447(488) ∞ ∞2.0e6 0/15

2: OS2 2.2(1) 1.3(3) 10(8)⋆3 ∞ ∞2.0e6 0/15

f18 621 19561 67569 1.3e5 1.5e5 15/15
1: CMA 1.5(0.6) 65(66) ∞ ∞ ∞2.0e6 0/15

2: OS2 1.2(0.2) 3.4(3)⋆3 ∞ ∞ ∞2.0e6 0/15

f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: CMA 112(50) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 90(46) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: CMA 4.5(1) ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 4.2(0.8) ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 14103 14643 15567 17589 15/15
1: CMA 568(1107) 171(213)⋆ 165(205)⋆ 155(199)⋆ 137(171)⋆ 8/15
2: OS2 2376(3563) ∞ ∞ ∞ ∞2.0e6 0/15

f22 467 23491 24948 26847 1.3e5 12/15
1: CMA 862(1067) 384(397) 361(387) 336(360) 67(69) 3/15
2: OS2 6428(9640) ∞ ∞ ∞ ∞2.0e6 0/15

f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: CMA 2.5(2) 92(103) ∞ ∞ ∞2.0e6 0/15
2: OS2 1.7(2) 427(504) ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: CMA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: OS2 ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.12: ERT in number of function evaluations divided by the best ERT measured
during BBOB-2009 given in the respective first row with the central 80% range divided by
two in brackets for different ∆f values. #succ is the number of trials that reached the final
target fopt+10−8. 1:CMA is CMA-ES and 2:OS2 is Orthogonal-Sampling2. Bold entries are
statistically significantly better compared to the other algorithm, with p = 0.05 or p = 10−k

where k ∈ {2, 3, 4, . . .} is the number following the ⋆ symbol, with Bonferroni correction of
48. A ↓ indicates the same tested against the best BBOB-2009.

87

5.4.8 BBOB result of derandomized step-size

Results from experiments according to [22] on the benchmark functions given in [19, 23]
are presented in Figures 5.26, 5.27, 5.28, 5.29 and Table 5.13. The expected running
time (ERT), used in the figures and table, depends on a given target function value,
ft = fopt + ∆f , and is computed over all relevant trials as the number of function eval-
uations executed during each trial while the best function value did not reach ft, summed
over all trials and divided by the number of trials that actually reached ft [22, 33]. Statis-
tical significance is tested with the rank-sum test for a given target ∆ft using, for each
trial, either the number of needed function evaluations to reach ∆ft (inverted and multi-
plied by −1), or, if the target was not reached, the best ∆f -value achieved, measured only
up to the smallest number of overall function evaluations for any unsuccessful trial under
consideration if available.

Figure 5.26 plots the expected function evaluation against dimension for both the com-
petitive ESs. The derandomized step-size sampling method is getting better on function
f6, f11, f7, f8, f9, f13, f15 under the target precision 10−8. The amount of the improvement
is not big. However, it is not the whole story.

In Figure 5.27, the observation above is presented in details. The derandomized step-size
method almost dominates all the functions except f19, f21, f22, f23, f24. Figure 5.28 changes
to another manner to compare the ERTs and basically tells the same story as Figure 5.27.

Then the most important characteristic is shown in Figure 5.29. The distribution curves
for the derandomized step-size sampling method are increasing much fast than that of stan-
dard CMSA-ES for 5 dimension, target precision 10−8. On 20 dimension, the difference is
not very big for all the functions and the distribution function of derandomized sampling
only increases faster for precision 10−1. Finally, the specific ERT numbers under precision
10−8 are compared in Table 5.13.

88

2 3 5 10 20 40
0

1

2

3

ftarget=1e-08

1 Sphere

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2

3

ftarget=1e-08

5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

ftarget=1e-08

11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

ftarget=1e-08

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

ftarget=1e-08

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

ftarget=1e-08

24 Lunacek bi-Rastrigin

Figure 5.26: Expected running time (ERT in number of f -evaluations) divided by dimension
for target function value 10−8 as log10 values versus dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum
number of function evaluations from the longest trial divided by dimension. Horizontal
lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate
statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ◦:CMSA, ▽:Derandomized-stepsize CMSA

89

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D
3D5D10D20D40D

1 Sphere
 2-D
 3-D
 5-D
10-D
20-D
40-D

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D
3D
5D10D20D40D

2 Ellipsoid separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

6/15

3D5/310D
20D

40D

3 Rastrigin separable

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2/7

3D

5D10D

20D40D

4 Skew Rastrigin-Bueche separ

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D3D
5D10D20D40D

5 Linear slope

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D3D5D
10D
20D

40D

6 Attractive sector

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D
3D
5D

10D
20D

40D

7 Step-ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D
3D

5D
10D20D
40D

8 Rosenbrock original

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D3D
5D
10D20D
40D

9 Rosenbrock rotated

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D
3D
5D10D
20D40D

10 Ellipsoid

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D
3D
5D
10D
20D40D

11 Discus

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc

2D

3D
5D10D20D40D

12 Bent cigar

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D3D
5D10D

20D
40D

13 Sharp ridge

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-1

0

1

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D
3D5D10D
20D40D

14 Sum of different powers

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2
lo
g1
0(
ER
T1
/E
RT
0)
 o
r ~
#
su
cc

7/15

3D
5D

10D20D

40D

15 Rastrigin

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER
T1
/E
RT
0)
 o
r ~

#
su
cc 9/15

3D

5D
10D1/11/1

16 Weierstrass

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D

3D
5D

10D20D
40D

17 Schaffer F7, condition 10

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc

2D

3D

5D

10D20D
40D

18 Schaffer F7, condition 1000

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su
cc 2D3D

5D

10D20D3/5

19 Griewank-Rosenbrock F8F2

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D

3D
5D

7/1

6/4
40D

20 Schwefel x*sin(x)

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D

9/10

2/10
1/320D
1/1

21 Gallagher 101 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-3

-2

-1

0

1

2

3

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

9/8
4/11
1/1410D

20D
40D

22 Gallagher 21 peaks

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E

RT
0)

 o
r ~

#
su

cc

2D

3D
5D10D20D6/4

23 Katsuuras

-8-7-6-5-4-3-2-10123
log10(Delta ftarget)

-2

-1

0

1

2

lo
g1

0(
ER

T1
/E
RT

0)
 o
r ~

#
su

cc

2D3D5D10D20D40D

24 Lunacek bi-Rastrigin
 2-D
 3-D
 5-D
10-D
20-D
40-D

Figure 5.27: Ratio of ERT for Derandomized-stepsize CMSA over ERT for CMSA versus
log10(∆f) in 2:+, 3:▽, 5:⋆, 10:◦, 20:✷, 40-D:✸. Ratios < 100 indicate an advantage of
Derandomized-stepsize CMSA, smaller values are always better. The line becomes dashed
when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number
of f -evaluations for the same algorithm on this function. Filled symbols indicate the best
achieved ∆f -value of one algorithm (ERT is undefined to the right). The dashed line con-
tinues as the fraction of successful trials of the other algorithm, where 0 means 0% and the
y-axis limits mean 100%, values below zero for Derandomized-stepsize CMSA. The line ends
when no algorithm reaches ∆f anymore. The number of successful trials is given, only if
it was in {1 . . .9} for Derandomized-stepsize CMSA (1st number) and non-zero for CMSA
(2nd number). Results are significant with p = 0.05 for one star and p = 10−#⋆ otherwise,
with Bonferroni correction within each figure.

90

1 2 3 41

2

3

4

1
Sp

he
re

2 3 4 5 62

3

4

5

6

2
El

lip
so

id
 s

ep
ar

ab
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

3
Ra

st
rig

in
 s

ep
ar

ab
le

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

4
Sk

ew
 R

as
tr

ig
in

-B
ue

ch
e

se
pa

r

1 2 3 41

2

3

4

5
Li

ne
ar

 s
lo

pe

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

6
At

tr
ac

tiv
e

se
ct

or

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

7
St

ep
-e

lli
ps

oi
d

1 2 3 4 5 6 71

2

3

4

5

6

7

8
Ro

se
nb

ro
ck

 o
rig

in
al

1 2 3 4 5 6 71

2

3

4

5

6

7

9
Ro

se
nb

ro
ck

 ro
ta

te
d

2 3 4 5 62

3

4

5

6

10
 E

lli
ps

oi
d

2 3 4 52

3

4

5

11
 D

is
cu

s

2 3 4 5 62

3

4

5

6

12
 B

en
t c

ig
ar

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

13
 S

ha
rp

 ri
dg

e

0 1 2 3 4 5 60

1

2

3

4

5

6

14
 S

um
 o

f d
iff

er
en

t p
ow

er
s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

15
 R

as
tr

ig
in

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

16
 W

ei
er

st
ra

ss

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

17
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

18
 S

ch
af

fe
r F

7,
 c

on
di

tio
n

10
00

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

19
 G

rie
w

an
k-

Ro
se

nb
ro

ck
 F

8F
2

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

20
 S

ch
w

ef
el

 x
*s

in
(x

)

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

21
 G

al
la

gh
er

 1
01

 p
ea

ks

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

22
 G

al
la

gh
er

 2
1

pe
ak

s

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

23
 K

at
su

ur
as

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

24
 L

un
ac

ek
 b

i-R
as

tr
ig

in

Figure 5.28: Expected running time (ERT in log10 of number of function evaluations) of
CMSA (x-axis) versus Derandomized-stepsize CMSA (y-axis) for 46 target values ∆f ∈
[10−8, 10] in each dimension on functions f1–f24. Markers on the upper or right edge indicate
that the target value was never reached. Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:◦,
20:✷, 40:✸.

91

5-D 20-D

se
p
a
ra
b
le

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f1-5,5-D

+1: 5/5
-1: 5/4
-4: 5/4
-8: 5/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-5+1
-1
-4
-8

-1 0 1
log10 of FEvals ratio

pr
op

or
tio

n

f1-5,20-D

+1: 3/4
-1: 3/3
-4: 3/3
-8: 3/3

m
o
d
er
a
te

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f6-9,5-D

+1: 4/4
-1: 4/4
-4: 4/4
-8: 4/4

1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f6-9+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f6-9,20-D

+1: 4/4
-1: 3/3
-4: 3/3
-8: 3/3

il
l-
co
n
d
it
io
n
ed

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14+1
-1
-4
-8

-2 -1 0 1 2
log10 of FEvals ratio

pr
op

or
tio

n

f10-14,5-D

+1: 5/5
-1: 5/5
-4: 5/5
-8: 5/5

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f10-14+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f10-14,20-D

+1: 5/5
-1: 5/5
-4: 5/5
-8: 5/4

m
u
lt
i-
m
o
d
a
l

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f15-19+1
-1
-4
-8

-3 -2 -1 0 1 2 3
log10 of FEvals ratio

pr
op

or
tio

n

f15-19,5-D

+1: 5/5
-1: 5/5
-4: 5/5
-8: 5/4

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0
pr

op
or

tio
n

of
 tr

ia
ls

f15-19+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f15-19,20-D

+1: 5/5
-1: 2/2
-4: 0/0
-8: 0/0

w
ea
k
st
ru
ct
u
re

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24+1
-1
-4
-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

pr
op

or
tio

n

f20-24,5-D

+1: 5/5
-1: 3/3
-4: 2/3
-8: 2/3

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f20-24+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f20-24,20-D

+1: 4/4
-1: 1/1
-4: 1/1
-8: 1/1

a
ll
fu
n
ct
io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24+1
-1
-4
-8

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10 of FEvals ratio

pr
op

or
tio

n

f1-24,5-D

+1: 24/24
-1: 22/21
-4: 21/21
-8: 21/20

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.5

1.0

pr
op

or
tio

n
of

 tr
ia

ls

f1-24+1
-1
-4
-8

-4 -3 -2 -1 0 1 2 3 4
log10 of FEvals ratio

pr
op

or
tio

n

f1-24,20-D

+1: 21/22
-1: 14/14
-4: 12/12
-8: 12/11

Figure 5.29: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in
5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations
divided by dimension D (FEvals/D) to reach a target value fopt + ∆f with ∆f = 10k,
where k ∈ {1,−1,−4,−8} is given by the first value in the legend, for CMSA (◦) and
Derandomized-stepsize CMSA (▽). Light beige lines show the ECDF of FEvals for target
value ∆f = 10−8 of all algorithms benchmarked during BBOB-2009. Right sub-columns:
ECDF of FEval ratios of CMSA divided by Derandomized-stepsize CMSA, all trial pairs for
each function. Pairs where both trials failed are disregarded, pairs where one trial failed are
visible in the limits being > 0 or < 1. The legends indicate the number of functions that
were solved in at least one trial (CMSA first).

92

5-D 20-D
∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 15/15
1: CMSA 8.4(6) 24(6) 43(10) 62(12) 81(8) 15/15
2: DS 5.4(4) 23(4) 42(5) 63(8) 85(10) 15/15

f2 83 88 90 92 94 15/15
1: CMSA 24(13) 33(9) 37(12) 39(11) 40(11) 15/15

2: DS 13(5) 17(5)⋆3 20(5)⋆3 22(5)⋆3 24(5)⋆3 15/15

f3 716 1637 1646 1650 1654 15/15
1: CMSA 29(53) 1444(1385) 1436(1519) 1433(1537) 1430(1383) 3/15
2: DS 2.9(3) 735(830) 732(807) 730(767) 728(822) 5/15

f4 809 1688 1817 1886 1903 15/15
1: CMSA 32(71) 4400(5184) 4087(4402) 3938(4375) 3903(4466) 1/15
2: DS 2.4(0.6) ∞ ∞ ∞ ∞5.0e5 0/15

f5 10 10 10 10 10 15/15
1: CMSA 13(7) 20(7) 20(7) 20(7) 20(7) 15/15
2: DS 11(3) 19(8) 19(8) 19(8) 19(8) 15/15

f6 114 281 580 1038 1332 15/15
1: CMSA 2.6(1) 3.1(1) 2.5(1.0) 2.0(0.7) 2.0(0.7) 15/15
2: DS 2.4(0.8) 2.8(0.6) 2.2(0.2) 1.7(0.2) 1.8(0.2) 15/15

f7 24 1171 1572 1572 1597 15/15
1: CMSA 7.5(5) 146(164) 233(230) 233(230) 230(264) 11/15

2: DS 5.9(2) 15(21)⋆2 13(15)⋆3 13(15)⋆3 13(15)⋆3 15/15

f8 73 336 391 410 422 15/15
1: CMSA 5.2(1) 32(56) 30(48) 29(46) 29(44) 15/15
2: DS 4.5(1) 7.7(3) 8.3(2)⋆ 8.6(2)⋆ 8.9(2)⋆ 15/15

f9 35 214 300 335 369 15/15
1: CMSA 12(8) 64(114) 49(81) 45(72) 41(66) 15/15

2: DS 10(3) 12(6)⋆2 11(4)⋆2 10(3)⋆2 10(3)⋆2 15/15

f10 349 574 626 829 880 15/15
1: CMSA 4.8(3) 5.5(2) 5.9(2) 4.8(2) 4.8(2) 15/15

2: DS 2.9(1) 2.5(0.6)⋆2 2.8(0.6)⋆3 2.4(0.4)⋆3 2.5(0.4)⋆315/15

f11 143 763 1177 1467 1673 15/15
1: CMSA 10(4) 3.6(2) 2.8(1.0) 2.5(0.9) 2.3(0.8) 15/15

2: DS 6.1(2) 1.6(0.4)⋆3 1.3(0.2)⋆3 1.2(0.2)⋆3 1.2(0.2)⋆315/15

f12 108 371 461 1303 1494 15/15
1: CMSA 35(69) 25(35) 25(34) 11(14) 11(14) 15/15
2: DS 10(5) 11(7) 14(10) 6.4(5) 7.6(8) 15/15

f13 132 250 1310 1752 2255 15/15
1: CMSA 6.1(5) 12(7) 3.5(2) 3.4(1) 3.4(2) 15/15

2: DS 3.8(1) 4.8(2)⋆2 1.5(0.5)⋆3 1.7(0.5)⋆3 1.6(0.4)⋆315/15

f14 10 58 139 251 476 15/15
1: CMSA 5.3(6) 5.6(2) 6.2(2) 7.4(2) 5.8(1) 15/15

2: DS 3.7(3) 5.5(2) 5.2(0.8) 5.4(1) 4.3(0.6)⋆215/15

f15 511 19369 20073 20769 21359 14/15
1: CMSA 6.4(1) 83(87) 80(94) 78(91) 76(82) 4/15
2: DS 4.5(2) 11(14) 11(13) 10(12) 10(12) 13/15

f16 120 2662 10449 11644 12095 15/15
1: CMSA 3.1(6) 29(40) 16(15) 30(38) 29(33) 11/15
2: DS 2.6(3) 7.0(7) 5.7(4) 7.2(5) 7.2(5) 15/15

f17 5.2 899 3669 6351 7934 15/15
1: CMSA 9.1(10) 5.9(12) 11(16) 20(20) 39(42) 9/15
2: DS 7.0(9) 0.84(0.3) 0.94(1) 1.5(1) 3.0(4) 15/15

f18 103 3968 9280 10905 12469 15/15
1: CMSA 21(1) 7.8(10) 55(57) 152(164) 585(581) 1/15

2: DS 2.3(2) 0.84(0.8) 0.93(0.8)⋆3 2.2(3)⋆3 2.8(3)⋆3 15/15

f19 1 242 1.2e5 1.2e5 1.2e5 15/15

1: CMSA 26(25) 229(334)⋆3 4.2(4)⋆2 4.2(4)⋆3 4.2(4)⋆3 10/15
2: DS 29(25) 5114(5405) 60(65) ∞ ∞5.0e5 0/15

f20 16 38111 54470 54861 55313 14/15
1: CMSA 6.1(4) ∞ ∞ ∞ ∞5.0e5 0/15

2: DS 4.6(3) 8.9(11)⋆3 6.2(9)⋆3 6.2(7)⋆3 6.1(7)⋆3 11/15

f21 41 1674 1705 1729 1757 14/15
1: CMSA 2.7(3) 194(245)⋆ 235(293)⋆ 232(289)⋆ 228(285)⋆ 10/15
2: DS 24(3) 2115(2389) 2077(2199) 2049(2221) 2016(2134) 2/15

f22 71 938 1008 1040 1068 14/15

1: CMSA 206(411) 310(225)⋆2 297(209)⋆2 288(203)⋆2 281(197)⋆2 14/15
2: DS 1209(3521) 7465(8798) 6944(7935) 6729(7330) 6558(7260) 1/15

f23 3.0 14249 31654 33030 34256 15/15
1: CMSA 1.8(1) 511(561) ∞ ∞ ∞5.0e5 0/15
2: DS 1.7(2) ∞ ∞ ∞ ∞5.0e5 0/15

f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: CMSA 5.5(6) ∞ ∞ ∞ ∞5.0e5 0/15
2: DS 23(30) ∞ ∞ ∞ ∞5.0e5 0/15

∆f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 15/15
1: CMSA 8.1(1) 21(3) 35(4) 48(4) 62(4) 15/15

2: DS 7.9(1) 19(2) 31(2)⋆ 42(3)⋆2 55(4)⋆3 15/15

f2 385 387 390 391 393 15/15
1: CMSA 161(61) 258(61) 277(40) 285(35) 291(28) 15/15

2: DS 128(31) 185(38)⋆2 221(34)⋆2 235(46)⋆ 244(52)⋆ 15/15

f3 5066 7635 7643 7646 7651 15/15
1: CMSA ∞ ∞ ∞ ∞ ∞2.0e6 0/15

2: DS 5819(6514)⋆2 ∞ ∞ ∞ ∞2.0e6 0/15

f4 4722 7666 7700 7758 1.4e5 9/15
1: CMSA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: DS ∞ ∞ ∞ ∞ ∞2.0e6 0/15

f5 41 41 41 41 41 15/15
1: CMSA 16(4) 20(6) 21(6) 21(6) 21(6) 15/15
2: DS 13(4) 17(4) 17(4) 17(4) 17(4) 15/15

f6 1296 3413 5220 6728 8409 15/15
1: CMSA 2.1(0.9) 3.1(3) 18(10) 53(67) 266(298) 4/15
2: DS 1.7(0.6) 3.9(4) 17(26) 34(24) 63(80) 12/15

f7 1351 9503 16524 16524 16969 15/15
1: CMSA 1616(2018) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 211(262) ∞ ∞ ∞ ∞2.0e6 0/15

f8 2039 4040 4219 4371 4484 15/15
1: CMSA 16(5) 55(86) 55(82) 53(79) 53(77) 15/15
2: DS 17(7) 24(5) 25(5) 25(4) 25(4) 15/15

f9 1716 3277 3455 3594 3727 15/15
1: CMSA 19(5) 40(6) 40(6) 39(6) 38(6) 15/15
2: DS 19(5) 28(4) 29(4) 28(4) 28(4) 15/15

f10 7413 10735 14920 17073 17476 15/15
1: CMSA 9.1(3) 8.6(2) 6.8(0.8) 6.2(0.7) 6.2(0.7)15/15
2: DS 7.4(4) 7.7(2) 6.2(0.7) 5.7(0.7) 5.8(0.7)15/15

f11 1002 6278 9762 12285 14831 15/15
1: CMSA 11(2) 2.7(0.5) 2.3(0.5) 2.2(0.5) 2.1(0.8)15/15
2: DS 10(0.9) 2.4(0.5) 2.1(0.4) 2.0(0.6) 2.0(0.8)15/15

f12 1042 2740 4140 12407 13827 15/15
1: CMSA 11(14) 22(13) 20(10) 8.3(3) 8.5(3) 15/15
2: DS 4.5(0.2)⋆ 15(11) 15(9) 6.6(3) 6.8(3) 15/15

f13 652 2751 18749 24455 30201 15/15
1: CMSA 112(70) 685(780) 205(233) 368(368) 937(1093) 1/15
2: DS 10(16) 28(17)⋆ 24(26)⋆ 200(235) ∞2.0e6 0/15

f14 75 304 932 1648 15661 15/15
1: CMSA 3.8(2) 3.4(0.7) 5.6(0.8) 12(2) 3.6(1) 15/15
2: DS 3.6(1.0) 3.3(0.4) 5.3(0.6) 10(2) 2.8(0.8)15/15

f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: CMSA 922(1020) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 101(112) ∞ ∞ ∞ ∞2.0e6 0/15

f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: CMSA 3.0(3) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 4.3(2) ∞ ∞ ∞ ∞2.0e6 0/15

f17 63 4005 30677 56288 80472 15/15
1: CMSA 3.8(3) 502(545) ∞ ∞ ∞2.0e6 0/15

2: DS 3.0(2) 6.5(5)⋆ 16(16)⋆3 ∞ ∞2.0e6 0/15

f18 621 19561 67569 1.3e5 1.5e5 15/15
1: CMSA 9.0(0.7) 701(716) ∞ ∞ ∞2.0e6 0/15

2: DS 1.2(0.4) 6.7(8)⋆2 ∞ ∞ ∞2.0e6 0/15

f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: CMSA 148(42) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 139(36) ∞ ∞ ∞ ∞2.0e6 0/15

f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: CMSA 4.9(1) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 4.3(1) ∞ ∞ ∞ ∞2.0e6 0/15

f21 561 14103 14643 15567 17589 15/15
1: CMSA 296(757) 625(709) 602(718) 566(631) 501(598) 3/15
2: DS 1782(3563) ∞ ∞ ∞ ∞2.0e6 0/15

f22 467 23491 24948 26847 1.3e5 12/15
1: CMSA 1501(2142) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 3750(5356) 1192(1320) 1123(1283) 1043(1155) 208(237) 1/15

f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: CMSA 2.5(4) ∞ ∞ ∞ ∞2.0e6 0/15
2: DS 2.7(3) ∞ ∞ ∞ ∞2.0e6 0/15

f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: CMSA ∞ ∞ ∞ ∞ ∞2.0e6 0/15
2: DS ∞ ∞ ∞ ∞ ∞2.0e6 0/15

Table 5.13: ERT in number of function evaluations divided by the best ERT measured during
BBOB-2009 given in the respective first row with the central 80% range divided by two in
brackets for different ∆f values. #succ is the number of trials that reached the final target
fopt + 10−8. 1:CMSA is CMSA and 2:DS is Derandomized-stepsize CMSA. Bold entries are
statistically significantly better compared to the other algorithm, with p = 0.05 or p = 10−k

where k ∈ {2, 3, 4, . . .} is the number following the ⋆ symbol, with Bonferroni correction of
48. A ↓ indicates the same tested against the best BBOB-2009.

93

Chapter 6

Conclusion

The variety of derandomized techniques plays an important role to improve the perfor-
mance of evolution strategies. Historically, the process of discovering undesired randomnesses
and developing new techniques to remove them has already changed the ES adaptation
mechanism from the mutative-self-adaption framework (MSC-ES) to the covariance-matrix-
adaptation technique (CMA-ES) as argued in Chapter 2. Recall the hierarchical structure
of ES in Chapter 2, this derandomization happens in the level 2 and helps to improve the
reliability of the endogenous strategy parameter tuning. Recently, some unpleasant random-
nesses are gradually discovered in the mutation operator or say the sampling process, which
is located at the level 1. Then some new mutation operators are designated to remove that
randomness without violating the operator’s major functionalities. Although we still catego-
rize such new mutation operators as instances of derandomization techniques, their essences
differ from that in history.

The mirrored sampling technique is the first solution to the sampling errors in mutation.
The technique is both quite simple in idea and implementation. It requires basically no ad-
ditional computational cost compared to the standard mutation operator. It can be applied
to any single parent ES algorithm without introducing any side effect. When the popula-
tion is small, it actually improves the ES convergence velocity significantly as discussed in
Section 3.2. If applied in multi-parental ES algorithm, a side effect, which is the systematic
reduction of the sampling variance, occurs due to the pairwise cancellation of mirrored pair
of offspring if they are selected at the same time. Such side effect can facilitate premature
convergence and thus is undesired.

In order to solve the problem, a new variant of mirrored sampling, named “noisy” mir-
rored sampling technique is proposed and tested in BBOB software. The “noisy” mirrored
sampling technique is only capable of reducing the side effect instead of completely remov-
ing it. The degree of the reduction can be controlled by two new parameters. However, the
additional computation overheads of the “noisy” mirrored sampling is very high because it
requires a N dimensional rotation matrix, which costs O(N2) matrix multiplications ofN di-
mensional square matrix. In total, the time complexity is O(N5) if the matrix multiplication
is implemented naively, or roughly O(N4.38) if using Coppersmith–Winograd algorithm [16]
for matrix multiplication. Thus, in either way, this technique is not going to be efficient. The
experiment results (shown in Section 5.4.2) implies that it actually also reduces the amount
of improvement of ERTs introduced by mirrored sampling. The “noisy” mirrored sampling

94

seems not as satisfactory as what we expected and works as our one attempt to solve the
side effect in mirrored sampling.

Although the limitations of mirror sampling (small population, single parent) restrict its
application, the motivation behind it, which is to generate more even mutation samples, is
really essential and is the main topic of Chapter 4. The derandomized sampling is aiming
at designing novel mutation operators to reduce the sampling errors in mutation without
bringing additional side effects. Because the mutation vectors in ES contain two indepen-
dent components, the direction and length of the vector, the derandomized sampling can be
further developed in two branches, the direction derandomization and the step-size (length)
derandomization.

The mirrored sampling itself could be considered as an example of derandomized direc-
tion method because the direction of some mutations are restricted. Furthermore, the idea
of orthogonal sampling is proposed in Section 4.1 as a generalization of mirrored sampling.
The idea is to generate pairwise orthogonal mutation vectors. The benefits of it is that:
First, the difference between mutations are guaranteed to be large enough. In other words,
the direction exploration is increased. Second, their is no side effects discovered so far. Thus,
the systemic reduction of sampling variance is avoided.

The orthogonal sampling idea can be implemented in two different methods. The first
method is named as orthogonal-sampling1 and uses random rotations. Its computa-
tion costs is identical to that of “noisy” mirrored sampling. The second one is named as
orthogonal-sampling2 and uses Gram-Schmidt process. There is no additional param-
eters for this method and the additional computational overheads are just marginal. The
empirical results in Section 5.4.6, 5.4.7 show that both of these two methods can improve
the ES performance.

The step-size derandomization method is intended to solve the ambiguity in Covariance
Matrix Adaptation (CMA) mechanism. Again, the no additional computations are needed
by this new operator. However, it violates the bases of the Cumulative Step-size Adaptation
(CSA) in CMA-ES so that we could not implement it into CMA-ES to verify its performance.
Instead, it is applied in CMSA-ES which also exploits Covariance Matrix Adaptation tech-
nique. Its empirical results in Section 5.4.6 shows that such new mutation operator actually
largely improves the performance of CMSA algorithm compared to the standard CMSA-ES.

As another potential task of this thesis, the bias of the operators in ES is also considered.
The mirrored sampling technique introduces a bias, which is the the systematic reduction of
the sampling variance. Such bias is reduced in some degree by the “noisy”-mirrored sampling
technique. There is no bias discovered in complete direction derandomization sampling or
step-size derandomization sampling. As a disturbing discovery in Section 2.2.4. The widely
used recombination operator in MSC-ES is actually biased. Such bias is verified both ex-
perimentally and theoretically. A new unbiased recombination operator is also developed.
However, no further comparisons and experiments are conducted for this problem. The
problem is still a mystery at least for the author and we welcome any possible idea about it.

95

Bibliography

[1] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Benchmarking the (1,4)-cma-es
with mirrored sampling and sequential selection on the noiseless bbob-2010 testbed.
In Proceedings of the 12th annual conference companion on Genetic and evolutionary
computation, GECCO ’10, pages 1617–1624, New York, NY, USA, 2010. ACM.

[2] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Benchmarking the (1,4)-cma-
es with mirrored sampling and sequential selection on the noisy bbob-2010 testbed.
In Proceedings of the 12th annual conference companion on Genetic and evolutionary
computation, GECCO ’10, pages 1625–1632, New York, NY, USA, 2010. ACM.

[3] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Mirrored variants of the (1,2)-
cma-es compared on the noiseless bbob-2010 testbed. In Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation, GECCO ’10, pages
1551–1558, New York, NY, USA, 2010. ACM.

[4] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Mirrored variants of the (1,2)-
cma-es compared on the noisy bbob-2010 testbed. In Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation, GECCO ’10, pages
1575–1582, New York, NY, USA, 2010. ACM.

[5] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Analyzing the impact of mirrored
sampling and sequential selection in elitist evolution strategies. In Foundations of
Genetic Algorithms (FOGA 2011), pages 127–138, Schwarzenberg, Autriche, April 2011.

[6] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Mirrored sampling in evolution
strategies with weighted recombination. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation, GECCO ’11, pages 861–868, New York, NY,
USA, 2011. ACM.

[7] Anne Auger and Nikolaus Hansen. Theory of evolution strategies: A new perspective.
In A. Auger and B. Doerr, editors, Theory of Randomized Search Heuristics: Founda-
tions and Recent Developments, chapter 10, pages 289–325. World Scientific Publishing
Company, 2011.

[8] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evolution strate-
gies. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 2–9. Morgan Kaufmann, 1991.

96

[9] Hans-Georg Beyer. Toward a theory of ‘evolution strategies’: Some asymptotical results
from the (1,+ λ)-theory. Evolution Computation, 1(2):165–188, June 1993.

[10] Hans-Georg Beyer. Toward a theory of evolution strategies: The (µ, λ)-theory. Evol.
Comput., 2(4):381–407, December 1994.

[11] Hans-Georg Beyer. The theory of evolution strategies. Springer-Verlag New York In-
corporated, 2001.

[12] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies: A comprehensive
introduction. 1(1):3–52, May 2002.

[13] Hans-Georg Beyer and Bernhard Sendhoff. Covariance matrix adaptation revisited —
the cmsa evolution strategy —. In Proceedings of the 10th international conference
on Parallel Problem Solving from Nature: PPSN X, pages 123–132, Berlin, Heidelberg,
2008. Springer-Verlag.

[14] Å. Björck. Numerics of gram-schmidt orthogonalization. Linear Algebra and its Appli-
cations, 197–198(0):297 – 316, 1994.

[15] Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm. Mir-
rored sampling and sequential selection for evolution strategies. In Proceedings of the
11th international conference on Parallel problem solving from nature: Part I, PPSN’10,
pages 11–21, Berlin, Heidelberg, 2010. Springer-Verlag.

[16] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, STOC
’87, pages 1–6, New York, NY, USA, 1987. ACM.

[17] H. A. David and H. N. Nagaraja. Order Statistics. John Wiley & Sons, Inc., 2004.

[18] KT Fang, S Kotz, and KW Ng. Symmetric Multivariate and Related Distributions
Monographs on Statistics and Applied Probability. London: Chapman and Hall Ltd.
MR1071174, 1990.

[19] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20,
Research Center PPE, 2009. Updated February 2010.

[20] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-
box optimization benchmarking 2010: Presentation of the noisless functions. Technical
report, Citeseer, 2010.

[21] A.K. Gupta and D. Song. Lp-norm spherical distribution. Journal of Statistical Plan-
ning and Inference, 60(2):241 – 260, 1997.

[22] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization
benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.

[23] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA,
2009. Updated February 2010.

97

[24] Nikolaus Hansen. The cma evolution strategy: A tutorial, 2005.

[25] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evol. Comput., 9(2):159–195, June 2001.

[26] Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adaptation
of arbitrary normal mutation distributions in evolution strategies: The generating set
adaptation. In Proceedings of the 6th International Conference on Genetic Algorithms,
pages 57–64, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[27] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate Dis-
tributions, Vol. 1 (Wiley Series in Probability and Statistics). Wiley-Interscience, 2
edition.

[28] Shuhei Kimura and Koki Matsumura. Genetic algorithms using low-discrepancy se-
quences. In Proceedings of the 2005 conference on Genetic and evolutionary computa-
tion, GECCO ’05, pages 1341–1346, New York, NY, USA, 2005. ACM.

[29] B.W. Lindgren. Statistical Theory. Chapman and Hall/CRC Texts in Statistical Science
Series. Chapman and Hall, 1993.

[30] Travis E. Oliphant. Guide to Numpy. December 2006.

[31] Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. A derandomized ap-
proach to self-adaptation of evolution strategies. Evol. Comput., 2(4):369–380, Decem-
ber 1994.

[32] Andreas Ostermeier, Andreas Gawelczyk, and Nikolaus Hansen. Step-size adaption
based on non-local use of selection information. In Proceedings of the International
Conference on Evolutionary Computation. The Third Conference on Parallel Problem
Solving from Nature: Parallel Problem Solving from Nature, PPSN III, pages 189–198,
London, UK, UK, 1994. Springer-Verlag.

[33] Kenneth Price. Differential evolution vs. the functions of the second ICEO. In Proceed-
ings of the IEEE International Congress on Evolutionary Computation, pages 153–157,
1997.

[34] K.V. Price. Differential evolution vs. the functions of the 2nd iceo. In Evolutionary
Computation, 1997., IEEE International Conference on, pages 153–157, 1997.

[35] Ingo Rechenberg. Evolutionsstrategie: Optimierung technisher systeme nach prinzipien
der biologischen evolution. 1973.

[36] Hans-Paul Schwefel. Kybernetische Evolution als Strategie der experimentellen
Forschung in der Strömungstechnik. Technische Universität, Berlin., 1965.

[37] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
Inc., New York, NY, USA, 1981.

[38] D Song and AK Gupta. Lp-norm uniform distribution. Proceedings of the American
Mathematical Society, 125(2):595–602, 1997.

98

[39] Olivier Teytaud and Sylvain Gelly. Dcma: yet another derandomization in covariance-
matrix-adaptation. In Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, GECCO ’07, pages 955–963, New York, NY, USA, 2007. ACM.

99

