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Abstract

The Department of Dermatology at the Leiden University Medical Center keeps a large
database of medical images, used for educational purposes. This thesis is a feasibility
study on automated classification of skin diseases with the use of annotated images from
this database. Each annotated image is converted into tiles of which color features and
Haralick’s texture features are calculated. These features are then used to train the 1R,
J48, NaiveBayes, Multilayer Perceptron and SMO classifiers. After classification the pre-
dictions were linked back to their original image and with a majority vote the classification
of the image was obtained. This resulted in a recall on the images of 70%.
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Chapter 1

Introduction

At the Leiden University Medical Center (LUMC) the department of dermatology keeps
a large database of several thousands of photographs of patients with skin diseases. The
database is internally used for educational purposes and is supplemented regularly with
new photographs.

This thesis is a feasibility study on automated classification of skin diseases by learn-
ing from the dermatology database. Next to finding a good approach to do so, it will focus
also on the problems that might occur by using a dataset that is not specifically created
with machine learning in mind.

1.1 Possible application

Not everywhere in the world are there good doctors available when you need them. Es-
pecially in third world countries, where hospitals are few and transport is limited, it is
hard to find good medical care. One of the things that are done to tackle this problem is
the deployment of ‘flying doctors’, which are general practitioners trained to do their jobs
in remote villages. Although they are skilled, they are no specialists and because of this
can’t always rely on their own skills and knowledge.

At the same time, the availability of technology, mobile phones and internet connec-
tivity has spread throughout the continent. This means that both doctors and patients
can look up medical information on the internet.

But the availability of technology brings more possibilities in the medical world: with
the use of computer vision, technology can assist patients and doctors in making diagnoses.
Dermatology is one of the medical disciplines that could benefit the most from this kind of
disease classification system. Imagine an iPhone application that automatically recognizes
diseases from pictures that are taken with it or gives a listing of possible diseases with an
advice on what medical steps to proceed with. While it is not likely that it could replace
the knowledge of a real dermatologist, it could provide a simple replacement for situations
in which a specialist is not available, like in Africa often is the case.

At the moment no such general solution for classifying skin diseases exists, although
there are some niche problems in which computer vision is successfully deployed like de-
termining the nature of melanomas Isasi et al. [2011].
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CHAPTER 1. INTRODUCTION

1.2 The data

Most of the images in the dermatology database are taken at the hospital by one of the
medical photographers, as part of the medical examination, although a smaller number is
taken by patients or doctors with mobile devices or compact camera’s.

The medical photographer works in a photo studio with an even background and good
lighting in order to ensure that no shadows present at the subject tissue. The equipment
and the setup of the photo studio, including the colour of the background canvas used has
changed over the years. The photographs taken by doctors and patients vary greatly in
setting and quality. Lastly, parts of an old physical non-digital photo archive have been
digitalised and added to the database. Because of the large timespan and different sources,
the quality, size and dimensions vary greatly across these photographs.

The database consists of a low quality version of the image, linked together with extra
information in a relational database. This database contains information about

• the photograph itself, with a reference to the original image file, the date the photo
was taken, the camera that has been used, the Exif1 data and the photographer;

• the patient, with fields including sex, date of birth, name and address and patient
ID for linking to the Electronic Health Record2;

• the part of the body that is photographed;

• the disease the patient is diagnosed with, if known.

The photographs that are present in the database itself are lossy JPEG images, which
are less than ideal to use with computer vision. The original images are stored in TIFF or
PNG where these qualities originally existed, which is the case for all recent professionally
taken photographs. Where these formats were not available, the original file is also a
JPEG. In the research only the PNG / TIFF formats were used, so the lossy JPEG
encoding was not an issue.

More details on the image dataset that is used can be found in Section 2.1.

1.3 Research goals

This research project is a feasibility study to see if images in this dermatology database
can be used to automatically diagnose dermatological diseases, although the photographs
were not taken with such application in mind. From the start it is clear that the database
as is, isn’t going to give the easiest, most accurate solution and therefore it makes little
sense to try to build the best possible classifier for skin diseases. This project will focus
upon the following questions, which together will answer the main research question:

• Is it possible to train a classifier that can discriminate between four skin diseases,
learning from the images in the database and what accuracy can be achieved?

• Are all images in this database of use, or is there a clear distinction in characteristics?

1EXIF, or Exchangeable Image File, format is a metadata specification for image files taken by digital
cameras among others.

2Electronic Heath Record is known in dutch as EPD or Electronisch Patienten Dossier.
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CHAPTER 1. INTRODUCTION

• What information is needed in addition to the images, for example skin colour, in
order to create a classifier that can discriminate between diseases?

• What kind of classifier can be used best for the purpose of discriminating between
the four diseases?

• Is it possible to locate the area of the affected skin or is it only possible to mark an
entire image as containing a specific disease?

• How can the creation of new pictures be improved in order to increase their usefulness
in automated classification?

• What kind of features are most useful for discriminating between diseases?

1.4 Plan of action

To answer these questions, the following plan of action has been composed:

1. Obtaining the dataset, including the selection and filtering of the data;

2. Investigating the data, in order to see the differences between classes of pictures;

3. Generating features for training, converting the images into features;

4. Annotating the images, where necessary;

5. Choosing a classifier, selecting and comparing different classifiers;

6. Experimenting, varying some parameters and setups in order to find the best
approach;

7. Selecting areas for improvement, in order to help the hospital build a dataset
which is more valuable for future uses.
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Chapter 2

Materials and Methods

2.1 Image dataset

There are over 40.000 images stored in the database at the LUMC. Because of practical
reasons and privacy issues a filtered subset of 13k images was extracted. This subset
excluded faces, genitals and other bodyparts that featured tattoos, spanning 311 different
diagnosis. The extraction of the subset was a tedious process as many of the ‘bodypart’
fields were left blank or didn’t state all bodyparts that were visible in the image. Because
of this, all images had to be inspected manually before the dataset could be approved.
This is a very tedious work to do for all 13k images. Because of this, a refined set of only
the hands was manually inspected and approved for use with the research. This resulted
in a dataset of 912 images of which 815 were provided with a diagnosis.

As can be seen in Figure 2.1, there are few diagnoses in the dataset with more than
fifteen samples of a disease. To train and test a classifier, the more samples of a single class
(diagnosis) available, the better. That’s why there is again extracted a subset. This time
only four diagnoses remained: Spinocellulaircarcinoom, Contact Dermatitis, Dermatitis
and Palmoplantar Keratoderma Hereditaria. These four diagnoses vary in appearance, an
example of each of them can be seen in Figure 2.2. The total sample count in the dataset
is 77. The content of the four diagnoses is shown in Table 2.1.

The risk of such low number of samples is that of undertraining. This means that
there are not enough examples for a classifier to learn some general rules for separating
the diseases. For a feasibility study this is not a big problem, although a bigger data set
would be recommended for future research.

Each of the images is in the PNG format or converted from TIFF to PNG. The PNG
format provides a lossless encoding, preserving as much detail as possible. All images are
around three megapixel in size and have 8-bit RGB channels.

2.2 Software components

In this section, the different software components used in this project are briefly explained.
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Figure 2.1: Distribution of diagnoses and sample sizes. There are many diagnoses with
a small samples set and few with a sample set > 15

(a) diagnosis-1739023,
Spinocellulaircarcinoom

(b) diagnosis-6929067,
Contact Dermatitis

(c) diagnosis-6929070,
Dermatitis

(d) diagnosis-7573943,
Palmoplantar Keratoderma Hereditaria

Figure 2.2: The four different diseases in the final dataset.
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diagnosis samples # annotated samples % annotated samples

diagnosis-1739023 19 7 37%
diagnosis-6929067 20 7 35%
diagnosis-6929070 13 11 85%
diagnosis-7573943 21 14 66%

Totals 73 39

Table 2.1: Contents of the dataset

2.2.1 TDR

TDR of LIACS is a software tool originally designed to annotate slices of 3D images for
3D reconstruction. With TDR it is possible to annotate images by drawing contours
with different labels. This software is used in the setup to annotate the dataset used
for classifying. Three kinds of contours were drawn in the images: skin, affected skin
and nails. These contours divide the image in three parts: background, healthy skin and
affected skin. The latter, the contour of the nails, hasn’t been used in the classifier, but
was added to be able to tell more about the size and orientation of the hand.

Annotating the images is a time consuming process, because of this, in a part of the
annotated images only the affected parts of the skin were indicated.

2.2.2 OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions for real
time computer vision ope, developed by Intel. The library is used by the feature detec-
tion algorithm, providing functions for reading and writing images, performing matrix
operations and more.

2.2.3 Weka

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learn-
ing software written in Java, developed at the University of Waikato, New Zealand. Weka
contains tools for data pre-processing, classification, regression, clustering, association
rules, and visualization wek.

2.3 Tiling

The amount of samples of the four diseases we are trying to classify is quite small. The
diseases manifest themselves in various forms, like spots, vesicles, or an overall redness of
the skin. Therefore it is not easy to look for a single kind of feature or template in the
image to determine which areas of the skin are affected by the disease. The best approach
is to look at the entire image in smaller parts and try to classify each of the smaller parts.

The easiest way to divide the image into smaller parts is to place a grid on it and
create square tiles. Given that the tiles are small enough, most of the tiles will contain
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one class each (skin, affected skin or background). Tiles that contain transitions between
two classes are small in number and won’t disrupt a classifier. In case it will, tiles not
containing a single class in majority can be omitted from the training data feeding the
classifier or can be specified as another class called edge.

Using the pixels of the tiles as input for a classifier won’t work that well: spots and
vesicles are not always in the same place within a tile and using the pixels directly would
make the classifier very vulnerable to rotation and scaling. That is why the classifier uses
features that are calculated from the pixels of these tiles.

2.4 Colour features

Images are stored in RGB colour space, defining colour as a mixture of red, green and
blue. But this is not a colour space mimicking the way our human eyes would perceive
colour. A more useful way for this purpose is specifying the colour of a pixel as a mixture
of hue, saturation and value Zarit et al. [1999].

The colour features are simple to calculate as they are the averages and standard
deviation of the values of each of the RGB and HSV channels. These are most useful
separating skin from background as the difference between healthy skin and affected skin
is not an absolute difference. ‘Redness’ of the skin, an affected region, is dependent on
the skin colour and varies from sample to sample.

The colour features describe one channel at a time, making it hard for classifiers to
filter for example blueish tiles and whitish tiles on a single RGB value: both contain a
high value of blue. To circumvent this problem, features containing the ratio between two
channels can be added. There are six channels containing colour features. Adding ratios
of all the combinations gives us too many features, only slowing down the training of any
classifier. Therefore only the ratios green/blue, blue/red and green/red are computed.

2.5 Texture features

Colour features have the problem that they vary under many external conditions, such as
lighting, camera and natural variations in skin complexion. Texture features should not
be hampered by these conditions and can provide good features for separating healthy
skin from affected skin and differentiate between the different diagnosis, as long as there
are differences in texture between those.

There are many kinds of feature detection algorithms based on texture available. For
this project, the Haralick features are chosen Robert M Haralick [1973].

The Haralick features are a set of features which are calculated from the Gray-Level
Co-occurrence Matrix. The gray-level means that there is only one channel which is looked
at at the same time, not specifying that it should be a grayscale image. This matrix, with
sides equal to the range of pixel values per channel, contains the number of co-occurring
values of an image (or tile). Mathematically it can be defined as:

C∆x,∆y(i, j) =

n
X

p=1

n
X

q=1

⇢

1 if I(p, q) = iI(p+∆x, q +∆y) = j
0 otherwise

}

, (2.1)
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meaning that while looping over all pixels in the tile elements a, b and b, a are incremented
if a pixel with value a is found next to a pixel of value b.

Because this summation looks in the x and y direction of the image, it is not rotation-
ally invariant. This is why the matrix is constructed not only of this summation, but also
with a rotation of 45, 90 and 135 = −45 degrees, creating the matrix as if the image was
rotated by these degrees. The remaining neighbouring pixels do not have to be visited by
the algorithm because co-occurrence is commutative and therefore these neighbours are
already accounted for when the neighbouring pixel is visited.

90◦

0◦

-45◦

45◦

Figure 2.3: Pixels looked at at rotational degrees of 45, 90 and 135 degrees.

In theory a RGB image could be converted to a single channel image, by converting
the three 8-bit channels to one 24-bit channel. Only would the matrix consist of an
enormous (2553)2 = 248 = 2.8× 1014 elements and would be a very sparse matrix1, which
would severely impact computational time and memory usage. This is why the Haralick
features are calculated for one channel of the image in HSV colour space at the time. By
also calculating the features for the gray level image, the interrelationship between the
channels is also taken into account. The gray level image is created by averaging the three
channels of the RGB channel.

Even if containing just a single 8-bit channel the co-occurrence matrix is large and
sparse. This is why the Haralick features are generated from this matrix, named after
R M Haralick. These features are named as follows: angular second moment, contrast,
correlation, variance, inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, difference entropy, and two information measures of correla-
tion.

To fully cover all of these features in this paper would be too much, so three of them
are shown below. First the angular second momentum,

fangular second momentum =
X

i

X

j

(p(i, j))2, (2.2)

where p(i, j) is the value at i, j in a normalized co-occurrence matrix. Second is the
contrast,

fcontrast =

Ng−1
X

n=0

n2

0

@

Ng
X

i=1

Ng
X

j=1

p(i, j)

1

A , |i− j| = n, (2.3)

where Ng is the number of distict values in the images’ channel, in our case 256. The

1A sparse matrix is a matrix populated primarily with zeros. If the majority of elements differ from
zero then it is common to refer to the matrix as a dense matrix Stoer and Bulirsch [2002].
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third feature displayed is the second correlation information measure,

fcorrelation info 2 =
q

1− e−2(HXY2−HXY))with (2.4)

HXY = −
X

i

X

j

p(i, j) log (p(i, j)) and (2.5)

HXY2 = −
X

i

X

j

px(i)py(j) log (px(i)py(j)) , (2.6)

where px(i) is ith entry in the marginal-probability matrix obtained by summing the rows

of px(i) =
PNg

j=1 p(i, j) and py(j) the summation the columns.

2.6 Scaling the image

The Haralick texture features are based on the co-occurrence matrix, therefore are depen-
dent on the scaling of the image. A close-up image of a single finger reveals much more
detail and texture than an overview of the entire hand and forearm. By scaling images
down before they are tiled and the co-occurrence matrix is build, not only the number of
tiles is reduced, the amount of detail is reduced as well. This means that the algorithm
will generate somewhat more alike features for a scaled down close up image of a finger,
compared to a unscaled image of the entire forearm.

However, it is not possible to determine the size of the subject in the image before-
hand, because no external information about the subject is present and no visual markers
of known size or distance are available in the image. A way to circumvent this problem
is to generate the features with different scalings of the image. Nevertheless multiple ex-
ecutions of the algorithm on one image increases the computational time a lot and the
algorithm could benefit greatly by providing ‘naturally’ scaled images.

2.7 Classifiers

Weka provides a range of different classifiers. These classifiers have differing input and
output types and can’t be compared in a straight forward manner. For the testing four
different classifiers are used, their differences being put aside below:

• 1R, algorithm that uses only one rule to classify examples;

• C4.5, an algorithm that creates a decision tree;

• Naive Bayes, a probability based classification algorithm;

• Platt’s Sequential Minimal Optimization algorithm, a support vector machine;

• Multilayer Perceptron; a type of neural network.

2.7.1 1R

Described in 1993 by Holte Holte [1993], the 1R is a one level decision tree algorithm,
which ranks the attributes on error rate and choses the attribute with the smallest error.
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The algorithm regards all numeric attributes as continuous and uses a straight for-
wardly method to divide the range into several intervals. To counter the risk of over
fitting when a perfect split is made, creating intervals of single items, a minimum size of
the intervals is required.

2.7.2 C4.5

The J48 decision tree classifier is a java implementation of the well known C4.5 algo-
rithm Quinlan [1993]. The C4.5 algorithm builds a desicion tree in the same way as ID3,
using the concept of information gain. Information gain can be defined as

G(S,A) = E(S)−

m
X

i=1

fS(Ai)E(SAi
), (2.7)

where G(S,A) is the gain of set S after split over attribute A, E(S) is the information
entropy of set S, m is the number of different values of attribute A in S, fS(Ai) is the
proportion of the items possessing Ai as a value for A in S and SAi

is the subset of S
containing the items where the value of attribute A is Ai. The information entropy, E(S)
can be defined as

E(S) = −

n
X

j

= 1fS(j) log2 fS(j), (2.8)

where n is the number of different values of the attribute in S and fS(j) is the frequency
(proportion) of the value j in the set S.

The algorithm recursively splits the tree on the attribute with the highest informa-
tion gain, creating subsets of the remaining data for each child node and repeating the
information gain calculations for each attribute. After the algorithm is done, branches
with little information gain are pruned by replacing them with leaf nodes.

2.7.3 Naive Bayes

The Naive Bayes classifier is a simple probabilistic classifier, which is based on applying
Bayes’ theorem. The algorithm assumes that all features are independent of any other
feature. In reality this assumption is generally wrong, but nevertheless the Naive Bayes
classifier produces good results for complex problems.

The classifier depends mostly on the application of Bayes’ rule,

P (B|A) =
P (A|B)P (B)

P (A)
en Norvig [2003]. (2.9)

In the case of building a classifier, the algorithm perceives as evidence the effect of some
unknown cause and wants to know the cause. In that case, Bayes’ rule becomes

P (cause|effect) =
P (effect |cause)× P (cause)

P (effect)
. (2.10)

Because the algorithm assumes that all features (causes) are independent, it can use the
condititional independence to combine multiple features by the definition of

P (X ,Y |Z ) = P (X |Z )× P (Y |Z ). (2.11)
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Combining the two formulas gives the naive Bayes model

P (Cause,Effect1 , . . . ,Effectn) = P (Cause)
Y

i

P (Effecti |Cause), (2.12)

which forms the basis of the algorithm. By building a probability table and applying these
rules, the classifier builds a probabilistic model.

These equations are only valid for as long as the features are independent. In the
case of the colour and texture features, this is does not hold up. Even in this situation,
the naive Bayes could provide a pretty good model Domingos and Pazzani [1997].

These equations require that the probability distribution of some attribute is known.
This is an easy task with nominal and binary attributes, as they can be estimated from
the training set by dividing the number of samples of given value by the total number of
samples. Numeric data is however continuous and would first have to be discretized in
order to use this technique. This can be done by binning, in which the numerical data is
converted in an nominal attribute and its prior can be estimated.

There is however another way, when the attributes’ data is assumed to be distributed
according to a Gaussian distribution for each of the classes. When confronted with a
numeric attribute x, the algorithm first calculates the mean (µc) and variance (σ2

c ) of x in
each class c. Now the probability of some value given a class, P (x = v|c) can be calculated
using the equation for the Normal distribution,

P (x = v|c) =
1

p

2πσ2
c

e
−

(v−µc)
2

2σ2
c . (2.13)

In reality both the discretizing technique and the Normal distributed estimation are
used, where the former can outperform the Normal distributed estimation, depending on
the discretizing method Dougherty et al. [1995].

2.7.4 Support Vector Machine

A support vector machine tries to separate instances by a linear hyperplane. Instead
of minimizing the empirical loss on the training data, it tries to minimize the expected
generalization loss, by maximizing the separator that is farthest away from all the exam-
ples en Norvig [2003]. This means that the hyperplane used as a separator is the maximum
margin separator. The separator is defined as the set of points x : w · x+ b = 0, with w

the weight vector.

The optimal separator is found by solving the equation

Maximize L(α) =

N
X

i=1

αi −
1

2

N
X

i,j=0

αiαjyiyj(xi · xj), (2.14)

under the constraints αj ≥ 0 and
P

j αjyj = 0. Once the vector α is calculated, the
expression for the separation function itself is

h(x) = sign

0

@

X

j

αjyj(x · xj)− b

1

A . (2.15)
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Figure 2.4: Non-linear separable classification problem jin Wang et al. [2009]. The
hyperplane separates the two classes with the highest margin possible.

This function gives the classification for feature vector x, -1 or 1.

If examples are not linearly separable, training samples from the input space are
mapped by a function F (x) into a higher-dimensional feature space, in such way that the
examples are linearly separable in the new feature space.

Figure 2.5: This figureFletcher [2009] shows how a non-linear separable classification
problem can be converted to a linear separable classification problem by converting the
feature space into a new feature space, in this case by the radial basis kernel function

k(xi,xj) = e
−

 

||xi−xj ||
2

2σ2

!

.

Support vector machines can be put to use in a multi-class classification problem,
by constructing separate separation functions for each pair of classes and comparing the
results with each other. In this project, the SMO-class of Weka is used Wek [a], which im-
plements John C. Platt’s sequential minimal optimization algorithm for training a support
vector classifier using polynomial or RBF kernels Platt [1999].
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2.7.5 Multilayer Perceptron

A perceptron, or neural network, is a graph of nodes, divided in an input layer, one or
multiple hidden layers and an output layer. Each node in one layer connects with a certain
weight wi,j to every node in the next layer, as can be seen in Figure 2.6. The output of a
node is determined by an activation function aj = g(inj) which takes as an argument the
weighted sum of the inputs of the node,

inj =

n
X

i=0

wi,jai. (2.16)

This activation function is a sigmoid function,

f(x) =
1

1 + e−x
, (2.17)

which gives a smooth transition between 0 and 1.

Figure 2.6: Diagram of a multi-layer feedforward artificial neural network mul.

The input nodes take normalized versions of the feature vector of an example. These
values are fed forward through the network. The nodes in the output layer represent the
classification. In the case the classification is not numeric but nominal, an output node
for each of the nominal values is created. When selecting the classification, the node with
the highest output is taken.

Training a perceptron is done by back-propagation, a technique which updates the
weights of all nodes moving from the output layer through the hidden layer(s) to the input
layer. First an example is fed through the network, generating values on the output nodes.
These values are compared with the desired outcome: the classification of the example.
The error or difference between those two values is propagated backwards through the
network, adjusting the weights of each node accordingly.

The function for updating the weights of the connections to a node is

wj,k ← wj,k + α · aj ·∆k · en Norvig [2003], (2.18)

with α the learning speed of the network, wj,k the weight between nodes j and k, ∆k is
the error times the derivative of the sigmoid function,

f 0(x) = f(x)(1− f(x)). (2.19)

By repeatedly feeding examples through the network and adjusting the weights, the net-
work is trained.
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Implementation

This section explains how the overall setup of the classification process is set up and how
the different technologies are used together.

3.1 Overall setup

The overall setup used to move from input images to features to a classifier is divided in
five steps: annotation, tiling, feature calculation, training and testing.

The first step is annotating the images. This is done with TDR, as explained in
Section 2.2.1. The annotations are stored in two files: an XML file describing the different
annotations used and location of the contour data in the second file, which is a binary
file. In this file, each byte represents two 4-bit directions in which the contour moves with
respect to last pixel location.

The second and third step are performed by self-written software, in C++. The
program reads the images of the trainingsset and reconstructs their contours, converting
them into a mask per pixel. The program then scales each image if instructed and divides
the image into tiles. For each tile features are calculated and stored in an output file,
which is in the ARFF-format.

For the fourth step, training a classifier, Weka is used. The ARFF-file is slightly
modified to remedy errors with missing values and then used as input for the classifier.

The last step, testing the classifier is done internally in Weka by a tenfold cross
validation. The exact methods of testing differ per experiment and will be detailed where
needed.

3.2 Scaling and tiling

The program responsible for creating features out of the images accepts two parameters:
tile size and scale. The program scales first and then cuts the image into tiles. This means
that the same number of tiles are produced with a scaling factor of one and a tile size of
32 pixels as a scaling factor of 1/2 and a tile size of 16 pixels.
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Annotation Images
XML cat-
alog file

Binary con-
tour data

Create mask OpenCV’s Mat Mask

Tiling Tiles

Calculate features
Features

(ARFF-file)

Classify using Weka Model

Figure 3.1: Flow chart of data flow in the system

For easy comparison of different scaling factors powers of two are used as the tile size.
This gives the possibility to split a tile in two, four or any other power of two smaller tiles
without ending up with a non integer number.

The scaling is done by the OpenCV function resize, which uses bilinear interpolation
to scale down the image. This way, pixel values are determined by the average of their
source pixels, not just one of the source pixels. As a CCD can be seen as a collection of
buckets in which photons are collected, this is essentially the same process as averaging
the photon density in the area of the bucket. By scaling down in a similar way, the image
is scaled down as if the camera was further away from the subject, which was the reason
for scaling down in the first place.

The image is cut into tiles by Algorithm 3.1

Algorithm 3.1 Cutting the image in tiles.

image ← resize(image, scaling)
for x = 0 → (image.cols− 2)/tileSize.width do

for y = 0 → (image.rows− 2)/tileSize.height do
tileRect ← createRect(x ∗ tileSize.width+ 1,

y ∗ tileSize.height+ 1, tileSize.width, tileSize.height)
tile ← getImageRegion(image, tileRect)
determineClass(tile)
calculateFeatures(tile)

end for

end for

3.2.1 Determining the tile classification

The classification of each tile is determined by the classification of the pixels it contains.
This classification of the pixels is derived from the mask that was created by annotating
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the image. As will be explained in Section 4.1.2, two classifications will be calculated for
each image:skin/background and not-disease.

For the skin/background, the class of the tile is determined by a majority of 33% of
the pixels, where the disease classes take precedence over skin and skin takes precedence
over background. If the image isn’t annotated with background and normal skin, the tile
is classified as unknown.

For hte not-disease, classification is simpler: if more than 33% of the pixels is
disease-affected skin, the classification is disease. If not disease, the classification is
not-disease. Algorithm 3.2 shows the calculations of both classifications in more detail.

Algorithm 3.2 Determining the classification of a tile.

for all classes do

tmpMask ← threshold(pixelMask, valueOfClassInMask(class))
percentage[class] ← cv :: countNonZero(tmpMask)

/(pixelMask.rows ∗ pixelMask ∗ cols)
end for

if percentage[‘disease0] > 0.33 then

classificationskin/background ← image.disease
classificationnot−disease ← image.disease

else if percentage[‘normal − skin0] > 0.33 & skinIsAnnotated(image) then
classificationskin/background ← “normal − skin00

else if percentage[‘background0] > 0.33 & skinIsAnnotated(image) then
classificationskin/background ← “background00

else

classificationskin/background ← ‘?0

classificationnot−disease ← ‘no− disease0

end if

3.3 Feature calculation and co-occurrence matrix

After the image is split into tiles, the features are calculated. For calculating the Haralick
features, a co-occurrence matrix is generated for the tile. This task is done by a modified
GLCM class, where GLCM stands for Grey Level Co-occurrence Matrix, which means
that there is only one channel for which the matrix is calculated. Because of this, separate
matrices are created for each channel in RGB and HSV-space, resulting in separated
features. The channels are split by OpenCV’s split function.

The colour based features are calculated with OpenCV’s meanStdDev function, cal-
culating both the mean and the standard deviation of each channel. The Haralick features
are calculated by the GLCM class. All features are outputted in an ARFF file, for use
with the classifier.

3.4 Classifiers

All classifiers that are used are written in Java for Weka. This section elaborates on Weka’s
implementation of the algorithm and the settings that are provided.
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3.4.1 J48

J48 Wek [b] is Weka’s implementation of the C4.5 decision tree algorithm described in
Section 2.7.2 and can produce a unpruned or pruned tree. The possible settings with their
values are presented in Table 3.1.

Setting Description Used value

binarySplits Whether to use binary splits on nominal at-
tributes when building the tree

false

collapseTree Whether parts are removed that do not reduce
training error

true

confidenceFactor The confidence factor that is used for pruning
(smaller values incur more pruning)

0.25

minNumObj The minimum number of instances per leaf 2
subtreeRaising Whether to consider the subtree raising operation

when pruning
true

unpruned Whether pruning is performed false

Table 3.1: Settings and their values for the J48 algorithm.

3.4.2 NaiveBayes – Naive Bayes implementation

Weka’s implementation of the Naive Bayes algorithm, NaiveBayes Wek [c], is very straight
forward. From the website:

Class for a Naive Bayes classifier using estimator classes. Numeric es-
timator precision values are chosen based on analysis of the training data.
For this reason, the classifier is not an UpdateableClassifier (which in
typical usage are initialized with zero training instances) – if you need the
UpdateableClassifier functionality, use the NaiveBayesUpdateable clas-
sifier. The NaiveBayesUpdateable classifier will use a default precision of
0.1 for numeric attributes when buildClassifier is called with zero training in-
stances.

For estimating the priors on numeric data, the attributes are assumed to be normal
distributed. Optionally the algorithm can use kernel estimation instead of a single normal
distribution or use binning to discretize the numeric attributes.

In our testing purposes, the default settings were used.

3.4.3 SMO – Support Vector Machine

From the website:

Implements John C. Platt’s sequential minimal optimization algorithm for
training a support vector classifier using polynomial or RBF kernels. This
implementation globally replaces all missing values and transforms nominal
attributes into binary ones. It also normalizes all attributes by default. (Note
that the coefficients in the output are based on the normalized/standardized
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data, not the original data.) Multi-class problems are solved using pairwise
classification.

To obtain proper probability estimates, use the option that fits logistic regres-
sion models to the outputs of the support vector machine. In the multi-class
case the predicted probabilities will be coupled using Hastie and Tibshirani’s
pairwise coupling method. Note: for improved speed standardization should be
turned off when operating on SparseInstances. Wek [a]

As for the settings, the values shown in Table 3.2 were used.

Setting Description Used value

buildLogisticsModel The minimum number of instances per leaf false
c The complexity constant C 1
epsilon The epsilon for round-off error 10−12

filterType Determines how the data will be transformed Normalize
kernel The Kernel to use PolyKernel

toleranceParameter The tolerance parameter 10−3

Table 3.2: Settings and their values for the SMO algorithm.

3.4.4 MultilayerPerceptron – Multilayer Perceptron

The MultilayerPerceptron class Wek [d] uses a network of nodes that can be build by hand

or created by the algorithm. Default, it creates one hidden layer of |attributes|+|classes|
2 nodes.

All data is run multiple times through the network, the default number of epochs is 500.
For this classifier all the default settings were used. These settings are shown in Table 3.3

Setting Description Used value

hiddenLayers The hidden layers to be created for the net-
work. (Value should be a list of comma sep-
arated Natural numbers or the letters ‘a’ =
(attribs + classes) / 2, ‘i’ = attribs, ‘o’ =
classes, ‘t’ = attribs .+ classes) for wildcard
values

a

learningRate Learning Rate for the back propagation algo-
rithm.

0.3

momentum Momentum Rate for the back propagation al-
gorithm.

0.2

nominalToBinaryFilter A NominalToBinary filter will be used. true
normalizeAttributes Whether to normalize the attributes true
normalizeNumericClass Whether to normalize numeric classes true
trainingTime Number of epochs to train through. 500

Table 3.3: Settings of the MultilayerPerceptron classifier of Weka
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3.4.5 Running the classifier

Running the feature generator and the classifiers in various parameter settings is a time
consuming task, especially for smaller tile sizes. This is why a set of scripts are written to
automatically distribute the computation over multiple computers. It consists of a master
and a slave script, the master giving out pieces of work to the slaves, like calculating the
features for a given tile size and scaling, or running a classifier. When a slave computer is
finished, the result is copied back to the master.
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Results

In this section the results of the tiling algorithm and the trained classifiers are shown
and discussed. The experiments that are conducted will make it possible to answer our
research questions.

4.1 About the training data

Before training the classifiers, it is necessary to look into the data that will be used. This
data is created by the tiling algorithm for various parameter settings for tile size and
scaling. In this section, these data sets are investigated. Also, a baseline is determined in
order to be able to tell anything about the accuracy of the classifiers.

4.1.1 Classifications in the data set

The distribution of diseases in the source image data set was the topic of Section 2.1.
This section elaborates on the training data: the calculated features from the tiles. The
algorithm detailed on in Section 3.2.1 assigns two classifications to each tile. Because Weka
can only train for one classification, the dataset that is created by the feature program
is reformatted and saved as two seperate datasets, each containing a classification. For
the rest of this chapter, the dataset that is used will be specified for all results. The
dataset containing the distinction between skin and background tiles will be referenced as
skin/background, the other as not-disease.

The features are calculated for various tile sizes and scaling factors. Table 4.1 shows
the distribution of classes in each of these datasets. A graphical display in Figures 4.1
and 4.2 clearly shows the skewed distribution of the classes.

4.1.2 Using the unclassified tiles

As is visible in Table 4.1, there are a lot of missing classifications for the skin/background
dataset. This is because in the image data set, not all images were fully annotated. A
subset of the image was only provided with annotation of disease-affected areas.
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Other parts can thus be either normal-skin or background. This is why the tiling
algorithm can’t determine the class of these tiles, which is why they are marked as unknown
or ?. Weka just ignores unknown classifications, so the size of the skin/background dataset
is decreased by the number of unknown classes, which is why the percentages of the diseases
are higher in these sets.

In order to use the entire data set, the disease/not-disease dataset was created. In
this dataset the classes normal-skin and background were grouped together. Because
there is only a single class aside the disease classes, the unknown values – containing tiles
that are either background or normal-skin, see Section 3.2.1 – can also be classified as
not-disease.

Putting these three classes together further shifts the distribution to the non-disease
side, because all of the unknown tiles are now seen as well.

4.1.3 Effects of the tile size on the distribution

The Figures 4.1 and 4.2 also show that the percentage share of the diseases slightly de-
creases as the tile size decreaeses. This happens because smaller tile sizes correspond with
more detail. Each halving of the tile size splits each large tile into four smaller tiles. Where
as a third of the original pixels had to be annotated as disease in order to get the entire
tile classified as such, with the four smaller tiles each of the smaller tiles have to contain a
majority of 33% before all of the tiles are classified as diseaes. This is not likely to be true
for tiles on the edge of an affected area. When these are divided into four smaller tiles, it
is likely that the disease covers not all the tiles for more than 33%. This means that the
number of diseased tiles will decrease when the tile size is also decreased.
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Figure 4.1: Distributions of classes in the skin/background dataset, for various tile
sizes. These numbers are calculated with a scaling factor of 1 and will slightly differ
with other scalings. Missing values are not taken into account.
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Figure 4.2: Distributions of classes in the not-disease dataset, for various tile sizes.
These numbers are calculated with a scaling factor of 1 and will slightly differ with
other scalings.

4.1.4 Determining the baseline

There are many approaches for defining a baseline accuracy. Two possibilities were con-
sidered: Weka’s ZeroR algorithm and a random guess.

The ZeroR algorithm simply selects the largest class in the data set and classifies
all input as that class. The accuracy that follows could be a baseline for putting the
performance measured in other classifiers into perspective. Though this is a very crude
algorithm, in our very unbalanced data set especially the not-disease dataset it focusses
on the classes that are no diseases. This means that even if it tells something about the
overall accuracy of the classifiers, it doesn’t provide a baseline for the expected accuracy
of the diseases.

To create a baseline for each class seperately, a theoretical classifier is used that
randomly guesses one of the possible classifications. This gives a very low and simple
baseline for each class. Because a single measure is needed, the average of the distributions
shown in Table 4.1 are used to calculate the baseline. Table 4.2 shows the baseline accuracy
values that are used in the following sections, where they will be referred to as “baseline”.
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Skin/background No-disease

Class Avg. share Random acc. Avg. share Random acc.

Diagnosis-1739023 8.69% 1.45% 5.15% 1.03%
Diagnosis-6929067 2.42% 0.40% 1.44% 0.29%
Diagnosis-6929070 4.78% 0.80% 2.83% 0.57%
Diagnosis-7573943 9.19% 1.53% 5.45% 1.09%
Normal-skin 40.38% 6.73%
Background 34.54% 5.76%
No-disease 85.13% 17.03%

Average accuracy 2.78% 4.00%
Total random accuracy 1/6 1/5
Total ZeroR accuracy 40.38% 85.13%

Table 4.2: Baseline accuracy for each class seperately and an average accuracy. The
accuracy per class is determined by a theoretical random classifier, resulting in a total
accuracy of 1/6 for the skin/background dataset and 1/5 for the no-disease dataset.
Total accuracy is also determined by the ZeroR algorithm, resulting in the share of the
largest class as total accuracy.
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4.2 Contribution of tile size and scaling

The tiling algorithm can produce features for various tile sizes and can also scale down
images before dividing them into tiles. To see if altering the tile size and/or the scale has
any effect on the performance, datasets with various tile sizes and scalings were produced.
This sections shows if there is any relationship between the tile size, scaling and the
accuracy of a classifier. Because using all classifiers discussed in Section 3.4, would produce
too much data, only the classifier J48 was used. Exploratory testing showed that this
classifier gives relatively high results with reasonably training time.

There are two kinds of tile sizes that are worth looking at: the size of the tiles that
are used to calculate the features and the original tile size before scaling. Up to now,
everywhere the tile size was mentioned, a scaling of one was used, so the two kinds of tile
size were the same. From this point on, we’ll refer to the former as “scaled tile size” and
the latter as “original tile size”. The relation between those two indicated by

Original tile size =
Tile size

Scale factor
(4.1)

and shown in Table 4.3.

Scaling factor

Original tile size 1 1/2 1/4 1/8 1/16 1/32

256 256 128 64 32 16 8
128 128 64 32 16 8 -
64 64 32 16 8 - -
32 32 16 8 - - -
16 16 8 - - - -
8 8 - - - - -

Table 4.3: Relation between the original tile size and the scaling factor: the scaled tile
size, the size of the tile where features are calculated from.

Looking at the scaled tile size, the size of the tiles used to calculate the features, tells
something about the usefulness of the features in relation to the amount of pixels that
were used to calculate them. In Figure 4.3 the accuracy of the J48 classifier was plotted as
a function of the tile size, for various scalings. The trend line indicates a slight decrease in
accuracy as the tile size increases, suggesting that smaller tile sizes are more useful than
the larger ones.

Although Figure 4.3 indicated a slight decrease of accuracy for larger tile sizes, it is
to be expected that this decrease has another reason. For large tile sizes, no or moderate
scaling could be done, since scaling down the image too much would result in just a few tiles
for each image and classification would be pointless. Even for the data that is generated,
it is difficult to compare them because the features used to train the classifiers do not
originate from the same tiles and as such can vary merely due to the tiling algorithm had
different input.

To take a better look at the effect of the scaling factor and tile size on the accuracy
that the J48 classifier can achieve, the original tile size is taken into account. The original
tile size is used to create groups of combinations of tile size and scaling, such that each
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Figure 4.3: Accuracy of the J48 classifier trained with various tile sizes and scalings
plotted against the tile size. The trend line, computed by linear regression, shows a slight
decline as the tile size increases.
Training of the classifier was done multiple times, the error bars indicating the 95%
confidence intervals of the standard error. The number of repetitions vary for each
combination, see Tables A.1 and A.2 in the Appendix for exact numbers.
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group contains all ‘scaled down’ versions of an original tile, as if the tile was first cut out
the original image and then scaled down. In Table 4.3 the relation between these three
parameters can be seen, as well as the grouping that occurs. When plotting the obtained
accuracy of the J48 classifier against the scale size and colouring each grouping of scale
and tile size distinctively, as can be seen in Figure 4.4, a few things may be observed.

• Within a group of tiles with the same origin in the source image, scaling down
decreases the accuracy of the classifier. Each group shows about the same level of
decline, with an exception of the original size 16 group in Figure 4.4b.

• There is a clear ranking between the accuracy of the different groups, the trend lines
do not cross each other.

• There seems to be almost no difference in the accuracy of the original tile sizes 32,
64 and 16. Larger original tile sizes clearly perform less and also the 8× 8 pixel tiles
perform less than the larger ones.

• There is a much larger margin of error in the largest tile size 256 than for the other
sizes, even though these experiments were repeated most. (See Tables A.1 and A.2
in the Appendix).

A possible explanation for the tile sizes 16× 16, 32× 32 and 64× 64 performing best,
with 32 × 32 as the maximum, could be that the texture that is present in the images is
around that size. Creating tiles that are smaller than the distinctive texture would result
in tiles that only contain a portion of a texture by which information would be lost. It is
unlikely that all distinctive textures are exactly of the same size, which explains the small
differences between the three different tile sizes.
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Figure 4.4: Accuracy (in %) plotted against scaling factor for the dis-
eases/skin/background dataset with 95% confidence levels on the standard error. Com-
binations of tile size and scaling where the combinations of tile size and scaling factor
are coloured by their original tile size. For each original tile size, a trend line is plotted.
The plot is made with a normal y axis and a logarithmic x axis, so each step down
means a halving of each tile.
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4.3 Comparison of classifiers

Machine learning is a complex task and the best approach and best algorithm differs for
each situation. This section contains a comparison between the different classification
algorithms discussed in Section 2.7.

4.3.1 Experiment setup

For this experiment it isn’t feasible to compare the classifiers for all combinations of tile
size and scaling factor. Therefore comparison is done only for the best combination of
scaling factor and tile size. According to the outcomes of Figure 4.4, the combination
that gave the best overall accuracy in both the datasets was the tile size 32 and scaling
factor one, closely followed by the tile size 64 and scaling 1. The latter was chosen for
this experiment. Because the 64 × 64 tiles are larger, the overall dataset is four times
smaller than that of 32×32 tiles. This makes it a lot easier to run each test multiple times
to generate more accurate results. Though larger tiles could imply that smaller spots of
disease are not classified as such in the tiling algorithm, Figure 4.1 indicates no such thing
and even shows slightly higher percentages for the disease than at the 32× 32 level.

Just comparing the overall accuracy, the percentage of correctly classified tiles, won’t
provide enough detail for comparing the classifiers, as preliminary tests showed that the
overall accuracies were very close together. Except for the correctly predicted percentage
of tiles, the classifiers also output a confusion matrix Witten et al. [2011]. In this matrix,
each column represents the instances in a predicted class and each row represents the
instances in the actual class. Each element thus represents the number of instances for
which the actual class is the row and the predicted class is the column.

Reducing the level of detail in the confusion matrix leaves four categories for each
class i:

True positives are instances of class i that are correctly classified as class i;

False positives are instances of another class that are incorrectly classified as class i;

False negative are instances of class i that are incorrectly classified as another class;

True negatives are instances which are not of class i and indeed classified as another
class that is not i, whether this prediction is correct or incorrect.

These values are directly proportional to the distribution of classes in the instance
dataset and therefore not very suitable to compare the performance of the classifiers with
our unbalanced datasets. With these four numbers for each of the classes, there are some
other statistics that are more useful in comparing these values:

Recall or the true positive rate,

true positives

true positives + false negatives
, (4.2)

is the fraction of instances of the class that are found or ‘recalled’ out of all instances
of this class, giving information of how many tiles of a disease are found;

Precision ,
true positives

true positives + false positives
, (4.3)
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is the fraction of correctly classified instances, the true positives, out of all instances
that received the prediction of this class, providing a measure of how many tiles are
incorrectly classified as a disease;

F-measure is the harmonic mean of recall and precision,

2×
precision× recall

precision + recall
, (4.4)

combining the two statistics into one.

4.3.2 Results

In Figures 4.5 and 4.6, the results of the experiment are displayed. Each of the classifiers
was run thirty times to create numbers with a high confidence. The exact data is shown
in Tables A.3 and A.4 in the appendix.

On inspecting the results, the following findings might be observed.

• Each algorithm scores very good on classifying background, both in recall and pre-
cision.

• The 1R algorithm clearly tends to generate a rule separating the largest classes,
normal skin and background from the other classes as it only scores comparable
results on those two classes.

• The NaiveBayes algorithm tends to classify many tiles as one of the diseases; scoring
high on recall and low on precision for those classes. This also manifests itself in the
low recall on normal skin. It would be interesting to investigate if the samples that
are falsely classified as a disease, did come from an image containing that disease.

• The SMO algorithm has the opposite preference of classifying diseases very reticent;
scoring low on recall and attaining the highest score on precision.

• The J48 algorithm shows steady performance on all classes on both precision and
recall, however it seems to perform better at the diseases/skin/background dataset
than at the diseases/no disease dataset.

• Most of the classifiers perform better on the normal skin and background samples
than on the samples of the diseases. This could be because the normal skin and
background tiles are in much greater number or because there is less variance between
the tiles, as would be with a plain blue background. If this disparity still exists when
resampling the dataset such that all classes are of the same size would this back up
the notion that this inequality is caused by the skewed distribution.

• Each of the values are well above the baseline described in Table 4.2.
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Figure 4.5: Comparison of recall, precision and f-measure of different classifiers, trained
on the disease/skin/background dataset for tilesize 32 and scale 1.0.
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Figure 4.6: Comparison of the recall, precision and f-measure of different classifiers,
trained on the disease/no disease dataset for tilesize 32 and scale 1.0.

Automated classification of skin diseases using tile-based texture features 37 of 65



CHAPTER 4. RESULTS

4.4 Contribution of features

As discussed in Sections 2.4 and 2.5, there are two different groups of features: the colour
features and the texture features. The composition of these features was done quite
arbitrary, as in advance there was no clue about their usefulness for building a classifier.
To give some insight in these features, further investigation was needed as the classifier
algorithms do not give much information about this.

4.4.1 Experiment setup

A lot of things could be done to zoom in on the usefulness of the features. Weka provides
several algorithms to rank features on individual basis, or to compose a subset of features
which give the best performance. Repeatedly training the classifiers with the dataset with
leaving out a feature each time would provide insight in which features do not contribute
anything and thus could be left out. However, with a total of 93 features, this is not a
easy task. Also, many features, like the ratios and the original colour values, are directly
dependent on each other and leaving just one out would not mean that much difference.

Instead of manually trying to find the best and worst features, Weka is used to select
and rank both features individually and create a subset of the best features. With just
this subset a new dataset is created and the five classification algorithms are trained so
their performance can be measured. Again, the dataset with tile size is 64 and a scaling
factor of one is used. Because we are most interested in finding the best ranked features
for discriminating between diseases, the dataset is reduced by removing the background
and skin classes, such that only the four diseases remain.

To create a ranking for the features, two attribute evaluation algorithms, InfoGain-
AttributeEval and OneRAttributeEval, are used. The way InfoGainAttributeEval

works is the same method as the J48 algorithm uses to calculate its first split: calcu-
lating the Info Gain on the data, using the algorithm described in Section 2.7.2. The
OneRAttributeEval algorithm evaluates the performance of Holtes’ 1R algorithm Holte
[1993] as described by Holmes Holmes and Nevill-manning [1995]. The two algorithms are
executed with tenfold cross validation to improve the reliability of the outcomes.

For the selection of a subset, the CfsSubsetEval algorithm is used. This algorithm,
designed by M. A. Hall evaluates the worth of a subset of attributes by considering the
individual predictive ability of each attribute along with the degree of redundancy between
them Hall [1998]. The algorithm is executed with tenfold cross validation, to provide more
accurate results.

The third comparison is between the colour features and the texture features. The
tile size 64 and scaling factor one datasets will be split into two subsets with only colour
features or only texture features and the results of the classifiers will be compared. To
generate accurate results, each configuration is run twenty times with different seeds.

38 of 65 Automated classification of skin diseases using tile-based texture features



CHAPTER 4. RESULTS

4.4.2 Results

Ranking of the features

The results of the two feature ranking algorithms, performed on the dataset containing only
the four classes of diseases, is displayed in Table 4.4. Some of the interesting observations
are listed here.

• The best ranked attribute, the average homogeneity of the value colour channel,
valueglcmhomogenityavg, clearly outperforms the other attributes with a much
higher InfoGain and also a higher score on the 1R separator.

• The features based on the colour channels hue and value, both originating from from
the HSV colour space, score very good, representing twelve out of fifteen in the top
list.

• The three ratios that were added all show up in the table, the green/blue ratio at
the fifth place and the other two ratios blue/red and green/red both all the way on
the bottom. Unfortunately, inspecting the raw training data revealed both values to
be wrongly calculated, resulting in zero for an answer.

• The Haralick features homogeneity and contrast are present seven times in the top
fifteen, making them very good features.

• With six out of the ten lowest ranked features, the saturation colour channel is not
of much use.

Subset evaluation

The CfsSubsetEval algorithm was run with hundred fold cross validation, outputting
the found created as a listing of the attributes with their percentage included in the
subsets. Observing Table 4.5, a lot of the highest ranked attributes are represented in
almost all tiles. The ones that are not included, like the fourth-ranked attribute hue-

glcm-homogenity-stddev, likely show much similarities with previous included attributes.
Adding such attribute to the subset would not improve its performance. As with the
previous experiment, almost all attributes included are derived from the HSV colour space.

This experiment shows that not all attributes that are scored high by the ranking
algorithms are included in the best subset of attributes. This means that there are many
correlated attributes in the dataset. Removing some of the redundant attributes would
not have a big impact on the performance, but would increase computational time and
lower memory requirements when training classifiers.

Plotting all samples of diseases in the three dimensional space of three of the features
of the subset, value-glcm-homogenity-avg, value-glcm-energy-stddev and mean-color-
hsv-hue, a good degree of separation occurs, as can be seen in Figure 4.7.

Performance of only colour or texture features

The results of the third experiment, the comparison of the J48 classifier with only colour
or texture features would seem to be predictable up front. Given that in the previous two
experiments the texture features are more frequent than the colour features, it would be
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Values

# Ranking Attribute InfoGain 1R In subset

1 1.0 value-glcm-homogenity-avg t 0.85 70.8 100%
2 2.6 value-glcm-contrast-avg t 0.62 64.3 99%
3 3.5 hue-glcm-entropy-stddev t 0.62 63.7 100%
4 3.9 hue-glcm-homogenity-stddev t 0.59 64.4 0%
5 4.0 mean-color-ratio-green-blue c 0.62 62.1 100%
6 6.0 value-glcm-energy-stddev t 0.54 59.5 100%
7 7.1 value-glcm-contrast-stddev t 0.51 58.3 1%
8 8.2 mean-color-hsv-hue c 0.45 57.3 100%
9 9.8 gray-glcm-contrast-avg t 0.44 56.2 41%

10 9.9 hue-glcm-correlationinfo2-stddev t 0.44 55.8 100%
11 11.9 hue-glcm-contrast-stddev t 0.43 54.3 0%
12 14.7 value-glcm-clustertendency-stddev t 0.42 53.4 0%
13 15.3 hue-glcm-maxprob-stddev t 0.41 53.1 91%
14 15.9 hue-glcm-clustertendency-stddev t 0.39 54.0 0%
15 16.3 gray-glcm-homogenity-avg t 0.41 53.1 0%

...
83 82.0 saturation-glcm-maxprob-stddev t 0.15 41.5 0%
84 83.1 gray-glcm-correlation-avg t 0.12 42.0 0%
85 85.4 gray-glcm-correlationinfo1-stddev t 0.11 39.6 0%
86 85.8 saturation-glcm-info2-avg t 0.10 39.7 0%
87 87.0 saturation-glcm-info2-stddev t 0.09 38.4 0%
88 89.6 gray-glcm-entropy-stddev t 0.08 35.3 0%
89 89.7 saturation-glcm-info1-stddev t 0.07 36.0 0%
90 90.7 mean-color-ratio-green-red c 0.00 36.6 0%
91 90.8 mean-color-ratio-blue-red c 0.00 36.6 0%
92 91.1 saturation-glcm-correlation-avg t 0.03 35.1 0%
93 91.3 saturation-glcm-correlation-stddev t 0.03 35.0 0%

Table 4.4: Results of the attribute rankers InfogainAttributeEval and OneR-

AttributeEval. The table is ordered on average ranking and shows the top fifteen and
ten lowest ranked attributes. The dataset used as input for the attribute rankers con-
tains only samples of diseases: the skin and background classes were removed from the
diseases/skin/background dataset. The column ‘In subset’ shows the percentage that the
attribute was included in the subset generated by CfsSubsetEval. The column showing
t or c indicates if the attribute is a colour feature or a texture feature.
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Attribute Included in subset Ranking

value-glcm-homogenity-avg t 100% 1
hue-glcm-entropy-stddev t 100% 3
mean-color-ratio-green-blue c 100% 5
value-glcm-energy-stddev t 100% 6
mean-color-hsv-hue c 100% 8
hue-glcm-correlationinfo2-stddev t 100% 10
saturation-glcm-homogenity-stddev t 100% 16
value-glcm-homogenity-stddev t 100% 17
mean-color-hsv-saturation c 100% 25
mean-color-rgb-blue c 100% 30
gray-glcm-homogenity-stddev t 100% 59
value-glcm-contrast-avg t 99% 2
hue-glcm-correlationinfo2-avg t 97% 38
hue-glcm-energy-stddev t 96% 29
hue-glcm-maximumprobability-stddev t 91% 13
saturation-glcm-homogenity-avg t 91% 35
gray-glcm-contrast-stddev t 60% 22
gray-glcm-contrast-avg t 41% 9
value-glcm-entropy-stddev t 11% 57
saturation-glcm-energy-stddev t 9% 31
value-glcm-correlation-stddev t 3% 50
value-glcm-contrast-stddev t 1% 7
value-glcm-correlation-avg t 1% 55

Table 4.5: Subset evaluation results with 100-fold cross validation, showing the percent-
age that each attribute was included in the subset together with the ranking of the at-
tribute according to Table 4.4. Attributes that were zero times included are not displayed.
Each subset contained 17 different attributes. The column showing t or c indicates if
the attribute is a colour feature or a texture feature.
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Figure 4.7: Plot of the features value-glcm-homogenity-avg, value-glcm-energy-

stddev and mean-color-hsv-hue. Except for the diagnosis-6929067, all samples are
quite separable with only these three features.
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likely that the dataset of colour features would be outperformed by the dataset of texture
features.

When plotting the results in Figure 4.8, this hypothesis is indeed proven correct,
taking in account the 95% confidence levels that lay around 3.5, as can be seen in Table A.5
in the Appendix. Remarkable is that the texture-only dataset even performs slightly better
(not significant) than the dataset containing all features. This indicates that classifiers
might profit from datasets containing less features, a reason why further research should
focus in experimenting with subsets of the dataset.

Another observation is that for the normal skin and background classes, both subsets
perform as good as the original.
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Figure 4.8: Comparison between colour and texture features. Displayed is the f-measure
averaged over the classifiers J48, NaiveBayes, SMO and MultilayerPerceptron.
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4.5 Classifying images

Whereas all experiments so far were based on the recognition of tiles, the final goal of this
project is to be able use the classified tiles to say something about the images they are
originating from. It is not possible to say that when a disease has a recall of 75%, 75% of
the images with this disease are also found. There are several reasons why, but first the
way images are classified must be explained. We know that all images are of affected skin,
so the algorithm simply has to choose which disease it sees, not to able to discriminate
between diseased and healthy skin. Therefore, the algorithm simply breaks the image into
tiles and classifies them. The image is then classified according to the largest disease class
that is present in the tiles.

Reasons why the recall on images won’t automatically compare with the recall of the
tiles would be:

• the distribution of the correctly classified tiles won’t be evenly distributed amongst
the images, therefore some images could contain only correctly classified tiles, while
another image would not contain any correct tiles at all, still making up for a total
of 75% recall;

• not all images contain the same amount of diseased tiles, in some image there is just
less affected skin shown than in others, also skewing the distribution;

• although a majority of the diseased tiles would be classified correctly, when the
precision of the classifier is not perfect, some false positives of other diseases will
also show up in the images;

• even though all performance measures of the classifiers were calculated with tenfold
cross validation, it can be expected that of all training images, ten percent of the
tiles are left out of each fold. This means that slight differences between the images
can also be ‘learned’ by the classifier, lowering performance on the images that were
not annotated and therefore not used in the training.

4.5.1 Experiment setup

In order to classify the images, a new dataset was created, containing the features without
classification for all 73 images in the data set. Time limited, the scope is again narrowed
to only the tile sizes 64 and 32, both with scaling factor one. For each of the classifiers,
the stored model is used to create predictions for the tiles. The tiles are then linked back
to their originating image and totals for each class are calculated.

4.5.2 Results

The results are displayed in Figure 4.9. When comparing the recall with that of the tiles
in Figure 4.5, the low recall for diagnose-6929067 is visible in both histograms.

The differences between the 32 and the 64 tiles are inconclusive: for diagnosis-1739023
the performance seems to increase with the smaller tile size, whereas for other diseases
it seems to have less effect or even decreases. To get a clue why diagnosis-6929067 is
so badly recognised, a look at the original distribution of the images in Section 2.1 shows
a possible reason: the number of annotated samples is only a third of all images while
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Figure 4.9: Recall on classification of images

diagnosis-6929070 and diagnosis-7573943 both have two third or more of the samples
annotated, making it harder for the classifier to learn all characteristics and manifestations
of the disease. However, diagnosis-1739023 is recalled very good by all classifiers, while
this class too has only a third of its images annotated.

A better explanation can be found when looking at the images themselves. Diagnosis-
6929067, Contact Dermatitis, apparently has many manifestations, as can be seen in Fig-
ure 4.10. Together with a limited number of annotated image, not even containing all
manifestations, it becomes virtually impossible to get an accurate prediction. A simple
solution for this problem would be to add more annotated samples to the set.

Averaging the results, the best performing classifier is J48, with both tile sizes giving
an equal average recall of 70%.

Figures 4.11 to 4.18 show for each disease two images that are classified. One sample
of an image that was also used to train on and one image that was not included in the
train set. All images were marked with the model created by the J48 algorithm, which
was trained with 32 × 32 tiles and unscaled images. The following colours are used to
mark the classes in these images:

• Pink: diagnosis-1739023

• Salmon: diagnosis-6929067

• Yellow: diagnosis-6929070

• Green: diagnosis-7573943

• Slightly gray overlay: normal-skin

• Slightly white overlay: background
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Figure 4.10: Close-ups of image diagnosed with diagnose-6929067
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Figure 4.11: Image of diagnosis-1739023 that is correctly classified. This image was
used in training the classifier.

Figure 4.12: Image of diagnosis-1739023 that is correctly classified. This image was
not used in training the classifier. Compared to Figure 4.11 this image contains more
‘noise’ from misclassified tiles, although a big majority is still correctly classified.
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Figure 4.13: Image of diagnosis-6929067 that is correctly classified. This image was
used in training the classifier.

Figure 4.14: Image of diagnosis-6929067 that is incorrectly classified as
diagnosis-1739023. This image was not used in training the classifier. The image
clearly shows that the in the upper left corner, a lot of misclassified tiles exist. This is
likely due to the fact that the texture on the torso is different than that of hands and
was never seen by the classifier. All the rest of the image contains largely noisy mis-
classified tiles, although the fingers are as a whole misclassified rather than containing
some single misclassified tiles.
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Figure 4.15: Image of diagnosis-6929070 that is correctly classified. This image was
used in training the classifier.

Figure 4.16: Image of diagnosis-6929070 that is correctly classified. This image was
not used in training the classifier. As can be seen, the accuracy is lower and level of
noise in the image is indeed higher than in the unseen Figure 4.15
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Figure 4.17: Image of diagnosis-7573943 that is correctly classified. The image was
included in the set used to train the classifier. There are almost no tiles wrongly clas-
sified.

Figure 4.18: Image of diagnosis-7573943 that is incorrectly classified as
diagnosis-7573943. This image was not used in training the classifier. Although this
picture contains part of the fingers, the main topic are the foots of the patients. On both
parts there are examples of random misclassifications and larger patches of skin that are
misclassified.
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Discussion and Conclusions

Although a great deal of discussion was already added to the Results, where it was more
appropriate, a few more remarks and areas for improvement can be made on the process
as a whole.

5.1 The road not taken

This project is a feasibility study and in the process many choices were made early on,
limiting the possibilities further on. Looking back on the process, some minor and major
points of improvements can be named.

5.1.1 The concept of tiles

While tiling and dividing the image in multiple tiles had proven a simple and effective
approach on reducing the complexity of the image, a quite similar concept gives more
possibilities. Instead of looking at the classification, one can look at classifying pixels,
with a surrounding neighbourhood that is used to calculate features for that pixel. This
way tiles can overlap and a higher ‘resolution’ on the image can be obtained without
being limited to small tile sizes. It is also possible to reduce the number of pixels without
enlarging the tile size.

Increasing the number of tiles that can be calculated from a single image not only
gives more samples to train on. When enough overlapping tiles are generated, it is easy
to toss out the tiles that do not contain a near majority of a single class. Also there is
more chance for a small vesicle or pustule to end up entirely in a single tile, such that the
texture features take into account the entire texture of the affected skin.

This approach would also have made it easier to compare different tile sizes, because
they could all originate from the same image, without the need for scaling. If any further
work would be done based on this project, it is recommended strongly to rewrite the
feature creation algorithm to use this concept.
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5.1.2 Resolution independence

In the current implementation, some of the example images contain close–ups of one
fingernail while others contain an overview of the entire hand plus forearm. These images
obviously result into different levels of detail when taking fixed size tiles. When adding
multiple scalings of the same original tile size, a degree of resolution independence would
be accomplished.

Just like the point-with-a-neighbourhood concept, using multiple scalings of the same
image would not only increase the number of sample tiles to train with, it also makes it
possible to match two images with different level of detail together.

Adding a degree of resolution independence would be a simple task: the current
implementation of the tiling algorithm can be run multiple times and the results could be
combined. A fast test showed promising improvements of the recall of classifiers.

5.2 Conclusions

This research project was a feasibility study to see if medical images that are taken with no
such purpose in mind, can be used to classify dermatological diseases. As some promising
results are visible in Section 4.5.2, it can safely be concluded that this is indeed feasible.
Without having examined all options and certainly left room for various improvements
and optimisations, a quite simple approach led to an overall recall of 70% on the images.
Classification of the tiles scored much better than the baseline in Table 4.2.

A more detailed answer to the question if automated classification is feasible can be
given by answering the more specific research questions listed in the introduction.

Are all images in this database of use, or is there a clear distinction in char-

acteristics?

Although some diseases clearly result in a much more deviant texture than that of normal
skin, results do not point out a single disease or image that is not usable. The badly
recognised disease Contact Dermatitis has many manifestations in the images, presumably
resolved by adding more images of this disease.

What information is needed in addition to the images, for example skin colour,

in order to create a classifier that can discriminate between diseases?

First of all, some annotations were needed. For the disease affected areas, but also to
mark the difference between healthy skin and background. Other data that was available
was the sex and age of a patient. Adding those as features to the training samples would
garble the results as the number of images is very limited and these features would push a
classifier too much in a direction given an age or sex. When the size of the sample image
set increases manyfold, adding those characteristics would help in ruling out conditions
that occur only in childhood or old age.
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What kind of classifier can be used best for the purpose of discriminating

between the four diseases.

Figures 4.5 and 4.6 show that there is no such thing as the best classifier. “The best” is
a trade-off between recall and precision. That being said, the J48 decision tree algorithm
gives steady performance on both. As for classifying images, the J48 classifier scores
highest on recall.

While it’s not taken into any account so far, the execution time of a algorithm will
be a major factor in the real world. Naive Bayes and 1R are the fastest, with Naive Bayes
far more accurate. Although the recall and precision of the Naive Bayes algorithm is less
than with the J48, SMO and Multilayer Perceptron classes, it comes along pretty good
with the classification of images. The SMO and Multilayer Perceptron classifiers become
really slow at smaller tile sizes and thus larger datasets. They would not scale well for
very large datasets.

The question about the best classifier can’t be answered unambiguously, for the cur-
rent setup the J48 algorithm proves the best, but for larger datasets it is not possible to
predict if computation time weighs up to the better performance, compared to the Naive
Bayes class.

Is it possible to locate the area of the affected skin or is it only possible to

mark an entire image as containing a specific disease?

Looking at the results in Figures 4.5 and 4.6 background tiles are recognised nearly perfect.
The normal skin also scores quite good. When classifying an image, some noise might
occur, but there will be a good estimate of the location of affected skin.

How can the creation of new pictures be improved in order to increase their

usefulness in automated classification?

This research question deserves a section on its own to be answered, as this is part of a
larger recommendation to the LUMC’s dermatology department and their photographers.

What kind of features are most useful for discriminating between diseases?

The most useful features are displayed in Table 4.5. In a more general way, the results in
Figure 4.8 point to the texture features as the most useful set of features. They are however
also the most computational intensive features to calculate. This is why nominating
features to be eliminated from the calculations is important when scaling up the amount
of images in the training set.

At the start of the project, the tiling approach was not yet thought of. Therefore no
research question was formulated about this. Looking at the results in Section 4.2 some
important conclusions can be drawn. Adding more detail in the image by making the
tiles smaller is not always going to provide better results and it certainly adds a lot of
computation time. As is clearly visible in Figure 4.4, there is little to gain by decreasing
the tile size lower than 64 × 64 pixels. Scaling down the image prior to the tiling is no
good for the accuracy and should be avoided.
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With all research questions being answered, some final remarks can be given as a
conclusion. This bachelor project didn’t provide a complete software solution for classify-
ing dermatological images. It did however prove that it is possible to do so and hopefully
leads the way to further research and a working implementation. While the scenario of
an iPhone application that can be put to use in Africa or other parts of the world with-
out adequate medical care is far away, a system like this could also be used to assign
classifications to the current database of the LUMC.

5.3 Recommendations for the LUMC

This section contains some recommendations for the LUMC’s department of dermatology
and the photographers that are responsible for the image database. The most important
recommendation is to collect more images of common skin diseases, although it serves no
purpose for the original educational goal of the database. With more examples of the same
disease, classifiers can be trained and evaluated much more accurate. How many images
are needed can’t be substantiated by this research, but a hundred for each disease would
be a ballpark estimate. Another possibility is to store a photograph of each patient that
comes in.

By storing information about the level of privacy for each image (heads, tattoos or
private parts visible), obtaining ‘safe’ data is a much easier task. Adding the location on
the body and diagnosis for each image is also essential. Without a proper classification
the image is of little use for training or testing.

The third recommendation is already largely practiced: for easy recognising the skin
from the surroundings, a plain background is recommended. Images should be taken with
the affected part facing straight into the camera, so the texture is always the same. The
rotation of the body part is of no concern, as the algorithm is fairly invariant to rotation.

If information is provided about the size of the object in an image, a better ‘resolution
independence’ could be obtained. With information about the scale of the object, all
images could be scaled into a uniform level of detail. This size information could be a
manually added number, some markers that are present in the image or the camera’s focal
length and focus distance.

A topic that is not discussed so far, is that of complexion. Many diseases mani-
fest themselves in different ways for different in different coloured skin. Knowing this
information up front would support any classification.

When these five recommendations are followed up, a database with far greater value
will arise, with the potential of being used for automated classification.

The topic for this research was originally shared with Lucas van der Meer van der Meer
[2012]. This research focussed solely on the classification using the current database, his
complementary project provides a general overview of how the dermatology in general can
benefit from information technology. Herein a more profound advice for the department
is included, along with some methods of computer supported annotation of the images.
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5.4 Further research

Some topics worth investigating are already stated in Section 5.1: changing the way that
tiling is handled and achieving a level of resolution independence by scaling the tiles
in different ways. Other than things that could have been done different, some other
interesting ideas came forward in this research.

The most obvious topic is a more intense study on classifying skin diseases, starting
where this research ended. A larger dataset could provide better accuracy as well as more
challenges concerning the computational intensive tasks of calculating the features and
training the classifier.

Another idea that would be interesting is the application of the setup of this research
to create predictions of new images and feed them back to the user which can check the
results. By accepting or declining the proposed classification, additional images that can
be used for training can be created, as well as negative examples of images not containing
a specific disease.
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Appendix A

Detailled tables

Tile Size Scale Count Average Variation StdDev StdErr 95% conf

256 1 20 77.66 0.89 0.94 0.21 0.41
128 1 15 82.74 0.29 0.54 0.14 0.27
128 1/2 20 76.88 1.00 1.00 0.22 0.44
64 1 30 85.58 0.04 0.19 0.04 0.07
64 1/2 15 81.55 0.24 0.49 0.13 0.25
64 1/4 20 74.91 1.36 1.17 0.26 0.51
32 1 3 86.18 0.04 0.19 0.11 0.21
32 1/2 140 84.59 0.05 0.23 0.02 0.04
32 1/4 15 80.97 0.18 0.43 0.11 0.22
32 1/8 20 74.42 1.78 1.34 0.30 0.59
16 1 3 85.88 0.00 0.02 0.01 0.02
16 1/2 3 85.37 0.00 0.07 0.04 0.07
16 1/4 10 83.73 0.06 0.25 0.08 0.15
16 1/8 14 80.18 0.33 0.58 0.15 0.30
16 1/16 20 73.73 0.88 0.94 0.21 0.41
8 1 2 84.72 0.00 0.02 0.02 0.03
8 1/2 3 84.70 0.00 0.05 0.03 0.05
8 1/4 3 83.70 0.02 0.13 0.07 0.14
8 1/8 10 81.61 0.04 0.19 0.06 0.12
8 1/16 15 76.91 0.23 0.48 0.12 0.24
8 1/32 20 70.17 1.25 1.12 0.25 0.49

Table A.1: Accuracy (% correctly classified tiles) of the J48 algorithm, trained with the
diseases/normal skin/background dataset.
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Tile Size Scale Count Accuracy Variation StdDev StdErr 95% conf

256 1 20 84.42 0.25 0.50 0.11 0.22
128 1 15 87.87 0.07 0.27 0.07 0.14
128 1/2 20 84.51 0.51 0.72 0.16 0.31
64 1 29 89.77 0.02 0.13 0.03 0.05
64 1/2 15 87.30 0.09 0.31 0.08 0.16
64 1/4 20 84.65 0.52 0.72 0.16 0.32
32 1 5 90.13 0.00 0.07 0.03 0.06
32 1/2 10 89.16 0.04 0.19 0.06 0.12
32 1/4 15 87.48 0.07 0.26 0.07 0.13
32 1/8 20 84.25 0.37 0.61 0.14 0.27
16 1 3 89.65 0.00 0.01 0.01 0.01
16 1/2 5 89.56 0.00 0.06 0.03 0.05
16 1/4 10 88.62 0.03 0.17 0.05 0.11
16 1/8 14 86.59 0.12 0.34 0.09 0.18
16 1/16 20 83.59 0.38 0.61 0.14 0.27
8 1 2 88.81 0.00 0.04 0.03 0.05
8 1/2 3 88.84 0.00 0.05 0.03 0.05
8 1/4 5 88.45 0.00 0.03 0.01 0.02
8 1/8 10 87.08 0.01 0.12 0.04 0.07
8 1/16 15 84.80 0.09 0.30 0.08 0.15
8 1/32 20 81.67 0.49 0.70 0.16 0.31

Table A.2: Accuracy (% correctly classified tiles) of the J48 algorithm, trained with the
diseases/no-diseases dataset.
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