
Internal Report 2012–21 August 2012

Universiteit Leiden

Opleiding Informatica

Porting S.M.A.C.K to the x86 architecture

Matthijs van Drunen

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Porting S.M.A.C.K to the x86 architecture

Matthijs van Drunen

August 30, 2012

Supervisors:
Prof. Dr. H.A.G. Wijshoff

Mattias Holm, MSc
Kristian F. D. Rietveld, MSc

Universiteit Leiden
The Netherlands



Abstract

The S.M.A.C.K operating system is used in the Operating Systems course at LIACS.
Running natively on the BeagleBoard, it is used by students to familiarize themselves
with different aspects of operating systems. This thesis examines the portability of
S.M.A.C.K by discussing the process of porting S.M.A.C.K to the x86 architecture. It
introduces the x86 architecture, shows that most parts of S.M.A.C.K are portable and
provides recommendations for increasing the portability of the parts that could not be
shared between platforms.
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1 Introduction

S.M.A.C.K is an operating system that is used in the Operating Systems course at LIACS.
Students are supposed to implement parts of a kernel that are usually found in an operating
system, such as process scheduling and physical memory management. The kernel runs
natively on the BeagleBoard[2], which contains an ARM CPU.

Porting is the process of adapting software to run in a different environment than the one it
was originally written for. Generic user applications can be adapted to run using a different
set of libraries, or on another platform. Portability is a measure for how much effort it takes to
port software. An operating system kernel needs to have knowledge about how the hardware
that it runs on works and how it should configure the hardware, because user applications
depend on it to provide an abstraction layer for different services, such as I/O. This means
that a kernel cannot simply be recompiled for another platform without changing the source
code to include support for this platform. A kernel also contains code that is not specific
to one platform, such as code to manage processes. For operating systems, portability is a
measure for how much of the code can be re-used or shared between platforms the kernel
runs on.

Portability is also a software quality factor ([1]). Software that is portable usually depends
on a separate layer to provide an abstraction for the platform it is running on. This makes
code easier to understand and maintain. Other advantages of having an operating system
that runs on different platforms include the ability to study different architectures and make
the kernel more accessible to people who do not have access to a BeagleBoard.

The goal of this project was to port S.M.A.C.K to another architecture. One of S.M.A.C.K’s
requirements was to be portable. This project investigates whether it is. The x86 architecture
was chosen because hardware based on this architecture is easily available to students, the
32-bit version was chosen because it was easier to implement support for virtual memory
for the 32-bit version. The aim was to get the kernel and a subset of the user applications
running on an emulator and on at least one physical machine. The kernel was supposed to
boot successfully and start the shell program. It was also supposed to be able to run the
mmaptest program that is used to test the implementation of the third assignment ([3]) of
the Operating Systems course at LIACS. The mmaptest program can be used as a test case
for the virtual memory system. To limit the scope, the kernel did not have to be able to
draw graphics to the screen or run the video-ps program that draws a visual representation
of running processes.

In this thesis, the process of porting the kernel is discussed, as well as some of the problems
that have been encountered and how they have been resolved. This thesis is structured as
follows. Section 2 provides an introduction to the x86 architecture. Section 3 describes the
general approach that was used to port the kernel. Section 4 describes the implementation
of specific tasks or modules of the kernel. The final section discusses things that can be
improved in future versions.

2 Introduction to the x86 architecture

X86, formally known as IA-32, is the instruction set architecture (ISA) that was first imple-
mented by the Intel 80386 processor. It is a 32-bit extension of the original x86 architecture.
It was later extended to 64-bit, known as x86-64. S.M.A.C.K only uses the default IA-32
architecture, without any extensions. Every Intel/AMD CPU that implements x86 is back-
wards compatible with previously released CPUs. An x86 CPU will generally start in 16-bit
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mode, and should be able to run legacy software that was written for earlier CPUs. The x86
architecture supports features that modern operating systems rely on to function, such as
paging and a flat memory model.

The CPU can operate in the following modes:

� Protected mode. The native state of the CPU. The CPU can execute 16-bit or 32-bit
instructions in this mode, depending on the selected code segment and the instruction.
Paging is an optional feature. S.M.A.C.K uses protected mode with paging enabled.

� Real-address mode. Legacy 16-bit mode. This is the initial mode of the CPU. The
boot loader is responsible for switching to protected mode.

� System management mode (SMM). This mode can be used for implementing
platform-specific functions, such as power management. This mode is activated by the
external SMM interrupt pin or when an SMI1 is received from the interrupt controller.

The x86 architecture offers the following registers:

� General-purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP.

� Segment selector registers: CS, DS, SS, ES, FS, GS.

� Program status and control register: EFLAGS.

� Instruction pointer: EIP.

2.1 Memory model

To ensure that multiple applications can run simultaneously, each must have its own view
of the memory, so that it does not interfere with the memory of other applications. This
technique is called virtual memory. Segmentation and paging are two ways to implement
virtual memory. The x86 architecture uses segmentation by default, but it can also use
paging. In real-address mode, a 64 kilobyte segment is selected by one of the segment
selector registers. Each time a memory location is accessed, a segment is selected by one
of the segment selectors and the memory address is used as an offset into this segment. In
protected mode, the segment selector registers hold an index into the GDT2. This table
contains the 32-bit base address of a segment. When memory is accessed, the offset is added
to this address and the memory location at the resulting linear address is accessed. The table
also contains bits to set permissions, such as marking segments as read-only or restricting
access to privilege level 0 (kernel mode).

Paging allows each application to have what appears to be a large contiguous address space.
Memory is divided in pages, which usually have a size of 4 kilobytes. Each page can be
mapped to a frame in physical memory, or it can be stored on a backing store, such as a
hard drive. Pages can have access restrictions, such as read-only, no-execute or supervisor-
only rights. The translation of pages to frames, or virtual addresses to physical addresses,
is performed by the MMU3. The MMU uses special data structures, known as page tables,
to look up a virtual memory address and find the corresponding physical address each time
memory is accessed. See [4, p. 328–336] for a more detailed description. Because a memory
location is often referenced multiple times in a short timespan, the result of these translations
is cached in the TLB4. The operating system is responsible for setting up the page tables
and controlling the TLB.

1System-management interrupt
2Global Descriptor Table
3Memory-management unit
4Translation lookaside buffer
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Intel x86 implements three paging modes[7, p. 4-2]: 32-bit paging; PAE paging; and IA-32e
paging. S.M.A.C.K on x86 uses 32-bit paging, since it is the easiest mode to implement. 32-
bit paging uses two-level page tables. The CR3 register determines the start of the first-level
page table (called page directory). A virtual address is organized as follows: the first 10 bits
determine the offset in the page directory. The entry found at this offset points to a 4 MB
physical page, or a second-level page table (called page table). The second 10 bits determine
the offset in this page table. This entry points to a 4 KB physical page. This is shown in
Figure 1. The entries in the page tables have bits to control caching and access restrictions.
The meaning of these bits is described in Table 1. 32-bit paging does not have support for
an execute disable flag.

Virtual address

.

.

.

31 22 21 12 11 0

CR3

PDE

.

.

.

PTE

Page directory Page table

Phys. addr

4 KB physical page

Figure 1: The translation of a virtual address to a physical address using 32-bit paging

In 32-bit paging, each paging structure consists of 1024 entries of 32 bits. The page directory
can hold entries that refer to a 4 MB page or to a page table. A page table can hold entries
that refer to a 4 KB page. Both structures can also hold a record that marks the entry as
not present. All paging structures are aligned on a 4 KB page. S.M.A.C.K does not use 4
MB pages, so the structure of such an entry is omitted. The layout of the entries is shown
in Figures 2 and 3.

012345678111231

Physical address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1

Figure 2: Layout of a PDE pointing to a page table
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Figure 3: Layout of a PTE pointing to a 4 KB page

Bit Description
G Global. Determines whether the translation is global. Used for cache control.
PAT Paging and memory typing. Indirectly determines the memory type used to

access the referenced memory.
D Dirty bit. Determines whether something was written to the referenced mem-

ory.
A Accessed. Determines whether the entry has been used or not.
PCD Page-level cache disable. Indirectly determines which type of caching is used

to access the page table.
PWT See above.
U/S User/supervisor. 0 means that user mode (CPL=3) does not have access to the

referenced memory.
R/W Read/write. 0 means that writes are not allowed to the referenced memory

location.

Table 1: The meaning of the different bits in the paging structures

2.2 Boot process

When a PC is powered on, the first thing that is loaded into memory is the BIOS5 (typically
loaded from a flash chip on the motherboard). The BIOS is responsible for doing basic
initialization of the hardware, loading the first sector of the hard drive (known as the MBR6)
to physical address 0x7C00 and transferring control to the boot loader by jumping to this
address. At this point, usually a boot loader (such as GRUB) takes over, loading a user-
specified kernel image from disk into memory and transferring control to this kernel. On
newer PCs, the BIOS has been replaced by UEFI[5]. UEFI can load images directly from a
partition on the hard drive instead of using a dedicated boot loader and also provides runtime
services that can be accessed when the operating system is running. UEFI is currently not
supported in S.M.A.C.K.

3 General approach to porting S.M.A.C.K

Porting an operating system is not a trivial task. First, a small “Hello world” kernel was
written to become familiar with the boot process and the data structures that have to be
initialized. This kernel would boot and print the text Hello World on the screen.

The architecture-specific code of S.M.A.C.K is located in subdirectories (e.g. arch/arm/ and
arch/x86/). When the kernel was ported to x86, the arch/arm/ subdirectory was excluded
from compilation and the required functions were replaced with empty stubs. The boot code
was disabled by commenting out each line, and un-commenting these one at a time. The
empty stubs were replaced by real code until all functionality was implemented.

5Basic Input Output System
6Master Boot Record
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The following tools were used during development:

� Compilers: The kernel was tested with multiple compilers.

– gcc 4.6.3

– clang 3.1

� Linker: Used to form the final kernel image.

– GNU ld (part of GNU binutils) 2.22

� Emulators: Bochs provides an environment that is closer to real hardware than the
environment provided by QEMU, but attaching a source level debugger to QEMU is
easier, since QEMU supports GDB by default.

– Bochs 2.4.5

– QEMU 1.0.1

� Boot loader: The boot loader is used to load and boot the kernel on real hardware.

– GRUB 0.97

� Debugger: A debugger is used to trace problems and confirm that data structures are
filled correctly.

– GNU gdb 7.4.1

Hardware vendors often provide documentation about the hardware. Because an operating
system needs to be able to control the hardware, it must know how to do this. The following
documentation contains information about the CPU and the PC platform in general was
used during this project:

� Intel(R) 64 and IA-32 Architecture Software Developer’s Manual (Volume 2: Instruc-
tion Set Reference)[6].

� Intel(R) 64 and IA-32 Architecture Software Developer’s Manual (Volume 3A: System
Programming Guide)[7].

� IBM PS/2 Reference manuals[8].

4 Implementation

4.1 Memory layout and data structures

For S.M.A.C.K, it is currently assumed that the machine it runs on has at least 256 MB of
memory available. The virtual memory layout is shown in Figure 4. The kernel is always
mapped in, starting from address 0xC0000000. The kernel is always in memory, even when a
user application is running. This is done so that the kernel does not have to do a full context
switch which involves clearing caches such as the TLB on systems calls or interrupts that
do not swap out the currently running process. The kernel has a total of 1 GB of memory
available, which is likely to be enough for future changes.

Both memory segmentation and paging can be used on x86. Since S.M.A.C.K on ARM
uses paging, like most modern operating systems, it will also use paging on x86. Memory
segmentation cannot be turned off on x86, but all memory can be described in one big
segment. These segments are set up using the GDT.
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0xFFFFFFFF

0xE0000000

kernel heap

0xDFFFFFFF

0xC0000000

kernel image


1 GB

0xBFFFFFFF

0x00001000

user space

0x00000FFF
0x00000000

null page



3 GB

Figure 4: Virtual memory layout for S.M.A.C.K on x86

The GDT contains different types of descriptors. The segment registers select a code or data
segment descriptor from the GDT for memory access. The GDT can also contain a TSS7

descriptor, which is used for task switching.

The GDT used by S.M.A.C.K contains six entries. The first entry should always be NULL.
There are two segments for kernel mode (code and data segment) and two for user mode.
These entries describe all memory in one large segment, with a total size of 4 GB. The last
entry is used to store a pointer to the TSS. The TSS contains the values that are to be
loaded in various registers (i.e. the segment selectors, EIP and ESP) on a switch to privilege
level 0 (kernel mode).

4.2 Booting

The kernel image conforms to the Multiboot Specification[9]. This specification describes
a set of rules that must be adhered to by the kernel image that is to be loaded and the
boot loader. The boot loader uses this information to load the image at the correct memory
address. The S.M.A.C.K image is loaded by the boot loader at physical address 0x100000.

On the BeagleBoard, the kernel is always loaded at physical address 0x80000000 (the start
of physical RAM) by the boot loader. On x86, RAM starts at 0x0. The kernel is mapped in
at a high memory address (above 0xC0000000), so the MMU has to be enabled and set up to
map the kernel to this address before the actual kernel can be started. To accomplish this,

7Task-state segment
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the kernel has a .header section that is mapped 1-to-1, which contains code to initialize the
MMU and paging structures, and set up the correct mappings. When this is done, the kernel
jumps to the C function boot (which resides in the .text section). The boot function calls
the platform_init function, which sets up the GDT and TSS (as described in Section 4.1)
The 1-to-1 mapping of the .header section is removed, because it is only required during
the early stages of the boot process. Details about the MMU and paging structures can be
found in Section 2.1.

In order to form the final kernel image that can be loaded by a boot loader, the object files
are linked together to form an executable. In contrast to the ARM version, the ramdisk is
included in the final kernel image. This prevents the ramdisk from interfering with physical
memory management. A side-effect of this is that it also prevents the kernel from releasing
the memory occupied by the ramdisk should it become no longer necessary. The linker links
all the sections together and sets the addresses of the symbols to the correct values. The
fields in the Multiboot Header specify where the sections are to be loaded and where the
entry point can be found. The different sections are shown in Table 2.

Section Virtual address Size
.header 0x00100000 0x2FE
.text 0xC0101000 0x9F9B
.rodata 0xC010B000 0xFED
.data 0xC010C000 0x1548
.ramdisk 0xC010E000 0x809000
.bss 0xC0917000 0x2CD0

Table 2: The different sections and their starting addresses in the final kernel image when
compiled using clang 3.1

4.3 Context switching

S.M.A.C.K on ARM supports multiple processes. The same is supported on x86. This is
implemented using virtual memory and paging. Every process has its own address space.
The addresses starting from 0xC0000000 upwards are reserved for the kernel, whereas the
memory range 0x00001000–0xBFFFFFFF is used for user applications. Processes should
not be able to access memory of other processes. To ensure this, every process has its own
set of page tables. The kernel page tables are shared and thus the same for each process.
If the active process is changed, the page tables for the user application memory must be
changed.

A task switch can happen in two cases:

1. Explicitly by means of a system call.

2. A timer interrupt (automatically, either because the kernel has finished blocking I/O
for a task, or the scheduler decides to switch tasks).

The first case is implemented by the cswitch function, which gets called from proc_switch.
It is called if a process voluntarily releases the CPU, e.g. using the sleep system call, or
a blocking I/O call. The cswitch function stores the context of the current process in a
data structure. This context consists of the values of the general purpose registers, the
value of the instruction pointer, the value of the stack pointer and the current CPU state
(EFLAGS register). Then, all aforementioned values are re-loaded to their respective registers
for the process that is about to be resumed. Finally, the execution of the new process is

11



resumed using an interrupt return instruction (IRET). In case of a switch to privilege level
3 (i.e. a switch from kernel to user mode), the IRET instruction performs the stack switch
automatically. In case of a switch to privilege level 0 (i.e. to kernel mode), the stack switch
is done manually by pushing the EFLAGS, CS and EIP values on the destination stack and
executing IRET.

The second case is implemented by changing the CPU context that is stored by the interrupt
handling routine. This is described in more detail in Section 4.5. The two methods of context
switching should be compatible with each other, since they share the process data structures.

4.4 MMU

The virtual memory system in S.M.A.C.K consists of three parts: virtual memory manage-
ment, physical memory management and hardware support functions. In the source code,
the functions belonging to each part can be identified by looking at the prefix of the function
name. The three prefixes are respectively vm_, pmap_ and hw_. All the hardware support
functions were re-written for x86 32-bit paging. The other functions did not have to be
changed, except for pmap_init to compensate for the difference between the virtual and
physical addresses of the kernel symbols (an offset of 0xC0000000). Various ARM-specific
assertions were also disabled for x86.

The hw_-prefixed functions set up the paging structures and perform operations on them,
such as setting up a mapping for a new page or a manual lookup. The format of the paging
structures is described in Section 2.1.

Every running process has its own page directory. The entries in this directory that describe
the kernel range (0xC0000000 and up) point to the page tables of the kernel. This means
that the kernel shares its page tables with every process, but not its page directory. It is
currently not necessary to update the kernel part of the page directory after it has been
created, because all page tables are statically created and always available. If this should
become necessary in the future, the page directory of every process would have to be updated
separately.

4.5 Interrupt handling

Interrupts are used to interrupt the CPU from normal operation when an external event
occurs. This can originate from an external source (such as keyboard input, or a timer
interrupt) or from an internal source (such as a divide by zero error). It is also possible to
generate interrupts from software (known as a software interrupt). The CPU can respond
to an interrupt by running a specific routine and resuming normal operation afterwards.

When an interrupt happens, the CPU looks up the routine that should be executed in the
Interrupt Descriptor Table (IDT). This table contains pointers to functions. When the kernel
boots, this table is initialized with pointers to interrupt service routines (ISRs). By default,
the CPU interrupts (internal) overlap with the system interrupts (external). Interrupts
numbers 0–31 are reserved for internal use by the CPU. To make sure there is no confusion
about which interrupt was fired, the system interrupts are re-mapped to interrupt numbers
32–47 by programming the PIC8 to give these interrupts an offset of 32. The PIC combines
interrupt lines and forwards interrupts to the CPU. The PIC that S.M.A.C.K uses is an

8Programmable interrupt controller
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Intel 8259. It is supported by all 8086 microprocessors, though newer models also support
the APIC9.

When an interrupt fires, the CPU can either be in user mode or in kernel mode. If the CPU
is in kernel mode, it automatically pushes the EFLAGS, CS and EIP registers on the current
stack. If the CPU is in user mode, the CPU does a stack and mode switch (switching to the
kernel stack and kernel mode), and pushes the old SS and ESP registers to save the location
of the old stack. The CPU then pushes the EFLAGS, CS and EIP registers on the stack. In
either case, if the interrupt has an error code, this is also pushed on the stack. Finally, the
corresponding ISR is called. The layout of the stack for both cases is shown in figure 5.

... Normal
kernel stack

EFLAGS

CS

EIP

Error code ESP

...

(a) Stack layout without privilege level change

...

Kernel
IRQ stack

SS

ESP

EFLAGS

CS

EIP

Error code ESP

...

(b) Stack layout after privilege level change

Figure 5: Stack layout after an interrupt fired

Every type of interrupt has its own ISR. The ISRs for all interrupts are similar. If the
interrupt did not push an error code, a dummy error code (0) is pushed on the stack.
Finally, the interrupt number is pushed on the stack and the isr_common routine is called.

The isr_common routine is responsible for calling the C function interrupt. To make sure
that the normal operation of the CPU can be restored when interrupt handling is ready,
the current CPU state is saved on the stack. This state (including the values pushed by
the ISRs) is saved in a interrupt_state_t data structure. The layout of this structure is
shown in Figure 6. If the CPU did not perform a stack switch, this is done manually by
copying the stack contents to the kernel interrupt stack. This ensures that all interrupt code
can handle the state in a uniform way.

At some point during development, the kernel would crash when returning from a context
switch. The problem turned out to be related to the fact that the CPU does not perform a
stack switch if there is no privilege level change. If the kernel interrupted a process that was
running in kernel mode and resumed a process that was running in user mode, the kernel
would set the SS and ESP fields of the interrupt stack (see Figure 5), but since these fields
are not available if there is no privilege level change, it would overwrite part of the stack of

9Advanced programmable interrupt controller
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the interrupted process. The problem was corrected by doing a stack switch explicitly if the
CPU did not do one, with dummy values for the SS and the ESP fields.

When the kernel switches processes (pre-emption), the contents from the interrupt_state_t
data structure are copied to the cpu_ctxt_t data structure of the old process, and the con-
tents from the new process are copied back the the interrupt_state_t data structure. This
way, when the CPU resumes normal operation, it will resume executing a different process.

The interrupt function forwards interrupts to other systems, such as the timer module
or the keyboard driver. Page faults and general protection exceptions are also processed.
Currently, other exceptions (such as divide by zero) are not handled.

typedef struct {
uint32_t ds;
uint32_t edi, esi, ebp, esp, ebx, edx, ecx, eax;
uint32_t int_no;
uint32_t error_code;
uint32_t eip, cs, eflags;
uint32_t useresp, userss;

} interrupt_state_t;

Figure 6: The interrupt_state_t data structure

4.5.1 System calls

System calls are used by user applications to call on services provided by the kernel. This
can for instance be to read from a file on the file system, or to get the current time. The x86
architecture provides multiple ways to implement system calls. S.M.A.C.K uses the oldest
(and most widely supported) one of them, software interrupts.

When an application wants to perform a system call, it has to perform the following steps:

1. Store the system call number in the EAX register.

2. Store the argument for the system call in the EBX register.

3. Generate software interrupt 0x80 (using the INT instruction).

4. Read the return value from the EAX register.

When interrupt 0x80 fires, the kernel will handle it differently from the other interrupts.
It will save the current CPU context, so the user application can be resumed when the
system call is ready. It will then copy the stack contents (that were pushed on the IRQ
stack, see section 4.5) to the application’s syscall stack. It will then call the hw_syscall
function, which will call the platform-independent syscall function, which will call the
specific system call handler corresponding to the system call number (retrieved from the
EAX register). When the system call is finished, the return value is saved in the EAX register
and the user process is resumed.

4.6 Hardware drivers

S.M.A.C.K on x86 uses the screen for output and the keyboard for input. The input and
output is done using the console driver, which relies on two low level drivers to interact with
the hardware. These two drivers are the keyboard driver (described in section 4.6.1) for input
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and the VGA10 console driver (described in section 4.6.2) for output. User applications can
use this console driver (using the virtual device /dev/serial) to perform basic I/O.

4.6.1 Keyboard driver

The keyboard driver is responsible for translating scancodes (generated by the keyboard) to
keycodes. These keycodes are forwarded to the console driver, which will buffer them until
a user application is ready to read them.

The keyboard driver itself is implemented as a table-driven state machine. A scancode
corresponds with a certain action performed by the user. This action can be the pressing or
release of a key. When the keyboard controller has data available for the driver, it generates
an interrupt and the driver can read one byte from the controller. Because a scancode can
consist of multiple bytes, the keyboard driver maintains an internal state to remember which
bytes have been received. The following example will illustrate this. The table provides a
mapping from state, optional modifier (e.g. shift, caps lock), scancode to new state, action
(e.g. key up/down, set or clear modifiers) and a parameter for that action.

If the user releases the escape key on the keyboard, the keyboard generates a scancode
(0x81) and the keyboard controller generates an interrupt. The keyboard driver reads one
byte of data from the keyboard controller. Based on this value, it looks in its table and finds
the corresponding action (A_KEYUP with keycode KEY_ESC). It notifies the console driver of
this action. The scancode 0xE0, 0x47 corresponds with the pressing of the home key. If the
driver reads the 0xE0 byte, it remembers that it has seen 0xE0 by moving to a different
state. The driver then receives 0x47 while it is in this state, and it performs a look-up in its
table to find the correct action for this scancode.

The table also contains a field for modifier keys. The $ key (Shift+4 on a US Qwerty
keyboard) generates the same scancode as the 4 key. The modifier field for the $ key is set
to MOD_SHIFT, so the corresponding action is only activated if the Shift key is pressed while
the 4 key is pressed.

4.6.2 VGA console driver

VGA hardware can operate in a number of modes. By default, it operates in a text mode.
This means that the VGA hardware will display characters in a 80x25 grid. The operating
system can place text on the screen by writing character data to the framebuffer (address
0xB8000). Every character is represented by a 16-bit word[10]. The layout is shown in Figure
7.
15 14 8 7 0

BlinkBackground color Foreground color Character

Figure 7: VGA attribute / data

To display a character at position (x, y), the kernel uses the following formula to find the
memory address to write the data (base = 0xB8000):

addr = base+ y · 80 + x

10Video Graphics Array
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The kernel computes the data that is used to write a character c using foreground color f

and background color b:

data = ((b� 4) | (f & 0x0F))� 8 | c

If the screen is full, the driver scrolls the console by copying every line to the line above it,
discarding the first row. The last row is emptied before data gets written to it.

5 Conclusions

This thesis discussed the process of porting S.M.A.C.K to the x86 architecture. The resulting
kernel can run on the QEMU emulator and on physical hardware. The mmaptest program
runs successfully. The kernel, in its current state, is portable, although the shared code
needed some minor changes. This code has been surrounded with #ifdef statements to
include such blocks only in the compilation process for one specific platform. It is likely
that more code that can be shared between platforms will be identified as the development
of the kernel continues.

The shared code that had to be changed related mostly to the virtual memory system.
The shared code contained hard-coded assertions that were specific to the memory layout
of the BeagleBoard. It was also assumed that the physical and virtual memory addresses
would be the same for the kernel image. On x86, these are offset by a pre-defined constant.
The portability could be increased by always applying this offset, but with a value of 0 for
platforms on which the kernel is loaded with the same virtual and physical addresses. The
virtual memory range for user processes was also hard-coded in the shared process creation
code. This memory layout does not have to be the same for all platforms, so this code should
be moved to the platform-specific subdirectories.

The kernel did not contain a platform-specific initialization function, which had to be added
to initialize data structures that are specific to x86 (e.g. the GDT). Platforms that do
not need a specialized initialization routine could simply provide an empty function. The
ramdisk driver was also changed for the x86 platform, because the ramdisk is included in
the final kernel image. Although not technically necessary, this does make the handling of
the ramdisk easier. In order to be portable, the ramdisk driver should provide support for
ramdisks that are loaded by the bootloader and for ramdisks that have been included in the
kernel image.

There are interesting opportunities for future work. The current x86 port provides the same
functionality as the ARM version, except for the exceptions mentioned in Section 1. Possible
future work includes:

� The x86 caching mechanism is currently not enabled. Although the kernel seems to
work fine when caching is enabled, certain areas of memory should not be cached
(such as memory-mapped devices). Caching should, where possible, be enabled and
configured in such a way that memory access to the memory area used by devices is
not cached.

� Memory on x86 does not have to be contiguous. Currently, it is assumed that there
will be 256 MB of memory available, starting at the lowest physical address. In reality,
this does not have to be the case. The kernel should be able to detect the memory
layout of the system it is running on and configure the memory regions in the virtual
memory subsystem accordingly. In its current state, the virtual memory system does
not support multiple regions of physical memory and a variable amount of memory.
This should be addressed before correct handling of the memory layout is possible.
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� The platform-dependent code that is not in the platform-specific subdirectory but sur-
rounded with #ifdef statements should ultimately be moved to files in the platform-
specific subdirectories.

� It would be possible to write support for virtual consoles on framebuffer devices. Most
graphics adapters support the VESA VBE standard ([11]), which could be used to
access the framebuffer without depending on a vendor-specific driver. In order to keep
the kernel portable, the virtual console support should be designed in such a way that
it does not depend on one specific framebuffer implementation.

� Parts of the console driver on x86 and the serial driver on ARM could be merged
into a platform-independent high-level driver. The logic for communicating with user
applications and buffering can be shared.
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