Internal Report 2012-2013-09

June 2013

Universiteit Leiden

Opleiding Informatica

BACHELOR THESIS

Evaluation
of

Image Quilting algorithms

Pepijn van Heiningen

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Evaluation of Image Quilting algorithms

Pepijn van Heiningen

June 28, 2013

Abstract

Image Quilting is a method for synthesizing new
images by stitching patches of an existing image
together. It is a very fast and simple algorithm,
mainly used for the generation of new textures.
Even though it produces impressive results, there
are some problems. In this paper we analyse
these problems and try to improve the original
algorithm, without changing the simplicity of
the algorithm or the time it takes to run. These
improvements are then compared with the original
to see how well they work.

Keywords: Image Quilting, Texture Synthesis

1 Introduction

The first thing that comes to mind when gen-
erating a texture is tiling the input image. This
leads to a repetition of the texture which does not
seem natural to the user. One of the advantages
of Image Quilting is that this problem does not
occur, because the generated texture will be
perceived as exactly the same as the original, but
without repetition.

The next thing one might think of is generating
textures by using pixel-by-pixel synthesis. (see
Efros and Leung [3] and Ashikhmin [10]). This
produces decent results, but to generate a single
pixel the entire input image has to be searched,
or it only works well for stochastic images.

Another way of synthesizing textures was
described by Xu et al [4]. First the image was tiled
with the original texture, subsequently random
blocks were taken from the image and placed at
random positions in the generated texture with
alpha blending. This method can be used for
stochastic textures, but it fails for more structered
ones.

Work was done by Wu et al. [9] trying to
improve texture synthesis by using Curvilinear
Feature Matching, which matches features from
the input image instead of selecting by color.

Other work was done using the strong Markov
Random Field model by Paget [7], which produced
decent results for stochastic textures.

Even neural networks can be used to synthesize
textures as shown by Slot, Kornatowski and
Debiec [5]. There, random blocks were selected
from an input image with space between them,
which is filled in by a Cellular Neural Network.

A good overview of the state of example-based
image synthesis can be found in [8]

Image Quilting was first described by Efros and
Freeman [1]. It takes small patches from an exist-
ing texture and stitches them together to generate
new textures. The patches are overlapped with
eachother and a random block within a certain
score is chosen.

Image Quilting is useful for a variety of different
applications. Instead of recreating an entire world
(or its textures), a sample from the real world can
now be used and a larger texture can be gener-
ated. This could decrease the bandwidth of online
applications, where only the original image would
be sent, and then generated.

Figure 1: Image Quilting example

2 Original Algorithm

The Image Quilting algorithm can be described as
follows:

e First a random patch is chosen from the input
texture. For the next blocks, we introduce an
overlap to calculate how well they fit together.

e We search the input image, and randomly
choose a block within some error tolerance.

e Finally we calculate the minimum cost path
through the overlap (with for example Dijk-
stra’s algorithm [2]) and paste the new block
onto the generated texture. Repeat this until
you are done.

Graph cuts can also be used to find a minu-
mum cost path through the overlap, as shown by
Kwatra et al. [6]

The size of a block is controlled by the user,
the error in the overlap of blocks is calculated by
using the L2 norm on pixel values. An example is
shown in Figure 1 .

This algorithm can be extended for use as a
texture transfer algorithm. Now, instead of only
looking at the overlap we also compare the current
block with the block at the target image. The
error is then calculated as the weighted sum of
the overlap error and the error between the source
block and target block. The weight is controlled
by a parameter «. To further improve results, we
iterate over the image several times, decreasing
the block size by a third each time. The number
of iterations N is set between N = 3 and N = 5,
and « is set to a; = 0.8 -]@:11 4+ 0.1. A result can
be seen in figure 2.

In the original paper describing Image Quilt-
ing some of the drawbacks of the algorithm are
mentioned, namely excessive repetition and mis-
matched boundaries.

3 Improvements

The original algorithm selects blocks randomly
from within a certain error range of the best
block (the block that has the minimum error in
overlap). Because of this, the error between the
overlapping surfaces will not always be minimal.

As an improvement, one might suggest to pick
the best block and as a result reduce the error

Figure 2: Texture Transfer example

in the overlap. A drawback of this approach is
the fact that copying occurs; multiple blocks from
the input image are selected together because the
error between them is 0. This will lead to the
algorithm first copying the whole, or a part of the
original image, and only then start picking blocks
in the way it was designed.

Another disadvantage is the fact that if the
best block is chosen, more blocks will be repeated.
These problems can be fixed by keeping track
of which blocks were already used, and applying
a penalty for using them again. To determine
whether a block has already been used, we keep
a list of all the top left pixels of blocks that were
already synthesized, and if the current block is
within a certain range from a used block (we call
this the block reuse range), a penalty is given.

Because the number of blocks used ranges from
25 to about 250 there is no noticeable difference in
the time used to run the algorithm.

Block reuse range

Max. error ‘ Avg. Maximum Error ‘ Avg. Error ‘ Avg. number of repetitions

2 61593 59048
4 62189 59538
8 63035 60965
16 93022 80730

31555 1.56
32999 2.44
33815 3.64
37767 6.96

Table 1: Modified Algorithm: Block reuse range

4 Parameter Analysis

The goal is of course to generate images with
these algorithms that are indistinguishable from
real images. It is however very hard to determine
whether a certain image looks good to a user or
not. Because of this finding a measurement to
compare the images that were generated by the
algorithms is also difficult.

Since the block size is the only variable that is
changeable by the user, the range and the penalty
for blocks have to be fixed. In order to get optimal
results from the improved algorithm, I conducted
a parameter analysis.

First I tested the range for reusing blocks. The
changed texture synthesis algorithm was run 25
different times, and the results were averaged. In
table 1 you can see the results. The maximum
error, average maximum error, average error,
and the number of repetitions all increase if you
increase the block reuse range. A block reuse
range of 2 clearly gives the best results, but we
have to take into consideration that the average
number of repetitions is not the same as the
amount of repeated elements in the generated
image.

A block reuse range of 2 is still used for the rest
of this paper. This is done because the synthesized
images that mainly show repetition are the ones
with small blocksizes.

Subsequently 1 tested the penalty values.
The algorithm was run 25 times over 5 different
images. You can see the results in table 2. You can
see the average error is very close, it almost looks
independant of the penalty. The number of repe-
titions does show a pretty clear image however.
You can see that the average repetitions slowly
decreases. This is most likely due to the fact that
with small errors, blocks are more likely to be re-
peated. A higher error makes sure that block will
not come back again. In the next section we will
see whether the modified algorithm performs bet-
ter with these settings than the original algorithm.

Penalty | Avg. Max. Error | Avg. Error | Avg. rep.
1.05 59448 31819 1.968
1.1 57967 31358 1.912
1.2 59018 31483 1.848
1.3 58470 31476 1.872
1.4 58990 31465 1.8
1.5 58408 31476 1.824
1.6 58750 31459 1.928
1.7 57398 31083 1.848
1.8 57823 31004 1.768
1.9 58798 30916 1.76
2.0 58703 31360 1.832

Table 2: Modified Algorithm: Penalty table

5 Results

To compare the original and the modified algo-
rithm, I decided to conduct two different tests:

e A comparison of the maximum and average
error that occurred

e A survey was held to compare the images.

As one of the measurements I propose the
usage of the average error between the overlap-
ping surfaces. If one part of the overlap is in a
completely different shade than the other the
algorithm will not produce good-looking results,
seeing as both blocks were taken from the same
image and will not fit well together.

Also the maximum error is one of the criteria
used to compare images. Even one block that
does not fit well will convince a viewer that the
image he/she is looking at was generated by an
algorithm.

Since the error values are the criteria the algo-
rithm uses, they are also used for the comparison
of images. Because the average error might not be
the best way to test algorithms, we decided to also
hold a survey under 26 participants.

Image Max. error | Avg. Maximum Error | Avg. Error | Avg. number of repetitions | Block size
1 63302 59276 32313 1.648 40

2 19662 15547 7878 4.348 25

3 62253 56634 32336 1.852 40

4 15757 10882 2961 4.504 20

5 115966 88749 52118 2.984 50
Average: | 55388 16217,6 25521,2

Table 3: Modified Algorithm: Texture Synthesis Results

Image Max. error | Avg. Maximum Error | Avg. Error | Block size
1 62885 59166 33609 40

2 18079 15355 7718 25

3 74327 68931 41689 40

4 15938 10623 2872 20

5 117629 88434 51277 50
Average: | 57771,6 48501,8 27433

Table 4: Original Algorithm: Texture Synthesis Results

5.1 Comparison of texture synthesis

We picked five different images from the test-
set to test our algorithm on. Some of them
suffered from the problems mentioned in the origi-
nal paper, others are the ones that performed best.

First both algorithms were run on these 5
images and the best block size was determined.
The same block size is used for each image in both
algorithms. For the modified algorithm we used
the parameter settings described in the previous
section. The original algorithm has a error-range
of 1.1. A block is randomly selected from the
blocks with errors between the minimal error and
1.1 times the minimal error.

Then both algorithms were run 250 times per
image to compare the maximum, average maxi-
mum and average error. In the results of the mod-
ified algorithm (Table 3) you can find the average
number of repetitions in the range.

The results from the two algorithms are ex-
tremely close. On some images the original algo-
rithm works better, on others the modified algo-
rithm outperforms the original. Only on the third
image (see Appendix) we see a big decrease of the
average error. If we look at the average of all runs,
we see a average error decrease of 7%. This is en-
tirely because of the third image.

5.2 Comparison of texture transfer

For texture transfer, only one image was chosen
as comparison image. This is due to the fact
that running the texture transfer part of the
algorithm takes a lot longer than the synthesis.
It takes roughly 2 hours for an image to be
generated. Both algorithms were run 5 times,
and the results were averaged. The algorithm
was started with a blocksize that was a sixth of
the original image’s width and height. Then the
blocksize was decreased by a third as described in
the original algorithm. I found that increasing the
overlap from a sixth of the blockwidth and height
to a fourth improved results.

If we compare the results, we see a big advan-
tage for the original algorithm in both the average
and maximum error. This is probably because
the top left part of the target image is almost the
same color of grey, which causes the algorithm to
try to find the best solution, and selects blocks
with a penalty.

Looking at the results from the texture trans-
fer, you can see that more runs would likely not
have changed the result, since these runs are very
close together. Since there is no random factor in
the modified algorithm, we see results that are
incredibly close together. In the original algorithm
we see only a slight variation in the maximum
and average errors, due to the random picking of
blocks.

Run Max. error | Avg. Error | No. of rep. Run Max. error | Avg. Error
1 24733818 2379230 12 1 18979220 1721931
2 24733818 2379234 12 2 18977494 1721980
3 24733818 2379239 12 3 18978696 1721943
4 24733818 2379231 12 4 18978168 1721928
5 24733818 2379220 12 5 18977980 1721966
Average | 24733818 2379231 12 Average | 18978312 1721950

Table 5: Modified Algorithm: Texture Transfer
Results

5.3 Survey

For the survey 10 different images were chosen and
generated with equal blocksizes. (see Appendix)
These were subsequently added to a survey where
people could pick the image they preferred. The
order of the images was mixed, to balance the re-
sults. The final survey was filled in by 25 people.
The results are in table 7.

5.3.1 Texture Synthesis

The results from the survey agree with the results
from the average and maximum error. There also
seems to be little difference if humans compare the
images. The output of the original algorithm is
picked as many times as the output of the modified
algorithm.

5.3.2 Texture Transfer

For comparing the Texture Transfer part of the
algorithm, 3 different images were used (see the
Appendix). You can see the results in table 8.

Now we see completely different results com-
pared with the average and maximum error. Look-
ing at the first image, the average error was 30%
higher, but 79% of respondents preferred the mod-
ified algorithm over the original. On the third im-
age all participants of the survey selected output
of the modified algorithm as the best one.

Table 6: Original Algorithm: Texture Transfer

Results

Image % Modified | % Original | Block Size
1 63.0 32.0 10
2 40,0 60,0 25
3 60,0 40,0 40
4 48,0 52,0 20
5 44,0 56,0 50
6 40,0 60,0 15
7 56,0 44,0 50
8 68,0 32,0 37
9 417 58.3 50
10 69.6 30,4 65
Average | 53,53 46,47

Table 7: Texture Synthesis: Survey results

Image | % Modified | % Original |

1 79,2 20.8
2 91,7 8.3
3 100 0

Table 8: Texture Transfer: Survey results

6 Conclusion

If we look at texture synthesis, selecting the best
block produces similar results compared to select-
ing a random block within a margin. Looking at
texture transfer there is a big difference in the av-
erage error between the modified and orignal algo-
rithm, but the survey suggests the opposite. Since
the photorealisticness of the image is the measure
for a good image, we can conclude that selecting
the best block works better for texture transfer.
This is most likely to

7 Future Work

I feel that, even though the original algorithm pro-
duces some impressive results, there are still im-
provements to be made. The other drawback of
the algorithm is mismatched boundaries. If that
can be dealt with it would be a great improve-
ment over the original. Also the block reuse range
is now a static variable, independant of the block
size. If a small block-size is selected, the boundaries
for repetition of blocks will be much stricter than
with larger blocks. A block reuse range depend-
ing on the block size could be a topic of further
research.

References

[1] A. A. Efros and W. T. Freeman. Image Quilt-
ing for Texture Synthesis and Transfer. In SIG-
GRAPH '01, 2001.

[2] E. W. Dijkstra. A note on two problems in
connexion with graphs. In Numerische Mathe-
matik 1: 269271, 1959.

[3] A.A.Efros and T. K. Leung. Texture synthesis
by non-parametric sampling. In International
Conference on Computer Vision: 1033-1038,
1999.

[4] Y. Xu, B. Guo and H. Y. Shum. Chaos mo-
saic: Fast and memory efficient texture synthe-
sis. Technical Report MSR-TR-2000-32, 2000.

[5] K. Slot, L. Kornatowski, Piotr Debiec. Fast
texture synthesis with cellular neural network-
based patch stitching. In International Journal
of Circuit Theory and Applications, 2012.

[6] V. Kwatra et al. Graphcut Textures: Image
and Video Synthesis Using Graph Cuts. In
SIGGRAPH '03, 2003.

[7] R. Paget. Strong markov random eld model.
In IEEE Transactions on Pattern Analysis and
Machine Intelligence (Volume: 26, Issue 3),
2004. 408413.

[8] L. Wei et al. State of the Art in Example-based
Texture Synthesis. In Eurographics, 2009.

9] Q. Wu, Y. Yu. Feature matching and defor-
mation for texture synthesis: 364-367. In SIG-
GRAPH 04, 2004.

[10] M. Ashikhmin. Synthesizing natural textures.
In ACM Symposium on Interactive 3D Graph-
ics: 217-226, 2001.

.
Q
g
Q

=

+
>

el

]

s
o]
~
O
=
)
a0

R
<)
a0
o]

=

&

2
O

=

+~

n
—
)

el

g
=
=

e
S,
3
m .
oS5
@w + eb
2 =
=58
g e
82§
R <
2 & 3
(&)
) =]
&

=

Q
E&¢S
me [«D]
=7 8
rm -
o0 g
2 8=
£E%
T 50
5 <
253
H 2%

Appendix

Figure 8: Image 6

Figure 3: Image 1

Figure 9: Image 7

Figure 4: Image 2

Figure 10: Image 8

Figure 5: Image 3

Figure 11: Image 9

Figure 6: Image 4

Figure 7: Image 5

Figure 12: Image 10

For Texture Transfer the left image is generated
by the modified algorithm, the right by the origi-
nal.

Figure 14: Image 10

Figure 15: Image 10

