
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

Internal Report 2012-2013-05 June 2013 

Universiteit Leiden  

Opleiding Informatica 

 

 

Contracting in Agile Software Projects: 

Current Challenges and New Possible Solutions 

 

 

 

 

Shi Hao Zijdemans (s1028790) 

supervised by J.C. Stettina 

and Prof. Dr. B.R. Katzy 

 

 

 
 
 
 

BACHELOR THESIS 
 
Leiden Institute of Advanced Computer Science (LIACS) 
Leiden University 
Niels Bohrweg 1 
2333 CA Leiden 
The Netherlands 
 
 
 
 

      



1 
 

Abstract. Making successful formal agreements has proved to be challenging for Agile Software 

Development. One of the biggest advantages of Agile project management is the incremental 

delivery. Because the software is developed in cycles an opportunity for payment in cycles has 

also emerged. In our exploratory research we investigated current challenges in software 

contracting and the implications of doing the payments per cycle. We conducted a workshop at 

an Agile-centered event, and we conducted five semi-structured interviews at different 

organizations. In this thesis we explain current challenges in software contracting and we discuss 

the implications of doing the payments per cycle. Finally we explain how the suggested solutions 

for Agile Contracts could be applied in practice in the near future, and we explain what is 

currently withholding us from implementing this. 

 

Keywords: Agile project management, Contracts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

Table of Contents 

1. Introduction……………………………………………………………………...3 

    1.1 Problem Outline……………………………………………………………...3 

    1.2 Research Goals………………………………………………………………4 

2. Theoretical Framework…………………………………………………………..4 

    2.1 Traditional vs. Agile Software Development………………………………..5 

        2.1.1 Traditional Planning Approaches……………………………………….9 

        2.1.2 Agile Estimating and Planning………………………………………...10 

    2.2 Contracting in Software Development Projects …………………………...12 

        2.2.1 Fixed price Contracts…………………………………………………..12 

        2.2.2 Time & Materials Contracts…………………………………………...13 

        2.2.3 Incomplete Contracts…………………………………………………..14 

        2.2.4 Agile Contracts………………………………………………………...15 

3. Research Methodology…………………………………………………………20 

    3.1 Research design…………………………………………………………….20 

        3.1.1 Data Collection………………………………………………………...20 

        3.1.2 Data Analysis…………………………………………………………..21 

    3.2 Research Process…………………………………………………………...23 

4. Results………………………………………………………………………….24 

4.1 Workshop…………………………………………………………………...24 

4.2 Semi-structure interviews…………………………………………………..26 

    4.2.1 Payment Per Sprint…………………………………………………….29 

    4.2.2 Fixed Price……………………………………………………………..31 

    4.2.3 Agile Contract Solution………………………………………………..33 

    4.2.4 Time & Materials………………………………………………………39 

5. Discussion………………………………………………………………………40 

6. Conclusions…………………………………………………………………….42 

References………………………………………………………………………...44 

Appendix A……………………………………………………………………….46 

Appendix B……………………………………………………………………….48 

Appendix C……………………………………………………………………….50 

 

 

 

 



3 
 

1. Introduction 
 

1.1 Problem Outline 
Agile project management has become hugely popular in the world of software development 

(Dyba et al. 2008). Although the Agile approach brings a lot of advantages to both the software 

supplier and the customer, it can also bring along some difficulties. Some of these difficulties are 

caused by the fact that Agile software development hasn’t been this popular for a very long time 

yet. In the rise of its popularity, there still hasn’t been found a generally applicable solution to a 

particular set of challenges. Major challenges are often posed in implementing Agile processes in 

traditional development organizations (Boehm et al. 2005), and there are challenges in finding 

common ground with the customer in Agile projects (Book et al. 2012). The latter challenge 

makes for a complicated contract negotiation. Contract negotiation is a crucial part of a software 

development project, because it sets the tone for the entire project. If the software development 

company hasn’t had any previous projects or collaborations with the customer yet, then a bad 

contract agreement for their first project together can very well cause it to be their last project 

together. Challenges with contracts for Agile projects will be the subject of this bachelor thesis.  

 

Contract negotiation has always been a part of the project that requires special attention (Book et 

al. 2012). In Agile software development it currently is a way harder task to form a mutually 

beneficial contract than in traditional projects. One of the possible reasons why contracting in 

Agile software development (Agile contracting) in particular is more troublesome, is because 

there isn’t a widely known contract form that perfectly suits agile processes yet. Currently, Agile 

projects make use of contract types that have been around before the emergence of SCRUM (the 

most widely used Agile approach). These contract types are a good fit for waterfall based 

projects, but some big complications arise when they’re applied on Agile projects. A factor that 

plays a major role in that part, is the fact that the Agile approach embraces change. Negotiating a 

fixed price or a fixed scope for the project limits the amount of Agility that can be applied in an 

Agile project. However, good estimations on the price, scope and deadline are the standard for a 

lot of currently popular contract types. Like this, there are more factors in currently used contract 

types that make Agile contracting difficult, and therefore also more reasons why there should be 

a solution to this problem.  

 

There have been many research articles that propose a way to modify existing contract types as 

to make them work in an Agile project. These suggestions try to fix the symptoms of the 

problem, not the cause. This problem is currently receiving growing attention. A badly 

engineered contract can easily result in low software quality, disturbance in the progress of the 

project, a decrease in Return on Investments, and dissatisfied customers. With these 

consequences continuously being at stake, you have to expect that Agile project managers 

around the world are eagerly waiting for a new contract form that has been designed to 

complement the Agile approach. 



4 
 

1.2 Research Goals 
In Agile software development the software system is delivered in cycles (sprints). Agreeing to 

make the payments in cycles too, seems like a good way to allow more flexibility (Agility) in 

Agile software projects. We hereby imagine the possibility of buying an amount of initial sprint 

to give the customer a ‘trial’ option, and the possibility of buying extra sprints as long as the 

customer wants more functionality. However this method of making contracts more Agile (Agile 

Contracting) hasn’t been adopted into the Agile community yet. The fact that Agile Contracting 

hasn’t been implemented yet combined with the fact that the current status in contracting for 

agile projects is problematic, implies that Agile project managers are currently facing some 

challenges with regard to contracting. In our research we try to find out what these implications 

are and how they can possibly be reduced. This is an exploratory research, where the current 

challenges and possible solutions are explored by interviewing (Agile) project managers from 

different companies in The Netherlands. The research question for this bachelor thesis is:  

 

RQ: Agile projects are developed in cycles which means that developers also can be paid per 

cycle. What are possible solutions to make contracts more Agile? 

 

Research work began with studying publications on agile processes, contracting in agile projects, 

and related work on contracting, which will reviewed in section 2. In section 3, we explain in 

detail how we have done our research, and the results will be covered in section 4. We leave 

room for discussion of our research in section 5, and in section 6 we will explain the conclusions 

that can be drawn from the research. 

2. Theoretical Framework 
 

Before doing this research, we had a general (theoretical) understanding of what agile processes 

look like, and that current contracting in agile projects was problematic. We also stumbled upon 

a paper from Mathias Book et al. (2012), in which a fair pricing model for Agile Contracting is 

proposed. The paper stated that it had been tested in one large German software development 

company, indicating that this way of agile contracting is still very new. But these facts alone are 

far from sufficient knowledge on our research domain to be able to solve our problem 

effectively. That’s why it’s important to first build a theoretical framework, upon which we will 

build our own field research. 

 

The quality of our research data depends greatly on the quality of our interview questions. In 

order to form great and effective interview questions we first needed to develop a thorough 

understanding of current practices in Agile software development and contracting. We gained a 

lot of knowledge on Agile processes, current most used contract types with Agile projects, Agile 

contracting, and looked into some Contract Theory. We had to fully understand how Agile 

processes work and what kind of advantages and disadvantages they have. We found multiple 



5 
 

papers that present an approach to improve the compatibility between current popular contract 

types and Agile projects. There was very little material on Agile Contracting, which can be 

explained by the fact that it’s still a very new topic. Since we are looking into the financial aspect 

of software engineering and flexible ways of contracting, we thought that literature research on 

Contract Theory and Incomplete Contracts could bring an interesting new perspective on Agile 

Contracting. 

2.1 Traditional vs. Agile Software Development 
All current software development process models can roughly be divided into two groups: 

Traditional and Agile (Awad, 2005). The traditional approach is also often called ‘plan-driven’, 

‘heavyweight’, or ‘the Waterfall Model’ (Royce, 1970). In this approach to software 

development the project is divided in a few phases, illustrated in Figure 1: 

 
Fig. 1: The main phases in a Waterfall project. 

 

Before implementation begins, the entire project is planned and the system is specified 

completely. Like all phases, these steps must result in a pile of detailed documentation, which is 

an important part in traditional software development. Because the different phases are executed 

by different teams, the documentation is the main source of communication between the different 

teams. One of the strong suits of the traditional approach is the fact that the initial phase will 



6 
 

result in a detailed plan and design of the entire project. The detailed upfront specification and 

phased approach is very suitable for projects, for which the requirements can be communicated 

more easily (e.g. the requirements for a house can be communicated very effectively by a design 

and a blueprint).  

     However, the usage of the traditional approach on software projects, often results in software 

systems that do not satisfy the customers’ expectations. One important reason is the complexity 

of software development, which makes it very challenging to capture all the requirements and 

expectations from the customer correctly. Another important reason is the fact that in traditional 

software development, the customer does not see a working system until the very end of the 

project. Although there is a validation and verification between the supplier and customer after 

every phase, the artifacts of a traditional software project (e.g. the design of the system) often do 

not provide the customer with a representative presentation of the real end result. Also, change 

requests during the project are difficult to process, because of the detailed upfront specification 

and the difficulty of communication between the different teams. Therefore, the traditional 

approach is easier to execute correctly on small software projects of which the requirements and 

expectations are not very complex.  

 

The Agile approach to software development (also called ‘iterative’ or ‘lightweight’), has 

quickly gained immense popularity. There are multiple different process models within the 

methodological school of Agile Software Development, but the base for all these models was 

created in 2001, when 17 creators and supporters of the lightweight methodology gathered in 

Snowbird, Utah. Their gathering resulted in a clear set of statements of common values within all 

Agile process models, called the ‘Manifesto for Agile Software Development’ (Beck et al. 

2001): 

 

 
Fig. 2: The Agile Manifesto (Beck et al. 2001) 

 



7 
 

This gathering also resulted in 12 clearly defined principles behind the Agile Manifesto. Recent 

study has provided an insight into the Agile community’s perception on different Agile 

principles (Williams, 2012). The results show a ranking of the Agile principles that are essential 

for a team to be considered Agile. We will shortly highlight the top five principles.  

 

1. Continuous integration: All the new components of the system that are developed 

during the project, must be immediately integrated with the rest of the system that has 

been built so far.  

2. Short iterations (30 days or less).  

3. “Done” criteria: the criteria that have to be met in order for the customer to accept the 

system that is demonstrated must be defined in advance.  

4. Automated tests run with each build.  

5. Automated unit testing. 

 

There are multiple Agile process models all of which implement Agile principles in their own 

interpretation (Krebs, 2008):  

Extreme Programming or XP (developed by Kent Beck, Ward Cunningham, and Ron Jeffries) 

is one of the most widely used Agile method. XP’s most notable contribution to the Agile 

practices are ‘pair programming’ and its test-driven development.  

Scrum (developed by Jeff Sutherland and Ken Schwaber) is a currently very popular method, 

which has popularized/introduced Agile principles as ‘Daily stand-up meeting’, ‘Product 

Backlog’ and referring to cycles as ‘Sprints’ (Schwaber, 1995). Figure 3 shows the process flow 

in Scrum as presented by Boehm et al (2005). 

 

 
Fig. 3: The process flow in Scrum. (Boehm et al. 2005) 



8 
 

Dynamic Systems Development is a method originating from Rapid Application Development 

(RAD), which uses prototyping after every iteration to improve customer involvement.  

Lean Software Development (developed by Mary- and Tom Poppendieck) originates from lean 

manufacturing. It does not run the project in iterations, but divides the project according to the 

individual features of the system to be implemented.  

Crystal Clear (developed by Alistair Cockburn) is a process that focuses primarily on the people 

involved in the process. Crystal Clear focuses on fine-tuning the software development method 

itself and the product at the beginning and the middle of each iteration. 

 

The main differences between traditional and agile is that agile focuses on incremental delivery 

unlike traditional, where there isn’t a working system yet until the very end (Schwaber, 2004). 

The incremental approach reduces the need to plan the entire project upfront, since the details 

can be refined during the course of the project. This minimizes risk, because it enables the parties 

to postpone important decisions to when more knowledge is available. At the end of every 

iteration a working piece of software should be presented to the stakeholders. This approach 

welcomes feedback from the stakeholders, which contributes to the final product being more 

conform to the customer’s wishes. Table 1 provides an overview of comparison between the 

Traditional approach and the Agile approach (Nerur et al. 2007).  

 

 

Table 1: Traditional vs Agile (Nerur et al. 2007) 



9 
 

2.1.1 Traditional Planning Approaches 

Planning a schedule is essential for projects in all industries. Planning is especially challenging 

in information technology (IT) projects. Because of the complex nature, and the frequently 

changing requirements, software projects tend to overrun their cost estimates. Reliable estimates 

are crucial in traditional projects, since the total price must often be agreed upon at the beginning 

of these projects (these are called fixed-price contracts, which will be explained in section 2.2.1). 

Overrunning the cost estimate will result in decreased profits for the software company. In 

traditional projects there are three artifacts that are mainly used to guide the planning process:  

● Work-breakdown structures 

● Gantt Charts 

● Critical Path Analyses 

 

A Work-Breakdown Structure (WBS) is a hierarchical decomposition of all the work items that 

have to be done in the project. All the activities and tasks of the project are broken down into 

more detailed items from the top down, so the lower levels are subtasks of the higher levels. 

When the lowest level of the hierarchy has been defined, an estimation can be made of the 

required effort and the duration of the project. A problem with this approach is that any work that 

is not listed in the WBS won’t be estimated, and any work performed outside the scope of the 

WBS will lead to cost overruns. Work-Breakdown Structures are difficult to update, so that is 

hardly ever done in practice. 

 

Gantt Charts are widely used in traditional projects to show the project schedule. An example is 

illustrated in Figure 4. These charts display the different tasks in relation to the total time of the 

project. The main benefit of a Gantt Chart is the ability to give a clear visualization of the 

duration and order of all the tasks in the project. The problem is that the estimations for tasks 

later in the project are very likely to be inaccurate. 

 

 

Fig. 4: An example of a Gantt Chart. 



10 
 

Critical Path Analyses are used to identify the shortest way through the project schedule and the 

dependencies between the activities. Any delay in one of the activities on the so called ‘Critical 

Path’ will cause a delay of the project completion date. When the critical path is known, it can 

help project managers to control the progress of the project. 

 

Besides these widely used artifacts, project teams may use other methods to make estimates. A 

method that uses a point system to estimate the size of tasks is Use Case Points. Use cases are 

generally larger than user stories and are usually documented as a collection of scenarios. The 

implementation of Use cases are sometimes spread over multiple iterations. The use case point-

estimation process takes multiple steps. The Use Case Points are a product of Unadjusted Use 

Case Points (UUCP), Technical Complexity Factor (TCF), and Environment Complexity Factor 

(ECF). These metrics are used to assign a value on different aspects of the use cases, namely: the 

complexity of the use cases, actors and system boundary in the use case diagram (UUCP), the 

technical complexity of the overall system (TCF), and the complexity of the environment (ECF). 

The classifications usually occur in an initial team meeting by the project team. Point systems 

also have a beneficial psychological impact on the team; whenever a use case turns out to be 

much more complicated during implementation the points increase, which is not as demoralizing 

for the team as seeing the extra amount of work hours needed.  

 

The Expert Method is a widely used simple method of asking an experienced person in the 

organization for his/her estimate on the effort required to complete the tasks. This method is very 

quick and inexpensive, but has a few pitfalls. The estimation is heavily biased by the personal 

assessment and ability of the expert. He should adjust the advice based on the competence of the 

project team, but this has proved to be a very challenging thing to assess. 

2.1.2 Agile Estimating and Planning  

The most important management and planning artifact in an Agile project is the Product Backlog 

(Krebs, 2009, Schwaber, 2004). This is basically a To-Do list, containing all the requirements for 

the software system. In Agile these requirements are often captured in the form of User stories. 

These are represented in the following standard form: “<as a> I want <the feature> so that I can 

<business value>”. Being able to see the business value of each requirement helps the developers 

to implement the system as expected by the customer.  

 

The Product Backlog replaces the Gantt charts originating from the traditional planning tools. A 

big advantage of the Product Backlog is its simplicity: it’s basically a list of all the user stories 

ranked on priority (user stories that deliver the most business value have the highest priority). 

This enables stakeholders to update the Backlog easily and timely. Between iterations there is an 

opportunity to add, delete and re-prioritize user stories in the Product Backlog. Gantt charts are a 

lot harder to adjust, and when taking into account the high frequency of change in Agile projects, 

it takes up too much effort to keep it up to date. The fact that a Gantt chart depicts a well thought 

out plan, while it is not updated consistently, will be deceiving when shown to the customer. 



11 
 

 

Prior to each iteration, the development team makes a selection of the highest priority user 

stories from the Product Backlog, that they will implement in the associated iteration. These 

selected user stories are further specified in a new artifact called a Sprint Backlog (originated 

from Scrum), which contains a lot more technical detail. In determining how many user stories 

they can implement in the next iteration, the team must make an estimate on the effort required 

to complete these user stories. A big advantage in estimation in Agile projects compared to 

traditional projects, is the fact that the estimates are made by the development team itself instead 

of the project manager. Accurate estimations will lead to satisfying demonstrations for the 

stakeholders at the end of each iterations, and increased trust in the development team. This is a 

benefit in every contract type, because the key ingredient for a successful contract is mutual 

trust. There are a few methods specifically for Agile projects that are used to help make accurate 

estimations. The Agile spirit (lightweight, simple and quick) can be recognized in these methods. 

 

One way to improve the accuracy of the estimates after each iteration is by weighing the planned 

effort for each requirement against the actual effort that was needed to implement the 

requirement. By reflecting on the progress, the team can learn from its mistakes and successes. 

Based on the experience gained after each iteration, the estimates can be made more accurately. 

This is a very effective and natural way to improve the estimates, and can be used on all the 

following estimation methods. 

 

Story Points are used to give user stories a value that indicates the size of the user story. With 

this point system, the development team can avoid using person-days or monetary values to 

estimate the size of user stories. Story points focus on the size of requirements, not the duration. 

Different point systems can be made in each development team as long as they are consistent and 

simple. For example, a user story with two story points should be double the size of a user story 

with one story point. One of the big benefits the story point system brings along is the ability to 

make simple predictions for the remaining duration of the project, based on completed iterations. 

This technique is called the measurement of Velocity, and can be seen as the speed of the 

development team. For example, when a team delivers 40 points for the first iteration, and the 

entire project is estimated at 400 points, the manager can roughly estimate the remaining 

duration of the project at 9 or 10 weeks. 

 

An effective and quick way to elicit the personal estimates on the effort or size of user stories 

from every single team member is called Planning Poker (Cohn, 2005). This is a game-like 

process in which every team member has a hand of cards showing the Fibonacci sequence up to 

100 (to account for the uncertainty in estimating large user stories). First a user story is 

announced by the Product Owner, upon which a time-boxed discussion ensues where the team 

member can ask the Product Owner questions that will help them make the estimates. The Scrum 

Master then tells the team members to each show their card that represents their estimate on the 

user story. All the team members have to do this at the same time as to prevent the team member 



12 
 

to influence each other. If the estimates don’t differ much, the Scrum Master assigns the most 

frequent estimate to the user story. When there is a wide disagreement, the round is repeated for 

the same user story, and the estimates can be adjusted according to the new discussion. A 

disadvantage of these discussions is that it leaves room for dominant and well-spoken team 

members to interfere. 

2.2 Contracting in Software Development Projects  

Software projects are very complex, and the requirements are as hard to elicit and understand 

correctly as in any other field of projects. In the following subsections, we will discuss two of the 

most frequently used contract types, which can be seen as opposites of each other: Fixed price 

contracts and Time & Materials contracts. Then we will briefly cover ‘Incomplete Contracting’, 

which is a theory stemming from microeconomics. Finally, we will give a detailed explanation of 

Agile Contracting, and we will cover the currently available literature on Agile Contracting. 

2.2.1 Fixed Price Contracts 

Fixed Price contracts in software development define the price, scope, features, planning and 

deadline of the project (Hoda et al. 2009). The supplier is paid when the software system is 

delivered to the customer. All the contract elements can only be properly established after a 

detailed specification of the entire system has been made. Hence, the Fixed Price contract is a 

good complement to traditional software projects.  

 

In section 2.1.1 we explained why the traditional approach might be troublesome for software 

development. The way the price for Fixed Price contracts is established often cause additional 

implications on the software projects. Whenever organizations want to have a software system 

made (with a Fixed Price contract), they post a Request For Proposal (RFP) to elicit bids from 

potential software suppliers. Most responses to RFPs consist of a bid, qualifications, prior similar 

projects, development methods to be employed, and a plan. The big problem that often occurs in 

this early stage is the fact that the software suppliers are to make an estimate on the cost and 

duration of the project based on the specification in the RFP, even though these specifications 

often are vague (Book et al. 2012). The software suppliers have to make a guess on the price, 

while also aiming to beat the price of competitors. This usually results in a price that is so low, 

that the software supplier that has won the contract subsequently experiences declining profits 

due to his (too) low bid. This is why the risk is completely on the supplier’s side in Fixed Price 

contracts. 

 

The Fixed Price contract does not work well with Agile projects in theory and in practice. The 

fixed price is based on an estimation of the effort and cost of the project. Just like in traditional 

software projects, there is a risk of inaccurate estimations. When the actual required effort turns 

out to be much bigger, it is often the quality of the software system that has to suffer. When 

Fixed Price contracts are used in an Agile project the chance of the actual effort being higher 

than the estimated effort is significantly higher, because the Agile approach encourages the 



13 
 

software supplier to embrace change. The ability to keep adding bells and whistles at no extra 

cost is tempting for the customer, but they often fail to realize that this leads to increased work 

pressure for the software developers, which will come at cost of the software quality. 

 

Compared to our research, similarity can be found in a research project on the challenges that 

software vendors in India and New Zealand encounter in contracting for Agile projects (Hoda et 

al. 2009). Grounded Theory has been used to analyze the data gathered from interviews at 

several software companies. This research has shown that currently, software suppliers using the 

Agile framework have trouble offering any other contract type than Fixed Price contracts to the 

customer, because the customers are used to them. Knowing the exact date when the software 

will be released and the exact cost of the project is often perceived as valuable by the customers. 

This research can be viewed as further evidence supporting the argument that fixed bid contracts 

and Agile principles are not directly aligned, and that subsequently contract negotiation is a real 

issue for Agile practitioners. 

2.2.2 Time & Materials Contracts 

Another contract type that is used in Agile projects is the Time & Materials contract. In this 

contract type the software supplier is paid per hour (Stevens 2009). At specified time intervals 

(e.g. monthly) the software supplier sends the customer a bill according to the amount of hours 

that the supplier has worked on the project. The scope of the project is not specified upfront, and 

is not mentioned in the contract at all. Time & Materials contracts can be ended whenever the 

customer wants (e.g. when enough the system that is delivered so far is of enough business value 

to the customer, or when the customer’s budget limit has been reached).  

 

In Time & Materials contracts all the risk is carried by the customer. The supplier has no 

incentive to work efficiently, because the supplier is paid for every hour that it claims to have 

spent on working on the software system. In fact, it is more profitable for the supplier to work 

inefficiently (Thorup et al. 2009), because this prolongs the contract and hence the stream of 

revenue for the software company. To prevent this, the customer can impose control mechanisms 

that monitor the supplier´s efficiency. However, this can hinder the collaboration between the 

parties. Another factor that adds risk for the customer is the uncertainty that can be experienced 

due to the absence of a price estimate of the project. 

 

The flexibility that is supported by Time & Materials contracts makes this contract type more 

suitable for Agile projects in theory. Unlike Fixed Price contracts, Time & Materials contracts do 

not conflict with the Agile approach to software development. When there is mutual trust 

between customer and supplier, and the supplier tries to work efficiently, the Time and Materials 

contract can be a really easy contracting solution for Agile projects. 

 

 



14 
 

2.2.3 Incomplete Contracts 

Since we are looking into the financial aspect of software engineering and flexible ways of 

contracting, we thought that literature research on Contract Theory and Incomplete Contracts 

could perhaps bring an interesting new perspective on Agile Contracting.  

 

A significantly important subject within Contract Theory is the amount of ‘contract 

completeness’. Based on contract completeness, contracts can be said to be ‘complete’ or 

‘incomplete’. A contract in which, upon inspection, there is a lot of room for ex-post (after the 

contract has been signed) negotiation on certain contingencies is called an ‘incomplete contract’. 

This can cause unpleasant situations, if one of the parties decides to take advantage of 

impreciseness in the contract (i.e. opportunism). Whenever there is no room for ex-post 

negotiation about the content of the contract, it can be called a ‘complete contract’.  

 

In literature the idea of contractual incompleteness is described by the following informal story 

(Hart et al, 1999): “Imagine a buyer, B, who requires a good (or service) from a seller, S. 

Suppose that the exact nature of the good is uncertain; more precisely, it depends on a state of 

nature which is yet to be realized. In an ideal world, the parties would write a contingent contract 

specifying exactly which good is to be delivered in each state. However, if the number of states 

is very large, such a contract would be prohibitively expensive. So instead the parties will write 

an incomplete contract. Then, when the state of nature is realized, they will renegotiate the 

contract, since at this state they know what kind of good should be traded.”  

 

In his paper, Saussier (2000) mentions two possible reasons for why incomplete contracts are 

being signed at all. Reasons that have been proposed usually refer to bounded rationality of 

economic agents and the verifiability of variables that are relevant to contract fulfillment. But 

since it’s hard to formalize bounded rationality, the answer is searched in the non-verifiability of 

relevant variables.  

 

The parties involved in contracting face a tradeoff between the costs of engineering a more 

complete contract and the costs resulting from an incomplete contract. Results have shown that 

the relative magnitudes of these costs are reflected by the degree of contractual incompleteness 

chosen in practice (Crocker et al. 1993). The cost of identifying contingencies relevant to the 

contract will increase rapidly in complex or uncertain environments. High environmental 

complexity and uncertainty will increase the cost of drafting complete contracts, and thus the 

parties are tended towards more contractual incompleteness. Whenever there is a record of past 

opportunistic behavior or the potential for hold-up, there will be an increased likelihood of ex 

post redistributive efforts with the associated bargaining costs, which results in the parties 

tending towards more complete contracts. 

 

Tirole (1999) provides a summary for the literature on incomplete contracting that had been 

available before 1999. He states that there is no clear definition  of incomplete contracting in 



15 
 

literature, and that presented incomplete contract models base the term ‘transaction costs’ on one 

or several of the following elements:  

● Unforeseen contingencies: “The parties can not define the possible future contingencies 

ex ante. This forces them to set up a contract that abstracts those contingencies, or not to 

set up the contract at all.” 

● Cost of writing contracts: “Even if all the contingencies can be foreseen, it might be too 

costly to document them all in the contract, because of the high quantity.” 

● Cost of enforcing contracts: “Courts must be able to fully understand the terms of the 

contract and the stated contingencies and actions in order to enforce the contract. 

2.2.4 Agile Contracts 

Agile software development projects deliver the software in cycles. One of the reasons for why 

it’s called ‘Agile’ is because after each cycle, there is an opportunity for the stakeholders 

(especially the customer) to make changes; changes in the design, changes of the order in which 

the software increments are released, changes in the software requirements etc. The way Agile is 

designed should allow changes in almost every aspect of the project. BUT in practice there is a 

major constraint that limits the total amount of project elements that can be changed in between 

cycles: the contract. This hinders the ability to implement the concept of the Agile approach to 

its fullest extent. That’s why the world of software development calls for a contract type that 

enables stakeholders in Agile projects to reap all the benefits that the Agile approach can bring: a 

real Agile Contract.  

 

This Agile contract type should ensure a fair risk distribution between the customer and the 

supplier, optimally in a way that both parties share the same risk and the same goal (Book et al. 

2012). To be more specific, it should allow the customer to make desired changes in the project 

scope, without negatively affecting the profitability of the software suppliers. Ideally, the 

software supplier should be paid after each cycle. The customers should be given the option to 

end the project early, when they believe that sufficient business value has been delivered and that 

the remaining features won’t be worth the cost. In that case, the customer should pay a fine to the 

suppliers, to compensate a bit for the lost profit. This option is not completely unused in the 

Agile software development world right now. The customers should also be given the option to 

prolong the project duration by buying extra iterations (sprints), when they want additional 

features that can’t be implemented within the original estimated duration. 

Before our research, our perception of Agile Contracting is:  

Contracts in Agile projects, in which the supplier is paid per cycle, while allowing changes to be 

made in the project scope and ensuring a fair risk distribution between the customer and the 

supplier. 

 

In the following subsections I will review two papers that present a form of Agile Contracting 

available in current literature. 



16 
 

2.2.4.1 The ‘adVANTAGE’ contracting model 

The best contract model that we found was by Matthias Book et al. (2012), which is called 

“adVANTAGE: A Fair Pricing Model for Agile Software Development Contracting”. In this 

contracting model, the software supplier is paid for their effort after each cycle. They claim that 

the key commercial principles of their model are fair risk distribution and mutual efficiency 

incentives. In their paper, it is explained that their contracting model combines elements of fixed-

price and T&M contracting models: the model strives to provide some idea of the overall 

projects scope (in terms of requirements, time and budget) to the users and developers, as they 

would have in a fixed-price project, however without exposing the software supplier to the risk 

of being committed to that exact effort. Instead this contracting model ensures that the customer 

pays exactly for what is delivered (like in T&M contracts), however without exposing him to the 

main risk of T&M contracts: the absence of the suppliers’ incentive to be efficient (i.e. the 

customer bears all the risk). 

 

Because the contracting model that Matthias Book et al. have presented is such a good practical 

representation of our idea of Agile Contracting, we will go over the model in more detail. The 

first step (called ‘Step 0’) is done once in the beginning. In this step, the initial requirements are 

collected from the customer (in the form of user-stories) and the budget is estimated. The total 

effort estimates for all the user stories are not collected to calculate a fixed price tag for the 

project, like in traditional contracting models, but they are used in all iterations as an orientation 

point for the billing.  

 

The next three steps, that are explained, are iterated steps: In Step 1 the customer can prioritize, 

eliminate or add user stories. While doing this, the customer has to take into account the 

supplier’s price estimates and his own budget ceiling. This aspect supports the principle of 

mutual efficiency incentives, because before each sprint the customer has to balance the 

importance of the user stories against his available budget and his desired timeframe. This 

contrasts with fixed-price contracts, in which the customer is often tempted to keep adding bells 

and whistles at no extra cost. After the list of user stories (Product Backlog) has been updated, 

the customer and the supplier can discuss which user stories should be implemented in the next 

sprint. Step 2 of the model concerns the sprint implementation. At the beginning of each sprint, 

the user stories that are to be implemented in the sprint are refined into more detailed technical 

specifications (in close collaboration with the client). In using this contracting model, changing 

Sprint Backlog items not only conflicts with the rules of Agile, but it will also sabotage the 

subsequent inspection and billing step. 

 

In Step 3 the sprint is inspected and billed. This step is what truly makes this contracting model 

Agile. First each user story is inspected for completion and acceptance by the client, and the 

estimated and actual effort of all accepted user stories are tallied. The billing depends on whether 

the user stories were completed and accepted, and the difference between the actual and the 

estimated effort. The price for the efforts is calculated by multiplying the effort (in person-hours 



17 
 

or person-days) by the suppliers usual hourly/daily rate. The bill consists of the price of cross-

cutting tasks (lumps sum for requirements elaboration, the scrum master’s work and other efforts 

that can’t be attributed to individual user stories), the estimated effort and the actual effort. 

Figure 5 (Book et al. 2012) shows the exemplary bill in case of underspending. 

 

 
Fig. 5: Example of bill in case of underspending (Book et al. 2012) 

 

Whenever the software supplier’s actual total effort for the sprint has been lower than the 

estimated total effort (i.e. underspending), then the customer does not have to pay those wrongly 

estimated hours/days. So for example: if the daily rate is 1.000 EUR and the actual needed 

person-days was 4 less than estimated, then the customer gets a 4.000 EUR reduction of charges. 

On the other hand, whenever the actual total effort has been higher than estimated (i.e. 

overspending), the supplier pays for the extra effort at a reduced rate (in the example in the 

paper, a 40% reduction is given). This way of penalizing the supplier for bad estimates, also 

contributes to the principle of mutual efficiency incentives. Contrary to the T&M contract model, 

the supplier has to stay efficient to prevent doing work at a considerably reduced rate. This also 

emphasizes the importance of making accurate estimations. 

 



18 
 

 

Fig. 6: Example of bill in case of overspending (Book et al. 2012) 

 

User stories that have not been completed successfully, can either be transferred to the next 

sprint, or completely cancelled if the customer chooses so. The estimated and actual effort of the 

transferred user story will be taken away from the bill and placed in the next sprint’s bill, where 

it will be accumulated with the additional effort made in that sprint. The efforts made on 

cancelled user stories will still be paid for (following the above rules). After each sprint the 

customer can terminate the project, when he feels that enough functionality has been acquired or 

the budget ceiling has been reached. The paper stated that this exit-strategy is risk-free for the 

customer, which implies that this model does not prescribe a penalty fee to the customer for 

terminating the project early. 

2.2.4.2 Collaborative Agile Contracts 

Thorup and Jensen (2009) report on their experiences with their contracting model called 

‘Collaborative Agile Contracts’, which has been tested in two commercial projects. The aim of 

their contracting model is to distribute risk and benefit fairly between the customer and the 

supplier. The biggest distinctive feature of this contracting model is that the payment is delayed 

until a certain criterion is fulfilled. In most contract types this criterion is a calendar data, as is 

also the case in ‘adVANTAGE’ (Book et al. 2012). However in Collaborative Agile Contracts, 

the criterion for payment is to reach a predefined milestone where the customer is getting value 

from the increment of the system. Such milestones are each associated with the delivery of one 

area of functionality. Generally both parties would like to reach these milestones as quickly as 

possible. The supplier’s efficiency will be rewarded with a quicker payout. The customer will 

think more carefully when deciding what features he/she wants to have implemented, because all 

the increments will be paid for separately. Just like in adVANTAGE (Book et al. 2012), this 

freedom enables the customer to discard some initial requirements. These factors contribute to 

the mutual efficiency incentives.  

 

In a Collaborative Agile Contract the following elements are defined: 



19 
 

● A short and loose description of the scope, that can be seen as a kind of vision statement 

● An hourly price that is 10-50% below the hourly price that would be used in a pure Time 

& Materials contract. 

● A list of milestones, each of which will lead to payment of a fixed amount (although from 

the paper it is uncertain whether the authors mean that the same fixed price is used for all 

the milestones, or that each milestone will have its own pre-defined (fixed) price). A 

milestone is considered ‘completed’, when the associated increment of the system is 

deployed at the customer’s site. 

● A development process following the Agile approach. 

● A suggested timeframe for the entire project and the individual milestone, that will serve 

as a guideline. However, there is no fixed deadline in this contract. 

Note that this does not include a detailed requirements specification, and there are no fines at all.  

 

The payment structure in Collaborative Agile Contracts is what truly defines this contracting 

model. The total price is divided in two elements, namely: the completion price (which is 

divided among the milestones relative to their size) and the price per hour. In a fixed-price 

contract the total price would be the only price, and in a T&M contract the price per hour would 

be the only price. In Collaborative Agile Contracts, the combination of these two price elements 

comprise two parameters that can be used to optimize the contract model according to the 

specific project.  

 

An important factor in finding the right balance between the two elements is the emphasis on fast 

completion. In a project where the software release time (time to market) is very important to the 

customer, it is smart to opt for a high completion price. This will encourage the supplier to work 

as fast and efficiently as possible, because this will contribute to a higher profit. The Agile 

approach and the hourly pay should prevent the supplier from working inefficiently. In projects 

where the customer wants to continue development until all desired features are fully completed 

or in projects where there is a lot of uncertainty in the initial estimation on the project, it’s more 

profitable to opt for a high hourly price. This gives the customer more flexibility, because 

normally (in fixed price contracts) additional feature requests from the customer are not very 

welcomed by the supplier since they require additional effort without extra pay. A high hourly 

price makes the supplier more open towards change, which supports the correct execution of 

Agile processes in the project.  

 

 

 

 



20 
 

3. Research Methodology 
 

In this research we aim to gain knowledge on the implications for customers and the financial 

structure of Agile software projects, caused by contract models. Therefore, we must know the 

current practices and challenges in Agile software contracting. Hence, we have to get in contact 

with people, that have experience in the field of contracting for Agile software development 

projects. With these research objectives, our research will be of exploratory nature (Yin, 2008). 

By doing exploratory research we aim to collect perceptions and opinions on current contracting 

challenges in Agile software projects, and how contracting can be improved in Agile projects. 

3.1 Research Design 
We have employed two methods within our case study research: we conducted a workshop and 

we conducted semi-structured interviews. During our literature research we constructed a list of 

questions (the interview guide) that we would use to guide our interviews. When we received the 

opportunity to conduct a workshop in an Agile-related event, we used this opportunity to ask 

some important questions from the interview guide before conducting our first interview.  

3.1.1 Data Collection 

The workshop was a good way to elicit feedback from multiple people in a very short time. Since 

it was conducted before any of the interviews, it proved to be a an effective way to get a 

preliminary pool of information about the current situation of contracting Agile software projects 

in practice. The workshop was held at the event “AgiLEREN, Certificeren en Inspireren” hosted 

by the Agile Consortium at April 25th, 2013. The underlying theme of the event was connecting 

researchers of Agile with practitioners of Agile (many of which are managers in Agile software 

development).  

 

Since the author’s knowledge about the collaboration between the customer and the supplier in 

Agile software projects in practice was very limited, the goal of the workshop was to get a 

general idea of the aspects related to contracting in practice. The information gained from this 

workshop could give us some practical insight into the current contracting situation, which could 

help in adding better questions to the interview guide. Since open discussions can be distorted by 

dominant personalities, we aimed to structure the workshop in such a way that the perceptions 

and opinions from as many people as possible are collected. Hence we planned to present some 

questions on posters, on which we collected the participants’ thoughts by using post-it notes. 

These questions formed the guideline during the workshop. The posters were based on three of 

our wider scoped questions from the interview guide, that were suitable to ask a more diverse 

audience. The layout of the posters was as such: 

 

1. An Ishikawa cause-and-effect (fishbone) diagram was depicted, where we collected the 

participants' current challenges in contracting for software development projects. 

2. Asked for suggestions on possible ways to improve contracting in Agile projects. 



21 
 

3. Asked for suggestions on important aspects to consider when contracting (Agile) 

projects. 

 

A total of nine people attended the workshop, of which six people actively participated in the 

discussion and contributed suggestions to the posters. Among these people were Product 

managers in Agile Software Development, an Agile Coach who had also given presentations 

about Agile Contracting, ScrumMasters and a teacher at a university.  

 

We started the workshop by explaining the purpose of the research and by providing a short 

background to the subject. Then the questions were introduced and every participant was asked 

to write up their suggestions on post-its and put them on the posters. After the participants had 

finished contributing their suggestions, they were asked to elaborate on their contribution.  

 

We conducted five semi-structured face-to-face interviews, all in different organizations. The 

interviews took place between April and June 2013. We interviewed participants from different 

from a variety of roles, as to ensure that we collected different perspectives on Agile contracting. 

The interviews had an approximate duration of 1 hour, and they took place at the participants’ 

workplace. Before each interview, we asked the participant for permission to record the 

interview. We mentioned that all data from the interview will be anonymized in the thesis and in 

possible future publications. The interviews were voice recorded on a mobile phone, so we 

would not have to keep taking notes, and we could concentrate on the interview. 

 

The structured part of the semi-structured interviews was prepared by listing open-ended 

questions in an interview guide. We had to formulate questions that would help us elicit the 

information that we were looking for, and that would provide us with a guideline during the 

interviews. This interview guide was initially formed during the literature research, and during 

the research additional questions were continuously added to the interview guide. Especially the 

first interviews gave us better insight into the interview guide. While it is important to remain 

disciplined and focused in data collection we must be reminded of the exploratory nature of our 

research. Therefore we should be exploratory during the interviews as well. Given the variety of 

backgrounds of the participants, we altered the questions a bit according to the situation. For 

example, with one of the participants who is a jurist in the Research & Development area, we 

skipped the more software development-oriented questions, after he answered that his knowledge 

about this area was limited. The exact interview guide can be found in Appendix A. 

 

3.1.2 Data analysis 

To analyze the data from the interviews, we applied some elements from Grounded Theory, 

which is a systematic qualitative research method. Grounded Theory, developed by Glaser and 

Strauss (Glaser et al. 1967), provides us with a method that allows us to rigorously analyze our 

data from our interviews and to systematically generate theory. It is especially suitable for areas 



22 
 

of research that have not been studied in great detail before, and it allows researchers to study 

social interactions and human behavior. This is very much applicable to our research, since 

research literature on challenges caused by payments per cycle in Agile software projects is 

scarce. Also, Agile methods focus on people and communication.   

 

Originally, in Grounded Theory, the researcher gathers data and then systematically derives a 

substantive theory directly from that data, instead of first developing a theory and then 

systematically seeking evidence to verify it (Hoda et al. 2009, Adolph et al. 2008). However, 

instead of starting with a general area of interest (i.e. ‘Agile Contracting’), our research started 

with a Research Question, that narrowed our research scope to “challenges related to payments 

per cycle in Agile contracts”. By applying some elements from Grounded Theory, we aimed to 

build a substantive theory that will contribute to answering the Research Question. 

 

All interview have been transcribed line by line. After the interviews had been transcribed, we 

analyzed the data and explored the meaning in the data. This was done using a technique called 

‘open coding’, which is a technique used to conceptualize the data. In the coding process, the 

transcripts are analyzed line by line and inspected for key points from each interview transcript. 

Each key point is then assigned a ‘code’ (i.e. a descriptive label), which formed our first level of 

abstraction in analyzing the transcripts. 

 

Interview quotation: “On the one hand, you want to give certainty about that, [for example by 

saying] ‘we will build everything for cheap’. Well then we get the assignment like that, which is 

my job; getting assignments. On the other hand, you do of course want to get assignments where 

you can reach the financial performance that you agreed to. Well yes, that’s interesting.” — P3 

 

Code: “Challenge: Comforting the customer” 

 

The codes that have been identified from each interview were constantly compared against codes 

from the same interview, and codes from other interviews and observations. This is Grounded 

Theory’s constant comparison method (Glaser et al. 1967). In this example other similar codes 

were “Customer wants upfront specification (P3)”, “Customer is not-knowing and cautious 

(P2)”, and “Comforting the customer with Fixed Price (P2)”. By following the constant 

comparison method we grouped codes together to create a higher level of abstraction, called 

‘categories’ in Grounded Theory. 

 

Category: “Desire for certainty” 

 

Next, we assembled all the categories and ranked them according to the amount of codes that 

they contained.  

 



23 
 

Other elements from Grounded Theory that we applied are memoing and sorting. Memoing is the 

ongoing process of writing up theoretical memos during the Grounded Theory process (Hoda et 

al. 2010). We applied this technique during the open coding process, and it helped us gain ideas 

about the codes and concepts, and the relationship between them. This resulted in many 

separated and unstructured memos. To get clarity and meaning from all the memos, we began to 

conceptually sort the memos. This process is called Sorting, and it was done as one of the last 

stages of our data analysis.  

 

The data from the workshop will be analyzed using a similar approach. Although the discussions 

from the workshop were not voice recorded, the data from the post-it notes were written out and 

expanded with memos immediately after the workshop (this can be found in Appendix B). The 

data was grouped according to the questions on the posters, after which the data was categorized. 

3.2 Research Process 

The process of the entire research project is depicted by the model shown in Figure 7. 

 
Fig.7: Process model of the research 

 

 



24 
 

4. Results 
In this section the results from the Workshop and the Interviews are analyzed. First we give an 

overview of the main topics that came up during the workshop. Then, we give a detailed look at 

the results from the semi-structured interviews. Since all the interviews were conducted in 

Dutch, the results will be supported by translated quotes from the participants. 

4.1 Workshop 

After the data was grouped according to the question, we categorized the suggestions. These 

categories will shortly be covered in this section. The entire transcript from the workshop can be 

found in Appendix B.  

 

 
Fig. 8: The posters and the contributed suggestions 

 

Figure 8 shows the posters shortly after they had been filled with the suggestions from the 

participants. The top left poster shows concerns the current Challenges, the one on the right 

revolves around possible Solutions, and the bottom one contains important Aspects to consider in 

contracting software projects. Table 2 shows an overview of the different categories created for 

each question. For each category, all the associated suggestions are shown (the exact writing on 

the participants’ notes).  

 



25 
 

Challenges 

Scope Change: The current 

way scope change is managed 

poses challenges. 

“What do I get for my money?” 

“Change Management” 

“Quality is Scope” 

“Changing Backlog => Flexibility in Contract” 

Quality: The customer’s 

perception on the software 

quality poses challenges. 

“Quality is Scope” 

“Quality?” 

Outsourcing: Project with 

Outsourcing introduce 

challenges for contracting. 

“Scope of Outsourcing” 

Solutions 
Alternative Contract Types: 
suggested contract types that 

have not been seen in Agile 

projects very often. 

“Collaboration Agreements” 

“Payment per Team per Sprint” 

“Two-stage Contracts” 

“Open – innovation: co-investment by supplier” 

Scope Change: solutions 

aimed at overcoming the scope 

change challenges. 

“Money for Nothing, Change for Free” 

“Original idea: Fixed Time and Budget, Variable 

Functionality” 

“Joe’s Bucket” 

Adjusted Project Practices: 
suggested changes in current 

project practices. 

“Fixed Team” 

“Reference of Best Practices 

“Percentage User Points Backlog” 

Early Termination: the option 

of quitting the project early.  

“Early Termination Clause” 

“Money for Nothing, Change for Free” 

Aspects to consider 
Collaboration: various 

important aspects in customer-

supplier collaboration 

“Trust”  

“Contribution/Effort from the Customer” 

“Based on what starting points do you start the collaboration?”  

Scope of project. “Scope must be variable” 

“Initial Product Backlog” 

Intellectual Property: How is 

the intellectual property of the 

system transferred in an Agile 

project? 

“IP-transfer vs. iterations?” 

Development team “1 Team” 

Table 2: Overview of the Categories created from the participants’ suggestions. 

 

 

 

 

 



26 
 

4.2 Semi-structured Interviews 
In this section we will present the results that we have found from the semi-structured interviews. 

The size of the organizations varied heavily among the participants; from 10 to 145.000 

employees. An overview of the participants is given in Table 3. In order to preserve the 

participants’ confidentiality, we assign a code to each participant. 

 

Participan

t code 

Type of Organization  Position held in 

organization 

Agile 

method 

Contracting experience 

P1 Research & 

Development 

Jurist none Legal advisor in contract 

negotiations.  

P2 Web Development Co-Owner none Contract negotiation with 

customer 

P3 Advisory Partner IT  Scrum Contract negotiation with 

customer 

P4 IT Consulting Head of ScrumMaster 

Course, and Agile 

Coach 

Scrum Experiences effects of 

different contracts in 

Agile projects. 

P5 Software 

Development 

Principal Agile 

Consultant 

Scrum Research in Agile 

Contracting 

Table 3: An overview of the interview participants. 

 

The rough structure of the interviews was as follows: We started with some general questions, by 

asking their position within the organization, how long they have been working there, and to 

what extent they are familiar with Agile and (Agile) software contracting. Then we asked a few 

questions about the organization, how projects are acquired and who is responsible for the 

financial aspects of the projects. We followed up with asking about their use of Agile methods, 

and what planning and estimating techniques they apply for software development projects. Not 

until we had a decent background on the organization, its projects, the project practices, and the 

participant’s role in these projects, we started with the question about contracting. The exact 

interview guide can be seen in Appendix A. 

 

In Figure 9 we present an overview of all the categories that we have distinguished from the 

different codes. The graph shows the amount of codes that each category contains. It can be seen 

that the most codes were related to the topic ‘Payment Per Sprint’. 



27 
 

 
Fig. 9: Overview of the categories and the amount of codes they contain 

 

Among the categories, some categories covered a wider topic. To clarify the data further, we 

have assigned the smaller-scoped categories as subcategories to the wider-scoped categories. The 

resulting structure of the categories can be seen in Figure 10. It can be seen that the (31) 

categories have been divided in 9 big categories and 22 subcategories. There are a total of 280 

different codes. All the categories and their respective codes can be found in Appendix C. 

0 

10 

20 

30 

40 

50 

60 

P
ay

m
en

t 
P

er
 S

p
ri

n
t 

 

Fi
xe

d
 P

ri
ce

 

A
gi

le
 C

o
n

tr
ac

t 
So

lu
ti

o
n

  

A
gi

le
 C

o
lla

b
o

ra
ti

o
n

 A
gr

ee
m

en
t 

 

Si
ze

 

C
u

st
o

m
er

 In
vo

lv
em

en
t 

 

Tr
u

st
  

Ti
m

e 
&

 M
at

er
ia

ls
  

C
o

n
te

xt
u

al
 In

fl
u

en
ce

s 
 

Ea
rl

y 
Te

rm
in

at
io

n
  

Es
ti

m
at

in
g 

 

Le
ss

 E
m

p
h

as
is

 o
n

 C
o

n
tr

ac
t 

 

Sc
ru

m
 P

ra
ct

ic
es

  

Sc
o

p
e 

C
h

an
ge

 

Sp
ec

if
ic

at
io

n
 v

s 
Ex

p
ec

ta
ti

o
n

 

P
ar

ad
ig

m
 T

ra
n

si
ti

o
n

 P
h

as
e

 

D
es

ir
e 

fo
r 

C
er

ta
in

ty
 

Tw
o

-p
h

as
e 

C
o

n
tr

ac
t 

Ju
ri

st
s 

ad
V

A
N

TA
G

E 

B
en

ef
it

s 
o

f 
D

em
o

s 

B
u

d
ge

t 

Fl
ex

ib
ili

ty
 in

 R
el

at
io

n
sh

ip
 

G
o

ve
rn

m
en

t 
W

at
er

fa
ll 

M
o

n
ey

 f
o

r 
N

o
th

in
g 

P
er

ce
iv

ed
 D

u
ra

ti
o

n
 o

f …
 

O
th

er
 F

ac
to

rs
 in

 A
gi

le
 

Sh
o

rt
 S

p
ri

n
ts

 

R
&

D
 C

o
n

tr
ac

ts
 

In
te

lle
ct

u
al

 P
ro

p
er

ty
 

C
o

n
tr

ac
t 

In
co

m
p

le
te

n
es

s 
 



28 
 

 

Fig. 10: Model of the relation between the Categories and the Sub-categories. 



29 
 

 

In the following subsections an in-depth explanation of the results is given. We have structured 

the subsections by using Figure 10 as guideline. Not that not all the subcategories from Figure 10 

are given a separate subsection when explaining the results. Some subcategories are shortly 

mentioned in a few sentences, and some subcategories are not covered at all. Only the statements 

and findings that are most relevant and interesting (in our opinion) are covered. As can be seen in 

the interview guide in Appendix A, main topics in the interviews included: the participants’ 

currently used contract type, challenges experienced in software contracting, and possible 

solutions for Agile Contracting. 

4.2.1 Payment Per Sprint 

We asked every participant what they think about the idea of doing the payments per 

sprint/iteration in an Agile project. The amount of experience and knowledge about Agile was 

relatively high among the participants that actively use Agile methods (two Scrum Trainers, and 

one IT partner). The opinions on Payment Per Sprint varied widely among them.  

 

“No, I have never seen contracts done in that way.” — P4 

 

P3 currently uses this method of payment with success, and is confident that this is a very 

effective way of handling the payments in Scrum projects. In contrary to the adVANTAGE 

pricing model that we saw in our literature research, this organization uses a fixed price. 

 

“Billing is easy; I want to do that per Sprint. I want to do the billing as soon as possible. 

I often do that per Sprint, however it doesn’t always work, because before you know it 

you’re behind 2-3 weeks. But in general....there will be a bill per Sprint. It is a fixed 

amount per Sprint by the way, so whether or not we make the exact agreed hours or not, 

that doesn’t matter. But we charge for every Sprint, and we try to do this as close to the 

end of the Sprint as possible. This also has to do with the current economic conditions. 

Every company is trying to invoice quickly these days, because payments are taking so 

long.” — P3. 

 

Benefits    P3 believes that one of the benefits for the supplier is the fast payment, and thereby 

some reduction of risk. The benefit of Payment Per Sprint for the customer is the flexibility that 

can be offered in multiple aspects of the relationship. In the contract an agreement is stated for a 

certain amount of sprints. Every time the agreed amount of sprints has been completed, the 

customer can buy more sprints. At the start of the project customers can agree to buy a small 

amount of sprints to get introduced the Agile approach. In these sprints the customer can witness 

the Product Backlog being created and managed, and he could receive the first part of the 

system. 

 



30 
 

“I always say ‘You only get on board for one sprint, and when you’re dissatisfied with a 

sprint, we can always just say goodbye’. Those are always enlightening insights for the 

customer.” — P3. 

 

P3 elaborates that it is of course the idea to build the desired system together, but it is best to 

offer options like these to the customer just in case the collaboration works out differently.  

 

"One of the problems is, that [the customers] think that the moment they agree to start 

the project, they have practically ordered an entire system. Although this is true to an 

extent, you start a relationship to build a system together. But one of the reasons why 

Scrum is used, is to take small steps to discover whether you're on the right track, and it's 

important to us that this idea of flexibility is also reflected into the relationships with the 

customer." — P3. 

 

Another benefit that was mentioned by P3, is that the payment directly follows the acceptance of 

the sprint, which makes the payment more ‘natural’ for the customer.  

 

“It’s very logical right? You have a sprint, you get a report with the sprint, you get a 

demo with the sprint, well then it’s pretty logical to add a bill to the sprint as well. 

… 

The payment schedule is not the main point. I think the main point behind this is that [the 

customer] just wants to put a checkmark that they’re satisfied with the result of the sprint 

[before making a payment]. 

” — P3. 

 

Disadvantages    A disadvantage that was mentioned was the fact that a contract like this would 

create a short term vision, which could lead to developers creating a technical debt. When there 

is a contract for a couple of sprints, the suppliers would then be focused on those sprints. They 

will try to please the customer by presenting as much functionality as possible at the sprint 

demos, and thereby putting the quality of the system at risk. 

 

“...no I think it’s bad actually, paying per sprint.... Then [suppliers] will quickly start 

creating technical debt. Technical debt is a term that is used when you don’t completely 

finish things. For example when there are still some bugs [developers say] ‘well, those 

bugs are not so important right now so that can wait a while’. Or when the 

documentation [or tests] hasn’t been finished yet [developers say] ‘it will be good 

enough for the demo’ or ‘the customer won’t notice anyway’. But sooner or later you will 

start to notice the effects of that...because the bugs will keep piling up. So when you say 

‘you will just be paid for the next few sprints’, then you take the risk of [developers 

saying] ‘well then I won’t do anything more than is necessary’. While when you say like 

‘we have the intention of working together for a long period of time’, then you get 



31 
 

[suppliers saying] ‘well then I want a satisfied customer for a longer period of time, so I 

will start fixing these bugs already...or I will put an hour extra into proper 

documentation, so I can benefit from that later’. So when you say ‘payment per sprint’ I 

think that won’t work well.” — P4 

 

Besides being fairly positive about Payment Per Sprint, P3 does mention that this payment 

structure requires discipline in the financial aspect. He stated that his environment — one of the 

largest professional services organizations in the world, that mostly does financial advisory —

plays a role in the successful realization of this payment method. 

 

“But from my perspective, this is the way to do billing in Agile. This is the way that it 

should be done, so I think it will grow, because it’s just logical. However this requires 

discipline in the financial aspect, something that IT people are not very good at. I am 

being helped with that by my environment; in this house they always know everything 

financially.” — P3. 

 

Size    The size of the organization (supplier side or customer side) and the size of the project all 

play a role in determining whether this method of payment is feasible. P3 explained that smaller 

projects have an upfront price estimate, and a planning of the sprints.  

 

“But smaller projects, for example with the government, there you first have a price 

estimate and a planning of the sprints. So formally they also buy sprints, but there is a bit 

more specification of what the system should do....so a bit more towards a waterfall-like 

description of the end result. But when I look at other Agile contracts, this is pretty 

Agile.” — P3. 

 

P2 (Web development) did not see any added value in doing the payments per cycle for his 

organization. This is because he claims that does not have very complex cases.  

 

“Seriously, we don’t have complex cases. It does not make sense for us, it is not relevant 

for us.” — P2. 

4.2.2 Fixed Price 

Since we asked every participant about their opinions and perceptions on the current challenges 

in Agile Contracting, ‘Fixed Price’ was mentioned many times. As a confirmation of what we 

learned from the research papers that we studied and the workshop, we often heard that the 

customer’s desire for certainty and upfront specification opposes a challenge in Agile projects.  

 

Benefits    The main benefit for Fixed Price contracts is the certainty that it provides to the 

customer. The main problematic aspect of Fixed Price contracts is that it also incorporates a 

detailed upfront specification (fixed scope) and a fixed deadline. However the web development 



32 
 

company gave us an example of Fixed Price contracts being used in small projects without 

making a complete upfront specification (i.e. no fixed scope). This leaves them with the benefit 

of giving the customers certainty. 

 

“Our customers have no idea what the process looks like of developing something from 

something that does not yet exist, to something that exists. That’s why they are very 

careful and restrained. We try to give them as many things possible to get them [feeling 

like] ‘I feel comfortable with this, I can agree to this’. Offering assurance, that’s what it’s 

all about.’ — P2. 

 

To manage possible unforeseen contingencies, they always plan some financial buffer during the 

price estimation.  

 

“When we discuss the requirements, then that’s always pretty do-able on one page. Then 

it’s a matter of discussing, but we are not too strict with that. In estimating our price, we 

always make sure that there is a financial buffer for us, and we use that buffer for 

contingency planning....and if along the way the customer says like ‘...I’m not satisfied, I 

actually wanted it like [another way]..’ then we are not very difficult when it comes to 

that.” — P2. 

 

Problems    What was mentioned multiple times is that the detailed upfront specification is the 

most problematic factor in Fixed Price contracts.  

 

“The reason why fixed price is so problematic is because the entire project you’re stuck 

to the scope that was specified in the contract.” —P5. 

 

An important distinction was often emphasized: the distinction between specifications and 

expectations.  

 

“[described a previous case where] the system was delivered, it did not meet the 

expectations, but it did meet the specifications, and that’s typically where Agile 

Contracting should provide a solution...it’s way more important to meet the expectations 

than the specifications. Of course you do need specifications, but those should be more 

like goals, ‘what is the intended goal of the system?’. That is, however, difficult to state 

[formally], so it’s better to verify the system against the goals instead of the 

specifications.” — P4. 

 

Government Waterfall    Something that was mentioned by multiple participants was the 

regulations that are associated with software projects for the government. Governmental software 

projects should always have a complete upfront specification, price estimation and deadline. 

 



33 
 

“The contract model, that’s where you really see the friction between waterfall and 

[Scrum], because you keep seeing that customer wants to specify as clearly as possible 

what they are going to get — in functionality, not in man-hours, which is basically what a 

sprint is really. And especially in the government, all the standards are aimed towards 

waterfall-like constructions, where everything is specified very clearly. So that’s where 

the most friction is. That means that we’re actually always waterscrumming, 

because...you rarely see customers that completely trust that it will be alright, which is 

justly of course.” — P3. 

 

“And we also do work for the government. I know they understand scope creep, because 

they’ve been doing projects for a long time, but they always say ‘we need fixed price’. 

...We work with modules and even if they know that the work is going to inflate over time, 

they prefer to say ‘that’s a separate project’.” — P2. 

4.2.3 Agile Contract Solution 

In our interviews certain suggestions were shared for new ways of Agile Contracting. The Agile 

practitioners among the participants all shared elements, that they believe should definitely be 

implemented in order to improve Agile projects. The background of P5 was already known due 

to his participation in our workshop, and there we discovered that he had done personal research 

on Agile Contracting. Therefore, we could dedicate the entire interview on hearing out his 

perception on solutions on Agile Contracting. He presented a set of key elements that he believed 

are essential for overcoming the current challenges in contracting for Agile projects. In this 

subsection we will explain these key elements and show the similarities and differences with the 

perception of other participants. Before we present the suggested solutions, we first highlight the 

challenges that these solutions aim to overcome. 

 

Customer Involvement   An aspect that often poses a big challenge in Agile projects is the lack 

of customer involvement, as is also highlighted in previous research (Hoda et al. 2010). P3 

explained his current experience with regard to customer involvement, and underlines why it is 

so important. 

 

“We also invite the customer, and if he joins in more than once a week, then that can be 

seen as often. Something that also happens often is that the product owner goes and 

works at the customer’s site. In that case he is present [with us] less than you’d ideally 

want to, but then that’s also understandable. 

... 

Because we are together with the customer a lot, the customer sees that a lot of work is 

being put into [the solution]. I think that’s a really big advantage of this approach, that 

the customer sees who is working, what he’s doing and what he has done.” — P3 

 



34 
 

In other research articles, the problem of lack of customer involvement has been mentioned 

(Hoda et al. 2010). However one of our participants mentioned a difficulty with regard to 

customer involvement originating from the suppliers side. P4 said that he can sometimes notice a 

certain level of uncomfortability from the suppliers, when the customer or a consultant joins in 

on the developers’ meetings.  

 

“From my own experience...when I’m a consultant and I say [to the team] ‘I want to join 

your estimation sessions’ or ‘I want to join your retrospective session’..every meeting 

that you guys have, I want to be able to just sit in to see ‘how do you guys do things 

around here?’ and ‘what could we improve here?’. And I can notice that sometimes there 

is a lot of resistance from the people like ‘well, we’d prefer that you don’t join 

in...’....Well in general it is accepted for demos, and for planning sessions they also think 

it’s pleasant [if the customer is attending]. But for other sessions it’s sometimes 

perceived as monitoring, like ‘You don’t trust us?’” -- P4 

 

Scope Change    P5 stated that the substantial problem of scope change in Agile software 

projects should definitely be taken into account when looking for improvements in Agile 

Contracting. This traces back to the problem of complete upfront specification of the system 

features. When all the features have been formally specified upfront, then there is very little 

room for any scope change.  

 

“Ideally in Agile Contracts, scope change should be freed: whenever a customer wants to 

change the scope during the project, this should be possible without being stuck to any 

upfront specified features. This is currently the case with Fixed Price contracts, because 

Fixed Price also implies Fixed Scope and Fixed Deadline. So whenever a customer is 

dissatisfied with the system that is delivered, and wants some changes, the supplier says 

‘nope, can’t do it, look at the features that are stated formally in the contract.’” — P5. 

 

First, he mentioned Jeff Sutherland’s attempt at freeing scope change, which is the ‘Change for 

Free’ part from his strategy ‘Money for Nothing, Change for Free’. Change for Free allows the 

customer to change one feature from the Product Backlog that has not been implemented yet, and 

swap this for a new feature of the same size. However this can cause a bargaining-session with 

every change request. 

 

“There is ‘Change for Free’, which is basically Jeff Sutherland’s attempt at freeing scope 

change. Change for Free allows the customer to pick a work-item from the Product 

Backlog, that hasn’t been implemented yet, and replace this with a work-item of the same 

size. That is a pretty good idea. However, the problem with this is, that with every change 

request they will start bargaining about whether the work-item is of the same size or 

not.” — P5. 

 



35 
 

He would then explain two other possible solutions to free scope change. The first possibility 

that he suggested was aimed at defining and specifying a ‘common goal’. This could be done by 

specifying the customer’s intended underlying goal of the system instead of a set of system 

features. However he then added that this turns out to be very difficult (if not impossible) for 

jurists to formally state in a contract.  

 

“What happens now is that the software supplier promises the customer a particular 

‘box’ of features....One way of doing this (freeing scope change) is to create a common 

goal....by very concretely specifying the customers’ underlying goals of the system, for 

example ‘we can now make 100 units per month, but [with the new system] we want to 

make 200 units per month’...when I pitched this idea to jurists, they all said it would be 

very difficult to measure the amount of influence that the system has on the results.” — 

P5 

 

Agile Collaboration Agreement    The second possible solution to free scope change that P5 

explained, was aimed towards specifying the nature of collaboration between the two parties, for 

which he proposed two different approaches: forming a joint-venture, or setting up 

‘Collaboration Agreements’ for Agile software projects. 

 

“The other possibility of freeing scope change is by collaboration. A way this can be 

done is to form a joint-venture. Then the software supplier gets a share of the profit...I 

believe this is a possible way to do it. Another option is aimed towards Collaboration 

Agreements, and when I proposed that option, the jurists [reacted] ‘Wow, yes, well that’s 

something we CAN do [as opposed to specifying the customer’s goals]’....that would 

contain things like the responsibilities and expectations of the parties...And that’s 

something [software engineering jurists] are currently looking into with Agile 

Contracts.” — P5. 

 

The importance of proper collaboration and trust in Agile projects was also mentioned by other 

participants. P3 and P4 both mentioned that they believe that the customer should monitor the 

progress of the project more. When asked their opinion on what would be the ideal way of doing 

contracts for Agile, many ideas were aimed towards agreements on collaboration. According to 

these participants (P3 and P4), the responsibilities and expectations of the customer should be 

clarified and stated in Agile Contracts for more effective collaboration, and a higher chance of 

project success. 

 

“I think the best would be a pure Agile way, in which you, as a customer, can watch over 

the progress...very frequently. I would think like ‘you as a team get all the freedom to do 

what you have to do in an Agile way, within certain boundaries, but that as a customer 

you — which (kind of) is a part of Agile — are present with the team very frequently, 

almost on a daily basis, so that you can see if there are progressions...And of course, 



36 
 

when you see that the team performs well, then you give them a bit more freedom, but if 

you get the impression of ‘this doesn’t suffice’, well then as a customer I would be on that 

a bit tighter....And it’s very possible to state that in a contract I think.” — P4. 

 

“On the one hand customers should have more trust, on the other hand they should have 

less trust. They should have more trust in that you can get through it with a good 

supplier, that you don’t have to completely specify how the end result should look like 

then. That’s where they should have more trust in. They should have less trust that, once 

they have started the relationship, the supplier will make it all alright. They have to 

critically watch the supplier. Give feedback during the retrospectives, join the 

discussions, if necessary end the relation [in a formal discussion], instead of letting the 

bills pile up...So yes, go ahead and trust that it will be okay, but monitor that it will be 

okay as well.” — P5. 

 

In our interview with P1 (R&D jurist) we got a detailed explanation of the structure of ‘Research 

Collaboration Agreements’. There we saw how these agreements cover important project 

variables very well, even though the end result in Research & Development is rather difficult to 

specify upfront. Research Collaboration Agreements state the way the involved parties 

(researchers or organizations) are to collaborate with each other, and to what (research related) 

goal they are working. In these agreements, it is most important to specify which results are 

going to belong to which party. This concrete example of a Collaboration Agreement gave us a 

sense of the possibilities of Collaboration Agreements in Agile software development. 

 

Early Termination    Our interview guide also contained a question about the option of early 

termination. Something that was often mentioned, was the ‘Money for Nothing’ part of 

Sutherland’s ‘Money for Nothing, Change for Free’.  

 

“Something that I often explain in the [ScrumMaster] courses, is the ‘Money for Nothing, 

Change for Free’ principle. Where you...make upfront agreements, that the moment you 

terminate the project early, you say ‘you still get paid 20% of the remaining budget, and 

you don’t have to do anything for it anymore’....and then [the customer] saves 80% [of 

the remaining budget], and that 80-20 rule is a guideline. But it [(using the Money for 

Nothing principle)] is actually rarely applied in practice.” — P4 

 

The 20% that is given to the supplier can partly be seen as a bonus for delivering enough 

business value sooner than expected. The other part can be seen as a compensation for the fact 

that the supplier’s resources have to be allocated to another task unexpectedly, so that 20% is 

basically also a risk premium (P5). Just like P4, P5 also shared from his own experience that he 

has not seen this being put to use very often, although he believes that this element is very much 

required in the ideal Agile Contract. P3 has mentioned the possibility to terminate the project 

early multiple times. However, he had negative connotations in mind with regard to the reason of 



37 
 

the early termination. When we explained the idea of possible early termination with the reason 

being that the customer is satisfied enough with the delivered features of the system, he 

explained why he thinks won’t be used very often. 

 

“I have never seen that in a contract. It’s very funny, because it’s actually very logical to 

do it like that. That’s very good. Although it can be seen that very many customers have a 

lot of trouble with de-scoping, it’s very hard to decide that you don’t want something, 

even though it barely has additional business value. Customers are not used to that.” — 

P3. 

 

Two-phase Contract    To handle the ‘time and money’ aspect of Agile Contracting, P5 

recommended a contract model called a ‘Two-phase Contract’. This is a contract model that is 

not seen in research literature. Figure 11 (provided by P5) illustrates the structure of a Two-phase 

Contract. Here it can be seen that the Two-phase Contract is based on the ‘Cone of Uncertainty’ 

(McConnell, 1997). The vertical axis represents the ‘uncertainty-factor’ in a project, and the 

horizontal axis represents time. At the beginning of a project, there is a lot of uncertainty (about 

the scope, the price, the duration etc.). This gradually declines along the duration of the project. 

 

The ‘Two-phase contract’ uses this idea, and divides the project into two phases. The first phase 

is a relatively short phase that is aimed at getting through the initial uncertainty, and creating a 

base of trust between the customer and supplier. It was recommended to use Fixed Price for this 

phase, since it is relatively short, and the required effort can be estimated relatively easy. The 

example in Figure 9 shows a first phase of three sprints. By then: the productivity of the team has 

been witnessed by the customer, the scope of the project has been forecasted (at least way more 

accurate than before the start of the project), the main impediments have been identified, an 

increment of the system has been delivered, and above all more trust has been established. When 

those elements are already in place, the parties could basically make any contract type work well 

for the second phase (e.g. Fixed Price, T&M etc.). 

 

 

Fig. 11: The ‘Two-phase Contract’ 



38 
 

Paradigm Transition Phase    We were also curious to know the participants’ opinion as to why 

they believe that such solutions haven’t been implemented yet. The common answer revolved 

around the fact that we are currently in a Paradigm Transition Phase: the world of software 

engineering is gradually switching from the Traditional approach to the Agile approach.  

 

P4 explained that people in software development currently still have work attitudes that stem 

from the Traditional methodology. He elaborated on this by giving an example from his past 

work experience. 

 

“In my courses I often use a comparison: before this I’ve worked at [phone company] for 

a while, just during the time when mobile phones did not need to have a long antenna 

attached to it anymore...So we started selling mobile phones without antenna... And what 

happened? Nobody bought them. We started investigating [why they didn’t buy them]... 

Then we figured out that in their perception, mobile phones simply are supposed to have 

an antenna. So when we figured that out, we attached some plastic thing to it that 

resembled an antenna, and then we started selling them again! Finally, when that 

generation had become used to the fact that the antenna doesn’t have any added value, 

they could start selling antenna-less phones... I notice that in the world of Agile 

Contracting we are also in that transition phase.” — P4. 

 

P5 explained the paradigm shift with a slide from his presentation on ‘Agile Contracts’ (Figure 

12).  

 

 

Fig. 12: Shift of project risk illustrated. 

 

“We are currently in a paradigm shift. First there were Time & Materials contracts 

where all the risk was with the client... Then they decided to throw it all around, and put 

all the risk on supplier (Fixed Price). And with Agile Contracting we are trying to put the 



39 
 

risk slider in the middle, where the risk is evenly shared between the customer and the 

supplier.” — P5 

 

Jurists    When asked what current challenges are in contracting from the jurist-perspective, P1 

stated that when jurists are making a contract for (two) parties, they often don’t really know what 

the underlying intentions are from these parties. This somewhat limits them in their ability of 

setting up correct and accurate contracts. 

 

“What I often encounter is that many times jurists don’t know, what the intentions are of 

the parties.” — P1. 

 

This was confirmed by P5, who explained that he had conducted a workshop at a Dutch 

organization of jurists. In this workshop he explained Agile to the jurists and he presented a case, 

that was aimed to get the jurists thinking about possible solutions. So far they believe that a 

solution based on Collaboration Agreements is the most feasible, and P5 said that it is largely a 

matter of time before the effect of ‘Agile Collaboration Agreements’ is discovered.  

 

4.2.4 Time & Materials 

One particular participant is currently using a Time & Materials contract. This contract contains 

a certain amount of feature points that has to be realized, instead of a specification of the system 

that is supposed to be delivered. The customer does not precisely monitor the actual amount of 

man-hours that has been burnt every month. The suppliers maintain a general overview of the 

amount of hours that has been put into certain activities, and that amount will be paid by the 

customer. Our literature study has taught us that the main problem with T&M contracts is the 

fact that the supplier has no efficiency incentive. Therefore we were curious for this participant’s 

opinion as to what the positive and negative aspects are with T&M contracts. He told us that the 

big advantage is the ability to really work Agile. The negative aspect is that it creates a very 

short term view, which could come at cost of long term aspects. 

 

“The big advantage is that you are really able to work in an Agile way. ...The 

disadvantage is..the short term view is very strong in this. [Developer’s thought] ‘I have 

to deliver something now, because I have to keep the customer satisfied on the short 

term’, and..this could come at cost of certain longer term affairs. ...And in the end you 

actually build a relationship where the customer realizes that ‘I can’t have my system 

developed by someone else tomorrow, so we are in fact dependent on each other...So the 

negative aspect [of T&M] for the customer is, that you think that you have freedom, but 

in reality it’s limited.” — P4. 

 

 



40 
 

5. Discussion  
 

Among suggested solutions we have seen new contract ideas for Agile projects, and 

modifications to contracts currently used in Agile projects. The new ideas were:  

 Collaboration Agreement for Agile 

 Two-phase contract  

 Goal specification instead of feature specification 

 Forming a ‘Joint-venture’ for an Agile project. 

Collaboration Agreements for Agile are still subject to investigation by jurists, since they have to 

make sure that the contracts are legally feasible, correct and complete. Two-phase contracts 

seem like a good solution that is not difficult to implement. However, formally specifying the 

intended goals of the customer (with regard to the system) did not seem like a very feasible 

solution, since jurists claimed that it would be difficult to formally measure the supplier’s 

influence when the customer has reached the goals. Also, the challenges and the amount of effort 

involved in forming a Joint-venture for Agile projects are yet to be clarified. 

 

Many suggested solutions could be seen as a modification to contracts currently used in Agile 

projects. Among these modifications were: ‘Early Termination Clause’, ‘Money for Nothing, 

Change for Free’, ‘planning financial and time buffers for the project’ and ‘Fixed Price Per 

Sprint’. These suggested solution have all been used by some of the participants. 

 

The wide variety of the participants’ backgrounds gave us multiple different perspectives. This 

could help us get a more complete image of the possibilities in Agile Contracting. From our 

results, we believe that there is not one specific contract type that is best for all Agile projects. 

There are many variables that can make software projects very different from each other (e.g. 

size, amount of uncertainty, experience of the parties etc.). The context of a software project 

affects which contract type is the most suitable.  

 

We believe that it is possible to make a guideline that can help choose the most suitable contract 

for a specific situation. And the ‘new’, rather unknown contract types that we have seen in our 

research could help in this matter, since they could be good additions to the current range of 

available contract types for Agile contracts. A guideline for choosing the most suitable contract 

in a particular situation should (roughly) distinguish the context of the project according to a set 

of variables. One of the variables that should be used in such a guideline is size (or duration) of 

the project, because this in turn impacts the amount of uncertainty and risk in the project. In a 

very big project, there is relatively much initial uncertainty (and therefore risk). In that case it 

may be helpful to use a Two-phase contract, wherein the different project dynamics during the 

uncertain starting phase of the project are taken into account. 

 



41 
 

Another important variable is the customer’s experience with Agile (whether the customer knows 

how proper collaboration should be), because if there is little experience with good Agile 

customer involvement, it may be a good idea to opt for a Collaboration Agreement. This will 

enforce more input and feedback from the customer into the project, which in turn leads to a 

higher chance of the project being successful.  

Trust is also a very important factor in a project, however this is hard to measure. When a 

customer is about to start a project with a supplier that he has no (direct or indirect) experience 

with, the expectations of the project are likely to be very different than for projects with known 

associates. And when a project is started on an existing bond of trust between the customer and 

the supplier, then the challenges related to contracting are already significantly diminished.  

 

Our research results have shown us that Fixed Price and Time & Materials contracts can still be 

used successfully in Agile projects, as long as it is used in the right context. Fixed Price contracts 

can still be a good option in Agile projects if there is very little sense of ambiguity in the scope 

of the project (i.e. when the features are not very complex), because scope change will still be 

problematic. This way the suppliers can still somewhat take an Agile approach in the project, 

while the customers feel secure about the project because of the fixed price, scope and deadline. 

T&M can be a very simple way of contracting for Agile projects, if the customer trusts the 

supplier. However this should be combined with a sufficient amount of customer involvement, 

and the suppliers should fully allow the presence of the customer coming in to check the 

progressions of the project. Something of which P4 stated, is rarely happening in practice. 

 

With regard to the Payments Per Sprint contract that we saw in our interview with P3, we do 

believe that a fixed price per sprint is a better solution than what we saw in the adVANTAGE 

pricing model. The fixed price should be calculated according to the team’s burn-rate (Velocity), 

and whether the sprint goals are reached in a shorter amount of man-hours or longer, that will not 

be an issue. And the parties could always agree on some clauses that involves significant 

deviation of burned hours. The successful implementation of Payment Per Sprint-contracts in 

P3’s organization could perhaps have been influenced by the fact that this organization has a 

powerful position, since it is one of the largest professional services organizations in the world. 

They have as much financial expertise as any organization. However it is not very unordinary, 

because it can be seen as a sort of T&M contract with a fixed price. Since this payment structure 

has been implemented by an organization full of financial experts, we could imagine that a 

detailed profitability analysis has been done before it was decided to use this payment structure. 

 

Another thing that became clear during the research is the fact that there is a very different 

perception of the meaning of the word ‘contract’. Jurists (and other experts in the field of law) 

look at every element of a contract, while people from the software engineering world have 

slowly shaped ‘their’ perception of a contract with an emphasis on the agreements on the price, 

financial structure, scope and deadline of the project. 



42 
 

6. Conclusion 
 

We started this research with a general interest in making contracts more Agile. In particular, the 

idea of doing the payments per sprint/cycle seemed appealing to us. 

 

Research Question: Agile projects are developed in cycles which means that developers 

also can be paid per cycle. What are possible solutions to make contracts more Agile? 

 

In our interviews we had one participant who currently does contracting with the (fixed) 

payments per sprint. Benefits that were mentioned included: faster payment (i.e. reduced risk for 

supplier) and providing flexibility/options to customer. So this could in fact be a possibility of 

making a contract more Agile. However, it is not per se a contract that will ensure successful 

Agile projects. Another participant mentioned that a possible disadvantage of this approach 

could be a short-term vision from the supplier-side, which increases the chance of creating 

technical debt. 

 

In our research we have been introduced to rather new ideas regarding contract types that have 

not yet been seen in Agile software projects. These contracts are not specifically aimed at 

‘making contracts more Agile’, but they are aimed at specific challenges that are often posed in 

Agile projects. We discovered what some of the biggest challenges in Agile projects are: 

 Lack of Customer Involvement: if the customer is not involved in the project enough, it 

will be more difficult for the supplier to develop the right system. 

 Difficulties in Scope Change: if the entire scope of the project has been completely 

specified in the contract, scope changes become very difficult. 

 Trust: 

-Lack of Trust: Before the project has started, customers tend to lack trust in that, by 

using the Agile approach, the supplier can deliver the right system without having to 

specify the system completely upfront. 

-Too much Trust: When the project is started, customers tend to have too much trust in 

that the supplier will deliver a good system, which in turn leads to less effort being put in 

the project by the customer. 

  

The new contract types that we have seen should overcome these challenges. The most 

interesting suggested solution was using a Collaboration Agreement that is designed for Agile 

software projects. A Collaboration Agreement specifies the responsibilities and expectations of 

the involved parties. In the Agile context, this can be used to ensure sufficient customer 

involvement. This contract also does not specify the features of the system, so scope changes can 

be done freely (as intended in the Agile framework). It is aimed at executing the project in the 

most Agile way possible. When customers are involved in the project more, they can oversee the 

progress of the project, and give feedback more frequently.  



43 
 

 

As the research progressed we gradually found out that there are many aspects that affect 

software projects. Even though they are all called ‘Agile software projects’, they can vary 

greatly, and therefore for each project the most suitable contract can also be very different.  

 

The findings from our research, contributes much interesting information to current literature on 

Contracting for Agile projects. We introduced multiple new ideas for future contracts in Agile 

projects. We summed up important recurring problems in Agile projects, and we explained how 

the new contracts aim to solve these. We discussed their feasibility and the opportunities that 

they present. These findings can lead to more concrete solutions that will improve Agile projects 

in practice. Our research also sums up a set of modifications to currently known contract types 

that have already been applied successfully in practice, but they are not yet very known. Our 

research could introduce Agile practitioners to these solutions, that are very much applicable. 

Future research 

Something that could be a great contribution to the Agile software engineering world, is a more 

concrete overview (i.e. contract choice guideline) of which contract type would be suitable in 

certain situations. To achieve this, more research should be done into the variables that define 

software projects, and how these can be measured (so that people can compare their own project 

against the variables described in the guideline). Also, more research should be done into the 

possibilities of ‘Agile Collaboration Agreements’, and ‘Two-phase Contracts’. These contracts 

should be tested in practice, and the effectiveness should be analyzed to check the feasibility of 

these solutions. 

 

To get a better understanding of the juridical possibilities and challenges with regard to Agile 

Contracting, interviews should be conducted with jurists that are specialized in software 

engineering. 

 

 

 

 

 

 

 

 



44 
 

References 
 

-Adolph, S., Hall, W., Kruchten, P.: A Methodological Leg to Stand On: Lessons Learned Using 

Grounded Theory to Study Software Development.  

 

-Awad, M. A.: A Comparison between Agile and Traditional Software Development 

Methodologies.  

 

-K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, 

J. Highsmith, A. Hunt, R. Jeffries et al., “The agile manifesto,” http://www.agilemanifesto. 

org/principles.html, vol. 7, no. 08, p. 2009, 2001. 

 

-Book, M., Gruhn, V., Striemer, R.: adVANTAGE A Fair Pricing Model for Agile Software 

development Contracting. 2012 

 

-Boehm, B., Turner, R.,: Management Challenges to Implementing Agile Processes in 

Traditional Development Organizations. IEEE Software, 2005. 

 

-Van Cauwenberghe, P.: Agile Fixed Price Projects part 2: “Do you want agility with that?” 

 

-Crocker, K.J., Reynolds, K.J.: The Efficiency of Incomplete Contracts: An empirical  

Analysis of Air Force Engine Procurement. The RAND Journal of Economics. 1993 

 

-Doraijaj, S., Noble, J., Malik, P.: Technical Report 12-08: Knowledge Management in 

Distributed Agile Software Development. 2012. 

 

-Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic review. 

Information and Software Technology, 2008, pp.833-859 

 

-Glaser, B., Strauss, A. L.: The Discovery of Grounded Theory. Aldine, Chicago, 1967. 

 

-Gopal, A., Sivaramakrishnan, K. : Research Note — On Vendor Preferences for Contract Types 

in Offshore Software Projects: The case of Fixed Price vs. Time and Materials Contracts. 2008 

 

-Hart, O.D., Moore, J.M. : Foundations of incomplete contracts. Review of Economic Studies 

66,  1999.  pp. 115–139. 

 

-Hoda, R., Noble, J., Marshall, S.: Negotiating Contracts for Agile Projects: A Practical 

Perspective. XP, LNBIP 21, pp. 186-191, 2009. 

 



45 
 

-Hoda, R., Kruchten, P., Nobel, J., Marshall, S.: Agility in Context. ACM, 2010. 

 

-Krebs, J.: Agile Portfolio Management. Microsoft Press. 2008 

 

-McConnell, S.: Software Project Survival Guide, Microsoft Press. 1997. 

-Nerur, S., Balijepally, V.: Theoretical Reflections on AGILE DEVELOPMENT 

METHODOLOGIES. ACM, Vol. 50, No. 3. 2007 

-Royce, W. W.: Managing the Development of Large Software Systems. Technical Papers of 

Western Electronic Show and Convention (WesCon) , 1970, 25-28. 

-Saussier, S.: Transaction Costs and Contractual incompleteness: the case of Électricité de 

France. Elsevier. 2000 

 

-Schwaber, K.: Agile Project Management with Scrum. Microsoft Press. 2004 

 

-Stevens, P.: Contracting for Agile Software Projects. 2009 

 

-Thorup, L., Jensen, B.: Collaborative Agile Contracts. Agile Conference. AGILE 2009, pp. 

195-200. 

 

-Williams, L.: What Agile Teams Think of Agile Principles. ACM, Vol. 55, No. 4. 2012 

 

-Yin, R. K.: Case study research: Design and methods. (Vol. 5). SAGE Publications, 

Incorporated. 2008 

 

 

  



46 
 

Appendix A: Interview Guide 

Organization: 

 

 What is the structure of your organization? 

 Does your organization have a central administration of projects (Project Portfolio 

Management office)?  

 Who is responsible for the financial aspects of your projects? 

 How does the process of acquiring projects look like in your organization (from initial 

project request to start of development)? 

 

Agile Methods: 

 

 How long has your organization applied Agile methods? 

 What kind of Agile methods do you apply (Scrum, Lean, XP)? 

 What kind of agile project practices do you apply (e.g. Frequent demonstrations to 

customers, standup meetings, development in iterations)? 

 What is the duration of each sprint in your projects? 

 

Estimating and Planning: 

 

 What kind of planning techniques do you apply for software development projects? 

 What kind of estimating techniques do you apply for software development projects? 

What are your experiences with these techniques? 

 

Agile Contracting: 

 

 I am going to ask you questions about software contracts now, and when I say contracts I 

am interested about the agreements on billing, the scope/size of the project, the deadline, 

and the budget. 

 “What kind of contract models have you applied on your Agile projects? How does the 

current contracting system work? 

 Have you ever done payments per sprint in a project?  

 Which contract type is the most popular among your customers? 

 What are the positive aspects of this contract type for you? And for your customer? What 

are the negative aspects? 



47 
 

 What are important aspects to consider when contracting Agile software projects? 

 What do you think could be improved in your current way of contracting software 

projects? 

 What is currently your favorite contract type to use in an Agile project? 

 How are subcontracting cases handled in your contracts? Do they often provoke 

difficulties? 

 What are the challenges you’re facing with current contracts in Agile projects? 

 Given the difficulties in estimating big projects upfront what would you think of a 

different contracting model, for example a contract that incorporates billing with payment 

per cycle? 

 Have you ever tried explaining the negative effects of fixed price-contracts when your 

customer preferred such a fixed-price contract? 

 In some Agile contracts it’s possible for the customer to end the project earlier than 

originally planned, when the customer doesn’t think it will be worth the money to 

continue the project. In some cases the software supplier is given a compensation/bonus ( 

20% of the remaining project price). What do you think about the option for the customer 

to end the project early? 

 What do you think about the option to buy extra sprints after the project has reached its 

original end-date, instead of ending the project and setting up a new project. That extra 

agility, do you think you could just offer that to a customer and make that work in 

practice now? 

 [show him/her the “Fair pricing model for Agile Projects” and explain a bit how it works] 

What do you think of this model? Do you think you could use this right away? Why or 

why not? 

 What are the benefits of new Agile Contracting in your opinion? 

 Is it difficult to try a new contract type like this in practice (i.e. to convince the customer 

to sign this)?  

 Why do you think Agile Contracting hasn’t been adopted in practice yet?  

 

  



48 
 

Appendix B: Workshop transcript and memos 

Due to the limited time for the workshop, not all user suggestions could be discussed. Therefore 

some suggestions could not be explained by the participant. 

Current challenges in contracting Software Projects: 

-Change management: Confusion/miscommunication about the scope that is agreed upon.  

-What do I get for my money: customer is  

-Scope of Outsourcing: There was a man who was currently doing/outsourcing a project in 

India for [big Dutch bank]. He had some trouble with that concerning the Service Level 

Agreement. 

-Quality: The customer is being annoying regarding the definition of done and the level of 

quality that is demanded before the software is accepted by the customer.  

-Quality is Scope:  

-The customer is only Agile in just 1 place in act: ? 

 

Possible solutions to improve Agile contracting: 

-Collaborative/Collaboration Contracts: A contract that does not specify any scope. It only 

states that the two parties are obliged to collaborate with eachother in a specific way, and that the 

product (software system) should deliver specific business value. For example, it states that a 

representative of the customer should be present on site with the supplier for a specific time.  

-One team: No-one can leave before the contract has finished. 

-Payment per team per cycle. He said that he has witnessed a payment per cycle Agile contract 

once, and that there was a big mess with the payments 

-Early Termination Clause: they were very positive about that. The supplier gets a bonus for 

satisfying the customer before originally planned. The customer is very happy and very likely to 

follow up on the contract (?) and quickly signing another contract with the same supplier. Other 

organizations hear about the good project, and want to get in line for that supplier. 

-A Reference of Best Practices: Keep a reference list of best practices of different previously 

closed contracts (i.e. learning from the past successes). 



49 
 

-Fixing Deadline and Price, but keep Scope Variable: He called it the ‘original way of Agile 

Contracting’. I also saw this approach encouraged in a YouTube webinar from an Indian 

Software company. 

-Two-Stage Contracts: A contract type where the first stage is a contract in which the customer 

and supplier are obliged to come up with a Product Backlog. The Once the Product Backlog has 

been established and the implementation can begin, the second stage of the contract can be 

negotiated. At this phase both parties have a better feel for how the project will look. 

-Money for Nothing Change for Free: A Contract intended for SCRUM. By Jeff Sutherland.  

The customer should participate in the Scrum Team, and contribute to a couple of things 

(Backlog, estimation of work items, definition of done, Sprint planning meeting, Sprint review 

meeting).  

Money for Nothing => Early Termination Clause with a penalty of 20% of the remaining 

contract value to be paid by the customer. 

Change for Free => Changes in the requirements requested by the customer are totally free 

-Joe’s Bucket: Plan a two extra time slots after the end of the project (e.g. 2 months) that can be 

used as ‘overtime’. The first slot is for the Customer and the second slot is for the supplier. 

-Contract execution = everybody on same Agile level: ? 

-Big Flexible Supplier: ? 

-Percentage UserPoints Backlog:? 

 

Things to consider in Contracting IT projects:  

-One Team: 

-Initial Product Backlog: 

-Contribution/Effort of the customer to the project: 

-Distribute: 

-Scope must be variable: 

-Rolling window of trust: 

-Based on what do you start the collaboration: 

-transfer IP vs. iterations:  



50 
 

Appendix C: Every single Code 

adVANTAGE 'adVANTAGE underspending' not impressive 

5 Overspending more frequent 

 
adVANTAGE: good when supp lacks trust 

 
adVANTAGE actually just T&M per sprint 

 
adVANTAGE: hour-focus can break teams 

 

Agile Collaboration Agreement Monitor to improve collaboration 

17 Ideal: if low trust - steer the developers 

 
Less specification but more monitoring 

 
How to state customer involvemt rules in contract 

 
More freedom allowed when proven their ability 

 
Customer's freedom possible to state formally  

 
Solution: Collaborative Contract 

 
Ideal: devs freedom in Agile but Cust may Frequent 

 
Ideal: allow more freedom if perform good enough 

 
Ideal C: customer very frequent checks on progress 

 
Customer should take action if project rusty 

 
Free scope change: Collaboration Agreement 

 
Cust should have freedom to join sessions 

 
Collaborative contract: goal specification 

 
Ideal: Collaboration Agreement instead of features 

 
Ideal: Agree that customer can join all meetings 

 

Agile Contract Solution Warranty in Agile? 

21 Smaller work items are more easily explained 

 
AC is shared risk 

 
Ideal: Given Sprintlength + Budget + Burnrate 

 
Ideal: No upfront specify price or duration  

 
Ideal: Room for exception clausules 

 
Ideally no price negotiations - only results 

 
IT ppl not very good at financial 

 
Joint-venture: guarantee mutual success incentives 

 
Largely a matter of time before AC 

 
What to do with the iterative aspect? 



51 
 

 
Two-phase ctr second phase arbitrary pricing model 

 
Two-phase contracts to manage trust issues 

 
People simply don't know another solution 

 
Monitor to improve collaboration 

 
Long intentions with clear early term agreements 

 
No upfront agreement on Early Termination 

 
jurist challenges: goal in contract very difficult 

 
Liability transfer in Agile? 

 
T&M Money 4 nothing 90-10 

 
Payment best be closely after the demo 

 

Benefits of Demos Agile good for projects with visible results 

5 Visibility of results important to customer 

 
2-weekly Demos create trust 

 
2-weekly Demos create team-feeling 

 
Demos improve trust 

 

Budget  PPS: Budget depleted -> look for sponsors 

5 PPS: Budget depleted -> maintenance mode 

 
PPS: Limited Budget -> prioritize reqs 

 
PPS: Limited Budget -> Sponsors 

 
Budget constrained projects 

 

Contextual Influences Subcontracting Fixed Price 

13 Agile in-house big org for self-improvement 

 
Agile in-house easier than b2b 

 
Agile in-house rising  

 
Fixed Price Distributed 

 
[P3’s organization’s name] high hourly costs 

 
Intercompany Agile is challenging 

 
More outsourcing -> lower hourly costs 

 
Subcontracting Per Hour 

 
Subcontracting Per Hour Positivity 

 
Subcontracting: managing freelancers 

 
Scrum with 40+ developers is difficult 

 
Real distributed teams in Offshore projects 



52 
 

 

Contract Incompleteness contract completeness 

1 

Customer Involvement Customer should attend at least 1x/week 

15 How to state customer involvemt rules in contract 

 
Product owner on customer's site 

 
Product owner often on customer's site 

 
Product owner less present on-site 

 
Some devs resistant against outsiders joining sesh 

 
Preferably more than once a week 

 
Other than demos and planning -feeling of distrust 

 
Infrequent visits from customer  

 
Contact with customer: telephone and e-mail 

 
Co-located developers -> cust sees effort 

 
At start of project should attend more often 

 
Feedback by shortly testing 

 
Monitor to improve collaboration 

 
Customer involvement important 

 

Desire for Certainty Customer is not-knowing and cautious 

7 Comforting the Customer w/ FP 

 
Challenge: comforting the customer 

 
Ag vs Trad: Customer wants upfront specification 

 
Problem: being stuck to specs in the contract 

 
customer wants security  

 
Negativity Upfront complete specification 

 

Early Termination Early termination crucial 

11 Early termination agreements crucial 

 
Early termination only negotiated when necessary 

 
Early termination Funny 

 
Early termination not seen being used yet 

 
Early termination: suck cost  

 
De-Scoping rare/difficult for customer 

 
Money for nothing unknown but appreciated 

 
Money for.. often explained rarely applied 



53 
 

 
Early termination 

 
What if supplier terminates early 

 

Estimating  Experience based estimating and Delphi 

10 Planning poker 

 
planning poker: dominant people 

 
planning poker good to incorporate everyone 

 
Experience based estimating 

 
Estimating with Points 

 
Estimating easier in known situations 

 
planning poker in grooming sessions 

 
planning poker: crowd sourcing 

 
High executives not very involved in planning 

 

Fixed Price Fixed Price estimation 

36 FP counteracts Agile working 

 
Fixed price uncertainty of delivering right system 

 
Fixed Price Risk Neutralising 

 
Fixed Price Project Process 

 
Fixed Price Government 

 
Fixed Price Distributed 

 
Fixed Price Deliverables 

 
Fixed Price Contingency Planning 

 
Difficulty Fixed Price 

 
High pressure big projects: apply daily standups 

 
Danger of 'Just in Time'-nature of Trad 

 
Smaller work items are more easily explained 

 
Fixed price clear to client 

 
Addendum  

 
Smaller work items 

 
Request for Proposal Government 

 
RE solution: use examples 

 
RE solution: Translators 

 
RE solution: prototypes 

 
Problem: being stuck to specs in the contract 

 
IT ppl not very good at financial 

 
Challenge: specification 



54 
 

 
FP projects often failed to satisfy the goals 

 
Long projects divided in multiple contracts 

 
FP over deadline: seperate contract 

 
Initially little progress visible in Trad proj 

 
Comparison with Traditional 'Milestone' Bills 

 
Waterscrumming 

 
Traditional reqs rarely SMART 

 
Trad RFP huge estimateproblem if reqs amiguous 

 
Negativity Upfront complete specification 

 
Negativity Fixed Price 

 
Mostly Fixed Price demands -> SMART? 

 
realize that waterfall in-house is problem 

 
Combo of waterfall and scrum 

 

Flexibility in Relationship Apply Scrum ideology to Customer Relation 

5 Flexibility to prevent legal problems 

 
Flexibilty PPS helps bridge initial trust barriere 

 
PPS: Flexibility Positive 

 
Flexible contract 

 

Government Waterfall Government regulations Waterfall-like 

5 Government no-bonus regulation 

 
Government Budget contrained 

 
Fixed Price Government 

 
Request for Proposal Government 

 

Intellectual Property Intellectual property transfer in Agile? 

2 Challenge: Intellectual Property 

 

Jurists jurist challenges: goal in contract very difficult 

5 Different mindset jurists 

 
Challenge: jurist challenges 

 
Companies can hire SE jurist to make contract 

 
Jurist challenges 

 



55 
 

Less Emphasis on Contract Legacy syst replacement: easy project goal 

10 PPS: No agreement on end-result+price 

 
Decrease focus on Contract 

 
Don't pressure on amount of points 

 
Ideal: Focus on succesfully reaching sprintgoals 

 
Ideal: Focus on feature/stories not price/duration 

 
More Trust needed in Less Specification 

 
Payment structure is not key 

 
Succeeded in keeping specs very abstract  

 
Instead focus on succesful project and collaborat 

 

Money for Nothing Bad connotation word 'Bonus' 

4 Money for nothing unknown but appreciated 

 
Money for.. often explained rarely applied 

 
Value of Bonus-system hard to measure 

 

Other Factors in Agile Customer always wants more for less 

4 Traditional supps qualityproblem employees 

 
Agile has high demands for developers 

 
Agile good for projects with visible results 

 

Paradigm Transition Phase Waterscrumming 

8 devs do scrum - the rest still used to waterfall 

 
We are now in Transition phase  

 
Transition phase from fixed price to AC 

 
Transition phase of waterfall to agile thoughts 

 
Paradigm shift FP -> T&M -> now AC 

 
Paradigm shift: FP to AC 

 
percieved pressure on productivity 

 

 

Perceived Duration of Relationship Misperception: Immediately order entire system 

4 Advocate of long term intentions 

 
Creating intention of Longterm relation  

 
T&M: short term vision -> cust uncertainty 



56 
 

 

PPS PPS resembles T&M 

52 PPS Per Team: Clarity with Shared Stakeholders 

 
PPS: More in smaller projects 

 
PPS on small projects up to e.g. 1million 

 
PPS: customer pays bills with less resistment 

 
Payment related to Verification Popular 

 
PPS the way to go 

 
PPS: Budget depleted -> look for sponsors 

 
PPS: Budget depleted -> maintenance mode 

 
PPS: Contract states process  

 
PPS: Flexibility Positive 

 
PPS: pretty Agile compared to others 

 
PPS: Limited Budget -> Sponsors 

 
Small company: No need for AC 

 
PPS: No agreement on end-result+price 

 
PPS: Risk increases if customer stalls payment 

 
Starting phase lower performance 

 
PPS: system-maintance service not PPS 

 
PPS: Warning system 

 
PPS: Limited Budget -> prioritize reqs 

 
Fast billing preferred due to Global Economics 

 
Clear fixed price per sprint 

 
Buy extra Sprint Insightful 

 
Bill ASAP 

 
1 Sprint contract  

 
PPS behind schedule 

 
PPS makes sense for customers 

 
Contract variables 

 
Contract states certain amount of sprints 

 
Doesn't understand Y PPS not used evrywhere 

 
PPS: Small projects more predefined 

 
Fixed PPS: don't mind under-or overspending 

 
Flexibilty PPS helps bridge initial trust barriere 

 
Halting project when bills are piled up 

 
He is helped by KPMG in financial aspects 

 
Never seen PPS 

 
Payment best be closely after the demo 



57 
 

 
Payment Per Sprint (PPS) 

 
Positivity PPC 

 
PPS Contract: preliminary funct spec of 1st items 

 
PPS creates technical debt 

 
PPS Demands financial discipline 

 
PPS is bad 

 
PPS is do-able but real AC should have [list] 

 
PPS is not very rare 

 
PPS Fixed Price Per Sprint 

 
Negativity PPS: moment of verification 

 
PPS makes sense and will grow 

 
Ideal: Charge monthly at Fixed burnrate 

 Ideal: Fixed PPS 

 Agile difficulty with Traditional 

 

R&D Contracts Research Collaboration Agreement 

3 Services agreement 

 
confidentiality agreement 

 

Scope Change Ideal: Define Common goal instead of features 

9 Ideal: Free Scope Change 

 
Ideal: Collaboration Agreement instead of features 

 
GOALS are hard to state formally 

 
Free scope change: Collaboration Agreement 

 
Define common goal: state goal very concretely 

 
Change for free creates bargaining about size 

 
Collaborative contract: goal specification 

 
Common goal: joint-venture  

 

Scrum Practices Stand-ups over Skype  

10 sprints retrospectives and demos 

 
Scrum most frequently used 

 
Offshoring: daily video-communication crucial 

 
Velocity 

 
Internal communicator system 

 
Law of 30 feet 



58 
 

 
Always Daily Standups even with distributed teams 

 
1 hour planning session instead of 1 day 

 
Grooming 

 

Short Sprints Ideal: 2 weekly sprints 

3 4 week sprint is used 

 
2 week sprints 

 

Size Expected Negativity Agile Contracting  

17 Agile in-house big org for self-improvement 

 
Big project - Integrated Agile 

 
Big projects less trust 

 
Standard implementation processes 

 
PPS: More in smaller projects 

 
Agile frequent in larger organizations 

 
Contract signer not involved in project 

 
Big projects harder to do Agile 

 
Instant deploymt of increment -> Small customers 

 
Very long projects not suitable for Fixed 

 
PaymentStructure not very important Small 

 
Scrum with 40+ developers is difficult 

 
sprint teams are relatively small 

 
Small company: No need for AC 

 
PPS: Small projects more predefined 

 
PPS on small projects up to e.g. 1million 

 

Specification vs Expectation Better to verify system against the goals  

8 Cust's goals often different than supp's features 

 
Importance of Customers' Expectations 

 
Specifications should be cust's underlying GOALS  

 
System specification VERSUS Expectations! 

 
Traditional satisfy the reqs but not expectations 

 
Agile can prevent Spec vs Expectat conflicts 

 
Agile Contr prevent Spec vs Expectat conflicts 

 

Time & Materials The Contract follows the Agreements 



59 
 

14 T&M benefit: allows to really work Agile 

 
T&M Contract content: amount of feature points 

 
T&M cust can stop when he wants 

 
T&M Disadv: Cust falsely thinks he has freedom 

 
T&M Freedom but actually still dependent on each 

 
T&M Money 4 nothing 90-10 

 
T&M: dependent on eachother 

 
T&M basically good for all projects 

 
Continuous negotation while 30 are developing 

 
Maintenance focused contract T&M 

 
Overall burndown track-keeping for billing 

 
No strict hour control by cust 

 
T&M: short term vision -> cust uncertainty 

 

Trust Expectations initiate Trust  

15 Big projects less trust 

 
Flexibilty PPS helps bridge initial trust barriere 

 
Demos improve trust 

 
Less specification but more monitoring 

 
Less trust Needed in day-to-day 

 
Trust important 

 
Trust issues with customer 

 
Trust should come from both sides 

 
More Trust needed in Less Specification 

 
Misperception of customers 

 
2-weekly Demos create trust 

 
Misperception of software suppliers 

 
Not enough mutual Trust for big Scrum 

 
Customer lacks Trust in Valuable Endresult 

 

Two-phase contract Two-phase contracts to manage trust issues 

6 Two-phase ctr second phase arbitrary pricing model 

 

 


