
Internal Report 2012–18 August 2012

Universiteit Leiden

Opleiding Informatica

Authorship Attribution

using

Compression Distances

Ramon de Graaff

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Authorship Attribution

using

Compression Distances

Ramon de Graaff

mailto:ramondegraaff@gmail.com

Authorship Attribution

using

Compression Distances

THESIS

to obtain the degree of Bachelor of Science

on Friday August 24, 2012

Leiden Institute of Advanced Computer Science

Leiden University

by

Ramon de Graaff

born on April 27, 1990

in Delft, The Netherlands

http://www.liacs.nl
http://www.leidenuniv.nl
mailto:ramondegraaff@gmail.com

This thesis has been approved by:

Dr. W.A. Kosters, LIACS, Leiden University, The Netherlands; kosters@liacs.nl
Dr. C.J. Veenman, DT&B, Netherlands Forensic Institute; c.veenman@nfi.minvenj.nl

Abstract

Authorship attribution has been a field of interest for researchers in the past,
especially for forensic purposes. In this thesis, to obtain the degree of Bachelor
of Science from the Leiden University, we investigate character n-grams and
so-called compression distances to prototypes on several datasets, i.e., the
datasets provided by PAN Labs (a benchmarking activity on uncovering
plagiarism, authorship and social software misuse). This research was done in
cooperation with the Netherlands Forensic Institute (NFI), who supervised
this research as well. Compression distances to randomly selected prototypes
from the training-corpus documents are used as feature representation, which
has shown to be an elegant and powerful method in authorship attribution on
large numbers of training documents. The standard compression distances to
prototypes is not applicable to a dataset with a small number of samples and
authors. We propose Bootstrapped Authorship Attribution in Compression
Space (BAACS), an adaption of the standard compression distances to
prototypes, to attribute authorship for datasets with a small number of
samples and authors. BAACS is based on bootstrapping, a resampling
method, to enrich the distribution of the dataset with more samples trying
to generalize error estimation. We draw prototypes without replacement
and in order to enrich the dataset with more samples, we draw samples
with replacement from the small number of source documents per author.
For the open class recognition tasks, we additionally set a threshold for the
minimum posterior probability for any of the known classes.

Contents

1 Introduction 1
1.1 Problem definition . 1
1.2 Tools . 2
1.3 Definitions . 2
1.4 Evaluation metrics . 3

2 Related Work 5

3 Methodology 7
3.1 Character n-grams . 7
3.2 Compression . 8
3.3 Compression Distances to Prototypes . 11
3.4 Bootstrapped Authorship Attribution in Compression Space 12
3.5 Classification algorithms . 14

4 Experiments 17
4.1 Dataset 2011 . 17
4.2 Dataset 2012 . 25

5 Conclusion and Future Work 31

References 33

C
h

a
p

te
r

1
Introduction

This chapter gives an introduction to the problem, as well as the definition for several

terms. Furthermore metrics are defined to measure the performance in the experiments.

1.1 Problem definition

The goal of authorship attribution is attributing unknown text documents to the correct
author after analyzing source documents from all possible authors. In this paper we use
the datasets provided by PAN11 [28] and PAN12 [29]. These datasets differ quite a lot.
The PAN11 datasets contain multiple short messages per author written by 26 or 72
authors, while the PAN12 datasets contain only two large messages per author written
by 3, 8 or 14 authors. The method proposed in [24], Compression Distances to Prototypes
(CDP), is designed for datasets like that of PAN11 and uses compression distances to
prototypes as the feature representation for the classification algorithm. Compression
distances show how similar two documents are. A small compression distance indicates
a similar document, while a large compression distance indicates a dissimilar document.
Prototypes, in [24], are source documents in the dataset to which the compression
distance is calculated for every source document in the dataset. Since CDP is designed
to classify large datasets, it is not possible to use it for datasets with a small number of
documents. We propose an adaption of CDP, Bootstrapped Authorship Attribution in
Compression Space (BAACS), to classify datasets with a small number of documents
per author. Its base is the same as CDP, the compression distances to prototypes are

2 Chapter 1. Introduction

here also used as a feature representation. Moreover, it uses the same idea underlying
bootstrapping, which is a resampling method for generalization error estimation. We
create more samples by drawing samples from its source document. The prototypes are
drawn samples as well.

In this paper we will apply the CDP and BAACS to the datasets provided by PAN11
and PAN12, respectively. However the CDP showed a good performance on its internal
validation, which is a similar dataset as the dataset of PAN11, its performance on
international datasets is yet unknown. Since the performance and methods used by other
contestants is already published, we are able to find out how well the CDP performs
compared to other methods applied to the same datasets. After the application of CDP
to PAN11, we will apply our BAACS to the datasets of PAN12, where a threshold is
proposed for BAACS to deal with open class problems.

1.2 Tools

The experiments for this thesis are all done by using Matlab in combination with a Matlab
Toolbox for Pattern Recognition, PRTools 4.1 [11]. We make use of the implementations
of several classification algorithms, which has several standard functions to compute the
posterior probabilities and create labels for the test documents.

1.3 Definitions

In this section, definitions are defined which will be used throughout this paper. The
alphabet used in the train- and test documents is:

Σ = {X |X is a character from the English alphabet}

This English alphabet consists of characters that are either symbols, numbers or
characters (with or without punctuation marks). Let Ak

i be the kth document of author
i. The set of documents of author i is defined as:

Di = {Ak
i | k = 1, 2, . . . , ni}

where ni is the number of documents of author i. So we have |Di| = ni.

1.3.1 Distance measures

In this paper, we often use compression distances to compute a distance between two
text files. There are many variants of compression distances. However we will only
use the Compression Dissimilarity Measure (CDM) and the Normalized Compression
Distance (NCD), proposed in [19] and [5], respectively.

1.4 Evaluation metrics 3

For documents x and y, the Compression Dissimilarity Measure is defined as:

CDM (x , y) =
C (xy)

C (x) + C (y)

where C (x) is the size of the compressed object x and xy is the concatenation of x and y.

The Normalized Compression Distance is defined as:

NCD(x , y) =
C (xy)−min{C (x),C (y)}

max{C (x),C (y)}

where again C (x) is the size of the compressed object x. The definition of min(x, y) is
the minimum of x and y and max(x, y) is defined as the maximum of x and y. If x < y,
min(x, y) returns x and max(x, y) returns y.

1.4 Evaluation metrics

In order to evaluate the performance, we use the standard information retrieval and
pattern recognition metrics of precision, recall and F1 -measure. Precision PA, for
author A, is defined as the fraction of retrieved documents (retrieved-documents(A))
that are relevant (correct(A)):

PA =
correct(A)

retrieved− documents(A)
≡ TPA

TPA + FPA

where TPA (True Positive) is the number of documents that are correctly attributed
to author A and FPA (False Positive) is the number of documents that are incorrectly
attributed to author A. Recall RA, for author A, is defined as the fraction of relevant
documents (relevant-documents(A)) that are retrieved (correct(A)):

RA =
correct(A)

relevant− documents(A)
≡ TPA

TPA + FN A

where FNA (False Negative) is the number of missed attributions for author A. In 1979,
Rijsbergen introduced the F1 -measure [31], which is defined as the harmonic mean of
recall and precision:

F1 = 2 · PA ·RA

PA + RA

Note that F1 depends on author A. In order to aggregate these measures over all
different authors, Yang introduced two measures, micro- and macro-averaging [39].
Micro-average is averaging over the number of authors, while micro-average is averaging
over the number of documents. Given a metric M (precision, recall or F1), for a set of
n authors, these measures are defined as:

4 Chapter 1. Introduction

macro-averageM =
1

n

n∑
i=1

MAi

micro-averageM =
1

k

n∑
i=1

|DAi | ·MAi

where k is the total number of test documents and MA the metric (precision, recall or
F1) of author A. Micro-averaging weights the performance of authors on the basis of
their number of test documents. Macro-averaging gives the same weight to every author,
no matter how many test documents they wrote.

C
h

a
p

te
r

2
Related Work

The goal is to attribute texts to their corresponding authors. In order to do that, you

will need a documents from each author to train a classifier. There are many ways to

collect features which describes the characteristics of the texts or authors.

The basic principles in authorship attribution and an overview of the state-of-the-art
techniques are described in [18, 37]. However, in this paper we only use the character
n-grams because of their simplicity and high accuracy when using them as feature
vectors in classification algorithms and the method Compression Distances to Prototypes
(CDP), proposed in [24]. The use of character n-grams for text attribution was proposed
in [20]. Some papers use only the 26 characters of the West-European alphabet [22],
while others use punctuation in their methods [7]. Applying character n-grams has
shown to be easy, but highly accurate in combination with classifiers such as Support
Vector Machines [16]. While this is still a quite simple approach, it competes with a lot
of other (more complex) approaches. Other classification algorithms have been applied
as well, as reported in [8, 10, 23]. Since every character n-gram is valuable for text
classification, feature selection does not seem a good idea. However, the more features
are extracted, the more sparse the data could be. Most of the classifiers are not able to
handle a large number of dimensions. Moreover, if they can, the computation time is
quite large and overfitting becomes a risk. A possible way of reducing the number of
features is to select the n most distinctive features. However, this is hard to compute
and it is much easier to select the character n-grams by their frequency in the dataset.
After ordering the features (character n-grams) on absolute frequency [16, 38] or on

6 Chapter 2. Related Work

relative frequency [38, 40], the n most frequent character n-grams could be selected and
used as feature representation in a classification algorithm.

Compression based authorship attribution is a quite new technique compared to the
character n-grams. However, a lot of research has been done in this field. The main idea
behind attributing texts to authors using compression algorithms, is to compress all
unseen texts and compare them to all the training texts. A high compression rate indi-
cates the same writing style. Many methods are proposed to use compression methods
in order to attribute texts to their corresponding author [1, 21, 24, 27]. Some use the
compression rate between documents, while others use compression distances or other
approaches to attribute a text. Attractive in compression based authorship attribution
is that it requires no preprocessing of the input documents. Multiple compression
methods have been used to attribute and categorize texts, e.g., LZ76 [24], LZ77 [32],
LZW [27, 32], RAR [27], gzip [27], PPM [3, 15, 30, 32]. Several of these compression
algorithms have been combined with a k-Nearest Neighbour, Support Vector Machine
and other classification algorithms. The method proposed in [24], shows excellent results
with LZ76, while other methods prefer PPM over Lempel-Ziv variants [32].

C
h

a
p

te
r

3
Methodology

As seen in Chapter 2, there are many ways to attribute authorship. This chapter will

describe the methods used in this paper.

3.1 Character n-grams

Character n-grams are substrings of a document from length n. In this paper we only use
character 2-grams and character 3-grams, because they have shown to be good features
for English texts [37]. Bigrams (character 2-grams) are simply couples of two characters.
Representing the word ’author’ in bigrams, would result in {’au’, ’ut’, ’th’, ’ho’, ’or’}.
Features can be created by using the relative frequency of occurrence within a text
document. Trigrams (character 3-grams) are three characters long strings. Representing
the word ’author’ in trigrams, would result in {’aut’, ’uth’, ’tho’, ’hor’}. As proposed in
[41], we compute the relative frequency of the character n-grams per document, which
means if the trigram ’the’ occurs k times in a document where in total m trigrams are
found, its relative frequency is k

m . We order the character n-grams in descending order
by summing up all the relative frequencies. That means that the most frequent character
n-gram over all trainingsdocuments is the first feature and so on. The amount of features
is selected by selecting the m relative most frequently used n-grams, where m is less
than or equal to the total amount of features extracted from the dataset. By intuition
one could think the more features we have, the better accuracy we obtain. However, the

8 Chapter 3. Methodology

complexity of the problem as well as overfitting could reduce the performance when
increasing the number of features (dimensions).

3.1.1 Punctuation

Punctuation, in this paper, indicates all characters that are not in the normal 26-letters
{’a’, ’b’,. . . , ’z’}-alphabet augmented with the space character, e.g., characters with
punctuation marks, symbols and numbers. Capital letters are evaluated as lower-case-
letters, because this approach has shown a better performance than treating them as
separate features. The word ’The’ would result in {’th’,’he’} and not in {’Th’,’he’}. The
use of punctuation could lead to a better author-profile, because some authors do and
other don’t use them in their messages.

After selecting a number of features, we can train a classifier to attribute texts to
their corresponding author. In this paper we use Fisher’s Linear Classifier and a
Support Vector Machine (SVM), because they have been used in the field of authorship
attribution before. SVM, are used a lot in combination with character n-grams, for
example in [36], as they have shown a great performance. Fisher’s Linear Classifier, in
turn, has not been used a lot in combination with character n-grams. However, Fisher’s
Linear Classifier has been used in compression distances to prototypes [24], to attribute
texts. Since we are going to use both classifiers a lot, we made abbreviations for the
several methods. They are stated in Table 3.1. We will use these terms throughout the
paper.

Abbreviation Description

SVM2 SVM with bigrams without punctuation

SVM2P SVM with bigrams with punctuation

SVM3 SVM with trigrams without punctuation

SVM3P SVM with trigrams with punctuation

FLC2 Fisher’s linear classifier with bigrams without punctuation

FLC2P Fisher’s linear classifier with bigrams with punctuation

FLC3 Fisher’s linear classifier with trigrams without punctuation

FLC3P Fisher’s linear classifier with trigrams with punctuation

Table 3.1: Explanation on the abbreviations

3.2 Compression

As described in [26], compression is about finding the shortest sequence of bits needed
to represent a text. There are two ways of compressing data, lossless data compression
and lossy data compression. Most likely, for text compression we want lossless data
compression, because the original text can be reconstructed from the encoded file.
All data compression algorithms consist of two parts, a model which estimates the

3.2 Compression 9

probability distribution (which characters/words are more common than others) and a
coder which assigns the shortest codes to the most likely character. There are several
efficient coding algorithms known. In 1948, Shannon proved that the best coding for a
symbol, which can be decoded again, with probability p is to assign a code of length
log2

1
p [33]. The best compression possible for string x is to find a program that outputs

x. However, Kolmogorov proved that there is no general procedure that finds the
shortest program to regenerate the string we want to compress. Models can be static and
adaptive: static models compute the probability distribution after processing the input,
while adaptive models try to predict a probability distribution for the next symbol on
the basis of already processed input.

3.2.1 Compressors

As described in the previous section, a compression algorithm is a combination of a
model and a coder. In the next paragraphs, the methods used by the compressors used
throughout this paper are briefly described.

LZ76 The Lempel-Ziv algorithms adaptively build a dictionary, based on the text
seen previously. In this paper we use the LZ76, proposed in [25]. LZ76 is based on the
idea of randomness, where it is only interested in coding. It is an adaptive dictionary
coder, which efficiently stores every substring that has been used in the past, in the
dictionary. It searches for new phrases, where they are stored in the dictionary in
chronological order. If the processing symbol is already in the dictionary, it adds the
next symbol in the sequence of the to be encoded string and searches again in the
dictionary. This is continued until a new sequence of symbols has been found and that
sequence will be added in the dictionary. For example, when we would encode the string
’abbacbabcabbcba’, the dictionary items would be D = {’a’,’b’,’ba’,’c’,’bab’,’ca’,’bb’,’cb’}.
In Table 3.2, processing the string ’abbacbabcabbcba’ is illustrated.

PPMd Prediction with Partial Matching (PPM) is the best-known context modeling
based algorithm, first proposed in [6]. The main idea behind this algorithm is to use
contexts to determine the probability of the symbol being encoded. Instead of computing
probabilities for all possible combinations of contexts, we only compute the probabilities
for the context which has already been seen before. The symbols which have never
been seen before, in the largest context, trigger the escape sequence. The algorithm
then attempts to use a smaller context, until the symbol was found in a context or it
was never seen in any context. In this last case, a probability of 1

M is assigned to the
probability of this symbol, where M is the size of the alphabet. For example, when we
would like to encode the letter ’o’ in the string ’authorship’, we would attempt to look
if ’o’ has previously occurred in the context of ’auth’. If this fails, we would encode an
escape and attempt to search for ’o’ in the smaller context of ’uth’. This is continued
until the symbol is found or it has not been found in any context. If this is the case, the
model of order −1 is used, where all letters in the alphabet of the to be encoded file

10 Chapter 3. Methodology

P
o
si

ti
o
n

S
y
m

b
o
l

A
d

d
to

d
ic

ti
o
n

a
ry

In
d

ex

R
ec

o
g
n

iz
ed

a
s

1 a a 1 null, a

2 b b 2 null, b

3 b

4 a ba 3 2,a

5 c c 4 null, c

6 b

7 a

8 b bab 5 3, b

9 c

10 a ca 6 4, a

11 b

12 b bb 7 2, b

13 c

14 b cb 8 4, b

15 a

Table 3.2: LZ76 example of processing the string ’abbacbabcabbcba’

have the same probability. When encoding an escape, the probability for this is hard to
compute since it was never used before. This is called the zero-frequency problem. There
are multiple variants which give the escape symbol a count of one, where others assign
the number of symbols in that context to the escape count. Another approach, similar
to the number of symbols as an escape count, is reducing every symbol count by one
and assigning the number of symbols in that context to the escape count. There is also a
variant, “The exclusion principle”, in which the number of symbols in order-(n− 1) can
be reduced because the substring did already occur in order-n, where n is the highest
order. For example, if the symbols ’i’ and ’o’ occur in the context ’ab’ of order-n, but the
model has escaped from that order, the smaller order with symbols ’i’ and ’o’ in context
’b’ of order-(n−1) can be eliminated, because they would have been captured by order-n.

We give an example of processing the string ’abbacbabcabbcba’, with a order-1 PPM
algorithm. The context orders are shown in Table 3.3 where the escape sequences are
counted by the number of symbols in that context. The order number is the number of
context characters. In the order-1 context in Table 3.3, the context is the first character
in the Table followed by a dash and hopefully the to be encoded character. If not, the
escape sequence is triggered.

If this string was followed by the letter ’a’, encoding ’a’ would get the probability of
1
3 ·

5
18 = 0.0926. With the exclusion principle, encoding ’a’ would get the probability of

1
3 ·

5
8 = 0.2083, because the symbols in order-0 are discarded.

3.3 Compression Distances to Prototypes 11

Order 1 Order 0 Order -1

Prediction C P Prediction C P Prediction C P

a-b 3 1
2

a 5 5
18

a 1 1
3

a-c 1 1
6

b 7 7
18

b 1 1
3

esc 2 1
3

c 3 3
18

c 1 1
3

b-a 3 3
10

esc 3 3
18

b-b 2 1
5

b-c 2 1
5

esc 3 3
10

c-a 1 1
5

c-b 2 2
5

esc 2 2
5

Table 3.3: PPM example with one order processing the string ’abbacbabcabbcba’, where

the escapes are counted to the number of symbols in that context. The column C shows

the count and the token P gives the probability

In this paper, we use the PPMd implemented by Shkarin [35], which is based on the
basic PPM [17]. However, it uses a complex secondary escape estimation (SEE) model
and considers three cases: binary context, nm-context and m-context. After modeling,
PPMd uses arithmentic coding to compress the files.

3.3 Compression Distances to Prototypes (CDP)

Lambers and Veenman proposed a method called Compression Distances to Prototypes
(CDP) [24]. This method creates a feature vector from the compression distances between
the training texts. These feature vectors are the characteristics of the samples and could
become as long as the number of objects in the training set. Lambers and Veenman
propose to choose a subset of the training texts to compute the compression distances
to, from now on referred to as prototypes. These prototypes are chosen randomly, as
experiments have shown it does not significantly matter which of the training texts are
chosen as a prototype. The number of prototypes, however, is an important parameter
which needs tuning. The distance measure proposed in [24], is the “Compression Dis-
similarity Measure”. For practical reasons, the compression method LZ76 was chosen in
[24]. Lambers and Veenman selected the Fisher’s Linear Classifier for all methods and
experiments, because its performance is competitive, while it has also computational
attractive properties.

There are several parameters to be optimized:
- Number of prototypes
- Compression method
- Compression distance measure

12 Chapter 3. Methodology

- Classifier

3.4 Bootstrapped Authorship Attribution in Compression

Space (BAACS)

Bootstrapping is a resampling method which tries to enrich the distribution of the
dataset with more samples and tries to generalize error estimation [12]. The approach we
propose to attribute authorship for a dataset with a small number of samples is based on
this idea in combination with compression distances to randomly chosen prototypes. One
prototype is drawn per corresponding source document, where this prototype is a part
from its original. For practical reasons we draw the prototype from the first x percent
from its document, where x is a percentage between 0 and 100. From the remaining
(100 − x)% of the document, we draw samples randomly and with replacement. The
number of samples is a parameter which needs optimization. Depending on the length
of the drawn samples, the overlap and dependence between the samples increases. In
case a sample would read over the end of the document, it would continue reading
at the starting point of the remaining part of the source document until the required
length was obtained. For all these samples, a compression distance was computed to
all the prototypes. After we gained these feature vectors, we can learn a classifier in
this compression distance space. If the prototypes are not drawn from every document
in the dataset, the remaining documents are used for sampling and the compression
distances are computed to all the other prototypes.

There are several parameters to be optimized:
- Number of samples per source document
- Percentage of prototypes
- Percentage of samples
- Number of prototypes
- Compression method
- Compression distance measure
- Classifier

3.4.1 Closed class

Closed class authorship attribution assumes that the author of the unknown text should
be one of the candidate authors. In a balanced dataset, a n-fold cross validation can
be used for internal validation, where n is the number of source documents per author.
The source documents are n− 1 times used as a train document and one time as a test
document. The test documents can be divided into multiple parts, to enhance more
differentiated performances between the different settings of parameters.

3.4 Bootstrapped Authorship Attribution in Compression Space 13

3.4.2 Open class

Open class authorship attribution assumes that the author of the unknown text is either
one of the candidate authors or someone else, i.e., the author of the unknown text
is possibly not included in the set of candidate authors. The approach for the Open
Set-problem is the same, but the labeling of the test documents is slightly different. We
came up with a simple idea to make use of the model’s estimated posterior probabilities.
We set a threshold and if the posterior probability is lower than the threshold, it will be
marked as “Unknown”.

Suppose there are n authors and 2n documents in the datasets, where all authors
have two documents in the train set. We train on all first documents of n− 1 authors
and leave all documents of the nth author out of the train set. So the classifier is trained
without the nth author having any documents in the train set. In the validation set, we
label the second document of the nth author in the ground truth as “Unknown” and all
the second documents of the other authors to their corresponding label. Every author is
once marked as “Unknown” and every document is once left out as “Unknown”. We
determine all posterior probabilities for every test document we offered to the trained
models, those values will be the thresholds to be tested on. After determining the
possible thresholds, we need to come up with the threshold that performs “the best”.
Now we do the same experiment with offering every document of every author once
as “Unknown”, but we measure the performance for every threshold. We measure the
performance in two ways, one where the precision, recall and F1 -score of the unknown
author are treated as any other author (the performance computed this way is referred to
as PN) and one where the precision, recall and F1 -score of the unknown author weights
the same as the precision, recall and F1 -score averaged over all the other authors (the
performance computed this way is referred to as P50). The micro- and macro-average
performance measures in Chapter 1 need adaption to compute the P50.

Given a metric M (precision, recall or F1) with the nth author marked as “Unknown”,
for a set of n authors, these new adapted measures are defined as:

macro-average-weigthedM =
1

2n− 2
·
n−1∑
i=1

MAi +
1

2
·MAn

micro-average-weightedM =
1

2k
·
n−1∑
i=1

(|DAi | ·MAi) +
1

2
·MAn

where k is the total number of test documents and MA the metric (precision, recall or
F1) of author A. The “known” classes will be treated according to the regular macro-
and micro averages. Every document which is offered to the model as “Unknown” in
combination with a threshold will provide a PN and a P50. Since there will be 2n docu-
ments are offered as “Unknown”, there will be 2n times a PN and P50 per threshold.
These n performances are averaged over the number of documents, which will define

14 Chapter 3. Methodology

the mean macro-average-precision, mean macro-average-recall, mean macro-average-F1 ,
mean micro-average-precision, mean micro-average-recall and mean micro-average-F1

for a specific threshold. The average taken over these metrics will give one value per
threshold, referred to as the mean performance threshold. There will be two best mean
performing thresholds, one for PN and one for P50 are from now on referred to as
PN-T and P50-T, respectively.

3.5 Classification algorithms

Throughout this paper, we use several classification algorithms. In the next subsections
we describe the basic ideas of the two most frequently used classifiers in this paper.
Further details can be found in the given references.

3.5.1 Support Vector Machine

Support Vector Machines (SVM) are proposed in [4], where the main idea is to find
the optimal hyperplane that separates two or more classes. In a 2-dimensional space,
let each class have a set of vectors which defines their position in the space. The set
of vectors is said to be optimally separated if the distance of the closest vector to the
hyperplane is maximal and it is separated without error. The margin of a SVM is the
distance of the separating hyperplane to the hyperplanes of the closest vectors to that
hyperplanes on both sides. However, this will only hold for linear separable data. The
SVM for linear unseparable data needs adaption, where data points on the incorrect side
of the margin boundary receive a distance dependent penalty. Maximizing the margin
is dependent of the C-parameter which controls the trade-off between the factor to the
penalty and the size of the margin. This parameter needs parameter tuning, because of
its dependence on the dataset. More details can be found in [9].

3.5.2 Fisher’s Linear Classifier

Fisher’s Linear Discriminant was first proposed in [14], where Fisher’s Linear Classifier
(FLC) was later adapted from. The main idea of this linear classifier is, finding a
projection to a line in a way that samples from different classes are well separated. This
is done by measuring the separation between projections of different classes. Let v · x
be the projection of sample x onto a line in direction v. Suppose we have a 2-class
problem and take the mean of the projections per class, say M1 and M2 . The biggest
difference (|M2 −M2 |) between these values, would seem a good option to be used for
classification: the bigger the difference the better it would classify. However, it might
be inaccurate when the variance is large and the classes still overlap. This difference
measure (|M1 −M2 |) needs to be normalized by a factor which is proportional to
variance. This factor is defined by the scatter of the class, the spread of data around
the mean. By computing the scatter and mean of the classes, the optimal projection

3.5 Classification algorithms 15

line can be computed. After this, a threshold is set to determine the class the sample
will be attributed to. More details can be found in [2].

16 Chapter 3. Methodology

C
h

a
p

te
r

4
Experiments

In this section all experiments will be discussed, i.e., the results on how different feature

sets would have performed on the datasets of PAN11 ass well as the internally validated

and actual performance on the datasets for the different tasks of PAN12.

4.1 Dataset 2011

PAN11 [28] had different subtasks within the Author Identification task, therefore
different datasets have been provided. These sets consist of English emails of the Enron-
database, made public by the Federal Energy Regulatory Commission [13]. The datasets
with the names “Small” (SmallTrain, SmallValid and SmallTest) and “Large”
(LargeTrain, LargeValid and LargeTest) are in this paper used for experiments.
The author sets are disjoint. The number of authors, number of documents and sizes of
the datasets used in the PAN11-Lab are shown in Table 4.1.

Some parts of the texts are not written in English. Personal names and email ad-
dresses in the corpus have been replaced by <NAME/> and <EMAIL/> tags, respectively.
However these replacements are not perfect and some texts may still contain personal
names or email addresses. The authorship was determined by the email addresses, the
assumption we make here is that a unique email address belongs to a specific person.
However, email addresses can be used by multiple persons, so that assumption could be
wrong in some cases. On the other hand, multiple email addresses can be used by one

18 Chapter 4. Experiments

person, so there could be two of the same authors in the dataset. The name or email
address of the author are replaced by an author ID, that means the dataset is labeled
by unique ID’s. An example of a message is shown in Figure 4.1.

Dataset No. authors No. documents Total size (kB)

SmallTrain 26 3001 1365

SmallValid 23 518 191

SmallTest 23 495 193

LargeTrain 72 9337 3924

LargeValid 66 1298 1862

LargeTest 64 1300 529

Table 4.1: Dataset 2011 The number of authors and number of documents per dataset

Hi

Thanks f o r the i n v i t a t i o n − the day sounds great . <NAME/> and <NAME/>

w i l l be the re with b e l l s and wh i s t l e s (I have a f r i e nd coming in f o r

the weekend so I won ’ t be ab le to make i t but t h r i l l e d that <NAME/>

and <NAME/> are in the same c l a s s again) . Talk to you soon .

Figure 4.1: Document 1 of author ID 255029

Two types of feature sets have been tested on the datasets of PAN11: character n-
grams and Compression Distances to Prototypes (CDP)[24]. The mean performance
is the average of the macro-average-precision, macro-average-recall, macro-average-F1 ,
micro-average-precision, micro-average-recall and micro-average-F1 .

4.1.1 Small dataset

The “Small”-dataset contains 3001 documents written by 26 different authors, 518
documents by 23 authors and 495 documents by 23 authors, used for training, validation
and testing, respectively, so not all authors have documents in SmallValid and
SmallTest. The distribution of the training-, validation- and test-corpus over the
different authors is shown in Figure 4.2. Some of the authors have a lot of messages in
the dataset, while others only have a few.

4.1.1.1 Character n-grams

As described in Chapter 2, character n-grams have been often used in the past in
the field of authorship attribution. To determine a baseline for our experiments, we

4.1 Dataset 2011 19

Figure 4.2: PAN11 Distribution of training-, validation- and test-corpus of the PAN11-

Small dataset

experiment with these features first. As described in Section 3.1, we order the character
n-grams using their relative frequency, in descending order.

Bigrams As described in Chapter 3, we take pairs of two characters from the English
alphabet augmented with the space character. That will give us at most 272 = 729
features. However, not all bigrams are in the dataset, that means 654 bigrams are
extracted from the “Small”-dataset as features which are used by FLC2 and SVM2.
The performance of FLC2 and SVM2 on the “Small”-dataset is shown in Figure 4.3.
When punctuation, described in Section 3.1.1, is taken into account 2124 bigrams are
extracted and are used by FLC2P and SVM2P. The use of punctuation for bigrams in
the “Small”-dataset has shown to be effective as FLC2P and SVM2P outperformed
FLC2 and SVM2, respectively, as clearly shown in Figure 4.3. The SVM2P outperforms
FLC2P averaged over the number of features by 2.60 percentage points.

Figure 4.3: Punctuation on bigrams A comparison of the mean performance with

varying the number of bigrams, trained on SmallTrain and validated on SmallValid

20 Chapter 4. Experiments

Trigrams When extracting the trigrams without punctuation we get at most 273 =
19, 683 features, in this dataset 6964 trigrams are discovered. When we extract trigrams
with punctuation, 16, 296 trigrams are provided. We took a closer look at trigrams
in combination with classifiers in this dataset. Based on the results in Figure 4.4,
trigrams with punctuation are chosen for the comparison, because FLC3P and SVM3P
outperform FLC3 and SVM3, respectively. In Figure 4.5, the mean performance for
five classification algorithms is shown using trigrams with punctuation as features. The
SVM outperforms the rest of the classification algorithms, although it competes with
Fisher’s Linear Classifier. The use of SVM3P, averaging over the number of features,
improves the mean performance of SVM3 by 6.00 percentage points.

Figure 4.4: Punctuation on trigrams A comparison of the mean performance with

varying the number of trigrams, trained on SmallTrain and validated on SmallValid

Figure 4.5: Performance on the Small Dataset Mean performance of different classi-

fiers with varying the number of punctuated trigrams, trained on SmallTrain and validated

on SmallValid

4.1 Dataset 2011 21

4.1.1.2 Compression Distances to Prototypes

In the method proposed in [24], there are three parameters that need to be set, i.e.,
the number of prototypes used to train the classifier, the distance measure and the
compression method. The classifier that is used is the Fisher’s Linear Classifier, as
proposed in [24] in combination with the compression method LZ76 [25], however PPM
proposed in [17] shows a better performance than LZ76 in [32]. We used the PPM
implementation by Shkarin proposed in [35], available at [34]. Both compression methods
and the two distance measures, CDM and NCD , are used to test the performance. By
increasing the number of prototypes with 100 prototypes every step and measuring the
mean performance of all the four combinations of LZ76 and PPMd with CDM and NCD
at every step, we get Figure 4.6. Because the prototypes have a random permutation,
these experiments have been repeated ten times with different orders of prototypes to
stabilize the results. Experiments with a smaller stepsize, on which Figure 4.6 is based,
show a maximum mean performance at 2520 prototypes, NCD as the distance measure
and PPMd as the compression method. Although NCD outperforms CDM for both
compression methods, they compete to each other. Remarkable is that NCD with PPMd
constantly increases performance, however it is slightly worse until 2400 features. After
that, the performance of CDM begins to drop, while NCD is still increasing and begins
to drop after 2700 features. The same applies to compression method LZ76, where both
compression distances compete and NCD is slightly worse until 1000 features. The
validation and test results are shown in Table 4.2. These performances would, with a
ranking number of 17, result in a shared 2th place in the PAN11 contest, performing on
the closed “Small”-dataset in the Authorship Identification task.

Figure 4.6: Prototypes on the Small Dataset Mean performance and standard devia-

tion for a 10-repeat experiment with varying number of prototypes, trained on SmallTrain

using Fisher’s Linear Classifier and validated on SmallValid

22 Chapter 4. Experiments

Macro-average Micro-average

Dataset No. features Precision Recall F1 -measure Precision Recall F1 -measure

SmallValid 2520 0.6089 0.4530 0.4742 0.7185 0.7297 0.6934

SmallTest 2520 0.5303 0.4308 0.4477 0.6928 0.7152 0.6861

Table 4.2: Performance on Small Dataset The performance on SmallValid and

SmallTest using Fisher’s Linear Classifier

4.1.2 Large dataset

The “Large”-dataset contains 9337 documents written by 72 different authors, 1298
documents by 66 authors and 1300 documents by 64 authors, used for training, validation
and testing, respectively. For more details, see Section 4.1. The distribution of the
training-, validation- and test-corpus is shown in Figure 4.7.

Figure 4.7: PAN11 Distribution of training-, validation- and test-corpus of the PAN11-

Large dataset

4.1.2.1 Character n-grams

We determine a baseline for the experiments with compression distances to randomly
chosen prototypes by using character n-grams ordered using their relative frequency
first.

Bigrams Punctuation, as described in Section 3.1.1, has shown in Section 4.1.1.1 that
using it for bigrams in the “Small”-dataset of PAN11 improves the performance. Without
punctuation, 700 bigrams can be extracted from the “Large”-dataset, while using
punctuation provides 2783 bigrams. In this dataset the performance with punctuation
is again better than without punctuation. The performance for these features is also
shown in Figure 4.8. Again, SVM2P performs on averaging over the number of features
better than FLC2P, now with 3.55 percentage points.

4.1 Dataset 2011 23

Figure 4.8: Punctuation on bigrams A comparison of the mean performance with

varying the number of bigrams, trained on LargeTrain vand validated on LargeValid

Figure 4.9: Punctuation on Trigrams A comparison of the mean performance with

varying the number of trigrams, trained on LargeTrain and validated on LargeValid

Trigrams Experiments have shown that the use of punctuation for bigrams in the
dataset of PAN11 improved the performance. The same applies for using trigrams with
punctuation on the “Large”-dataset, this is shown in Figure 4.9. When extracting the
trigrams without punctuation we get at most 273 = 19, 683 features, in this dataset
9026 trigrams are provided. When we extract trigrams with punctuation from the
“Large”-dataset, 24, 025 trigrams are discovered. Remarkable is that for the first time
FLC3P clearly outperforms SVM3P on a large range of features. The maximum score is
reached by FLC3P at 3500 features.

4.1.2.2 Compression Distances to Prototypes

We used both compression methods (PPMd and LZ76) and the two distance measures
(CDM and NCD) in combination with Fisher’s Linear Classifier to test the performance
on the “Large”-dataset. By increasing the number of prototypes with 50 prototypes at
every step until 5000 prototypes and measuring the mean performance for all the four

24 Chapter 4. Experiments

combinations of LZ76 and PPMd with CDM and NCD at every step, we get Figure 4.10.
Unfortunately, for computational time reasons, the results are not averaged with different
permutations of prototypes and for the same reason a step size of 400 is chosen after
5000 prototypes. The results of the mean performance in Figure 4.10 show a maximum
mean performance at 4900 prototypes, NCD as the distance measure and PPMd as the
compression method. Although NCD outperforms CDM for both compression methods,
like in Section 4.1.1.2, they compete to each other. Both compression distances with
compression method LZ76 compete all the time, however above 2850 features NCD
almost always outperforms CDM . A maximum mean performance on LargeValid is
reached at 4900 prototypes as the number of prototypes, NCD as the distance measure
and PPMd as the compression method. The validation and testing results are shown
in Table 4.3. These performances would, with a ranking number of 24, result in a 4th

place in the PAN11 contest, performing on the closed “Large”-dataset in the Authorship
Identification task.

Macro-average Micro-average

Dataset No. features Precision Recall F1 -measure Precision Recall F1 -measure

LargeValid 4900 0.5323 0.3887 0.4056 0.6104 0.6079 0.5764

LargeTest 4900 0.5766 0.4212 0.4479 0.6302 0.6131 0.5896

Table 4.3: The performance on LargeValid and LargeTest using Fisher’s Linear

Classifier

Figure 4.10: Prototypes on the Large Dataset Mean performance with varying the

number of prototypes, trained on LargeTrain using Fisher’s Linear Classifier and validated

on LargeValid

4.2 Dataset 2012 25

4.2 Dataset 2012

PAN12 [29] has different subtasks within the Author Identification task. It is divided
into “Traditional Authorship Attribution” and “Sexual Predator Identification”. The
“Traditional Authorship Attribution”, in turn, is divided into “Traditional (closed-
class/open-class)” and “Authorship clustering/intrinsic plagiarism”. The focus for this
paper will be the “Traditional (closed-class/open-class)” of the “Traditional Authorship
Attribution”-task.

The task description, from [29], is as follows: “Within the closed class you will be given
a closed set of candidate authors and are asked to identify which one of them is the
author of an anonymous text. Within the open class you have to consider also that it
might be that none of the candidates is the real author of the document.”
These tasks will be performed on three different datasets (A, C and I) containing 3, 8
and 14 authors, respectively. Task A, C and I are the closed class variant, where Task B,
D and J are the open class variant. Regarding the datasets, Task A, C and I have the
same dataset as B, D and J, respectively. All authors in every dataset given for training
have two documents.

The mean sizes and standard deviations for the datasets of PAN12 are shown in Figure
4.11. Details on the datasets in PAN12 can be found in Table 4.4. In the open class
tasks, the “Unknown” author will be treated as an extra class.

Figure 4.11: PAN12 Distribution of training- of the PAN12

These datasets required a whole different approach than the datasets of PAN11. This
is because the dataset of PAN12 was very different from that of PAN11. Compression
Distances to Prototypes [24] has shown a great performance in authorship attribu-
tion on large numbers of short texts, see Section 4.1, so we adapted this approach
to Bootstrapped Authorship Attribution in Compression Space (BAASC) for the con-
test of PAN12. The approach is described in Section 3.4. The PAN 2012 Lab had a
big challenge, because the datasets consist of only two train documents per author.
No validation set is provided by PAN12, so we need to do our own validation with

26 Chapter 4. Experiments

Dataset No. classes No. documents Size (kB)

Task A train 3 6 9-32

Task A test 3 6 5-43

Task B test 4 10 10-39

Task C train 8 16 11-72

Task C test 8 8 10-43

Task D test 9 17 10-74

Task I train 14 28 179-1023

Task I test 14 14 231-1123

Task J test 15 16 98-1271

Table 4.4: Dataset 2012 The number of authors and number of documents per dataset

those two train documents. That means we can only use one train document to train
and one to validate. Fortunately, these documents are quite large as shown in Figure 4.11.

The parameters that we need to set are the distance measure, the compression method,
classification algorithm, the number of prototypes, the prototype size, the number of
samples and the sampling size. To narrow down these parameters, we need to make
some assumptions. In previous chapters we saw that the compression method PPMd
outperformed LZ76, so we take PPMd as the compression method. The distance measure
NCD outperformed CDM in combination with the compression method PPMd, as seen
in Sections 4.1.1.2 and 4.1.2.2. Due to time constraints and based on experiments in
[32], we had to make an assumption for the distance measure far before all tests were
finished. These earlier results pointed out that CDM was going to outperform NCD , so
that is why CDM was chosen for these datasets. After these assumptions, we only have
the following variables: the classification algorithm, the number of samples, the number
of prototypes, the prototype size and the sampling size.

Although PAN12 said: “The performance of your authorship attribution will be judged
by average precision, recall, and F1 over all authors in the given training set.”, they
only measured the performance by the number of correct attributions divided by all
documents, corresponding to the micro-average recall. When setting the parameters, we
tuned on the F1 -score, because it is the harmonic mean between precision and recall,
however contributions were in the end judged on the recall.

4.2.1 Closed class

The internal validation of the closed class is done using a ten repeat 2-fold cross valida-
tion, which means using every document once in the trainset and once in the validation
set is repeated ten times and that the performances are averaged over the number of
repeats. To create a good estimation of the performance during the evaluation, the test
documents were divided into three equal parts. The internal validation was performed on

4.2 Dataset 2012 27

n prototypes, where n is the number of train documents and in the internal validation
equal to the number of authors as well. The number of samples is set to 30, because
performance graphs, similar to Figures 4.12, 4.13 and 4.14, show a constant perfor-
mance from that point on and with a larger number of samples overfitting becomes a risk.

The datasets used in these tasks consist of three, eight and fourteen authors for Task
A, Task C and Task I, respectively. All authors have two documents in the dataset.
The sizes of these documents differ quite a lot as shown in Table 4.4. Based on the
internal validations over all combinations in the parameters, the best performance was
using Fisher’s Linear Classifier or Logistic Linear Classifier in combination with several
prototype sizes and samples as shown in Table 4.5. These values are based on the graphs
in Figures 4.12, 4.13 and 4.14, after choosing 30 as the number of samples. Although
Fisher’s Linear Classifier and “Logistic Linear Classifer” compete, we choose Fisher’s
Linear Classifier because it has been used before in the same field in [24].

After we tuned the parameters and estimated the performance on the internal validation,
we need to make a model to release the test documents provided by PAN12 on. The
only adjustable parameter now is the number of prototypes taken. There is no need for
keeping documents aside for testing, so we have twice as many train documents. We
can train with more train documents and create more features as well. The internal
validation was done using n prototypes, where n is the number of train documents,
but only half of the dataset is used because the other half is used as a test document.
With twice as many train documents, we submit two models. In the first submission
we use n prototypes, where n is now equal to 6, 16 and 28 for Task A, Task C and
Task I, respectively. For this first submission we take a percentage of all the train
documents (first and second of every author) and use them as the prototypes. From
the remaining part of the train documents we draw thirty samples of a size conform
the tuned parameter specified in Table 4.5. In the second submission we use 3, 8 and
14 prototypes, because that is same as used in the internal validation. The prototypes
are a percentage of every first document of every author. We add samples from the
documents we used as a test document in the internal validation. This creates a model
with more train documents than in the internal validation, which in theory would not
harm the performance. However, the performance of submission 2 is quite worse than
the performance of the internal validation and submission 1. Submission 1 performs
pretty well. The performances of the two submissions on the test documents provided
by PAN12 are shown in Table 4.6.

28 Chapter 4. Experiments

Macro-average Micro-average

Dataset Prototypes Samples Precision Recall F1-measure Precision Recall F1-measure

Task A 20% 70% 0.6356 0.7111 0.6611 0.6356 0.7111 0.6611

Task C 20% 90% 0.7718 0.8167 0.7793 0.7718 0.8167 0.7793

Task I 50% 70% 0.8125 0.8571 0.8193 0.8125 0.8571 0.8193

Table 4.5: Internal validation The internal validation and parameters on the closed-class

datasets of PAN12, 10-repeat 2-fold cross validation

Macro-average Micro-average

Dataset Precision Recall F1-measure Precision Recall F1-measure

o
n
e

Task A 1.000 1.000 1.000 1.000 1.000 1.000

Task C 0.8125 0.8750 0.8333 0.8125 0.8750 0.8333

Task I 0.5952 0.7143 0.6310 0.5952 0.7143 0.6310

t
w
o

Task A 0.5000 0.6667 0.5556 0.5000 0.6667 0.5556

Task C 0.5463 0.7901 0.5481 0.7598 0.4706 0.3843

Task I 0.4167 0.5000 0.4405 0.4167 0.5000 0.4405

Table 4.6: PAN12 Lab (closed class) The performance on the closed class tasks of the

PAN12 Lab for submission 1 and submission 2.

Figure 4.12: Task A and B The average F1 -score for the 10 repeat 2-fold cross validation

4.2.2 Open class

The datasets used in these tasks consist of three, eight and fourteen authors for Task
B, Task D and Task J, respectively. The datasets are equal to their closed class
variant. After tuning the parameters for the closed class, we need to tackle the open
class problem. The internal validation on the open datasets is done using a ten repeat
experiment on the dataset while measuring the performance. Per repeat, every author is
k times offered as the “Unknown”, where k is the number of documents per author. In
Table 4.8, we see that PN is higher than P50 on every dataset. This corresponds to our

4.2 Dataset 2012 29

Figure 4.13: Task C and D The average F1 -score for the 10 repeat 2-fold cross validation

Figure 4.14: Task I and J The average F1 -score for the 10 repeat 2-fold cross validation

expectation, because here only 1
nth, with n authors, is offered as “Unknown”. Distin-

guishing the “Unknown” author is here as important as attributing the test documents
to their corresponding author. We have created P50 because we expect more “Unknown”
authors in the testsets provided by PAN12 than only 1

nth. With more than 1
nth of

“Unknown” labels for the test documents, it is getting more important to distinguish the
“Unknown” author, than to attribute the documents to their corresponding author.

In Table 4.7, the number of known versus unknown authors in the testset provided by
PAN12 is shown, as well as the computed thresholds. In Table 4.9 the performances
are shown for the submissions on the testset provided by PAN12. After we computed
the thresholds, we take the same models for submission 1 and submission 2 as we
did for the closed class. That is, n prototypes for submission 1 and 1

2n for submission
2 where n is the number of train documents. As we expect more or equal documents
of the “Unknown” author, we submit the models with the threshold P50-T. In Task
B, where the number of documents by “Unkown” authors is only four, the threshold
PN-T would perform slightly better. Fortunately in Task D, the number of documents
by “Unknown” authors is nine, which is about half of the dataset. The threshold P50-T

30 Chapter 4. Experiments

performs a lot better than threshold PN-T. In Task J, both thresholds came up with
the same labeling for the test dataset. The models from Submission 2 came up with
the same labels for both thresholds on all tasks.

Dataset Known Unknown Total PN-T P50-T

Task B 6 4 10 0.9749 0.9812

Task D 8 9 17 5.45 · 10−4 0.0084

Task J 14 2 16 6.90 · 10−5 4.19 · 10−4

Table 4.7: PAN12 (open class) Testset Distribution of the provided test documents

of the open class tasks for PAN12 Lab, including the calculated thresholds

Macro-average Micro-average

Dataset Prototypes Samples Precision Recall F1 -measure Precision Recall F1 -measure

Task B (PN-T) 20% 70% 0.4713 0.5185 0.4840 0.4713 0.5185 0.4840

Task B (P50-T) 20% 70% 0.4452 0.5139 0.4681 0.4452 0.5139 0.4681

Task D (PN-T) 20% 90% 0.6370 0.6979 0.6398 0.6370 0.6979 0.6379

Task D (P50-T) 20% 90% 0.4745 0.5149 0.4763 0.4745 0.5149 0.4763

Task J (PN-T) 50% 70% 0.7540 0.8129 0.7651 0.7540 0.8129 0.7651

Task J (P50-T) 50% 70% 0.5516 0.6506 0.5854 0.5516 0.6506 0.5854

Table 4.8: Internal validation The internal validation performances on open class

datasets of PAN12, 10 repeat 2-fold cross validation

Macro-average Micro-average

Dataset Precision Recall F1 -measure Precision Recall F1 -measure

o
n
e

Task B (PN-T) 0.7500 0.6250 0.6250 0.7000 0.6000 0.6000

Task B (P50-T) 0.4750 0.5000 0.4444 0.4600 0.5000 0.4444

Task D (PN-T) 0.5463 0.7901 0.5481 0.7598 0.4706 0.3843

Task D (P50-T) 0.7063 0.8519 0.7500 0.7773 0.7647 0.7500

Task J (PN-T) 0.7222 0.8000 0.7444 0.6771 0.7500 0.6979

Task J (P50-T) 0.7222 0.8000 0.7444 0.6771 0.7500 0.6979

t
w
o

Task B 0.1625 0.3125 0.2054 0.1800 0.3000 0.2143

Task D 0.1796 0.4444 0.2243 0.0951 0.2353 0.1188

Task J 0.6167 0.7333 0.6489 0.5781 0.6875 0.6083

Table 4.9: PAN12 Lab (open class) The performances on the open class tasks of the

PAN12 Lab for submission 1 and submission 2.

C
h

a
p

te
r

5
Conclusion and Future Work

The goal of authorship attribution is attributing unknown text documents to the correct
author after analyzing source documents from all possible authors. The method proposed
in [24], Compression Distances to Prototypes (CDP), is designed for datasets with a
large number of documents and authors. We adapted CDP to Bootstrapped Authorship
Attribution in Compression Space (BAACS), where BAACS is designed for datasets
with a small number of documents and authors. First, we evaluated the performance of
character n-grams (with/without punctuation) in combination with several classifiers
and CDP on the dataset provided by the PAN Lab 2011. After that, we optimized the
parameters for BAACS using internal validation and submitted runs in the PAN Lab
2012.

The experiments in this paper on the dataset of the PAN Lab 2011 [28] show that
the use of character n-grams, with n ∈ {2, 3}, yields a good performance with both
Support Vector Machine (SVM) and Fisher’s Linear Classifier (FLC). For the dataset
of the PAN Lab 2011, character n-grams with punctuation should always be included
in the features, as these character n-grams with punctuation outperfomed character
n-grams without punctuation in combination with several classifiers. Remarkable is that
combining a SVM with character n-grams, almost always outperforms FLC, except for
a feature space based on trigrams with puntuation on the Large Dataset of the PAN
Lab 2011. The experiments in this paper show that the use of CDP is an elegant and
powerful method in attributing authorship, where it is significantly better than using
character n-grams in combination with several classifiers. For large texts by a small
number of authors, BAACS shows a good performance on the test documents provided

32 Chapter 5. Conclusion and Future Work

by the PAN Lab 2012 [29]. Although the method proposed in [24] needed adaption, the
performance is still stable and quite good for this relative simple approach. Even the
performance on the open class is quite stable, although an estimation of the distribution
of the test documents is needed to select a specific threshold, that is, the number of
texts by an unknown author versus the number of texts by known authors that will be
offered to the model.

Future Work

Since a lot of research has been done on character n-grams, that will not be the focus
of the future work. Research on compression distances to randomly chosen prototypes,
however, is a better focus, since not much research in this field has been done yet. Since
Support Vector Machines have shown its excellent performance in combination with
character n-grams and SVMs compete with Fisher’s Linear Classifier, an interesting
future work would be combining SVMs with compression distances to prototypes. These
prototypes are randomly chosen in this paper, but selecting prototypes could probably
be done in a smarter way. Given the results on the PAN Lab 2011, interesting could the
performance be with the distance measure NCD instead of CDM on PAN Lab 2012. As
Bootstrapped Authorship Attribution in Compression Space performs quite well on a
very small dataset, we are interested in the performance on slightly larger datasets, e.g.,
three or four documents per author. Since PPMd outperformed LZ76 in combination
with Fisher’s Linear Classifier we used the compression method PPMd in the dataset
of the PAN Lab 2012. Interesting would be if LZ76, according to our expectations,
indeed performs worse than PPMd in combination with the same classifier. We did not
adjust the number of prototypes, because it was hard to do so with only one training
document, but we are interested in doing so with slightly more samples in the dataset.
Moreover, instead of creating one prototype per document, creating several prototypes
per document could be interesting. Regarding the drawing of prototypes, it would be
interesting to draw prototypes with replacement, i.e., draw samples from the full source
document, since the information of that prototype to the other prototypes is now lost.
When there are more source documents available for training, it could be interesting to
draw samples by combining (parts of) these source documents.

References

[1] D. Benedetto, E. Caglioti, and V. Loreto, “Language Trees and Zipping,” Physical
Review Letters, vol. 88, p. 048702, 2002.

[2] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[3] V. Bobicev, “Text Classification Using Word-Based PPM Models,” The Computer
Science Journal of Moldova, vol. 14, no. 2, pp. 183–201, 2006.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Opti-
mal Margin Classifiers,” in Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory. ACM Press, 1992, pp. 144–152.

[5] R. Cilibrasi and P. M. B. Vit, “Clustering by Compression,” IEEE Transactions
on Information Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[6] J. Cleary and I. Witten, “Data compression using adaptive coding and partial string
matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp. 396–402,
1984.

[7] M. Corney, A. Anderson, G. Mohay, and O. De Vel, “Identifying the authors of
suspect e-mail,” 2001.

[8] R. M. Coyotl-Morales, L. Villaseñor Pineda, M. Montes-y Gómez, and P. Rosso, “Au-
thorship attribution using word sequences,” in Proceedings of the 11th Iberoamerican
conference on Progress in Pattern Recognition, Image Analysis and Applications, ser.
CIARP’06; LNCS 4225. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 844–853.

[9] N. Cristianini and J. Shawe-Taylor, An introduction to support Vector Machines: and
other kernel-based learning methods. New York, NY, USA: Cambridge University
Press, 2000.

[10] M. Demuth, K. Tearle, and H. Taylor, “An algorithm for automated authorship
attribution using neural networks,” Literary and Linguist Computing, vol. 23, no. 4,
pp. 425–442, 2008.

34 References

[11] R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D. Tax, and
S. Verzakov, “PR-Tools4.1, A Matlab Toolbox for Pattern Recognition,” 2007.
[Online]. Available: http://prtools.org/

[12] B. Efron, “Bootstrap methods: Another look at the Jack-knife,” Annals of Statistics,
vol. 7, no. 1, pp. 1–26, 1979.

[13] FERC, “Federal Energy Regulatory Commission.” [Online]. Available: http:
//www.ferc.gov/

[14] R. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals
of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[15] E. Frank, C. Chui, and I. H. Witten, “Text Categorization Using Compression
Models,” in Proceedings of the Conference on Data Compression, ser. DCC ’00.
Washington, DC, USA: IEEE Computer Society, 2000, p. 555.

[16] J. Houvardas and E. Stamatatos, “N-Gram Feature Selection for Authorship
Identification,” in Proceedings of the 12th International Conference on Articial
Intelligence: Methodology, Systems and Applications, ser. AIMSA’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 77–86.

[17] P. G. Howard, “The Design and Analysis of Efficient Lossless Data Compression
Systems,” Providence, RI, USA, Tech. Rep., 1993.

[18] P. Juola, “Authorship attribution,” Foundations and Trends in Information Re-
trieval, vol. 1, no. 3, pp. 233–334, 2006.

[19] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-free data
mining,” in Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’04. New York, NY, USA: ACM,
2004, pp. 206–215.

[20] V. Kešelj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author profiles for
Authorship Attribution,” in Proceedings of the Conference Pacific Association for
Computational Linguistics, ser. PACLING03. Dalhousie University, NS, CA, 2003,
pp. 255–264.

[21] D. V. Khmelev and W. J. Teahan, “A repetition based measure for verification
of text collections and for text categorization,” in Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion
retrieval, ser. SIGIR ’03. New York, NY, USA: ACM, 2003, pp. 104–110.

[22] B. Kjell, “Authorship Attribution of Text Samples using Neural Networks and
Bayesian Classifiers,” IEEE International Conference on Systems, Man and Cyber-
netics, pp. 1660–1664, 1994.

http://prtools.org/
http://www.ferc.gov/
http://www.ferc.gov/

References 35

[23] M. Koppel, J. Schler, and S. Argamon, “Computational methods in authorship attri-
bution,” Journal of the American Society for Information Science and Technology,
vol. 60, no. 1, pp. 9–26, Jan. 2009.

[24] M. Lambers and C. Veenman, “Forensic Authorship Attribution Using Compression
Distances to Prototypes,” in Proceedings of the Third International Workshop on
Computational Forensics. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 13–24.

[25] A. Lempel and J. Ziv, “On the Complexity of Finite Sequences,” IEEE Transactions
on Information Theory, vol. 22, no. 1, pp. 75–81, 1976.

[26] M. V. Mahoney, Data Compression Explained, 2010. [Online]. Available:
http://mattmahoney.net/dc/dce.html

[27] Y. Marton, N. Wu, and L. Hellerstein, “On compression-based text classification,”
In Proceedings of the European Conference on Information Retrieval, pp. 300–314,
2005.

[28] PAN11, “PAN 2011 Lab Uncovering Plagiarism, Authorship, and Social Software
Misuse,” 2011. [Online]. Available: http://www.webis.de/research/events/pan-11/

[29] PAN12, “PAN 2012 Lab Uncovering Plagiarism, Authorship, and Social Software
Misuse,” 2012. [Online]. Available: http://www.uni-weimar.de/medien/webis/
research/events/pan-12/pan12-web/

[30] F. Peng, D. Schuurmans, and S. Wang, “Language and task independent text
categorization with simple language models,” in Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 110–117.

[31] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[32] D. Sculley and C. E. Brodley, “Compression and Machine Learning: A New Perspec-
tive on Feature Space Vectors,” in Proceedings of the Data Compression Conference,
ser. DCC ’06. Washington, DC, USA: IEEE Computer Society, 2006, p. 332.

[33] C. Shannon, “A Mathematical Theory of Communication,” The Bell System Tech-
nical Journal, vol. 27, pp. 379–423 & 623–656, 1948.

[34] D. Shkarin, “All about data compression, image and video.” [Online]. Available:
http://www.compression.ru/ds

[35] ——, “PPM: One Step to Practicality,” in Proceedings of the Data Compression
Conference, ser. DCC ’02. Washington, DC, USA: IEEE Computer Society, 2002,
p. 202.

http://mattmahoney.net/dc/dce.html
http://www.webis.de/research/events/pan-11/
http://www.uni-weimar.de/medien/webis/research/events/pan-12/pan12-web/
http://www.uni-weimar.de/medien/webis/research/events/pan-12/pan12-web/
http://www.compression.ru/ds

36 References

[36] E. Stamatatos, “Ensemble-based Author Identification Using Character N-grams,”
in In Proceedings of the 3rd International Workshop on Textbased Information
Retrieval, 2006, pp. 41–46.

[37] ——, “A Survey of Modern Authorship Attribution Methods,” Journal of the
American Society for Information Science and Technology, vol. 60, no. 3, pp.
538–556, 2009.

[38] Z. Wei, D. Miao, J.-H. Chauchat, and C. Zhong, “Feature selection on Chinese text
classification using character n-grams,” in Proceedings of the 3rd international con-
ference on Rough sets and knowledge technology, ser. RSKT’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 500–507.

[39] Y. Yang, “An Evaluation of Statistical Approaches to Text Categorization,” Infor-
mation Retrieval, vol. 1, no. 1-2, pp. 69–90, 1999.

[40] A. Zečević, “N-gram based text classification according to authorship,” in RANLP
Student Research Workshop, ser. RANLP 2011, 2011, pp. 145–149.

[41] G. K. Zipf, Human Behaviour and the Principle of Least Effort: An Introduction
to Human Ecology. Cambridge, UK: Addison-Wesley Press, 1965.

	Introduction
	Problem definition
	Tools
	Definitions
	Evaluation metrics

	Related Work
	Methodology
	Character n-grams
	Compression
	Compression Distances to Prototypes
	Bootstrapped Authorship Attribution in Compression Space
	Classification algorithms

	Experiments
	Dataset 2011
	Dataset 2012

	Conclusion and Future Work
	References

