
Internal Report 2012-10 August 2012

Universiteit Leiden

Opleiding Informatica

The Art of Software Design

Creating an Educational Game

Teaching Software Design

Oswald de Bruin

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 3

2 Background 5

2.1 Psychological definition of fun 5
2.2 The Skinner Box . 6
2.3 Bloom’s taxonomy . 6
2.4 Software engineering curriculum 7
2.5 Similar projects . 8
2.6 Main philosophy . 9

3 Implementation 12

3.1 Game requirements . 12
3.2 Software . 13

3.2.1 Game mechanics . 13
3.2.2 Constructing scripts and puzzle editor 18
3.2.3 Puzzles . 20

3.3 Algorithms . 21
3.3.1 Coupling . 21
3.3.2 Cohesion . 22
3.3.3 Control flow . 26
3.3.4 Data flow . 29

4 Tests 31

4.1 Speak out loud . 31
4.2 Survey . 32

5 Results 33

5.1 Speak out loud . 33
5.2 Questionnaire . 36

1

6 Discussion 38

7 Conclusion and future work 41

A Software design 46

B Speak out loud condensed notes 51

B.1 Test 1: 21-jun-2012 . 51
B.2 Test 2: 22-jun-2012, 11:00 . 52
B.3 Test3: 22-jun-2012 17:56 . 53
B.4 Test 4: 29-jun-2012 15:05 . 54

C Survey questions 56

C.1 Pre-game survey . 56
C.2 Post-game survey . 58

2

Chapter 1

Introduction

In this paper we share our research in which we gamify the learning process
of software design. We have made a game which should teach software design
to first year computer science students or anyone who is generally interested.
We research if it is possible to teach such a difficult subject through a game,
we test if we eventually succeeded and we try to shed some light on solutions
to the problems we faced.
Although software design is an essential activity in software development, soft-
ware developers are not always eager to make designs[27]. Although software
design is beneficial to the development process, since design does not directly
produce code, it is difficult to justify spending large amounts of effort on design
[4]. On a small scale, software projects usually do not need a lot of planning. Be-
cause of this, software developers do not notice the problems of sloppy designs
until a later point. Better education in software design should be a solution to
a lot of software projects failing due to sloppy design.
However, teaching software design and with it the object oriented program
structure is not easy. One of the reasons is that students usually learn proce-
dural programming first and then learn object oriented programming, so they
have to un-learn a pattern they first thought was right. A solution would be
to start teaching the object oriented from the start [12, 13]. We want to take
it a level higher and start with the UML based software design.
A new problem arises when we want to teach software design or, more broadly,
any subject that might be considered boring or that goes against the previously
learned methods of the student: the willingness to learn. Traditional ways of
learning, reading text books and attending classes, do not always hold the
interest of the student and therefore do not communicate subject matter very
well. A way to hold interest, to make it ’fun’, is to gamify the subject [21].

3

The boring aspect is not the only part of disinterest for careful software design.
If a deadline is tight, one has to come up with a quick solution which is probably
not really thought through. One must also not forget the human factor. If
someone has an apathetic personality, one will not care to make the right
design. If someone is a know it all, one will not want to learn new things
in fear of been proven wrong. One may want to look smart and design a very
unnecessary complex system. These are all factors that influence a design, even
if the right knowledge is readily available [2].
The willingness is not only influenced by the student’s interest. Though it is
a major factor, lack of confidence for the subject and its seeming complexity
are also factors one needs to take into account, as we will explain later in this
paper. By making a game, we hope to overcome these human factors and keep
the player interested even if there is an initial unwillingness.
Gamifying a subject might hold the interest of the player, but we also need
to take into account that the player is a student. In the process of making
a subject ’fun’ one must not forget the learning aspect. We will show some
hurdles one encounters and show solutions one can use in the process of making
an educational game, which in our case will handle software design.
In Chapter 2 we will explain underlying theories, show a curriculum we wanted
to teach and compare similar projects. In Chapter 3 we will show the imple-
mentation of our game and algorithms we devised to evaluate student’s actions.
In Chapter 4 we discuss the tests we have done to test our theories with our
implementation. In Chapter 5 we show the results of our tests and we discuss
their meaning in Chapter 6. We conclude with Chapter 7. This paper is super-
vised by Michel Chaudron and Dave Stikkolorum. The research in this paper
has been presented in its preliminary stages on June 09 2012 at the Games And
Software design workshop, part of International Conference on Software Engi-
neering 2012 in Zurich. The research has also been submitted to the Models
Gamification Contest at MODELS 2012 in Innsbruck.

4

Chapter 2

Background

Making an educational game has some essential requirements we need to break
down. Since it is a game, it needs to be fun, but also engaging. For this we
delve into the psychological definition of fun in Section 2.1 and the concept
of the Skinner Box 2.2. To construct a method to teach, we refer to Bloom’s
taxonomy in Section 2.3. The game is educational, so it needs to teach a subject
in a curriculum and it needs to do so effectively. We devise a curriculum in
Section 2.4. To not repeat previous research, we look at similar projects in
Section 2.5 and to have an oak-point, we compiled a philosophy in Section 2.6
to check our game to.

2.1 Psychological definition of fun

For our definition of ’fun’ we consider the field of (neuro) psychology. The
experience of what can be considered fun lies in the level of specific neuro-
transmitters in the nerve system. A nerve in the human nerve system has two
ways of communicating: a fast, short lived way through pulses and a slow, but
more sustaining way by emitting specific substances called neurotransmitters.
The neurotransmitters bring a person in a certain state that s/he experiences
as fun. This counts for any emotion for that matter. Because neurotransmitters
are a substance, the experience of fun can last until after the actions that led
to it [10, 17, 20].
This definition alone does not give enough information on how to achieve ’fun’
in a game. However, it does help us to understand ’fun’ and the structure in
which it is experienced, a rush with lasting effects. This gives us a means of
structuring our game. For our game this means that when the player has done
something s/he finds fun, we should give him/her the opportunity to ’wallow’

5

in one’s fun or to experience the situation that has led to it again. However,
we need more theory to structure effectively.

2.2 The Skinner Box

Officially, the Skinner box is called the ’operand conditioning chamber’, but
is by most named after its creator, Burrhus Frederic Skinner. In the Skinner
box are a button, a speaker, a device to dispense food and a floor that can
give an electric shock. In the box, an animal is taught by using positive and
negative stimuli to push the lever if and only if the speaker makes a sound. If
the lever is pushed at the right time, the animal receives food, if it is pushed
at the wrong time, the animal gets shocked. By rewarding preferred behaviour
and punishing unpreferred behaviour the animal eventually only shows the
preferred behaviour, which means it is pushing the lever at the right time [3].
The Skinner box gives us a means of keeping the player engaged, or otherwise
on playing the game. This structure is seen, among others, in video games and
is considered very effective [6]. However, the Skinner box does not necessarily
mean learning, but is more about teaching a subject a trick through something
that engages him/her. It gives no guarantee that topics to be learned will stick
to the subject’s memory. The action itself does not engage the subject, rather
the reward does. Even if the topic sticks, the player might see through the
reward system and abandon the game. We have to use the effect of the Skinner
box sparingly, probably only to spark initial engagement.

2.3 Bloom’s taxonomy

To structure the learning aspect of our game, we look at Bloom’s taxonomy.
It shows a way of dividing educational objectives in 3 domains: The cognitive,
the affective and psycho-motor domain [5]. We can use these domains to define
the learning objectives of the game and its game play.
The cognitive domain addresses the knowledge skills that are needed for learn-
ing. At the first level a person should only be able to recall facts of studied
materials.
In the cognitive domain a person obtains information about a problem. S/he
comes to understand the problem and can state the problem and possibly its
solution in his/her own words. With this understanding the person should be
able to apply the knowledge in new situations. The person should be able

6

to analyze components in a problem and to synthesize a new structure from
previous knowledge that is applicable to new situations[1].
The affective domain focuses on the feelings of a person. First, a problem
must grasp the person’s attention and s/he must be willing to respond to it.
When involved in the problem, the person must be able to value aspects of
the problem and organize them by priority. At the highest level the person
should be able to predict the behaviour of a problem and should be confident
on solving it [15].
The psycho-motor domain focuses on a person’s development of skills. A person
should be willing in solving the problems. They can anticipate a problem and
solve it with more ease than before. At the lowest level someone should be
able to imitate a solution and adapt routines. This is also known as guided
response. A person gradually becomes able to solve more complex problems
[26].
There are multiple revisions on Bloom’s taxonomy, but we want to focus on
this first interpretation, because it defines elements of learning and gives re-
quirements to make an environment in which the elements are possible. Other
revisions are simplified where this version defines different sources for a person
to learn from.

2.4 Software engineering curriculum

For our game we focused our curriculum on the subjects we describe in this
section. We want to make a distinction between concepts and patterns. Where
concepts are descriptive of the quality of the model, patterns are good ways
to create a model.

coupling Coupling in software design concerns the connectedness between
classes in a class diagram. The lower the coupling, the better the design
is considered [23, 7, 16].

cohesion The term ’cohesion’ in software design concerns the way ’proper-
ties’ in a certain class share a common aspect. The more similarities
are shared, the higher cohesion is considered. High cohesion is preferred
[23, 7, 16].

control flow For control flow we consider the way methods or functions call
eachother with a model. If function A calls function B, which in turn
calls C, then there is a control flow from A to C. [23]

7

data flow We consider data flow to be the path in which data travels when it
is read or written by an operation. Data flow is derived from the control
flow, since control flow largely inclines I/O operations. [23]

modularity We consider modularity to be the ease with which a model can be
changed [23, 7, 16]. This is a too vague and complicated concept to teach
head-on, so we want to teach it by teaching how to construct modular
patterns with low coupling and high cohesion.

With these concepts we explain the following patterns we want to teach in our
game:

interfaces In order to keep coupling between packages low and cohesion in a
model high, one can choose to let one class manage a group of classes. The
class that manages the group or package is called an ’interface’ [25, 8, 24].

agents When data needs to be read from one place and written to another, it
is not wise to put the writing to or reading from a class in the other class.
This would lower cohesion. In order to solve this problem, a separate class
should be made that reads the data from one class and writes it to the
other. This is called an agent.[25, 8, 24]

information hiding When handling classified data, a user should only be
able to see the information one is entitled to. If all data is structured
to be stored together, regardless of the entitlement of the user, the right
data needs to be extracted, so the wrong data is hidden from the user.
This concept is called ’information hiding’ [25, 8, 24].

We want to focus mostly on teaching the right patterns, instead of showing
a bad pattern and telling what is wrong with it. We will discuss this more
broadly in Chapter 3. There are ofcourse more patterns and concepts than
stated above. We kept our curriculum at this list, because most of the other
subjects can be derived from coupling and cohesion and can be explained with
control and data flow.

2.5 Similar projects

To look at similar projects, we first want to establish how a game is usually
structured. A majority of games are designed with the player controlling an
avatar who has to reach a certain goal, usually a place where the avatar has to

8

hit a button or something similar [28, 19], think of ’Super Mario’ (Nintendo,
1985) or ’Rogue’ (Michael Toy and Glenn Wichman, 1980). The other majority
are puzzle games, which can be mostly described as an environment which is
directly changed by the player [19], think of one of the many card game or
mah-jong implementations. Our game belongs in the latter category, although
we do not just implement cards.
Ofcourse, we are not the first to make an educational game. Games like ’Ore-
gon Trail’ (Minnesota Educational Computer Consortium, 1975) and ’Gazil-
lionaire’ (Lavamind, 1995-2012) focus on teaching through game-play. In this
category we also have games that are not meant to be educational, but are
based on a real environment, which makes the player interested in its subject.
An example of this is ’Age of Empires’ (Microsoft, 1997). Other games, like
’Number munchers’ (Minnesota Educational Computer Consortium, 1988) and
the ’Magic School bus’ series (KnowWonder, 1997-2001), focus on educational
content livened up by adding a game to it. Our game tends to fall in this cat-
egory. Where we stand out from other educational games is that we focus on
a more mature audience.
One can also gamify an already existing environment. One that has proven
great for teaching is BlueJ. It focuses on teaching object oriented java pro-
gramming [11, 14]. Although it is a good tool that makes the student produce
usable code, we want to simplify our environment to focus more on concepts
and patterns. Actual code might distract from the overall picture we want to
show the player.

2.6 Main philosophy

As other research shows [18, 22], a person is more engaged when he or she
has a freedom of choice. Combining this with what we learned about human
behaviour on fun, reward and learning, we put forth our philosophy, which con-
sist of 3 elements: Tolerance, variation and deviation. These elements need to
be balanced in order for the game to be effectively fun, engaging and teaching.
Let us break down the what and why of each element in relation to educational
games:

Tolerance This element concerns the principle of the Skinner box and the
cognitive domain of Bloom’s taxonomy and considers the width of error
ranges. According to the Skinner box principle, a subject starts to show
preferred behaviour when the right behaviour is rewarded and the wrong
behaviour is punished. To combine this with the cognitive domain of

9

Bloom’s taxonomy, we reward the player when s/he seems to have learned
something from the curriculum and punish him/her when s/he does not.

Problems arise when the player tries to understand a subject, but can’t
grasp the right notion. In this situation the player gets constantly pun-
ished, because his/her actions are wrong. If the punishment is too consis-
tent, the player starts to associate the punishment with playing the game
instead of the wrong actions. Keep in mind that a player does not have
to play the game. Obligation goes against the fun principle of a game.
Too harsh punishment will make the player abandon the game and the
remainder of the curriculum will not be taught to the player.

Introducing tolerance for wrong actions should keep the player playing
when s/he tries to learn a difficult subject, keeping him/her from aban-
doning the game from frustration. Being tolerant solves the problem, but
being fully tolerant gives rise to a new problem: the player skims through
the curriculum without learning. The reward aspect of the Skinner box
principle keeps the player engaged in playing, but the attention of the
player is directed at the reward, not the curriculum. This diminishes the
cognitive domain of Bloom’s taxonomy.

In order to keep the player playing and learning, there should be not too
much punishment and not too much reward. These concepts are barely
quantifiable, let alone the balance between them. A rule of thumb might
be to not make the rewards and punishment instantly follow up the
actions, but the right balance should be found by play-testing the game.

Variation This element concerns all 3 domains in Bloom’s taxonomy and the
neuro psychological definition of ’fun’. To keep the player engaged, the
actions and concepts to be learned need to be varied. When looking at
Bloom’s taxonomy, the player should learn, like and improve a skill. For
a skill to be properly taught, we need to spend a lot of focus on the
psycho-motor domain to let the player practice. A player needs to dwell
on a certain subject to get it to be memorized.

Concerning the neuropsychological definition of fun, the emotion is expe-
rienced with a peak that diminishes over time. If too much time is spent
in the psycho-motor domain, if actions are to often repeated, the emo-
tional line diminishes below a certain threshold to which the player is no
longer engaged. This is devastating to the affective domain of Bloom’s
taxonomy. The player no longer pays attention to his/her actions. The
elements in the game no longer have a value to the player.

10

To keep the player paying attention we need to balance introduction
and repetition of actions, effectively. Too little variation gets the player
bored, too much variation gets the player confused on the subjects we
are trying to teach. Again, with this element of our philosophy we need
to find the balance with play-testing using the rule of thumb that one
should not design only variation or dwell on just one subject.

Deviation This concept entails variation in focus on problems and is a small
extension on the previous 2 points of our philosophy. If game progression
is linearly structured and a player gets stuck on a problem, engagement
is lowered, because the punishment is too frequent. The player then even-
tually stops playing the game, because playing it gives negative associa-
tions. In this situation the player should have the option to try a different
approach or to let him/her solve a different problem entirely. This way
the player can reflect on his/her previous actions and compare them to
the new situation. Too narrow a focus lowers engagement on the difficult
parts. Too wide a focus lets the player evade important subjects s/he
should learn and devalues the perceived importance of a taught ability.
Again, with play-testing the right balance should be found.

This philosophy was our oak-point to the requirements (Section 3.1), game
mechanics (Section 3.2.1) and testing (Chapter 4) of our game.

11

Chapter 3

Implementation

In this section we show the implementation of our educational game. In Section
3.1 we set apart the requirements we’ve set for the game. In Section 3.2 we
describe the final software product we created. In Section 3.3 we show and
explain algorithms we devised to evaluate subjects of the curriculum described
in Section 2.4.

3.1 Game requirements

To effectively teach our curriculum we compiled the following functional re-
quirements for our game:

1. The player must be able to build and edit a UML-like model.

(a) The models and problems will be presented in the form of a puzzle.

(b) The player’s resulting model in a puzzle will be evaluated on cou-
pling, cohesion, control flow and data flow

2. The player progresses through different puzzles in a directed acyclic
graph with multiple entry points (deviation).

(a) The player can progress to a puzzle by completing the previous
puzzle in the graph.

(b) A puzzle can be completed by meeting previously stated require-
ments.

(c) Besides the requirements to meet, the player will receive a score
based on coupling, cohesion and overall structure.

12

(d) Player’s progress will be saved.

3. The game must have possibilities to define coupling, cohesion, control
flow and data flow of individual elements in the model.

(a) These definitions should not be editable by the player.

(b) A teacher must be able to make his/her own puzzle to fit to their
curriculum, using the same tools as us.

In addition we compiled the following non-functional requirements:

• There should be more than one solution to most puzzles (tolerance).

• Instructions to puzzles must be clear.

3.2 Software

We constructed our game in Gamemaker 8.1 Standard. We made this choice so
we could rapidly make fully functional prototypes. Gamemaker has a readily
available engine with graphics, mouse events, scripting and other features that
could be used in games. This way we did not have to worry about the engine,
if we wanted to add small features, like a simple sound.

3.2.1 Game mechanics

For the final software we designed 3 screens: the starting screen, the DAG
(Directed Acyclic Graph) screen and the model screen. The starting screen
(Figure 3.1) shows a classroom with tables which gives the player to log in
to an account that saves his/her progress. Each table depicts an account. The
DAG (Figure 3.2)is shown after a player logs in. In this screen the player can
chose an available puzzle to play. Note that not all puzzles are available from
the start, as described in Section 3.1.
The model screen (Figure 3.3)is the main screen of focus in our game. This
is where the player is confronted with a problem s/he needs to solve. When
entering the model screen from the DAG screen the player first gets a pop-up
message stating the problem and partly explaining how it should be solved.
When the player OK’s the pop-up s/he has access to the playfield.
Figure 3.3 shows a screenshot of our final interface, with on the left from top to
bottom buttons for creating classes, attributes, methods, associations, deleting
parts, restarting the puzzle and exiting the puzzle field. In the middle is the

13

Figure 3.1: Screenshot of the starting screen. Individual graphics by Famke
Bergmans

Figure 3.2: Screenshot of the DAG screen. Individual graphics by Famke
Bergmans

14

Figure 3.3: Screenshot of our final interface. Also screen with example puzzle
’classes.’ Individual graphics by Famke Bergmans

playfield with a partial solved puzzle with a couple of unassigned methods and
attributes. Left below the playfield are two buttons to visualize control and
data flow. On the bottom right is the mascot who can give hints and repeat
the instructions and a button to confirm the solution the player created. This
confirm button has a number depicting the score and an image of a light bulb
on it. The light bulb fills up as more of the puzzle is solved.

data structures

The data structures are visualized in the meta-model in Figure 3.4. The player
can use packages, classes, methods, attributes and associations. All can be
edited by the player, except the packages. Packages are bounded areas in the
field in which classes can be dropped. Packages can hold more than one class
and classes can only be assigned to one package. Methods, attributes and
associations can also be dropped in packages, but there is no functionality
assigned to this event, unless they are assigned to a class.
Classes can hold more than one method, attribute and/or association. An

15

Figure 3.4: Meta model of the game’s elements.

16

Figure 3.5: A zoom in on a model showing control flow (blue arrows) and data
flow (coloured dotted lines). Individual graphics by Famke Bergmans

attribute can be assigned to one class at a time and depicts a variable within
its class. Methods are assigned like attributes, with the difference that they
depict functionality. With this functionality methods can construct control
flow and data flow between classes. Methods hold more than one argument
which has a name that can coincide with one or more attributes.
An association is constructed between 2 classes to make control flow and data
flow possible between these classes. For control flow and data flow within a
class no association is needed within the class. For implementation purposes
the association consists of 2 objects, ”association points”, which individually
have to be assigned to one class and one class only. Both points have to be
assigned to a different class.
Functionality is defined by ’types’ and ’type dependencies’, which are invisible
to the player, but visible to the creator of a puzzle. A type is a data structure
holding a type name, cohesion keywords and an argument-integer. The name
is used to assign types to packages, classes, methods and/or attributes. The
cohesion keywords are used for calculating cohesion, explained in Section 3.3.
The argument-integer is only functional for methods and defines how many
arguments a method can have.
A type dependency can be assigned to a type and holds a type name, a
”attribute-boolean” depicting dependency on a method (0) or an attribute
(1), a ”neighbour-boolean” depicting dependency on an object in its own class

17

(0) or a neighbouring class(1) and 4 integers (a0,a1,b0 and b1) depicting the
arguments compatibility range (explained in Section 3.3). The type name de-
picts the type to which the dependency is assigned. The dependency also holds
a functionality-integer, which denotes if a method is reading (0), writing (1) or
just touching without initiating a data flow (2). Visualization of control and
data flow is shown in Figure 3.5.

3.2.2 Constructing scripts and puzzle editor

The construction, its visible elements and types, and evaluation of a puzzle
is done in scripts in a subdirectory of the game directory. These scripts hold
scripting commands from Gamemaker that are directly executed when loaded.
The construction and evaluation are divided over two scripts: the build script
and the evaluate script. The build script is run once at startup of a puzzle. The
commands in the build script construct all elements described in the previous
section.
The evaluate script is run at every step when playing, which is an average 30
times per second. This script holds a different set of commands that check if
the puzzle corresponds to a preferred structure and it calculates a score for the
model’s coupling and cohesion. The commands in the evaluate script make use
of the algorithms depicted in Section 3.3.
To make scripting easier, we included a ’level skeleton editor’. This becomes
available when a puzzle is set to ’debug mode’. This can be done by including
a debug command in the construction script. When a puzzle is in debug mode,
the user has the possibility to generate construction code that constructs the
puzzle as it is rendered at that moment on the playfield. We created a special
button for this that becomes visible during debug mode. With this button,
the creator can easily create an initial structure for a puzzle. We also give the
creator the possibility to construct packages, which is not possible for a player.
Also for this action we included a button that becomes visible in debug mode.
To make debugging even more easier, we included a snapshot function and
debug info at the bottom of the screen, see Figure 3.6.
When the initial structure for a puzzle is made, the creator can add function-
ality and validation in the build and evaluation scripts. For a full list of the
commands used in the scripts, please refer to the documentation included with
the game, available at aosd.host22.com.

18

Figure 3.6: The class puzzle in debug mode with the package button top-left,
the skeleton button near the validate button and debug information at the
bottom. Individual graphics by Famke Bergmans

Figure 3.7: Screenshot of the data flow puzzle with data flow view enabled.

19

3.2.3 Puzzles

Eventually we created 14 puzzles for our game, these are:

Classes Introduction to classes and the mechanics of the game. Example in
Figure 3.3

Associations Introduction to associations

Methods Introduction to methods and their functionality

Attributes Introduction to attributes and their role.

Packages A simple puzzle dragging classes to packages

Coupling A simple puzzle where the player must lower the coupling in a
puzzle

Cohesion A simple puzzle in which the player drags methods and attributes
to classes and has to get an as high as possible cohesion score.

Control flow A puzzle with a tree-like structure in which the player has to
change the control flow in a certain way.

Data flow A puzzle in which the player needs to drop an attribute in the
right class to let its data flow to the right class. Example in Figure 3.7.

Package cohesion Same as the cohesion puzzle, but now we take the cohesion
within packages into account.

Coupling vs Cohesion A puzzle where the player needs to put 4 methods in
as many or few classes s/he likes to optimize the coupling and cohesion.

Interfaces A puzzle where the player has to maintain data flow between 2
packages while only using 1 association between them. Example in Figure
3.8.

Agents A puzzle where the player has to construct an agent between 3 classes
to make a data flow.

Information hiding A puzzle in which the player needs to extract relevant
information from a shielded data flow, without a certain class having
access to the shielded data flow.

20

Figure 3.8: Screenshot of the interfaces puzzle with data flow view enabled.

3.3 Algorithms

In this section we explain the algorithms we devised to measure coupling and
cohesion and to construct control and data flow. These algorithms were used to
check the structure of the model that was constructed by the player. With each
of these algorithms, take in mind that the variable ’objects’ is a global variable
containing an array with all the Gamemaker objects on screen. Although using
global variables is not a sign of good software design practice, we had to stick
to the implementation of the Gamemaker tool.

3.3.1 Coupling

The algorithms for coupling returns an integer higher or equal to 0. The al-
gorithm is very simple, since it only counts the associations present in the
model. In the implementation of the game the associations were constructed
out of 2 points which both had its own class and the other point referenced as
a ’buddy’.
The coupling between classes is obtained by counting all association points and

21

dividing that number by 2, see Algorithm 1. Since the game mechanics (Section
3.2) make sure no association connects a class to itself and no association
between the same two classes can occur twice, coupling is depicted by this
value and no extra checks need to be made.

Algorithm 1 eval coupling()

1: coupling = 0
2: for i= 0→ length(objects) do
3: if objectsi.obj type = association point then
4: coupling ← coupling +1
5: end if

6: end for

7: return coupling/2

The algorithm for evaluating coupling between packages is a bit more complex.
Since classes in packages can have associations to classes within the same
package, the algorithm needs a bit of revision.
The package cohesion algorithm returns a value of the same kind, an integer
higher or equal to 0. For every package the algorithm checks all association
points of all its classes. If one such association point has a buddy who’s class
is not in the same package, the coupling value is raised by one, see Algorithm
2.
With the implementation of this algorithm, an association going from a class
in one package to a class in another package gives a coupling value of 2. This
is because both association points have a buddy (the other) in a different
package. If an association goes from a class in a package to a class that is not
in a package, the association will give a value of 1.

3.3.2 Cohesion

Our cohesion evaluation is an algorithm that can be run on class-level and
package level. The cohesion algorithm returns a real value between 0 and 1,
depicting the cohesion over the whole model.
Our algorithms for cohesion makes use of the keywords associated with each
type, which are associated to an object in the model, being a package, class,
attribute or method. The types of each object are stored in a list, as seen
in Algorithm 3 and 4, and on this list the cohesion calculation is performed,
Algorithm 5. Algorithm 3 and 4 both calculate the average cohesion on a class
and package level, respectively.

22

Algorithm 2 eval package coupling()

1: package coupling = 0
2: for i= 0→ length(objects) do
3: if objectsi.obj type = class then

4: for j= 0→ length(objectsi.associations) do
5: if objectsi.package 6= objectsi.associationsj.buddy.class.package

then

6: package coupling ← package coupling +1
7: end if

8: end for

9: end if

10: end for

11: return package coupling

The calc cohesion algorithm makes use of a ”grade”, which is directly influ-
enced by the amount of comparisons done in the given typelist and the amount
of keywords per type (line 10). This grade has a real value between 0 and 1.
If the keyword of one type is present in the keyword of the other, cohesion is
raised by the grade. This check is done both ways (line 12 to 21 in Algorithm
5).
The more keywords in two types, the lower the grade will be. This way objects
with more keywords will have a lower impact on the cohesion per keyword. The
amount of comparisons also influences the grade, but the comparisons-variable
is the same during the whole execution, so the eventual cohesion returned by
the calc cohesion algorithm is at maximum exactly 1.
We are aware of the LCOM method of calculating cohesion [9], but we do
not fully agree with it. Where LCOM purely takes the amount of objects and
their functionality into account, we wanted a metric that took the intent of
objects into account. Ours is a more feeling-based approach whose outcome
can be influenced by changing some keywords when we want a puzzle to have
a slightly different outcome. LCOM is a very concrete metric and if, by chance,
it has an outcome against the point we want to teach with a puzzle, we need
to change the whole puzzle. The choice for our metric was made mostly for
modularity purposes, benefiting game development.

23

Algorithm 3 eval cohesion()

1: cohesion ← 0
2: amount ← 0
3: for i= 0→ length(objects) do
4: if objectsi.obj type = class then

5: amount ← amount +1
6: temp typelist ← {objectsi.type name}
7: for j = 0→ objectsi.attribute amount do
8: temp typelist ← temp typelist ∪{ objectsi.attributesj.type name }
9: end for

10: for j = 0→ length(objectsi.methods) do
11: temp typelist ← temp typelist ∪{ objectsi.methodsj.type name }
12: end for

13: cohesion ← cohesion + calc cohesion(temp typelist)
14: end if

15: end for

16: return cohesion / amount

Algorithm 4 eval package cohesion()

1: cohesion ← 0
2: amount ← 0
3: for i= 0→ length(objects) do
4: if objectsi.obj type = package then

5: amount ← amount +1
6: temp typelist ← {objecti.type name}
7: for j = 0→ length(objectsi.classes) do
8: for k = 0→ length(objecti.classesj.attributes) do
9: temp typelist ← temp typelist ∪{

objectsi.classesj.attributesk.type name }
10: end for

11: for k = 0→ objecti.classj.method amount do
12: temp typelist ← temp typelist ∪{

objecti.classesj.methodsk.type name }
13: end for

14: end for

15: cohesion ← cohesion + calc cohesion(temp typelist)
16: end if

17: end for

18: return cohesion / amount

24

Algorithm 5 calc cohesion(temp typelist)

1: N ← length(temp typelist)
2: checks ← 1/2N(N−1)
3: cohesion ← 0
4: for i= 0→ length(temp typelist)−1 do

5: for j=i+1→ length(temp typelist) do
6: obj keywords i ← get type keywords(temp typelisti)
7: obj keywords j ← get type keywords(temp typelistj)
8: grade← (length(obj keywords i) + length(obj keywords j))× checks
9: if grade 6= 0 then

10: grade ← 1/ grade
11: end if

12: for k = 0→ length(obj keywords i) do
13: if is in set(obj keywords ik,obj keywords j) then
14: cohesion ← cohesion + grade
15: end if

16: end for

17: for k = 0→ length(obj keywords j) do
18: if is in set(obj keywords jk,obj keywords i) then
19: cohesion ← cohesion + grade
20: end if

21: end for

22: end for

23: end for

24: return cohesion

25

3.3.3 Control flow

The control flow algorithm returns a directed graph, which is implemented
as a set filled with sets containing a starting point, an ending point and a
functionality-variable in that order. The starting and ending point are both a
method or an attribute in the model. The functionality-variable is defined by
the type-dependency described above and depicts if the control flow holds a
reading (0), writing (1) or deleting (2) action. The algorithm is split into two
algorithms: the higher level eval control flow, which searches for methods and
their dependencies, and the lower level search class, which searches a given
class and edits the control flow graph.
Eval control flow searches all classes on the playfield for functional methods.
Loose methods on the field are ignored, since a method needs assignment to a
class to be considered functional. When it has found a method, it searches the
type-dependencies list for that method’s type. When a dependency is found,
the algorithm only checks the neighbour variable of that dependency. If the
dependency is needing an object in the current class, the search class algorithm
is run on the current class. If the dependency is needing an object from a
neighbouring class, all associations are searched for connected classes and the
search class algorithm is run on those.
If the dependency needs a method, search class searches all methods of a class,
if it needs an attribute, it searches all attributes. In order for a method to
be a needed dependency to the control flow, its arguments need to coincide
with the requesting method. Which arguments coincide is defined by a the
range depicted by a0, a1, b0 and b1 of the type-dependency. The amount of
arguments that need to coincide is defined by the shortest range (threshold on
line 5). For example: If a0= 0, a1= 3, b0= 0 and b1= 2 then only 2 argument
from the first 3 arguments of the source needs to have the same name as
the first 2 arguments of the destination. The arguments do not have to be in
the same order. If the dependency needs an attribute, only the name of the
attribute needs to coincide with the name of an argument in the source in the
range a0 → a1.
If the destination is found, the branch from source to destination is added to the
control flow graph by concatenating the existing control flow set of sets with a
set containing one set with the source, destination, and the functionality of the
dependency. After this, the algorithm starts looking for another destination in
the class, until there are no more objects left to examine in the class.

26

Algorithm 6 eval control flow()

1: Cflow ← ∅
2: for i= 0→ length(objects) do
3: if objectsi.type = class then

4: for j= 0→ length(objectsi.methods) do
5: for k= 0→ length(type dependencies) do
6: if objectsi.methodsj.type name = type dependenciesk.type name

then

7: if type dependenciesk.neighbour = 0 then

8: search class(Cflow, objectsi.methodsj,type dependenciesk,
objectsi)

9: else

10: for m = 0→ length(objectsi.associations) do
11: search class(Cflow, objectsi.methodsj,

type dependenciesk, objectsi.associationsm.buddy.class)
12: end for

13: end if

14: end if

15: end for

16: end for

17: end if

18: end for

19: return Cflow

27

Algorithm 7 search class(Cflow, method, dependency, class)

1: if dependency.attribute = 0 then

2: for i= 0→ length(class.methods) do
3: if class.methodsi 6= method and class.methodsi.typename = depen-

dency.depending typename then

4: threshold =min(dependency.a1−dependency.a0,
dependency.b1−dependency.b0)

5: count = 0
6: for j=dependency.a0→ dependency.a1 do

7: for k=dependency.b0 → dependency.b1 do

8: if method.argumentsj = class.methodsi.argumentsk then

9: count ← count +1
10: break
11: end if

12: end for

13: end for

14: if count ≥ threshold then

15: Cflow← Cflow ∪{{method,class.methodi,dependency.functionality}}
16: end if

17: end if

18: end for

19: else

20: for i= 0→ length(class.attributes) do
21: for j= 0→ length(method.arguments) do
22: if method.argumentsj = class.attributesi.name then

23: Cflow ← Cflow ∪{method, class.attributesi,
dependency.functionality}

24: end if

25: end for

26: end for

27: end if

28: return Cflow

28

3.3.4 Data flow

The eval data flow algorithm (Algorithm 8) constructs a directed graph from
the control flow graph, that depicts the data flow. It uses a slightly different
representation than the control flow algorithm. Instead of branches, the set of
sets returned by the data flow algorithm depict ’stars’ with 1 source, depicted
by the first element of the set within the set, and an unlimited amount of
destinations, depicted by every other element after the first in the set within
the set. By using this structure, the algorithm became less complex than when
using separate branches.
The algorithm starts with building a set containing a set with the object from
which we want to examine the data flow. This data flow has a name, being an
attribute’s name or a method’s argument’s name. From this object, it checks
the control flow set of sets if it is a source and with writing functionality
(line 6) or if it is a destination which is read by another object (line 9). If so,
the combination of the current object and the other object is handled by the
add to dflow algorithm, see Algorithm 9.
In the add to dflow algorithm the destination object is being checked for hav-
ing the requested data of the data flow. If the data name is present in the
destination, the algorithm can begin editing the data flow set of sets. Note
that it is not checked if the data name actually is a part of the dependency
constructing the control flow. This check was left out, because (1) if there is
control flow from A to B and they share the same data, one can assume the
data flows next to that control line and (2) performing that check would make
the algorithm much more complex.
When the destination is considered part of the data flow, the algorithm per-
forms 3 operations on the set of sets for data flow. First it adds the destination
object to the current set, then it checks if the destination is a first element in
one of the sets within the set. If so, a new set within the set is made with that
destination as root.
When the add to dflow algorithm has run, the eval data flow algorithm keeps
checking the whole control flow set until all of the branches have been examined
as a possible data flow branch. After every iteration, if there were new data
flow destinations, the add to dflow algorithm has added new sets containing
one element to the set. These new sets are then also checked for their possible
data flow. This repeats until no more new unchecked sets remain within the
set.

29

Algorithm 8 eval data flow(object, data name, Cflow)

1: Dflow ← {{object}}
2: i ← 0
3: while i < length(Dflow) do
4: own ← Dflowi,0

5: for j = 0→ length(Cflow) do
6: if Cflowj,2 = 0 and own = Cflowj,0 then

7: add to dflow(object, data name, i, j, 0, Dflow, Cflow)
8: end if

9: if Cflowj,2 = 1 and own = Cflowj,1 then

10: add to dflow(object, data name, i, j, 1, Dflow, Cflow)
11: end if

12: end for

13: end while

Algorithm 9 add to dflow(object, data name, i, j, x ,Dflow, Cflow)

1: destination ← Cflowjx

2: found ← false
3: if destination.obj type = method then

4: if has argument(destination, data name) then
5: found ← true
6: end if

7: else

8: if destination.name = data name then

9: found ← true
10: end if

11: end if

12: if found= true then

13: Dflowi ← Dflowi ∪ {destination}
14: if is root(destination) = false then

15: Dflow ← Dflow ∪{{destination}}
16: end if

17: end if

18: return Dflow

30

Chapter 4

Tests

To see if our implementation met our requirements, we made two tests. The
first is a speak out loud test in which we let people of our target audience
play the game and we focus mostly on bug fixes. The second is a survey to a
broader audience in which we mostly focus on the enjoyment and the teaching
of the game.

4.1 Speak out loud

The speak out loud test was done mostly to prepare the game for the survey.
We focused on the accessibility of the interface and on finding bugs. We wanted
to know if the instructions were read, if all the buttons in the interface were
clear and people understood the goal of every puzzle. In between tests we did
some quick fixes on the game if they were crucial for gameplay and possible to
fix in a couple of minutes.
The player was to play the game without any help from us, the spectator.
Nothing was exactly timed or recorded, since the use of a stopwatch or video-
camera would make the player nervous and impair enjoyment of the game.
Whilst playing, the player was to narrate his/her own actions, so the spectator
could document crucial actions and bugs in the game. The player could ask
questions to the spectator, but unless it was about a bug in the game, they
were met with ”I’m not allowed to help you with that.” Afterwards the players
were asked about their experience and what they thought about some of the
design patterns and elements.

31

4.2 Survey

After the speak out loud tests we ’polished’ the game and sent it out with a
survey. The survey consisted of 2 questionnaires and playing the game. First
the player was asked to take the ’pre-game’ questionnaire in which we tried
to verify the player’s previous knowledge. Then the player was asked to play
the game for around an hour and after that we asked the player to take the
’post-game’ questionnaire to verify if his/her knowledge increased after playing
the game.
The questionnaires were made with Google docs and the game plus the links to
the questionnaires were hosted on our site, http://aosd.host22.com. We let the
last 4 speak out loud subjects take the subject to test its deployment. After
that we added some questions we deemed necessary and spread the survey.
To test educated players, we spread the survey under first year computer sci-
ences students of the LIACS. To test uninformed players, we spread the survey
on sub-domains of the ’internet metropolis’ www.reddit.com and the gaming
website www.escapistmagazine.com.

32

Chapter 5

Results

In this section we show the results of the previously described tests.

5.1 Speak out loud

We performed the speak out loud test on 6 people divided over 4 sessions
(2 individuals and 2 pairs), with knowledge of software design ranging from
nothing to fifth year computer sciences students. There was not necessarily
a difference in time for completing the game if the player knew more about
software design. In one of the paired sessions the person with more knowledge
finished the game later and was eventually helped by the less knowing person.
However, comparing our individual session with a computer sciences student
and a session with an art-history student, the art-history student did not finish
the game after 90 minutes of play, while the computer sciences student finished
it in 30 minutes.
The tree structure of the progress of puzzles gave players the possibility to
deviate from difficult puzzles, but not all of them used this possibility. If a
puzzle was too hard for a player, some abandoned the puzzle to try another
one, but others were stubborn and did not quit until the puzzle was solved.
Usually the latter kind of player took longer to finish the game.
This does not mean the longer playing group understood less of the subject.
Notably, people who understood the subject better took longer to play the
game, but also had more trouble solving puzzles. We will discuss this problem
later in Section 6.
The instructions at the beginning of the puzzles were often, but not always,
skipped. The longer the instructions, the more likely they would be skipped.
Usually when a instruction was longer than 3 paragraphs, it was not read.

33

This does not mean that short instructions did better. At the first tests the
cohesion puzzle only had the instruction ”put the methods in the right classes.”
This was easy to follow and was one of the fastest solved puzzles. However,
the players got stuck at the follow up puzzle, since they did not learn what
cohesion was.
The cohesion puzzle gave us more points for consideration. It was easily solv-
able and it had a mechanic in it that showed what cohesion could be, but it
did not stick in the player’s memory. It was too easy and gave the player no
incentive to think about the subject.
Other puzzles that were easily solvable and had longer instructions had the
same problem. A puzzle needs to give the player a phase of consideration and
validation of what is learnt in the instructions. The easier the puzzle, the less
the player learnt from it, but that does not mean a puzzle should be extremely
hard.
Difficult puzzles with open solutions, like the information hiding puzzle, also
did not effectively teach the player. In a difficult puzzle, the player is constantly
met with negative feedback, so the player can not effectively evaluate what was
told in the instructions. What worked most effectively was a puzzle with not
too long instructions, 3 paragraphs if around 4 lines, and a puzzle that gave
the player thought for consideration, but had a clear goal. The best example
from the game are the interfaces puzzle and the agents puzzle.
In Figure 5.1 we visualized the reactions brought up in our speak out loud ses-
sion. We categorized the reactions under our main focal points: fun, education
and bug reports. These categories were broadened by their positive and nega-
tive side, making 6 groups of categorized reactions: fun, not fun, educational,
not educational, features and bugs. We made sub categories for the educational
and bug-report categories. The educational categories are divided in applica-
tion, engagement and practice, corresponding to the cognitive, affective and
psycho motor domain of Bloom’s taxonomy. The bug reports were divided in
categories for errors, interfaces anomalies and missing parts in puzzles. The fun
categories are barely divided, since the related reactions did not fit in specific
categories and were already small in number.
The most reactions fall under bug reports, since these were the most easily
identifiable. Positive bug-reports (features that appear to be working) were
much smaller in number, because one does not expect features to be broken.
Positive and negative educational reactions were evenly represented. It’s dis-
appointing that there were more negative than positive engagement reactions,
but this is countered by the larger amount of positive fun reactions.

34

Figure 5.1: Visualization of all reactions brought up during the speak out loud
session

35

5.2 Questionnaire

The survey was not the success we had hoped for. A lot of people did the
pre-game survey, but almost all of them skipped the crucial post-game survey.
From the 67 people who took the pre-game survey, only 13 took the post-game
survey, 4 of which were from the speak out loud sessions when the survey was
in its preliminary stages. The surveys of these people are incomplete, since we
added more questions later, but we had to take these into the data pool to
have a bit more significant data.
The average age of people playing the game (according to the pre-game survey)
is 23 years old, with participants ranging from 18 to 62 years of age. They
played the game on average for 35 minutes. From the pre-game survey 24 out
67 people were in IT, in the post-game survey 4 out of 13. 10 out of 13 on the
post-game survey finished all puzzles.
7 People agreed on that they enjoyed playing the game versus 2 who did not and
4 who were neutral. The graphical design did just as good, as 8 liked it, 3 did
not and 2 were neutral. Asking if they felt like they were in school, 9 disagreed,
1 was neutral and 3 agreed. The visualization of data flow made 8 people
understand the concept, but there were still 4 who thought the visualization
did not contribute and 1 who was neutral on the subject. Control flow did
about the same, 7 agreed, 2 neutral 4 disagreed in its contribution. There is
a general distinction between people in IT and those who are not, as the first
group is more positive in general about the game. In the suggestion box IT
people mostly state positive aspects whereas those who are not tend to note
things they dislike about the game.
The light bulb icon in the bottom right proved to be a valuable part of feedback.
Most (7) agreed that the sound with its filling light-bulb made them ”feel I did
right”, 1 was neutral and 2 disagreed. The score indication in this light-bulb
was less fortunate, since 5 out of 13 disagreed on its ”feel I did right” factor
and 2 were neutral. This last notion might be due to the fact that we did not
implement the score number as careful as we wanted to. The score was only a
true indication in puzzles considering coupling and cohesion and only became
1000 on completion at the other puzzles.
The questions about what people thought they knew and learnt were added
later, so only 10 people got to answer those post-game. However, we got enough
data from the pre-game survey and since roughly the same amount of IT and
non-IT did the pre- and post-game survey we can still take percentages as an
indicator.
The concepts people recalled best after playing the game were classes, associ-

36

ations and methods, all scoring 8 participants that recalled versus 2 who did
not. Classes and methods were relatively well known pre-game, 33 do versus 31
not and 27 do versus 37 not recalling respectively, but associations were very
obscure with 13 known versus 54 not. This being well known after the game is
not a surprise, since classes, methods and associations are the most often used
elements in our puzzles.
Patterns and pattern concepts were not so well recalled after playing the game.
Information hiding, coupling and cohesion were all met with barely half of the
post game participants recalling what they were. Coupling and cohesion were
not a complete disaster, since they were known by only a few pre-game (10
vs. 57 and 7 vs 57), but interfaces were claimed to be known by 29 of all
participants. This part, however had a different notion of interfaces, as they
often claimed keyboards and mice to be interfaces, which is true in computer
interaction, but in software design we mean something slightly different.
Despite it being a pattern, the best learned concept was ’agents’, which was
claimed to be not known by 58 out of 64 before playing the game and known by
6 out of 10 after playing the game. Checking those who explained in their own
words learned us that they really understood the subject. There was also one
who claimed not to know what agents were, but still managed to summarize
its function in his/her own words: ”Transport data.”

37

Chapter 6

Discussion

Creating a game about software design was not easy, since we had to reinvent
a core principle in game-design: the goal depicting success. The goal never
changes within a regular game, but in our game the goal was to create a certain
pattern, which was not a regular goal for a game, and the type of pattern also
changed per puzzle. This was hard to implement modularly, because every
pattern needed a different script and the difference in goals also confused the
player. This is not to say we failed in making a clear goal for the player. If the
instructions were short (3 paragraphs max), the player was mostly willing to
learn about a new goal.
There was also a big meta problem involved when creating this specific edu-
cational game about software design. It is very difficult to discuss parts of the
game without explicitly stating on what level one is discussing. For example:
the word ”class” could imply the sprite seen on the screen, the data structure
within the program’s code, but also an object within the software design for
the code of this game. All levels of development, being the GUI, the code and
the design were all referred to by the same definitions.
We found some arguments against educational gaming. The first came from
our speak out loud sessions. The way people play a game is by trial and error,
with the emphasis on getting to the goal as fast as possible. The purpose of
education is to teach the ’why’ and ’how’ of a subject. These interests do not
necessarily coincide. As we’ve seen in the speak out loud tests, when players
know nothing about the subject, they try to find the solution by brute force,
test every viable combination. When the player does know something about
the subject we find an opposite situation, as we had with the ’coupling vs
cohesion’ puzzle. If the player is taught wrong, s/he will take longer solving a
puzzle than someone who did not pay attention, because the former wrongly

38

avoids possible solutions.
We also found out that not everything is teachable solely through games. One
can learn a skill, but if one needs to learn definitions, the designer needs to
include instructions with the game. Since instructions are text-reading, which
is part of the traditional way of teaching, it is impossible to teach everything
through pure gaming. However, the right balance of instructions and gameplay
make the player more willing to read an otherwise uninteresting topic. Adding
gameplay to the instructions gives the player a means to test an otherwise
intangible concept. A video game might not be a replacement to traditional
teaching, but it is a great addition to teaching as a whole.
The third argument in favour of traditional teaching is our findings on engage-
ment from our survey. Gamification is said to enhance engagement [21], which
is beneficial for the affective domain in Bloom’s taxonomy. We found from our
survey that people who did not partake in the speak out loud session and who
were not in IT did not really care about the game and its subject. Note that
the speak out loud sessions were done with acquaintances, who already had a
small interest in our work, and that people from IT should already have an
interest in the subject. This was not the case with the non-IT strangers. We
even had to remove some post-game survey results who were filled with pro-
fanities and obviously not accurately filled in. Although this is an unpleasant
way of gathering data, it is proof that a game, even when carefully crafted,
does not necessarily stimulate the affective domain or improve engagement.
To evaluate our game we need to look at it in 2 ways: as a game with the
content it currently has and as a tool for teachers to expand and use in their
curriculum. As a game it was mostly successful. Players learned concepts and
patterns with great ease in a relatively short amount of time. The best part
is that they understood the reason for the use of the concepts and patterns,
even if they had no previous knowledge or were particularly interested in the
subject.
The game failed in some aspects to catch the interest of players who were
unwilling to begin with. If a player does not want to learn, s/he will not
read instructions and randomly try to find a solution, effectively not learning
anything.
The game also needed a lot more play testing if we wanted to eliminate puzzles
that did not effectively teach certain topics to some players. We could not fully
anticipate what was learned to whom, since this was different per player. A
topic can stick very well with one player while another can not grasp what it
is about.
As we established in Section 2.5, there is no one way to make an educational

39

game. There is also a difference in interest per player. Different people like
to play different games and some methods of gamification will work better on
certain people than others. As a result, our game failed to grasp the attention of
some people, while other people were very positive about it. This is a problem
probably any educational game will face.
Lastly, as a game we slightly overlooked a requisite of the psycho-motor do-
main in Bloom’s taxonomy: repetition. It should come as no surprise that the
patterns we tried to teach did not stick with half of the players. Most patterns
were handled only once and not mentioned afterwards. Since classes, methods
and associations played a major role in every puzzle, these were better recalled.
As a tool, the game suffered from the short spiral in the development. We
hoped that creators would be able to make a puzzle-model for the game and
that the game as a tool would teach software design to the player without the
creator needing much thought of it. This is unfortunately not the case. As it
is now, there are a lot of useless functions that can be used by creators and
they have too much freedom to bypass the teaching principles we established
in this paper. Creators can make instructions longer than 3 paragraphs. They
can (and probably will) make puzzles with very narrow solutions. It is also
possible to teach anti-patterns.
In order to effectively create a good puzzle in this game, the creator needs to
know the content of this paper and read the first chapter of the instruction
manual with the game. This is a lot to expect from a user, if one just wants to
go ahead and make a puzzle. The creator as a user was not the first priority
during design, so this is not a big issue. Even though a creator can render
the game useless as a tool when uninformed, if a creator is well informed and
does enough play-testing on potential students, the game can be greatly and
effectively expanded.

40

Chapter 7

Conclusion and future work

One of the citations used in the introduction of this paper from Marc Prensky
([21]) claimed that with gamification learning would finally become fun and
effective. After our research we beg to differ. When done right, a game can
indeed be fun and effective at teaching, but there are some hurdles that one
needs to take into account, most notably: development.
Just as any piece of software, (especially) an educational game needs to be
carefully checked if its functionalities meet the requirements. Things go wrong
when the requirements are incomplete, the development was sloppy or the
content was not carefully presented in the user interface. These are all viable
threats to development [2] and if one of these threats is not handled right, the
game will not teach effectively and Prensky’s statement becomes invalid. This
brings some irony to our paper: We started out making an educational game
about software design and now we show why software design can be a bottle
neck for educational games.
Another problem that works to the traditional education’s advantage is de-
velopment time and cost. An educational game might relieve students from
study-efforts, but it is very taxing on effort for the one making the game.
When going into specialized topics learnt by few people, the effort put in mak-
ing the game will most likely not weigh up to the effort saved by the students.
To illustrate: the educational part of our game has been explained in a couple
of pages in Chapter 2 of this paper. It might have taken a day to research and
write. The game we’ve developed touches the same topics, but took the same
author 6 months to fully develop.
The disappointing part of this conclusion is that both types of education, tradi-
tional and gamified, need a teacher to check the student if s/he has effectively
learnt the topic. A game might save the teacher time, but if the student is

41

not willing to learn (Bloom’s taxonomy’s affective domain) the student will
try (and most likely succeed) to cheat the game. Again we emphasize: finish-
ing the game does not mean the player has learned something. We must see
gamification as an addition to traditional education, not a replacement.
With that in mind, let’s take a look at our game. The game we have developed
for this paper is effective, but incomplete. First of all it needs a lot more puzzles
for teaching more patterns and to repeat the execution of those old and new
patterns to enhance the psycho-motor domain. The puzzles that are included
now mostly teach concepts and only a few patterns. This needs to be expanded
with more patterns and ’real life’ situations in which a player should be able
to choose a pattern.
In order for the game to get more puzzles, the interface for the creator or
teacher needs to be altered or changed entirely. The new interface should refrain
the creator of teaching the topic in a wrong way (see Chapter 6). This might
mean the game needs to be completely remade, but not completely redesigned.
The algorithms can and should all be reused along with the hierarchy of model
elements. It is mostly the interface that needs to improve on accessibility for
student (player) and teacher (creator).
A final improvement on the game might be customizable written feedback.
Right now we give feedback in the form of a score and a light-bulb. This is not
as good as actually telling the player what is wrong or right with the puzzle
s/he is solving. Because the goal is different per puzzle and because the creator
should be able to create his/her own goals, it was difficult to come up with a
way to actually explain to the user how a puzzle should be solved aside from
the introductory instructions. One must also note that if a written feedback
is implemented, it is not guaranteed that the player will read it, since the
instructions were also often not read.
Our game was very effective for our target audience, but to say our game is
proof that one can teach anything through a video game is a bit overconfident.
The sample size of our survey was not nearly big enough to make any such
bold claims. We might want to do a separate research using a bigger survey.
Furthermore, software design is just one topic of all existing difficult topics.
However, the tests on the game clearly gave indication of effectively teaching
skills needed for software design. It taught these skills in a relatively short
time (around half an hour) and it made the player engaged in the topic, which
gives way to effective supplementary teachings of a more traditional kind. If
anything, our game is a great supplement to a software design curriculum.

42

Bibliography

[1] Benjamin S. Bloom. Taxonomy of Educational Objectives Book 1: Cogni-

tive Domain. David McKay Co inc., 1956.

[2] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. Anti Patterns; Refactoring Software, Architectures

and Projects in Crisis. Robert Ipsen, 1998.

[3] R. Carlson. Psychology-the science of behavior. Pearson Education, 4th
edition, 2009.

[4] Xiwen Cheng, Wouter Eekhout, Martin Iliev, Frank van Smeden,
Chengcheng Li, Oswald de Bruin, and Jaron Viëtor. Empirical study
on influences of modeling during requirements and maintenance phases.

[5] Donald Clark. Bloom’s taxonomy of learning do-
mains: The three types of learning, october 2001.
http://www.nwlink.com/˜donclark/hrd/bloom.html [online; Accessed
15-jan-2012].

[6] Dennis Coon. Psychology: A modular approach to mind and behavior.
Thomson Wadsworth, 2005.

[7] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head

First Design Patterns. O’Reilly Media, 2004.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994.

[9] R Harrison, S J Counsell, and R V Nithi. An investigation into the appli-
cability and validity of object-oriented design metrics. Empirical Software

Engineering, 3(3):255–273, 1998.

43

[10] William A. Kahn. Psychological conditions of personal engagement and
disengagement at work. The Acedemy of Management Journal, 33-4:692–
724, 1990.

[11] Michael Kölling. The design of an object-oriented environment and lan-

guage for teaching. PhD thesis, University of Sydney, 1999.

[12] Michael Kölling. The problem of teaching object-oriented programming
part i: Languages. Journal of Object-Oriented Programming, 11(8):8–15,
1999.

[13] Michael Kölling. The problem of teaching object-oriented programming
part ii: Environments. Journal of Object-Oriented Programming, 11(9):6–
12, 1999.

[14] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg.
The bluej system and its pedagogy. Journal of Computer Science Educa-

tion, Special issue on Learning and Teaching Object Technology, 13(4):1–
12, 2003.

[15] D. R. Krathwohl, B. S. Bloom, and B. B. Masia. Taxonomy of Educational

Objectives, the Classification of Educational Goals. Handbook II: Affective

Domain. David McKay Co., Inc., 1973.

[16] Craig Larman. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process. Prentice Hall PTR,
2001.

[17] John Liggins, Robert O. Pihl, Chawki Benkelfat, and Marco Leyton. The
dopamine augmenter l-dopa does not affect positive mood in healthy hu-
man volunteers, January 2012.

[18] Robert Moser. A fantasy adventure game as a learning environment.
why learning to program is so difficult and what can be done about it.
ITiCSE 97 Proceedings of the 2nd conference on Integrating technology

into computer science education, 29(3):114–116, 1997.

[19] James Newman. Videogames. Routledge, 2004.

[20] Lauren A. O’Connell and Hans A. Hoffmann. The vertebrate mesolim-
bic reward system and social behavior network: A comparative synthesis,
2011.

44

[21] Marc Prensky. Digital Game-Based Learning. McGraw-Hill, 2001.

[22] Andrew K Przybylski, C Scott Rigby, and Richard M Ryan. A motiva-
tional model of video game engagement. Review of General Psychology,
14(2):154–166, 2010.

[23] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Pro-
fessional, 1996.

[24] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture, Patterns for Concurrent and Net-

worked Objects, volume 2. John Wiley & Sons, 2000.

[25] Alan Shalloway and James R. Trott. Design Patterns Explained; A New

Perspective on Object Oriented Design. Addison-Wesley Professional,
2005.

[26] E. J. Simpson. The Classification of Educational Objectives in the Psy-

chomotor Domain. Gryphon House, 1972.

[27] Hans van Vliet. Software Engineering: Principles and Practice. John
Wiley and Sons Ltd, 2008.

[28] Giovanni Viglietta. Gaming is a hard job, but someone has to do it!,
march 2012.

45

Appendix A

Software design

In this appendix section we show the complete class diagram of the software
we made, see Figure A.1. Relevant sequence diagrams are shown in Figure A.2
to A.6.

46

Figure A.1: Class diagram of the game’s software architecture

47

Figure A.2: Sequence diagram showing how an object is dragged.

Figure A.3: Sequence diagram showing how the player can set a new name for
an object.

48

Figure A.4: Sequence diagram showing how the player can create a new part
with a create button.

Figure A.5: Sequence diagram showing how the player can interact with the
field using a state button.

49

Figure A.6: Sequence diagram showing how the player can validate a solution.

50

Appendix B

Speak out loud condensed notes

B.1 Test 1: 21-jun-2012

Subject: 5th year computer sciences university student. Had already heard of
the game, but was not involved with development. Playtime: 30min from start
to finish Notabilities:

• Puzzles weren’t worked out enough, a lot of the problems could be broken
or worked around.

• Control flow was used as hint for the solution, this was intended.

• Subject tried to delete associations by clicking on a line, but this was
only implemented on the start and end-point of an association’s line, so
this didn’t work.

• Subject noted that it was disappointing that not every good action is
met with a score.

• The package cohesion puzzle had a broken mechanic in the package co-
hesion scoring.

Conclusions: Nothing out of the ordinary. Subject had more trouble with bugs
than with the puzzle itself. Quick fixes: Fixed the noted bugs in the puzzles
plus the package cohesion mechanic.

51

B.2 Test 2: 22-jun-2012, 11:00

Subject: 2nd year medical HBO student. Knows nothing about software design
or computer sciences. Never saw the game before. Claims not to be good with
video games. Playtime: 1 hour and 30 minutes from start until 8 out of 14
puzzles were solved Notabilities:

• The subject did not know when a puzzle was solved and that she had
to click the validate-model button, even when it was pointed out after 5
minutes of her searching.

• When one puzzle was too hard, the subject switched puzzles and tried
again later. This was intended. (NB: Toleration, Variation, Deviation!)

• The instructions were too vague at times and the subject did not always
understand

• The buddy hints were very useful and immediately found.

• The create buttons had conflicting icons. According to the subject, a
pencil depicts drawing a line instead of picking up a part and putting it
on the field.

• Drop down menu names were not always accurate

• Within half an hour the subject began to talk about methods, attributes
and classes.

• Subject saw the data flow and control flow hints as a hint to drag one
class to the other. This resulted in the subject dragging all classes to the
same place, which was not our intention.

• The game has a bug in which more than one association can be mad
between the same classes. Their lines are drawn on top of each other, so
the subject did not know there were too many lines.

• The cohesion puzzle was the least well instructed. Drag the methods to
their corresponding classes is an instruction that is easily understood, but
does not explain cohesion. As a result the cohesion puzzle was finished
the fastest, but understood the least.

• If a method or attribute is locked in a class and the subject, knowing
about the lock, tries to move the class by dragging the method or at-
tribute, nothing happens. This was counter-intuitive.

52

• Subject claims a lot of puzzles are solved by guessing.

Conclusions:

• The ’Toleration, Variation, Deviation’ principle was an invaluable asset
on letting the subject play by itself.

• Things were learned when both the instructions were elaborate and the
puzzle was easily solvable. The instructions are linked with the action and
solidified in the brain with a reward. If the instructions are not clear, the
subject can not recall and if the action is not satisfying, the subject can
not evaluate.

Quick fixes: Fixed more bugs and puzzle elements. Changed instructions at
some puzzles. Added a sound and firework on the validate model button when
a puzzle was right to attract attention.

B.3 Test3: 22-jun-2012 17:56

Subjects: Simultaneously 2 people. A 4th year law university student (depicted
as LS) and a VWO working person (WP). Both have no experience in computer
sciences, but are eager at playing video games. Both played on a different
computer, thus had their own game. We finished in 47 minutes. LS was done,
WM did not finish the last 4 puzzles. Notabilities:

• The mascot/buddy does not give hints at the save and tree screens. This
was confusing.

• The validate button was immediately found now

• More bugs were found in puzzles

• Drawing lines (associations) gave problems again

• Subjects claimed to need more explanation. On the other hand: not all
instructions were read.

• Game reminded subjects of ’Myst’, because that game also gave little
instructions and left the player to ’try everything’.

• Game sparked competitiveness between players.

53

• The art-style put the subjects off-trail, since the style was happy, but
the game more difficult than they expected.

• Different colours in data flow were immediately understood by WP as
’different data’. This was as intended.

• LS realized after around 8 puzzles she was learning software design.

• LS claimed the points were scary (as in: judging), but also did not like
it when a puzzle did not score her actions.

• LS tried solving puzzles on trying everything out. WM tried solving
puzzles by understanding its mechanics.

• WM got stuck on coupling vs cohesion. When LS was finished with all
her puzzles, she helped WM with the solution.

Conclusions:

• Competition worked well

• Too easy solutions and too long instructions lead to not reading and not
evaluating. The instructions shouldn’t be too long (around longer than
3 medium paragraphs) and the puzzles should not be too easy, which is
hard to quantify.

• Implementing fireworks on completion worked better than expected.

Quick fix: None, implementing large fixes.

B.4 Test 4: 29-jun-2012 15:05

Subjects: A 3rd year Psychology student and a graduated Archaeologist. No-
tabilities:

• Unblocked difficult puzzles have to be blocked, because people are eager
to try those first, even though they don’t have the necessary knowledge

• The first puzzle about classes was used to explain all game mechanics.
Instructions were too long and the evaluation too lenient.

• Subjects started making models without difficulty, even when they weren’t
instructed to before.

54

• Narrow solution puzzles are faster solved than wide solution puzzles

• The puzzle that explains cohesion only shows 1 on 1 cohesion, but not
conflict between methods while trying to achieve cohesion. This gave
trouble in the coupling vs cohesion puzzle.

• Still, people who understand more advance slower.

Conclusions:

• A lot of puzzles work counter-productive by learning in a wrong way. In
the case of the cohesion puzzle we started with a puzzle that works in
a perfect environment. Unfortunately, because we ignored the possible
conflicts in the puzzle, people who understood the puzzle had trouble
with the follow-up puzzle.

Quick fixes: Again none, we go make the big survey

55

Appendix C

Survey questions

These are the survey questions we asked our test subjects. The questions with
multiple choice options have the statistics included.

C.1 Pre-game survey

• What is your age? (avg: 23)

• At what point are you in your career? (Pre-high school/ High school/
Student/ working) (1/ 15/ 35/ 16)

• Is your profession in Information Technology (IT)? (24/ 43)

• How high do you rate your skill with computers compared to average
people? (1, I am really bad with computers → 10, I am very good with
computers) (avg: 8.0)

• Have you played the game ’the Art of Software Design? (yes/no)(1/ 66)

• Please rate your interest in software design. (1, could not care less→ 10,
Awesome!)(avg: 6.6)

• Do you know what ’classes’ are in software design? (yes/no)(33/ 31)

• Do you know what ’associations’ are in software design? (yes/no)(13/
54)

• Do you know what ’methods’ are in software design? (yes/no)(27/ 37)

• Do you know what ’attributes’ are in software design? (yes/no)(29/ 35)

56

• Do you know what ’coupling’ are in software design? (yes/no)(10/ 57)

• Explain in your own words what ’coupling’ means in software design.

• Do you know what ’cohesion’ are in software design? (yes/no)(7/ 57)

• Explain in your own words what ’cohesion’ means in software design.

• Do you know what ’control flow’ are in software design? (yes/no)(12/
52)

• Explain in your own words what ’control flow’ means in software design.

• Do you know what ’data flow’ are in software design? (yes/no)(11/ 53)

• Explain in your own words what ’data flow’ means in software design.

• Do you know what ’agents’ are in software design? (yes/no)(6/ 58)

• Explain in your own words what ’agents’ means in software design.

• Do you know what ’interfaces’ are in software design? (yes/no)(29/ 35)

• Explain in your own words what ’interfaces’ means in software design.

• Do you know what ’information hiding’ are in software design? (yes/no)(16/
48)

• Explain in your own words what ’information hiding’ means in software
design.

• How often do you think you will use the above mentioned concepts if you
were to be in software design? (Not/ Almost never/ Average/ Often/
Always)

– Classes (4/ 0/ 11/ 23/ 26)

– Associations (7/ 1/ 24/ 22/ 10))

– Methods (5/ 1/ 16/ 19/ 23))

– Attributes (5/ 1/ 16/ 19/ 23)

– Coupling (5/ 3/ 31/ 15/ 10)

– Cohesion (5/ 4/ 27/ 19/ 9)

– Control flow (4/ 2/ 22/ 21/ 15)

57

– Data flow (6/ 1/ 22/ 20/ 15)

– Information hiding (5/ 5/ 29/ 18/ 7)

– Interfaces (4/ 4/ 15/ 21/ 20)

– Agents (6/ 5/ 31/ 15/ 7)

C.2 Post-game survey

• What is your age? (avg: 29)

• At what point are you in your career? (Pre-high school/ High school/
Student/ working) (0/ 2/ 4/ 7)

• How high do you rate your skill with computers compared to average
people? (1, I am really bad with computers → 10, I am very good with
computers) (avg: 7.6)

• Have you finished the game ’the Art of Software Design? (yes/no) (9/ 1)

• For approximately how many minutes have you played the game, finished
or not? (avg: 34.8)

• Which puzzles have you finished? (Finished/ Only tried/ Never seen)

– Classes (10/ 0/ 0)

– Associations (9/ 1/ 0)

– Methods (10/ 0/ 0)

– Attributes (9/ 1/ 0)

– Packages (9/ 1/ 0)

– Coupling (9/ 1/ 0)

– Cohesion (9/ 0/ 1)

– Control flow (9/ 0/ 1)

– Data flow (9/ 0/ 1)

– Package cohesion (9/ 0/ 1)

– Coupling vs Cohesion (9/ 0/ 1)

– Interfaces (7/ 2/ 1)

58

– Agents (8/ 1/ 1)

– Information hiding (8/ 1/ 1)

• About your experience; Please select how much you agree with these
statements (Completely disagree/ Slightly disagree/ Neutral/ Slightly
agree/ Completely agree)

– I liked the graphical design of the game. (4/ 4/ 2/ 1/ 2)

– The puzzle objectives were clear. (3/ 4/ 1/ 3/ 2)

– I had trouble assigning parts of the puzzle. (0/ 2/ 3/ 5/ 3)

– I enjoyed playing the game. (4/ 3/ 4/ 0/ 2)

– I feel like I learned something from playing this game. (2/ 5/ 3/ 1/
2)

– The game was hard to finish. (1/ 2/ 5/ 1/ 4)

– The game taught me what software design is. (1/ 1/ 8/ 1/ 2)

– While playing the game I felt like I was at school. (0/ 3/ 1/ 6/ 3)

– The dotted lines in the game helped me understand data flow. (2/
6/ 1/ 1/ 3)

– The blue arrows in the game helped me understand control flow.
(2/ 5/ 2/ 1/ 3)

– I think I can make a software model because of this game. (0/ 4/
6/ 1/ 2)

– The indicated score number made me feel I did right. (4/ 2/ 2/ 4/
1)

– The light bulb made me feel I did right. (5/ 2/ 3/ 3/ 0)

– The finishing sound made me feel I did right. (3/ 4/ 1/ 1/ 1)

– I just dragged parts around to see if it was the right solution. (2/
2/ 0/ 1/ 5)

– I could finish puzzles easier if I understood the concept. (3/ 5/ 1/
0/ 1)

– Even if I did not understand the concept, I could finish the puzzles
easily. (0/ 4/ 1/ 4/ 1)

– After I finished a puzzle, I usually played around to find more so-
lutions. (2/ 1/ 0/ 1/ 6)

59

– The instructions were too long at times. (1/ 0/ 4/ 2/ 3)

– This game is a perfect example of how school should be gamified.
(1/ 3/ 2/ 1/ 3)

– The puzzles often frustrated me. (1/ 1/ 2/ 3/ 3)

– I am going to show this game to a friend. (2/ 1/ 3/ 1/ 3)

• Do you know what the following concepts mean in software design? (Yes/
No)

– Classes (8/ 2)

– Associations (8/ 2)

– Methods (8/ 2)

– Attributes (6/ 4)

– Packages (7/ 3)

– Coupling (5/ 5)

– Cohesion (6/ 4)

– Control flow (5/ 5)

– Data flow (5/ 5)

– Information hiding (6/ 4)

– Interfaces (6/ 4)

– Agents (6/ 4)

• Explain in your own words what ’coupling’ means.

• Explain in your own words what ’cohesion’ means.

• Explain in your own words what ’control flow’ is.

• Explain in your own words what ’data flow’ is.

• Explain in your own words what ’interfaces’ do.

• Explain in your own words what ’agents’ do.

• Rate the importance of all these concepts in software design. (Not im-
portant/ A little important/ Useful/ Important/ Very important)

– Classes (9/ 1/ 3/ 0/ 0)

60

– Associations (8/ 3/ 2/ 0/ 0)

– Attributes (8/ 3/ 2/ 0/ 0)

– Packages (3/ 5/ 5/ 0/ 0)

– Methods (10/ 1/ 2/ 0/ 0)

– Coupling (2/ 5/ 6/ 0/ 0)

– Cohesion (2/ 6/ 5/ 0/ 0)

– Control flow (6/ 4/ 2/ 1/ 0)

– Data flow (6/ 5/ 2/ 0/ 0)

– Information hiding (3/ 2/ 8/ 0/ 0)

– Interfaces (3/ 5/ 2/ 0/ 0)

– Agents (3/ 3/ 3/ 0/ 1)

• Can you explain why these software design concepts are used? What are
their benefits?

• How often did you use the concepts that were taught to you? (Not/
Almost never/ Average/ Often/ Always)

– Classes (5/ 1/ 1/ 1/ 2)

– Attributes (5/ 1/ /1/ 0/ 3)

– Methods (5/ 1/ 1/ 1/ 2)

– Associations (4/ 2/ 1/ 1/ 2)

– Coupling (0/ 1/ 4/ 2/ 3)

– Cohesion (0/ 3/ 3/ 1/ 3)

– Control flow (1/ 2/ 4/ 0/ 3)

– Data flow (1/ 2/ 4/ 0/ 3)

– Information hiding (1/ 1/ 2/ 2/ 4)

– Interfaces (0/ 1/ 3/ 3/ 3)

– Agents (1/ 1/ 4/ 1/ 3)

– Packages (0/ 4/ 1/ 2/ 3)

• Which concepts did you find interesting? (Very boring/ Boring/ Neutral/
Interesting/ Very interesting)

61

– Classes (4/ 3/ 1/ 0/ 2)

– Attributes (5/ 2/ 1/ 0/ 2)

– Methods (5/ 2/ 1/ 0/ 2)

– Packages (3/ 2/ 3/ 0/ 2)

– Associations (3/ 2/ 3/ 0/ 2)

– Coupling (1/ 3/ 3/ 1/ 2)

– Cohesion (2/ 2/ 3/ 1/ 2)

– Control flow (2/ 3/ 1/ 2/ 2)

– Data flow (2/ 3/ 1/ 2/ 2)

– Information hiding (2/ 2/ 4/ 0/ 2)

– Interfaces (1/ 3/ 4/ 0/ 2)

– Agents (3/ 0/ 5/ 0/ 2)

• Please rate your current overall interest in software design (1,boring →
10, Awesome) (avg: 7.4)

• Did you enjoy the game? (Yes/ No) (9/ 4)

• If you would give this game a review, what score would you give it? (1,
Bad → 10, good) (avg: 5.8)

• Any suggestions on improvement?

62

