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1 Introduction

The focus of this thesis lies on the Japanese puzzle called Shikaku. Dr. J.H.P.
Kwisthout and Dr. H.C.M. Kleijn acted as my supervisors.

I got the idea for my thesis from my friend Timo Morsink. He wrote his
thesis about Hashiwokakero [4], also a Japanese puzzle. Of course it wouldn’t
be much of an effort to do the same thing, so I looked for another Japanese
puzzle and I found Shikaku. I hadn’t seen it before and couldn’t find much
research on the puzzle, so I decided to give it a try myself.

Ever since Sudoku became popular outside of Japan, more and more
Japanese puzzles have made their way outside of Japan. The company behind
these puzzles is NIKOLI Co., Ltd.. With a current staff of only 25, they
publish a quarterly puzzle magazine with over 30 different kind of puzzles
[5].

The published articles aren’t always created by the staff of Nikoli, ev-
erybody can contribute to the magazine. The puzzles are of course reviewed
by the staff before publishing. The reason why these puzzles can become so
popular all over the world, is that it doesn’t require a specific language to
solve!l All the puzzles require only logic thinking to solve.

In this thesis the puzzle Shikaku will be explained and something will be
said about the background of the puzzle. Questions like how it was conceived
and why these puzzles are often Japanese are answered. The focus of this
thesis is to make an effective solver for Shikaku using heuristics. The code
of this program is available in Appendix B. The results of the heuristics
will be discussed in Section 4. Furthermore possible tactics for creating a
generator will be given and some real world applications for the puzzle are
discussed. The puzzles used to test the algorithm and the input files for the
algorithm can be found in respectively Appendix A and C. This thesis ends
in a conclusion and suggestions for future work.

2 What is Shikaku?

2.1 Rules

The Shikaku puzzle exists of an n x m grid with numbers on it (Figure 1).

As there are no Shikaku puzzles with number 1 on it, the smallest possible

puzzle consists of two cells, either on top of eachother or next to eachother.
There are four basic rules in Shikaku:

1. Divide the grid into rectangles.
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2. Each rectangle should contain exactly one number.

3. The number indicates how many cells are contained in that rectangle.

4. Rectangles may not overlap.

O 0
4 5]

4
6 0

©

Figure 1: Example puzzle

With these rules you can complete the puzzle as is shown in Figure 2.

O |0
4 5]

4
e |0

©

Figure 2: Example puzzle completed

2.2  Origins

Shikaku is, like most of these kind of puzzles of Japanese origins. The creator
of the puzzle is Nikoli Co., Ltd.[5] a publishing company which published
its first puzzle magazine in 1980. They claim their most famous puzzle is

Sudokul[6].
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In answer to a question about the origins of Shikaku, Junji Takeuchi,
a staffmember at Nikoli, answered the following. “Shikaku was created by
Yoshinao Anpuku in 1989 and published on ‘Puzzle Communication Nikoli
Vol.27" issued at Sep 1989. Anpuku is Nikoli’s staff now. He got the idea from
the classic figure puzzle called ‘Tachiawase puzzle’ in Japan. On that puzzle,
a solver will cut a given figure and reassemble different shape. Japanese enjoy
that puzzle since more than 100 years ago. He created Shikaku by taking away
the element of reassembling from original rules and limiting ways of cutting
to rectangular cut to give unique solution.” [9]

Many logic puzzles have Japanese roots. Actually, the publisher Nikoli
has gained worldwide recognition after their launch of Sudoku in Europe and
the United States. Because of the success of Sudoku, other puzzles from this
publisher have become more popular. This could explain why these type of
puzzles are of Japanese origins.

2.3 Japanese puzzles in Computer Science

There are a lot of research papers and theses available concerning different
types of logic puzzles from Japan. A lot of these focus on the solving or
generating of these puzzles. At LIACS, Leiden University there are some
good examples of theses in computer science concerning Japanese puzzles.
For instance Hashiwokakero by T. Morsink [4], Takegaki by R. van Dam [2]
and the research paper A Discrete Tomography Approach to Japanese Puzzles
by K.J. Batenburg and W.A. Kosters [1].

In these papers different approaches to solve the puzzle are discussed
and implemented. Because of the logical nature of the puzzles, logical rules
are used to solve the puzzles. This is also the main reason for computer
scientists to study Japanese puzzles, or puzzles in general. What is the best
way to solve the puzzle or how can these puzzles be created? In the case of
the classic Japanese puzzle, or Nonogram, there is even an aesthetic aspect.
As Batenburg and Kosters [1] describe in their article, there are ways to
convert images (even colour images) into Nonograms.

Although not in the field of computer science Deductive Puzzling by J.J.
Wanko [10] does deserve mentioning, because both puzzles discussed form the
motivation for writing this thesis. In the article the use of logical puzzles like
Shikaku and Hashiwokakero is discussed to improve the deductive reasoning
skills of middle school students.
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2.4 Complexity

The complexity of mathematical problems is studied to see if a problem can
be solved and if so, how hard it is to solve the problem. This is done using
Turing machine. There are several kinds of Turing solvable problems. The
easy solvable class P problems are problems which are solvable in polyno-
mial time using a deterministic Turing machine. The easy verifiable class NP
problems are problems for which given answers are easy to check for valid-
ity. NP problems are solvable in polynomial time using a nondeterministic
Turing machine.

The class of NP problems contains a subset of problems called NP-
complete. These are problems to which every problem in NP can be converted
to. NP-hard is set of problems that can be reduced from an NP-complete
problem in polynomial time, but does not have to be an NP-complete prob-
lem by itself. This means that an NP-hard problem is at least as difficult as
an NP-complete problem.

Most common puzzles and games have had their complexity proven in
some way. Although quite popular in Japan, Shikaku still has been mostly
overlooked in the scientific community. A proof of it’s complexity is therefore
not yet available. A complete proof of the complexity of Shikaku turned out
to be too much for this thesis. However, an NP-hardness proof for a more
simplified version of Shikaku is not too difficult to give. In this unconstrained
version of Shikaku not all rectangles have to contain a number. Using a re-
duction from Partition (a proven NP-complete problem) in polynomial time,

defined as follows [3]:

Partition: Given a multiset S of integers, can S be partitioned in S; and

SQ such that ZSl:ZSQZ%ZS?

Unconstrained Shikaku: Can we place t tiles with area {z1,...,zk,..., x;}
on an n X m board with k£ numbers (k < t), where tiles with area x; must be
placed on a cell with number 7; note that there may be less numbers on the
board than tiles; when all numbers are covered, the remaining tiles may be
placed freely.

Reduction from partition: Let {xq, ..., 2} U {x,} divide the tiles, with
{z1,...,5,} = S and y = 53 5. Let the m x n board be as follows:
m=3n=3%5.

Note that x, can only be placed in the middle row, as this is the only row with
a numbered cell and z, won’t fit anywhere else. Note that for the remaining
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Y m=3
1
elements in S to be placed on the board, they need to be partitioned in two
subsets, each with total area >~ S. It is easy to see that {z1,...,2;} can be

placed on the board if and only if the corresponding partition problem has a
solution.

Although this does not prove Shikaku is NP-hard, it is to be expected
that as this version of Shikaku is NP-hard, the real Shikaku is NP-hard as
well.

3 Solving the puzzle

To solve the Shikaku puzzle there are different approaches that can be taken.
Examples are brute-force, evolutionary algorithms, and backtracking. To more
easily incorporate the heuristics (Section 3.2), backtracking is the approach
chosen.

Firstly the main algorithm is explained and the problems encountered.
Secondly the heuristics to improve the algorithm are discussed.

3.1 Backtracking

As stated before, the easiest way to solve a puzzle like this is via backtracking.
Just keep placing the rectangles until you can’t and keep changing the last
one until you can go further with the placing. In Section 3.1.1 the pseudo
code for such a solver is presented.

3.1.1 Pseudo Code

The following pseudo code represents the main solving algorithm. For every
number on the grid, there is a set of rectangles and all possible directions
of that rectangle. For every number on the grid the algorithm tries the first
possible rectangle containing that number. If there is a rectangle that can be
placed, it is called a legal placement. If no rectangle can be placed, remove the
last rectangle placed and place the next possible rectangle of that number. If
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that number has no other possible rectangles keep undoing rectangles until
there is a number with a rectangle that can be placed. When the last number
has its rectangle placed, the algorithm ends.

for every number do
for every rectangle of number do
if placement is legal then next number
else if placement isn’t legal & 9 next rectangle then try next rect-
angle
else undo last number and try next rectangle of that number
end if
end for
end for

3.1.2 Problems

Despite its simple design, the algorithm does have its problems and limita-
tions, mainly concerning memory usage. The first of these problems was a
wrongly chosen data structure called vector. Although dynamically in nature,
the freeing of memory space did not occur during execution, which resulted
in the growing memory usage. To counter this problem the data structure
was changed to a pointer array which does free its memory space during
execution.

Although smaller puzzles (m x n with m,n < 10) are being solved now,
the bigger puzzles still encountered memory problems. This is caused by the
massive amounts of search space used. For a medium puzzle of size 10 x 10
the amount of rectangles in the search space can reach numbers in the 500’s
and for the larger puzzles this number is even bigger. Apparently this caused
a big memory problem.

To reduce the search space, a function was written called calcrects (Ap-
pendix B), which first calculated all the rectangles per grid value that could
be placed on the board legally if it is the first rectangle to be placed. The
rest of the rectangles are discarded. This resulted in an enormous shrinking
of the search space by up to 85 percent.

Even though the algorithm is now a lot faster and can solve more puzzles,
it still has its limits. Due to the exponential increase in search space, the really
large puzzles (m x n with m,n > 15) still pose problems for the algorithm.
This final algorithm is from now on called Normal, as there are no heuristics
implemented yet. The code can be found in Appendix B.
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3.2 Heuristics

Now that the solver is working, it is time to see of the solving process can be
sped up by implementing some heuristics.

3.2.1 Highest value first

Higher values on the grid usually have less rectangles with legal placements.
Other values on the grid and the edges of the grid are more easily reached
by these higher values, but the constraints of Shikaku hinder the rectangle to
expand further in those directions. Because of the smaller number of possible
rectangles it is recommended to start with these values.

3.2.2 Values with one option first

It is possible for a value on the grid to only have a single possible rectangle
associated with it. To avoid replacing the same rectangle during the solving
process, these rectangles are placed first. An example of this is shown in
figure 3.

0 |
6 6 e
e & 6 o6
e e ©
. 8 e
©® | 8o

© & 6 | |
G &6 ©e 6 |
©O © o

©

Figure 3: Numbers with only one option

®

3.2.3 Implementing the heuristics

Implementing the aforementioned heuristics proved to be quite simple. Be-
cause the algorithm works his way through an array of values, the only thing
that has to be done is sort the array in the order desired.
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For the “highest value first”-heuristic, the array is sorted from high to
low using insertion sort. For the “values with one option first”-heuristic the
number of possible rectangles are counted. If this number is one, the value is
sorted to the front of the array. This is achieved by switching the value with
its left neighbour until the front of the array is reached.

3.3 Testing

To test if the heuristics described in Section 3.2 are in fact an improvement
to the solver, six sample puzzles are used (see Appendix A). All six samples
are from the Nikoli puzzle website [6]. The first three sample are 10 x 10
puzzles and are marked as easy. The fourth sample is an 18 x 10 puzzle and
is also marked as easy. The fifth and sixth puzzles are also 18 x 10, but are
marked medium difficulty.

The testing is done on a Asus EeePC with an Intel® Atom  CPU
N450 at 1.66GHz and 1GB of system memory. The operating system used is
Ubuntu 10.04 (lucid) with Linux kernel 2.6.32-42-generic.

™™

4 Results
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Figure 4: Execution times
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To get a good indication of the time needed to solve a puzzle and rule
out accidental slow solves due to rounding errors, every sample is solved
100 times per solver type (Normal (Section 3.1.1), Highfirst (Section 3.2.1),
Oneoption (Section 3.2.2) and a Combination). The average execution time
per sample is shown in Figure 4.

As can be seen in Figure 4, the Normal, unaltered algorithm does not
always have the highest execution time. This is most likely because some
puzzles already have a somewhat favorable design. That is to say, from left
to right and from top to bottom the values are from high to low. In which
case, the extra algorithm to sort the values of the board takes more time
than the speed gained with it.

On most occasions the Oneoption heuristic is the quickest, but with sam-
ple six, the Highfirst algorithm is more than twice as fast as both the Normal
and the Oneoption algorithm.

The Combination option is never the best way to solve the puzzle. The
fact that extra calculations are needed, makes this option always slower than
the fastest single option algorithm.

Ideally the solver should be compared to other solvers. Unfortunately
there were no solvers available to test. The only references found as to how a
solver worked was on the website The Shikaku Room [7] and in the presen-
tation Shikaku as a Constraint Problem by Helmut Simonis [§].

On The Shikaku Room the creator explains he used the known logical
rules to solve the puzzles, but speeds the process up using a so called Hilbert
R-tree.

In his presentation Simonis describes how Shikaku can be described as a
constraint problem. Although there is no solver available using this method,
one could create one using the research Simonis presented.

5 Generating a puzzle

Generating a puzzle is not a trivial thing and there is more than one way to
do this. One way is to randomly create rectangles within a given rectangular
grid and then place the number corresponding with the surface area of the
rectangle randomly inside it. The biggest problem with this approach is that
you are very likely to end up with a lot of very small or 1 x x rectangles to fill
in the gaps of the created rectangles. Even an outcome with 1 x 1 rectangles
is possible, which is not a valid Shikaku puzzle.

A different approach is to first divide the size of the surface area of the
grid into smaller numbers, which you then use to create rectangles. This does
eliminate the possibility of 1 x 1 rectangles, because you can choose not to



6 REAL WORLD APPLICATIONS 13

create these rectangles before creating the puzzle. However, the creation of
the puzzle using these rectangles can take a while, because randomly placing
rectangles does not always create a puzzle on the first go. Placing the values
in their respective rectangles can be done after the creation of the rectangles,
or after the rectangles have been placed on the puzzle grid. This of course
can be done randomly within the rectangle.

6 Real world applications

Although solving puzzles using algorithms is an interesting subject to some
people, the possibility of using these algorithms as a real world application
can be attractive to a much larger group of people.

The concept of dividing spaces is something used in real life on a lot of
occasions. Examples are office spaces, new housing development and you can
even think of things on a smaller scale like the use of a garage or storage box.

To use the algorithm for assigning objects(offices, boxes etc.) to a space
(building floor, garage etc.) there are some changes to be made. For these
kind of uses of the algorithm, it isn’t always important where an object is
placed. Unlike the rectangles in Shikaku, which all have a single cell which
has to be covered(the numbered cell). Furthermore, the shape of the object
can be fixed, or at least have some restrictions. In case of a cardboard box
the size and shape are fixed. When designing an office floor plan, the size
of the offices are somewhat fixed with a minimum and maximum size. The
shape however is far more important, you wouldn’t want to end up with an
office of 1 x 12 metres.

Figure 5: This kind of space could be made usable

There is however a problem that arises when using this algorithm. Due to
the algorithm using integer arrays as a way to move through a surface you can
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only divide rectangular spaces. Circular and other spaces with round shapes
aren’t common, but they do exist. Other non-rectangular spaces pose the
same problem, although it is possible to use spaces which have rectangular
indentations as in Figure 5.

7 Conclusion and future work

The results show that although the heuristics do have a mostly positive effect
on the algorithm, there is still room for improvement. Some cells on the grid
are only reachable by a single value and its corresponding rectangles, thus
limiting the number of possible rectangles. One way to implement this is by
creating a matrix containing each cell on the grid, each of those cells is then
connected to every number on the grid that could reach that cell with at
least one of it’s rectangles. In the case that a cell in the matrix only has a
single number connected to it, it is obvious that number has to cover that
cell. Thus limiting the amount of rectangles for that number.

Another heuristic using more in depth possibilities in mind while placing
a rectangle could improve the algorithm concerning actual steps within the
algorithm, but is likely to take up more time. In addition to this, a question
might be if the way the heuristics are evaluated, by the time it takes to solve a
puzzle, is the best way to evaluate them. As mentioned in Section 4, there are
some problems with getting an exact time. A better way might be to count
the number of steps the algorithm takes to solve a puzzle. One could think of
the amount of rectangle placements and or removals as a deterministic way
to evaluate a heuristic.

It’s possible that an algorithm using these heuristics speeds up the solving
process even further. And with the code already provided in this thesis, the
first steps have been made to create a perfect solver more easily. With further
research it is also important to use more samples. By using only six samples,
the impact of a puzzle in which high numbers or numbers with only one
possible rectangle are already in the top or second row of the puzzle is a lot
bigger. Using more samples would make this impact a lot smaller.

The setup of the solver (using the logical rules of the puzzle) is similar
to the way the puzzles are solved on the website The Shikaku Room [7]. The
main difference is the use of the Hilbert R-tree. This does seem to solve the
problem with bigger puzzles, as the largest ones on the website are 20 x 20.
Unfortunately the author does not share his code.

There are strategies provided to generate puzzles. And although not im-
plemented in this thesis, others could use these strategies to make a puzzle
generator.
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More work and research can also be done on the real world application of
the algorithm. An actual conversion or implementation could be written. By
changing the function that creates the actual rectangles, it is also possible to
create surfaces not limited to this form. Making other shapes usable by the
algorithm.
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B Program code

#include
#include
#include
#include
#include
#include
#include

<iostream>
<cstdlib>
<fstream>
<sstream>
<string.h>
<stdio.h>
<vector>

using namespace std;

class Shikaku {

public:

17

void loadpuzzle();
//load the puzzle from a file
void printpuzzle();
//print the puzzle
void calcrects();
//calculate all possible rectangles per gridvalue
void backtrack(int rec);
//the backtracking function
void insertsort();
//sort the value-array highest to lowest
void onesort(int one);
//move value with one possibility up the value-list
void oneposs();
//sort the value-array to place the easy values first
int factoring(int f);
//break a value down in factors
void place(int num, int ml, int nl, int m2, int n2);
//place a rectangle
void undo(int val, int mO, int nO, int ml, int nl, int m2,
int n2); //undo a placement
bool checked(int mO, int nO, int ml, int nl, int m2, int n2);
//check if placement is legal

private:

ifstream file;
string line;
int n, m;
//size of the grid n x m
int ** v;
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//the puzzle
int ** numbers;
//all the numbers on the grid
int count;
//number of values on the grid
int * factors;
//array of factors of the current gridvalue
int fsize;
//size of factors
vector< vector< vector< int > > > rects;
//array of all possible rectangles
};//Shikaku

int Shikaku::factoring(int f) {
//break a value down in factors
int fsize 1;
for(int g = 1; g < £f; g+t){
if ((£f%g) == 0) fsize++;

}
factors = new int[fsize];
int i = 0;
for(int g = 1; g < f; g+H){
if ((fhg) == 0){
factors[i] = g;
i++;
}
factors([i] = f;
return fsize;
}//factoring

void Shikaku::undo(int val, int mO, int nO, int ml, int nil,
int m2, int n2) {
//undo a placement
for(int j = ml; j <= m2; j++){
for(int i = n1; i <= n2; i++){
v[jl[i] = -1; //set all values within
the rectangle to -1

¥

v[m0] [n0] = val; //place the correct value

18
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back on the grid

}//undo

void Shikaku::place(int
//place a rectangle
for(int j = ml; j <=
for(int i = nl; i
v[jl[i] = num;

}
}//place

num, int ml, int nl, int m2, int n2) {

m2; j++){

<= n2; i++){

//set all values within the
rectangle to num

bool Shikaku::checked(int mO, int nO, int ml, int nil, int m2,
int n2){
//Check if the rectangle doesn’t leave the grid or overlaps
another value or rectangle
if(m1<0 || n1<0 || m2>m-1 || n2>n-1) return false;
//check for leaving the grid

for(int j = ml; j <=
for(int 1 = n1; i

m2; j++){
<= n2; i++){

if(i == n0 && j == m0){
if(i < n2) i++;
else if (j < m2){

i =nmnil;
jt+ts
}else return true;
}
if(v[jl[i] !'= -1) return false; //check for overlap
}
+
return true;
}//checked

void Shikaku::insertsort() {
//sort the array from high to low

int i, j, tmpO, tmpl,

tmp2;

for(i = 2; i < count+1l; i++){

j =1,

while (j > 1 && numbers[j-1][0] < numbers[j][0]) {
tmpO = numbers[j] [0];
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numbers [j]
numbers [j]

tmpl
tmp2

numbers [j] [0]
numbers [j] [1]
numbers [j] [2]

numbers [j-1] [0]

numbers[j-1] [1] =
numbers[j-1] [2] =
==
}
}
}//insertsort

void Shikaku: :onesort(int
//sort a value to the f
int j = 0;
int tempO, templ, temp2
while(one-j-1 > 0){

temp0 = numbers [one-
templ = numbers [one-
temp2 = numbers [one-

numbers [one-j] [0] =
numbers [one-j] [1]
numbers [one-j] [2]
numbers [one-j-1] [0]
numbers [one-j-1] [1]
numbers [one-j-1] [2]
jt+ts

+
}//onesort

void Shikaku::oneposs() {
//check if a value has
if no other rectangles
int checkcount = O;
int i;
for(i = 1; i <= count;

[1];
[2];

numbers [j-1] [0];
numbers [j-1] [1];
numbers [j-1] [2];

tmpO;
tmpl;
tmp2;

one) {
ront of the array

b

jl[0];

j101];

jl2];

numbers [one-j-1] [0];
numbers [one-j-1] [1];
numbers [one-j-1] [2];
= tempO;

= templ;

temp2;

only one placable rectangle
are placed

i++){

int fsize = factoring(numbers[i] [0]);

20
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int floc = numbers[i] [4];

int dm = factors([floc];

int dn = numbers[i] [0] / factors[floc];
int m0 = numbers([i] [1];

int n0 = numbers[i] [2];

int offset = O;

int temp = numbers[i] [3];

while(temp >= 0){

temp -= dn;
offset++;

}

offset——;

int m1 = numbers[i] [1] - offset;

int nl1 = numbers[i] [2] - (numbers[i] [3]%dn);

int m2 ml + dm - 1;

int n2 = nl + dn - 1;

if (checked(m0,n0,m1,n1,m2,n2)){
checkcount++;

}
if (checkcount > 1){
checkcount = O;
numbers[i] [3] = 0;
numbers [i] [4] 0;
}else if(numbers[i] [3] < numbers[i] [0]-1){
numbers [i] [3]++;
delete [] factors;
i--;
Yelsed{
numbers[i] [3] = 0;
if (numbers[i] [4] < fsize-1){
numbers[i] [4]++;
delete [] factors;
i--;
}elsed{
numbers[i] [4] = O;
delete [] factors;
if (checkcount == 1){
onesort(i); //only one rectangle, thus sort
it to the front of the array
checkcount = O;
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}
}//oneposs

void Shikaku::backtrack(int rec) {
int mO = numbers[rec][1];
int n0 = numbers([rec] [2];
int rectangle = numbers[rec] [5];
int ml = rects[rec] [rectangle] [0];
int nl = rects([rec] [rectangle] [1];
int m2 = rects[rec] [rectangle] [2];
int n2 = rects([rec] [rectangle] [3];
bool legal = checked(mO,n0,ml,nl,m2,n2);
if (legal){//rectangle can be placed
place(rec, ml, nl, m2, n2);//place the rectangle
if (count==rec){ //if this is the last rectangle,
the puzzle is solved
cout << "Done!" << endl;
printpuzzle();
exit(1);
Yelseq{
backtrack(rec+1);//else next value
}
}else{//can’t place rectangle
if (numbers[rec] [6] < numbers[rec] [6]-1){
//if more possible rectangles for this value...
numbers [rec] [6]++;
backtrack(rec) ;//backtrack next rectangle
}else{//if no more possible rectangles for this value
numbers[rec] [5] = 0;
int back = 1;
while(back < rec){
m0 = numbers[rec-back] [1];
n0 = numbers[rec-back] [2];
rectangle = numbers[rec-back] [5];

ml = rects[rec-back] [rectangle] [0];
nl = rects[rec-back] [rectangle] [1];
m2 = rects[rec-back] [rectangle] [2];
n2 = rects[rec-back] [rectangle] [3];

undo (numbers [rec-back] [0] ,m0,n0,m1,nl1,m2,n2);

22



B PROGRAM CODE 23

//remove rectangle from grid
if (numbers [rec-back] [6] < numbers[rec-back] [6]-1){

numbers [rec-back] [6]++;

backtrack(rec-back) ;

//try other rectangle from previous value

Yelse{//else keep removing rectangles

numbers [rec-back] [5] = 0;

back++;

+
}//backtrack

void Shikaku::calcrects() {
//calculate all possible rectangles per gridvalue
int countrects = O;
int countrectangles = 0;
rects.push_back(vector< vector< int > > () );
for(int i = 1; i <= count; i++){
rects.push_back(vector< vector< int > > () );

int fsize = factoring(numbers[i] [0]);
for(int j = 0; j < fsize; j++){
int dm = factors[j];
int dn = numbers[i] [0] / factors[j];
int m0 = numbers([i] [1];

int n0 = numbers([i][2];

for(numbers[i] [3] = 0; numbers([i] [3] < numbers[i] [0];
numbers [i] [3]++){ //calculate all the rectangles
int offset = 0;
int temp = numbers[i] [3];
while(temp >= 0){

temp -= dn;
offset++;

}

offset——;

int ml1 = numbers[i] [1] - offset;

int nl = numbers[i] [2] - (numbers([i] [3]%dn);
int m2 = ml + dm - 1;
int n2 = nl + dn - 1;

countrectangles++;
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if (checked(mO,n0,m1,n1,m2,n2))4{

//if this rectangle could be placed

countrects++;

int k = numbers[i] [6];

rects[i] .push_back(vector< int > () );
//add the rectangle to the array

rects[i] [k] .push_back(ml);

rects[i] [k] .push_back(nl);

rects[i] [k] .push_back(m?2);

rects[i] [k] .push_back(n2);

numbers[i] [6]++;

}
}
}
delete[] factors;
+
}//calcrects

void Shikaku::printpuzzle() {
//print the puzzle grid
for(int j = 0; j < m; j+H){
cout << "-";
for(int 1 = 0; i < n; i++){
cout << "---";
}
cout << endl << "|";
for(int i = 0; i < n; i++){
if(v[jl[il==-1) cout << " [|";
else if(v[j1[i1<10 && v[jI1[il1>0){
cout << "0" << v[jI[i] << "|";

}
else cout << v[jl[i] << "|";
}
cout << endl;
}
cout << "-";
for(int j = 0; j < n; j++){
cout << "-—-=-";
}

cout << endl;
}//printpuzzle
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void Shikaku::loadpuzzle() {
//Check if file is available
file.open("FILENAME", ios::in);
//replace FILENAME with the puzzlefile
with format as in Appendix C

if (1file) {
cerr << "Unable to open puzzlefile." << endl;
exit(1);

b

getline(file, line);
stringstream ss(line);
ss >> m > n;
v = new int*[m];
for(int 1 = 0; i < m; i++){
v[i] = new int[n];
for(int j = 0; j < n; j+H){
v[il [j] = -1;
}

count = 0;

while(getline(file, line)){
istringstream d(line);
string token;
int h,1i,j;
getline(d, token, ’,’);//Get the number
istringstream number (token) ;
number >> h;

getline(d, token, ’,’);//Get the n-position
istringstream posn(token) ;

posn >> i;

getline(d, token, ’,’);//Get the m-position
istringstream posm(token) ;

posm >> j;

v[i] [j] = h;//Set the number on the n,m position
count++;

25
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file.close();

numbers = new int*[count+1];
int k = 1;
for(int j = 0; j < m; j++){
for(int i = 0; i < n; i++){
if(vljl[il1=-1){
numbers[k] = new int[7];
numbers [k] [0] = v[j][i];
//the gridvalue
numbers [k] [1] = j;
//the m-location of the value
numbers [k] [2] = i;
//the n-location of the value
numbers[k] [3] = 0;
//location of original value within rectangle
numbers [k] [4] = 0;
//location of factor in use
numbers [k] [56] = 0;
//rectangle in use
numbers [k] [6] = 0;
//number of rectangles
k++;

}
}//loadpuzzle

int main() {
Shikaku skk;
skk.loadpuzzle();
skk.printpuzzle();
skk.insertsort();
//use this function for the highest-value-first heuristic
skk.oneposs () ;
//use this function for the one-possible-rectangle heuristic
skk.calcrects();
skk.backtrack(1);
}//main
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C PUZZLE FILES

C Puzzle files

\\samplel_easy.txt
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