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ABSTRACT 

 

Assessing severity of software defects is essential for prioritizing fixing activities as well as 
for assessing whether the quality level of a software system is good enough for release. In 
practice, filling out defect reports is done manually and developers routinely fill out default 
values for the severity levels. Moreover, external factors are a reason for assigning wrong 
severity levels to defects. The purpose of this research is to automate the prediction of defect 
severity. We have researched how this severity prediction can be achieved through 
incorporating knowledge of the software development process using ontologies. In addition, 
we also employ an IEEE standard to create a uniform framework for the attributes of the 
defects. 

The thesis presents MAPDESO – a Method for Automated Prediction of DEfect Severity 
using Ontologies. It was developed using industrial case studies during an internship at 
Logica Netherlands B. V. The method is based on classification rules that consider the 
software quality properties affected by a defect, together with the defect’s type, insertion 
activity and detection activity. The results from its validation and comparison with the Weka 
machine learning workbench indicate that MAPDESO is a good predictor for defect severity 
levels and it can be especially useful for medium-to-large projects with many defects. 
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1. INTRODUCTION 
 

Software goes through a testing phase, which aims to find the problems users might 
experience before the software goes into actual use. The goal of finding these problems is to 
remove them before the actual use of the software so that the users will not be hindered by 
them. According to the IEEE Standard Classification for Software Anomalies [2], the cause of 
a software problem is called a software defect. In order to remove the problems, the defects 
need to be fixed. Within this thesis well established standards (including the IEEE Standard 
Computer Dictionary [1] and the IEEE Standard in [2]) are used for defining the necessary 
terms. The classification in [2] defines a defect as: 

 a fault if it is encountered during software execution (thus causing a failure); 
 not a fault if it is detected by inspection or static analysis and removed prior to 

executing the software. 

In [1] a fault is defined as an incorrect step, process, or data definition in a computer program, 
while a failure represents the inability of a system or component to perform its required 
functions within specified performance requirements. The dictionary relates all these terms to 
one another by distinguishing between a human action (a mistake), its manifestation (a 
hardware or software fault), the result of the fault (a failure), and the amount by which the 
result is incorrect (the error). Hence, a software defect is the reason for producing an incorrect 
or unexpected result in a computer program or system, or it causes it to behave in unintended 
ways. 

All users would like to have quality software products. Quality, as given in [1], represents the 
degree to which a system, component, or process meets specified requirements, customer or 
user needs or expectations. Therefore, a step towards deploying a high quality software 
product is to test it first. This is achieved during the system testing phase of the software 
development life cycle when testing is conducted on a complete, integrated system to evaluate 
the system’s compliance with its specified requirements [1]. This phase results in finding 
defects in the software product. In general, it is very difficult (or not possible at all) to fix all 
defects before the deployment date. Hence, these defects need to be categorized so that only 
the important ones are fixed within the specified time constraint in order to release a quality 
software product. 

1.1. Problem statement 
Out of all defects found during the testing phase, the important ones have to be fixed before a 
predefined deadline. Therefore, a software team needs to decide on the order in which to fix 
these defects. It is a common practice to assign severity levels to the defects to differentiate 
between their impacts on the software. The severities of defects represent the different levels 
of negative impact a defect will have on the deployment of a software product. For example, a 
severity level showstopper is assigned to defects that prevent the release of the software 
system and immediate attention is required. On the other hand, a severity level minor is 
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assigned to defects that do not prevent the release of the system but the users are annoyed by 
their presence. It is clear, then, that defects must be assigned the correct severity levels. 

The assignment of severity levels to defects is specific for every software system or company 
and is done manually, usually by test analysts according to their expertise. Different software 
projects define different sets of severities and, hence, assign different severity levels to their 
defects. This results in software projects using sets of severities containing three, four or five 
severity levels (sometimes even more). In addition, it is regularly the case that a defect is 
assigned the default severity level, which typically is medium. If, at this point, a user is 
consulted, he/she might not agree with the assignment of default severities and might want 
some defects to be fixed sooner than others. Moreover, people sometimes make mistakes 
when assigning severities or are influenced by external factors that lead to assigning wrong 
severity levels to defects. To address these problems, we have conducted research in the area 
of how to predict the severity of defects using the knowledge of the software development 
process while decreasing the workload of the software architects and the test analysts. This 
means that we use this knowledge to assign severities that reflect what is important not only 
for the developers but also for the users. The aim is to devise a method for automatically 
predicting the severity levels of defects found during testing at the system level and also 
during coding and maintenance. Its name is MAPDESO – a Method for Automated Prediction 
of DEfect Severity using Ontologies. Such a method would be especially useful for medium-
to-large software systems, which have 100 defects or more. 

1.2. Means for achieving the research goal 
The means used for achieving the goal of this research are 

 the IEEE standard in [2] in order to create a uniform framework for the attributes of 
the defects, and 

 Artificial Intelligence (AI) techniques, namely ontologies, reasoning and automatic 
classification, in order to capture software defects through an ontology and 
automatically reason about the defects and their severity levels. 

Since different projects define and use different sets of severity levels, creating a uniform 
framework will be valuable for providing a single set of severity levels that is known to 
everybody – software architects, developers, test analysts. Therefore, the time and cost for 
retraining people when they switch projects will decrease since all projects will conform to 
the same standard for software anomalies. 

In addition, researchers have used different techniques to predict the severity levels of defect 
reports [3], the presence or absence of faults [4] and defects [5], [6]. These techniques include 
standard text mining methods, logistic regression and machine learning techniques, Six Sigma 
methodology. Though they have proven to be very useful, they base their results on text 
mining analysis and on statistical methods. For achieving the research goal we use AI 
techniques because this way the prediction process is automated and it is based on the 
different levels of impact defects have on the quality properties of the software (other factors 
also take part in the prediction process). 
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Figure 1 presents a summary of everything explained until now. The problems in the figure 
refer to the problems mentioned in Section 1.1; the method (explained in details in Section 3) 
includes the means for achieving the goal of this research as given partly in Section 1.1 and in 
Section 1.2, while the result is the outcome from the method as given in Section 1.1.  

Figure 1. Summary of the current problems, the method to overcome them and the end result. 

The next subsection contains details about the above-mentioned IEEE standard while Section 
2 presents details about ontologies and ontology engineering. 

1.3. IEEE Standard 
The IEEE Standard Classification for Software Anomalies (IEEE Std 1044™-2009) [2] is 
sponsored by the Software & Systems Engineering Standards Committee of the IEEE 
Computer Society and it was approved on 9 November 2009. This standard provides a 
uniform approach to the classification of software anomalies, regardless of when they 
originate or when they are encountered within the software development life cycle. The 
classification data, given in [2], can be used for a variety of purposes, including defect causal 
analysis, project management, and software process improvement (e.g., to reduce the 
likelihood of defect insertion and/or to increase the likelihood of early defect detection). 
Moreover, the standard contains a classification of defects, which defines a core set of widely 
applicable classification attributes. Sample values for the most common attributes are 
provided together with definitions and examples for both the attributes and their values. 

The table in the standard with the most common attributes and their values contains ten 
attributes. For the purposes of our research the attributes that provide the following 
information are necessary: 

 what is the severity of a defect (only one value is possible), 
 what is/are the quality property/properties affected by a defect (one or more values are 

possible), 
 what is/are the type(s) of a defect (one or more values are possible), 
 in which phase of the software cycle a defect was inserted (only one value is possible), 
 and in which phase of the software cycle a defect was detected (only one value is 

possible). 
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Hence, the following five attributes are selected from the standard: Severity, Effect, Type, 
Insertion activity and Detection activity. The idea behind using specifically them is to provide 
a uniform framework for the attributes of the defects and their values so that the method can 
be used across multiple software projects and systems. 

It should be noted that there are five more attributes – Status, Priority, Probability, Mode and 
Disposition. They also provide valuable information but it is not essential for the purposes of 
this research (knowing the values of these attributes for the different defects is not obligatory). 
Therefore, these five attributes are not considered in the rest of the research. 

1.4. Related work 
As explained in the previous sections, the severity levels assigned to defects are used to find 
out what is the impact of that defect on the deployment of the software. It is also known that 
different software projects assign different severity levels to their defects. More importantly, 
why a specific defect is assigned one severity and not another and whether both the 
developers of the software product and its users agree on the assignment of the severity levels 
are areas that still need more attention. 

A new and automated method, which assists the test engineer in assigning severity levels to 
defect reports, is presented in the paper by Menzies and Marcus [3]. The authors have named 
the method SEVERIS (SEVERity ISsue assessment) and it is based on standard text mining 
and machine learning techniques applied to existing sets of defect reports. The tool is 
designed and built to automatically review issue reports and alert when a proposed severity is 
anomalous. Moreover, the paper presents a case study on using SEVERIS with data from 
NASA’s Project and Issue Tracking System (PITS). The case study results indicate that 
SEVERIS is a good predictor for issue severity levels, while it is easy to use and efficient. 
The idea behind our research is similar to the study in [3] – an automated method for 
predicting what severity levels to be assigned to defects. However, we base our method on the 
software development process and software quality properties in order to decide what severity 
level to assign to a defect so that, in the end, the user satisfaction with the quality of the 
deployed software product will rise. 

Zhou and Leung [4] investigate the accuracy of the fault-proneness predictions of six widely 
used object-oriented design metrics with particular focus on how accurately they predict faults 
when taking fault severity into account. Their results indicate that most of these design 
metrics are statistically related to fault-proneness of classes across fault severity and that the 
prediction capabilities of the investigated metrics greatly depend on the severity of faults. 
This work is similar to the one in [3] since the authors use logistic regression and machine 
learning methods for their empirical investigation. In our research, we focus on predicting the 
severity levels of defects using AI techniques such as ontologies and automatic classification. 
This is achieved by developing an ontology and classifying the defects input in it using 
developed classification rules. 

It should also be mentioned that there is research in the area of predicting defects in the design 
phase [5]. This research resulted in the development of a tool called MetricView. Its goal is to 
give more insight into UML models by visualizing software metrics that have been computed 
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by an external tool directly on top of the graphical representation of the UML model. Hence, 
this tool makes it clearer to see what is correct and what is incorrect in the models. There is 
also an extension to this tool that provides a lot of additional features such as calculations of 
metrics within the tool, several views to explore and navigate UML models, visualization of 
evolution data. The research presented in [5] can be related to ours because we make use of 
the software process though not for predicting defects but for predicting the severity levels of 
the defects. An obvious difference is also the fact that we are interested in defects detected 
mainly from the system testing phase and not from the design phase. 

Additional motivation for this work comes from the research conducted by Suffian [6] who 
establishes a defect prediction model for the testing phase using Six Sigma methodology. The 
author’s aim is to achieve zero-known post release defects of the software delivered to the end 
users. This is done by identifying the customer needs through the requirements for the 
prediction model, outlining the possible factors that associate to defect discovery in the testing 
phase and elaborating on the repeatability and capability of test engineers in finding defects. 
At the end of his research, the author states that his work focuses on predicting the total 
number of defects regardless of their severity or the duration of the testing activities and that 
future effort can focus on improving the defect prediction model to predict defect severity in 
the testing phase. Therefore, our research represents an extension to the research in [6] since 
we aim at predicting the severity levels of defects that have been found during testing at the 
system level (though we also consider defects found during coding and maintenance). 
Moreover, our study makes use of defects’ attributes as defined in [2] to develop a method 
that will be applicable to many software projects. 

In addition, there is research aimed at the combination of ontologies and software design, 
which emphasizes on error detection [7], [8]. Such research proves to be very useful since it 
enhances software design quality, as stated by Hoss [7], and it also improves the practice in 
ontology use and identifies areas to which ontologies could be beneficial other than, for 
example, knowledge sharing and reuse, as explained by Kalfoglou [8]. In this work, we 
combine ontologies with knowledge of the software development process. We do that in order 
to automatically predict the severity levels of defects taking into consideration the fact that the 
defects have already been detected and reported. In other words, our goal is different from the 
ones mentioned in [7] and [8] though the means to achieve it are similar to some extent. 

Another interesting research related to our work is presented in the paper by Jin and Cordy 
[9]. The authors provide an outline of the design and function of the Ontological Adaptive 
Service-Sharing Integration System (OASIS). OASIS is a novel approach to integration that 
makes use of specially constructed, external tool adapters and a domain ontology to facilitate 
software reengineering tool interoperability through service-sharing. With their work, the 
authors employ ontologies to facilitate a common and difficult maintenance activity – the 
integration of existing software components or tools into a consistent and interoperable whole. 
In our research, we not only employ ontologies for achieving our goals but also consider 
maintenance activities since our method can be applied to defects detected during 
maintenance. 
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1.5. Research contribution 
Based on the presented related work, the contribution of this research is the following: 

1) We use the knowledge of the software process and quality properties in order to, for 
example, assign higher severity levels (than originally) to defects inserted during the 
design and requirements phases. This way, the predicted severity levels will reflect 
what is important not only according to the developers but also according to the users. 

2) We use ontologies and ontology reasoning (AI techniques) to automatically classify 
the defects input in the ontology into predefined severity levels. To this end, we 
propose a set of rules that is synthesized based on industrial projects. 

3) We use attributes and their values from the well-established IEEE standard in [2] in 
order to describe the defects and their severity levels in the ontology. This way, the 
severity assessment method will be applicable to any software project and useful for 
many people such as software architects, developers, test analysts (under the condition 
that they will also use that standard). 

1.6. Outline 
The outline of this thesis is visualized in Fig. 2 and it is organized in the following way. 
Section 2 presents background information about ontologies, ontology engineering and 
languages. After that, Section 3 describes the method – MAPDESO, which represents the 
essence of this work. In Section 4 are presented two industrial case studies with details about 
how they were conducted and what results were achieved. Then, Section 5 provides the 
validation of the method. The comparison of the ontology classification with the classification 
done by an existing software tool is discussed in Section 6. Finally, Section 7 contains the 
conclusions and the recommendations while Section 8 presents the future work. 

Figure 2. Thesis outline. 

Section 1 •Introduction 
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2. ONTOLOGY DEVELOPMENT AND LANGUAGES 
 

Software Engineering (SE), as defined in [1], is the application of a systematic, disciplined, 
quantifiable approach to the development, operation and maintenance of software. 
Technology innovation demands from SE reliable and sustainable software products. To 
answer these demands, SE is aided by other computer science disciplines. Artificial 
Intelligence (AI), for example, is one of these disciplines that will bring SE to further heights. 
Particularly ontologies, an AI concept, will help SE by providing tools (in the forms of 
ontology languages) and methods that can be used together to facilitate the development of 
understandable, durable and high-quality software [16]. 

2.1. Definition 
The most common definition of ontologies says that an ontology is an explicit specification of 
a conceptualization [10]. In other words, ontologies are explicit formal specifications of the 
terms in the domain and the relations among them [10]. 

According to a more elaborate version of the definition, an ontology defines a common 
vocabulary for researchers who need to share information in a domain and it includes 
machine-interpretable definitions of basic concepts in the domain and relations among them 
[11]. Many disciplines develop standardized ontologies that domain experts use to share and 
annotate information in their fields. A particular example for such a discipline is medicine, 
which has produced large, standardized, structured vocabularies. One of them is the 
SNOMED ontology, which provides a common vocabulary for clinical terms [11]. Figure 3 
visualizes part of the SNOMED ontology. It shows some of the medical conditions caused by 
epilepsy and their relations to different clinical findings. 

Figure 3. Part of the SNOMED ontology. 
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In addition, according to [12], an ontology consists of definitions of concepts, relations and 
rules and is used in knowledge-based systems with the potential to employ inference. 
Ontologies are also formalized knowledge, represented in a language that supports reasoning. 

Once we have defined the term ontology we are ready to dive into the details of ontology 
development, editors, languages and reasoners. 

2.2. Ontology development and editors 
Before explaining how to develop ontologies we should answer the question why would 
someone want to develop an ontology. According to [11], some of the reasons are 

 to share common understanding of the structure of information among people or 
software agents; 

 to enable reuse of domain knowledge; 
 to make domain assumptions explicit; 
 to separate domain knowledge from the operational knowledge; 
 to analyze domain knowledge. 

These reasons are complemented by developing an ontology to codify knowledge and to use 
reasoning to infer new associations from existing ones. An example for this is shown in Fig. 
4. On the left is visualized the original hierarchy of the Medical Dictionary for Regulatory 
Activities (MedDRA). On the right is presented the same hierarchy after ontological 
reasoning is applied. It is visible that a new association is added between two of the terms – 
(PT) Hepatitis Cholestatic and (HLT) Hepatitis, because of their definitions and the existing 
associations. 

Figure 4. An example for ontological reasoning. 

It is often the case that an ontology is not the goal in itself. Developing an ontology is similar 
to defining a set of data and their structure to be used by other programs. For instance, 
problem-solving methods, domain-independent applications, and software agents use 
ontologies and knowledge bases built from ontologies as data [11]. 
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It is important to point out that there is no single correct ontology-design methodology [11]. 
However, a good understanding of ontologies is needed to understand this work. Therefore, 
below we mention an ontology-design methodology as an example. 

An easy and straightforward way to describe the development of an ontology is the top-down 
approach, as explained in [12]. The goal of this approach is the level of abstraction. There are 
four levels of abstraction: meta-meta level, meta level, class level and instance level (ordered 
in top-down fashion). We begin at the meta-meta level and end at the instance level. Of 
course, every level influences each level of lower abstraction. Therefore, the results from the 
meta-meta level are used at the meta level and also at the class and instance levels. 

The Meta-meta level is the phase in which the foundation of the ontology is defined. This 
includes the decision about the used representation language and a definition of its modeling 
primitives. 

The Meta level is the phase in which the key concepts and their relations are defined. This 
should be done in such a way that the addition of data to an existing ontology should be 
possible without loss of pre-existing data in that ontology. In other words, the data in an 
ontology must be preserved. 

The Class level is used to add more specific descriptions of the knowledge. Having the key 
concepts already defined in the previous phase, in this phase we define specific sub-concepts 
of the key concepts. 

The Instance level is the most specific phase out of the four. The instances represent 
knowledge that is specific to real projects or systems to which the developed ontology will be 
applied. 

Developing an ontology requires an environment where the above-explained process will be 
executed. Such environments are called ontology editors. Currently, there are many ontology 
editors, each having its own strengths and weaknesses. According to the World Wide Web 
Consortium (W3C)1, examples of ontology editors are Protégé2, SWOOP3, OntoStudio4 
(previously called OntoEdit), NeOn Toolkit5, Knoodl6, etc. 

Out of the existing ontology editors, Protégé has proven to be the most popular and user-
friendly (it is supported by a large community of active users) and the one with many 
available plug-ins [17], [18]. The results from a survey on Semantic Web practices show that 
Protégé is the most frequently used ontology editor with a market share of 68.2% [17]. 
Protégé is ahead of all other editors since the second most frequently used editor is SWOOP 
with 13.6%, after that is OntoEdit with 12.2% and each of the rest (simple text editor, 
OntoStudio, etc.) has a share of 10% or less [17]. 

                                                             
1 http://www.w3.org/ 
2 http://protege.stanford.edu/ 
3 http://www.mindswap.org/2004/SWOOP/ 
4 http://www.ontoprise.de/en/products/ontostudio/ 
5 http://neon-toolkit.org/ 
6 http://www.knoodl.com/ 
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In addition to being the most frequently used editor, Protégé is a free, open source ontology 
editor and knowledge-based framework. It is based on Java, it is extensible and provides a 
plug-and-play environment. It contains tools to construct domain models and knowledge-
based applications with ontologies. Protégé implements a rich set of knowledge-modeling 
structures and actions that support the creation, visualization and manipulation of ontologies 
in various representation formats [18]. The Protégé platform supports two main ways of 
modeling ontologies via the Protégé-Frames7 and Protégé-OWL8 editors. 

2.3. Web Ontology Language 
The most recent development in standard ontology languages is the Web Ontology Language 
(OWL)9. It is endorsed by W3C to promote the Semantic Web10 vision. OWL is a W3C 
Recommendation for representing ontologies on the Semantic Web. Moreover, OWL is the 
language with the strongest impact in the Semantic Web with more than 75% of ontologists 
selecting this language to develop their ontologies [17]. 

The Web Ontology Language is intended to provide a language that can be used to describe 
classes (concepts) and the relations between them that are inherent in Web documents and 
applications. OWL is based on a logical model, which makes it possible for concepts to be 
defined and described. Complex concepts can be built up out of simpler concepts. Moreover, 
the logical model allows the use of a reasoner, which can help to maintain the hierarchy of the 
concepts correctly [13]. 

An ontology that conforms to OWL, called an OWL ontology, consists of classes, properties 
and individuals, their descriptions and relations. If an OWL ontology is given, the OWL 
formal semantics specifies how to derive its logical consequences, i.e. facts that are not 
literally present in the ontology but entailed by the semantics. This can be achieved by using 
ontology reasoners. 

As explained in the OWL Guide11 and in [13], OWL provides three sublanguages – OWL-
Lite, OWL-DL and OWL-Full, designed for use by specific communities of implementers and 
users. The defining feature of each sublanguage is its expressiveness. OWL-Lite is the least 
expressive while OWL-Full is the most expressive. OWL-DL’s expressiveness falls in-
between. Each sublanguage is an extension of its simpler predecessor, both in what can be 
legally expressed and in what can be validly concluded. 

OWL-Lite is the sublanguage with the simplest syntax. Its intended use is in situations where 
only a simple class hierarchy and simple constraints are required [13]. Because of the simple 
class hierarchy and constraints, automated reasoning is not used in OWL-Lite ontologies. 

OWL-DL is more expressive than OWL-Lite. OWL-DL is intended to be used when users 
want the maximum expressiveness without losing computational completeness (all 

                                                             
7 http://protege.stanford.edu/overview/protege-frames.html 
8 http://protege.stanford.edu/overview/protege-owl.html 
9 http://www.w3.org/2004/OWL/ 
10 http://www.w3.org/2001/sw/ 
11 http://www.w3.org/TR/owl-guide/ 
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entailments are guaranteed to be computed) and decidability (all computations/algorithms will 
finish in finite time) of reasoning systems. OWL-DL is so named because it is based on 
Description Logics (DL). According to [13], Description Logics represent a decidable 
fragment of First Order Logic and are amenable to automated reasoning. Therefore, it is 
possible to automatically compute the classification hierarchy and check for inconsistencies in 
an ontology that conforms to OWL-DL [13]. 

OWL-Full is the most expressive sublanguage. It is meant for users who want maximum 
expressiveness with no guarantees for decidability or computational completeness. Hence, it 
is not possible to perform automated reasoning on OWL-Full ontologies, as stated in [13]. 

2.4. Reasoners 
A reasoner (also called inference engine) is a software application that derives new facts or 
associations from existing information [17]. It is a key component for working with 
ontologies. The survey results in [17] indicate that the most popular reasoners are Jena12, 
RacerPro13, Pellet14 and FaCT++15. 

Jena is a Java framework for building Semantic Web applications, as explained on the Jena 
project’s home page. Although it includes an inference engine to perform reasoning, it is a 
comprehensive toolset. It provides a collection of tools and Java libraries to help programmers 
develop Semantic Web and linked-data applications, tools and servers. 

RacerPro is the commercial name of the RACER software (Renamed ABox and Concept 
Expression Reasoner). The origins of RacerPro are within the area of Description Logics. It 
can be used as a system for managing OWL ontologies and it can also be used as a reasoning 
engine for ontology editors such as Protégé. 

Pellet is an open-source Java-based OWL-DL reasoner, which provides standard and cutting-
edge reasoning services for OWL ontologies. It supports the full expressivity of OWL-DL and 
is the first sound (all provable statements are true) and complete (all true statements are 
provable) DL reasoner that can handle this expressivity. It provides functionalities to check 
consistency of ontologies, classify the taxonomy (this is the superclass-subclass hierarchy in 
an ontology), check entailments, etc. Pellet is used in a number of projects, from pure research 
to industrial settings. According to [14], it has proven to be a very reliable tool for working 
with OWL-DL ontologies and experimenting with OWL extensions. 

FaCT++ is the new generation of the FaCT16 OWL-DL reasoner. FaCT++ uses the 
established FaCT algorithms, but with a different internal architecture. Moreover, FaCT++ is 
implemented using C++ in order to create a more efficient software tool and to maximize 
portability. 

                                                             
12 http://jena.apache.org/about_jena/about.html 
13 http://www.racer-systems.com/products/racerpro/ 
14 Old link: http://www.mindswap.org/2003/pellet/. New link: http://pellet.owldl.com. 
15 http://owl.man.ac.uk/factplusplus/ 
16 http://www.cs.man.ac.uk/~horrocks/FaCT/ 
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2.5. Ontology editor, language and reasoner used in the research 
When considering how to use ontologies and ontology reasoning for achieving the goal of this 
research, we realized that it is imperative to be able to perform automated reasoning on the 
developed ontology (as already mentioned). This process includes checking the consistency of 
the ontology and classifying the taxonomy, which in our case means classifying the defects 
into predefined severity levels according to developed rules. Hence, we made the following 
choices. 

The Protégé platform was selected for the ontology development because of its functionality 
and popularity, as explained in Section 2.2. Since the ontology language selected was OWL 
(see Section 2.3) – leading to the development of an OWL ontology, the Protégé-OWL editor 
was the obvious choice from the Protégé platform. 

As explained earlier, the OWL language provides three sublanguages. So, the next question 
was which sublanguage fits the purposes of our research. It turned out that there are some 
simple rules of thumb how to find out which sublanguage to use [13]. OWL-Lite was not 
considered because it provides simple constructs and they are not sufficient. Therefore, the 
choice had to be made between OWL-DL and OWL-Full. For our research, it is important to 
be able to carry out automated reasoning on the ontology and, as explained in Section 2.3, 
OWL-DL provides such a possibility while OWL-Full does not guarantee it. Hence, OWL-
DL was chosen as the OWL sublanguage. 

Last but not least, we had to choose an appropriate reasoner to use in the ontology. At this 
point of time, we already knew that the ontology will be developed using Protégé and it will 
conform to OWL-DL, so the choice of the reasoner was relatively straightforward. As 
explained in Section 2.4, Pellet supports the full expressivity of OWL-DL and using it we can 
check the consistency of the ontology and classify the taxonomy. Therefore, we decided to 
use Pellet as the OWL-DL reasoner in the research. 

2.6. Section summary 
In this section we provided information about ontologies, ontology development and editors, 
the Web Ontology Language and popular reasoners. Moreover, we discussed which ontology 
editor, language and reasoner we used in the research and why. Hence, it is now safe to 
continue further with the details of the developed method and the case studies in the research. 
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3. METHOD DESCRIPTION 
 

The end result from the method described in this section – MAPDESO, is the solution to the 
problems we are facing, as mentioned in Section 1.1 and shown in Fig. 1. 

The method has culminated in the development of an ontology for automated prediction of 
defect severity (automatic classification of defects into the severity levels from the IEEE 
standard in [2]). We should point out that the two main purposes to use this ontology, though 
not the only ones, are 

 sharing common understanding of the structure of information among people or 
software agents – achieved by using the IEEE standard for the defects’ attributes and 
their values; 

 enabling reuse of domain knowledge – achieved by reusing the ontology and the 
developed classification rules in order to predict the severity levels of defects from 
various projects. 

Although there are different reasons for developing and using ontologies, as mentioned in 
Section 2.2, it turns out that the above two are the most common reasons for using ontologies, 
as evident by the survey results in [17]. 

The process of developing the ontology is an essential part of MAPDESO. However, once the 
ontology is developed, this process does not need to be repeated when using the method. In 
other words, developing the ontology is done only once, while using it can be done multiple 
times. In the first subsection we will describe the process of developing the ontology so that it 
will be clear later how the ontology and the classification work. After that, we will explain the 
method and we will refer to using the ontology as a black box process – only the input and the 
output will be mentioned. 

3.1. Developing the ontology 
In Section 2.2, we referred to an approach for ontology development. For clarity and 
understandability, we will follow that approach when explaining how the ontology was 
developed. 

3.1.1. Meta-meta level 
This is the phase for defining the foundation of the ontology. In fact, we have completed this 
phase since we already know which ontology editor, language and reasoner we will use – 
Protégé-OWL, OWL-DL and Pellet, respectively (for more information refer to Sections 2.2-
2.5). Hence, the ontology development approach has a predefined meta-meta level. 

3.1.2. Meta level 
This is the phase in which the key concepts in the ontology and their relations are defined. For 
our ontology, in this phase, we defined and created the base classes and the properties. 
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Classes are the focus of most ontologies and they represent concepts in a domain of discourse 
[11]. They are described using formal (mathematical) descriptions that state precisely the 
requirements for membership of the class. They may be organized into a superclass-subclass 
hierarchy, also known as a taxonomy [13]. At this level of ontology development we created 
the following classes: 

 Defect – this class represents all defects. 
 Effect – this class represents attribute Effect from the IEEE standard in [2]. Its values 

are quality properties and classes of requirements that are impacted by a failure caused 
by a defect. 

 Type – this class represents attribute Type from the IEEE standard. The type of a 
defect represents the nature of that defect. The attribute’s values are categorizations 
based on the class of code or the work product within which a defect is found. 

 InsertionActivity – this class represents attribute Insertion activity from the IEEE 
standard. Its values are the activities during which a defect is inserted. 

 DetectionActivity – this class represents attribute Detection activity from the IEEE 
standard. Its values are the activities during which a defect is detected. 

We created the properties describing the relations between the defects and the attributes from 
the standard. Hence, these properties describe the relations between class Defect and classes 
Effect, Type, InsertionActivity and DetectionActivity (if these properties relate to the 
classes, then the same relations will also hold for the respective subclasses). Figure 5 presents 
the created classes and properties for the ontology. 

Figure 5. The created classes and properties for the ontology. 

On the figure are shown five properties. They are the following: 

hasEffectOn* – this is an object property (linking an individual to an individual [13]) that 
relates class Defect (domain of the property) to class Effect (its range). Hence, this property 
relates a defect to one or more quality properties (e.g., performance, functionality) affected by 
it. The asterisk at the end of the property means that its range accepts one or more values. 

hasType* – this is an object property that relates class Defect (domain) to class Type 
(range). This property relates a defect to one or more values of the range (e.g., data, interface). 
The asterisk at the end of the property means that its range accepts one or more values. 

isInserted – this is an object property that relates class Defect (domain) to class 
InsertionActivity (range). In other words, this property relates a defect to its insertion activity 
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(e.g., design, coding). The absence of an asterisk at the end of the property means its range 
accepts only a single value, which implies that this is a functional property [13]. 

isDetected – this is an object property that relates class Defect (domain) to class 
DetectionActivity (range). In other words, this property relates a defect to its detection 
activity (e.g., supplier testing, production). The absence of an asterisk at the end of the 
property means its range accepts only a single value, which, as above, implies this is a 
functional property [13]. 

hasEffectOnNumber* – this is a datatype property (linking an individual to a specific 
datatype [13], for example, integers) that relates class Defect and its subclasses (domain) to 
datatype Integer (range). This property represents the number of values (an integer) of 
attribute Effect that are affected by a defect. The asterisk at the end of the property means that 
its range accepts one or more values (the integer 1 or the integer 2, etc.). 

It is important to note that the relations defined by the five properties will be used specifically 
for the subclasses of the classes mentioned above. Moreover, in Fig. 5, the object properties 
are depicted in blue color while the datatype property is depicted in black for easier 
differentiation. The datatype Integer is given in a rounded rectangle to point out that it is not 
a class (depicted with rectangles) but a datatype. 

3.1.3. Class level 
In this phase we define the sub-concepts of the key concepts defined at the Meta level. In the 
current ontology, this means that we will add the required subclasses to the existing classes. 
Hence, for class Defect, we defined six subclasses. They are the following: 

 DefectID – this class represents all defects input in the ontology as its subclasses. 
 DefectWithBlockingSL – this class represents all defects assigned blocking severity 

level (they are displayed as its subclasses after performing the ontology classification). 
 DefectWithCriticalSL – this class represents all defects assigned critical severity level 

(they are displayed as its subclasses after performing the ontology classification). 
 DefectWithMajorSL – this class represents all defects assigned major severity level 

(they are displayed as its subclasses after performing the ontology classification). 
 DefectWithMinorSL – this class represents all defects assigned minor severity level 

(they are displayed as its subclasses after performing the ontology classification). 
 DefectWithInconseqSL – this class represents all defects assigned inconsequential 

severity level (displayed as its subclasses after performing the ontology classification). 

The five classes that are related to the five severity levels from the IEEE standard are defined 
as disjoint from each other because every defect is assigned one and only one severity level. 

In the ontology class hierarchy the defects are subclasses of class DefectID. As mentioned 
earlier and clearly stated in [13], one of the key features of OWL-DL is that the superclass-
subclass relationships can be computed automatically by a reasoner. Hence, to use this 
feature, we have to input the specific defects as separate classes. Moreover, they are input as 
subclasses of class DefectID for clarity and readability of the overall ontology taxonomy. 
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Figure 6 presents the class hierarchy for class Defect and its subclasses. 

Figure 6. Class Defect and its subclasses. 

Next, we created the subclasses for the other four classes. Since the classes are the attributes 
from the IEEE standard, their subclasses are the values of the respective attributes. For 
clarification and readability, Fig. 7 shows class Effect together with its relation to the quality 
properties (the hasvalue arrow). Moreover, the figure shows the created subclasses (using 
isa arrows) which are the values of attribute Effect. These subclasses are listed below together 
with their definitions, as taken from the IEEE standard in [2]: 

 Functionality – actual or potential cause of failure to correctly perform a required 
function (or implementation of a function that is not required), including any defect 
affecting data integrity. 

 Usability – actual or potential cause of failure to meet ease of use requirements. 
 Security – actual or potential cause of failure to meet security requirements, such as 

those for authentication, authorization, privacy/confidentiality, accountability (e.g., 
audit trail or event logging), and so on. 

 Performance – actual or potential cause of failure to meet performance requirements 
(e.g., capacity, computational accuracy, response time, throughput, or availability). 

 Serviceability – actual or potential cause of failure to meet requirements for 
reliability, maintainability, or supportability (e.g., complex design, undocumented 
code, ambiguous or incomplete error logging). 

Figure 7. Class Effect and its subclasses – the values of attribute Effect. 
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Figure 8 presents class Type and its subclasses using isa arrows. These subclasses are the 
values of attribute Type. They are listed and defined below using the definitions from [2]: 

 Data – defect in data definition, initialization, mapping, access, or use, as found in a 
model, specification, or implementation. 

 Interface – defect in specification or implementation of an interface (e.g., between 
user and machine, between two internal software modules, between software module 
and database, between internal and external software components, between software 
and hardware, etc.). 

 Logic – defect in decision logic, branching, sequencing, or computational algorithm, 
as found in natural language specifications or in implementation language. 

 Description – defect in description of software or its use, installation, or operation. 
 Syntax – nonconformity with the defined rules of a language. 
 Standards – nonconformity with a defined standard. 
 Other – defect for which there is no defined type. 

Figure 8. Class Type and its subclasses – the values of attribute Type. 

Figure 9 shows class InsertionActivity and its subclasses. The subclasses represent the values 
of attribute Insertion activity. They are given below together with their definitions from [2]: 

 InRequirements – defect inserted during requirements definition activities (e.g., 
elicitation, analysis, or specification). 

 InDesign – defect inserted during design activities. 
 InCoding – defect inserted during “coding” or analogous activities. 
 InConfiguration – defect inserted during product build or packaging. 
 InDocumentation – defect inserted during documentation of instructions for 

installation or operation. 

Figure 10 presents class DetectionActivity and its subclasses, which represent the values of 
attribute Detection activity. These subclasses and their definitions from [2] are listed below: 

 FromRequirements – defect detected during synthesis, inspection, or review of 
requirements. 

 FromDesign – defect detected during synthesis, inspection, or review of design. 
 FromCoding – defect detected during synthesis, inspection, or review of source code. 
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Figure 9. Class InsertionActivity and its subclasses – the values of attribute Insertion activity. 

Figure 10. Class DetectionActivity and its subclasses – the values of attribute Detection activity. 

 FromSupplierTesting – defect detected during any testing conducted by the supplier. 
 FromCustomerTesting – defect detected during testing conducted by the customer. 
 FromProduction – defect detected during production operation and use. 
 FromAudit – defect detected during an audit (pre-release or post-release). 
 FromOther – defect detected during any other activity, such as user/operator training 

or product demonstrations. 

3.1.4. Instance level 
This is the most specific phase. Instances represent knowledge that is specific to real projects 
or systems to which the developed ontology will be applied. Hence, the specific defects input 
in the current ontology can be regarded as instances. However, as already explained, the 
defects are input as classes that are subclasses of DefectID. For example, Fig. 11 shows five 
particular defects input in the ontology as subclasses of DefectID (the other defects are not 
present because of space concerns). In fact, Fig. 11 represents an extended version of Fig. 6 
up to some minor layout differences, which are explained later. 

Figure 11. Class Defect, its subclasses and five particular defects. 
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3.1.5. Classification rules 
For the current ontology we have also developed classification rules that are responsible for 
the classification of the input defects into the five severity levels from the standard. We have 
developed five sets of rules – one set of rules for each of the five classes 
DefectWithBlockingSL, DefectWithCriticalSL, DefectWithMajorSL, DefectWithMinorSL 
and DefectWithInconseqSL. 

The classification rules represent necessary and sufficient conditions for a defect to belong to 
one and only one of the above five classes. In other words, if a defect satisfies the set of rules 
corresponding to one of the five classes, then this defect belongs to that class and is assigned 
the severity level corresponding to the class (i.e., blocking-, critical-, major-, minor- or 
inconsequential severity level). On the other hand, if a defect belongs to one of the five 
classes, then it satisfies the set of rules corresponding to that class. 

Next, we list the rules for each of the five classes and explain their meaning.  

Rule 1 (R1) defines the necessary and sufficient conditions for a defect with blocking severity 
level (class DefectWithBlockingSL). It consists of two sub-rules and they are the following: 

(R1.1)  Defect 

(R1.2)  hasEffectOnNumber min 4 

These sub-rules mean the following: an entity is assigned blocking severity level if and only if 
it is: (R1.1) a defect; (R1.2) affecting at least four of the values of attribute Effect (which 
represent quality properties as already mentioned). 

Rule 2 (R2) defines the necessary and sufficient conditions for a defect with critical severity 
level (class DefectWithCriticalSL). It consists of five sub-rules and they are the following: 

(R2.1)  Defect 

(R2.2)  (hasEffectOnNumber exactly 2) or (hasEffectOnNumber exactly 3) 

(R2.3)  (isInserted only (InDesign or InRequirements)) or              
((isInserted only (InCoding or InConfiguration)) and ((hasEffectOnNumber 
exactly 3) or (hasType min 2))) 

(R2.4)  hasType only (Data or Interface or Logic) 

(R2.5)  isDetected only (FromCoding or FromSupplierTesting or FromCustomerTesting 
or FromProduction) 

These sub-rules mean the following: an entity is assigned critical severity level if and only if 
it is: (R2.1) a defect; (R2.2) affecting exactly two or exactly three of the values of attribute 
Effect; (R2.3) inserted during the design phase or the requirements phase, or inserted during 
the coding phase or the configuration phase and affecting exactly three values of attribute 
Effect or at least two values of attribute Type; (R2.4) affecting one or more of the values 
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Data, Interface or Logic of attribute Type; (R2.5) detected during the coding phase, or the 
supplier testing phase, or the customer testing phase, or during production use. 

In Rule 2 the operator or represents logical disjunction and the operator and represents logical 
conjunction. The same applies for these operators in the other rules (if they are present in the 
other rules). 

Rule 3 (R3) defines the necessary and sufficient conditions for a defect with major severity 
level (class DefectWithMajorSL). It consists of two sub-rules and they are the following: 

(R3.1)  Defect 

(R3.2)  not DefectWithBlockingSL and        
(not DefectWithCriticalSL or ((isInserted only (InCoding or InConfiguration)) and 
(hasEffectOnNumber exactly 2) and ((hasType only Data) or (hasType only 
Interface) or (hasType only Logic)))) and         
not DefectWithMinorSL and           
not DefectWithInconseqSL 

These sub-rules mean the following: an entity is assigned major severity level if and only if it 
is: (R3.1) a defect; (R3.2) not a defect with blocking severity level, and not a defect with 
critical severity level or it is inserted during the coding phase or the configuration phase and is 
affecting exactly two values of attribute Effect and only one of the values Data or Interface or 
Logic of attribute Type, and not a defect with minor severity level and not a defect with 
inconsequential severity level (the reason for adding the part of this sub-rule after not 
DefectWithCriticalSL and before and not DefectWithMinorSL is explained in details in 
Appendix A in order not to disrupt the flow of the method description). 

In Rule 3 the operator not represents negation (also called logical complement). The same 
applies for this operator in the other rules (if it is present in the other rules). 

Rule 4 (R4) defines the necessary and sufficient conditions for a defect with minor severity 
level (class DefectWithMinorSL). It consists of four sub-rules and they are the following: 

(R4.1)  Defect 

(R4.2)  hasEffectOn some (not Usability and not Security) 

(R4.3)  hasEffectOn only (not Usability and not Security) 

(R4.4)  hasEffectOnNumber max 1 

These sub-rules mean the following: an entity is assigned minor severity level if and only if it 
is: (R4.1) a defect; (R4.2) affecting some values of attribute Effect that are not Usability and 
Security; (R4.3) affecting only values of attribute Effect that are not Usability and Security 
(this sub-rule is needed in order to make sure that the defect can only have the specified 
values – such a sub-rule is known as a closure axiom [13]); (R4.4) affecting at most one value 
(and, therefore, exactly one) of attribute Effect. 
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Rule 5 (R5) defines the necessary and sufficient conditions for a defect with inconsequential 
severity level (class DefectWithInconseqSL). It consists of three sub-rules and they are: 

(R5.1)  Defect 

(R5.2)  hasEffectOn some Usability 

(R5.3)  hasEffectOn only Usability 

These sub-rules mean the following: an entity is assigned inconsequential severity level if and 
only if it is: (R5.1) a defect; (R5.2) affecting value Usability of attribute Effect; (R5.3) 
affecting only value Usability of attribute Effect (as above, this sub-rule is needed in order to 
make sure that the defect can only have the specified value). 

The classification rules complement the developed ontology. Hence, it is important to point 
out that these rules 

 were developed manually based on the pattern of the empirical data (from Case 
Studies 1 and 2 – see Section 4) and on heuristic strategies, such as intuitive judgment, 
etc. The rules were later improved to be as general as possible in order to apply the 
method to various software projects (see the validation in Section 5 for an example). 

 use designers’ recommendations – the designers’ logical argumentation for translating 
the user requirements into the software design and for assigning severity levels to 
eventual defects is studied and incorporated in the rules. 

 give more weight to defects inserted during the requirements and design phases than 
during the coding and configuration phases – this way, the defects inserted earlier in 
the software cycle will be given higher severity levels and hence, fixed sooner than 
other defects. Therefore, more users of the software product will be satisfied. 

 consider the quality properties affected by a defect as a key component (but are not 
restricted only to that) for classifying the defect into one of the five severity levels. 
Thus, the greater the extent to which a defect affects the quality of the software, the 
higher the severity level that will be assigned to the defect. 

As a result, using these rules, defects will be assigned severity levels in a way that will reflect 
what is important not only according to the developers/test analysts but also according to the 
users of the software system. 

3.2. The method flow 
It is clear now how the ontology was developed. In this subsection we will focus on how to 
use the ontology in order to automatically predict the severity levels of defects from different 
projects. The method consists of the following steps: detecting defects; analyzing and 
converting the information about the defects into the information needed as input for the 
ontology; entering the converted information about the defects into the ontology; and, lastly, 
predicting the severity levels of the defects input in the ontology through a single click of a 
button. These steps are illustrated in the UML activity diagram in Fig. 12 on the next page. 
The diagram represents a reference point for the description of the whole method flow. 
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Figure 12. Activity diagram for automated prediction of defects’ severity levels. 
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Before explaining the details of MAPDESO, it should be noted that there are two options 
when using it, as illustrated in Fig. 12. The first option is to apply the method to a project that 
does not use the IEEE standard in [2] for describing its defects. And the second option is to 
apply the method to a project that has adopted the IEEE standard for describing its defects. 
The obvious difference is the omission of the second step from the method as given above. 
The reason stems from the fact that once a project is using the IEEE standard for describing 
its defects, then the defects and their information can be directly input in the ontology. There 
is no need to convert the defects’ information because it is already in the form needed to input 
the defects in the ontology. However, below we will describe and explain all steps of the 
method. 

3.2.1. Detection of defects 
The testing activity in the software development cycle detects defects, which software teams 
have to fix. For our research, testing at the system level was the main source of defects. 
However, we also took into consideration defects detected during the coding phase and during 
maintenance. Therefore, the four activities, used in this method to detect defects (no detected 
defects is also a possibility), as defined in [2], are 

 coding – defects detected during synthesis, inspection, or review of source code; 
 supplier testing – defects detected during testing conducted by the supplier; 
 customer testing – defects detected during testing conducted by the customer; 
 production – defects detected during production operation and use. 

As explained earlier, the next step (Section 3.2.2) is required for projects not using the IEEE 
standard for describing their defects and it is redundant for projects using the standard for 
describing their defects. 

3.2.2. Analysis and conversion of the defects’ information 
Taking this step implies that the software project to which the method is applied has not 
adopted the IEEE standard for describing its defects. Hence, the information about detected 
defects is gathered and stored in a way that is, most probably, specific only for the project in 
question. For example, the set of severity levels might contain three, four, five or more levels; 
the defect tracking system might not contain any information about a defect’s insertion 
activity or type; etc. After analyzing the available information about defects from such a 
project, it is evident that this information has to be converted into the defect attributes and 
their values from the standard in [2] in order to apply the method to the project. In our 
research, the analysis and conversion were done manually. This manual process consisted of: 

 studying the project documentation and the available information from the defect 
tracking system – this way, we were able to understand the information contained in 
the defect reports; 

 conducting interviews with members of the software team – we used their project 
knowledge in order to gather the information needed for the conversion. 

After that, we analyzed the data acquired from the above two steps and if the data were not 
enough, the steps were repeated. Then, based on the analysis and on the recommendations of 
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the software team members, we converted the gathered information about the defects into the 
defect attributes and their values from the standard. The used attributes are Effect, Type, 
Insertion activity and Detection activity, as defined in [2]. 

It turned out that it is quite easy to present the results from the analysis and conversion step in 
a table. The table has five columns representing the Defect ID and the used attributes and 
every row after the first one (which is the top row) represents separate defects with the 
respective values of the attributes for each and every defect. Table 1 below shows the top row 
of the table together with example values of the attributes for a fictitious defect. 

Table 1. The format of the table presenting the results from the analysis and conversion step 

Defect ID Effect Type Insertion 
Activity 

Detection 
Activity 

001 Functionality; 
usability Logic Coding Supplier 

testing 
… … … … … 

 

As a future direction, there might be another way to complete the analysis that, in fact, can 
automate it. It is possible to use natural language processing and data mining algorithms to 
extract the needed information from the defect reports. This way, the extracted defect 
information will be converted into the attributes and their values from the standard. Although 
this option was not used in the research, it might be a very useful way to further automate this 
method, as explained in Section 8.  

3.2.3. Entering the converted information into the ontology 
This step presents a few ways for entering the converted information into the ontology using 
the Protégé-OWL editor. 

When Table 1 is completed the method continues with entering the converted information (or, 
in other words, the information from Table 1) into the ontology. This step can be divided in 
two. First, the classes for all defects that will be input in the ontology should be created as 
subclasses of class DefectID (as explained in Section 3.1.3). And second, the converted 
information about the defects (from Table 1) should be added to the created classes. 

The editor we used for developing the ontology – Protégé-OWL, gives us three options for 
inputting the defects in the ontology. The first one is to manually create the classes for all 
defects and fill out all properties and the values of their respective ranges for every class. The 
second option is to use two editors – with the first one (called Create Multiple Subclasses) the 
classes are created, while with the second one (called Quick Restriction Editor) the 
information about the defects is added to the classes. The third option is to use the Excel 
Import plug-in – a batch importing plug-in from Protégé-OWL. It provides the opportunity to 
generate classes from the contents of Excel or CSV (comma-separated values) files. For 
example, the classes for the defects can be generated from the contents of the first column of 
Table 1. Then, to add the converted information to the created classes, restrictions are 



Martin Iliev  3. METHOD DESCRIPTION 
 

- 29 - 
 

generated or, in other words, the first column of Table 1 is related to the other columns via the 
properties defined in Section 3.1.2. 

If Table 1 contains ten or twelve defects, for instance, then it will be relatively easy to enter 
them and their information manually into the ontology. If, however, the table contains many 
defects – twenty or more, then it is also possible to enter everything manually but it will be 
very time-consuming. Hence, in either case, it is more feasible not to use the first option. 
Completing the current step using the other two options is similar to a great extent. Since the 
second option provides important details for inputting the defects in the ontology, we used 
this option. The two editors are explained below together with some examples. 

3.2.3.1. Creating the classes for the defects – editor Create Multiple Subclasses 
Editor Create Multiple Subclasses is depicted in Fig. 13. The left side of the figure shows the 
steps that need to be completed in order to create the classes for all defects. This editor gives 
the opportunity to select the superclass that will contain all created classes (step 2 “Select 
superclass”). In this case, the superclass is class DefectID. Then, the names of the classes can 
be entered (or copied from other sources) and they will be created as subclasses of the 
selected superclass (step 3 “Enter names” – this step is shown in details in Fig. 13). It is 
valuable to know that prefixes and suffixes can be added for all class names and that the 
editor automatically validates that the entered terms are valid Protégé names. Moreover, the 
editor allows disjoints (step 4 “Disjointness”) to be added automatically between all new 
siblings (and also between the new and the existing ones). We need to add disjoints since all 
defects are entered as separate and unique classes. In the end, the successful creation of the 
classes for all defects is confirmed by the editor (step 5 “Results”). 

Figure 13. Editor Create Multiple Subclasses. 
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3.2.3.2. Adding the converted information to the classes – Quick Restriction Editor 
Editor Quick Restriction Editor is depicted in Fig. 14. Similarly to above, the left side of the 
figure shows the steps that need to be completed in order to input the converted information in 
the ontology. The editor gives the opportunity to choose the classes that will be the domains 
(step 2 “Choose classes”) and the object properties (step 3 “Choose properties”) through 
multiple selections. Default values for the ranges of the chosen properties can be provided if 
needed (step 4 “Defaults”). Then, the values of the respective ranges can be edited through 
multiple selections or by choosing a value from a drop-down list (step 5 “Edit restrictions” – 
this step is shown in details in Fig. 14). An important and very useful feature of this editor is 
that it can create the closure axioms for all chosen object properties (step 6 “Closure”). As 
mentioned earlier, adding closure axioms for the chosen properties is essential since the 
axioms explicitly state that defects can have the values they are given and only these values. 
This way, the reasoner will be able to unambiguously classify the defects into the predefined 
severity levels and no inconsistencies will occur. In the end, the editor displays a message 
(step 7 “Results”) confirming the successful creation of all relations (also called restrictions) 
between the chosen classes, object properties and values of the ranges. 

This editor, however, does not allow using datatype properties and, therefore, their ranges 
have to be filled out manually for every defect input in the ontology. 

In our research, we worked with more than thirty defects at all times. Thus, for creating the 
classes for all defects, the editor Create Multiple Subclasses was used. Then, for the four 
object properties, defined in Section 3.1.2, the Quick Restriction Editor was used to input the  

Figure 14. Editor Quick Restriction Editor. 
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values of the ranges for all defects and to create the respective closure axioms. After that, for 
the datatype property (Section 3.1.2), we input manually the values of its range for all defects. 

In the end of this step, all defects and their converted information were input in the ontology. 
An example for the outcome from this step is illustrated in Fig. 15. It presents how the 
converted information about a defect looks like after the defect and its information are input 
in the ontology. This example features a defect with ID 205, which is represented by class 
DefectID205 in the ontology. As given on the left side of the figure, this defect is selected 
among the other defects in the ontology. The converted information about the defect is shown 
on the right side of the figure. Similar information is displayed for all defects input in the 
ontology upon selection. 

Figure 15. DefectID205 and its converted information after entering them into the ontology. 

 

3.2.4. Automatically predicting the severity levels of defects 
The last step in the method, once all defects and their information are input in the ontology, is 
to automatically predict the defects’ severity levels. For achieving this goal, the input defects 
are automatically classified into the predefined severity levels using the developed rules (see 
Section 3.1.5) and the Pellet reasoner (see Section 2.5). 

Defects are input in the ontology as separate classes, as explained in Section 3.2.3. Once this 
step is successfully completed, Pellet is employed to automatically classify the ontology 
hierarchy based on the developed rules. This is easily achieved by a single click of the 
“Classify taxonomy…” button available in the Protégé-OWL editor. A new window opens – 
depicted in Fig. 16, showing the process the reasoner goes through – synchronizing; checking 
the consistency of the ontology hierarchy; computing the inferred hierarchy and the 
equivalent classes (the reasoning phase). Upon the successful completion of this process, the 
inferred ontology hierarchy and the classification results are displayed in the editor. However, 
if the reasoner detects inconsistencies in the ontology hierarchy, it will display one or more 
classes, found to be inconsistent, in the window in Fig. 16. These classes and the respective 
defects should be checked. If the input information is incorrect or some of it is missing, it 
should be corrected and completed. Then, the classification of the ontology hierarchy should 
be repeated. The same applies if classes, which are not classified at all, are found while 
browsing through the inferred ontology hierarchy. 
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Figure 16. Pellet classification process. 

The classification results are presented in Fig. 17. The left column contains the classes of 
every defect input in the ontology. The right column contains the classes that the classes from 
the left column are added to as subclasses. The classes in the right column represent the five 
severity levels from the IEEE standard. Hence, the classification results clearly show the 
severity level that is predicted for every defect input in the ontology. For example, in Fig. 17, 
class DefectID203 is added as a subclass to class DefectWithCriticalSL. Therefore, 
according to the developed method, this defect is predicted as having critical severity level. 

Figure 17. Classification results. 
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Figure 18 represents Fig. 11 after the ontology classification has been performed. Hence, for 
the five defects in Fig. 11, the reasoning phase has added links to the predicted severity levels. 
The layout of Fig. 11 and 18 is different from that of Fig. 6 (e.g., classes are denoted with 
ovals instead of rectangles) due to using a visualization tool that can display the results from 
the reasoning phase, as shown in Fig. 18. 

Figure 18. The five defects from Fig. 11 after performing the ontology classification. 

In addition, the inferred ontology hierarchy, which is also a result from the classification 
process, can be used to easily browse through defects assigned a specific severity level. In 
other words, all defects, assigned blocking severity level, are grouped together as subclasses 
of class DefectWithBlockingSL. The same applies to the other defects and severity levels. 
This way, software teams can focus on fixing only defects assigned, for example, blocking- 
and critical severity level according to the period of time they have available. 

3.3. Section summary 
In this section we described the details of MAPDESO – the method for automated prediction 
of defect severity using ontologies. First, the process of developing the ontology was 
explained though this process is performed only once and it does not need to be repeated for 
using the method. Then, the details of the automated prediction method were presented in the 
same order in which the method could be applied to a real software project. The section ended 
with examples of results achieved by using the method. 

The knowledge acquired until now is used to fully understand the approach applied to the case 
studies in Section 4, the validation in Section 5 and the comparison in Section 6. 
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4. CASE STUDIES 
 

The two case studies in the research were conducted in an industrial environment – in the 
Technical Software Engineering Practice of Logica Netherlands B. V. (a company providing 
business consulting, technology and outsourcing services), in the company’s office in 
Rotterdam, the Netherlands. 

Both case studies follow the same approach. The approach is divided in three parts: data 
collection, data analysis and conversion, and data classification. As mentioned in Section 3, 
the classification rules were developed using the data from these two case studies. Thus, the 
data can be regarded as the training data for the developed ontology and rules. 

4.1. Case Study 1 
Reference [15] presents the approach and the results from Case Study 1 (CS1). However, 
since the completion of CS1, as explained in [15], we have improved a few things in the 
approach to the case study, which led to minor changes in the results. Hence, now we will 
present this improved version of the approach and the results from CS1. 

Case Study 1 is based on a project for which Logica has developed the front-end software. 
The outcome from this project is an embedded traffic control system. 

4.1.1. Data collection 
The data represent fixed defects from the testing phase of the project. For keeping track of the 
defects found in the system during the testing phase, an issue management system (tracking 
system) has been used. Once a test analyst finds a defect, he inputs a corrective change 
request in the tracking system. It contains specific information about the defect such as its 
description, the version of the system that has been tested, where the defect originates from, 
the severity level of that defect (which is assigned by the test analyst), etc. The severity levels 
used in the project and as defined for the project are the following: 

 Showstopper – a defect with such a severity level prevents the system from being put 
in production. 

 Severe – a defect with such a severity level allows the system to be put in production 
if there is a workaround. 

 Medium – a defect is assigned such a severity level if the system can work and this 
defect is not included in any other of the three categories of severity levels (this is the 
default severity level used in this project). 

 Minor – a defect is assigned such a severity level if the system works but the users are 
annoyed by the defect. 

The main part in the data collection step was to collect relevant and useful data for the 
purposes of the research. In order to do this, at least basic knowledge of the project in 
question was required. To gain such knowledge, the project was studied using its 
documentation – mainly design documents, UML diagrams, user manual, test documents. 
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These documents provided insights about the development of the project, its defect tracking 
system, the severity levels used in it and how to extract the required details about the defects. 
After that, the tracking system was used to extract a representative sample of 33 defects based 
on the project knowledge and the recommendations of the designers, the developers and the 
test analyst working on the project. This subset was selected to include defects from each 
severity level used in the project. The selected defects have been fixed in the latest version of 
the system (since only the latest version of the system contains the latest version of the design 
and the requirements), yet their number is limited because of time constraints. Table 2 
presents details about the number of fixed defects according to the project’s severity levels. 
The last column of the table shows the distribution of the selected defects according to the 
severities from the project. 

Then, interviews were conducted with the same people working on the project to get detailed 
information about the selected defects and to verify that they are a representative subset 
(almost one third) of all defects fixed in the latest version of the system. 

4.1.2. Data analysis and conversion 
The detailed information about the 33 defects from the data collection step includes the 
following: the severity levels of the defects, the causes for the defects, the types of the defects, 
the reasons for assigning a specific severity level to a defect and the ways through which the 
defects were found. Since this information is project-specific, the IEEE standard in [2] was 
used to convert the project-specific information about the defects into the project-independent 
attributes and their values defined in this standard. As explained in Section 1.3, the used 
attributes are the following: Severity, Effect, Type, Insertion activity and Detection activity. 
This conversion resulted in a table that contains the defect IDs (as used in the ontology) 
together with the values of the attributes from the standard assigned to each defect based on 
its detailed information. Table B.1.L in Appendix B presents the results from the conversion. 

As already mentioned, the project used in CS1 has four severity levels. However, the ontology 
uses the severity levels from the IEEE standard (which provides five severity levels). 
Therefore, a relation should be defined that matches the severity levels from the project to the 
ones provided by the standard. This relation is defined in Table 3. 

4.1.3. Data classification 
The data classification step begins with entering the defects and the converted information 
about them from the previous subsection (see Table B.1.L in Appendix B) into the ontology. 

Table 2. Number of fixed defects according to the severity levels from the project in CS1 

Severity Level 
Number of Fixed Defects 

In all versions 
of the system 

In the latest version 
of the system 

Selected for 
Case Study 1 

Showstopper 6 1 1 
Severe 47 10 10 

Medium 301 93 17 
Minor 85 12 5 
Total 439 116 33 
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Table 3. The relation between the severity levels for CS1 

Severity Levels 
From the IEEE Standard Classification 

and used in the ontology From the project used in Case Study 1 

Blocking Showstopper 
Critical Severe 
Major Medium 
Minor Minor 

Inconsequential Minor 
 

Following the explanations in Section 3.2.3, we created the classes for the 33 defects as 
subclasses of class DefectID. These subclasses were named DefectID101, DefectID102, 
and so on up to DefectID133 because they are part of CS1 and their total number is 33. Next, 
the converted information about the defects was input in the ontology in the same way as 
explained in Section 3.2.3. It is visible from Table B.1.L that the input consists of the 
information about the defects concerning the values of attributes Effect (which represent 
quality properties), Type, Insertion activity and Detection activity. 

As explained in Section 2.5, for the ontology development and the automatic classification we 
use the Protégé-OWL ontology editor with the OWL-DL language and the Pellet reasoner, 
respectively. Hence, the data classification step ends with the automatic classification of the 
defects into the predefined severity levels. Similarly to the process explained in Section 3.2.4, 
the Pellet reasoner classified all defects from CS1 input in the ontology into the five severity 
levels. The results from the classification were displayed in the ontology editor. 

4.1.4. Results 
The results can be found in Table B.1.R in Appendix B. The first column gives the original 
severity levels of the defects from the project while the second one contains the severity levels 
converted to the IEEE standard using the relation in Table 3. The third column presents the 
severity levels predicted by the developed method. The rows in Table B.1.R are distributed in 
such a way that they correspond to the rows in Table B.1.L for easy reference between the 
tables. 

Next, we compared the results obtained using the automated prediction method with the 
results from the original classification (after applying the relation in Table 3). In other words, 
we compared the third column of Table B.1.R with the second column of the same table. 
Table 4 presents a summary of the results from the comparison between the two 
classifications using a confusion matrix. The numbers given in bold (on the diagonal) 
represent the number of defects classified into the same severity levels by both classifications. 
The numbers shown above the diagonal represent the number of defects classified into lower 
severity levels by the ontology than by the original classification. The remaining numbers 
(shown below the diagonal) represent the number of defects classified into higher severity 
levels by the ontology than by the original classification. Therefore, using the table, it can be 
easily calculated that the ontology classified 55% of the defects into the same severity levels  
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Table 4. Summary of the results from the comparison using a confusion matrix (CS1) 

  Automatic (Ontology) Classification for CS1 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-
cation 

from CS1 

Blocking 1 0 0 0 0 
Critical 0 7 3 0 0 
Major 0 7 6 2 2 
Minor 0 0 0 2 1 

Inconsequential 0 0 0 0 2 
 

as originally. 24% of the defects were classified into lower severity levels by the ontology 
while 21% were classified into higher severity levels by the ontology than by the manual 
(original) classification. These results are summarized in Fig. 19. 

Figure 19. Percentages of the 33 defects (from CS1) classified into the same severity levels (SLs), lower SLs 
and higher SLs by the ontology compared with the original classification from CS1. 

There are two reasons for the differences in the classification results. First, the ontology 
classification takes into account the point of view of the user of the software system while 
preserving the developer’s point of view when considering which defects are important for 
fixing and which are not, as opposed to not taking into account the user’s point of view at all 
(for more details see Section 3.1.5). For example, some defects related to the design of and 
the requirements for the software are classified into higher severity levels by the ontology 
than by the original classification (other factors also play a role in the classification process). 
This way, these defects will be given a greater chance of being fixed for the next release, 
which will satisfy more users of the software product. 

The other reason is that there are defects assigned the default severity level by the people 
working on the project without paying much attention whether this is the correct severity level 
or not. As mentioned in Section 4.1.1, the default severity level for the project is medium. 
However, using the relation in Table 3, we see that the default severity level is, in fact, major. 
So, Table B.1.L also contains such defects. Since the developed method classifies all defects, 
the defects assigned the default severity level in that table are assigned critical-, major-, 
minor- or inconsequential severity level by the ontology (as shown in Table 4). Hence, each 
defect is assigned a specific severity level and no default severity levels are used. 

Same SLs 
55% 

Lower SLs 
24% 

Higher SLs 
21% 
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In the end, it should be taken into account that the results from CS1 were presented to two 
software architects from Logica familiar with the project used in CS1. Their opinion was the 
results satisfy the expectations that an automatic classification of defects into predefined 
severity levels is possible and the results from it are satisfactory for an initial case study. 

Based on the achieved from CS1 and having in mind different projects use different sets of 
severity levels, we decided to work on another case study. Additional reason for doing so was 
to use data from a completely different project. The next subsection presents Case Study 2. 

4.2. Case Study 2 
Case Study 2 (CS2) is based on a project that Logica has been developing for eight years. 
Though the project is still in active development, it is already in use by the client. There are 
new releases regularly. The project is concerned with one main application with a couple of 
small utilities. 

4.2.1. Data collection 
In this case study the data represent fixed defects not only from the testing phase, as it was in 
CS1, but also from the post release use of the project. Although the project makes use of a 
different issue management system compared with CS1, it is easy to understand and use. 
When a defect is reported, which can be done by a developer, a test analyst or a user of the 
system, it is input in the defect tracking system. The additional information entered in the 
tracking system includes the defect’s description, the release of the system where it has been 
detected, the origin of the defect, its severity level (which is assigned either by the test analyst 
or by the user or by both of them), etc. This project uses the following severity levels: 

 Block – this severity level is assigned to defects that cause seriously reduced usability 
and, therefore, prevent the system from being released. 

 Crash – a defect with such a severity level causes core dumps (it is not recommended 
to use the system in such cases). 

 Major – this severity level is assigned to defects that cause logic problems leading to 
incorrect results (though the system can be used). 

 Minor – this severity level is assigned to defects that cause cosmetic problems (this is 
the default severity level used in this project). 

One of our concerns when collecting the data was to get relevant and useful data. Hence, we 
studied the project using its documentation – design documents and diagrams, user manuals 
and test documents. Once we gained some knowledge of the project, we continued with 
extracting the defects. The tracking system was used to select defects found during the testing 
phase and the post release use of the project. With the help of the software architect and the 
developers working on the project we extracted a sample of 47 defects. The reasons for 
selecting this subset were to include defects from each severity level from the project that 
have been fixed in the latest releases of the system (similarly to CS1), and to have more 
defects than in CS1 but still limit their number because we were constrained by time. Table 5 
shows details about the number of fixed defects according to the project’s severity levels. The 
last column presents the distribution of the selected defects according to these severities. 
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Table 5. Number of fixed defects according to the severity levels from the project in CS2 

Severity Level 
Number of Fixed Defects 

In the latest releases 
of the system 

Selected for 
Case Study 2 

Block 1 1 
Crash 11 11 
Major 10 10 
Minor 123 25 
Total 145 47 

 

After that, interviews were conducted with the software architect and a developer working on 
the project to get detailed information about the selected defects. We also verified that these 
defects are a representative subset (one third) of the fixed defects in the latest releases of the 
system. 

4.2.2. Data analysis and conversion 
The tracking system in this project provides very project-specific information about the 
defects. Hence, it is difficult to process the detailed information about the 47 defects from the 
previous step out of project context. To alleviate this, we used the IEEE standard in [2] and 
converted the project-specific information about the defects into the defect attributes and their 
values defined in the standard. The used attributes are the same as in CS1. The conversion 
resulted in Table B.2.L in Appendix B. Similarly to CS1, Table B.2.L contains the defect IDs 
(as used in the ontology) together with the values of the attributes from the standard assigned 
to each defect based on its information. 

Moreover, there are four severity levels used in the project in CS2. However, the ontology 
uses five severity levels (from the IEEE standard). Therefore, we defined a relation that 
matches the severity levels from the project in CS2 to the ones in the ontology. Table 6 
presents this relation. 

4.2.3. Data classification 
As in CS1, the data classification step begins with entering the defects and the converted 
information about them from the previous subsection (see Table B.2.L in Appendix B) into 
the ontology. Following the explanations in Section 3.2.3, we created classes for the 47 
defects as subclasses of class DefectID. These subclasses were named DefectID201,  

Table 6. The relation between the severity levels for CS2 

Severity Levels 
From the IEEE Standard Classification 

and used in the ontology From the project used in Case Study 2 

Blocking Block 
Critical Crash 
Major Major 
Minor Minor 

Inconsequential Minor 
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DefectID202, and so on up to DefectID247 because they are part of CS2 and their total 
number is 47. Next, the converted information about the defects was input in the ontology in 
the same way as explained in Section 3.2.3. Table B.2.L shows that the input consists of the 
information about the defects concerning the values of attributes Effect (which represent 
quality properties), Type, Insertion activity and Detection activity. 

The data classification step ends with the automatic classification of the defects into the 
predefined severity levels. Similarly to the process given in Section 3.2.4, the Pellet reasoner 
classified all defects from CS2 input in the ontology into the five severity levels. The end 
results from the classification were displayed in the editor. 

4.2.4. Results 
The results are shown in Table B.2.R in Appendix B. The first column contains the original 
severity levels of the defects from the project while the second one gives the severity levels 
converted to the IEEE standard using the relation in Table 6. The third column presents the 
severity levels predicted by the developed method. Similarly to the tables in CS1, the rows in 
Table B.2.R are distributed in such a way that they correspond to the rows in Table B.2.L for 
easy reference between the tables. 

Next, we compared the results obtained using the automated prediction method with the 
results from the original classification (after applying the relation in Table 6). In other words, 
we compared the third column of Table B.2.R with the second column of the same table. 
Table 7 presents a summary of the results from the comparison between the two 
classifications using a confusion matrix. The numbers given in bold (on the diagonal) 
represent the number of defects classified into the same severity levels by both classifications. 
The numbers shown above the diagonal represent the number of defects classified into lower 
severity levels by the ontology than by the original classification. The remaining numbers 
(shown below the diagonal) represent the number of defects classified into higher severity 
levels by the ontology than by the original classification. As it can be seen on Fig. 20, the 
ontology classified 51% of the defects into the same severity levels as originally, 19% of the 
defects into lower severity levels and 30% into higher severity levels than originally. 

The reasons for the differences in the classification results are very similar to those given in 
CS1. However, the default severity level in CS2 is minor (as opposed to major in CS1). 
Hence, defects that were originally assigned minor severity level are assigned major-, minor- 
or inconsequential severity level by the ontology (as shown in Table 7). 

Table 7. Summary of the results from the comparison using a confusion matrix (CS2) 

  Automatic (Ontology) Classification for CS2 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-

cation from 
CS2 

Blocking 1 0 0 0 0 
Critical 0 9 2 0 0 
Major 0 4 6 0 0 
Minor 0 0 10 7 7 

Inconsequential 0 0 0 0 1 
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Figure 20. Percentages of the 47 defects (from CS2) classified into the same severity levels (SLs), lower SLs 
and higher SLs by the ontology compared with the original classification from CS2. 

Last but not least, the results from CS2 were presented to the software architect and the team 
working on the project used in the case study. Their opinion was the results satisfy the 
expectations that an automatic classification of defects into predefined severity levels is 
possible and the results from it are quite satisfactory compared with the original classification 
results. 

4.3. Summary of the results from Case Study 1 and Case Study 2 
We gathered a total of 80 defects from both CS1 and CS2. In order to summarize the achieved 
results from both case studies we created the confusion matrix in Table 8. It compares the 
manual (original) classification of the defects from CS1 and CS2 with the automatic 
(ontology) classification of the same defects. 

As before, the numbers given in bold (on the diagonal) represent the number of defects 
classified into the same severity levels by both classifications. The numbers shown above the 
diagonal represent the number of defects classified into lower severity levels by the ontology 
than by the original classification. The remaining numbers (shown below the diagonal) 
represent the number of defects classified into higher severity levels by the ontology than by 
the original classification. From Table 8, we can calculate that the ontology classified 53% of 
the defects into the same severity levels as originally, 21% of the defects into lower and 26% 
of the defects into higher severity levels than the original classification. These results are 
summarized in Fig. 21. 

The reasons for the differences in the classification results shown in Table 8 represent the 
addition of the reasons given in CS1 (Section 4.1.4) and those given in CS2 (Section 4.2.4). 

Table 8. Summary of the results from the comparison using a confusion matrix (CS1 and CS2) 

  Automatic (Ontology) Classification for CS1 & CS2 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-

cation from 
CS1 & CS2 

Blocking 2 0 0 0 0 
Critical 0 16 5 0 0 
Major 0 11 12 2 2 
Minor 0 0 10 9 8 

Inconsequential 0 0 0 0 3 

Same SLs 
51% 

Lower SLs 
19% 

Higher SLs 
30% 
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Figure 21. Percentages of the 80 defects (from CS1 and CS2) classified into the same severity levels (SLs), 
lower SLs and higher SLs by the ontology compared with the original classifications from CS1 and CS2. 

 

4.4. Section summary 
Summing up this section, it should be noted that since the gathered data from CS1 and CS2 
can be considered as the training data for MAPDESO, the method has to be tested, too. 
Hence, the next step is to conduct a validation case study and the data from it will serve as the 
test data for MAPDESO. The successful completion of such a case study will validate the 
results achieved by the method when applied to an unknown project. 
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5. VALIDATION 
 

In the beginning of this section, it should be emphasized that for the validation the already 
developed ontology and rules were tested on new data from a different project. Similarly to 
the two case studies from Section 4, the validation was also conducted in an industrial 
environment, namely at Logica. It consists of a Validation Case Study (VCS) and a small 
experiment at the end of the case study. VCS is based on a project whose development is 
completed. Currently, it is in production use and Logica provides its maintenance. The project 
represents an application that handles the messages between different companies and 
operators in order to make everything smooth for the clients. For working on VCS the steps 
below were taken. 

5.1. Approach – VCS 
The approach is divided in three: data collection, data analysis and conversion and data 
classification. An important difference of this approach compared with the one in Section 4 is 
that in VCS the severity levels of the selected defects were excluded from the defect reports. 
The details of the VCS approach are given below. 

5.1.1. Data collection 
The data represent fixed defects detected not only from the testing phase of the project but 
also during its maintenance. Similarly to the other two case studies, a defect can be reported 
by a developer, a test analyst or a user of the system. Once reported, the defect is input in the 
tracking system providing description for it, the date it was detected, the person who detected 
it, its severity level (assigned by a software team member or by a user, or by both), etc. A 
software engineer working on the project revealed that the project uses four severity levels: 

 Top – assigned to defects that hinder the overall use of the system. 
 High – assigned to defects causing disturbances in several components of the system. 
 Medium – assigned to defects that cause disturbance(s) in a single component but do 

not prevent the use of the system. 
 Low – assigned to defects causing minor inconveniences or cosmetic issues; the 

system works if such defects are present (this is the default severity in the project). 

A main concern here was to get relevant and useful data. Since we wanted to be as objective 
as possible when working on VCS, we did not spend any time studying the project’s 
documentation. Instead, for selecting the defects, we relied solely on the help and the 
recommendations of the project’s service coordinator. He provided us with a database 
containing the defect reports for 1163 fixed defects, which have been detected through testing 
activities and maintenance in 2011. Applying the method to all of these defects would have 
taken us much more time than we had for completing the validation. Thus, we considered 
selecting 50 defects also because this number is just a bit more than the number of selected 
defects in each of the previous case studies. As before, this subset included defects from each 
and every severity level from the project. Table 9 presents the distribution of the 1163 defects  
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Table 9. Number of fixed defects according to the severity levels from the project in VCS 

Severity Level 
Number of Fixed Defects 

In the received database Selected for the validation of 
the method 

Top 32 2 
High 180 9 

Medium 328 16 
Low 623 23 
Total 1163 50 

 

and of the 50 defects according to the project’s severity levels. It is straightforward to 
calculate from the table that the distribution of the 50 defects is relatively the same as the 
distribution of the 1163 defects (in terms of percentages) according to the project severities. 

The decision for selecting 50 defects with the distribution shown in Table 9 was made without 
consulting the contents of the defect reports from the received database in order to keep our 
objectivity. After that, we had a couple of meetings with a software engineer from the 
project’s team in order to introduce him to the details of our research. The reason for doing so 
was to get his help with the data conversion step. 

5.1.2. Data analysis and conversion 
According to the received database and as expected, the defect reports contained project-
specific information. Therefore, we asked the same software engineer to convert the project-
specific information about the defects into the attributes and their values defined in the IEEE 
standard. Once again, the reason for this action was to reduce any influence that we might 
have on the data conversion step. In order to complete this step we had a few more meetings 
with the software engineer for further clarifications of our research goals and the format of the 
information that we need to input in the ontology. The conversion resulted in Table B.3.L in 
Appendix B. The table contains the defect IDs, as used in the ontology, together with the 
values of attributes Effect, Type, Insertion activity and Detection activity, assigned to each 
defect based on its information. 

In addition, as given in Section 5.1.1, the project uses four severity levels. As we already 
know, the ontology uses the five severity levels from the IEEE standard. Thus, we defined a 
relation that matches these two sets of severities. Table 10 presents the relation. 

Table 10. The relation between the severity levels for VCS 

Severity Levels 
From the IEEE Standard Classification 

and used in the ontology 
From the project used for the validation of 

the method 
Blocking Top 
Critical High 
Major Medium 
Minor Low 

Inconsequential Low (in fact, not used in the project) 
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5.1.3. Data classification 
The first part of the data classification step is to input the defects in the ontology. To do that, 
we created classes for the 50 defects as subclasses of DefectID. They were named 
DefectID301, DefectID302 and so on up to DefectID350 because they are part of VCS 
which is the third case study we worked on and their total number is 50. After that, the 
converted information about these defects, as given in Table B.3.L in Appendix B, was input 
in the ontology. 

The final part of the data classification step is to automatically classify the defects into the 
predefined severity levels. As in Section 3.2.4, the Pellet reasoner automatically classified all 
defects input in the ontology into the five severity levels. The classification results were 
displayed in the ontology editor. 

5.2. Results 
The results from VCS are given in Table B.3.R in Appendix B. The table is organized in a 
similar way as in the training case studies from Section 4. In other words, the first column 
contains the original severity levels of the defects from the project while the second one gives 
the severity levels converted to the IEEE standard using the relation in Table 10. The third 
column presents the severity levels predicted by the developed method. Moreover, the rows in 
Table B.3.R are distributed in such a way that they correspond to the rows in Table B.3.L for 
easy reference between the tables. 

Once the predicted severity levels of the selected defects were present, we compared them 
with the severity levels from the original classification after applying the relation in Table 10. 
Hence, we compared the third column of Table B.3.R with the second column of the same 
table. A summary of the results from the comparison between the two classifications is 
presented in Table 11 using a confusion matrix. The numbers on the diagonal (given in bold) 
represent the number of defects classified into the same severity levels by both classifications. 
The numbers shown above the diagonal represent the number of defects classified into lower 
severity levels by the ontology than by the original classification. The remaining numbers 
(shown below the diagonal) represent the number of defects classified into higher severity 
levels by the ontology than by the original classification. We have calculated that the ontology 
predicted 64% of the defects as having the same severity levels as originally, 8% of the 
defects as having lower severity levels than in the manual classification from the project, and 
28% of the defects as having higher severity levels than in the manual (original) classification. 
These results are visualized in Fig. 22. 

The reasons for the differences in the classification results are similar to the ones mentioned 
in the case studies since the same rules are used for classifying the defects from CS1, CS2 and 
VCS. The first reason stems from the fact that there are defects assigned the default severity 
level in the project used for VCS. However, the default severity in it differs from the ones in 
the previous projects. As given in Section 5.1.1, this project’s default severity level is low. 
Using Table 10, we see that it converts to minor. So, Table B.3.L also contains defects 
assigned the default severity. Since the ontology classifies all defects, the defects assigned the  
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Table 11. Summary of the results from the comparison using a confusion matrix (VCS) 

  Automatic (Ontology) Classification for VCS 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-

cation from 
VCS 

Blocking 2 0 0 0 0 
Critical 0 8 1 0 0 
Major 0 5 9 2 0 
Minor 0 1 8 13 1 

Inconsequential 0 0 0 0 0 

Figure 22. Percentages of the 50 defects (from VCS) classified into the same severity levels (SLs), lower SLs 
and higher SLs by the ontology compared with the original classification from VCS. 

default severity level in that table are assigned critical-, major-, minor- or inconsequential 
severity level by the automatic classification (refer to Table 11). 

Moreover, as pointed out in Section 3.1.5, the way the classification rules were developed 
implies that the method takes into consideration the point of view of the user of the software 
system while preserving the developer’s point of view when predicting the severity levels. 
This notion is illustrated with a couple of examples. First, the defect with ID 346 from Table 
B.3.L was originally assigned major severity level according to Table B.3.R. However, the 
automatic classification predicts for it critical severity level (see Table B.3.R). The 
combination of the values representing this defect implies that the users of the software will 
be affected more by this defect than originally anticipated when it was assigned major 
severity level. For this reason, the automatic classification predicts for it critical severity level. 
Therefore, this defect will be fixed sooner than initially planned and its fix will be included in 
the next release of the software. And second, the defects with IDs 307, 320 and 333, for 
example, are predicted as having the same severity levels as originally assigned. In this way, 
the automatic classification also aims at preserving the point of view of developers and test 
analysts when predicting which defects are important for fixing and which are not. 

Before continuing further, we should point out that after comparing Fig. 22 with Fig. 21, we 
notice that the results from VCS are better than the results from the training cases. This can be 
contributed to the fact that we have dealt with very reliable defect and severity data. In 
addition, to confirm the above observation and, hence, the successful completion of VCS, we 
validated the results obtained from VCS. After that, we conducted a small experiment with 

Same SLs 
64% Lower SLs 

8% 

Higher SLs 
28% 
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the help of the service coordinator for the project. The details of these two steps and the 
results from them are presented in the following two subsections. 

5.3. Validation of the results 
Validating the above results included presenting them to the software engineer and the service 
coordinator mentioned earlier. Then, by interviewing them, we found out their opinion about 
the performance of MAPDESO compared with the performance of the original (manual) 
classification. Since they played an important role in conducting VCS and they were aware of 
our research goals, it was straightforward to present and discuss the results with them. The 
main points that they have highlighted are mentioned below. 

 The automated prediction method has performed surprisingly well compared with the 
original classification from the project – there are so many defects classified into the 
same severity levels by the ontology as originally especially having in mind that the 
method uses only four attributes from the IEEE standard to predict a fifth attribute – 
the severity levels. 

 If only the defects classified differently (total number of mistakes) are considered, 
then their number should be low. However, as far as the majority of them are 
classified into higher severity levels by our method than by the manual classification 
(which is the case in Table 11), the automated prediction performs very well. In other 
words, it is good that there are more defects classified into high severity levels 
(critical, major) than into low severity levels (minor, inconsequential). 

 It is very practical that the method uses an IEEE standard for the defects’ attributes 
and their values. Although it might be difficult to use this method for current projects 
(because everybody is already using their predefined sets of severity levels) it should 
be applicable for future projects. Hence, future projects will have a standardized 
framework for the defects’ attributes, which implies that people will be able to move 
from project to project, if needed, without wasting extra time for retraining. 

 The method could be very useful for classifying many defects automatically and, then, 
focusing on the defects predicted as having severity level critical and above, for 
example. If necessary, the predicted severity levels could be checked manually and, 
after that, the defects would be fixed in the order of their severity levels. 

The overall opinion of both the software engineer and the service coordinator was that 
MAPDESO yields very promising results. They also added that they would be very interested 
to see the method applied to other real projects. 

5.4. Experiment 
Before concluding the validation of the method, we conducted a short experiment with the 
help of the service coordinator for the project. The motivation for it stems from our 
willingness to explore the similarities and the differences between the originally assigned 
severity levels, the ones assigned by the service coordinator on the fly, and the ones predicted 
by the developed method. The experiment’s setup and results are presented in this subsection. 
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For this experiment, we selected a representative sample of 20 defects out of the 50 defects 
initially selected for VCS. The distribution of the 20 defects according to the severity levels 
from the project is given in Table 12 together with the distribution of the 50 defects used for 
VCS. The table also shows these distributions according to the severity levels from the IEEE 
standard using the relation defined in Table 10. The reasons for this selection were the 
following: first, all parties involved in the experiment were constrained by time; second, the 
distribution of the 20 defects had to be the same as the distribution of the 50 defects (in terms 
of percentages) according to the severity levels (as evident in Table 12); lastly, the sample had 
to contain defects both on and off the diagonal in the confusion matrix (Table 11) instead of 
selecting defects only on the diagonal or only off it. 

Once the selection was ready, the service coordinator used the available information about the 
20 defects to assign severity levels to them. However, both the original and the predicted 
severity levels of these defects were removed prior to the experiment. 

Next, we compared the service coordinator’s classification of these 20 defects with the 
manual (original) classification from the project and with the automatic (ontology) 
classification. The comparison is presented in Table 13 using the severity levels from the 
IEEE standard (also used in the ontology). The defect IDs shown in the table correspond to 
the defect IDs shown in Table B.3.L in Appendix B. In order to easily recognize the 
similarities and the differences between the three classifications, Table 13 is constructed in a 
special way. The original classification from the project is given twice in the table (in the 
second and in the last columns) and the five severity levels are color-coded as Blocking, 
Critical, Major, Minor and Inconsequential. 

The results from the comparison of each of the three classifications with the other two are 
summarized in three confusion matrices, three tables with percentages and three pie charts. 
First, Table 14 presents the confusion matrix summarizing the results from the comparison 
between the service coordinator’s classification of the 20 defects and the original 
classification from the project. From the table we see that 65% of the defects (13 out of 20) 
were classified into the same severity levels by these two classifications. 15% of the defects 
were classified into lower and 20% into higher severity levels by the service coordinator than 
by the original classification. These percentages are summarized in Table 15 and visualized 
with a pie chart in Fig. 23. 

Table 12. Distribution of the defects selected for the experiment according to the severity levels 

Severity levels from 
the IEEE Std and 

used in the ontology 

Severity levels from 
the project used for 

the validation 

Number of defects 
selected for the 

experiment 

Number of defects 
selected for the 

validation 
Blocking Top 1 2 
Critical High 4 9 
Major Medium 6 16 
Minor Low 9 23 

Inconsequential Low (not used) 0 0 
Total defects: 20 50 
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Table 13. Comparison between the three classifications – all severity levels (SLs) are converted to IEEE Std 

Defect ID Original SLs SLs by the service 
coordinator Predicted SLs Original SLs 

303 Major Critical Critical Major 
304 Blocking Major Blocking Blocking 
305 Major Major Minor Major 
307 Major Major Major Major 
308 Minor Minor Major Minor 
309 Minor Minor Minor Minor 
310 Minor Minor Critical Minor 
314 Major Major Major Major 
315 Critical Critical Critical Critical 
322 Minor Minor Minor Minor 
323 Critical Minor Major Critical 
325 Major Minor Major Major 
329 Minor Minor Minor Minor 
336 Minor Critical Major Minor 
337 Minor Major Minor Minor 
341 Minor Minor Inconsequential Minor 
344 Critical Critical Critical Critical 
346 Major Major Critical Major 
347 Minor Minor Minor Minor 
348 Critical Blocking Critical Critical 

 

Table 14. Results from the comparison between the service coordinator’s and the manual classifications 

  Service Coordinator’s Classification 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-
cation 

Blocking 0 0 1 0 0 
Critical 1 2 0 1 0 
Major 0 1 4 1 0 
Minor 0 1 1 7 0 

Inconsequential 0 0 0 0 0 
 

Table 15. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs 
by the service coordinator compared with the original classification from VCS 

Comparison of Percentages of the 20 defects classified into 
Same SLs Lower SLs Higher SLs 

The service coordinator’s and 
the original classifications 65% 15% 20% 
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Figure 23. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher 
SLs by the service coordinator compared with the original classification from VCS. 

Table 16 presents the confusion matrix summarizing the results from the comparison between 
the service coordinator’s classification and the automatic (ontology) classification. The 
service coordinator assigned to 45% of the defects the same severity levels as the ontology. 
30% of the defects were classified into lower and 25% into higher severity levels by the 
service coordinator than by the automatic classification. These percentages are summarized in 
Table 17 and visualized with a pie chart in Fig. 24. 

Table 16. Results from the comparison between the service coordinator’s and the automatic classifications 

  Service Coordinator’s Classification 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Automatic 
(Ontology) 

Classifi-
cation 

Blocking 0 0 1 0 0 
Critical 1 3 1 1 0 
Major 0 1 2 3 0 
Minor 0 0 2 4 0 

Inconsequential 0 0 0 1 0 
 
Table 17. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs 

by the service coordinator compared with the automatic (ontology) classification 

Comparison of Percentages of the 20 defects classified into 
Same SLs Lower SLs Higher SLs 

The service coordinator’s and 
the automatic classifications 45% 30% 25% 

Figure 24. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher 
SLs by the service coordinator compared with the automatic (ontology) classification. 
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Table 18 presents the confusion matrix that summarizes the results from the comparison 
between the automatic classification of the 20 defects and the original classification from the 
project. The ontology predicted 60% of the defects as having the same severity levels as 
originally, 15% of the defects as having lower severity levels than in the manual classification 
and 25% of the defects as having higher severity levels than in the manual classification. 
These percentages are summarized in Table 19 and visualized in the pie chart in Fig. 25. After 
that, Table 20 presents the contents of Tables 15, 17 and 19 combined together. Therefore, 
Table 20 shows the summary of the results from the comparisons in the experiment. 

Table 18. Results from the comparison between the automatic and the manual classifications 

  Automatic (Ontology) Classification 

 Severity Levels Blocking Critical Major Minor Inconse-
quential 

Manual 
(Original) 
Classifi-
cation 

Blocking 1 0 0 0 0 
Critical 0 3 1 0 0 
Major 0 2 3 1 0 
Minor 0 1 2 5 1 

Inconsequential 0 0 0 0 0 
 
Table 19. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs 

by the automatic classification compared with the original classification from VCS 

Comparison of Percentages of the 20 defects classified into 
Same SLs Lower SLs Higher SLs 

The automatic and the 
original classifications 60% 15% 25% 

Figure 25. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher 
SLs by the automatic classification compared with the original classification from VCS. 

Table 20. Summary of the results from the comparisons in the experiment 

Comparison of Percentages of the 20 defects classified into 
Same SLs Lower SLs Higher SLs 

The service coordinator’s and 
the original classifications 65% 15% 20% 

The service coordinator’s and 
the automatic classifications 45% 30% 25% 

The automatic and the 
original classifications 60% 15% 25% 
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At the end, we presented the results from the experiment to the service coordinator and 
received his feedback on the similarities and the differences between the three classifications. 
The main reasons are summarized below. 

 Sometimes defects are discussed with the client(s) and based on such discussions these 
defects are assigned lower severity levels (which are not necessarily the correct 
severity levels) than initially. The main reason for doing so is that if the severity level 
of a defect is lower, then the software team responsible for fixing it will have a bit 
more time to fix the defect. This fact plays a vital role in explaining why quite a few 
defects are assigned higher severity levels by the ontology classification than the other 
two classifications (as evident in Table 16 and in Table 18). 

 The ontology classification considers quality properties affected by a defect (among 
other attributes) when assigning severity levels to defects. This leads to some defects 
assigned lower or higher severity levels by the ontology than by the other two 
classifications depending on what quality properties and other attributes are affected 
by the defects (see Table 16 and Table 18). 

 In the original classification there are defects that are assigned the default severity 
level (minor). The service coordinator does not look at the severity levels at all. 
Hence, he is forced to assess every defect. This is a reason for the differences between 
the manual (original) classification and the service coordinator’s classification (see 
Table 14). Moreover, as given in Section 5.2, this is also one of the reasons for the 
differences between the manual and the automatic classifications (see Table 18). 

Using the service coordinator’s opinion about the results from the experiment, we can 
conclude the following. If the predicted severity levels differ by at most one category 
compared with the original severity levels and the ones assigned by him, then the automated 
prediction method performs well. Table 13 shows that the only case not complying with this 
conclusion is the defect with ID 310. This defect is predicted as having critical severity level 
as opposed to having minor severity level according to the original classification (see Table 
13). After looking into the details of the defect again, it was clear that, in addition to affecting 
three quality properties of the software, this defect directly affects the users. Hence, based on 
the ontology classification rules, it is predicted as having critical severity level in order to be 
fixed for the next release and satisfy the users of the software. 

5.5. Section summary 
This section presented the validation of MAPDESO. It was achieved through a case study and 
an experiment. Based on the results and on the opinion of the interviewees, it is safe to 
conclude that the automated prediction method yields promising results that can be very 
useful for medium-to-large projects with many defects. 

In addition to the validation, we decided to compare the performance of MAPDESO with the 
performances of existing algorithms for data mining tasks and explore which one performs 
better and why. For the comparison we used algorithms from the Weka data mining software. 
The details and the results from the comparison are presented in Section 6. 
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6. COMPARISON 
 

This section presents the comparison of the performance of MAPDESO with the 
performances of algorithms from the Weka data mining software. However, in order to 
compare two entities they have to be measured by a common standard. Therefore, the 
performances of the automated prediction method and the Weka algorithms have to be 
compared on the same datasets. As mentioned in Sections 3, 4 and 5, the data from CS1 and 
CS2 were used during the development of the ontology (as if they were training data) and the 
data from VCS were used for the validation of the method (or, in other words, testing how 
well it performs). Hence, to have a common standard for the comparison, the data from CS1 
and CS2 will be used for training the learning algorithms (called classifiers) from the Weka 
software, while the data from VCS will be used for testing them. Moreover, in order to 
conclude the performance of which of the above two is better, the performance of each of 
them will be compared against the performance of the original (manual) classification from 
the project used for the validation of the method. 

First, we will give some information about Weka. After that, we will present the process of 
predicting the severity levels of defects using classifiers from Weka. Then, we will present the 
comparison and the results from it together with the conclusion which of the above performs 
better and why. 

6.1. The Weka machine learning workbench 
The Weka17 workbench is a collection of state-of-the-art machine learning algorithms and 
data preprocessing tools [19]. It is designed in such a way that these algorithms can be 
directly applied to new datasets in flexible ways, which will be very useful for the 
comparison. Moreover, it provides extensive support for the process of experimental data 
mining, including preparing the input data, evaluating learning schemes statistically, and 
visualizing the input data and the results of learning [19]. 

Weka has been developed at the University of Waikato in New Zealand and the name stands 
for Waikato Environment for Knowledge Analysis [19]. The system is written in Java and it is 
distributed under the terms of the GNU General Public License. In short, Weka provides a 
uniform interface to different learning algorithms, together with methods for pre- and post-
processing and for evaluating the results of learning schemes on any given dataset [19]. 

It should be mentioned that, as given in [19], there are three major ways of using Weka and 
they are the following: 

 Apply a learning method to a dataset and analyze its output to learn more about the 
data. 

 Use learned models to generate predictions on new instances. 

                                                             
17 http://www.cs.waikato.ac.nz/ml/weka/ 
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 Apply several different learners and compare their performances in order to choose 
one for prediction. 

Though Weka includes different tools and implementations, the most valuable resource that it 
provides are the implementations of actual learning schemes. We will use some of the 
learning methods for the comparison. 

6.2. Predicting severity levels of defects using classifiers from Weka 
The process of predicting the severity levels of defects using classifiers from Weka consists of 
a few steps. These steps include preparing the data to be used as input for Weka, selecting the 
classifiers (the learning algorithms), and classifying the test data using Weka. The second and 
third steps are completed using the Weka tool. 

6.2.1. Preparing the data 
Preparing the data to be used as input for a data mining algorithm usually consumes most of 
the effort invested in the entire data mining process [20]. Since the Weka package uses a 
specific file format, the input data for Weka has to be written in that file format. Weka uses 
the attribute-relation file format (ARFF format) which is a standard way of representing 
datasets that consist of independent, unordered instances and do not involve relationships 
among instances [20]. The ARFF format gives a dataset but it does not specify which is the 
attribute that is supposed to be predicted. In particular, this means that the same file can be 
used for investigating how well each attribute can be predicted from the others [20]. Hence, 
we can use this file format to predict the values of attribute Severity from the values of the 
other attributes, namely Effect, Type, Insertion activity and Detection activity. 

We created two ARFF files containing all the data that we have in order to use them in Weka. 
The first one contains the data from CS1 and CS2 (a total of 80 defects), which will be used 
as the training data for the classifiers. In other words, the first ARFF file contains the data 
from Table B.1.L together with the second column of Table B.1.R and the data from Table 
B.2.L together with the second column of Table B.2.R. Of course, the original severity levels, 
as given in the second columns of Table B.1.R and Table B.2.R, have to be included in this 
ARFF file for training the classifiers. 

The second ARFF file contains the data from VCS (a total of 50 defects), which will be used 
as the test data for the classifiers. Hence, the second ARFF file contains the data from Table 
B.3.L together with the second column of Table B.3.R. It should be noted that in this ARFF 
file we included the original (manually assigned) severity levels of the defects, as given in the 
second column of Table B.3.R. The reason for doing that is the following: once a classifier is 
applied to this ARFF file (representing the test dataset), Weka provides the results in terms of 
a confusion matrix and other statistics. This confusion matrix compares the severity levels 
predicted by the respective classifier with the original severity levels provided in the ARFF 
file. This information will be used later on for the comparison of the performances of the 
classifiers with the performance of the developed method. 
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6.2.2. Selecting the classifiers 
After the data required for the input were in the correct file format, the next step was to 
choose the classifiers that will be used for predicting the severity levels of the defects. 

As stated in [19], no single machine learning scheme is appropriate to all data mining 
problems. Therefore, in order to find out which classifiers will be appropriate for our task, we 
decided to compare the performances of fourteen classifiers available in Weka. As given in 
Section 6.1, one way of using Weka is to apply several different learners (classifiers) and 
compare their performances in order to choose one or more for prediction. We used Weka in 
this way in order to conclude which ones of the fourteen classifiers perform the best on the 
same dataset and to choose them for the prediction process and the comparison. 

The fourteen classifiers, as they appear in the Weka workbench, are the following: 

1) ZeroR – class for building and using a 0-R classifier. 
2) DecisionStump – class for building and using a decision stump. 
3) NaiveBayes – class for a Naive Bayes classifier using estimator classes. 
4) IB1 – 1-nearest-neighbor classifier. 
5) IB݇ (݇ = 5) – 5-nearest-neighbors classifier. 
6) SimpleLogistic – classifier for building linear logistic regression models. 
7) Logistic – class for building and using a multinomial logistic regression model with a 

ridge estimator. 
8) LibSVM – wrapper class for the LibSVM tools (LibSVM allows users to experiment 

with One-class SVM, Regressing SVM, and nu-SVM supported by LibSVM tool). 
SVM stands for Support Vector Machine. 

9) SMO – classifier which implements John Platt's Sequential Minimal Optimization 
(SMO) algorithm for training a support vector classifier (a polynomial kernel was used 
for SMO). 

10) BFTree – class for building a best-first decision tree classifier. 
11) DecisionTable – class for building a simple decision table majority classifier. 
12) J48 – class for generating a pruned or unpruned C4.5 decision tree. 
13) RandomForest – class for constructing a forest of random trees. 
14) RandomTree – class for constructing a tree that considers K randomly chosen 

attributes at each node (performs no pruning). 

For the comparison of these classifiers we used 10-fold cross-validation as method, the first 
ARFF file as dataset and area under the curve (AUC) as comparison field. The used method 
and comparison field are briefly described below. 

It is clearly stated in [21] that 10-fold cross-validation yields the best estimate of error and 
that it has become the standard method in practical terms. This method works in the following 
way [21]: the data is divided randomly into 10 parts in which the class to be predicted is 
represented in approximately the same proportions as in the full dataset. After that, each part 
is held out in turn, the learning scheme (classifier) trained on the remaining nine-tenths and its 
error rate is calculated on the holdout set. Therefore, the learning procedure is executed a total 
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of 10 times on different training sets which have a lot in common. In the end, the 10 error 
estimates are averaged to yield an overall error estimate. 

The Receiver Operating Characteristic (ROC) curves are a graphical technique for evaluating 
data mining schemes [21]. ROC curves depict the performance of a classifier without regard 
to class distribution or error costs. They plot the number of positives included in the sample, 
expressed as a percentage of the total number of positives, against the number of negatives 
included in the sample, expressed as a percentage of the total number of negatives [21]. 
Moreover, in order to summarize the ROC curves in a single quantity, often used is the area 
under the ROC curve, also called the Area Under the Curve (AUC). Since ROC curves plot 
numbers expressed as percentages, AUC represents a number between 0 and 1, including 
both. The area is interpreted as the probability that the classifier ranks a randomly chosen 
positive instance above a randomly chosen negative instance and, therefore, the larger the area 
the better the model [21]. In other words, if AUC is close to 0.5 then the classifier is 
practically random, whereas a number close to 1.0 means that the classifier makes practically 
perfect predictions [22]. 

The results from the comparison are summarized in Table 21. It contains all classifiers listed 
on the previous page together with the respective values of AUC, given in descending order. 
The first thing to notice is that NaiveBayes, SMO and SimpleLogistic perform the best out of 
the fourteen classifiers. This can be contributed to the fact that these three classifiers can work 
well when there is not a lot of data. In Section 6.2.1, we mentioned that 80 defects will be 
used as the training data and 50 defects will be used as the test data. Therefore, from a data 
mining perspective, this could be considered as not having a lot of data. We also see in the 
table that DecisionStump and RandomForest perform worse than the above three classifiers 
but still they have better than random performance. On the other hand, quite a few of the 
classifiers are practically random since their AUC values are 0.5 or close to 0.5. These are 
BFTree, DecisionTable, ZeroR, IB1, LibSVM, RandomTree and J48. It is not surprising to see  

Table 21. Summary of the results from the comparison of fourteen classifiers 

Classifier Area Under the Curve 
(data from CS1 and CS2) 

NaiveBayes 0.81 
SMO 0.74 
SimpleLogistic 0.71 
DecisionStump 0.61 
RandomForest 0.59 
BFTree 0.52 
DecisionTable 0.51 
ZeroR 0.50 
IB1 0.50 
LibSVM 0.50 
RandomTree 0.48 
J48 0.43 
IB݇ with ݇ = 5 0.21 
Logistic 0.14 
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that AUC for ZeroR is 0.5 because this classifier has AUC of 0.5 by definition. The last two 
classifiers are IB݇ (݇ = 5) and Logistic and they have the worst performances in the table. 
The performances of these nine classifiers can be explained with the fact that we did not have 
a lot of data for training, as we have already mentioned. 

It is visible from Table 21 that the three classifiers that performed the best are NaiveBayes, 
SimpleLogistic and SMO (given in bold in the table). For this reason, we decided to use these 
three classifiers. However, we considered adding three more classifiers to the above three. We 
added ZeroR, DecisionStump and IB݇ with ݇ = 5 (5-nearest-neighbors classifier) and they are 
underlined in the table. Although their performances are not as good as those of the first three 
classifiers, they are also well-known and widely-used. Moreover, we added them because of 
the following. First, ZeroR and DecisionStump are often used as worst-case reference 
classifiers and we wanted to have such classifiers for the comparison with MAPDESO. And 
second, we were interested to see how IB݇ (݇ = 5) will perform on the test dataset having in 
mind that it performed poorly in Table 21. More details about the six chosen classifiers are 
given below. 

ZeroR is a simple classifier for generating rules. It predicts the test data’s majority class (if 
nominal) or average value (if numeric) [23]. As we pointed out, ZeroR is typically used as a 
worst-case reference classifier.  

DecisionStump builds one-level binary decision trees for datasets with a categorical or 
numeric class to be predicted. This classifier deals with missing values by treating them as a 
separate value and extending a third branch from the stump [23]. It is also typically used as a 
worst-case reference classifier. 

NaiveBayes implements the standard probabilistic Naive Bayes classifier. It is based on 
Bayes’s rule and “naively” assumes independence. It should be noted that the assumption 
attributes are independent in real life certainly is a simplistic one [24]. However, this method 
is easy to construct, not needing any complicated iterative parameter estimation schemes and 
it may be readily applied to huge datasets. Though it may not be the best possible classifier in 
any particular application, it can usually be relied on to be robust and to perform well [25]. 

IB݇ is a ݇-nearest-neighbor classifier, which finds the training instance closest in Euclidean 
distance to the given test instance and predicts the same class as this training instance [23]. In 
other words, this classifier finds a group of ݇ objects in the training set that are closest to the 
test object and bases the assignment of a label on the predominance of a particular class in this 
neighborhood [25]. The number of nearest neighbors can be specified explicitly or determined 
automatically using cross-validation. As mentioned above, we use IB݇ with ݇ = 5, which is a 
5-nearest-neighbors classifier. 

SimpleLogistic builds linear logistic regression models and determines how many iterations to 
perform using cross-validation, which supports automatic attribute selection [23]. More 
specifically, logistic regression builds a linear model based on a transformed target variable as 
opposed to linear regression, which attempts at approximating the target values directly [24]. 
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SMO implements the sequential minimal optimization algorithm for training a support vector 
classifier using polynomial or Gaussian kernels (a polynomial kernel was used for SMO). 
When using this classifier, missing values are replaced globally, nominal attributes are 
transformed into binary ones, attributes are normalized by default and the coefficients in the 
output are based on the normalized data [23]. 

Once the classifiers were chosen, we continued with training them and classifying the data 
from the test dataset. 

6.2.3. Classifying the test data 
This step started with training the chosen classifiers using the Weka tool. As mentioned in 
Section 6.2.1, the data contained in the first ARFF file (the data from CS1 and CS2) were 
used as the training data for the classifiers. The training resulted in creating one model per 
chosen classifier based on the training dataset. Then, each of the created models was loaded in 
turn and the respective classifier was evaluated on the test data contained in the second ARFF 
file (the data from VCS). In the end, the results were displayed in Weka. In other words, once 
a classifier was trained on the first ARFF file, it “gained” knowledge, which was saved in a 
model. Then, the model was loaded and the classifier was evaluated on the test dataset. This 
process was repeated six times – once for each of the six chosen classifiers, and all results 
were displayed in the Weka tool. 

The results provided by Weka include confusion matrices and various statistics. The 
confusion matrices compare the original (manually assigned) severity levels with the severity 
levels predicted by the classifiers. The statistics represent the detailed accuracies of the 
classifiers’ predictions. They include true positive rate, false positive rate, precision, recall 
and F-measure for each of the severity levels. The weighted average values of each of these 
statistics are also calculated and displayed. 

We have decided to use precision, recall and F-measure for the comparison of the 
performances in Section 6.3 in addition to the Percentages of Defects Classified Correctly 
(PDCC). These percentages represent the fractions of defects out of the defects in the test 
dataset that are predicted by the six classifiers as having the same severity levels as in the 
original classification (from the project used for VCS). In addition, the first three statistics are 
classification and information retrieval statistics. We chose these statistics (over AUC) 
because they provide useful and relevant to our research information for the performances of 
the classifiers, as evident by their definitions and mentioned in [21]. The statistics are defined 
below using the definitions provided in [21]. The definitions were adapted to the parameters 
in our research, namely defects and severity levels. 

Precision represents the number of correct results divided by the number of all returned 
results. Therefore, precision can be seen as a measure of exactness or quality and it has its 
best value at 1 and worst value at 0. For our research, we have: 

݊݅ݏ݅ܿ݁ݎܲ =

=
number	of	defects	that	are	correctly	predicted	as	having	a	specific	severity	level

total	number	of	defects	predicted	as	having	that	severity	level  
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Recall is the number of correct results divided by the number of results that should have been 
returned. Hence, recall can be seen as a measure of completeness or quantity and, similarly to 
precision, it has its best value at 1 and worst value at 0. For our research, we have: 

ܴ݈݈݁ܿܽ =

=
number	of	defects	that	are	correctly	predicted	as	having	a	specific	severity	level

total	number	of	defects	originally	assigned	that	severity	level  

F-measure is a measure of a test’s accuracy. It considers both the precision and the recall of 
the test to compute the score. The score can be interpreted as a weighted average of the 
precision and recall and the F-measure reaches its worst value at 0 and its best value at 1. It is 
calculated using the following formula: 

݁ݎݑݏܽ݁݉	ܨ =
2	× precision × recall

precision + recall  

Now that we have discussed the statistics we will use for the comparison, we present the 
results from classifying the test data using the six classifiers. Table 22 (on the next page) 
shows the results using the percentage of defects classified correctly together with the 
precision, recall and F-measure per classifier per severity level. The table also contains the 
weighted average values (abbreviated to W. Avg.) of the four statistics for each classifier. 
Since all results were displayed in the Weka tool, as mentioned earlier, the results shown in 
Table 22 were directly taken from Weka. 

6.3. Comparison of the performances 
The comparison of the performances starts with the task of presenting the results from testing 
the developed method using the same four statistics we have decided to use. As mentioned in 
the beginning of this section, the performance of MAPDESO was tested using the data from 
VCS during the validation process (see Section 5). The results from the testing are given at 
the bottom of Table 22. We have calculated the percentage of defects classified correctly plus 
the precision, recall and F-measure per severity level together with the weighted average 
values of these statistics for the method. 

The results from Table 22 are visualized in three figures. Figures 26, 27 and 28 present 
graphically the results for precision, recall and F-measure, respectively, per severity level for 
the six classifiers and for MAPDESO. Since the percentages of defects classified correctly 
represent the respective recall values multiplied by 100 (to convert them to percentages), there 
is no figure created for the PDCC results from Table 22 so as to avoid redundancy. 
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Table 22. The results from classifying the test data (VCS data) by the six chosen classifiers and by MAPDESO 

Classifiers  Severity levels PDCC Precision Recall F-measure 

Classifier 1: 
ZeroR 

Blocking 0% 0 0 0 
Critical 0% 0 0 0 
Major 100% 0.32 1 0.49 
Minor 0% 0 0 0 
Inconsequential 0% 0 0 0 
W. Avg. 32% 0.10 0.32 0.16 

Classifier 2: 
DecisionStump 

Blocking 0% 0 0 0 
Critical 56% 0.25 0.56 0.35 
Major 0% 0 0 0 
Minor 83% 0.63 0.83 0.72 
Inconsequential 0% 0 0 0 
W. Avg. 48% 0.34 0.48 0.39 

Classifier 3: 
NaiveBayes 

Blocking 0% 0 0 0 
Critical 44% 0.36 0.44 0.40 
Major 50% 0.40 0.50 0.44 
Minor 57% 0.68 0.57 0.62 
Inconsequential 0% 0 0 0 
W. Avg. 50% 0.51 0.50 0.50 

Classifier 4: 
IB݇ with ݇ = 5 

Blocking 0% 0 0 0 
Critical 56% 0.56 0.56 0.56 
Major 38% 0.50 0.38 0.43 
Minor 78% 0.62 0.78 0.69 
Inconsequential 0% 0 0 0 
W. Avg. 58% 0.55 0.58 0.56 

Classifier 5: 
SimpleLogistic 

Blocking 0% 0 0 0 
Critical 89% 0.35 0.89 0.50 
Major 13% 1 0.13 0.22 
Minor 83% 0.76 0.83 0.79 
Inconsequential 0% 0 0 0 
W. Avg. 58% 0.73 0.58 0.52 

Classifier 6: 
SMO 

Blocking 50% 1 0.50 0.67 
Critical 56% 0.46 0.56 0.50 
Major 6% 0.50 0.06 0.11 
Minor 96% 0.61 0.96 0.75 
Inconsequential 0% 0 0 0 
W. Avg. 58% 0.56 0.58 0.50 

MAPDESO – 
automated 
prediction 
method 

Blocking 100% 1 1 1 
Critical 89% 0.57 0.89 0.70 
Major 56% 0.50 0.56 0.53 
Minor 57% 0.87 0.57 0.68 
Inconsequential 0% 0 0 0 
W. Avg. 64% 0.70 0.64 0.65 
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Figure 26. The results for precision per severity level for the six classifiers and for MAPDESO. 

Figure 27. The results for recall per severity level for the six classifiers and for MAPDESO. 
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Figure 28. The results for F-measure per severity level for the six classifiers and for MAPDESO. 

For an easy and straightforward comparison of the performances of the chosen classifiers with 
the performance of MAPDESO, we use the weighted average values of the four statistics. In 
addition to Fig. 26, 27 and 28, we created Table 23. It contains the weighted average values of 
the four statistics (taken from Table 22) for the classifiers and for the method. Then, the 
weighted average values of precision and recall were plotted together in a single chart, 
visualized in Fig. 29. As explained earlier, precision and recall reach their best values at 1. 
For Fig. 29, this means that these two statistics reach their best values in the upper right 
corner of the figure. Therefore, the closer a classifier is to the upper right corner of the figure, 
the better its performance will be. We see in the figure that MAPDESO and SimpleLogistic 
are the two closest to the upper right corner. 

Table 23. Summary of the comparison between the six classifiers and MAPDESO 

Classifiers 
(classification methods) 

Weighted average values of 
PDCC Precision Recall F-measure 

ZeroR 32% 0.10 0.32 0.16 
DecisionStump 48% 0.34 0.48 0.39 
NaiveBayes 50% 0.51 0.50 0.50 
IB݇ with ݇ = 5 58% 0.55 0.58 0.56 
SimpleLogistic 58% 0.73 0.58 0.52 
SMO 58% 0.56 0.58 0.50 
MAPDESO – automated 
prediction method 64% 0.70 0.64 0.65 
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Figure 29. Weighted average values of precision and recall for the six classifiers and for MAPDESO. 

It is visible that our automated prediction method has the highest percentage of defects 
classified correctly (Table 23), the second highest precision (Fig. 26, Table 23, Fig. 29), the 
highest recall (Fig. 27, Table 23, Fig. 29) and the highest F-measure (Fig. 28, Table 23). Only 
the SimpleLogistic classifier has a precision greater than that of the developed method (Fig. 
26, Table 23, Fig. 29) and the reasons for this are explained below. 

First, we have to look at the specific precision values for the different severity levels for the 
SimpleLogistic classifier (see Table 22 and Fig. 26). It is easy to notice that the precision for 
SimpleLogistic is 1 for severity level major. With such a high precision, it is obvious that the 
weighted average precision for this classifier will be high, as well. However, if we look at this 
classifier’s recall for severity level major, we see that it is only 0.13. From these observations 
we can conclude that although this classifier returns only correct results for severity level 
major (the precision is 1), it returns a very small portion of the correct results that should have 
been returned for this severity level (the recall is 0.13). In other words, the returned results are 
very exact but very far from complete. 

On the other hand, the automated prediction method has a precision of 0.50 and a recall of 
0.56 for severity level major. This means that although the method returns correct results one 
half of the time for severity level major (the precision is 0.50), it returns more than half of the 
correct results that should have been returned for this severity level (the recall is 0.56). So, the 
returned results are exact one half of the time and complete more than half of the time. 

Moreover, if we look at the weighted average F-measure for this classifier, we notice that it is 
0.52. This is lower than the weighted average F-measure for the automated prediction method 
(0.65 as given in Table 23) despite the fact that SimpleLogistic has a precision greater than 
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that of the method. Therefore, based on the above explanations and the results in Table 22, it 
is safe to say that the overall performance of the SimpleLogistic classifier is not as good as the 
performance of MAPDESO when classifying defects into all severity levels. 

We can apply similar reasoning to the other five classifiers when comparing their overall 
performances with the performance of the developed method when classifying defects into all 
severity levels. In Fig. 26 and 27, we can see that for a specific severity level one or more 
classifiers might have a precision and/or a recall greater than or equal to those of the 
automated prediction method but for the other severity levels the method has greater values of 
precision and recall. Hence, based on Tables 22 and 23, on Fig. 26, 27, 28 and 29, and on 
everything explained in the current subsection, we conclude that the overall performance of 
MAPDESO is better than the performances of the chosen classifiers when classifying defects 
into all severity levels. More importantly, we see in Table 22 that the automated prediction 
method has F-measure of 1 and 0.70 for severity levels blocking and critical, respectively. 
These are by far the best F-measure values compared with the respective values of the six 
classifiers. This means that the method performs the best compared with the performances of 
the classifiers when predicting which defects will be assigned the most important severities, 
namely blocking and critical. 

6.4. Section summary 
Summing up this section, we presented the comparison of the performance of MAPDESO 
with the performances of six classifiers chosen from the Weka machine learning workbench. 
The Weka software was used for completing the required steps for the comparison. Based on 
the achieved results, we concluded that the overall performance of the automated prediction 
method is better than the performances of the Weka classifiers and it reaches its peak when 
predicting which defects will be assigned the most important severity levels – blocking and 
critical. 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 

In this thesis, we have presented MAPDESO – a Method for Automated Prediction of DEfect 
Severity using Ontologies. It considers the quality properties affected by defects, the types of 
the defects, the insertion activities and the detection activities of the defects. This way, it takes 
into consideration the point of view of the user of the software system while preserving the 
developer’s point of view when predicting the severity levels of defects. This method uses 
defect attributes and their values from the IEEE Standard Classification for Software 
Anomalies [2] to create a uniform framework for reporting the defects and to make it 
applicable to various software projects. Last but not least, the method uses AI techniques – 
ontologies and ontology reasoning, to automatically predict the severity levels of the defects 
input in the ontology according to the developed classification rules for the ontology. 

The thesis started with an introduction to the problems we are solving with the developed 
method and the work related to our research. After that, we provided information about 
ontologies, ontology development and languages. We continued with presenting the details of 
MAPDESO. Next, the case studies used for the development of the ontology were described. 
Then, the automated prediction method was validated using a validation case study and a 
small experiment. In the end, the method’s performance was compared with the performances 
of six well-known classifiers from the Weka machine learning workbench. The results from 
the comparison led to the conclusion that MAPDESO performs better than the chosen 
classifiers. 

Based on the results from the validation process and the comparison process, we state the 
following: 

 The automated prediction method has performed surprisingly well compared with the 
manual (original) classifications of the defects from the conducted case studies 
especially having in mind that it uses as few as four attributes from the standard to 
predict a fifth attribute – the severity levels. 

 The method is very practical because it uses an IEEE standard for the defects’ 
attributes and their values. Hence, if future projects adopt it, they will have a 
standardized framework for the defects’ attributes. This implies that people will be 
able to move from project to project, if needed, without wasting extra time for 
retraining. 

 It yields very promising results that can be useful for medium-to-large projects with 
many defects. 

 The automated prediction method outperforms the chosen Weka classifiers and the 
performance of the method reaches its peak when predicting which defects will be 
assigned the most important severity levels – blocking and critical. 

These are very exciting results since they speak to the usability of MAPDESO. A few 
recommendations to use the method in practice are outlined below. 
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One way to apply MAPDESO in practice is to implement it as an addition to an existing 
defect tracking system. If one inputs the required information about the defects and chooses to 
use the method, he/she will get the severity levels predicted automatically. Hence, the default 
severities, assigned initially, will be improved and such a situation could lead to many people 
using the method regularly. 

Another option is to implement a new tracking system that makes use of the ontology for 
keeping track of the defects. The defects will be entered into the tracking system by inputting 
them in the ontology using the attributes from the IEEE standard. If entering additional 
information about the defects is required by a project, the ontology provides a description 
field for it. Once the defects are in the tracking system, the prediction of their severity levels 
is done automatically. 

One other way of applying MAPDESO in practice is to use the method indirectly. In other 
words, once the severity levels are automatically predicted, they could be considered only as 
suggestions. These suggestions could be used in two ways: (1) before software engineers 
and/or clients assign severity levels to defects so that they can consult the suggested 
severities; or (2) after severity levels are manually assigned to defects so that engineers/clients 
will be alerted to the differences between the classifications in order to consider any changes. 
Once the suggested severity levels are confirmed, they could be used for prioritizing the 
fixing activities of the defects. 

Currently, MAPDESO predicts the severity levels of defects detected from system-level 
testing, coding and maintenance. However, MAPDESO could be easily tuned so that it can be 
used to predict the severity levels of defects detected from any phase of the software 
development process. 

Last but not least, parts of MAPDESO could be used for defining service-level agreements 
(SLA). SLA is a part of a service contract (between a provider and a consumer) where the 
level of service is formally defined. For instance, software companies and their clients could 
agree to use the IEEE standard for reporting the defects in software projects. If this is 
achieved, the method could be directly applied to the defect reports and it will predict 
automatically the severity levels of the defects. 

These possibilities to use MAPDESO in practice could also be considered as future work. 
More information about our future work is given in the next section. 
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8. FUTURE WORK 
 

Future work will be aimed at further automating the prediction method. This could be 
achieved by automating the conversion of defect reports into the standard representation. 
Completing such a step would require natural language processing, data mining algorithms 
and automated reasoning about designs. 

We would also like to increase the level of automation of reasoning by focusing on defect 
propagation that links defects found at unit-level to use cases at the system level. In this 
situation, the severity prediction will be based on the impact found via defect propagation and 
the importance of the use cases that are impacted in the application domain. 

As mentioned in the previous section, future work would also be aimed at applying 
MAPDESO in practice. This could be achieved by implementing it in a defect tracking system 
either as the sole method for predicting the severity levels of defects or as a method providing 
severity levels as suggestions that will be confirmed by software engineers and/or clients. 

A possible continuation of this work is to apply the automated prediction method to other 
projects, for example open-source projects. Ideally, people involved in such a project will be 
available for discussions and interviews in order to: (1) extract defects from the tracking 
system of the project; (2) convert the extracted information into the defect attributes and their 
values used in the ontology; (3) validate the severity levels predicted by the method once it is 
ready. Similarly to Section 5, in the end, we would like to conclude how well MAPDESO 
performs compared with the original classification from the used project. 

Last but not least, we would also like to try blending machine learning with our method. In an 
ideal world, we could use the combination of data and knowledge in order to get the best of 
both. For example, data could be used to infer relationships based on the available evidence, 
while knowledge could be used when the data is not abundant but theory is available and 
known to be stable. 
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Appendix A 
 

The reason for the construction of sub-rule R3.2 in Section 3.1.5. 

In order to reveal the reason for the construction of sub-rule R3.2 we will look into the 
negation of Rules 1, 2, 4 and 5. Since Rules 1, 4 and 5 are easy to understand and have few 
sub-rules, it is straightforward to find their negated versions. The challenge is to negate Rule 
2. If we denote with A the set of defects that satisfies Rule 2, then the result of negating Rule 
2 will yield set B, where B = not A. Then, it is clear that the union of A and B must be equal 
to 1 or, in other words, A or B = 1. 

However, it turns out that, because of the complexity of Rule 2 and the way it is constructed, 
A or B ≠ 1. This is shown through an example. 

Sub-rules R2.2, R2.3 and R2.4 are considered for simplicity (the example will follow the 
same reasoning if all sub-rules are considered). The available options when considering these 
three sub-rules are listed below. 

 If (hasEffectOnNumber exactly 2) is true (sub-rule R2.2), then: 
o If (isInserted only (InDesign or InRequirements)) is true (sub-rule R2.3), 

the defect can have one, or two, or all three of the values Data, Interface and 
Logic of attribute Type (sub-rule R2.4). 

o If ((isInserted only (InCoding or InConfiguration)) is true and (hasType 
min 2) is true (sub-rule R2.3), the defect can have two or all three of the values 
Data, Interface and Logic of attribute Type (sub-rule R2.4). 

 If (hasEffectOnNumber exactly 3) is true (sub-rule R2.2), then: 
o If ((isInserted only (InDesign or InRequirements)) is true (sub-rule R2.3), 

the defect can have one, or two, or all three of the values Data, Interface and 
Logic of attribute Type (sub-rule R2.4). 

o If ((isInserted only (InCoding or InConfiguration)) is true and 
(hasEffectOnNumber exactly 3) is true while (hasType min 2) is false (sub-
rule R2.3), the defect can have exactly one of the values Data or Interface or 
Logic of attribute Type (sub-rule R2.4). 

o If ((isInserted only (InCoding or InConfiguration)) is true and 
(hasEffectOnNumber exactly 3) is true while (hasType min 2) is also true 
(sub-rule R2.3), the defect can have two or all three of the values Data, 
Interface and Logic of attribute Type (sub-rule R2.4). 

After a close observation of these options, it becomes obvious that the following set of defects 
(denoted with C) is not part of set A: defects that are inserted during the coding phase or the 
configuration phase and are affecting exactly two values of attribute Effect and exactly one of 
the values Data or Interface or Logic of attribute Type. This set is not present for a reason. 
Rule 2 is constructed not to include it. Hence, one would expect that set C will be a subset of 
set B. 



Martin Iliev  Appendix A 
 

- 71 - 
 

Now, Rule 2 is negated and we take a look particularly at the negated version of sub-rule 
R2.4. This sub-rule becomes hasType some (not Data and not Interface and not Logic). 
This means that the available options for the values of attribute Type do not include Data, 
Interface and Logic. 

Therefore, set C, discussed above, will not be part of set B because set B does not permit 
defects which have any of the values Data, Interface or Logic of attribute Type. This clearly 
shows that A or B ≠ 1 but that A or B or C = 1. For this reason, the fragment 

((isInserted only (InCoding or InConfiguration)) and (hasEffectOnNumber exactly 2) and 
((hasType only Data) or (hasType only Interface) or (hasType only Logic))), 

which represents the defects from set C, was added to sub-rule R3.2 when it was constructed. 
The sub-rule is presented below, as given in Section 3.1.5. 

(R3.2) not DefectWithBlockingSL and        
(not DefectWithCriticalSL or ((isInserted only (InCoding or InConfiguration)) and 
(hasEffectOnNumber exactly 2) and ((hasType only Data) or (hasType only 
Interface) or (hasType only Logic)))) and         
not DefectWithMinorSL and           
not DefectWithInconseqSL 
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Appendix B 
Table B.1.L. The information about the selected defects (from the project in CS1) converted into the attributes 

and their values from the IEEE Standard in [2] 
 Table B.1.R. Severity levels of the selected 

defects 
Defect ID 

in the 
ontology 

Effect Type Insertion 
Activity 

Detection 
Activity 

 Taken 
from the 
project 

Converted 
to the 

IEEE Std 

Predicted 
by 

MAPDESO 
101 Functionality; security; 

performance; serviceability 
Data; interface Design Supplier testing Show-

stopper 
Blocking Blocking 

102 Usability; performance Logic Coding Supplier testing Severe Critical Major 
103 Functionality; performance Logic Design Supplier testing Severe Critical Critical 
104 Usability; performance Interface Design Supplier testing Severe Critical Critical 
105 Functionality; performance Logic Coding Supplier testing Severe Critical Major 
106 Usability; performance Interface Design Supplier testing Severe Critical Critical 
107 Functionality; performance Logic Coding Supplier testing Severe Critical Major 
108 Functionality; security; 

serviceability 
Data; logic Coding Supplier testing Severe Critical Critical 

109 Usability; performance Interface; logic Coding Supplier testing Severe Critical Critical 
110 Functionality; performance Data; logic Configuration Coding Severe Critical Critical 
111 Functionality; serviceability Data Requirements Supplier testing Severe Critical Critical 
112 Usability Interface Requirements Supplier testing Medium Major Inconse-

quential 
113 Usability; performance Data Design Supplier testing Medium Major Critical 
114 Usability; performance Interface Design Supplier testing Medium Major Critical 
115 Functionality; performance Logic Coding Supplier testing Medium Major Major 
116 Functionality; performance Data Requirements Supplier testing Medium Major Critical 
117 Functionality; serviceability Data; logic Design Supplier testing Medium Major Critical 
118 Functionality; security; 

performance 
Logic Coding Supplier testing Medium Major Critical 

119 Usability Data Requirements Supplier testing Medium Major Inconse-
quential 
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120 Functionality; performance Logic Coding Supplier testing Medium Major Major 
121 Usability; serviceability Data Design Supplier testing  Medium Major Critical 
122 Functionality; performance Logic Coding Supplier testing Medium Major Major 
123 Performance; serviceability Standards Requirements Supplier testing Medium Major Major 
124 Functionality; performance Logic Coding Supplier testing Medium Major Major 
125 Functionality Logic Coding Coding Medium Major Minor 
126 Functionality; performance Logic Design Supplier testing Medium Major Critical 
127 Functionality Data Coding Supplier testing Medium Major Minor 
128 Functionality; performance Logic Coding Supplier testing Medium Major Major 
129 Usability Standards Requirements Supplier testing Minor Minor Inconse-

quential 
130 Functionality Data Requirements Other Minor Minor Minor 
131 Usability Interface Design Supplier testing Minor Inconse-

quential 
Inconse-
quential 

132 Functionality Logic Coding Coding Minor Minor Minor 
133 Usability Interface Design Supplier testing Minor Inconse-

quential 
Inconse-
quential 
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Table B.2.L. The information about the selected defects (from the project in CS2) converted into the attributes and 
their values from the IEEE Standard in [2] 

 Table B.2.R. The severity levels of the 
selected defects 

Defect 
ID in the 
ontology 

Effect Type Insertion 
Activity 

Detection 
Activity 

Taken 
from the 
project 

Converted 
to the 

IEEE Std 

Predicted 
by 

MAPDESO 
201 Functionality; usability; 

performance; serviceability 
Data; logic Coding Customer testing Block Blocking Blocking 

202 Functionality; usability; performance Logic Coding Coding Crash Critical Critical 
203 Functionality; usability; performance Logic Coding Coding Crash Critical Critical 
204 Functionality; usability; performance Logic Coding Customer testing Crash Critical Critical 
205 Functionality; usability; performance Logic Coding Production Crash Critical Critical 
206 Functionality; usability; performance Data; logic Coding Customer testing Crash Critical Critical 
207 Functionality; usability; performance Logic Coding Production Crash Critical Critical 
208 Functionality; performance Logic Coding Production Crash Critical Major 
209 Functionality; usability; performance Logic; interface Coding Production Crash Critical Critical 
210 Functionality; performance Logic Coding Coding Crash Critical Major 
211 Functionality; usability; performance Logic Coding Production Crash Critical Critical 
212 Functionality; usability; performance Data; logic Coding Coding Crash Critical Critical 
213 Functionality; usability Logic Coding Production Major Major Major 
214 Functionality; performance Interface; logic Coding Customer testing Major Major Critical 
215 Functionality; performance Logic Design Production Major Major Critical 
216 Functionality; performance Data Coding Production Major Major Major 
217 Functionality; performance Data Coding Customer testing Major Major Major 
218 Functionality; usability; performance Interface; logic Design Production Major Major Critical 
219 Functionality; usability Logic Coding Customer testing Major Major Major 
220 Functionality; performance Logic Coding Coding Major Major Major 
221 Functionality; performance Logic Coding Customer testing Major Major Major 
222 Functionality; performance Data; logic Design Customer testing Major Major Critical 
223 Usability; performance Logic Coding Production Minor Minor Major 
224 Functionality Logic Coding Production Minor Minor Minor 
225 Functionality; usability Logic Coding Production Minor Minor Major 
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226 Functionality Logic Coding Coding Minor Minor Minor 
227 Functionality Logic Coding Coding Minor Minor Minor 
228 Functionality; usability Logic Coding Production Minor Minor Major 
229 Functionality; performance Logic Coding Production Minor Minor Major 
230 Usability Logic Coding Production Minor Minor Inconse-

quential 
231 Performance Interface Coding Production Minor Minor Minor 
232 Usability Logic Coding Production Minor Minor Inconse-

quential 
233 Functionality; usability Logic Coding Production Minor Minor Major 
234 Functionality; performance Logic Coding Production Minor Minor Major 
235 Functionality; usability Logic Coding Supplier Testing Minor Minor Major 
236 Functionality; performance Data Coding Production Minor Minor Major 
237 Usability Data Coding Customer testing Minor Inconse-

quential 
Inconse-
quential 

238 Usability Interface Design Production Minor Minor Inconse-
quential 

239 Functionality; performance Data Coding Production Minor Minor Major 
240 Performance Interface Coding Production Minor Minor Minor 
241 Functionality; performance Logic Coding Production Minor Minor Major 
242 Performance Interface Coding Coding Minor Minor Minor 
243 Performance Data Coding Production Minor Minor Minor 
244 Usability Logic Coding Coding Minor Minor Inconse-

quential 
245 Usability Interface Design Coding Minor Minor Inconse-

quential 
246 Usability Interface Coding Coding Minor Minor Inconse-

quential 
247 Usability Logic Coding Coding Minor Minor Inconse-

quential 
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Table B.3.L. The information about the selected defects (from the project used for the validation) converted into the 
attributes and their values from the IEEE Standard in [2] 

 Table B.3.R. The severity levels of the 
selected defects 

Defect 
ID in the 
ontology 

Effect Type Insertion 
Activity 

Detection 
Activity 

Taken 
from the 
project 

Converted 
to the 

IEEE Std 

Predicted 
by 

MAPDESO 
301 Functionality; performance; serviceability Logic Coding Production Medium Major Critical 
302 Performance; serviceability Other Coding Production Medium Major Major 
303 Functionality; performance; serviceability Logic Coding Production Medium Major Critical 
304 Functionality; performance; 

serviceability; usability 
Logic Coding Production Top Blocking Blocking 

305 Serviceability Other Configuration Production Medium Major Minor 
306 Functionality; serviceability Logic; data Coding Production High Critical Critical 
307 Functionality; usability Other Coding Production Medium Major Major 
308 Functionality; usability Logic Coding Production Low Minor Major 
309 Functionality Other Configuration Production Low Minor Minor 
310 Functionality; usability; performance Logic Coding Production Low Minor Critical 
311 Performance; usability Other Design Production Medium Major Major 
312 Performance; functionality; usability Logic Coding Production Medium Major Critical 
313 Functionality; performance; serviceability Logic Coding Production Medium Major Critical 
314 Functionality; serviceability Other Configuration Production Medium Major Major 
315 Functionality; serviceability Data; logic Configuration Production High Critical Critical 
316 Functionality Logic; 

interface 
Configuration Customer 

testing 
Medium Major Minor 

317 Functionality; performance Interface Configuration Production Low Minor Major 
318 Performance; functionality; usability Data Configuration Production High Critical Critical 
319 Functionality; performance Logic Coding Production Medium Major Major 
320 Functionality; serviceability Interface; 

logic 
Coding Supplier 

testing 
High Critical Critical 

321 Functionality; performance; usability Logic Coding Production High Critical Critical 
322 Functionality Logic Coding Production Low Minor Minor 
323 Functionality; usability Logic Configuration Production High Critical Major 
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324 Functionality Logic; 
interface 

Configuration Production  Low Minor Minor 

325 Functionality; usability Data Configuration Production Medium Major Major 
326 Functionality; performance Logic Coding Production Low Minor Major 
327 Functionality; security; performance; 

serviceability 
Interface; 
logic 

Configuration Production Top Blocking Blocking 

328 Functionality; performance Logic Coding Production Low Minor Major 
329 Functionality Logic Coding Production Low Minor Minor 
330 Performance; functionality Data Configuration Production Medium Major Major 
331 Functionality Logic Coding Production Low Minor Minor 
332 Functionality; usability Logic Coding Production Low Minor Major 
333 Functionality; serviceability Logic Coding Production Medium Major Major 
334 Functionality; serviceability Logic Coding Production Medium Major Major 
335 Serviceability Other Configuration Production Low Minor Minor 
336 Serviceability; functionality Logic Coding Production Low Minor Major 
337 Serviceability Interface Configuration Production Low Minor Minor 
338 Serviceability Interface Configuration Production Low Minor Minor 
339 Serviceability Logic Configuration Production Low Minor Minor 
340 Serviceability Other Configuration Production Low Minor Minor 
341 Usability Logic Coding Production Low Minor Inconseq 
342 Serviceability Data Configuration Production Low Minor Minor 
343 Functionality; usability Logic Coding Production Low Minor Major 
344 Performance; functionality; usability Logic Coding Production High Critical Critical 
345 Functionality; serviceability Logic Coding Production Low Minor Major 
346 Functionality; performance Interface Design Production Medium Major Critical 
347 Serviceability Data Coding Production Low Minor Minor 
348 Functionality; performance Interface; 

data 
Configuration Production High Critical Critical 

349 Functionality Logic Coding Production Low Minor Minor 
350 Functionality; performance; usability Interface Configuration Production High Critical Critical 

 


