

Internal Report 2012-04

Universiteit Leiden

Computer Science

A Method for Automated Prediction of
Defect Severity Using Ontologies

Name: Martin Pavlov ILIEV
Student-no: s1053574

Date: 10/07/2012

1st supervisor: Dr. M.R.V. (Michel) Chaudron
2nd supervisor: Dr. P.W.H. (Peter) van der Putten

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

A Method for Automated Prediction
of Defect Severity Using Ontologies

Martin Pavlov ILIEV

Master’s Thesis

LIACS, Leiden University

Logica Netherlands B. V.

July 10, 2012

ABSTRACT

Assessing severity of software defects is essential for prioritizing fixing activities as well as
for assessing whether the quality level of a software system is good enough for release. In
practice, filling out defect reports is done manually and developers routinely fill out default
values for the severity levels. Moreover, external factors are a reason for assigning wrong
severity levels to defects. The purpose of this research is to automate the prediction of defect
severity. We have researched how this severity prediction can be achieved through
incorporating knowledge of the software development process using ontologies. In addition,
we also employ an IEEE standard to create a uniform framework for the attributes of the
defects.

The thesis presents MAPDESO – a Method for Automated Prediction of DEfect Severity
using Ontologies. It was developed using industrial case studies during an internship at
Logica Netherlands B. V. The method is based on classification rules that consider the
software quality properties affected by a defect, together with the defect’s type, insertion
activity and detection activity. The results from its validation and comparison with the Weka
machine learning workbench indicate that MAPDESO is a good predictor for defect severity
levels and it can be especially useful for medium-to-large projects with many defects.

ACKNOWLEDGEMENTS

I would first and foremost like to thank my academic supervisors, Dr. Michel Chaudron and
Dr. Peter van der Putten, and my mentor at Logica, ir. Edwin Essenius, for their time, effort,
guidance and invaluable feedback throughout the research.

Big thanks to the people at Logica for being very helpful and open-minded and for allowing
me to work on industrial case studies. I also want to thank the members of the Software
Engineering Group at LIACS for their useful insights and advice throughout the research.

Finally, I would like to express my deepest gratitude to my family since without them none of
this would have been possible. I would like to thank them for their inexhaustible support, for
their patience and understanding and for encouraging me to always do the very best I can.

Thank you!

Martin Iliev CONTENTS

- 3 -

CONTENTS

1. INTRODUCTION ... - 5 -

1.1. Problem statement .. - 5 -

1.2. Means for achieving the research goal .. - 6 -

1.3. IEEE Standard .. - 7 -

1.4. Related work .. - 8 -

1.5. Research contribution ... - 10 -

1.6. Outline ... - 10 -

2. ONTOLOGY DEVELOPMENT AND LANGUAGES .. - 11 -

2.1. Definition ... - 11 -

2.2. Ontology development and editors .. - 12 -

2.3. Web Ontology Language .. - 14 -

2.4. Reasoners ... - 15 -

2.5. Ontology editor, language and reasoner used in the research ... - 16 -

2.6. Section summary .. - 16 -

3. METHOD DESCRIPTION .. - 17 -

3.1. Developing the ontology ... - 17 -

3.1.1. Meta-meta level .. - 17 -

3.1.2. Meta level ... - 17 -

3.1.3. Class level .. - 19 -

3.1.4. Instance level .. - 22 -

3.1.5. Classification rules .. - 23 -

3.2. The method flow .. - 25 -

3.2.1. Detection of defects .. - 27 -

3.2.2. Analysis and conversion of the defects’ information .. - 27 -

3.2.3. Entering the converted information into the ontology .. - 28 -

3.2.3.1. Creating the classes for the defects – editor Create Multiple Subclasses - 29 -

3.2.3.2. Adding the converted information to the classes – Quick Restriction Editor - 30 -

3.2.4. Automatically predicting the severity levels of defects .. - 31 -

3.3. Section summary .. - 33 -

4. CASE STUDIES .. - 34 -

4.1. Case Study 1... - 34 -

4.1.1. Data collection .. - 34 -

4.1.2. Data analysis and conversion .. - 35 -

Martin Iliev CONTENTS

- 4 -

4.1.3. Data classification ... - 35 -

4.1.4. Results .. - 36 -

4.2. Case Study 2... - 38 -

4.2.1. Data collection .. - 38 -

4.2.2. Data analysis and conversion .. - 39 -

4.2.3. Data classification ... - 39 -

4.2.4. Results .. - 40 -

4.3. Summary of the results from Case Study 1 and Case Study 2 .. - 41 -

4.4. Section summary .. - 42 -

5. VALIDATION... - 43 -

5.1. Approach – VCS .. - 43 -

5.1.1. Data collection .. - 43 -

5.1.2. Data analysis and conversion .. - 44 -

5.1.3. Data classification ... - 45 -

5.2. Results ... - 45 -

5.3. Validation of the results .. - 47 -

5.4. Experiment ... - 47 -

5.5. Section summary .. - 52 -

6. COMPARISON ... - 53 -

6.1. The Weka machine learning workbench .. - 53 -

6.2. Predicting severity levels of defects using classifiers from Weka - 54 -

6.2.1. Preparing the data ... - 54 -

6.2.2. Selecting the classifiers ... - 55 -

6.2.3. Classifying the test data .. - 58 -

6.3. Comparison of the performances... - 59 -

6.4. Section summary .. - 64 -

7. CONCLUSIONS AND RECOMMENDATIONS... - 65 -

8. FUTURE WORK ... - 67 -

BIBLIOGRAPHY.. - 68 -

Appendix A ... - 70 -

Appendix B ... - 72 -

Martin Iliev 1. INTRODUCTION

- 5 -

1. INTRODUCTION

Software goes through a testing phase, which aims to find the problems users might
experience before the software goes into actual use. The goal of finding these problems is to
remove them before the actual use of the software so that the users will not be hindered by
them. According to the IEEE Standard Classification for Software Anomalies [2], the cause of
a software problem is called a software defect. In order to remove the problems, the defects
need to be fixed. Within this thesis well established standards (including the IEEE Standard
Computer Dictionary [1] and the IEEE Standard in [2]) are used for defining the necessary
terms. The classification in [2] defines a defect as:

 a fault if it is encountered during software execution (thus causing a failure);
 not a fault if it is detected by inspection or static analysis and removed prior to

executing the software.

In [1] a fault is defined as an incorrect step, process, or data definition in a computer program,
while a failure represents the inability of a system or component to perform its required
functions within specified performance requirements. The dictionary relates all these terms to
one another by distinguishing between a human action (a mistake), its manifestation (a
hardware or software fault), the result of the fault (a failure), and the amount by which the
result is incorrect (the error). Hence, a software defect is the reason for producing an incorrect
or unexpected result in a computer program or system, or it causes it to behave in unintended
ways.

All users would like to have quality software products. Quality, as given in [1], represents the
degree to which a system, component, or process meets specified requirements, customer or
user needs or expectations. Therefore, a step towards deploying a high quality software
product is to test it first. This is achieved during the system testing phase of the software
development life cycle when testing is conducted on a complete, integrated system to evaluate
the system’s compliance with its specified requirements [1]. This phase results in finding
defects in the software product. In general, it is very difficult (or not possible at all) to fix all
defects before the deployment date. Hence, these defects need to be categorized so that only
the important ones are fixed within the specified time constraint in order to release a quality
software product.

1.1. Problem statement
Out of all defects found during the testing phase, the important ones have to be fixed before a
predefined deadline. Therefore, a software team needs to decide on the order in which to fix
these defects. It is a common practice to assign severity levels to the defects to differentiate
between their impacts on the software. The severities of defects represent the different levels
of negative impact a defect will have on the deployment of a software product. For example, a
severity level showstopper is assigned to defects that prevent the release of the software
system and immediate attention is required. On the other hand, a severity level minor is

Martin Iliev 1. INTRODUCTION

- 6 -

assigned to defects that do not prevent the release of the system but the users are annoyed by
their presence. It is clear, then, that defects must be assigned the correct severity levels.

The assignment of severity levels to defects is specific for every software system or company
and is done manually, usually by test analysts according to their expertise. Different software
projects define different sets of severities and, hence, assign different severity levels to their
defects. This results in software projects using sets of severities containing three, four or five
severity levels (sometimes even more). In addition, it is regularly the case that a defect is
assigned the default severity level, which typically is medium. If, at this point, a user is
consulted, he/she might not agree with the assignment of default severities and might want
some defects to be fixed sooner than others. Moreover, people sometimes make mistakes
when assigning severities or are influenced by external factors that lead to assigning wrong
severity levels to defects. To address these problems, we have conducted research in the area
of how to predict the severity of defects using the knowledge of the software development
process while decreasing the workload of the software architects and the test analysts. This
means that we use this knowledge to assign severities that reflect what is important not only
for the developers but also for the users. The aim is to devise a method for automatically
predicting the severity levels of defects found during testing at the system level and also
during coding and maintenance. Its name is MAPDESO – a Method for Automated Prediction
of DEfect Severity using Ontologies. Such a method would be especially useful for medium-
to-large software systems, which have 100 defects or more.

1.2. Means for achieving the research goal
The means used for achieving the goal of this research are

 the IEEE standard in [2] in order to create a uniform framework for the attributes of
the defects, and

 Artificial Intelligence (AI) techniques, namely ontologies, reasoning and automatic
classification, in order to capture software defects through an ontology and
automatically reason about the defects and their severity levels.

Since different projects define and use different sets of severity levels, creating a uniform
framework will be valuable for providing a single set of severity levels that is known to
everybody – software architects, developers, test analysts. Therefore, the time and cost for
retraining people when they switch projects will decrease since all projects will conform to
the same standard for software anomalies.

In addition, researchers have used different techniques to predict the severity levels of defect
reports [3], the presence or absence of faults [4] and defects [5], [6]. These techniques include
standard text mining methods, logistic regression and machine learning techniques, Six Sigma
methodology. Though they have proven to be very useful, they base their results on text
mining analysis and on statistical methods. For achieving the research goal we use AI
techniques because this way the prediction process is automated and it is based on the
different levels of impact defects have on the quality properties of the software (other factors
also take part in the prediction process).

Martin Iliev 1. INTRODUCTION

- 7 -

Figure 1 presents a summary of everything explained until now. The problems in the figure
refer to the problems mentioned in Section 1.1; the method (explained in details in Section 3)
includes the means for achieving the goal of this research as given partly in Section 1.1 and in
Section 1.2, while the result is the outcome from the method as given in Section 1.1.

Figure 1. Summary of the current problems, the method to overcome them and the end result.

The next subsection contains details about the above-mentioned IEEE standard while Section
2 presents details about ontologies and ontology engineering.

1.3. IEEE Standard
The IEEE Standard Classification for Software Anomalies (IEEE Std 1044™-2009) [2] is
sponsored by the Software & Systems Engineering Standards Committee of the IEEE
Computer Society and it was approved on 9 November 2009. This standard provides a
uniform approach to the classification of software anomalies, regardless of when they
originate or when they are encountered within the software development life cycle. The
classification data, given in [2], can be used for a variety of purposes, including defect causal
analysis, project management, and software process improvement (e.g., to reduce the
likelihood of defect insertion and/or to increase the likelihood of early defect detection).
Moreover, the standard contains a classification of defects, which defines a core set of widely
applicable classification attributes. Sample values for the most common attributes are
provided together with definitions and examples for both the attributes and their values.

The table in the standard with the most common attributes and their values contains ten
attributes. For the purposes of our research the attributes that provide the following
information are necessary:

 what is the severity of a defect (only one value is possible),
 what is/are the quality property/properties affected by a defect (one or more values are

possible),
 what is/are the type(s) of a defect (one or more values are possible),
 in which phase of the software cycle a defect was inserted (only one value is possible),
 and in which phase of the software cycle a defect was detected (only one value is

possible).

Martin Iliev 1. INTRODUCTION

- 8 -

Hence, the following five attributes are selected from the standard: Severity, Effect, Type,
Insertion activity and Detection activity. The idea behind using specifically them is to provide
a uniform framework for the attributes of the defects and their values so that the method can
be used across multiple software projects and systems.

It should be noted that there are five more attributes – Status, Priority, Probability, Mode and
Disposition. They also provide valuable information but it is not essential for the purposes of
this research (knowing the values of these attributes for the different defects is not obligatory).
Therefore, these five attributes are not considered in the rest of the research.

1.4. Related work
As explained in the previous sections, the severity levels assigned to defects are used to find
out what is the impact of that defect on the deployment of the software. It is also known that
different software projects assign different severity levels to their defects. More importantly,
why a specific defect is assigned one severity and not another and whether both the
developers of the software product and its users agree on the assignment of the severity levels
are areas that still need more attention.

A new and automated method, which assists the test engineer in assigning severity levels to
defect reports, is presented in the paper by Menzies and Marcus [3]. The authors have named
the method SEVERIS (SEVERity ISsue assessment) and it is based on standard text mining
and machine learning techniques applied to existing sets of defect reports. The tool is
designed and built to automatically review issue reports and alert when a proposed severity is
anomalous. Moreover, the paper presents a case study on using SEVERIS with data from
NASA’s Project and Issue Tracking System (PITS). The case study results indicate that
SEVERIS is a good predictor for issue severity levels, while it is easy to use and efficient.
The idea behind our research is similar to the study in [3] – an automated method for
predicting what severity levels to be assigned to defects. However, we base our method on the
software development process and software quality properties in order to decide what severity
level to assign to a defect so that, in the end, the user satisfaction with the quality of the
deployed software product will rise.

Zhou and Leung [4] investigate the accuracy of the fault-proneness predictions of six widely
used object-oriented design metrics with particular focus on how accurately they predict faults
when taking fault severity into account. Their results indicate that most of these design
metrics are statistically related to fault-proneness of classes across fault severity and that the
prediction capabilities of the investigated metrics greatly depend on the severity of faults.
This work is similar to the one in [3] since the authors use logistic regression and machine
learning methods for their empirical investigation. In our research, we focus on predicting the
severity levels of defects using AI techniques such as ontologies and automatic classification.
This is achieved by developing an ontology and classifying the defects input in it using
developed classification rules.

It should also be mentioned that there is research in the area of predicting defects in the design
phase [5]. This research resulted in the development of a tool called MetricView. Its goal is to
give more insight into UML models by visualizing software metrics that have been computed

Martin Iliev 1. INTRODUCTION

- 9 -

by an external tool directly on top of the graphical representation of the UML model. Hence,
this tool makes it clearer to see what is correct and what is incorrect in the models. There is
also an extension to this tool that provides a lot of additional features such as calculations of
metrics within the tool, several views to explore and navigate UML models, visualization of
evolution data. The research presented in [5] can be related to ours because we make use of
the software process though not for predicting defects but for predicting the severity levels of
the defects. An obvious difference is also the fact that we are interested in defects detected
mainly from the system testing phase and not from the design phase.

Additional motivation for this work comes from the research conducted by Suffian [6] who
establishes a defect prediction model for the testing phase using Six Sigma methodology. The
author’s aim is to achieve zero-known post release defects of the software delivered to the end
users. This is done by identifying the customer needs through the requirements for the
prediction model, outlining the possible factors that associate to defect discovery in the testing
phase and elaborating on the repeatability and capability of test engineers in finding defects.
At the end of his research, the author states that his work focuses on predicting the total
number of defects regardless of their severity or the duration of the testing activities and that
future effort can focus on improving the defect prediction model to predict defect severity in
the testing phase. Therefore, our research represents an extension to the research in [6] since
we aim at predicting the severity levels of defects that have been found during testing at the
system level (though we also consider defects found during coding and maintenance).
Moreover, our study makes use of defects’ attributes as defined in [2] to develop a method
that will be applicable to many software projects.

In addition, there is research aimed at the combination of ontologies and software design,
which emphasizes on error detection [7], [8]. Such research proves to be very useful since it
enhances software design quality, as stated by Hoss [7], and it also improves the practice in
ontology use and identifies areas to which ontologies could be beneficial other than, for
example, knowledge sharing and reuse, as explained by Kalfoglou [8]. In this work, we
combine ontologies with knowledge of the software development process. We do that in order
to automatically predict the severity levels of defects taking into consideration the fact that the
defects have already been detected and reported. In other words, our goal is different from the
ones mentioned in [7] and [8] though the means to achieve it are similar to some extent.

Another interesting research related to our work is presented in the paper by Jin and Cordy
[9]. The authors provide an outline of the design and function of the Ontological Adaptive
Service-Sharing Integration System (OASIS). OASIS is a novel approach to integration that
makes use of specially constructed, external tool adapters and a domain ontology to facilitate
software reengineering tool interoperability through service-sharing. With their work, the
authors employ ontologies to facilitate a common and difficult maintenance activity – the
integration of existing software components or tools into a consistent and interoperable whole.
In our research, we not only employ ontologies for achieving our goals but also consider
maintenance activities since our method can be applied to defects detected during
maintenance.

Martin Iliev 1. INTRODUCTION

- 10 -

1.5. Research contribution
Based on the presented related work, the contribution of this research is the following:

1) We use the knowledge of the software process and quality properties in order to, for
example, assign higher severity levels (than originally) to defects inserted during the
design and requirements phases. This way, the predicted severity levels will reflect
what is important not only according to the developers but also according to the users.

2) We use ontologies and ontology reasoning (AI techniques) to automatically classify
the defects input in the ontology into predefined severity levels. To this end, we
propose a set of rules that is synthesized based on industrial projects.

3) We use attributes and their values from the well-established IEEE standard in [2] in
order to describe the defects and their severity levels in the ontology. This way, the
severity assessment method will be applicable to any software project and useful for
many people such as software architects, developers, test analysts (under the condition
that they will also use that standard).

1.6. Outline
The outline of this thesis is visualized in Fig. 2 and it is organized in the following way.
Section 2 presents background information about ontologies, ontology engineering and
languages. After that, Section 3 describes the method – MAPDESO, which represents the
essence of this work. In Section 4 are presented two industrial case studies with details about
how they were conducted and what results were achieved. Then, Section 5 provides the
validation of the method. The comparison of the ontology classification with the classification
done by an existing software tool is discussed in Section 6. Finally, Section 7 contains the
conclusions and the recommendations while Section 8 presents the future work.

Figure 2. Thesis outline.

Section 1 •Introduction

Section 2
•Ontology
development
and languages

Section 3 •Method
Description

Section 4 •Case
Studies

Section 5 •Validation

Section 6 •Comparison

Section 7 •Conclusions and
Recommendations

Section 8 •Future
Work

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 11 -

2. ONTOLOGY DEVELOPMENT AND LANGUAGES

Software Engineering (SE), as defined in [1], is the application of a systematic, disciplined,
quantifiable approach to the development, operation and maintenance of software.
Technology innovation demands from SE reliable and sustainable software products. To
answer these demands, SE is aided by other computer science disciplines. Artificial
Intelligence (AI), for example, is one of these disciplines that will bring SE to further heights.
Particularly ontologies, an AI concept, will help SE by providing tools (in the forms of
ontology languages) and methods that can be used together to facilitate the development of
understandable, durable and high-quality software [16].

2.1. Definition
The most common definition of ontologies says that an ontology is an explicit specification of
a conceptualization [10]. In other words, ontologies are explicit formal specifications of the
terms in the domain and the relations among them [10].

According to a more elaborate version of the definition, an ontology defines a common
vocabulary for researchers who need to share information in a domain and it includes
machine-interpretable definitions of basic concepts in the domain and relations among them
[11]. Many disciplines develop standardized ontologies that domain experts use to share and
annotate information in their fields. A particular example for such a discipline is medicine,
which has produced large, standardized, structured vocabularies. One of them is the
SNOMED ontology, which provides a common vocabulary for clinical terms [11]. Figure 3
visualizes part of the SNOMED ontology. It shows some of the medical conditions caused by
epilepsy and their relations to different clinical findings.

Figure 3. Part of the SNOMED ontology.

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 12 -

In addition, according to [12], an ontology consists of definitions of concepts, relations and
rules and is used in knowledge-based systems with the potential to employ inference.
Ontologies are also formalized knowledge, represented in a language that supports reasoning.

Once we have defined the term ontology we are ready to dive into the details of ontology
development, editors, languages and reasoners.

2.2. Ontology development and editors
Before explaining how to develop ontologies we should answer the question why would
someone want to develop an ontology. According to [11], some of the reasons are

 to share common understanding of the structure of information among people or
software agents;

 to enable reuse of domain knowledge;
 to make domain assumptions explicit;
 to separate domain knowledge from the operational knowledge;
 to analyze domain knowledge.

These reasons are complemented by developing an ontology to codify knowledge and to use
reasoning to infer new associations from existing ones. An example for this is shown in Fig.
4. On the left is visualized the original hierarchy of the Medical Dictionary for Regulatory
Activities (MedDRA). On the right is presented the same hierarchy after ontological
reasoning is applied. It is visible that a new association is added between two of the terms –
(PT) Hepatitis Cholestatic and (HLT) Hepatitis, because of their definitions and the existing
associations.

Figure 4. An example for ontological reasoning.

It is often the case that an ontology is not the goal in itself. Developing an ontology is similar
to defining a set of data and their structure to be used by other programs. For instance,
problem-solving methods, domain-independent applications, and software agents use
ontologies and knowledge bases built from ontologies as data [11].

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 13 -

It is important to point out that there is no single correct ontology-design methodology [11].
However, a good understanding of ontologies is needed to understand this work. Therefore,
below we mention an ontology-design methodology as an example.

An easy and straightforward way to describe the development of an ontology is the top-down
approach, as explained in [12]. The goal of this approach is the level of abstraction. There are
four levels of abstraction: meta-meta level, meta level, class level and instance level (ordered
in top-down fashion). We begin at the meta-meta level and end at the instance level. Of
course, every level influences each level of lower abstraction. Therefore, the results from the
meta-meta level are used at the meta level and also at the class and instance levels.

The Meta-meta level is the phase in which the foundation of the ontology is defined. This
includes the decision about the used representation language and a definition of its modeling
primitives.

The Meta level is the phase in which the key concepts and their relations are defined. This
should be done in such a way that the addition of data to an existing ontology should be
possible without loss of pre-existing data in that ontology. In other words, the data in an
ontology must be preserved.

The Class level is used to add more specific descriptions of the knowledge. Having the key
concepts already defined in the previous phase, in this phase we define specific sub-concepts
of the key concepts.

The Instance level is the most specific phase out of the four. The instances represent
knowledge that is specific to real projects or systems to which the developed ontology will be
applied.

Developing an ontology requires an environment where the above-explained process will be
executed. Such environments are called ontology editors. Currently, there are many ontology
editors, each having its own strengths and weaknesses. According to the World Wide Web
Consortium (W3C)1, examples of ontology editors are Protégé2, SWOOP3, OntoStudio4
(previously called OntoEdit), NeOn Toolkit5, Knoodl6, etc.

Out of the existing ontology editors, Protégé has proven to be the most popular and user-
friendly (it is supported by a large community of active users) and the one with many
available plug-ins [17], [18]. The results from a survey on Semantic Web practices show that
Protégé is the most frequently used ontology editor with a market share of 68.2% [17].
Protégé is ahead of all other editors since the second most frequently used editor is SWOOP
with 13.6%, after that is OntoEdit with 12.2% and each of the rest (simple text editor,
OntoStudio, etc.) has a share of 10% or less [17].

1 http://www.w3.org/
2 http://protege.stanford.edu/
3 http://www.mindswap.org/2004/SWOOP/
4 http://www.ontoprise.de/en/products/ontostudio/
5 http://neon-toolkit.org/
6 http://www.knoodl.com/

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 14 -

In addition to being the most frequently used editor, Protégé is a free, open source ontology
editor and knowledge-based framework. It is based on Java, it is extensible and provides a
plug-and-play environment. It contains tools to construct domain models and knowledge-
based applications with ontologies. Protégé implements a rich set of knowledge-modeling
structures and actions that support the creation, visualization and manipulation of ontologies
in various representation formats [18]. The Protégé platform supports two main ways of
modeling ontologies via the Protégé-Frames7 and Protégé-OWL8 editors.

2.3. Web Ontology Language
The most recent development in standard ontology languages is the Web Ontology Language
(OWL)9. It is endorsed by W3C to promote the Semantic Web10 vision. OWL is a W3C
Recommendation for representing ontologies on the Semantic Web. Moreover, OWL is the
language with the strongest impact in the Semantic Web with more than 75% of ontologists
selecting this language to develop their ontologies [17].

The Web Ontology Language is intended to provide a language that can be used to describe
classes (concepts) and the relations between them that are inherent in Web documents and
applications. OWL is based on a logical model, which makes it possible for concepts to be
defined and described. Complex concepts can be built up out of simpler concepts. Moreover,
the logical model allows the use of a reasoner, which can help to maintain the hierarchy of the
concepts correctly [13].

An ontology that conforms to OWL, called an OWL ontology, consists of classes, properties
and individuals, their descriptions and relations. If an OWL ontology is given, the OWL
formal semantics specifies how to derive its logical consequences, i.e. facts that are not
literally present in the ontology but entailed by the semantics. This can be achieved by using
ontology reasoners.

As explained in the OWL Guide11 and in [13], OWL provides three sublanguages – OWL-
Lite, OWL-DL and OWL-Full, designed for use by specific communities of implementers and
users. The defining feature of each sublanguage is its expressiveness. OWL-Lite is the least
expressive while OWL-Full is the most expressive. OWL-DL’s expressiveness falls in-
between. Each sublanguage is an extension of its simpler predecessor, both in what can be
legally expressed and in what can be validly concluded.

OWL-Lite is the sublanguage with the simplest syntax. Its intended use is in situations where
only a simple class hierarchy and simple constraints are required [13]. Because of the simple
class hierarchy and constraints, automated reasoning is not used in OWL-Lite ontologies.

OWL-DL is more expressive than OWL-Lite. OWL-DL is intended to be used when users
want the maximum expressiveness without losing computational completeness (all

7 http://protege.stanford.edu/overview/protege-frames.html
8 http://protege.stanford.edu/overview/protege-owl.html
9 http://www.w3.org/2004/OWL/
10 http://www.w3.org/2001/sw/
11 http://www.w3.org/TR/owl-guide/

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 15 -

entailments are guaranteed to be computed) and decidability (all computations/algorithms will
finish in finite time) of reasoning systems. OWL-DL is so named because it is based on
Description Logics (DL). According to [13], Description Logics represent a decidable
fragment of First Order Logic and are amenable to automated reasoning. Therefore, it is
possible to automatically compute the classification hierarchy and check for inconsistencies in
an ontology that conforms to OWL-DL [13].

OWL-Full is the most expressive sublanguage. It is meant for users who want maximum
expressiveness with no guarantees for decidability or computational completeness. Hence, it
is not possible to perform automated reasoning on OWL-Full ontologies, as stated in [13].

2.4. Reasoners
A reasoner (also called inference engine) is a software application that derives new facts or
associations from existing information [17]. It is a key component for working with
ontologies. The survey results in [17] indicate that the most popular reasoners are Jena12,
RacerPro13, Pellet14 and FaCT++15.

Jena is a Java framework for building Semantic Web applications, as explained on the Jena
project’s home page. Although it includes an inference engine to perform reasoning, it is a
comprehensive toolset. It provides a collection of tools and Java libraries to help programmers
develop Semantic Web and linked-data applications, tools and servers.

RacerPro is the commercial name of the RACER software (Renamed ABox and Concept
Expression Reasoner). The origins of RacerPro are within the area of Description Logics. It
can be used as a system for managing OWL ontologies and it can also be used as a reasoning
engine for ontology editors such as Protégé.

Pellet is an open-source Java-based OWL-DL reasoner, which provides standard and cutting-
edge reasoning services for OWL ontologies. It supports the full expressivity of OWL-DL and
is the first sound (all provable statements are true) and complete (all true statements are
provable) DL reasoner that can handle this expressivity. It provides functionalities to check
consistency of ontologies, classify the taxonomy (this is the superclass-subclass hierarchy in
an ontology), check entailments, etc. Pellet is used in a number of projects, from pure research
to industrial settings. According to [14], it has proven to be a very reliable tool for working
with OWL-DL ontologies and experimenting with OWL extensions.

FaCT++ is the new generation of the FaCT16 OWL-DL reasoner. FaCT++ uses the
established FaCT algorithms, but with a different internal architecture. Moreover, FaCT++ is
implemented using C++ in order to create a more efficient software tool and to maximize
portability.

12 http://jena.apache.org/about_jena/about.html
13 http://www.racer-systems.com/products/racerpro/
14 Old link: http://www.mindswap.org/2003/pellet/. New link: http://pellet.owldl.com.
15 http://owl.man.ac.uk/factplusplus/
16 http://www.cs.man.ac.uk/~horrocks/FaCT/

Martin Iliev 2. ONTOLOGY DEVELOPMENT AND LANGUAGES

- 16 -

2.5. Ontology editor, language and reasoner used in the research
When considering how to use ontologies and ontology reasoning for achieving the goal of this
research, we realized that it is imperative to be able to perform automated reasoning on the
developed ontology (as already mentioned). This process includes checking the consistency of
the ontology and classifying the taxonomy, which in our case means classifying the defects
into predefined severity levels according to developed rules. Hence, we made the following
choices.

The Protégé platform was selected for the ontology development because of its functionality
and popularity, as explained in Section 2.2. Since the ontology language selected was OWL
(see Section 2.3) – leading to the development of an OWL ontology, the Protégé-OWL editor
was the obvious choice from the Protégé platform.

As explained earlier, the OWL language provides three sublanguages. So, the next question
was which sublanguage fits the purposes of our research. It turned out that there are some
simple rules of thumb how to find out which sublanguage to use [13]. OWL-Lite was not
considered because it provides simple constructs and they are not sufficient. Therefore, the
choice had to be made between OWL-DL and OWL-Full. For our research, it is important to
be able to carry out automated reasoning on the ontology and, as explained in Section 2.3,
OWL-DL provides such a possibility while OWL-Full does not guarantee it. Hence, OWL-
DL was chosen as the OWL sublanguage.

Last but not least, we had to choose an appropriate reasoner to use in the ontology. At this
point of time, we already knew that the ontology will be developed using Protégé and it will
conform to OWL-DL, so the choice of the reasoner was relatively straightforward. As
explained in Section 2.4, Pellet supports the full expressivity of OWL-DL and using it we can
check the consistency of the ontology and classify the taxonomy. Therefore, we decided to
use Pellet as the OWL-DL reasoner in the research.

2.6. Section summary
In this section we provided information about ontologies, ontology development and editors,
the Web Ontology Language and popular reasoners. Moreover, we discussed which ontology
editor, language and reasoner we used in the research and why. Hence, it is now safe to
continue further with the details of the developed method and the case studies in the research.

Martin Iliev 3. METHOD DESCRIPTION

- 17 -

3. METHOD DESCRIPTION

The end result from the method described in this section – MAPDESO, is the solution to the
problems we are facing, as mentioned in Section 1.1 and shown in Fig. 1.

The method has culminated in the development of an ontology for automated prediction of
defect severity (automatic classification of defects into the severity levels from the IEEE
standard in [2]). We should point out that the two main purposes to use this ontology, though
not the only ones, are

 sharing common understanding of the structure of information among people or
software agents – achieved by using the IEEE standard for the defects’ attributes and
their values;

 enabling reuse of domain knowledge – achieved by reusing the ontology and the
developed classification rules in order to predict the severity levels of defects from
various projects.

Although there are different reasons for developing and using ontologies, as mentioned in
Section 2.2, it turns out that the above two are the most common reasons for using ontologies,
as evident by the survey results in [17].

The process of developing the ontology is an essential part of MAPDESO. However, once the
ontology is developed, this process does not need to be repeated when using the method. In
other words, developing the ontology is done only once, while using it can be done multiple
times. In the first subsection we will describe the process of developing the ontology so that it
will be clear later how the ontology and the classification work. After that, we will explain the
method and we will refer to using the ontology as a black box process – only the input and the
output will be mentioned.

3.1. Developing the ontology
In Section 2.2, we referred to an approach for ontology development. For clarity and
understandability, we will follow that approach when explaining how the ontology was
developed.

3.1.1. Meta-meta level
This is the phase for defining the foundation of the ontology. In fact, we have completed this
phase since we already know which ontology editor, language and reasoner we will use –
Protégé-OWL, OWL-DL and Pellet, respectively (for more information refer to Sections 2.2-
2.5). Hence, the ontology development approach has a predefined meta-meta level.

3.1.2. Meta level
This is the phase in which the key concepts in the ontology and their relations are defined. For
our ontology, in this phase, we defined and created the base classes and the properties.

Martin Iliev 3. METHOD DESCRIPTION

- 18 -

Classes are the focus of most ontologies and they represent concepts in a domain of discourse
[11]. They are described using formal (mathematical) descriptions that state precisely the
requirements for membership of the class. They may be organized into a superclass-subclass
hierarchy, also known as a taxonomy [13]. At this level of ontology development we created
the following classes:

 Defect – this class represents all defects.
 Effect – this class represents attribute Effect from the IEEE standard in [2]. Its values

are quality properties and classes of requirements that are impacted by a failure caused
by a defect.

 Type – this class represents attribute Type from the IEEE standard. The type of a
defect represents the nature of that defect. The attribute’s values are categorizations
based on the class of code or the work product within which a defect is found.

 InsertionActivity – this class represents attribute Insertion activity from the IEEE
standard. Its values are the activities during which a defect is inserted.

 DetectionActivity – this class represents attribute Detection activity from the IEEE
standard. Its values are the activities during which a defect is detected.

We created the properties describing the relations between the defects and the attributes from
the standard. Hence, these properties describe the relations between class Defect and classes
Effect, Type, InsertionActivity and DetectionActivity (if these properties relate to the
classes, then the same relations will also hold for the respective subclasses). Figure 5 presents
the created classes and properties for the ontology.

Figure 5. The created classes and properties for the ontology.

On the figure are shown five properties. They are the following:

hasEffectOn* – this is an object property (linking an individual to an individual [13]) that
relates class Defect (domain of the property) to class Effect (its range). Hence, this property
relates a defect to one or more quality properties (e.g., performance, functionality) affected by
it. The asterisk at the end of the property means that its range accepts one or more values.

hasType* – this is an object property that relates class Defect (domain) to class Type
(range). This property relates a defect to one or more values of the range (e.g., data, interface).
The asterisk at the end of the property means that its range accepts one or more values.

isInserted – this is an object property that relates class Defect (domain) to class
InsertionActivity (range). In other words, this property relates a defect to its insertion activity

Martin Iliev 3. METHOD DESCRIPTION

- 19 -

(e.g., design, coding). The absence of an asterisk at the end of the property means its range
accepts only a single value, which implies that this is a functional property [13].

isDetected – this is an object property that relates class Defect (domain) to class
DetectionActivity (range). In other words, this property relates a defect to its detection
activity (e.g., supplier testing, production). The absence of an asterisk at the end of the
property means its range accepts only a single value, which, as above, implies this is a
functional property [13].

hasEffectOnNumber* – this is a datatype property (linking an individual to a specific
datatype [13], for example, integers) that relates class Defect and its subclasses (domain) to
datatype Integer (range). This property represents the number of values (an integer) of
attribute Effect that are affected by a defect. The asterisk at the end of the property means that
its range accepts one or more values (the integer 1 or the integer 2, etc.).

It is important to note that the relations defined by the five properties will be used specifically
for the subclasses of the classes mentioned above. Moreover, in Fig. 5, the object properties
are depicted in blue color while the datatype property is depicted in black for easier
differentiation. The datatype Integer is given in a rounded rectangle to point out that it is not
a class (depicted with rectangles) but a datatype.

3.1.3. Class level
In this phase we define the sub-concepts of the key concepts defined at the Meta level. In the
current ontology, this means that we will add the required subclasses to the existing classes.
Hence, for class Defect, we defined six subclasses. They are the following:

 DefectID – this class represents all defects input in the ontology as its subclasses.
 DefectWithBlockingSL – this class represents all defects assigned blocking severity

level (they are displayed as its subclasses after performing the ontology classification).
 DefectWithCriticalSL – this class represents all defects assigned critical severity level

(they are displayed as its subclasses after performing the ontology classification).
 DefectWithMajorSL – this class represents all defects assigned major severity level

(they are displayed as its subclasses after performing the ontology classification).
 DefectWithMinorSL – this class represents all defects assigned minor severity level

(they are displayed as its subclasses after performing the ontology classification).
 DefectWithInconseqSL – this class represents all defects assigned inconsequential

severity level (displayed as its subclasses after performing the ontology classification).

The five classes that are related to the five severity levels from the IEEE standard are defined
as disjoint from each other because every defect is assigned one and only one severity level.

In the ontology class hierarchy the defects are subclasses of class DefectID. As mentioned
earlier and clearly stated in [13], one of the key features of OWL-DL is that the superclass-
subclass relationships can be computed automatically by a reasoner. Hence, to use this
feature, we have to input the specific defects as separate classes. Moreover, they are input as
subclasses of class DefectID for clarity and readability of the overall ontology taxonomy.

Martin Iliev 3. METHOD DESCRIPTION

- 20 -

Figure 6 presents the class hierarchy for class Defect and its subclasses.

Figure 6. Class Defect and its subclasses.

Next, we created the subclasses for the other four classes. Since the classes are the attributes
from the IEEE standard, their subclasses are the values of the respective attributes. For
clarification and readability, Fig. 7 shows class Effect together with its relation to the quality
properties (the hasvalue arrow). Moreover, the figure shows the created subclasses (using
isa arrows) which are the values of attribute Effect. These subclasses are listed below together
with their definitions, as taken from the IEEE standard in [2]:

 Functionality – actual or potential cause of failure to correctly perform a required
function (or implementation of a function that is not required), including any defect
affecting data integrity.

 Usability – actual or potential cause of failure to meet ease of use requirements.
 Security – actual or potential cause of failure to meet security requirements, such as

those for authentication, authorization, privacy/confidentiality, accountability (e.g.,
audit trail or event logging), and so on.

 Performance – actual or potential cause of failure to meet performance requirements
(e.g., capacity, computational accuracy, response time, throughput, or availability).

 Serviceability – actual or potential cause of failure to meet requirements for
reliability, maintainability, or supportability (e.g., complex design, undocumented
code, ambiguous or incomplete error logging).

Figure 7. Class Effect and its subclasses – the values of attribute Effect.

Martin Iliev 3. METHOD DESCRIPTION

- 21 -

Figure 8 presents class Type and its subclasses using isa arrows. These subclasses are the
values of attribute Type. They are listed and defined below using the definitions from [2]:

 Data – defect in data definition, initialization, mapping, access, or use, as found in a
model, specification, or implementation.

 Interface – defect in specification or implementation of an interface (e.g., between
user and machine, between two internal software modules, between software module
and database, between internal and external software components, between software
and hardware, etc.).

 Logic – defect in decision logic, branching, sequencing, or computational algorithm,
as found in natural language specifications or in implementation language.

 Description – defect in description of software or its use, installation, or operation.
 Syntax – nonconformity with the defined rules of a language.
 Standards – nonconformity with a defined standard.
 Other – defect for which there is no defined type.

Figure 8. Class Type and its subclasses – the values of attribute Type.

Figure 9 shows class InsertionActivity and its subclasses. The subclasses represent the values
of attribute Insertion activity. They are given below together with their definitions from [2]:

 InRequirements – defect inserted during requirements definition activities (e.g.,
elicitation, analysis, or specification).

 InDesign – defect inserted during design activities.
 InCoding – defect inserted during “coding” or analogous activities.
 InConfiguration – defect inserted during product build or packaging.
 InDocumentation – defect inserted during documentation of instructions for

installation or operation.

Figure 10 presents class DetectionActivity and its subclasses, which represent the values of
attribute Detection activity. These subclasses and their definitions from [2] are listed below:

 FromRequirements – defect detected during synthesis, inspection, or review of
requirements.

 FromDesign – defect detected during synthesis, inspection, or review of design.
 FromCoding – defect detected during synthesis, inspection, or review of source code.

Martin Iliev 3. METHOD DESCRIPTION

- 22 -

Figure 9. Class InsertionActivity and its subclasses – the values of attribute Insertion activity.

Figure 10. Class DetectionActivity and its subclasses – the values of attribute Detection activity.

 FromSupplierTesting – defect detected during any testing conducted by the supplier.
 FromCustomerTesting – defect detected during testing conducted by the customer.
 FromProduction – defect detected during production operation and use.
 FromAudit – defect detected during an audit (pre-release or post-release).
 FromOther – defect detected during any other activity, such as user/operator training

or product demonstrations.

3.1.4. Instance level
This is the most specific phase. Instances represent knowledge that is specific to real projects
or systems to which the developed ontology will be applied. Hence, the specific defects input
in the current ontology can be regarded as instances. However, as already explained, the
defects are input as classes that are subclasses of DefectID. For example, Fig. 11 shows five
particular defects input in the ontology as subclasses of DefectID (the other defects are not
present because of space concerns). In fact, Fig. 11 represents an extended version of Fig. 6
up to some minor layout differences, which are explained later.

Figure 11. Class Defect, its subclasses and five particular defects.

Martin Iliev 3. METHOD DESCRIPTION

- 23 -

3.1.5. Classification rules
For the current ontology we have also developed classification rules that are responsible for
the classification of the input defects into the five severity levels from the standard. We have
developed five sets of rules – one set of rules for each of the five classes
DefectWithBlockingSL, DefectWithCriticalSL, DefectWithMajorSL, DefectWithMinorSL
and DefectWithInconseqSL.

The classification rules represent necessary and sufficient conditions for a defect to belong to
one and only one of the above five classes. In other words, if a defect satisfies the set of rules
corresponding to one of the five classes, then this defect belongs to that class and is assigned
the severity level corresponding to the class (i.e., blocking-, critical-, major-, minor- or
inconsequential severity level). On the other hand, if a defect belongs to one of the five
classes, then it satisfies the set of rules corresponding to that class.

Next, we list the rules for each of the five classes and explain their meaning.

Rule 1 (R1) defines the necessary and sufficient conditions for a defect with blocking severity
level (class DefectWithBlockingSL). It consists of two sub-rules and they are the following:

(R1.1) Defect

(R1.2) hasEffectOnNumber min 4

These sub-rules mean the following: an entity is assigned blocking severity level if and only if
it is: (R1.1) a defect; (R1.2) affecting at least four of the values of attribute Effect (which
represent quality properties as already mentioned).

Rule 2 (R2) defines the necessary and sufficient conditions for a defect with critical severity
level (class DefectWithCriticalSL). It consists of five sub-rules and they are the following:

(R2.1) Defect

(R2.2) (hasEffectOnNumber exactly 2) or (hasEffectOnNumber exactly 3)

(R2.3) (isInserted only (InDesign or InRequirements)) or
((isInserted only (InCoding or InConfiguration)) and ((hasEffectOnNumber
exactly 3) or (hasType min 2)))

(R2.4) hasType only (Data or Interface or Logic)

(R2.5) isDetected only (FromCoding or FromSupplierTesting or FromCustomerTesting
or FromProduction)

These sub-rules mean the following: an entity is assigned critical severity level if and only if
it is: (R2.1) a defect; (R2.2) affecting exactly two or exactly three of the values of attribute
Effect; (R2.3) inserted during the design phase or the requirements phase, or inserted during
the coding phase or the configuration phase and affecting exactly three values of attribute
Effect or at least two values of attribute Type; (R2.4) affecting one or more of the values

Martin Iliev 3. METHOD DESCRIPTION

- 24 -

Data, Interface or Logic of attribute Type; (R2.5) detected during the coding phase, or the
supplier testing phase, or the customer testing phase, or during production use.

In Rule 2 the operator or represents logical disjunction and the operator and represents logical
conjunction. The same applies for these operators in the other rules (if they are present in the
other rules).

Rule 3 (R3) defines the necessary and sufficient conditions for a defect with major severity
level (class DefectWithMajorSL). It consists of two sub-rules and they are the following:

(R3.1) Defect

(R3.2) not DefectWithBlockingSL and
(not DefectWithCriticalSL or ((isInserted only (InCoding or InConfiguration)) and
(hasEffectOnNumber exactly 2) and ((hasType only Data) or (hasType only
Interface) or (hasType only Logic)))) and
not DefectWithMinorSL and
not DefectWithInconseqSL

These sub-rules mean the following: an entity is assigned major severity level if and only if it
is: (R3.1) a defect; (R3.2) not a defect with blocking severity level, and not a defect with
critical severity level or it is inserted during the coding phase or the configuration phase and is
affecting exactly two values of attribute Effect and only one of the values Data or Interface or
Logic of attribute Type, and not a defect with minor severity level and not a defect with
inconsequential severity level (the reason for adding the part of this sub-rule after not
DefectWithCriticalSL and before and not DefectWithMinorSL is explained in details in
Appendix A in order not to disrupt the flow of the method description).

In Rule 3 the operator not represents negation (also called logical complement). The same
applies for this operator in the other rules (if it is present in the other rules).

Rule 4 (R4) defines the necessary and sufficient conditions for a defect with minor severity
level (class DefectWithMinorSL). It consists of four sub-rules and they are the following:

(R4.1) Defect

(R4.2) hasEffectOn some (not Usability and not Security)

(R4.3) hasEffectOn only (not Usability and not Security)

(R4.4) hasEffectOnNumber max 1

These sub-rules mean the following: an entity is assigned minor severity level if and only if it
is: (R4.1) a defect; (R4.2) affecting some values of attribute Effect that are not Usability and
Security; (R4.3) affecting only values of attribute Effect that are not Usability and Security
(this sub-rule is needed in order to make sure that the defect can only have the specified
values – such a sub-rule is known as a closure axiom [13]); (R4.4) affecting at most one value
(and, therefore, exactly one) of attribute Effect.

Martin Iliev 3. METHOD DESCRIPTION

- 25 -

Rule 5 (R5) defines the necessary and sufficient conditions for a defect with inconsequential
severity level (class DefectWithInconseqSL). It consists of three sub-rules and they are:

(R5.1) Defect

(R5.2) hasEffectOn some Usability

(R5.3) hasEffectOn only Usability

These sub-rules mean the following: an entity is assigned inconsequential severity level if and
only if it is: (R5.1) a defect; (R5.2) affecting value Usability of attribute Effect; (R5.3)
affecting only value Usability of attribute Effect (as above, this sub-rule is needed in order to
make sure that the defect can only have the specified value).

The classification rules complement the developed ontology. Hence, it is important to point
out that these rules

 were developed manually based on the pattern of the empirical data (from Case
Studies 1 and 2 – see Section 4) and on heuristic strategies, such as intuitive judgment,
etc. The rules were later improved to be as general as possible in order to apply the
method to various software projects (see the validation in Section 5 for an example).

 use designers’ recommendations – the designers’ logical argumentation for translating
the user requirements into the software design and for assigning severity levels to
eventual defects is studied and incorporated in the rules.

 give more weight to defects inserted during the requirements and design phases than
during the coding and configuration phases – this way, the defects inserted earlier in
the software cycle will be given higher severity levels and hence, fixed sooner than
other defects. Therefore, more users of the software product will be satisfied.

 consider the quality properties affected by a defect as a key component (but are not
restricted only to that) for classifying the defect into one of the five severity levels.
Thus, the greater the extent to which a defect affects the quality of the software, the
higher the severity level that will be assigned to the defect.

As a result, using these rules, defects will be assigned severity levels in a way that will reflect
what is important not only according to the developers/test analysts but also according to the
users of the software system.

3.2. The method flow
It is clear now how the ontology was developed. In this subsection we will focus on how to
use the ontology in order to automatically predict the severity levels of defects from different
projects. The method consists of the following steps: detecting defects; analyzing and
converting the information about the defects into the information needed as input for the
ontology; entering the converted information about the defects into the ontology; and, lastly,
predicting the severity levels of the defects input in the ontology through a single click of a
button. These steps are illustrated in the UML activity diagram in Fig. 12 on the next page.
The diagram represents a reference point for the description of the whole method flow.

Martin Iliev 3. METHOD DESCRIPTION

- 26 -

Figure 12. Activity diagram for automated prediction of defects’ severity levels.

Martin Iliev 3. METHOD DESCRIPTION

- 27 -

Before explaining the details of MAPDESO, it should be noted that there are two options
when using it, as illustrated in Fig. 12. The first option is to apply the method to a project that
does not use the IEEE standard in [2] for describing its defects. And the second option is to
apply the method to a project that has adopted the IEEE standard for describing its defects.
The obvious difference is the omission of the second step from the method as given above.
The reason stems from the fact that once a project is using the IEEE standard for describing
its defects, then the defects and their information can be directly input in the ontology. There
is no need to convert the defects’ information because it is already in the form needed to input
the defects in the ontology. However, below we will describe and explain all steps of the
method.

3.2.1. Detection of defects
The testing activity in the software development cycle detects defects, which software teams
have to fix. For our research, testing at the system level was the main source of defects.
However, we also took into consideration defects detected during the coding phase and during
maintenance. Therefore, the four activities, used in this method to detect defects (no detected
defects is also a possibility), as defined in [2], are

 coding – defects detected during synthesis, inspection, or review of source code;
 supplier testing – defects detected during testing conducted by the supplier;
 customer testing – defects detected during testing conducted by the customer;
 production – defects detected during production operation and use.

As explained earlier, the next step (Section 3.2.2) is required for projects not using the IEEE
standard for describing their defects and it is redundant for projects using the standard for
describing their defects.

3.2.2. Analysis and conversion of the defects’ information
Taking this step implies that the software project to which the method is applied has not
adopted the IEEE standard for describing its defects. Hence, the information about detected
defects is gathered and stored in a way that is, most probably, specific only for the project in
question. For example, the set of severity levels might contain three, four, five or more levels;
the defect tracking system might not contain any information about a defect’s insertion
activity or type; etc. After analyzing the available information about defects from such a
project, it is evident that this information has to be converted into the defect attributes and
their values from the standard in [2] in order to apply the method to the project. In our
research, the analysis and conversion were done manually. This manual process consisted of:

 studying the project documentation and the available information from the defect
tracking system – this way, we were able to understand the information contained in
the defect reports;

 conducting interviews with members of the software team – we used their project
knowledge in order to gather the information needed for the conversion.

After that, we analyzed the data acquired from the above two steps and if the data were not
enough, the steps were repeated. Then, based on the analysis and on the recommendations of

Martin Iliev 3. METHOD DESCRIPTION

- 28 -

the software team members, we converted the gathered information about the defects into the
defect attributes and their values from the standard. The used attributes are Effect, Type,
Insertion activity and Detection activity, as defined in [2].

It turned out that it is quite easy to present the results from the analysis and conversion step in
a table. The table has five columns representing the Defect ID and the used attributes and
every row after the first one (which is the top row) represents separate defects with the
respective values of the attributes for each and every defect. Table 1 below shows the top row
of the table together with example values of the attributes for a fictitious defect.

Table 1. The format of the table presenting the results from the analysis and conversion step

Defect ID Effect Type Insertion
Activity

Detection
Activity

001 Functionality;
usability Logic Coding Supplier

testing
… … … … …

As a future direction, there might be another way to complete the analysis that, in fact, can
automate it. It is possible to use natural language processing and data mining algorithms to
extract the needed information from the defect reports. This way, the extracted defect
information will be converted into the attributes and their values from the standard. Although
this option was not used in the research, it might be a very useful way to further automate this
method, as explained in Section 8.

3.2.3. Entering the converted information into the ontology
This step presents a few ways for entering the converted information into the ontology using
the Protégé-OWL editor.

When Table 1 is completed the method continues with entering the converted information (or,
in other words, the information from Table 1) into the ontology. This step can be divided in
two. First, the classes for all defects that will be input in the ontology should be created as
subclasses of class DefectID (as explained in Section 3.1.3). And second, the converted
information about the defects (from Table 1) should be added to the created classes.

The editor we used for developing the ontology – Protégé-OWL, gives us three options for
inputting the defects in the ontology. The first one is to manually create the classes for all
defects and fill out all properties and the values of their respective ranges for every class. The
second option is to use two editors – with the first one (called Create Multiple Subclasses) the
classes are created, while with the second one (called Quick Restriction Editor) the
information about the defects is added to the classes. The third option is to use the Excel
Import plug-in – a batch importing plug-in from Protégé-OWL. It provides the opportunity to
generate classes from the contents of Excel or CSV (comma-separated values) files. For
example, the classes for the defects can be generated from the contents of the first column of
Table 1. Then, to add the converted information to the created classes, restrictions are

Martin Iliev 3. METHOD DESCRIPTION

- 29 -

generated or, in other words, the first column of Table 1 is related to the other columns via the
properties defined in Section 3.1.2.

If Table 1 contains ten or twelve defects, for instance, then it will be relatively easy to enter
them and their information manually into the ontology. If, however, the table contains many
defects – twenty or more, then it is also possible to enter everything manually but it will be
very time-consuming. Hence, in either case, it is more feasible not to use the first option.
Completing the current step using the other two options is similar to a great extent. Since the
second option provides important details for inputting the defects in the ontology, we used
this option. The two editors are explained below together with some examples.

3.2.3.1. Creating the classes for the defects – editor Create Multiple Subclasses
Editor Create Multiple Subclasses is depicted in Fig. 13. The left side of the figure shows the
steps that need to be completed in order to create the classes for all defects. This editor gives
the opportunity to select the superclass that will contain all created classes (step 2 “Select
superclass”). In this case, the superclass is class DefectID. Then, the names of the classes can
be entered (or copied from other sources) and they will be created as subclasses of the
selected superclass (step 3 “Enter names” – this step is shown in details in Fig. 13). It is
valuable to know that prefixes and suffixes can be added for all class names and that the
editor automatically validates that the entered terms are valid Protégé names. Moreover, the
editor allows disjoints (step 4 “Disjointness”) to be added automatically between all new
siblings (and also between the new and the existing ones). We need to add disjoints since all
defects are entered as separate and unique classes. In the end, the successful creation of the
classes for all defects is confirmed by the editor (step 5 “Results”).

Figure 13. Editor Create Multiple Subclasses.

Martin Iliev 3. METHOD DESCRIPTION

- 30 -

3.2.3.2. Adding the converted information to the classes – Quick Restriction Editor
Editor Quick Restriction Editor is depicted in Fig. 14. Similarly to above, the left side of the
figure shows the steps that need to be completed in order to input the converted information in
the ontology. The editor gives the opportunity to choose the classes that will be the domains
(step 2 “Choose classes”) and the object properties (step 3 “Choose properties”) through
multiple selections. Default values for the ranges of the chosen properties can be provided if
needed (step 4 “Defaults”). Then, the values of the respective ranges can be edited through
multiple selections or by choosing a value from a drop-down list (step 5 “Edit restrictions” –
this step is shown in details in Fig. 14). An important and very useful feature of this editor is
that it can create the closure axioms for all chosen object properties (step 6 “Closure”). As
mentioned earlier, adding closure axioms for the chosen properties is essential since the
axioms explicitly state that defects can have the values they are given and only these values.
This way, the reasoner will be able to unambiguously classify the defects into the predefined
severity levels and no inconsistencies will occur. In the end, the editor displays a message
(step 7 “Results”) confirming the successful creation of all relations (also called restrictions)
between the chosen classes, object properties and values of the ranges.

This editor, however, does not allow using datatype properties and, therefore, their ranges
have to be filled out manually for every defect input in the ontology.

In our research, we worked with more than thirty defects at all times. Thus, for creating the
classes for all defects, the editor Create Multiple Subclasses was used. Then, for the four
object properties, defined in Section 3.1.2, the Quick Restriction Editor was used to input the

Figure 14. Editor Quick Restriction Editor.

Martin Iliev 3. METHOD DESCRIPTION

- 31 -

values of the ranges for all defects and to create the respective closure axioms. After that, for
the datatype property (Section 3.1.2), we input manually the values of its range for all defects.

In the end of this step, all defects and their converted information were input in the ontology.
An example for the outcome from this step is illustrated in Fig. 15. It presents how the
converted information about a defect looks like after the defect and its information are input
in the ontology. This example features a defect with ID 205, which is represented by class
DefectID205 in the ontology. As given on the left side of the figure, this defect is selected
among the other defects in the ontology. The converted information about the defect is shown
on the right side of the figure. Similar information is displayed for all defects input in the
ontology upon selection.

Figure 15. DefectID205 and its converted information after entering them into the ontology.

3.2.4. Automatically predicting the severity levels of defects
The last step in the method, once all defects and their information are input in the ontology, is
to automatically predict the defects’ severity levels. For achieving this goal, the input defects
are automatically classified into the predefined severity levels using the developed rules (see
Section 3.1.5) and the Pellet reasoner (see Section 2.5).

Defects are input in the ontology as separate classes, as explained in Section 3.2.3. Once this
step is successfully completed, Pellet is employed to automatically classify the ontology
hierarchy based on the developed rules. This is easily achieved by a single click of the
“Classify taxonomy…” button available in the Protégé-OWL editor. A new window opens –
depicted in Fig. 16, showing the process the reasoner goes through – synchronizing; checking
the consistency of the ontology hierarchy; computing the inferred hierarchy and the
equivalent classes (the reasoning phase). Upon the successful completion of this process, the
inferred ontology hierarchy and the classification results are displayed in the editor. However,
if the reasoner detects inconsistencies in the ontology hierarchy, it will display one or more
classes, found to be inconsistent, in the window in Fig. 16. These classes and the respective
defects should be checked. If the input information is incorrect or some of it is missing, it
should be corrected and completed. Then, the classification of the ontology hierarchy should
be repeated. The same applies if classes, which are not classified at all, are found while
browsing through the inferred ontology hierarchy.

Martin Iliev 3. METHOD DESCRIPTION

- 32 -

Figure 16. Pellet classification process.

The classification results are presented in Fig. 17. The left column contains the classes of
every defect input in the ontology. The right column contains the classes that the classes from
the left column are added to as subclasses. The classes in the right column represent the five
severity levels from the IEEE standard. Hence, the classification results clearly show the
severity level that is predicted for every defect input in the ontology. For example, in Fig. 17,
class DefectID203 is added as a subclass to class DefectWithCriticalSL. Therefore,
according to the developed method, this defect is predicted as having critical severity level.

Figure 17. Classification results.

Martin Iliev 3. METHOD DESCRIPTION

- 33 -

Figure 18 represents Fig. 11 after the ontology classification has been performed. Hence, for
the five defects in Fig. 11, the reasoning phase has added links to the predicted severity levels.
The layout of Fig. 11 and 18 is different from that of Fig. 6 (e.g., classes are denoted with
ovals instead of rectangles) due to using a visualization tool that can display the results from
the reasoning phase, as shown in Fig. 18.

Figure 18. The five defects from Fig. 11 after performing the ontology classification.

In addition, the inferred ontology hierarchy, which is also a result from the classification
process, can be used to easily browse through defects assigned a specific severity level. In
other words, all defects, assigned blocking severity level, are grouped together as subclasses
of class DefectWithBlockingSL. The same applies to the other defects and severity levels.
This way, software teams can focus on fixing only defects assigned, for example, blocking-
and critical severity level according to the period of time they have available.

3.3. Section summary
In this section we described the details of MAPDESO – the method for automated prediction
of defect severity using ontologies. First, the process of developing the ontology was
explained though this process is performed only once and it does not need to be repeated for
using the method. Then, the details of the automated prediction method were presented in the
same order in which the method could be applied to a real software project. The section ended
with examples of results achieved by using the method.

The knowledge acquired until now is used to fully understand the approach applied to the case
studies in Section 4, the validation in Section 5 and the comparison in Section 6.

Martin Iliev 4. CASE STUDIES

- 34 -

4. CASE STUDIES

The two case studies in the research were conducted in an industrial environment – in the
Technical Software Engineering Practice of Logica Netherlands B. V. (a company providing
business consulting, technology and outsourcing services), in the company’s office in
Rotterdam, the Netherlands.

Both case studies follow the same approach. The approach is divided in three parts: data
collection, data analysis and conversion, and data classification. As mentioned in Section 3,
the classification rules were developed using the data from these two case studies. Thus, the
data can be regarded as the training data for the developed ontology and rules.

4.1. Case Study 1
Reference [15] presents the approach and the results from Case Study 1 (CS1). However,
since the completion of CS1, as explained in [15], we have improved a few things in the
approach to the case study, which led to minor changes in the results. Hence, now we will
present this improved version of the approach and the results from CS1.

Case Study 1 is based on a project for which Logica has developed the front-end software.
The outcome from this project is an embedded traffic control system.

4.1.1. Data collection
The data represent fixed defects from the testing phase of the project. For keeping track of the
defects found in the system during the testing phase, an issue management system (tracking
system) has been used. Once a test analyst finds a defect, he inputs a corrective change
request in the tracking system. It contains specific information about the defect such as its
description, the version of the system that has been tested, where the defect originates from,
the severity level of that defect (which is assigned by the test analyst), etc. The severity levels
used in the project and as defined for the project are the following:

 Showstopper – a defect with such a severity level prevents the system from being put
in production.

 Severe – a defect with such a severity level allows the system to be put in production
if there is a workaround.

 Medium – a defect is assigned such a severity level if the system can work and this
defect is not included in any other of the three categories of severity levels (this is the
default severity level used in this project).

 Minor – a defect is assigned such a severity level if the system works but the users are
annoyed by the defect.

The main part in the data collection step was to collect relevant and useful data for the
purposes of the research. In order to do this, at least basic knowledge of the project in
question was required. To gain such knowledge, the project was studied using its
documentation – mainly design documents, UML diagrams, user manual, test documents.

Martin Iliev 4. CASE STUDIES

- 35 -

These documents provided insights about the development of the project, its defect tracking
system, the severity levels used in it and how to extract the required details about the defects.
After that, the tracking system was used to extract a representative sample of 33 defects based
on the project knowledge and the recommendations of the designers, the developers and the
test analyst working on the project. This subset was selected to include defects from each
severity level used in the project. The selected defects have been fixed in the latest version of
the system (since only the latest version of the system contains the latest version of the design
and the requirements), yet their number is limited because of time constraints. Table 2
presents details about the number of fixed defects according to the project’s severity levels.
The last column of the table shows the distribution of the selected defects according to the
severities from the project.

Then, interviews were conducted with the same people working on the project to get detailed
information about the selected defects and to verify that they are a representative subset
(almost one third) of all defects fixed in the latest version of the system.

4.1.2. Data analysis and conversion
The detailed information about the 33 defects from the data collection step includes the
following: the severity levels of the defects, the causes for the defects, the types of the defects,
the reasons for assigning a specific severity level to a defect and the ways through which the
defects were found. Since this information is project-specific, the IEEE standard in [2] was
used to convert the project-specific information about the defects into the project-independent
attributes and their values defined in this standard. As explained in Section 1.3, the used
attributes are the following: Severity, Effect, Type, Insertion activity and Detection activity.
This conversion resulted in a table that contains the defect IDs (as used in the ontology)
together with the values of the attributes from the standard assigned to each defect based on
its detailed information. Table B.1.L in Appendix B presents the results from the conversion.

As already mentioned, the project used in CS1 has four severity levels. However, the ontology
uses the severity levels from the IEEE standard (which provides five severity levels).
Therefore, a relation should be defined that matches the severity levels from the project to the
ones provided by the standard. This relation is defined in Table 3.

4.1.3. Data classification
The data classification step begins with entering the defects and the converted information
about them from the previous subsection (see Table B.1.L in Appendix B) into the ontology.

Table 2. Number of fixed defects according to the severity levels from the project in CS1

Severity Level
Number of Fixed Defects

In all versions
of the system

In the latest version
of the system

Selected for
Case Study 1

Showstopper 6 1 1
Severe 47 10 10

Medium 301 93 17
Minor 85 12 5
Total 439 116 33

Martin Iliev 4. CASE STUDIES

- 36 -

Table 3. The relation between the severity levels for CS1

Severity Levels
From the IEEE Standard Classification

and used in the ontology From the project used in Case Study 1

Blocking Showstopper
Critical Severe
Major Medium
Minor Minor

Inconsequential Minor

Following the explanations in Section 3.2.3, we created the classes for the 33 defects as
subclasses of class DefectID. These subclasses were named DefectID101, DefectID102,
and so on up to DefectID133 because they are part of CS1 and their total number is 33. Next,
the converted information about the defects was input in the ontology in the same way as
explained in Section 3.2.3. It is visible from Table B.1.L that the input consists of the
information about the defects concerning the values of attributes Effect (which represent
quality properties), Type, Insertion activity and Detection activity.

As explained in Section 2.5, for the ontology development and the automatic classification we
use the Protégé-OWL ontology editor with the OWL-DL language and the Pellet reasoner,
respectively. Hence, the data classification step ends with the automatic classification of the
defects into the predefined severity levels. Similarly to the process explained in Section 3.2.4,
the Pellet reasoner classified all defects from CS1 input in the ontology into the five severity
levels. The results from the classification were displayed in the ontology editor.

4.1.4. Results
The results can be found in Table B.1.R in Appendix B. The first column gives the original
severity levels of the defects from the project while the second one contains the severity levels
converted to the IEEE standard using the relation in Table 3. The third column presents the
severity levels predicted by the developed method. The rows in Table B.1.R are distributed in
such a way that they correspond to the rows in Table B.1.L for easy reference between the
tables.

Next, we compared the results obtained using the automated prediction method with the
results from the original classification (after applying the relation in Table 3). In other words,
we compared the third column of Table B.1.R with the second column of the same table.
Table 4 presents a summary of the results from the comparison between the two
classifications using a confusion matrix. The numbers given in bold (on the diagonal)
represent the number of defects classified into the same severity levels by both classifications.
The numbers shown above the diagonal represent the number of defects classified into lower
severity levels by the ontology than by the original classification. The remaining numbers
(shown below the diagonal) represent the number of defects classified into higher severity
levels by the ontology than by the original classification. Therefore, using the table, it can be
easily calculated that the ontology classified 55% of the defects into the same severity levels

Martin Iliev 4. CASE STUDIES

- 37 -

Table 4. Summary of the results from the comparison using a confusion matrix (CS1)

 Automatic (Ontology) Classification for CS1

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-
cation

from CS1

Blocking 1 0 0 0 0
Critical 0 7 3 0 0
Major 0 7 6 2 2
Minor 0 0 0 2 1

Inconsequential 0 0 0 0 2

as originally. 24% of the defects were classified into lower severity levels by the ontology
while 21% were classified into higher severity levels by the ontology than by the manual
(original) classification. These results are summarized in Fig. 19.

Figure 19. Percentages of the 33 defects (from CS1) classified into the same severity levels (SLs), lower SLs
and higher SLs by the ontology compared with the original classification from CS1.

There are two reasons for the differences in the classification results. First, the ontology
classification takes into account the point of view of the user of the software system while
preserving the developer’s point of view when considering which defects are important for
fixing and which are not, as opposed to not taking into account the user’s point of view at all
(for more details see Section 3.1.5). For example, some defects related to the design of and
the requirements for the software are classified into higher severity levels by the ontology
than by the original classification (other factors also play a role in the classification process).
This way, these defects will be given a greater chance of being fixed for the next release,
which will satisfy more users of the software product.

The other reason is that there are defects assigned the default severity level by the people
working on the project without paying much attention whether this is the correct severity level
or not. As mentioned in Section 4.1.1, the default severity level for the project is medium.
However, using the relation in Table 3, we see that the default severity level is, in fact, major.
So, Table B.1.L also contains such defects. Since the developed method classifies all defects,
the defects assigned the default severity level in that table are assigned critical-, major-,
minor- or inconsequential severity level by the ontology (as shown in Table 4). Hence, each
defect is assigned a specific severity level and no default severity levels are used.

Same SLs
55%

Lower SLs
24%

Higher SLs
21%

Martin Iliev 4. CASE STUDIES

- 38 -

In the end, it should be taken into account that the results from CS1 were presented to two
software architects from Logica familiar with the project used in CS1. Their opinion was the
results satisfy the expectations that an automatic classification of defects into predefined
severity levels is possible and the results from it are satisfactory for an initial case study.

Based on the achieved from CS1 and having in mind different projects use different sets of
severity levels, we decided to work on another case study. Additional reason for doing so was
to use data from a completely different project. The next subsection presents Case Study 2.

4.2. Case Study 2
Case Study 2 (CS2) is based on a project that Logica has been developing for eight years.
Though the project is still in active development, it is already in use by the client. There are
new releases regularly. The project is concerned with one main application with a couple of
small utilities.

4.2.1. Data collection
In this case study the data represent fixed defects not only from the testing phase, as it was in
CS1, but also from the post release use of the project. Although the project makes use of a
different issue management system compared with CS1, it is easy to understand and use.
When a defect is reported, which can be done by a developer, a test analyst or a user of the
system, it is input in the defect tracking system. The additional information entered in the
tracking system includes the defect’s description, the release of the system where it has been
detected, the origin of the defect, its severity level (which is assigned either by the test analyst
or by the user or by both of them), etc. This project uses the following severity levels:

 Block – this severity level is assigned to defects that cause seriously reduced usability
and, therefore, prevent the system from being released.

 Crash – a defect with such a severity level causes core dumps (it is not recommended
to use the system in such cases).

 Major – this severity level is assigned to defects that cause logic problems leading to
incorrect results (though the system can be used).

 Minor – this severity level is assigned to defects that cause cosmetic problems (this is
the default severity level used in this project).

One of our concerns when collecting the data was to get relevant and useful data. Hence, we
studied the project using its documentation – design documents and diagrams, user manuals
and test documents. Once we gained some knowledge of the project, we continued with
extracting the defects. The tracking system was used to select defects found during the testing
phase and the post release use of the project. With the help of the software architect and the
developers working on the project we extracted a sample of 47 defects. The reasons for
selecting this subset were to include defects from each severity level from the project that
have been fixed in the latest releases of the system (similarly to CS1), and to have more
defects than in CS1 but still limit their number because we were constrained by time. Table 5
shows details about the number of fixed defects according to the project’s severity levels. The
last column presents the distribution of the selected defects according to these severities.

Martin Iliev 4. CASE STUDIES

- 39 -

Table 5. Number of fixed defects according to the severity levels from the project in CS2

Severity Level
Number of Fixed Defects

In the latest releases
of the system

Selected for
Case Study 2

Block 1 1
Crash 11 11
Major 10 10
Minor 123 25
Total 145 47

After that, interviews were conducted with the software architect and a developer working on
the project to get detailed information about the selected defects. We also verified that these
defects are a representative subset (one third) of the fixed defects in the latest releases of the
system.

4.2.2. Data analysis and conversion
The tracking system in this project provides very project-specific information about the
defects. Hence, it is difficult to process the detailed information about the 47 defects from the
previous step out of project context. To alleviate this, we used the IEEE standard in [2] and
converted the project-specific information about the defects into the defect attributes and their
values defined in the standard. The used attributes are the same as in CS1. The conversion
resulted in Table B.2.L in Appendix B. Similarly to CS1, Table B.2.L contains the defect IDs
(as used in the ontology) together with the values of the attributes from the standard assigned
to each defect based on its information.

Moreover, there are four severity levels used in the project in CS2. However, the ontology
uses five severity levels (from the IEEE standard). Therefore, we defined a relation that
matches the severity levels from the project in CS2 to the ones in the ontology. Table 6
presents this relation.

4.2.3. Data classification
As in CS1, the data classification step begins with entering the defects and the converted
information about them from the previous subsection (see Table B.2.L in Appendix B) into
the ontology. Following the explanations in Section 3.2.3, we created classes for the 47
defects as subclasses of class DefectID. These subclasses were named DefectID201,

Table 6. The relation between the severity levels for CS2

Severity Levels
From the IEEE Standard Classification

and used in the ontology From the project used in Case Study 2

Blocking Block
Critical Crash
Major Major
Minor Minor

Inconsequential Minor

Martin Iliev 4. CASE STUDIES

- 40 -

DefectID202, and so on up to DefectID247 because they are part of CS2 and their total
number is 47. Next, the converted information about the defects was input in the ontology in
the same way as explained in Section 3.2.3. Table B.2.L shows that the input consists of the
information about the defects concerning the values of attributes Effect (which represent
quality properties), Type, Insertion activity and Detection activity.

The data classification step ends with the automatic classification of the defects into the
predefined severity levels. Similarly to the process given in Section 3.2.4, the Pellet reasoner
classified all defects from CS2 input in the ontology into the five severity levels. The end
results from the classification were displayed in the editor.

4.2.4. Results
The results are shown in Table B.2.R in Appendix B. The first column contains the original
severity levels of the defects from the project while the second one gives the severity levels
converted to the IEEE standard using the relation in Table 6. The third column presents the
severity levels predicted by the developed method. Similarly to the tables in CS1, the rows in
Table B.2.R are distributed in such a way that they correspond to the rows in Table B.2.L for
easy reference between the tables.

Next, we compared the results obtained using the automated prediction method with the
results from the original classification (after applying the relation in Table 6). In other words,
we compared the third column of Table B.2.R with the second column of the same table.
Table 7 presents a summary of the results from the comparison between the two
classifications using a confusion matrix. The numbers given in bold (on the diagonal)
represent the number of defects classified into the same severity levels by both classifications.
The numbers shown above the diagonal represent the number of defects classified into lower
severity levels by the ontology than by the original classification. The remaining numbers
(shown below the diagonal) represent the number of defects classified into higher severity
levels by the ontology than by the original classification. As it can be seen on Fig. 20, the
ontology classified 51% of the defects into the same severity levels as originally, 19% of the
defects into lower severity levels and 30% into higher severity levels than originally.

The reasons for the differences in the classification results are very similar to those given in
CS1. However, the default severity level in CS2 is minor (as opposed to major in CS1).
Hence, defects that were originally assigned minor severity level are assigned major-, minor-
or inconsequential severity level by the ontology (as shown in Table 7).

Table 7. Summary of the results from the comparison using a confusion matrix (CS2)

 Automatic (Ontology) Classification for CS2

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-

cation from
CS2

Blocking 1 0 0 0 0
Critical 0 9 2 0 0
Major 0 4 6 0 0
Minor 0 0 10 7 7

Inconsequential 0 0 0 0 1

Martin Iliev 4. CASE STUDIES

- 41 -

Figure 20. Percentages of the 47 defects (from CS2) classified into the same severity levels (SLs), lower SLs
and higher SLs by the ontology compared with the original classification from CS2.

Last but not least, the results from CS2 were presented to the software architect and the team
working on the project used in the case study. Their opinion was the results satisfy the
expectations that an automatic classification of defects into predefined severity levels is
possible and the results from it are quite satisfactory compared with the original classification
results.

4.3. Summary of the results from Case Study 1 and Case Study 2
We gathered a total of 80 defects from both CS1 and CS2. In order to summarize the achieved
results from both case studies we created the confusion matrix in Table 8. It compares the
manual (original) classification of the defects from CS1 and CS2 with the automatic
(ontology) classification of the same defects.

As before, the numbers given in bold (on the diagonal) represent the number of defects
classified into the same severity levels by both classifications. The numbers shown above the
diagonal represent the number of defects classified into lower severity levels by the ontology
than by the original classification. The remaining numbers (shown below the diagonal)
represent the number of defects classified into higher severity levels by the ontology than by
the original classification. From Table 8, we can calculate that the ontology classified 53% of
the defects into the same severity levels as originally, 21% of the defects into lower and 26%
of the defects into higher severity levels than the original classification. These results are
summarized in Fig. 21.

The reasons for the differences in the classification results shown in Table 8 represent the
addition of the reasons given in CS1 (Section 4.1.4) and those given in CS2 (Section 4.2.4).

Table 8. Summary of the results from the comparison using a confusion matrix (CS1 and CS2)

 Automatic (Ontology) Classification for CS1 & CS2

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-

cation from
CS1 & CS2

Blocking 2 0 0 0 0
Critical 0 16 5 0 0
Major 0 11 12 2 2
Minor 0 0 10 9 8

Inconsequential 0 0 0 0 3

Same SLs
51%

Lower SLs
19%

Higher SLs
30%

Martin Iliev 4. CASE STUDIES

- 42 -

Figure 21. Percentages of the 80 defects (from CS1 and CS2) classified into the same severity levels (SLs),
lower SLs and higher SLs by the ontology compared with the original classifications from CS1 and CS2.

4.4. Section summary
Summing up this section, it should be noted that since the gathered data from CS1 and CS2
can be considered as the training data for MAPDESO, the method has to be tested, too.
Hence, the next step is to conduct a validation case study and the data from it will serve as the
test data for MAPDESO. The successful completion of such a case study will validate the
results achieved by the method when applied to an unknown project.

Same SLs
53% Lower SLs

21%

Higher SLs
26%

Martin Iliev 5. VALIDATION

- 43 -

5. VALIDATION

In the beginning of this section, it should be emphasized that for the validation the already
developed ontology and rules were tested on new data from a different project. Similarly to
the two case studies from Section 4, the validation was also conducted in an industrial
environment, namely at Logica. It consists of a Validation Case Study (VCS) and a small
experiment at the end of the case study. VCS is based on a project whose development is
completed. Currently, it is in production use and Logica provides its maintenance. The project
represents an application that handles the messages between different companies and
operators in order to make everything smooth for the clients. For working on VCS the steps
below were taken.

5.1. Approach – VCS
The approach is divided in three: data collection, data analysis and conversion and data
classification. An important difference of this approach compared with the one in Section 4 is
that in VCS the severity levels of the selected defects were excluded from the defect reports.
The details of the VCS approach are given below.

5.1.1. Data collection
The data represent fixed defects detected not only from the testing phase of the project but
also during its maintenance. Similarly to the other two case studies, a defect can be reported
by a developer, a test analyst or a user of the system. Once reported, the defect is input in the
tracking system providing description for it, the date it was detected, the person who detected
it, its severity level (assigned by a software team member or by a user, or by both), etc. A
software engineer working on the project revealed that the project uses four severity levels:

 Top – assigned to defects that hinder the overall use of the system.
 High – assigned to defects causing disturbances in several components of the system.
 Medium – assigned to defects that cause disturbance(s) in a single component but do

not prevent the use of the system.
 Low – assigned to defects causing minor inconveniences or cosmetic issues; the

system works if such defects are present (this is the default severity in the project).

A main concern here was to get relevant and useful data. Since we wanted to be as objective
as possible when working on VCS, we did not spend any time studying the project’s
documentation. Instead, for selecting the defects, we relied solely on the help and the
recommendations of the project’s service coordinator. He provided us with a database
containing the defect reports for 1163 fixed defects, which have been detected through testing
activities and maintenance in 2011. Applying the method to all of these defects would have
taken us much more time than we had for completing the validation. Thus, we considered
selecting 50 defects also because this number is just a bit more than the number of selected
defects in each of the previous case studies. As before, this subset included defects from each
and every severity level from the project. Table 9 presents the distribution of the 1163 defects

Martin Iliev 5. VALIDATION

- 44 -

Table 9. Number of fixed defects according to the severity levels from the project in VCS

Severity Level
Number of Fixed Defects

In the received database Selected for the validation of
the method

Top 32 2
High 180 9

Medium 328 16
Low 623 23
Total 1163 50

and of the 50 defects according to the project’s severity levels. It is straightforward to
calculate from the table that the distribution of the 50 defects is relatively the same as the
distribution of the 1163 defects (in terms of percentages) according to the project severities.

The decision for selecting 50 defects with the distribution shown in Table 9 was made without
consulting the contents of the defect reports from the received database in order to keep our
objectivity. After that, we had a couple of meetings with a software engineer from the
project’s team in order to introduce him to the details of our research. The reason for doing so
was to get his help with the data conversion step.

5.1.2. Data analysis and conversion
According to the received database and as expected, the defect reports contained project-
specific information. Therefore, we asked the same software engineer to convert the project-
specific information about the defects into the attributes and their values defined in the IEEE
standard. Once again, the reason for this action was to reduce any influence that we might
have on the data conversion step. In order to complete this step we had a few more meetings
with the software engineer for further clarifications of our research goals and the format of the
information that we need to input in the ontology. The conversion resulted in Table B.3.L in
Appendix B. The table contains the defect IDs, as used in the ontology, together with the
values of attributes Effect, Type, Insertion activity and Detection activity, assigned to each
defect based on its information.

In addition, as given in Section 5.1.1, the project uses four severity levels. As we already
know, the ontology uses the five severity levels from the IEEE standard. Thus, we defined a
relation that matches these two sets of severities. Table 10 presents the relation.

Table 10. The relation between the severity levels for VCS

Severity Levels
From the IEEE Standard Classification

and used in the ontology
From the project used for the validation of

the method
Blocking Top
Critical High
Major Medium
Minor Low

Inconsequential Low (in fact, not used in the project)

Martin Iliev 5. VALIDATION

- 45 -

5.1.3. Data classification
The first part of the data classification step is to input the defects in the ontology. To do that,
we created classes for the 50 defects as subclasses of DefectID. They were named
DefectID301, DefectID302 and so on up to DefectID350 because they are part of VCS
which is the third case study we worked on and their total number is 50. After that, the
converted information about these defects, as given in Table B.3.L in Appendix B, was input
in the ontology.

The final part of the data classification step is to automatically classify the defects into the
predefined severity levels. As in Section 3.2.4, the Pellet reasoner automatically classified all
defects input in the ontology into the five severity levels. The classification results were
displayed in the ontology editor.

5.2. Results
The results from VCS are given in Table B.3.R in Appendix B. The table is organized in a
similar way as in the training case studies from Section 4. In other words, the first column
contains the original severity levels of the defects from the project while the second one gives
the severity levels converted to the IEEE standard using the relation in Table 10. The third
column presents the severity levels predicted by the developed method. Moreover, the rows in
Table B.3.R are distributed in such a way that they correspond to the rows in Table B.3.L for
easy reference between the tables.

Once the predicted severity levels of the selected defects were present, we compared them
with the severity levels from the original classification after applying the relation in Table 10.
Hence, we compared the third column of Table B.3.R with the second column of the same
table. A summary of the results from the comparison between the two classifications is
presented in Table 11 using a confusion matrix. The numbers on the diagonal (given in bold)
represent the number of defects classified into the same severity levels by both classifications.
The numbers shown above the diagonal represent the number of defects classified into lower
severity levels by the ontology than by the original classification. The remaining numbers
(shown below the diagonal) represent the number of defects classified into higher severity
levels by the ontology than by the original classification. We have calculated that the ontology
predicted 64% of the defects as having the same severity levels as originally, 8% of the
defects as having lower severity levels than in the manual classification from the project, and
28% of the defects as having higher severity levels than in the manual (original) classification.
These results are visualized in Fig. 22.

The reasons for the differences in the classification results are similar to the ones mentioned
in the case studies since the same rules are used for classifying the defects from CS1, CS2 and
VCS. The first reason stems from the fact that there are defects assigned the default severity
level in the project used for VCS. However, the default severity in it differs from the ones in
the previous projects. As given in Section 5.1.1, this project’s default severity level is low.
Using Table 10, we see that it converts to minor. So, Table B.3.L also contains defects
assigned the default severity. Since the ontology classifies all defects, the defects assigned the

Martin Iliev 5. VALIDATION

- 46 -

Table 11. Summary of the results from the comparison using a confusion matrix (VCS)

 Automatic (Ontology) Classification for VCS

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-

cation from
VCS

Blocking 2 0 0 0 0
Critical 0 8 1 0 0
Major 0 5 9 2 0
Minor 0 1 8 13 1

Inconsequential 0 0 0 0 0

Figure 22. Percentages of the 50 defects (from VCS) classified into the same severity levels (SLs), lower SLs
and higher SLs by the ontology compared with the original classification from VCS.

default severity level in that table are assigned critical-, major-, minor- or inconsequential
severity level by the automatic classification (refer to Table 11).

Moreover, as pointed out in Section 3.1.5, the way the classification rules were developed
implies that the method takes into consideration the point of view of the user of the software
system while preserving the developer’s point of view when predicting the severity levels.
This notion is illustrated with a couple of examples. First, the defect with ID 346 from Table
B.3.L was originally assigned major severity level according to Table B.3.R. However, the
automatic classification predicts for it critical severity level (see Table B.3.R). The
combination of the values representing this defect implies that the users of the software will
be affected more by this defect than originally anticipated when it was assigned major
severity level. For this reason, the automatic classification predicts for it critical severity level.
Therefore, this defect will be fixed sooner than initially planned and its fix will be included in
the next release of the software. And second, the defects with IDs 307, 320 and 333, for
example, are predicted as having the same severity levels as originally assigned. In this way,
the automatic classification also aims at preserving the point of view of developers and test
analysts when predicting which defects are important for fixing and which are not.

Before continuing further, we should point out that after comparing Fig. 22 with Fig. 21, we
notice that the results from VCS are better than the results from the training cases. This can be
contributed to the fact that we have dealt with very reliable defect and severity data. In
addition, to confirm the above observation and, hence, the successful completion of VCS, we
validated the results obtained from VCS. After that, we conducted a small experiment with

Same SLs
64% Lower SLs

8%

Higher SLs
28%

Martin Iliev 5. VALIDATION

- 47 -

the help of the service coordinator for the project. The details of these two steps and the
results from them are presented in the following two subsections.

5.3. Validation of the results
Validating the above results included presenting them to the software engineer and the service
coordinator mentioned earlier. Then, by interviewing them, we found out their opinion about
the performance of MAPDESO compared with the performance of the original (manual)
classification. Since they played an important role in conducting VCS and they were aware of
our research goals, it was straightforward to present and discuss the results with them. The
main points that they have highlighted are mentioned below.

 The automated prediction method has performed surprisingly well compared with the
original classification from the project – there are so many defects classified into the
same severity levels by the ontology as originally especially having in mind that the
method uses only four attributes from the IEEE standard to predict a fifth attribute –
the severity levels.

 If only the defects classified differently (total number of mistakes) are considered,
then their number should be low. However, as far as the majority of them are
classified into higher severity levels by our method than by the manual classification
(which is the case in Table 11), the automated prediction performs very well. In other
words, it is good that there are more defects classified into high severity levels
(critical, major) than into low severity levels (minor, inconsequential).

 It is very practical that the method uses an IEEE standard for the defects’ attributes
and their values. Although it might be difficult to use this method for current projects
(because everybody is already using their predefined sets of severity levels) it should
be applicable for future projects. Hence, future projects will have a standardized
framework for the defects’ attributes, which implies that people will be able to move
from project to project, if needed, without wasting extra time for retraining.

 The method could be very useful for classifying many defects automatically and, then,
focusing on the defects predicted as having severity level critical and above, for
example. If necessary, the predicted severity levels could be checked manually and,
after that, the defects would be fixed in the order of their severity levels.

The overall opinion of both the software engineer and the service coordinator was that
MAPDESO yields very promising results. They also added that they would be very interested
to see the method applied to other real projects.

5.4. Experiment
Before concluding the validation of the method, we conducted a short experiment with the
help of the service coordinator for the project. The motivation for it stems from our
willingness to explore the similarities and the differences between the originally assigned
severity levels, the ones assigned by the service coordinator on the fly, and the ones predicted
by the developed method. The experiment’s setup and results are presented in this subsection.

Martin Iliev 5. VALIDATION

- 48 -

For this experiment, we selected a representative sample of 20 defects out of the 50 defects
initially selected for VCS. The distribution of the 20 defects according to the severity levels
from the project is given in Table 12 together with the distribution of the 50 defects used for
VCS. The table also shows these distributions according to the severity levels from the IEEE
standard using the relation defined in Table 10. The reasons for this selection were the
following: first, all parties involved in the experiment were constrained by time; second, the
distribution of the 20 defects had to be the same as the distribution of the 50 defects (in terms
of percentages) according to the severity levels (as evident in Table 12); lastly, the sample had
to contain defects both on and off the diagonal in the confusion matrix (Table 11) instead of
selecting defects only on the diagonal or only off it.

Once the selection was ready, the service coordinator used the available information about the
20 defects to assign severity levels to them. However, both the original and the predicted
severity levels of these defects were removed prior to the experiment.

Next, we compared the service coordinator’s classification of these 20 defects with the
manual (original) classification from the project and with the automatic (ontology)
classification. The comparison is presented in Table 13 using the severity levels from the
IEEE standard (also used in the ontology). The defect IDs shown in the table correspond to
the defect IDs shown in Table B.3.L in Appendix B. In order to easily recognize the
similarities and the differences between the three classifications, Table 13 is constructed in a
special way. The original classification from the project is given twice in the table (in the
second and in the last columns) and the five severity levels are color-coded as Blocking,
Critical, Major, Minor and Inconsequential.

The results from the comparison of each of the three classifications with the other two are
summarized in three confusion matrices, three tables with percentages and three pie charts.
First, Table 14 presents the confusion matrix summarizing the results from the comparison
between the service coordinator’s classification of the 20 defects and the original
classification from the project. From the table we see that 65% of the defects (13 out of 20)
were classified into the same severity levels by these two classifications. 15% of the defects
were classified into lower and 20% into higher severity levels by the service coordinator than
by the original classification. These percentages are summarized in Table 15 and visualized
with a pie chart in Fig. 23.

Table 12. Distribution of the defects selected for the experiment according to the severity levels

Severity levels from
the IEEE Std and

used in the ontology

Severity levels from
the project used for

the validation

Number of defects
selected for the

experiment

Number of defects
selected for the

validation
Blocking Top 1 2
Critical High 4 9
Major Medium 6 16
Minor Low 9 23

Inconsequential Low (not used) 0 0
Total defects: 20 50

Martin Iliev 5. VALIDATION

- 49 -

Table 13. Comparison between the three classifications – all severity levels (SLs) are converted to IEEE Std

Defect ID Original SLs SLs by the service
coordinator Predicted SLs Original SLs

303 Major Critical Critical Major
304 Blocking Major Blocking Blocking
305 Major Major Minor Major
307 Major Major Major Major
308 Minor Minor Major Minor
309 Minor Minor Minor Minor
310 Minor Minor Critical Minor
314 Major Major Major Major
315 Critical Critical Critical Critical
322 Minor Minor Minor Minor
323 Critical Minor Major Critical
325 Major Minor Major Major
329 Minor Minor Minor Minor
336 Minor Critical Major Minor
337 Minor Major Minor Minor
341 Minor Minor Inconsequential Minor
344 Critical Critical Critical Critical
346 Major Major Critical Major
347 Minor Minor Minor Minor
348 Critical Blocking Critical Critical

Table 14. Results from the comparison between the service coordinator’s and the manual classifications

 Service Coordinator’s Classification

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-
cation

Blocking 0 0 1 0 0
Critical 1 2 0 1 0
Major 0 1 4 1 0
Minor 0 1 1 7 0

Inconsequential 0 0 0 0 0

Table 15. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs
by the service coordinator compared with the original classification from VCS

Comparison of Percentages of the 20 defects classified into
Same SLs Lower SLs Higher SLs

The service coordinator’s and
the original classifications 65% 15% 20%

Martin Iliev 5. VALIDATION

- 50 -

Same SLs
65%

Lower SLs
20%

Higher SLs
15%

Same SLs
45%

Lower SLs
30%

Higher SLs
25%

Figure 23. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher
SLs by the service coordinator compared with the original classification from VCS.

Table 16 presents the confusion matrix summarizing the results from the comparison between
the service coordinator’s classification and the automatic (ontology) classification. The
service coordinator assigned to 45% of the defects the same severity levels as the ontology.
30% of the defects were classified into lower and 25% into higher severity levels by the
service coordinator than by the automatic classification. These percentages are summarized in
Table 17 and visualized with a pie chart in Fig. 24.

Table 16. Results from the comparison between the service coordinator’s and the automatic classifications

 Service Coordinator’s Classification

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Automatic
(Ontology)

Classifi-
cation

Blocking 0 0 1 0 0
Critical 1 3 1 1 0
Major 0 1 2 3 0
Minor 0 0 2 4 0

Inconsequential 0 0 0 1 0

Table 17. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs

by the service coordinator compared with the automatic (ontology) classification

Comparison of Percentages of the 20 defects classified into
Same SLs Lower SLs Higher SLs

The service coordinator’s and
the automatic classifications 45% 30% 25%

Figure 24. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher
SLs by the service coordinator compared with the automatic (ontology) classification.

Martin Iliev 5. VALIDATION

- 51 -

Same SLs
60%

Lower SLs
15%

Higher SLs
25%

Table 18 presents the confusion matrix that summarizes the results from the comparison
between the automatic classification of the 20 defects and the original classification from the
project. The ontology predicted 60% of the defects as having the same severity levels as
originally, 15% of the defects as having lower severity levels than in the manual classification
and 25% of the defects as having higher severity levels than in the manual classification.
These percentages are summarized in Table 19 and visualized in the pie chart in Fig. 25. After
that, Table 20 presents the contents of Tables 15, 17 and 19 combined together. Therefore,
Table 20 shows the summary of the results from the comparisons in the experiment.

Table 18. Results from the comparison between the automatic and the manual classifications

 Automatic (Ontology) Classification

 Severity Levels Blocking Critical Major Minor Inconse-
quential

Manual
(Original)
Classifi-
cation

Blocking 1 0 0 0 0
Critical 0 3 1 0 0
Major 0 2 3 1 0
Minor 0 1 2 5 1

Inconsequential 0 0 0 0 0

Table 19. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher SLs

by the automatic classification compared with the original classification from VCS

Comparison of Percentages of the 20 defects classified into
Same SLs Lower SLs Higher SLs

The automatic and the
original classifications 60% 15% 25%

Figure 25. Percentages of the 20 defects classified into the same severity levels (SLs), lower SLs and higher
SLs by the automatic classification compared with the original classification from VCS.

Table 20. Summary of the results from the comparisons in the experiment

Comparison of Percentages of the 20 defects classified into
Same SLs Lower SLs Higher SLs

The service coordinator’s and
the original classifications 65% 15% 20%

The service coordinator’s and
the automatic classifications 45% 30% 25%

The automatic and the
original classifications 60% 15% 25%

Martin Iliev 5. VALIDATION

- 52 -

At the end, we presented the results from the experiment to the service coordinator and
received his feedback on the similarities and the differences between the three classifications.
The main reasons are summarized below.

 Sometimes defects are discussed with the client(s) and based on such discussions these
defects are assigned lower severity levels (which are not necessarily the correct
severity levels) than initially. The main reason for doing so is that if the severity level
of a defect is lower, then the software team responsible for fixing it will have a bit
more time to fix the defect. This fact plays a vital role in explaining why quite a few
defects are assigned higher severity levels by the ontology classification than the other
two classifications (as evident in Table 16 and in Table 18).

 The ontology classification considers quality properties affected by a defect (among
other attributes) when assigning severity levels to defects. This leads to some defects
assigned lower or higher severity levels by the ontology than by the other two
classifications depending on what quality properties and other attributes are affected
by the defects (see Table 16 and Table 18).

 In the original classification there are defects that are assigned the default severity
level (minor). The service coordinator does not look at the severity levels at all.
Hence, he is forced to assess every defect. This is a reason for the differences between
the manual (original) classification and the service coordinator’s classification (see
Table 14). Moreover, as given in Section 5.2, this is also one of the reasons for the
differences between the manual and the automatic classifications (see Table 18).

Using the service coordinator’s opinion about the results from the experiment, we can
conclude the following. If the predicted severity levels differ by at most one category
compared with the original severity levels and the ones assigned by him, then the automated
prediction method performs well. Table 13 shows that the only case not complying with this
conclusion is the defect with ID 310. This defect is predicted as having critical severity level
as opposed to having minor severity level according to the original classification (see Table
13). After looking into the details of the defect again, it was clear that, in addition to affecting
three quality properties of the software, this defect directly affects the users. Hence, based on
the ontology classification rules, it is predicted as having critical severity level in order to be
fixed for the next release and satisfy the users of the software.

5.5. Section summary
This section presented the validation of MAPDESO. It was achieved through a case study and
an experiment. Based on the results and on the opinion of the interviewees, it is safe to
conclude that the automated prediction method yields promising results that can be very
useful for medium-to-large projects with many defects.

In addition to the validation, we decided to compare the performance of MAPDESO with the
performances of existing algorithms for data mining tasks and explore which one performs
better and why. For the comparison we used algorithms from the Weka data mining software.
The details and the results from the comparison are presented in Section 6.

Martin Iliev 6. COMPARISON

- 53 -

6. COMPARISON

This section presents the comparison of the performance of MAPDESO with the
performances of algorithms from the Weka data mining software. However, in order to
compare two entities they have to be measured by a common standard. Therefore, the
performances of the automated prediction method and the Weka algorithms have to be
compared on the same datasets. As mentioned in Sections 3, 4 and 5, the data from CS1 and
CS2 were used during the development of the ontology (as if they were training data) and the
data from VCS were used for the validation of the method (or, in other words, testing how
well it performs). Hence, to have a common standard for the comparison, the data from CS1
and CS2 will be used for training the learning algorithms (called classifiers) from the Weka
software, while the data from VCS will be used for testing them. Moreover, in order to
conclude the performance of which of the above two is better, the performance of each of
them will be compared against the performance of the original (manual) classification from
the project used for the validation of the method.

First, we will give some information about Weka. After that, we will present the process of
predicting the severity levels of defects using classifiers from Weka. Then, we will present the
comparison and the results from it together with the conclusion which of the above performs
better and why.

6.1. The Weka machine learning workbench
The Weka17 workbench is a collection of state-of-the-art machine learning algorithms and
data preprocessing tools [19]. It is designed in such a way that these algorithms can be
directly applied to new datasets in flexible ways, which will be very useful for the
comparison. Moreover, it provides extensive support for the process of experimental data
mining, including preparing the input data, evaluating learning schemes statistically, and
visualizing the input data and the results of learning [19].

Weka has been developed at the University of Waikato in New Zealand and the name stands
for Waikato Environment for Knowledge Analysis [19]. The system is written in Java and it is
distributed under the terms of the GNU General Public License. In short, Weka provides a
uniform interface to different learning algorithms, together with methods for pre- and post-
processing and for evaluating the results of learning schemes on any given dataset [19].

It should be mentioned that, as given in [19], there are three major ways of using Weka and
they are the following:

 Apply a learning method to a dataset and analyze its output to learn more about the
data.

 Use learned models to generate predictions on new instances.

17 http://www.cs.waikato.ac.nz/ml/weka/

Martin Iliev 6. COMPARISON

- 54 -

 Apply several different learners and compare their performances in order to choose
one for prediction.

Though Weka includes different tools and implementations, the most valuable resource that it
provides are the implementations of actual learning schemes. We will use some of the
learning methods for the comparison.

6.2. Predicting severity levels of defects using classifiers from Weka
The process of predicting the severity levels of defects using classifiers from Weka consists of
a few steps. These steps include preparing the data to be used as input for Weka, selecting the
classifiers (the learning algorithms), and classifying the test data using Weka. The second and
third steps are completed using the Weka tool.

6.2.1. Preparing the data
Preparing the data to be used as input for a data mining algorithm usually consumes most of
the effort invested in the entire data mining process [20]. Since the Weka package uses a
specific file format, the input data for Weka has to be written in that file format. Weka uses
the attribute-relation file format (ARFF format) which is a standard way of representing
datasets that consist of independent, unordered instances and do not involve relationships
among instances [20]. The ARFF format gives a dataset but it does not specify which is the
attribute that is supposed to be predicted. In particular, this means that the same file can be
used for investigating how well each attribute can be predicted from the others [20]. Hence,
we can use this file format to predict the values of attribute Severity from the values of the
other attributes, namely Effect, Type, Insertion activity and Detection activity.

We created two ARFF files containing all the data that we have in order to use them in Weka.
The first one contains the data from CS1 and CS2 (a total of 80 defects), which will be used
as the training data for the classifiers. In other words, the first ARFF file contains the data
from Table B.1.L together with the second column of Table B.1.R and the data from Table
B.2.L together with the second column of Table B.2.R. Of course, the original severity levels,
as given in the second columns of Table B.1.R and Table B.2.R, have to be included in this
ARFF file for training the classifiers.

The second ARFF file contains the data from VCS (a total of 50 defects), which will be used
as the test data for the classifiers. Hence, the second ARFF file contains the data from Table
B.3.L together with the second column of Table B.3.R. It should be noted that in this ARFF
file we included the original (manually assigned) severity levels of the defects, as given in the
second column of Table B.3.R. The reason for doing that is the following: once a classifier is
applied to this ARFF file (representing the test dataset), Weka provides the results in terms of
a confusion matrix and other statistics. This confusion matrix compares the severity levels
predicted by the respective classifier with the original severity levels provided in the ARFF
file. This information will be used later on for the comparison of the performances of the
classifiers with the performance of the developed method.

Martin Iliev 6. COMPARISON

- 55 -

6.2.2. Selecting the classifiers
After the data required for the input were in the correct file format, the next step was to
choose the classifiers that will be used for predicting the severity levels of the defects.

As stated in [19], no single machine learning scheme is appropriate to all data mining
problems. Therefore, in order to find out which classifiers will be appropriate for our task, we
decided to compare the performances of fourteen classifiers available in Weka. As given in
Section 6.1, one way of using Weka is to apply several different learners (classifiers) and
compare their performances in order to choose one or more for prediction. We used Weka in
this way in order to conclude which ones of the fourteen classifiers perform the best on the
same dataset and to choose them for the prediction process and the comparison.

The fourteen classifiers, as they appear in the Weka workbench, are the following:

1) ZeroR – class for building and using a 0-R classifier.
2) DecisionStump – class for building and using a decision stump.
3) NaiveBayes – class for a Naive Bayes classifier using estimator classes.
4) IB1 – 1-nearest-neighbor classifier.
5) IB݇ (݇ = 5) – 5-nearest-neighbors classifier.
6) SimpleLogistic – classifier for building linear logistic regression models.
7) Logistic – class for building and using a multinomial logistic regression model with a

ridge estimator.
8) LibSVM – wrapper class for the LibSVM tools (LibSVM allows users to experiment

with One-class SVM, Regressing SVM, and nu-SVM supported by LibSVM tool).
SVM stands for Support Vector Machine.

9) SMO – classifier which implements John Platt's Sequential Minimal Optimization
(SMO) algorithm for training a support vector classifier (a polynomial kernel was used
for SMO).

10) BFTree – class for building a best-first decision tree classifier.
11) DecisionTable – class for building a simple decision table majority classifier.
12) J48 – class for generating a pruned or unpruned C4.5 decision tree.
13) RandomForest – class for constructing a forest of random trees.
14) RandomTree – class for constructing a tree that considers K randomly chosen

attributes at each node (performs no pruning).

For the comparison of these classifiers we used 10-fold cross-validation as method, the first
ARFF file as dataset and area under the curve (AUC) as comparison field. The used method
and comparison field are briefly described below.

It is clearly stated in [21] that 10-fold cross-validation yields the best estimate of error and
that it has become the standard method in practical terms. This method works in the following
way [21]: the data is divided randomly into 10 parts in which the class to be predicted is
represented in approximately the same proportions as in the full dataset. After that, each part
is held out in turn, the learning scheme (classifier) trained on the remaining nine-tenths and its
error rate is calculated on the holdout set. Therefore, the learning procedure is executed a total

Martin Iliev 6. COMPARISON

- 56 -

of 10 times on different training sets which have a lot in common. In the end, the 10 error
estimates are averaged to yield an overall error estimate.

The Receiver Operating Characteristic (ROC) curves are a graphical technique for evaluating
data mining schemes [21]. ROC curves depict the performance of a classifier without regard
to class distribution or error costs. They plot the number of positives included in the sample,
expressed as a percentage of the total number of positives, against the number of negatives
included in the sample, expressed as a percentage of the total number of negatives [21].
Moreover, in order to summarize the ROC curves in a single quantity, often used is the area
under the ROC curve, also called the Area Under the Curve (AUC). Since ROC curves plot
numbers expressed as percentages, AUC represents a number between 0 and 1, including
both. The area is interpreted as the probability that the classifier ranks a randomly chosen
positive instance above a randomly chosen negative instance and, therefore, the larger the area
the better the model [21]. In other words, if AUC is close to 0.5 then the classifier is
practically random, whereas a number close to 1.0 means that the classifier makes practically
perfect predictions [22].

The results from the comparison are summarized in Table 21. It contains all classifiers listed
on the previous page together with the respective values of AUC, given in descending order.
The first thing to notice is that NaiveBayes, SMO and SimpleLogistic perform the best out of
the fourteen classifiers. This can be contributed to the fact that these three classifiers can work
well when there is not a lot of data. In Section 6.2.1, we mentioned that 80 defects will be
used as the training data and 50 defects will be used as the test data. Therefore, from a data
mining perspective, this could be considered as not having a lot of data. We also see in the
table that DecisionStump and RandomForest perform worse than the above three classifiers
but still they have better than random performance. On the other hand, quite a few of the
classifiers are practically random since their AUC values are 0.5 or close to 0.5. These are
BFTree, DecisionTable, ZeroR, IB1, LibSVM, RandomTree and J48. It is not surprising to see

Table 21. Summary of the results from the comparison of fourteen classifiers

Classifier Area Under the Curve
(data from CS1 and CS2)

NaiveBayes 0.81
SMO 0.74
SimpleLogistic 0.71
DecisionStump 0.61
RandomForest 0.59
BFTree 0.52
DecisionTable 0.51
ZeroR 0.50
IB1 0.50
LibSVM 0.50
RandomTree 0.48
J48 0.43
IB݇ with ݇ = 5 0.21
Logistic 0.14

Martin Iliev 6. COMPARISON

- 57 -

that AUC for ZeroR is 0.5 because this classifier has AUC of 0.5 by definition. The last two
classifiers are IB݇ (݇ = 5) and Logistic and they have the worst performances in the table.
The performances of these nine classifiers can be explained with the fact that we did not have
a lot of data for training, as we have already mentioned.

It is visible from Table 21 that the three classifiers that performed the best are NaiveBayes,
SimpleLogistic and SMO (given in bold in the table). For this reason, we decided to use these
three classifiers. However, we considered adding three more classifiers to the above three. We
added ZeroR, DecisionStump and IB݇ with ݇ = 5 (5-nearest-neighbors classifier) and they are
underlined in the table. Although their performances are not as good as those of the first three
classifiers, they are also well-known and widely-used. Moreover, we added them because of
the following. First, ZeroR and DecisionStump are often used as worst-case reference
classifiers and we wanted to have such classifiers for the comparison with MAPDESO. And
second, we were interested to see how IB݇ (݇ = 5) will perform on the test dataset having in
mind that it performed poorly in Table 21. More details about the six chosen classifiers are
given below.

ZeroR is a simple classifier for generating rules. It predicts the test data’s majority class (if
nominal) or average value (if numeric) [23]. As we pointed out, ZeroR is typically used as a
worst-case reference classifier.

DecisionStump builds one-level binary decision trees for datasets with a categorical or
numeric class to be predicted. This classifier deals with missing values by treating them as a
separate value and extending a third branch from the stump [23]. It is also typically used as a
worst-case reference classifier.

NaiveBayes implements the standard probabilistic Naive Bayes classifier. It is based on
Bayes’s rule and “naively” assumes independence. It should be noted that the assumption
attributes are independent in real life certainly is a simplistic one [24]. However, this method
is easy to construct, not needing any complicated iterative parameter estimation schemes and
it may be readily applied to huge datasets. Though it may not be the best possible classifier in
any particular application, it can usually be relied on to be robust and to perform well [25].

IB݇ is a ݇-nearest-neighbor classifier, which finds the training instance closest in Euclidean
distance to the given test instance and predicts the same class as this training instance [23]. In
other words, this classifier finds a group of ݇ objects in the training set that are closest to the
test object and bases the assignment of a label on the predominance of a particular class in this
neighborhood [25]. The number of nearest neighbors can be specified explicitly or determined
automatically using cross-validation. As mentioned above, we use IB݇ with ݇ = 5, which is a
5-nearest-neighbors classifier.

SimpleLogistic builds linear logistic regression models and determines how many iterations to
perform using cross-validation, which supports automatic attribute selection [23]. More
specifically, logistic regression builds a linear model based on a transformed target variable as
opposed to linear regression, which attempts at approximating the target values directly [24].

Martin Iliev 6. COMPARISON

- 58 -

SMO implements the sequential minimal optimization algorithm for training a support vector
classifier using polynomial or Gaussian kernels (a polynomial kernel was used for SMO).
When using this classifier, missing values are replaced globally, nominal attributes are
transformed into binary ones, attributes are normalized by default and the coefficients in the
output are based on the normalized data [23].

Once the classifiers were chosen, we continued with training them and classifying the data
from the test dataset.

6.2.3. Classifying the test data
This step started with training the chosen classifiers using the Weka tool. As mentioned in
Section 6.2.1, the data contained in the first ARFF file (the data from CS1 and CS2) were
used as the training data for the classifiers. The training resulted in creating one model per
chosen classifier based on the training dataset. Then, each of the created models was loaded in
turn and the respective classifier was evaluated on the test data contained in the second ARFF
file (the data from VCS). In the end, the results were displayed in Weka. In other words, once
a classifier was trained on the first ARFF file, it “gained” knowledge, which was saved in a
model. Then, the model was loaded and the classifier was evaluated on the test dataset. This
process was repeated six times – once for each of the six chosen classifiers, and all results
were displayed in the Weka tool.

The results provided by Weka include confusion matrices and various statistics. The
confusion matrices compare the original (manually assigned) severity levels with the severity
levels predicted by the classifiers. The statistics represent the detailed accuracies of the
classifiers’ predictions. They include true positive rate, false positive rate, precision, recall
and F-measure for each of the severity levels. The weighted average values of each of these
statistics are also calculated and displayed.

We have decided to use precision, recall and F-measure for the comparison of the
performances in Section 6.3 in addition to the Percentages of Defects Classified Correctly
(PDCC). These percentages represent the fractions of defects out of the defects in the test
dataset that are predicted by the six classifiers as having the same severity levels as in the
original classification (from the project used for VCS). In addition, the first three statistics are
classification and information retrieval statistics. We chose these statistics (over AUC)
because they provide useful and relevant to our research information for the performances of
the classifiers, as evident by their definitions and mentioned in [21]. The statistics are defined
below using the definitions provided in [21]. The definitions were adapted to the parameters
in our research, namely defects and severity levels.

Precision represents the number of correct results divided by the number of all returned
results. Therefore, precision can be seen as a measure of exactness or quality and it has its
best value at 1 and worst value at 0. For our research, we have:

݊݅ݏ݅ܿ݁ݎܲ =

=
number	of	defects	that	are	correctly	predicted	as	having	a	specific	severity	level

total	number	of	defects	predicted	as	having	that	severity	level

Martin Iliev 6. COMPARISON

- 59 -

Recall is the number of correct results divided by the number of results that should have been
returned. Hence, recall can be seen as a measure of completeness or quantity and, similarly to
precision, it has its best value at 1 and worst value at 0. For our research, we have:

ܴ݈݈݁ܿܽ =

=
number	of	defects	that	are	correctly	predicted	as	having	a	specific	severity	level

total	number	of	defects	originally	assigned	that	severity	level

F-measure is a measure of a test’s accuracy. It considers both the precision and the recall of
the test to compute the score. The score can be interpreted as a weighted average of the
precision and recall and the F-measure reaches its worst value at 0 and its best value at 1. It is
calculated using the following formula:

݁ݎݑݏܽ݁݉	ܨ =
2	× precision × recall

precision + recall

Now that we have discussed the statistics we will use for the comparison, we present the
results from classifying the test data using the six classifiers. Table 22 (on the next page)
shows the results using the percentage of defects classified correctly together with the
precision, recall and F-measure per classifier per severity level. The table also contains the
weighted average values (abbreviated to W. Avg.) of the four statistics for each classifier.
Since all results were displayed in the Weka tool, as mentioned earlier, the results shown in
Table 22 were directly taken from Weka.

6.3. Comparison of the performances
The comparison of the performances starts with the task of presenting the results from testing
the developed method using the same four statistics we have decided to use. As mentioned in
the beginning of this section, the performance of MAPDESO was tested using the data from
VCS during the validation process (see Section 5). The results from the testing are given at
the bottom of Table 22. We have calculated the percentage of defects classified correctly plus
the precision, recall and F-measure per severity level together with the weighted average
values of these statistics for the method.

The results from Table 22 are visualized in three figures. Figures 26, 27 and 28 present
graphically the results for precision, recall and F-measure, respectively, per severity level for
the six classifiers and for MAPDESO. Since the percentages of defects classified correctly
represent the respective recall values multiplied by 100 (to convert them to percentages), there
is no figure created for the PDCC results from Table 22 so as to avoid redundancy.

Martin Iliev 6. COMPARISON

- 60 -

Table 22. The results from classifying the test data (VCS data) by the six chosen classifiers and by MAPDESO

Classifiers Severity levels PDCC Precision Recall F-measure

Classifier 1:
ZeroR

Blocking 0% 0 0 0
Critical 0% 0 0 0
Major 100% 0.32 1 0.49
Minor 0% 0 0 0
Inconsequential 0% 0 0 0
W. Avg. 32% 0.10 0.32 0.16

Classifier 2:
DecisionStump

Blocking 0% 0 0 0
Critical 56% 0.25 0.56 0.35
Major 0% 0 0 0
Minor 83% 0.63 0.83 0.72
Inconsequential 0% 0 0 0
W. Avg. 48% 0.34 0.48 0.39

Classifier 3:
NaiveBayes

Blocking 0% 0 0 0
Critical 44% 0.36 0.44 0.40
Major 50% 0.40 0.50 0.44
Minor 57% 0.68 0.57 0.62
Inconsequential 0% 0 0 0
W. Avg. 50% 0.51 0.50 0.50

Classifier 4:
IB݇ with ݇ = 5

Blocking 0% 0 0 0
Critical 56% 0.56 0.56 0.56
Major 38% 0.50 0.38 0.43
Minor 78% 0.62 0.78 0.69
Inconsequential 0% 0 0 0
W. Avg. 58% 0.55 0.58 0.56

Classifier 5:
SimpleLogistic

Blocking 0% 0 0 0
Critical 89% 0.35 0.89 0.50
Major 13% 1 0.13 0.22
Minor 83% 0.76 0.83 0.79
Inconsequential 0% 0 0 0
W. Avg. 58% 0.73 0.58 0.52

Classifier 6:
SMO

Blocking 50% 1 0.50 0.67
Critical 56% 0.46 0.56 0.50
Major 6% 0.50 0.06 0.11
Minor 96% 0.61 0.96 0.75
Inconsequential 0% 0 0 0
W. Avg. 58% 0.56 0.58 0.50

MAPDESO –
automated
prediction
method

Blocking 100% 1 1 1
Critical 89% 0.57 0.89 0.70
Major 56% 0.50 0.56 0.53
Minor 57% 0.87 0.57 0.68
Inconsequential 0% 0 0 0
W. Avg. 64% 0.70 0.64 0.65

Martin Iliev 6. COMPARISON

- 61 -

Figure 26. The results for precision per severity level for the six classifiers and for MAPDESO.

Figure 27. The results for recall per severity level for the six classifiers and for MAPDESO.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blocking Critical Major Minor Inconseq W. Avg.

ZeroR DecisionStump NaiveBayes IBk, k=5 SimpleLogistic SMO MAPDESO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blocking Critical Major Minor Inconseq W. Avg.

ZeroR DecisionStump NaiveBayes IBk, k=5 SimpleLogistic SMO MAPDESO

Martin Iliev 6. COMPARISON

- 62 -

Figure 28. The results for F-measure per severity level for the six classifiers and for MAPDESO.

For an easy and straightforward comparison of the performances of the chosen classifiers with
the performance of MAPDESO, we use the weighted average values of the four statistics. In
addition to Fig. 26, 27 and 28, we created Table 23. It contains the weighted average values of
the four statistics (taken from Table 22) for the classifiers and for the method. Then, the
weighted average values of precision and recall were plotted together in a single chart,
visualized in Fig. 29. As explained earlier, precision and recall reach their best values at 1.
For Fig. 29, this means that these two statistics reach their best values in the upper right
corner of the figure. Therefore, the closer a classifier is to the upper right corner of the figure,
the better its performance will be. We see in the figure that MAPDESO and SimpleLogistic
are the two closest to the upper right corner.

Table 23. Summary of the comparison between the six classifiers and MAPDESO

Classifiers
(classification methods)

Weighted average values of
PDCC Precision Recall F-measure

ZeroR 32% 0.10 0.32 0.16
DecisionStump 48% 0.34 0.48 0.39
NaiveBayes 50% 0.51 0.50 0.50
IB݇ with ݇ = 5 58% 0.55 0.58 0.56
SimpleLogistic 58% 0.73 0.58 0.52
SMO 58% 0.56 0.58 0.50
MAPDESO – automated
prediction method 64% 0.70 0.64 0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blocking Critical Major Minor Inconseq W. Avg.

ZeroR DecisionStump NaiveBayes IBk, k=5 SimpleLogistic SMO MAPDESO

Martin Iliev 6. COMPARISON

- 63 -

Figure 29. Weighted average values of precision and recall for the six classifiers and for MAPDESO.

It is visible that our automated prediction method has the highest percentage of defects
classified correctly (Table 23), the second highest precision (Fig. 26, Table 23, Fig. 29), the
highest recall (Fig. 27, Table 23, Fig. 29) and the highest F-measure (Fig. 28, Table 23). Only
the SimpleLogistic classifier has a precision greater than that of the developed method (Fig.
26, Table 23, Fig. 29) and the reasons for this are explained below.

First, we have to look at the specific precision values for the different severity levels for the
SimpleLogistic classifier (see Table 22 and Fig. 26). It is easy to notice that the precision for
SimpleLogistic is 1 for severity level major. With such a high precision, it is obvious that the
weighted average precision for this classifier will be high, as well. However, if we look at this
classifier’s recall for severity level major, we see that it is only 0.13. From these observations
we can conclude that although this classifier returns only correct results for severity level
major (the precision is 1), it returns a very small portion of the correct results that should have
been returned for this severity level (the recall is 0.13). In other words, the returned results are
very exact but very far from complete.

On the other hand, the automated prediction method has a precision of 0.50 and a recall of
0.56 for severity level major. This means that although the method returns correct results one
half of the time for severity level major (the precision is 0.50), it returns more than half of the
correct results that should have been returned for this severity level (the recall is 0.56). So, the
returned results are exact one half of the time and complete more than half of the time.

Moreover, if we look at the weighted average F-measure for this classifier, we notice that it is
0.52. This is lower than the weighted average F-measure for the automated prediction method
(0.65 as given in Table 23) despite the fact that SimpleLogistic has a precision greater than

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Precision

ZeroR DecisionStump NaiveBayes IBk, k=5 SimpleLogistic SMO MAPDESO

Martin Iliev 6. COMPARISON

- 64 -

that of the method. Therefore, based on the above explanations and the results in Table 22, it
is safe to say that the overall performance of the SimpleLogistic classifier is not as good as the
performance of MAPDESO when classifying defects into all severity levels.

We can apply similar reasoning to the other five classifiers when comparing their overall
performances with the performance of the developed method when classifying defects into all
severity levels. In Fig. 26 and 27, we can see that for a specific severity level one or more
classifiers might have a precision and/or a recall greater than or equal to those of the
automated prediction method but for the other severity levels the method has greater values of
precision and recall. Hence, based on Tables 22 and 23, on Fig. 26, 27, 28 and 29, and on
everything explained in the current subsection, we conclude that the overall performance of
MAPDESO is better than the performances of the chosen classifiers when classifying defects
into all severity levels. More importantly, we see in Table 22 that the automated prediction
method has F-measure of 1 and 0.70 for severity levels blocking and critical, respectively.
These are by far the best F-measure values compared with the respective values of the six
classifiers. This means that the method performs the best compared with the performances of
the classifiers when predicting which defects will be assigned the most important severities,
namely blocking and critical.

6.4. Section summary
Summing up this section, we presented the comparison of the performance of MAPDESO
with the performances of six classifiers chosen from the Weka machine learning workbench.
The Weka software was used for completing the required steps for the comparison. Based on
the achieved results, we concluded that the overall performance of the automated prediction
method is better than the performances of the Weka classifiers and it reaches its peak when
predicting which defects will be assigned the most important severity levels – blocking and
critical.

Martin Iliev 7. CONCLUSIONS AND RECOMMENDATIONS

- 65 -

7. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we have presented MAPDESO – a Method for Automated Prediction of DEfect
Severity using Ontologies. It considers the quality properties affected by defects, the types of
the defects, the insertion activities and the detection activities of the defects. This way, it takes
into consideration the point of view of the user of the software system while preserving the
developer’s point of view when predicting the severity levels of defects. This method uses
defect attributes and their values from the IEEE Standard Classification for Software
Anomalies [2] to create a uniform framework for reporting the defects and to make it
applicable to various software projects. Last but not least, the method uses AI techniques –
ontologies and ontology reasoning, to automatically predict the severity levels of the defects
input in the ontology according to the developed classification rules for the ontology.

The thesis started with an introduction to the problems we are solving with the developed
method and the work related to our research. After that, we provided information about
ontologies, ontology development and languages. We continued with presenting the details of
MAPDESO. Next, the case studies used for the development of the ontology were described.
Then, the automated prediction method was validated using a validation case study and a
small experiment. In the end, the method’s performance was compared with the performances
of six well-known classifiers from the Weka machine learning workbench. The results from
the comparison led to the conclusion that MAPDESO performs better than the chosen
classifiers.

Based on the results from the validation process and the comparison process, we state the
following:

 The automated prediction method has performed surprisingly well compared with the
manual (original) classifications of the defects from the conducted case studies
especially having in mind that it uses as few as four attributes from the standard to
predict a fifth attribute – the severity levels.

 The method is very practical because it uses an IEEE standard for the defects’
attributes and their values. Hence, if future projects adopt it, they will have a
standardized framework for the defects’ attributes. This implies that people will be
able to move from project to project, if needed, without wasting extra time for
retraining.

 It yields very promising results that can be useful for medium-to-large projects with
many defects.

 The automated prediction method outperforms the chosen Weka classifiers and the
performance of the method reaches its peak when predicting which defects will be
assigned the most important severity levels – blocking and critical.

These are very exciting results since they speak to the usability of MAPDESO. A few
recommendations to use the method in practice are outlined below.

Martin Iliev 7. CONCLUSIONS AND RECOMMENDATIONS

- 66 -

One way to apply MAPDESO in practice is to implement it as an addition to an existing
defect tracking system. If one inputs the required information about the defects and chooses to
use the method, he/she will get the severity levels predicted automatically. Hence, the default
severities, assigned initially, will be improved and such a situation could lead to many people
using the method regularly.

Another option is to implement a new tracking system that makes use of the ontology for
keeping track of the defects. The defects will be entered into the tracking system by inputting
them in the ontology using the attributes from the IEEE standard. If entering additional
information about the defects is required by a project, the ontology provides a description
field for it. Once the defects are in the tracking system, the prediction of their severity levels
is done automatically.

One other way of applying MAPDESO in practice is to use the method indirectly. In other
words, once the severity levels are automatically predicted, they could be considered only as
suggestions. These suggestions could be used in two ways: (1) before software engineers
and/or clients assign severity levels to defects so that they can consult the suggested
severities; or (2) after severity levels are manually assigned to defects so that engineers/clients
will be alerted to the differences between the classifications in order to consider any changes.
Once the suggested severity levels are confirmed, they could be used for prioritizing the
fixing activities of the defects.

Currently, MAPDESO predicts the severity levels of defects detected from system-level
testing, coding and maintenance. However, MAPDESO could be easily tuned so that it can be
used to predict the severity levels of defects detected from any phase of the software
development process.

Last but not least, parts of MAPDESO could be used for defining service-level agreements
(SLA). SLA is a part of a service contract (between a provider and a consumer) where the
level of service is formally defined. For instance, software companies and their clients could
agree to use the IEEE standard for reporting the defects in software projects. If this is
achieved, the method could be directly applied to the defect reports and it will predict
automatically the severity levels of the defects.

These possibilities to use MAPDESO in practice could also be considered as future work.
More information about our future work is given in the next section.

Martin Iliev 8. FUTURE WORK

- 67 -

8. FUTURE WORK

Future work will be aimed at further automating the prediction method. This could be
achieved by automating the conversion of defect reports into the standard representation.
Completing such a step would require natural language processing, data mining algorithms
and automated reasoning about designs.

We would also like to increase the level of automation of reasoning by focusing on defect
propagation that links defects found at unit-level to use cases at the system level. In this
situation, the severity prediction will be based on the impact found via defect propagation and
the importance of the use cases that are impacted in the application domain.

As mentioned in the previous section, future work would also be aimed at applying
MAPDESO in practice. This could be achieved by implementing it in a defect tracking system
either as the sole method for predicting the severity levels of defects or as a method providing
severity levels as suggestions that will be confirmed by software engineers and/or clients.

A possible continuation of this work is to apply the automated prediction method to other
projects, for example open-source projects. Ideally, people involved in such a project will be
available for discussions and interviews in order to: (1) extract defects from the tracking
system of the project; (2) convert the extracted information into the defect attributes and their
values used in the ontology; (3) validate the severity levels predicted by the method once it is
ready. Similarly to Section 5, in the end, we would like to conclude how well MAPDESO
performs compared with the original classification from the used project.

Last but not least, we would also like to try blending machine learning with our method. In an
ideal world, we could use the combination of data and knowledge in order to get the best of
both. For example, data could be used to infer relationships based on the available evidence,
while knowledge could be used when the data is not abundant but theory is available and
known to be stable.

Martin Iliev BIBLIOGRAPHY

- 68 -

BIBLIOGRAPHY
[1] IEEE Standard Computer Dictionary. A Compilation of IEEE Standard Computer
Glossaries, IEEE Std 610-1991, doi:10.1109/IEEESTD.1991.106963.

[2] IEEE Standard Classification for Software Anomalies, IEEE Std 1044-2009,
doi:10.1109/IEEESTD.2010.5399061.

[3] T. Menzies and A. Marcus, “Automated Severity Assessment of Software Defect
Reports,” Proc. IEEE Int. Conf. on Software Maintenance, Beijing, 2008, pp. 346-355,
doi:10.1109/ICSM.2008.4658083.

[4] Y. Zhou and H. Leung, “Empirical Analysis of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults,” IEEE Trans. Softw. Eng., vol. 32, no. 10, Oct.
2006, pp. 771-789, doi:10.1109/TSE.2006.102.

[5] M. Termeer. (2005, Jan. 16). MetricView [Online]. Available:
http://www.win.tue.nl/empanada/metricview/.

[6] M. D. B. M. Suffian, “Defect Prediction Model for Testing Phase,” M.S. thesis, Faculty
Comput. Sci. Inform. Syst., Univ. Teknologi Malaysia, Johor, Malaysia, 2009.

[7] A. M. Hoss, “Ontology-Based Methodology for Error Detection in Software Design,”
Ph.D. dissertation, Dept. Comput. Sci., Louisiana State Univ., Baton Rouge, 2006.

[8] Y. Kalfoglou, “Deploying Ontologies in Software Design,” Ph.D. dissertation, Dept.
Artificial Intell., Univ. Edinburgh, Edinburgh, UK, 2000.

[9] D. Jin and J. R. Cordy, “Ontology-Based Software Analysis and Reengineering Tool
Integration: The OASIS Service-Sharing Methodology,” Proc. 21st IEEE Int. Conf. on
Software Maintenance, Budapest, 2005, pp. 613-616, doi:10.1109/ICSM.2005.68.

[10] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge
Acquisition, vol. 5, no. 2, Jun. 1993, pp. 199-220, doi:10.1006/knac.1993.1008.

[11] N. F. Noy and D. L. McGuinness, “Ontology Development 101: A Guide to Creating
Your First Ontology,” Stanford Knowledge Syst. Lab. Tech. Rep. KSL-01-05 and Stanford
Medical Informatics Tech. Rep. SMI-2001-0880, Stanford Univ., Stanford, CA, Mar. 2001.

[12] L. Dittmann, T. Rademacher, and S. Zelewski, “Performing FMEA using ontologies,”
18th Int. Workshop on Qualitative Reasoning, Northwestern Univ., Evanston, IL, Aug. 2-4,
2004.

[13] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe, “A Practical Guide to
Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools Edition 1.0,”
Univ. Manchester, Manchester, UK, Aug. 27, 2004.

Martin Iliev BIBLIOGRAPHY

- 69 -

[14] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A Practical OWL-DL
Reasoner,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no.
2, Jun. 2007, pp. 51-53, doi:10.1016/j.websem.2007.03.004.

[15] M. Iliev, B. Karasneh, M. R. V. Chaudron, and E. Essenius, “Automated Prediction of
Defect Severity Based on Codifying Design Knowledge Using Ontologies,” Proc. 2012 1st
Int. Workshop on Realizing Artificial Intell. Synergies in Software Eng. (RAISE), Zurich, Jun.
5, 2012, pp. 7-11, doi:10.1109/RAISE.2012.6227962.

[16] D. Allemang and J. Hendler, “What is the Semantic Web?” in Semantic Web for the
Working Ontologist: Effective Modeling in RDFS and OWL, 2nd ed., Waltham, MA: Morgan
Kaufmann Publishers, 2011, ch. 1, pp. 1-2, doi:10.1016/B978-0-12-385965-5.10001-9.

[17] J. Cardoso, “The Semantic Web Vision: Where are We?”, IEEE Intell. Syst., vol. 22, no.
5, Sept.-Oct. 2007, pp. 84-88, doi:10.1109/MIS.2007.4338499.

[18] A. L. N. Escorcio and J. Cardoso, “Editing Tools for Ontology Creation,” in Semantic
Web Services: Theory, Tools and Applications, IGI Global, 2007, ch. 4.

[19] I. H. Witten and E. Frank, “Introduction to Weka” in Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed., San Francisco, CA: Morgan Kaufmann Publishers,
2005, ch. 9, pp. 365-368.

[20] I. H. Witten and E. Frank, “Input: Concepts, Instances, and Attributes” in Data Mining:
Practical Machine Learning Tools and Techniques, 2nd ed., San Francisco, CA: Morgan
Kaufmann Publishers, 2005, ch. 2, pp. 52-56.

[21] I. H. Witten and E. Frank, “Credibility: Evaluating What’s Been Learned” in Data
Mining: Practical Machine Learning Tools and Techniques, 2nd ed., San Francisco, CA:
Morgan Kaufmann Publishers, 2005, ch. 5, pp. 149-151, 168-173.

[22] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing Mining
Algorithms for Predicting the Severity of a Reported Bug,” Proc. 15th European Conf. on
Software Maintenance and Reengineering, Oldenburg, 2011, pp. 249-258,
doi:10.1109/CSMR.2011.31.

[23] I. H. Witten and E. Frank, “The Explorer” in Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed., San Francisco, CA: Morgan Kaufmann Publishers, 2005, ch.
10, pp. 403-414.

[24] I. H. Witten and E. Frank, “Algorithms: The Basic Methods” in Data Mining: Practical
Machine Learning Tools and Techniques, 2nd ed., San Francisco, CA: Morgan Kaufmann
Publishers, 2005, ch. 4, pp. 88-92, 121-124.

[25] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A.
Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top 10
algorithms in data mining,” J. Knowledge and Inform. Syst., vol. 14, no. 1, Dec. 2007, pp. 1-
37, doi:10.1007/s10115-007-0114-2.

Martin Iliev Appendix A

- 70 -

Appendix A

The reason for the construction of sub-rule R3.2 in Section 3.1.5.

In order to reveal the reason for the construction of sub-rule R3.2 we will look into the
negation of Rules 1, 2, 4 and 5. Since Rules 1, 4 and 5 are easy to understand and have few
sub-rules, it is straightforward to find their negated versions. The challenge is to negate Rule
2. If we denote with A the set of defects that satisfies Rule 2, then the result of negating Rule
2 will yield set B, where B = not A. Then, it is clear that the union of A and B must be equal
to 1 or, in other words, A or B = 1.

However, it turns out that, because of the complexity of Rule 2 and the way it is constructed,
A or B ≠ 1. This is shown through an example.

Sub-rules R2.2, R2.3 and R2.4 are considered for simplicity (the example will follow the
same reasoning if all sub-rules are considered). The available options when considering these
three sub-rules are listed below.

 If (hasEffectOnNumber exactly 2) is true (sub-rule R2.2), then:
o If (isInserted only (InDesign or InRequirements)) is true (sub-rule R2.3),

the defect can have one, or two, or all three of the values Data, Interface and
Logic of attribute Type (sub-rule R2.4).

o If ((isInserted only (InCoding or InConfiguration)) is true and (hasType
min 2) is true (sub-rule R2.3), the defect can have two or all three of the values
Data, Interface and Logic of attribute Type (sub-rule R2.4).

 If (hasEffectOnNumber exactly 3) is true (sub-rule R2.2), then:
o If ((isInserted only (InDesign or InRequirements)) is true (sub-rule R2.3),

the defect can have one, or two, or all three of the values Data, Interface and
Logic of attribute Type (sub-rule R2.4).

o If ((isInserted only (InCoding or InConfiguration)) is true and
(hasEffectOnNumber exactly 3) is true while (hasType min 2) is false (sub-
rule R2.3), the defect can have exactly one of the values Data or Interface or
Logic of attribute Type (sub-rule R2.4).

o If ((isInserted only (InCoding or InConfiguration)) is true and
(hasEffectOnNumber exactly 3) is true while (hasType min 2) is also true
(sub-rule R2.3), the defect can have two or all three of the values Data,
Interface and Logic of attribute Type (sub-rule R2.4).

After a close observation of these options, it becomes obvious that the following set of defects
(denoted with C) is not part of set A: defects that are inserted during the coding phase or the
configuration phase and are affecting exactly two values of attribute Effect and exactly one of
the values Data or Interface or Logic of attribute Type. This set is not present for a reason.
Rule 2 is constructed not to include it. Hence, one would expect that set C will be a subset of
set B.

Martin Iliev Appendix A

- 71 -

Now, Rule 2 is negated and we take a look particularly at the negated version of sub-rule
R2.4. This sub-rule becomes hasType some (not Data and not Interface and not Logic).
This means that the available options for the values of attribute Type do not include Data,
Interface and Logic.

Therefore, set C, discussed above, will not be part of set B because set B does not permit
defects which have any of the values Data, Interface or Logic of attribute Type. This clearly
shows that A or B ≠ 1 but that A or B or C = 1. For this reason, the fragment

((isInserted only (InCoding or InConfiguration)) and (hasEffectOnNumber exactly 2) and
((hasType only Data) or (hasType only Interface) or (hasType only Logic))),

which represents the defects from set C, was added to sub-rule R3.2 when it was constructed.
The sub-rule is presented below, as given in Section 3.1.5.

(R3.2) not DefectWithBlockingSL and
(not DefectWithCriticalSL or ((isInserted only (InCoding or InConfiguration)) and
(hasEffectOnNumber exactly 2) and ((hasType only Data) or (hasType only
Interface) or (hasType only Logic)))) and
not DefectWithMinorSL and
not DefectWithInconseqSL

Martin Iliev Appendix B

- 72 -

Appendix B
Table B.1.L. The information about the selected defects (from the project in CS1) converted into the attributes

and their values from the IEEE Standard in [2]
 Table B.1.R. Severity levels of the selected

defects
Defect ID

in the
ontology

Effect Type Insertion
Activity

Detection
Activity

 Taken
from the
project

Converted
to the

IEEE Std

Predicted
by

MAPDESO
101 Functionality; security;

performance; serviceability
Data; interface Design Supplier testing Show-

stopper
Blocking Blocking

102 Usability; performance Logic Coding Supplier testing Severe Critical Major
103 Functionality; performance Logic Design Supplier testing Severe Critical Critical
104 Usability; performance Interface Design Supplier testing Severe Critical Critical
105 Functionality; performance Logic Coding Supplier testing Severe Critical Major
106 Usability; performance Interface Design Supplier testing Severe Critical Critical
107 Functionality; performance Logic Coding Supplier testing Severe Critical Major
108 Functionality; security;

serviceability
Data; logic Coding Supplier testing Severe Critical Critical

109 Usability; performance Interface; logic Coding Supplier testing Severe Critical Critical
110 Functionality; performance Data; logic Configuration Coding Severe Critical Critical
111 Functionality; serviceability Data Requirements Supplier testing Severe Critical Critical
112 Usability Interface Requirements Supplier testing Medium Major Inconse-

quential
113 Usability; performance Data Design Supplier testing Medium Major Critical
114 Usability; performance Interface Design Supplier testing Medium Major Critical
115 Functionality; performance Logic Coding Supplier testing Medium Major Major
116 Functionality; performance Data Requirements Supplier testing Medium Major Critical
117 Functionality; serviceability Data; logic Design Supplier testing Medium Major Critical
118 Functionality; security;

performance
Logic Coding Supplier testing Medium Major Critical

119 Usability Data Requirements Supplier testing Medium Major Inconse-
quential

Martin Iliev Appendix B

- 73 -

120 Functionality; performance Logic Coding Supplier testing Medium Major Major
121 Usability; serviceability Data Design Supplier testing Medium Major Critical
122 Functionality; performance Logic Coding Supplier testing Medium Major Major
123 Performance; serviceability Standards Requirements Supplier testing Medium Major Major
124 Functionality; performance Logic Coding Supplier testing Medium Major Major
125 Functionality Logic Coding Coding Medium Major Minor
126 Functionality; performance Logic Design Supplier testing Medium Major Critical
127 Functionality Data Coding Supplier testing Medium Major Minor
128 Functionality; performance Logic Coding Supplier testing Medium Major Major
129 Usability Standards Requirements Supplier testing Minor Minor Inconse-

quential
130 Functionality Data Requirements Other Minor Minor Minor
131 Usability Interface Design Supplier testing Minor Inconse-

quential
Inconse-
quential

132 Functionality Logic Coding Coding Minor Minor Minor
133 Usability Interface Design Supplier testing Minor Inconse-

quential
Inconse-
quential

Martin Iliev Appendix B

- 74 -

Table B.2.L. The information about the selected defects (from the project in CS2) converted into the attributes and
their values from the IEEE Standard in [2]

 Table B.2.R. The severity levels of the
selected defects

Defect
ID in the
ontology

Effect Type Insertion
Activity

Detection
Activity

Taken
from the
project

Converted
to the

IEEE Std

Predicted
by

MAPDESO
201 Functionality; usability;

performance; serviceability
Data; logic Coding Customer testing Block Blocking Blocking

202 Functionality; usability; performance Logic Coding Coding Crash Critical Critical
203 Functionality; usability; performance Logic Coding Coding Crash Critical Critical
204 Functionality; usability; performance Logic Coding Customer testing Crash Critical Critical
205 Functionality; usability; performance Logic Coding Production Crash Critical Critical
206 Functionality; usability; performance Data; logic Coding Customer testing Crash Critical Critical
207 Functionality; usability; performance Logic Coding Production Crash Critical Critical
208 Functionality; performance Logic Coding Production Crash Critical Major
209 Functionality; usability; performance Logic; interface Coding Production Crash Critical Critical
210 Functionality; performance Logic Coding Coding Crash Critical Major
211 Functionality; usability; performance Logic Coding Production Crash Critical Critical
212 Functionality; usability; performance Data; logic Coding Coding Crash Critical Critical
213 Functionality; usability Logic Coding Production Major Major Major
214 Functionality; performance Interface; logic Coding Customer testing Major Major Critical
215 Functionality; performance Logic Design Production Major Major Critical
216 Functionality; performance Data Coding Production Major Major Major
217 Functionality; performance Data Coding Customer testing Major Major Major
218 Functionality; usability; performance Interface; logic Design Production Major Major Critical
219 Functionality; usability Logic Coding Customer testing Major Major Major
220 Functionality; performance Logic Coding Coding Major Major Major
221 Functionality; performance Logic Coding Customer testing Major Major Major
222 Functionality; performance Data; logic Design Customer testing Major Major Critical
223 Usability; performance Logic Coding Production Minor Minor Major
224 Functionality Logic Coding Production Minor Minor Minor
225 Functionality; usability Logic Coding Production Minor Minor Major

Martin Iliev Appendix B

- 75 -

226 Functionality Logic Coding Coding Minor Minor Minor
227 Functionality Logic Coding Coding Minor Minor Minor
228 Functionality; usability Logic Coding Production Minor Minor Major
229 Functionality; performance Logic Coding Production Minor Minor Major
230 Usability Logic Coding Production Minor Minor Inconse-

quential
231 Performance Interface Coding Production Minor Minor Minor
232 Usability Logic Coding Production Minor Minor Inconse-

quential
233 Functionality; usability Logic Coding Production Minor Minor Major
234 Functionality; performance Logic Coding Production Minor Minor Major
235 Functionality; usability Logic Coding Supplier Testing Minor Minor Major
236 Functionality; performance Data Coding Production Minor Minor Major
237 Usability Data Coding Customer testing Minor Inconse-

quential
Inconse-
quential

238 Usability Interface Design Production Minor Minor Inconse-
quential

239 Functionality; performance Data Coding Production Minor Minor Major
240 Performance Interface Coding Production Minor Minor Minor
241 Functionality; performance Logic Coding Production Minor Minor Major
242 Performance Interface Coding Coding Minor Minor Minor
243 Performance Data Coding Production Minor Minor Minor
244 Usability Logic Coding Coding Minor Minor Inconse-

quential
245 Usability Interface Design Coding Minor Minor Inconse-

quential
246 Usability Interface Coding Coding Minor Minor Inconse-

quential
247 Usability Logic Coding Coding Minor Minor Inconse-

quential

Martin Iliev Appendix B

- 76 -

Table B.3.L. The information about the selected defects (from the project used for the validation) converted into the
attributes and their values from the IEEE Standard in [2]

 Table B.3.R. The severity levels of the
selected defects

Defect
ID in the
ontology

Effect Type Insertion
Activity

Detection
Activity

Taken
from the
project

Converted
to the

IEEE Std

Predicted
by

MAPDESO
301 Functionality; performance; serviceability Logic Coding Production Medium Major Critical
302 Performance; serviceability Other Coding Production Medium Major Major
303 Functionality; performance; serviceability Logic Coding Production Medium Major Critical
304 Functionality; performance;

serviceability; usability
Logic Coding Production Top Blocking Blocking

305 Serviceability Other Configuration Production Medium Major Minor
306 Functionality; serviceability Logic; data Coding Production High Critical Critical
307 Functionality; usability Other Coding Production Medium Major Major
308 Functionality; usability Logic Coding Production Low Minor Major
309 Functionality Other Configuration Production Low Minor Minor
310 Functionality; usability; performance Logic Coding Production Low Minor Critical
311 Performance; usability Other Design Production Medium Major Major
312 Performance; functionality; usability Logic Coding Production Medium Major Critical
313 Functionality; performance; serviceability Logic Coding Production Medium Major Critical
314 Functionality; serviceability Other Configuration Production Medium Major Major
315 Functionality; serviceability Data; logic Configuration Production High Critical Critical
316 Functionality Logic;

interface
Configuration Customer

testing
Medium Major Minor

317 Functionality; performance Interface Configuration Production Low Minor Major
318 Performance; functionality; usability Data Configuration Production High Critical Critical
319 Functionality; performance Logic Coding Production Medium Major Major
320 Functionality; serviceability Interface;

logic
Coding Supplier

testing
High Critical Critical

321 Functionality; performance; usability Logic Coding Production High Critical Critical
322 Functionality Logic Coding Production Low Minor Minor
323 Functionality; usability Logic Configuration Production High Critical Major

Martin Iliev Appendix B

- 77 -

324 Functionality Logic;
interface

Configuration Production Low Minor Minor

325 Functionality; usability Data Configuration Production Medium Major Major
326 Functionality; performance Logic Coding Production Low Minor Major
327 Functionality; security; performance;

serviceability
Interface;
logic

Configuration Production Top Blocking Blocking

328 Functionality; performance Logic Coding Production Low Minor Major
329 Functionality Logic Coding Production Low Minor Minor
330 Performance; functionality Data Configuration Production Medium Major Major
331 Functionality Logic Coding Production Low Minor Minor
332 Functionality; usability Logic Coding Production Low Minor Major
333 Functionality; serviceability Logic Coding Production Medium Major Major
334 Functionality; serviceability Logic Coding Production Medium Major Major
335 Serviceability Other Configuration Production Low Minor Minor
336 Serviceability; functionality Logic Coding Production Low Minor Major
337 Serviceability Interface Configuration Production Low Minor Minor
338 Serviceability Interface Configuration Production Low Minor Minor
339 Serviceability Logic Configuration Production Low Minor Minor
340 Serviceability Other Configuration Production Low Minor Minor
341 Usability Logic Coding Production Low Minor Inconseq
342 Serviceability Data Configuration Production Low Minor Minor
343 Functionality; usability Logic Coding Production Low Minor Major
344 Performance; functionality; usability Logic Coding Production High Critical Critical
345 Functionality; serviceability Logic Coding Production Low Minor Major
346 Functionality; performance Interface Design Production Medium Major Critical
347 Serviceability Data Coding Production Low Minor Minor
348 Functionality; performance Interface;

data
Configuration Production High Critical Critical

349 Functionality Logic Coding Production Low Minor Minor
350 Functionality; performance; usability Interface Configuration Production High Critical Critical

