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Abstract

We analyse various aspects of the Constraint Logic framework, from the book
“Games, Puzzles and Computation” by Hearn and Demaine, and we present
some complexity results on specific games.

We report on the half-crossover and the crossover gadget. Amongst other
results, we have found out that these constructions lack some features that are
needed to make a reduction from Bounded Nondeterministic Constraint Logic
to Planar Bounded Nondeterministic Constraint Logic. Planar Bounded Non-
deterministic Constraint Logic is NP-complete nonetheless, hence we can use
it to reduce other problems from.

We present a proof that both Klondike and Mahjong are NP-complete, by
reduction from Bounded Nondeterministic Constraint Logic. We show that
determining whether a Nonogram has a solution and finding a solution is NP-
complete, by reduction from Planar Bounded Nondeterministic Constraint
Logic. Finally, we demonstrate a proof that Dou Shou Qi, also known as
Animal Chess, is PSPACE-hard, by reduction from Bounded Two-Player
Constraint Logic.
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Chapter 1

Introduction

The field of Computational Complexity focuses on classifying computational
problems according to their inherent difficulty, and relating those classes
to each other. By expressing the maximum number of recourses (time and
memory) needed in order to solve a specific problem as a function of the
input, we can classify problems in so-called complexity classes. Some well-
known complexity classes are P, NP, PSPACE and EXPTIME.

For each complexity class X, a problem is called X-hard if solving it is at
least as hard as the hardest problem in X. Polynomial factors in the difficulty
are ignored. A problem is said to be in X if we can solve the problem using at
most the number of recourses specified for complexity class X. If a problem is
both in X and a problem is X-hard, we classify the problem as X-complete.

Our goal is to analyze the computational complexity of games and puzzles.
For each game (or puzzle), we define a computational problem or question
relevant for that game, and determine what the complexity class of this
problem is. A typical question would be whether the player can win the game,
from a given situation. We stick to the convention of saying that the game
is in the complexity class, rather than the self-defined problem associated to
it.

Usually it is not hard to determine in which complexity class a certain
problem is. In order to do so, one should compose an algorithm that uses
at most the number of recourses specified for this complexity class. Showing
that a problem is amongst the hardest problems in a certain complexity
class however is not easy. One technique of doing so is using a reduction. By
taking a problem for which it is already proven that it is X-complete (B)
and showing that solving the problem in which we are interested (A) is at



least as hard as solving B, we can conclude that A is X-hard. We usually do
this by showing a way to transform problem B into problem A. We then say
B <, A.

In “Games, Puzzles and Computation”, by Hearn and Demaine, a frame-
work containing different so-called graph games specific for every major com-
plexity class is created. These graph games are created in order to reduce to
other games. Reducing a game from one of these graph games appears to be
quite easy. For example, in order to reduce from Nondeterministic Constraint
Logic, which is a PSPACE-complete puzzle introduced in [6], one only has
to construct two gadgets which simulate AND and OR gate behaviour.

We will examine this framework and use it to classify other games and
puzzles in their respective complexity classes. Most of the puzzles we classify
are already classified by other researches. We consider our contribution on
these problems to use a reduction from a problem in the framework of [6]. In
many cases the proof is highly visual and easy to understand.

This thesis can be divided in two parts. In the first chapters we will
analyse the constraint logic framework itself, and present some theoretical
work. From Chapter 5 on we will present some complexity results, obtained
by using the constraint logic framework. In Chapter 2 we will give a formal
definition of Nondeterministic Constraint Logic and Bounded Nondetermin-
istic Constraint Logic, which are the puzzles defined by [6], and note on
their planarity. In Chapter 3 and Chapter 4 we take a look at the Bounded
NCL half-crossover and crossover gadget, constructed by the authors of [6],
and analyse what properties these gadgets have. From Chapter 5 and on,
we present the complexity results we have obtained during this research. In
Chapter 5 we will show that Klondike is NP-complete. In Chapter 6 we will
show that Mahjong Solitaire is NP-complete. In Chapter 7 we will show that
Nonograms are NP-complete. In Chapter 8 we will show that Animal Chess
is PSPACE-hard. Chapter 9 contains our initial results on the complexity of
Rummikub, however this problem remains open. Finally, in Chapter 10 our
conclusions are presented and some proposals for future work are made.

This master thesis is written as a partial fulfillment of the requirements of
the degree Master of Science in the Leiden Institute of Advanced Computer
Science (LIACS) of Leiden University, and is supervised by Hendrik Jan
Hoogeboom and Walter Kosters.



Chapter 2

Nondeterministic Constraint
Logic

In this chapter we will give a formal definition of Nondeterministic Con-
straint Logic and Bounded Nondeterministic Constraint Logic, as introduced
by Hearn and Demaine [6]. We will also introduce some definitions and dis-
cuss their planarity.

2.1 Definition

Nondeterministic Constraint Logic (NCL), as presented in [6], is a graph game
which is played on a constraint graph CG = (V, E) with vertex set V' and
edge set E. A constraint graph is a weighted directed graph, where each edge
has a weight in {1,2}. Each vertex has a maximal in/outdegree of 3. The
inflow of a vertex is defined to be the sum of all weights of the edges that
are directed inward. Each vertex has a nonnegative minimum inflow. Vertices
adjacent to three edges are drawn big and have a minimal inflow of 2, vertices
adjacent to only two edges are drawn small and have a minimal inflow of 1.
A configuration is a constraint graph where for each edge it is specified to
which vertex it is pointing. A configuration of a constraint graph is legal if
and only if for each vertex it holds that the inflow is equal to or larger than
its minimum inflow. A state is defined to be a legal configuration. A move
of the player consists of the reversal of a single edge, such that it results
in a legal configuration. The goal of the game is to reverse a certain target
edge, after a series of moves. The restricted form of this game, in which each



edge can only be reversed once at most, is called Bounded Nondeterministic
Constraint Logic (Bounded NCL). Since every edge can only be flipped once,
not only the direction of the edge is important for the description of a state,
but also the Boolean property whether it has already been flipped or not. A
state where none of the edges has been reversed is called an initial state. In [6]
it is proven that Bounded NCL is NP-complete, even when the constraint
graph consists of only the gadgets shown in Figure 2.1. In this figure an
edge is drawn blue (and thick) if and only if it has a weight of 2; an edge is
drawn red (and thin) if and only if it has a weight of 1. We will stick to this
convention for the rest of this report.

KT

CHOICE FANOUT

Figure 2.1: Bounded NCL vertices.

2.2 Planar Bounded NCL

In [6] it is shown that every Bounded NCL Graph has an equivalent pla-
nar Bounded NCL Graph. Every pair of crossing edges can be replaced by
the gadget shown in Figure 2.2(a), which consists of the vertices shown in
Figure 2.1 and an additional vertex type, the red-red-red-red vertex. The
authors of [6] show that this vertex type can be simulated using merely the
AND-vertex and the OR-vertex, as shown in Figure 2.2(b).

The edges of these gadgets can be divided into two disjoint sets. The in-
ternal edges are all edges which are adjacent to two vertices that are both ele-
ment of the same gadget. The external edges are the edges which are adjacent
to only one vertex which is element of the same gadget, and to another vertex
which is not element of the same gadget. For the crossover, {A, B, C, D} are
external edges; all other edges are internal. For the half-crossover, {a, b, ¢, d}
are external edges; all other edges are internal. It should be obvious that for



(a) Crossover (b) Half-crossover

Figure 2.2: Planar crossover gadgets, taken from [6].

the interaction with other gadgets, the orientation of the external edges is
much more interesting than the orientation of the internal edges. We will
also mention the definition of geographically adjacent edges. Consider a cir-
cle which crosses all external edges but none of the internal edges in our
Euclidean embedding of the gadget. Any pair of edges that are connected
by the circle, without crossing another edge in between, are considered ge-
ographically adjacent. For the half-crossover, {a,c}, {a,d}, {b,c} and {b,d}
are geographically adjacent. Similar pairs of edges can be indicated at the
crossover gadget.

The features of these gadgets can easily be verified, as done by the authors
of [6]. They show that in the crossover gadget, A or B can be flipped outward
if and only if the other of these two is pointing inward. They show a similar
property for C'and D. This implicitly means that at any time, there will be at
least two of the external edges turned inward. Flipping an outward pointing
external edge can eventually result in flipping the external edge which is not
geographically adjacent to it.

As for the half-crossover, it can be verified that at any time there will
be at least two of the external edges pointing inward. Flipping one of the
outward pointing external edges can eventually result in flipping one of the
inward pointing external edges. Regardless whether edges are already flipped,
there are a total of six states with the property that two external edges are
pointing outward. Of course, there are also states which do not satisfy this
property. We will not analyse these as it can be verified that these will not
occur in initial states of the crossover gadget. The six states are:

(aoutu bout7 Cin, din>7 (aou‘m bim Cout) din>7 (aou‘m bim Cin, dout)u
(airu bou‘m Cout) din>7 (aim bou‘m Cin, dout)7 (aim bim Cout) dout)



A state of the crossover gadget is described as a tuple of the external edges
and their orientation in subscript. Here, in means that the edge is pointing
toward the gadget, out means that it is pointing away from the gadget.
We supply an edge with a bar when it is already flipped, hence it can not be
flipped again. From the orientations of these external edges, we can derive the
orientation of most internal edges. For some internal edges, the orientation
is undefined.



Chapter 3
Bounded NCL half-crossover

In this chapter we will analyse the half-crossover as used in the bounded
version of NCL, and provide state space diagrams.

3.1 Internal state

Since the direction of some internal edges can not be derived from the external
edges, we need a way to specify the direction of all edges. For this we will
use the cardinal direction system, denoted in subscript. The state space of
each edge is an element of this set:

{{N,S}, {W,E}, {NW, SE}, {NE, SW}}

The state space of an edge is chosen depending on the embedding of the
graph. If the edge is drawn vertical, it can point north (N) and south (S). If
the edge is drawn horizontal, it can point west (W) and east (E). A similar
statement can be made for the diagonal edges. We will call a description which
specifies the orientation of all edges, including internal edges, the internal
state.

Consider a half-crossover gadget which is in the following state:

(aim bim Cout) dout)

This implicitly means that edges e and f are pointing west; A is pointing
south west; ¢ is pointing north west; edges j and k are pointing east; n is
pointing south east and finally o is pointing north east. Otherwise one of the



vertices would not satisfy its minimal inflow. The internal state is as follows:

(aSn bN7 Cw, dE7 ew, fW7 g, h’SW7 Z.NVVaan kEa m,nsE, ONE)

Note that the orientation of g and m is not specified in this internal state, as
the inflows of these edges are of no influence to the constraints of the current
state.

By flipping either ¢ or d, we can flip either a or b. Formally stated,
we could go to the following states: (@out, bin, Ciny dout);, (@in, bouts Cin, dout),
(Gouts bin, Couts din) and (@in, bouts Cout, din)- As these are all symmetric, we will
only show how to get to the first. After flipping ¢, h, g if needed and e, will
result in the possibility to flip a. The current internal state of the gadget is
now

(W) bN7 @7 dEa @7 fWa gN, hNEa iNWa an kE) m, nsg, ONE)

or
(ax, bx, €, dg, €, fw, ON, ANE, INw, JE, KB, M, NSE, ONE)

depending on whether g was already pointing north or not.

It is easy to see that from this state, we can find a sequence which will
eventually also flip b. If we flip d, o, m if needed and k, it is possible to flip
b. The internal state in which we now are is one of the following:

(an, bs, Tr, dw, €, fw, 9N, hng, inw, Ju, kw, Ms, NSE, 0SW )

(an, bs, Tr, dw, €g, fw, IN, hng, inw, Ji, kw, Ms, NSE, OSW )
(an, bs, Tw, dw, €g, fw, 9N, hng, inw, Ji, kw, TS, NSE, OSW )
(an, bs, Tw, dw, €g, fw, IN, hng, inw, Ji, kw, TS, NSE, OSW )

depending on the initial orientation of ¢ and m. By the way, ¢ and n can be
flipped (with no effect whatsoever).

3.2 State spaces

An obvious question is which states can be reached from each state, and in
which order. Again, we only consider states which have exactly two edges
pointing inward and where none of the edges are flipped initially. States
which have less inward edges can not be created without violating the NCL



rules; states which have more inward edges will not occur in initial states of
the full crossover.

There are two different types of such a half-crossover, i.e., half-crossovers
in which two geographically adjacent edges are pointing inward at the ini-
tial state, and we will refer to these as the straight half-crossover, and half-
crossovers in which two geographically not adjacent edges are pointing in-
ward at the initial state, and we will refer to this as the bended half-crossover.
The straight half-crossovers can be in (aiy, bout, Cin, dout), (@in, bouts Couts din),
(Gout, bins Ciny dout); (Gouts bin, Cous, din) and all subsequent states; the bended
half-crossovers can be in (aiy, bin, Cout, dout); (Gouts Bout Cin, din) and all subse-

quent states.
{aina bina
Cout s dout}

{a'ina bln_7
Cout s din}

{ainu bin7
@7 dout}

{a'ina Ea
ﬁ, dout }

{aout7 bim

a7 din

{aoutaﬁu {ainu m7
Cout din } Cout d_m }

{aim@ta
@7 din

{ {aout ) bin7

m, dout }

{aout ) bout

@7 din

}

Figure 3.1: State space diagram of a bended half-crossover.

In Figure 3.1 the state space diagram of a bended half-crossover is shown.
From this state space diagram we can observe two things:



1. In any state there will be at least two edges pointing inward. This is
also proven in [6].

2. We can end up in a state where all four external edges are flipped.

{aim bout7
Cin, dout }

{ain ) @t )
Cin, din

{a'ina Ea
Cin, dout}
Y

{aim E7 {aout7 E; {ainab_i_na {aim bo_uta {aouta_bouta
Cout s dout} Cin, dout } Cin, din } Cout) din } Cin, din }

{aout7 Eu {ainu bin7

'SR

Cin, din }

{aout ) bin7

Cin, din }

{aoutu Eu
Cin, d_ln }

Figure 3.2: State space diagram of a straight half-crossover.

In Figure 3.2 a state space diagram of a straight half-crossover is shown.
From this state space diagram we can also observe some things:

1. Again, at any time there will be at least two external edges pointing
inward.
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2. If we first flip two external edges which are geographically adjacent, we
will always be able to flip the other two external edges.

3. If, starting from the initial configuration, we flip two edges which are
geographically not adjacent, we will block the configuration and make
it impossible for the last inward pointing edge to be flipped.

As for the last observation, this could have some consequences for the func-
tionality of the crossover gadget. The correctness of this observation can be
verified by checking the internal state. Initially, the internal state is one of
the following

(a87 bSa CE, dE7 ew, fE7 gs, hNEa iSEa an kE) ms, NsSE, ONE)
(a87 bSa CE, dE7 ew, fE7 gs, hSW7 iSEa an kE) ms, NsSE, ONE)
(a87 bSa CE, dEa ew, fEa gs, hNE7 iSE)jE) kEa mn, 1sE, ONE)

(aS7 bSn CE, dE7 ew, fE7 gs, hSW7 iSE7jE7 kEu my, NsE, ONE)

depending on the initial state of h and m. Assuming that h is already pointing
north east and m is already pointing south, which is the most ideal scenario
since one would have to flip less edges, the internal state after flipping b and
a would be

(@x, bx, cg. dg, €5, fw, 9x, hxg, isE; jg, kg, ms, nsg, ONg)
After flipping d and ¢, rather than a and b, the internal state would be
(CES, bSa ma %7 ew, f_W7 gs, hSWa iNW) jE) ﬁ) ms, NsE, OSW)

It can be verified that from both internal states, it is impossible to also
flip the last outward pointing edge. In the next chapter we will check which
consequences this has for the crossover gadget.

11



Chapter 4

Bounded NCL crossover

In this chapter we will analyse the crossover gadget, which is shown in Fig-
ure 2.2(a).

4.1 State space

In [6] it is shown that A and B can not be simultaneously pointing out-
ward, and neither can C' and D. This means that the only legal states of the
crossover gadget are

(Aout7 Bim Couta Din)7 (Aoutu Bim Cinu Dout)7
(Aina Bouta Couta Din)7 (Aouta Bim Cim Dout)

Of course there are also states which have more than two inward pointing
edges, but we will not analyse these. All states can be obtained from each
other by rotation or reflection, hence all will have a similar state space. We
will only show the state space diagram of (Aj,, Bous, Cin, Dout). This can be
seen in Figure 4.1. The initial internal state is

( AS7387CE7DE7EE7FW7GE7HS7[SE7JNE7
KNEa LSEa MEa NW7 OS) PNE7 QSE) RSEa SNE )

The presence of red-red-red-red vertices makes analysing this gadget some-
what different from analysing a gadget which does not contain red-red-red-red
vertices. All used red-red-red-red vertices are straight half-crossovers, and as
seen in Section 3.2 some sequences of moves are impossible. Besides check-
ing for each edge that we want to flip whether the inflow constraint is not

12



violated and whether it has already been flipped or not, we must also check
in which order the edges adjacent to a red-red-red-red vertex are flipped,
because some of these orders might be impossible due to the properties of
the straight half-crossover.

{Aina Bouta
Cim Dout }

{Aina Bout7
Cina Din }

{Ain7 B—ina
Cim Dout}

Figure 4.1: State-space diagram of an (Ajy, Bout, Cin, Dout) Crossover.

As suggested by the state space diagram, there is only one strategy to flip
all edges: First flip both outward pointing edges in some order, afterwards
flip both inward pointing edges in some order. When flipping an inward
pointing edge before both outward pointing edges are flipped, will result in
the impossibility to flip the other inward pointing edge. We will say that this
gadget does not have the Full Crossing Property, abbreviated as the FCP.

13



4.2 Full Crossing Property

In this section we will give a definition of the Full Crossing Property and
show why it is impossible to construct a gadget in the restricted version of
NCL which has the full crossing property. This concept relies on the fact that
each legal NCL Graph has a maximal degree of three, and that each edge
may only be reversed once in the restricted version.

A gadget which has the full crossing property, has two sets (both are of
size 2) of geographically non adjacent edges and obeys the following rules:

1. at all time, there must be at least one element of the set pointing
inward;

2. if there is an element pointing outward, reversing this must allow the
other element to point outward after a sequence of moves;

3. if there is no element pointing outward, for each element there must
be a sequence of moves that eventually turns it outward. Of course, in
the restricted version doing one of these move sequences excludes all
others.

Note that the gadget from Figure 2.2(a) does not have the FCP, as it does
not obey the second rule. After a sequence which flips the edges of one of
the two sets, the outward pointing edges in the other set can not be flipped
anymore.

As for the proof that it is impossible to create a gadget with the FCP,
consider two sets of geographically non adjacent edges ({4, B} and {C, D})
that need to cross each other. When reversing an edge that is pointing out-
ward (A), in order to reverse the corresponding edge (B, which is pointing
inward at that time) a group of adjacent edges between A and B must be
reversed in some order. We will refer to these edges as the split edges. We
want to stress the fact that an uninterrupted set of edges between A and B
will all be reversed; if this was not the case, then B could also be reversed
without reversing A, which would break the first rule.

For the other set of connected edges a similar group of split edges must be
defined. However it is forbidden to reverse any of the edges that we already
used for reversing A and B. It is impossible to define such a set from one side
of the previous split edges to the other side. The only legal position to cross
is at a vertex. Since all vertices have a maximal degree of three, from which

14



two are already occupied by the split edges of A and B, there is no way to
define a new set of split edges which do not use any of the edges that are
already reversed. We conclude that it is impossible to create a gadget with
the full crossing property for Bounded NCL.

4.3 Acyclic Bounded NCL

In this section we will argue why NCL does not need a gadget with the FCP.
We define Acyclic Bounded NCL to be the subset of Bounded NCL, con-
taining all acyclic Bounded NCL graphs consisting of AND, OR, FANOUT
and CHOICE vertices (shown in Figure 2.1). Every instance of 3-SAT can
be reduced to an instance of Acyclic Bounded NCL using a similar reduction
as the one to Bounded NCL, as shown in [6]. A diagram of this hierarchy is
shown in Figure 4.2.

Bounded NCL

Acyclic
Bounded NCL

3-SAT
reductions

Figure 4.2: Hierarchy of Bounded NCL subsets.

Every instance of 3-SAT is a (Boolean) formula. This formula is trans-
lated into a NCL graph in a straightforward way, ensuring the graph is al-
ways acyclic, see Figure 4.3. Central in the graph are vertices representing
the clauses. These are joined to the topmost target edge using AND vertices.
At the bottom of the graph for the formula we have one vertex for each vari-
able. CHOICE vertices ensure that for each variable we cannot set both that
variable and its negation. The values of the variables are duplicated for the
various occurrences in the clauses using FANOUT. Then (copies of) the vari-
ables are attached to the proper clauses using OR vertices, thus representing
the semantics of the formula. Obviously the resulting graph is acyclic.

15



We can reduce Acyclic Bounded NCL to Planar Bounded NCL, by re-
placing every crossing in an instance by the construction of Figure 2.2(a).
As this graph is acyclic in terms of edge direction, the problem mentioned in
Section 4 does not apply here.

(wvVeVy) AN(wVTVz)A(xVTVz)

Figure 4.3: A constraint graph corresponding to the formula (w V x V y) A
(wWVTVz)A(xVTYV z), taken from [6].

16



Chapter 5
Klondike

Klondike is a well-known solitaire card game, popularized by Microsoft Win-
dows. The normal version of the game is played with a standard French card
deck, without jokers. A typical instance of Klondike is shown in Figure 5.1.
The authors of [9] have given a formal definition of the game and provided an
algorithm that plays Klondike games with a high success rate. The authors
of [7] show, amongst other complexity results, that Klondike is NP-complete
even when played with three suits. We will give a formal definition of Klondike
and confirm the NP-completeness of Klondike by a reduction from Bounded
NCL.

Figure 5.1: A typical instance of Klondike.

17



5.1 Definition

Klondike is played with a card deck containing m suits, numbered from 1 to
m, each suit containing n cards ranked from 1 to n. A card with rank 1 is
also referred to as an Ace; a card with rank n—2 is also referred to as a Jack;
a card with rank n — 1 is also referred to as a Queen and finally a card with
rank n is also referred to as a King. The functions rank(c) and suit(c) return
the rank of card ¢ and the suit of card ¢, respectively. Each suit is colored
either red or black. The function color(s) returns the color of suit s.

A Klondike game consists of m suit stacks, k build stacks, a pile stack
and a talon. A stack S is defined to be a list of cards, where 0 < |[S| < n.
A configuration describes for each card in which stack it is and on which
position. For every card in a build stack it also describes whether the card
is face-up or face-down. The subset of cards that are turned faced-up on a
certain build stack forms together a card block. In an initial configuration
each build stack b, where b € {1,2,3,...,k — 2,k — 1, k}, contains b cards,
all face-down; all other cards are in the pile stack.

We will define the notion of acceptance, which determines which moves
the player can make. Each suit stack that is empty accepts card c if and only
if ¢ has rank 1 (Ace). Every suit stack that is not empty, containing card ¢
on top, accepts card c if and only if suit(c) equals suit(t), and rank(c) equals
rank(t) + 1. Each card block that is not empty, containing card ¢ on top,
accepts card c if and only if color(suit(t)) does not equal color(suit(c)) and
rank(c) equals rank(t) — 1.

On each turn, the player can move cards from one stack to another in the
following manner:

1. If all cards on a build stack are face-down, the card op top can be
turned face-up. Note that a card block containing this card is created.

2. The top card of a card block can be moved to the top of a suit stack,
provided that the suit stack accepts this card.

3. A whole card block p can be moved to the top of another card block g,
provided that g accepts the card at the bottom of p. In some versions
of the game a partial card block can also be moved to another card
block, subjected to a similar acceptance rule. For our purposes it does
not matter which of these versions is applied.
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4. If the pile stack is not empty, the top p cards can be moved to the
talon, which maintains its cards in a first-in-last-out order. Here, p is
defined to be min(3, |p|).

5. The top card of the talon can be moved to either a suit stack or a build
block, if the corresponding stack accepts this card.

6. If the pile stack is empty, all cards on the talon can be moved to the
pile stack. The order of the cards must be preserved.

The goal is to move all cards to the suit stacks, when this is achieved the
player has won.

5.2 NP-completeness

We will show that Klondike is NP-complete, even when played with two
black and two red suits. We reduce from Bounded NCL. We will use the
four suits from the French card deck, which are black spades (#), black clubs
(&), red hearts (©) and red diamonds (). We will show that every Bounded
NCL graph can be transformed into a Klondike configuration, such that the
Klondike game can be won if and only if the target edge of the Bounded NCL
graph can be flipped.

Every vertex in the original Bounded NCL graph can be replaced by one
of the gadgets in Figure 5.2. All gadgets consist of three or four build stacks,
with all cards face-down. Each gadget gets a range of unique ranks assigned
to it, z to £+ 10. (The cards with ranks within this range that are not used in
this gadget will be placed in a so-called victory gadget, which we will explain
further on.) All cards in this gadget, except the key card, will have a rank
within this range. A lock cards represents the tail of an edge adjacent to the
corresponding Bounded NCL vertex; a lock icon is displayed on these cards.
A key cards represents the head of an edge adjacent to the corresponding
Bounded NCL vertex; a key icon is displayed on these cards. The suit and
rank of the key card are assigned such that once turned face-up, it accepts
a lock card of the gadget from which the corresponding Bounded NCL edge
is pointing. The gadgets are constructed in such a way that the key card
can be turned face-up if and only if the corresponding Bounded NCL edge
can be flipped. The usage of the card blocks containing just one card will be
explained further on.
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Figure 5.2: Klondike gadgets.

For each lock card ¢ it is easy to see which card should be turned face-up
in order to move it. If color(rank(f)) is red, these cards are #rank(() + 1
and &erank(¢)+ 1. Otherwise these cards are Qrank(¢) +1 and $rank(l) + 1.
Only one of these cards is used in another gadget, where it serves as a key
card. The other card is defined to be a complementary key card, and the use
of these cards is explained further on.

In the original Klondike configuration the pile stack, talon and suit stacks
are completely empty. The player can obtain the Aces, which are necessary in
order to move cards to the suit stacks, if and only if the card which represents
the target edge can be turned face-up. This will initiate the end game, which
is always winning for the player as we will show further on.

Lemma 5.2.1 The construction in Figure 5.2(a) satisfies the same con-
straints as a Bounded NCL AND vertez, with Ox+2 and #z+2 corresponding
to the input edges, and the key card to the output edge.

Proof In order to turn the key card face-up, both Qx + 2 and #x + 2 must
be moved to another card block. If neither of these cards can be moved, no
moves can be done within this gadget. If we can only move Qx 4 2, we can
move Oz + 1 to the card block consisting of #x + 2, but after that no other
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moves can be done. If we can only move #x + 2 a similar argument can be
made. If we can move both Qx4+ 2 and #x + 2 to another card block, we can
also move Oz + 1 and #x + 1 to the card blocks with #x + 2 and Q + 2 on
top respectively, and finally #x to the card block where now Qz + 1 is on
top. At this point we can turn the key card face-up.

Lemma 5.2.2 The construction in Figure 5.2(b) satisfies the same con-
straints as a Bounded NCL OR vertex, with Qx+1 and #x+1 corresponding
to the input edges, and the key card to the output edge.

Proof In order to turn the key card face-up, Oz +1 or #x+1 must be moved
to another card block. If neither of these cards can be moved, no moves can
be done within this gadget. If we can move #x + 1 to another card block,
Qx can be moved to this card block. We can now turn the key card face up.
If we can move Qx + 1 to another card block, #z can be moved to this card
block. We can now turn Qx + 2 face-up, and move #x + 1 to this card block.
After this Oz can be moved to this card block. At this point we can turn the
key card face-up. Note that some cards of this gadget may remain face-down
depending on which lock card is used. We will take care of these cards later.

Lemma 5.2.3 The construction in Figure 5.2(c) satisfies the same con-
straints as a Bounded NCL FANOUT wvertex, with #x + 4 corresponding
to the input edge, and the key cards to the output edges.

Proof In order to turn both key cards face-up, #z + 4 must be moved to
another card block. If this card can not be moved, no moves can be done
within this gadget. If we can move #x + 4 to another card block, we can
move in order Qx + 3, &z + 2, Oz + 1 and #zx to this card block. We can
now turn both key cards face-up.

Lemma 5.2.4 The construction in Figure 5.2(d) satisfies the same con-
straints as a Bounded NCL CHOICE vertex, with Qx 4+ 2 corresponding to
the input edge, and the key cards to the output edges.

Proof In order to turn one of the key cards face-up, Oz + 2 must be moved
to another card block. If this card can not be moved, no moves can be done
within this gadget. If we can move Qx + 2 to another card block, #x + 1 can
be moved to this card block afterward. Now we can move either Qx or $x to
this card block. One of the key cards can now be turned face-up. Note that
the only gadget that consists of a {» card is this one.
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Theorem 5.2.5 Klondike is NP-complete.

Proof Reduction from Bounded NCL. Given a constraint graph made of
AND, OR, FANOUT and CHOICE vertices, we construct a corresponding
Klondike configuration using the gadgets shown in Figure 5.2. We also need
a way to ensure that the player can move all cards to the suit stacks if and
only if the key card corresponding to the target edge can be turned face-up.
For this we have created a wvictory gadget. The victory gadget consists of a
FANOUT, from which the lock card can be moved if and only if we can
turn the key card corresponding to the target edge face-up. The keys of the
FANOUT gadget open two other stacks: a stack with all complementary key
cards in it, and a stack which contains all other cards which are not present
in any other stack, ordered ascending by rank. For each rank the cards are
given in &OOM order. (In fact, this order is of no importance.) The player
can now move all complementary key cards to their associated gadgets (note
that it is guaranteed that the complementary key cards are accepted by one
of the build stacks, this is due to the stacks consisting of one card) and move
the lock cards of those gadgets from which some or all of the lock cards
were not yet moved. This ensures that all cards on the build stacks can be
turned face-up and placed on build blocks in descending order. Now this is
done the player can start building the suit stacks, starting with the Aces and
eventually finishing with the Kings.

For creating the Klondike configuration, the number of cards and stacks
we need are both bounded by a linear function over the number of vertices in
the corresponding Bounded NCL graph. Any card which is used will be moved
at most twice. Therefore Klondike is in NP, since any potential solution can
be verified in polynomial time.
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Chapter 6

Mahjong Solitaire

Mahjong Solitaire, also known as Shanghai Solitaire, is a one player puzzle
game mainly played on the computer in which the player a randomly ar-
ranged stack of tiles is presented. A typical instance of Mahjong is shown
in Figure 6.1. The goal is to remove all tiles in matching pairs of two. The
authors of [3] have given a formal definition of this game, and have shown
that a version of this game with imperfect information is PSPACE-complete.
The author of [5] has stated a proof that a version of this game with perfect
information is NP-complete. We will give a formal definition of this game
and validate the latter result by a reduction from Bounded NCL.
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Figure 6.1: A typical instance of Mahjong Solitaire.
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6.1 Definition

For describing the game Mahjong Solitaire, we allow ourselves to use a mod-
ified version of the definition provided by the authors of [3].

The game uses Mahjong tiles (comparable with cards), that are divided
into m disjoint tile sets T, of |T,| = s, matching tiles, where s, is an even
number (p = 1,2,...,m). We define the set of all tiles to be T = |, 7. Tiles
a and b match, if and only if for some p it holds that a, b € 7,. We generalize
the standard game simply by assuming that there is an arbitrarily large,
finite number of tiles. A configuration C' is a set of positions (i, j, k), where
each of 7, j, k is a non-negative integer, satisfying the following constraints:

1. If (4,7,k) € C and (i, 7', k) € C where j < j', then for every j” in the
range [j, 5], (i, ", k) € C.

2. If (i,7,k) € C where k > 0 then (i,j,k —1) € C.

Intuitively, this captures the fact that tiles are arranged in three dimensions.
Tiles can be stacked on top of each other; all tiles with common £ are at
the same height. All tiles with a common 7 index, form a cross section. Tiles
at the same height, with common ¢ index, form a row. The first condition
ensures that there cannot be gaps in a row; the second, that a tile at height
k > 0 must have a tile underneath it (in fact, at position (i, j,k — 1)).

With respect to a given configuration, a position (i, j, k) is hidden if in
the configuration also a position (4,7, k + 1) exists; the other positions are
called wvisible. An arrangement consists of a set of tiles T, a configuration C'
of size |T|, and a 1-1 function f from the positions of C' to 7. Intuitively,
this means that f(i, 7, k) is the tile at position (i, j, k). If this function maps
position (7, j, k) to tile ¢t we say pos(t) = (1, j, k). The elements of 7 will be
mapped to the elements of C' in such a way, that every possible combination
is equally likely. With respect to a given arrangement, we say a position
(1,7, k) is available if it is not hidden, and either position (i,7 — 1,k) ¢ C
or position (i, + 1, k) ¢ C or both. An arrangement is called empty if T is
empty.

A legal move consists of the removal of two matching tiles a,b that are
both available. Formally, 7' = T — {a,b} and C" = C — {aypos, bpos }- The

game is won if a series of moves results in the empty arrangement.
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6.2 NP-completeness

We will shown that Mahjong Solitaire is NP-complete, even if for all p it
holds that s, < 4. We reduce from Bounded NCL. Each vertex in the original
Bounded NCL graph can be replaced by one of the gadgets in Figure 6.2.
These gadgets consist of one cross section, in which one or multiple rows are
stacked. In each gadget, tiles that have the same color are element of 7,, for
some p.

2

(a) AND gadget (b) OR gadget

°

7

@ P

(c) FANOUT gadget (d) CHOICE gadget

Figure 6.2: Mahjong gadgets.

Every gadget used in the Mahjong arrangement has a set of numbers )
assigned to it, from the interval [1,m]. Every number is assigned to exactly
one gadget. Each tile used in a gadget is element of 7,, where ¢ € @), except
the tiles on which a key icon is displayed. A lock tile represents the tail of
an edge adjacent to the corresponding Bounded NCL vertex; a lock icon is
displayed on these tiles. Note that all lock tiles are already available. A key
tile represents the head of an edge which is adjacent to the corresponding
Bounded NCL vertex; a key icon is displayed on these tiles. A key tile is
element of 7,, with ¢ being the same as a lock tile from the gadget from
which the corresponding Bounded NCL edge is pointing.
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When a key tile is available, it can be removed together with a lock
tile from one of the other gadgets. The target edge in the corresponding
Bounded NCL graph is always represented by a key tile. When this target
edge is available this will initiate the end game, which is always winning for
the player as we will show further on.

Lemma 6.2.1 The construction in Figure 6.2(a) satisfies the same con-
straints as a Bounded NCL AND wvertex, with the orange and red lock tiles
corresponding to the input edges, and the green key tile corresponding to the
output edge.

Proof In order to get the key tile available, both lock tiles need to be re-
moved. If neither of these can be removed, no moves can be done within this
gadget. If only the red lock tile can be removed, no other moves can be done
within this gadget. A similar argument can be given for the orange lock tile.
If we can remove both lock tiles, both blue tiles are available and can be
removed together. After this the green key tile is available.

Lemma 6.2.2 The construction in Figure 6.2(b) satisfies the same con-
straints as a Bounded NCL OR wvertexr, with the orange and red lock tiles
corresponding to the input edges, and the green key tile corresponding to the
output edge.

Proof In order to get the key tile available, at least one of the lock tiles
needs to be removed. If neither of these can be removed, no moves can be
done within this gadget. If the red lock tile can be removed, the green key
tile is available. A similar argument can be given for the orange lock tile.

Lemma 6.2.3 The construction in Figure 6.2(c) satisfies the same con-
straints as a Bounded NCL FANOUT wvertez, with the red tile corresponding
to the input edge, and the green and dark green key tiles corresponding to the
output edges.

Proof In order to get the key tiles available, the lock tile needs to be re-
moved. As long as the lock tile is not removed, no other moves can be done
within this gadget. When the lock tile is removed, both blue tiles can be
removed together after which both key tiles are available.
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Lemma 6.2.4 The construction in Figure 6.2(d) satisfies the same con-
straints as a Bounded NCL CHOICE wvertex, with the red tile corresponding
to the input edge, and the green and dark green key tiles corresponding to the
output edges.

Proof In order to get a key tile available, the lock tile needs to be removed.
Without the lock tile removed, we can only remove two of the gray tiles, after
this no other moves are possible. If the lock tile is removed, we can match
the newly available gray tile with either one of the other gray tiles. Both
blue tiles can be removed, and depending on which gray tile was removed
the green or the dark green key tile is now available. It is impossible to get
both key tiles available.

Theorem 6.2.5 Mahjong Solitaire is NP-complete.

Proof Reduction from Bounded NCL. Given a constraint graph made of
AND, OR, FANOUT and CHOICE vertices, we construct a corresponding
Mahjong Solitaire arrangement using the gadgets shown in Figure 6.2. We can
construct so-called victory gadgets, which will ensure that upon removing the
key tile corresponding with the target edge, all other tiles can be removed. For
this the set of victory tiles V' is defined, which contains for every key tile and
lock tile used in the other gadgets, a tile which is element of the same tile set.
Besides these tiles, it contains for every CHOICE gadget used i) a tile which
is element of the same tile set as the gray colored tile ii) a tile which is element
of the same tile set as the blue colored tile and iii) a tile that is element of
the same tile set as the yellow colored tile. We need to construct v victory
gadgets, v being [|V|/2]. Each victory gadget i, with ¢ € {1,2,...,v — 1},
consists of a row containing 6 tiles, as shown in Figure 6.3. The numbers
displayed on a tile indicate to which tile set it belongs. (Victory gadget v
is somewhat similar to this, it lacks the tiles ¢;; and r;q. If |V] is odd, it
also lacks tile v?.) Here, v} and v? are both tiles from V, chosen in such a
way that each tile from V will occur in exactly one victory gadget. The tiles
li+1 and 7;41 are key tiles, these can be removed together with the leftmost
and rightmost tile from the next victory gadget. From this it follows that ¢;
and r; are lock tiles, these will be removed together with the key tiles from
the previous gadget. The key tile corresponding with the target edge will be
connected to a FANOUT gadget, in which one of the key tiles is from the
same tile set as /1 and the other key tile is of the same tile set as r;. This
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Figure 6.3: Mahjong victory gadget

ensures that if and only if we can get the key tile corresponding to the target
edge available, all victory gadgets can be opened and all tiles from set V' will
be available. It can be verified that when having all tiles from V available, the
player can always remove all remaining tiles, including the remaining tiles of
the CHOICE gadgets. Gadgets from which some of the lock tiles were not
yet removed can now have their remaining lock tiles removed.

For creating this Mahjong Solitaire, both the number of tiles and the
number of tile sets we need to use is linearly bounded by the number of
vertices used in the corresponding Bounded NCL graph. Therefore Mahjong
Solitaire is in NP, since any potential solution can be verified in polynomial

time.
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Chapter 7

Nonograms

A Nonogram, also referred to as a Japanese puzzle, is a logic puzzle which can
be considered as an image reconstruction problem. The player is presented
a rectangular grid; for each row and column a description consisting of one
or more integers is provided, representing consecutive cells that need to be
colored. If the player can color a subset of cells in such a way that it is
consistent with the description of all rows and columns, he has solved the
puzzle and won the game. An example of a Nonogram and its solution is
shown in Figure 7.1.

2 2
1512|512

2 1 2 1
1 3 1 3
1 2 1 2
3 3
4 4
1 1

(a) 6 x 6 Nonogram (b) Solved Nonogram

Figure 7.1: A Nonogram (a) and its unique solution (b), taken from [1].
The authors of [1] have given a formal definition of Nonograms and pro-

vided an algorithm for solving many Nonograms in polynomial time. In [8] it
is proven that the Another Solution Problem for Nonograms in NP-complete.

29



We will give a formal definition of Nonograms and show that the decision
question whether there exists a solution is NP-complete, by reduction from
Planar Bounded NCL.

7.1 Definition

A Nonogram is a puzzle in which the player is presented an m x n grid, con-
sisting of m rows and n columns. The rows are numbered from 1 through m,
inclusive; the columns are numbered from 1 to n, inclusive. Each intersection
between a row and a column is called a cell. The state of a cell is either blank
or colored. Initially, all cells are blank. The function C(r,c) maps to the cell
in row r and column ¢, with 1 <r <m and 1 < ¢ < n. A line is defined to
be either a row or a column; the grid consists of ¢ lines, where £ = m + n.

For each line 7 (with 1 < i < /) a description d’ is provided, d' being
an ordered series of integers (df,d5, ..., d; ). The function R(r) returns d’,
being the description of the r** row. The function C(c) returns d™*¢), being
the description of the ¢* column.

The player is challenged to color a subset of cells, in such a way that for
each line i, there are exactly k; colored segments, where each colored segment
sis of size d. (s = 1,2,...,k;). A colored segment is defined to be a group
of consecutive cells on an interval of a line, such that it holds that all cells
within the interval are colored, and both cells adjacent to the interval, if any,
are blank. If the player succeeds in doing so, he has won the game.

It can be easily verified that there exist Nonograms for which there is
no subset of cells that be colored such that the constraints are fulfilled. In
this case the player can not win. There are also Nonograms for which there
are multiple subsets of cells that can be colored such that the constraints
are complied. For more information about these cases, the reader is referred
to [1].

7.2 NP-completeness

We will show that solving Nonograms is NP-complete, by reduction from
Planar Bounded NCL. The global layout of the construction will be as shown
in Figure 7.2. There will be several groups of D adjacent columns (or rows)
whose description consists of a single element, i.e., m (or n), such that the
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Figure 7.2: Global layout.

pattern of Figure 7.2 is maintained. We will call these lines the separation
lines. Between each group of separation lines, there are GG other lines. In the
case of Figure 7.2, D =5 and G = 7. The period P is defined to be D + G,
in this case 12.

Formally, each column ¢ with 1 < ¢ < n is a separation line if and only
if (¢ —1)mod P < D. Also, each row r with 1 < r < m is a separation
line if and only if (r — 1) mod P < D. The description of all other rows and
columns should be consistent with this pattern. We will consider each element
of any description bigger than or equal to D a delimiter. This means that
the description of each other column should at least contain m/P delimiters;
the description of each other row should at least contain n/P delimiters.

As a result of this pattern we can specify disjoint subnonograms between
the separation lines. A subnonogram is defined to be a part of the nonogram,
surrounded by separation lines. The function S(s,, s,;) refers to the subnono-
gram embedded in the rectangle between the cells C(s, x 1246, s, x 12+6)
and C(s, x 12412, s, x 12 4 12), inclusive. We can insert the description
associated with subnonogram S(s,, s;) between the (s,)™ and (s, + 1) de-
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limiter on the associated columns, and (s,)™ and (s, + 1) delimiter on the
associated rows.

00014441 0 114441 0

GOSN
GOSN

(a) (b)

Figure 7.3: The two solutions of a Nonogram featuring two subnonograms
horizontally separated by 3 separation lines.

It is also possible to send a signal between two orthogonal adjacent sub-
nonograms by slightly adjusting delimiters between them. This is illustrated
in Figure 7.3. The figure shows two subnonograms separated by D = 3 sep-
aration lines; one subnonogram between cells C(1,1) and C(4,4), inclusive,
and one subnonogram between cells C(1,8) and C(4, 11), inclusive. If we were
to decide that C(3,4) should be colored, this would explicitly mean that cell
C(3,8) can not be colored. (Note that this would also explicitly mean that
C(2,8) is colored, and C(2,4) is not colored.) The opposite is also true. We
will use this property to construct gadgets within a subnonogram, and prop-
agate signals between them. This way we can embed a Planar Bounded NCL
graph on a Nonogram grid.

Figure 7.4: Template for Nonogram gadgets.

In Figure 7.2 a template of the gadgets is shown. From the description
of every gadget follows immediately that the black cells must be colored and

32



the dotted cells must be blank. The state of the other cells is dependent on
the type and state of the gadget.

The gadgets are shown in Figure 7.5. All of them have G = 7. As it
does not influence the functionality, on each side these are surrounded by
only one separation line. (In the large construction we will use D = 5, with
obvious adaptations of the descriptions. ) These are already colored. If a cell
corresponding to an input or output edge is colored, this means that the edge
is pointing away from the vertex, and vice versa.

111
10 (111|112 1|1| |1
1] 1212/ 1|12(1]|2 2] |1
1111/113/13[1/1]1{1]1
11
11
11
1111
313
32 3|a a c C
1111
1111 b
121
11
111 b
(a) AND
1 111
1) |1/1/1)1(1|1/1] |1
1] (2/21113]12/12|2] |1
111111313 [1/1]1 /1)1
11
11
11
141
313
31 3|a a c c
1121
1121 b
121
11
111 b
(c) FANOUT (d) CHOICE

Figure 7.5: Nonogram gadgets.

33



For both the AND and the OR gadget the cells marked with a and b are
corresponding to the input edges, and c is corresponding to the output edge.
For both the FANOUT and CHOICE gadget the cell marked with a corre-
sponds with the input edge, and the cells marked with b and c correspond
with the output edges. It can be seen that x (with x € {a, b, c}) is colored if
and only if X is blank. We will use this property to propagate data through
the gadgets. Given the values for the cells corresponding to the input edges,
all gadgets (except the CHOICE gadget) are within the “simple” class, which
can be easily solved. Given also the value for a cell corresponding to one of
the output edges, the CHOICE gadget is also within the “simple” class. For
a definition and solving algorithm of the “simple” class, the reader is referred
to [1].

Lemma 7.2.1 The construction in Figure 7.5(a) satisfies the same con-
straints as a Bounded NCL AND wvertex, with a and b corresponding to the
imput edges, and c corresponding to the output edge.

Proof We need to show that ¢ can (and must) be colored if and only if both
a and b are blank.

Using an algorithm as proposed in [1] we can demonstrate that there are
four solutions to this Nonogram, which are shown in Figure 7.6. Figure 7.6(a)
shows a solution in which both a and b are colored, and this results in the fact
that c is blank. Figure 7.6(b) and Figure 7.6(c) show solutions in which either
aor b is colored, and this also results in the fact that c is blank. Figure 7.6(d)
shows a solution in which a and b are both blank. This results in the fact
that a is colored.

Lemma 7.2.2 The construction in Figure 7.5(b) satisfies the same con-
straints as a Bounded NCL OR wvertexr, with a and b corresponding to the
wput edges, and c corresponding to the output edge.

Proof We need to show that ¢ can (and must) be colored if and only if either
a or a is blank, or both.

Using an algorithm as proposed in [1] we can demonstrate that there are
four solutions to this Nonogram, which are shown in Figure 7.7. Figure 7.7(a)
shows a solution in which both a and a are colored, this results in the fact
that c is blank. Figure 7.7(b) and Figure 7.7(c) show solutions in which either
a or b is colored, this results in the fact that c is also colored. Figure 7.7(d)
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(c) ()

Figure 7.6: The four solutions of the AND gadget.
shows a solution in which a and b are both blank. This also results in the
fact that c is colored.

Lemma 7.2.3 The construction in Figure 7.5(c) satisfies the same con-
straints as a Bounded NCL FANOUT wvertex, with a corresponding to the
wput edge, and cells b and c corresponding to the output edges.

Proof We need to show that both b and ¢ can (and must) be colored if and
only if a is blank.
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()

Figure 7.7: The four solutions of the OR gadget.

Using an algorithm as proposed in [1] we can demonstrate that there are
two solutions to this Nonogram, which are shown in Figure 7.8. Figure 7.8(a)
shows a solution in which a is colored, this results in both b and c being
blank. Figure 7.8(b) shows a solution in which a is blank, this results in both
b and ¢ being colored.

Lemma 7.2.4 The construction in Figure 7.5(d) satisfies the same con-
straints as a Bounded NCL CHOICE vertex, with a corresponding to the
imput edge, and cells b and c corresponding to the output edges.
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(a) (b)

Figure 7.8: The two solutions of the FANOUT gadget.

Proof We need to show that either b or ¢ can (and must) be colored, if and
only if a is blank.

Using an algorithm as proposed in [1] we can demonstrate that there are
three solutions to this Nonogram, which are shown in Figure 7.9. Figure 7.9(a)
shows a solution in which a is colored, this results in both b and ¢ being blank.
Figure 7.9(b) and Figure 7.9(c) show solutions in which a is blank. It can be
seen that now either b or c can be colored.

Theorem 7.2.5 Solving Nonograms is NP-complete.

Proof We can simulate a Planar Bounded NCL graph on a Nonogram grid
using the global layout of Figure 7.2 and the gadgets shown in Figure 7.5.
We can use the AND gadget as wire between two gadgets. It can be used
straight or as a corner. We can deploy a FANOUT gadget (as shown in
Figure 7.5(c)) as a so-called victory gadget, representing the target edge. For
doing so we need to adjust the description of the last column in (5,5) and of
course the descriptions of all rows accordingly. This ensures that the puzzle
can be solved if and only if a is blank, which can only be the case if the target
edge in the corresponding Planar Bounded NCL graph can be flipped. The
result is shown in Figure 7.10.

The authors of [4] have proven that a graph with maximal degree 3 can
always be stored in a square grid of width v, where v is the number of vertices
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Figure 7.9: The three solutions of the CHOICE gadget.

contained by the graph. This ensures that the number of rows (and columns)
used in our reduction is bounded linearly by the number of vertices in the
corresponding Planar Bounded NCL graph.

An interesting problem that needs to be addressed is the fact that a
solution to Nonograms is static (i.e., a binary image), while a solution to
Bounded NCL is dynamic (i.e., a sequence of moves). Translating a solution
to a Nonogram back to the Planar Bounded NCL graph is not trivial. For ev-
ery Nonogram gadget, we can see what the final state of the Planar Bounded
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Figure 7.10: Victory gadget.

NCL vertex should be. As we have shown in Section 4.3, all instances of
Planar Bounded NCL that we are interested in are acyclic. We can make
a topological sort on the vertices of the Planar Bounded NCL graph, check
their final state in the associated Nonogram and flip their edges, if necessary.

Nonograms are clearly in NP, as any potential solution can be verified in

polynomial time.
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Chapter 8
Dou Shou Qi

Dou Shou @i, also known as Jungle, Jungle Chess or Animal Chess, is a
Chinese board game featuring a 9 x 7 square board and two players with 8
pieces each, representing wild animals. Both players are assigned a side of the
board, where their pieces are positioned. The objective of the game is to move
a piece onto a certain square at the opposing side of the board. The pieces
represent common jungle animals, hence the western name Jungle. Although
there are some similarities with western games as Chess and Stratego, little
research has been done on this game. The authors of [2] have developed a
heuristic for measuring assess certain position. We will give a formal definition
of the game and show it PSPACE-hard.

8.1 Definition

Dou Shou Q)i is played on a board consisting of 9 rows and 7 columns. Each
intersection of a row and a column is a square. A schematic representation of
the empty game board is shown Figure 8.1(a). The squares marked with a W
are water, most pieces can not move on these squares. All other squares are
land. The squares marked with a D are the players respective dens. The red
player wins if he moves one of his pieces into the black den. The black player
wins if he moves one of his pieces into the red den. Neither player can move
their pieces into their own den. The squares marked with a T are the players
respective traps. When a piece is in a trap of the opposing player, it becomes
vulnerable to all opposing pieces, regardless their rank, until it moves out of
the trap.
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(a) Empty game board. (b) Initial position.

Figure 8.1: A schematic Dou Shou Qi game board showing the empty game
board and the initial position.

Both players have 8 pieces, each piece is assigned a certain unique rank
from the domain {1,2,...,8}. A piece p with rank p, is vulnerable to an
opposing piece ) with rank ¢,, if ¢, > p,. Also a piece with rank 8 is vul-
nerable to opposing pieces with rank 1. (And in some versions of the game,
a piece with rank 1 is not vulnerable to the opposing piece with rank 8. For
our complexity result, it does not matter which rule is applied.) In the initial
game setup, the pieces are positioned as shown in Figure 8.1(b). A square
on which no piece is positioned is called vacant, a square on which a piece of
either side is positioned is called occupied. The red and black circles indicate
the initial position of a piece on the board. The color of the piece indicates
to which side it belongs, the number represents its rank. Players take turns
doing a move, which is either a step or leap.

A step is defined to be the displacement of a piece p, to an adjacent
square in one of the orthogonal directions. The square to which p is moved
must be either vacant or occupied by a piece which is vulnerable to p. In the
latter case a capture is made, the opposing piece will be removed from the
board. All pieces, except those with rank 1, can only step on land squares.
The pieces with rank 1 can also step on water tiles, however no captures can
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be made while crossing the water-land boundary.

A leap is defined to be the displacement of a piece p with rank 6 or 7,
several squares in one of the orthogonal directions. A leap can only be done
if all squares between the start square and the final square are vacant and
consist of water. The final square must be land and either vacant or occupied
by a piece which is vulnerable to p. In the latter case a capture is made.

8.2 PSPACE-hardness

We will show Dou Shou Qi to be PSPACE-hard, by a reduction from Bounded
2CL. For this some generalizations must be made. The Bounded 2CL graph
will be simulated on a m x n board, where both players have k pieces. For
graphical reasons the player which plays in the original Bounded 2CL graph
on the white edges, plays in our reduction with red pieces. We will refer to
the players as the red player and the black player, respectively.

Whether a natural generalization of the game would imply that the k
pieces all have a rank from the interval [1,8] or a distinct rank from the
interval [1, k] is open for debate. In our gadgets all pieces have a rank from
the interval [1,8], but trivial adjustments can change this to a distinct rank
from the interval [1, k].

The original game board contains several properties (i.e., clustered water
squares, narrow paths between the water, traps around the dens) which are
symmetrical and highly regular. Which of these properties should be pre-
served on a generalized game board is open for debate, however in our proof
we took the liberty to use water squares and traps in the gadgets. If one
were to create gadgets without these squares, this would be a interesting
expansion of our result.

Figure 8.2 shows the construction representing
the white target edge. If the red player would be TIDIT
able to move a piece within this gadget, he has a
straightforward way of reaching the black den and
win. In the gadgets we use pieces with a rank from
the interval [2,5]. Note that none of the pieces will
have the ability to leap, neither will we use pieces
of rank 1 so no pieces can move on water squares.
We will refer to pieces with rank 4 as wolves, as in Figure 8.2: Red target
most versions of the game this piece is represented edge.
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by this animal. We will refer to pieces with rank 5
as leopards; pieces with rank 3 will be referred to as hounds and finally pieces
of rank 2 will be referred to as cats.
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(a) Black edge protector  (b) Outflow protector (c¢) Red edge protector
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L = & o ©
(d) One-way channel with r =1 (e) Total edge protector

Figure 8.3: Constructions used to support gadgets.

The reversal of an edge in the original Bounded 2CL graph will be mod-
eled as the movement of a wolf into another gadget. Since in Bounded 2CL
it is impossible to reverse an edge twice, we need a way to ensure that once
moved within another gadget, the red player will not be able to move its
piece back. For this we have created the constructions shown in Figure 8.3.
As for the black edge protector, which is shown in Figure 8.3(a), the red
player can move a wolf from bottom to top, but not the other way around.
That is, unless the red player attacks from both sides. In a normal situation,
the wolf would enter the gadget, the black hound will retreat behind either
the left trap or the right trap, and the red wolf can pass. When passed, the
black hound takes back its original position. The red wolf can not move back,
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due to the traps.

As for the red edge protector, which is shown in Figure 8.3(c), the black
player can not move any piece through it, unless he attacks from both sides.
He can enable one of these pieces to move through by sacrificing the other.
Note that the red cat will never leave this construction in optimal play, as it
is vulnerable to all other pieces.

In order to ensure that the black hound in the black edge protector will
always remain within the construction, a black edge protector can be posi-
tioned between red edge protectors. A chain of four red edge protectors with
a black edge protector in the middle will be called a one-way channel. A
schematic representation of the one-way channel is shown in Figure 8.3(d).
The black player can not move any piece through this construction, the red
player can move any wolf from left to right. If the red player has a wolf on
both sides however, he can use a simple strategy to move the wolf on the
right side to the left side: The wolf on the left side will move in the black
edge protector, the black hound will retreat. Instead of moving the left wolf
through, the wolf on the right side can now move to the left side. We can
prevent this by chaining two one-way channels to each other. Once having
passed the first one way channel, the wolf which was initially on the left can
still help the wolf on the right past an one-way channel; however now both
pieces are on the same side they can never pass through the other one-way
channel without sacrificing one of the pieces. In Figure 8.3(d), r indicates
how many one-way channels are chained together. The higher the value of r
is, the more pieces the red player needs to move it through this construction
in the opposing direction.

In Figure 8.3(b) a black outflow protector is shown. This gadget is built
such that the red player can move exactly one wolf through this construction,
if and only if he arrives with one or two wolves at the bottom entrance of this
gadget. The wolf which is already inside this gadget can never move through
it without additional support; when at least one wolf arrives at the bottom
of the construction, the red player can sacrifice a wolf to the black leopard.
This creates space for the other wolf to move through. Note that the black
player does not need to react when a piece of lower rank will be sacrificed;
this piece can never reach the den. When three (or more) wolves arrive at
this construction, two can move through as a result of two sacrifices. We will
see further on that this will not happen. Also, the black player can never
move its leopard outside the gadget; the red cats can capture it on passing a
trap.
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The total edge protector is shown in Figure 8.3(e). This construction
contains a outflow protector between two one-way channels with r = 4. A
total edge protector has the following properties:

e The black player can not move any piece through it, due to the red
edge protectors in the one-way channel.

e The red player can only move a wolf through it in the direction of the
arrow, due to the black edge protectors. In order to pass the first four
black edge protectors in the opposite direction, he needs at least four
wolves. We will see further on that this will never be the case.

e The red player can never benefit from moving two wolves through it,
due to the outflow protector.
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Figure 8.4: Dou Shou Qi gadgets.

The main gadgets are shown in Figure 8.4. An entrance square is every
land square adjacent to the border of a construction. Intuitively, each square
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through which a piece can enter or leave the construction. Entrance squares
can be of the type input square (entrances representing the tail of an input
edge) and output square (entrances representing the head of an output edge).
Total edge protectors will be connected to each entrance, in such a way that
red wolves can only enter the gadget through the input squares, and leave
the gadget through the output squares.

Lemma 8.2.1 The construction in Figure 8.4(a) satisfies the same con-
straints as a Bounded 2CL AND wvertex, with the entrance squares at the
bottom corresponding to the tail of the input edges and the entrance square
at the top to the head of the output edge.

Proof Note that this gadget is highly similar to the black outflow protector.
The red player can move a piece to the output square if and only if he arrives
with two wolves at the input squares. In order to pass black’s leopard, the red
player needs to sacrifice one of the wolves; the other piece can pass. The total
edge protectors at the input squares prevent actions from the red player that
can wreck the gadget. I.e., these constructions make it impossible to leave
through an entrance square.

Lemma 8.2.2 The construction in Figure 8.4(b) satisfies the same con-
straints as a Bounded 2CL OR wvertex, with the entrance squares at the bottom
corresponding to the tail of the input edges and the entrance square at the top
to the head of the output edge.

Proof Note that this gadget is almost the same as the black outflow pro-
tector, the only difference is the additional entrance at the bottom. The red
player needs at least one wolf arriving at the gadget. In order to pass the
black leopard, one of the wolves must be sacrificed; another wolf can pass.
Whether the red player arrives with one or two wolves does not matter, only
one can pass. The total edge protectors at the input squares prevent actions
from the red player that can wreck the gadget. I.e., these constructions make
it impossible to leave through an entrance square.

Lemma 8.2.3 The construction in Figure 8.4(c) satisfies the same con-
straints as a Bounded 2CL FANOUT wvertez, with the entrance square at the
bottom corresponding to the tail of the input edge and the entrance squares
at the top to the head of the output edges.
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Proof The wolf can not move before the black hound moves away from
the traps, otherwise it will be captured. When a wolf arrives in the gadget,
the black piece can be driven away from the traps and white has two wolves,
which can each leave through an output at the top. The total edge protectors
at the entrances prevent actions from the red player that can wreck the
gadget. l.e., these constructions make it impossible for both wolves leave
through the same output square, and for any wolf to leave through the input
square.

Lemma 8.2.4 The construction in Figure 8.4(d) satisfies the same con-
straints as a Bounded 2CL CHOICE vertex, with the entrance square at the
bottom corresponding to the tail of the input edge and the entrance squares
at the top to the head of the output edges.

Proof Once the red player moves a piece into the gadget, he can either move
it through the left output or through the right output. The one-way channels
connected to the outputs prevent the piece from moving back, once it has
moved through one of the outputs. The total edge protectors at the output
squares prevent a red wolf from moving back, once it has moved through one
of the output squares.

Lemma 8.2.5 The construction in Figure 8.4(e) satisfies the same con-
straints as a Bounded 2CL VARIABLE vertex, with the entrance at the top
corresponding to the tail of the white output edge.

Proof If the red player wants to set the corresponding Bounded 2CL variable
to true, he can make the red wolf capture the black wolf. If the black player
wants to set the corresponding variable to false, he can make the black wolf
capture the red wolf. The black wolf can never move through the output at
the top, due to the total edge protector.

Theorem 8.2.6 Dou Shou Qi is PSPACE-hard.

Proof Reduction from Bounded 2CL. Given a constraint graph made of
AND, OR, FANOUT, CHOICE and VARIABLE vertices, we construct a
corresponding Dou Shou Qi game board where the red player has a forced
win if and only if he has a forced win on the original Bounded 2CL graph;
otherwise the black player has a forced win. Note that there are no draws in
bounded 2CL, neither are there in the reduction by optimal play.
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The red target edge must be chained to a black edge protector. This en-
sures that no other red pieces except the wolves can reach the victory gadget.
Black will not benefit from moving the hound into the gadget representing
the target edge itself; the hound is still unable to stop a red wolf.

The red player can move a piece into the red target edge if and only if
he can set the corresponding Bounded 2CL graph to true. The black player
always has the potential to move a piece in the red den, but only after a
certain amount of moves. If the corresponding Bounded NCL graph can be
set to true, by that time the red player has already reached the black den.

We can not prove Dou Shou Qi to be PSPACE-complete, as it is probably
not in PSPACE. As there is no bound on the number of moves, it is likely
that Dou Shou Qi is in EXPTIME, or even in EXPSPACE.
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Chapter 9

Rummikub

In this chapter we will present our partial results on Rummikub. We do not
have a proof that can classify this game in any complexity class, but we hope
that our initial results can help others when trying to solve this problem. The
game can be played with two, three or four players, but also single player
versions can be composed. We were able to construct gadgets that simulated
AND, OR, CHOICE and FANOUT behaviour, but we have not yet found a
way to make individual gadgets interact with each other.

We will give a formal definition of the game and show the gadgets we
have created.

9.1 Definition

A Rummikub tile set contains m suits, numbered from 1 to m, each suit
distinguished by a color. Each suit contains n tiles, numbered from 1 to n.
This number represents the value of a tile. For each game of Rummikub, k
tile sets are used together. Also J jokers are included. A joker is a so-called
wild card, and therefore allowed to represent any other tile. In a typical game
of Rummikub two tile sets are used, both consisting of four suits (orange,
red, blue, black) all containing 13 tiles. Also 2 jokers are used, making a total
of 106 tiles.

The pool is defined to be the stack of all tiles, containing them in ran-
dom order. Each player is provided with 14 tiles (which are hidden to other
players) and an order of taking turns is decided, that will be fixed for the
entire game. Players take turns in playing tiles. A tile that is played, is re-
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moved from the players possession, and placed open on the table. Each turn,
a player can play as many tiles as he wants. If a player declines to play any
tiles, he is provided with one of the tiles remaining in the pool, if it contains
any. Any tile that is played must be element of either a set or a row. A set is
defined to be a group of at least three tiles, all of the same value and all of
a different color. A row is defined to be a group of at least three tiles, all of
the same color with consecutive values. Players are also allowed to rearrange
tiles that are already played, this makes it possible to make tiles element of
a different set or row. At the end of each turn all tiles must be element of
exactly one set or row. This constraint is called the set constraint.

At the start of the game, all players are considered to be in quarantine. A
player in quarantine is not allowed to rearrange any tiles. He is only allowed
to play tiles when their total value exceeds a certain threshold T', with T
being a positive integer (typically 7' = 30). After doing so, the player is no
longer in quarantine.

The first player who is able to play all his tiles wins the game. Whenever
the pool is empty and all players decline to play tiles, the game is a draw.

9.2 (Gadgets

The Rummikub gadgets are shown in Figure 9.1. Each gadget consists of 2
or 3 sets or rows and gets a range of unique values assigned to it, starting
with X. The size of this range is dependent on the type of gadget. Most
gadgets contain only black tiles, except for the CHOICE gadget (shown in
Figure 9.1(d)), which has tile X+3 in four colors. The OR gadget (shown in
Figure 9.1(b)) is the only gadget which uses the same tile twice (black X+2).

The gadgets work in such a way that a tile corresponding to an out-
put edge can be removed from the gadget without violating the set con-
straint if some other tile(s) corresponding to the input edge(s) are rear-
ranged to the gadget. We were able to create gadgets simulating the Bounded
2CL/Bounded NCL vertices, but we were unable to chain these gadgets to-
gether. Once able to rearrange a certain tile corresponding to an output edge,
it is for us not yet possible to propagate this signal to other gadgets.

Lemma 9.2.1 The construction in Figure 9.1(a) satisfies the same con-
straints as a Bounded NCL AND wvertex, with black X+3 and black X+7
(both not in the actual gadget) corresponding to the input edges and black
X+5 corresponding to the output edge.
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X | X4+1 | X+2

X+4 | X+5 | X+6 X+1 | X+2 | X+3
X+8 | X+9 (X410 X+3 | X+4 | X+5
(a) AND (b) OR
X | X+1 | X42 X+1 | X+2 | X+3

X+4 | X+5 | X+6 X+3 | X+3
(c) FANOUT (d) CHOICE

Figure 9.1: Rummikub gadgets.

Proof Black X+5 can only be rearranged from this gadget if the player is
able to involve black X+3 and black X+47 in this gadget. Those can be used to
rearrange these three rows in two rows, one starting at black X and ending at
black X44 and one starting at black X+6 and ending at black X410, leaving
black X+5 available.

Lemma 9.2.2 The construction in Figure 9.1(b) satisfies the same con-
straints as a Bounded NCL OR wvertex, with black X and black X+6 (both
not in the actual gadget) corresponding to the input edges and black X+3
corresponding to the output edge.

Proof One of the two black X+3 tiles can be rearranged from this gadget if
the player is able to involve either black X or black X+6 in this gadget. Those
can both be used to extend a row containing a black X+43 tile. A possible
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problem of this gadget is that the player can obtain two black X+3 tiles, if
he is able to involve both black X and black X+6 in this gadget.

Lemma 9.2.3 The construction in Figure 9.1(c) satisfies the same con-
straints as a Bounded NCL FANOUT wvertex, with black X+3 (not in the
actual gadget) corresponding to the input edge and black X and black X+6
corresponding to the output edges.

Proof Both black X and black X+6 can be rearranged if the player is able
to involve black X+3 (not in the actual gadget) in this gadget. One big row
starting with black X+1 and ending with black X+5 can be formed, leaving
black X and black X+6 available.

Lemma 9.2.4 The construction in Figure 9.1(d) satisfies the same con-
straints as a Bounded NCL CHOICE vertez, with black X (not in the actual
gadget) corresponding to the input edge and two of the X+3 tiles to the output
edges.

Proof None of the X+43 tiles can be removed, without the black X tile. When
the black X tile is added to the gadget, the player can choose either one of
the X+43 tiles to be placed somewhere else, but not more than one.
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Chapter 10

Conclusions and Future Work

We have analysed various aspect of Bounded NCL and have shown that
despite some ambiguities, Planar Bounded NCL is indeed NP-complete.

We have reduced Bounded NCL to both Klondike and Mahjong and
verified the prior results that these puzzles are NP-complete. We have re-
duced Planar Bounded NCL to Nonograms, and verified the prior result that
Nonograms are NP-complete. We consider our contribution on these results
amongst the verification, also the simplicity of the established proof. We have
reduced Bounded 2CL to Dou Shou Qi, and proven it PSPACE-hard.

By doing so we have added weight to the claim of [6], stating that Con-
straint Logic is indeed a decent framework to analyse and proof the complex-
ity of puzzles and games.

As a suggestion for future work it would be interesting to see whether
Dou Shou Qi is also in PSPACE, so we can classify it as PSPACE-complete.
If it turns out not to be in PSPACE, a mayor contribution would be to prove
it EXPTIME-hard (for Constraint Logic can provide 2CL) or maybe even
EXPSPACE-hard.

Besides the games and puzzles that are currently classified, there are
games which seem to yield to a reduction from Constraint Logic, for exam-
ple the Binary Puzzle and Rummikub. Reducing the appropriate Constraint
Logic problem to one of these games would be an interesting result.
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