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Abstract 
 
Nowadays an automotive contains a huge number of (software) 

components with its own resource hardware provided by each 

supplier separately. This distribution of deployment is not optimal in 

terms of costs, nor in terms of the number of hardware components. 

Therefore it is desirable to reduce and optimize hardware 

deployment. However, optimizing for costs solely is not possible due 

to factors which indirectly cause constraints. For safety-critical 

systems as automotives, the focus must also be put on the safety 

aspect. In order to find optimal solutions considering safety, a safety 

model is required. The safety model in this study will use a technique 

called fault tree analysis combined with second-order probabilities. 

With the use of the Monte Carlo method this will provide the safety 

values used for hardware configuration optimization and result in 

optimal configurations for hardware costs and safety. 
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Introduction 

This paper describes my bachelor project done at LIACS faculty of the University of Leiden. I have 

done my research in Automated Safety Analysis for Supporting Design of System Architectures. The 

title can be divided into two parts. Firstly a method for safety analysis is reviewed and selected. The 

second part provides the results of the safety analysis to an optimizing tool which will describe the 

system architecture. Because of the broad scope, this research will study the case of conceptualizing 

hardware architecture of subcomponents in a car. The main factors for creating a systems design are: 

costs and safety. This paper will continue the research of Automated Design of Software 

Architectures for Embedded Systems using Evolutionary Multiobjective Optimization [1] with now the 

safety factor taken into account when deriving optimal configurations for a system. Additionally, 

some components of a modern day automotive will be analyzed for this factor. 

Taking an example from the car industry; a car nowadays has several components which need certain 

amounts and power of resources. Though they do not all demand the most powerful resource. 

Cheaper less powerful hardware can be combined, but the question is if this combination is powerful 

enough. An elaborated view will be discussed in the next section. Another question is if the 

combination is safe, based on the system failing caused by an unknown factor, to be integrated in the 

automotive. This topic will be handled in the chapter Safety Model. Furthermore the integration of 

the safety model is described in the chapter Integration of the safety aspect. The Analysis chapter 

focuses on the results from an analyzed sample model. Finally, some conclusions are presented in 

Conclusion section and in the chapter Future work some ideas for future work will be briefly 

discussed. In appendix A the code is given. 

My motivation for research in this field came from the interest in creating solutions for problems 

related to designing a software architecture. It gives me satisfaction to contribute to a system that 

solves such a problem because it is not only apply to one, but several systems. This makes such a tool 

not only useful but also desirable. 
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Background and previous work 

In a modern day automotive many essential and non-essential components are used, e.g. to make 

driving safer (essential) or more comfortable (non-essential). For each component the supplier of a 

component provides both software and computational unit for that particular component. This is not 

done by only one supplier, but an automotive nowadays will contain more than one hundred 

Electronic Control Units (ECU). Providing each subsystem with its own resources is called a federated 

system. While this method might function well, it does not provide an optimal system. Another 

approach and increasing trend, is moving the systems towards a method where several subsystems 

share its resources with other subsystems: an integrated system. One can expect that both of the 

mentioned methods have their own benefits. Though for car manufacturers, and of course many 

others, cost is an important factor. Cost reduction can be achieved by using an integrated system and 

by implementing such, grouping components and providing one calculation unit to them. 

Using a DECOS architecture, which consists of multiple Distributed Application Subsystems (DAS), an 

optimal system (with help of an optimization tool) can be developed. The DAS consists of several 

subsystems which can be grouped by safety-critical as well as non-safety critical subsystems [3]. In 

the paper An Integrated Architecture for Future Car Generations a DAS is described as in Fig. 1. 

 
Fig. 1: Distributed Application Subsystems of an Automotive System, An Integrated Architecture for Future Car Generations, 
P. Peti, R. Obermaisser, F. Tagliabo, A. Marino and S. Cherchio 

 
The figure above depicts groupings by close related functionalities. However, there should be 

mentioned that this DAS is proposed to run on a virtual network and therefore is not a complete 

reflection on the models in this study. On the contrary, it does describe a system containing grouped 

components, which do not individually have their own ECU. 

Next to a calculation unit also the connection lines can reduce costs. For example the protocol 

Controller Area Network (CAN) has a few quality categories. Each category has a maximum of 

bandwidth it can pass through. So the higher the maximum bandwidth, the higher the cost of the 

connection will be. A video system is an example where a connection line is required to transport a 

large amount of data per second. Optimization for a CAN will not be discussed in this paper, but can 

be a point where manufacturers might want to optimize for. 

As mentioned this paper is a continued research of a previous study. In the previous research a 

method is described where some optimal solutions for a(n) (integrated) system are calculated based 

on two criteria: costs and number of hardware components. These optimal solutions are found by 
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using an evolutionary algorithm which will calculate every possible configuration of the defined 

hardware. The optimal solutions are found in a graph containing a pareto front. The input values 

corresponding to an optimal solution are stored so a certain configuration can be chosen later on.  

 

Safety aspect 

In safety-critical systems - which are defined as where a failure in the system will lead to death or 

injury to people, loss or severe damage to equipment or environmental harm - the safety of the 

system is important. Safety can be analyzed using fault tree analysis, which was first used in the 

aviation industry to prove safety. Nowadays it is used in multiple engineering fields in different 

combinations but maintaining the core aspects. 

Fault tree analysis method 
The method in this project will be using fault tree analysis based on second-order probabilities. The 

basic principle of this method can be described in a few steps [5]: 

1. Define  the  event  to  be  investigated  by  the  tree 

2. Gain  an  understanding  of  the  system 

3. Construct  the  tree 

4. Collect  quantitative  data 

5. Evaluate  the  probability  of  the  event  chosen  in  step  1 

6. Analyze  computer  output 

When the quality of the software is known, a probability of failure is available to be combined in the 

fault tree. This probability is not based on a random failure, as software does not fail randomly, but 

based on a failure under certain circumstances [2]. Its structure is defined as a tree which nodes are 

the basic logical gates (for example: AND, OR, XOR). In the leafs of the tree we find the inports and in 

the root or top level of the tree the outport. 

The Monte Carlo Method will be used for the values provided to the inputs and received from the 

output. This method must not be confused with the Monte Carlo algorithm. For each inport a 

randomly generated probability value, within a given error range, will be available. Then it requires a 

deterministic algorithm to run, which will be the fault tree. The result will be the value received from 

the top level. To be able to retrieve valid results, the Monte Carlo method must be run several times. 

This is because the values used for the inports are generated randomly and therefore will not give a 

representable output. The Monte Carlo method is generalized as followed: 

1. Define a domain of possible inputs. 

2. Generate inputs randomly from a probability distribution over the domain. 

3. Perform a deterministic computation on the inputs. 

4. Aggregate the results. 
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Here our deterministic computation is the fault tree. The set of the results can be described as a 

probability distribution. Depending on the inputs some returning shapes are found, which indicates 

some types of gates. These shapes are not random, but some typical forms will return [2, IV]. 

In comparison to software, hardware does fail under random conditions. Adding the probability of 

hardware failures to each corresponding component will now return a probability of both software 

and hardware failures. A hardware component will influence a subcomponent of the fault tree by 

multiplying as follows: 

                                                          (1) 

For unrealistic high failure probabilities the output of this formula can result into a value > 1. This 

means that the corresponding system will definitely fail. Such failing systems will never be put in 

operation and therefore such cases can therefore be excluded from tests. 

Other methods 

Next to using fault tree analysis to prove the safety aspect some other methods could be used for 

proving safety as well. One will put the model through an ‘ontology-based model-driven engineering’ 

process. Using this method has the advantage that it uses the same language as the components are 

built in. In order to verify and validate the safety, the model needs some constraints where a 

Description Logic OWL reasoner and inference rules detect lacks of elements and semantically 

inconsistent parts [6]. This method does have the advantage of integrating it in AADL (Architecture 

Analysis & Design Language, explained in the next section) directly and also has the possibility to run 

a fault tree analysis after.  

In addition to the fault tree method that is used here, some variations for more detailed safety 

analysis can be used. In [4] a Component Logic Model is introduced where the inputs are specified by 

aspects as value, correctness or veracity. These are aspects also specified in SHARD (Software Hazard 

Analysis and Resolution in Design) where the aspects: omission, commission, early, late and value are 

found. Here the early and late aspects are interesting for a later and more detailed stage of analyzing 

safety. 

 

Integration of the safety model 

As the core system of the project is implemented in Java using Eclipse [8] this project will continue to 

use this platform. With an existing program calculating and drawing a fault tree available what was 

left to do is connect this to the optimization system. A component or complete system is defined in 

an AADL model (Architecture Analysis & Design Language), where ports, subcomponents, 

connections and flows are known. AADL is a standardized modeling language used in engineering 

fields. Using a tool called OSATE [7] an AADL model can be modeled and also checked for errors, for 

example for: illegal connections, component duplication.  

AADL Model 
In this section the AADL Model presented in Fig. 2 is explained. From top to bottom from left to right 

the following components are defined: 
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-  The first element, FLOWCONN, describes the properties which the components in the model 

can have. The andFlow and orFlow are the logical gates and the Probability_LowerBound and 

Probability_UpperBound combined define the range of for example an inport. 

- The processor model, Proc, which is subdivided in three processors in this case. Each 

processor has its own cost and probability of failure. The optimizer subtracts the values for 

the hardware failure probability from these components. 

- Next is the Throttle which is actually the whole system. Throttle.impl contains the 

connections between the other components. This cannot be read from the figure, but is 

clearer in OSATE. The components of Throttle consist of the inportProcess, outportProcess, 

Calculator and SanityChecker. 

- Another property which will be used in a definition processor is AQOSA in which the costs of 

a CPU are described. 

- Calculation and Checker describe the internal connections of respectively Calculator and 

SanityChecker.  

 

 

Fig. 2: AADL model of a throttle delimiter [4] (modeled in OSATE) 
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The AADL model has an XML file where the fault tree can be converted from. The corresponding 

elements between the AADL model and fault tree are:  

AADL Fault tree 

dataPort Inport (leafs) 

dataPort, where direction=out Outport (top level) 

processType, processImpl, 

threadType, threadImpl 

Subcomponents (nodes) 

dataConnection Connecting lines (edges) 

Table 1: Relation of the fault tree and objects in AADL 

Hardware failure probabilities are defined as a general property of a processor. Therefore there 

consists the possibility for different configurations in each execution. The relation of processor and 

subcomponent will not subtracted from the AADL model, but bound by an external file containing a 

list of several input ranges and CPUs. Also the inport probability range can be found in the same 

external file. At the start a randomly chosen probability in these ranges will be generated, which will 

result in a set of probabilities for all inports and number of samples. The AADL model defines threads 

which for the implementation is only necessary to subtract the subcomponents logical gate type and 

to create connections between the outport and inport of the subcomponent. 

Fault tree integration 

Initially a tool called ExTRAS was used to model a fault tree and analyze it. However this tool seemed 

incompatible with the optimization tool. This observation occurred when the hardware failure 

probability function was being integrated. The tool is not useless, as it is a good comparer for 

comparing it to the custom build convertor from the AADL file. Also it has a graphical interface where 

a fault tree can easily be modeled in. Converting from AADL to a fault tree will result in the tree 

depicted in Fig. 4 followed from Fig. 3 which describes the component. 
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Fig. 3: Throttle delimiter and its subcomponents 

 

Fig. 4: Fault tree of the throttle delimiter 

The fault tree is created top-down. Starting at the output it will visit every node in the tree by 

recursion. Three possible configurations of a node can be found: outport, subcomponent or inport. 

When finding an inport, its probability value is sent back to the subcomponent which called this 

inport. At the lowest subcomponent several inports can be found. With knowledge of the gate type 

the combined probability is calculated. The corresponding functions to the gate are: 

Logical gate Corresponding mathematical function 

AND gate 

    ∏        

   

       

           

OR gate 

      ∏     
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XOR gate 

    ∑   ∏       

   

     

   

     

         

Table 2: Mathematical representation of the logical gates 

The above functions are needed, because values provided are probabilities and therefore do not 

consist of a 0 or 1. This subcomponent is running on some hardware which influences the just 

calculated probability. To simulate this influence of the hardware, formula (1) will be used. 

The value of the output will now be passed to the next subcomponent as an inport or to the outport. 

When it is given to the outport, this would be the final failure probability of the system. This will not 

be the final probability of the program, because one probability in a range cannot be generalized for 

the whole range. Therefore this process (Monte Carlo) will be done several times – for example 100 

iterations - with each time a different set of values for both inports and hardware failures. The 

implementation of the fault tree in java can be found in appendix A.  

Complexity 

The complexity in time of the safety model depends on several values. One straight forward value is 

the number of samples multiplied with the number of inports that is needed to (initialization) run for 

one configuration:                                   . Next to this, the fault tree 

structure impacts the complexity. This is equal to                       , where V is the 

number of components (processes) and E the connections between the components. Also the 

numberOfInports are included here, because each leaf is connected to an inport. The tree is rebuilt 

for every sample, and therefore resulting the total complexity to be: 

                                                         

This counts for best case and worst case, because all components are needed for the calculation and 

also for all samples. 

Optimizing tool 

After the iterations, the average of the results is taken and passed to the optimizer. Here the cost of 

the current configuration is known and the solution for this configuration can be mapped into a 

graph. The optimizer that is used is called Opt4J [9]. It will automatically plot the dominant points 

which form the pareto front. An example of such graph in Fig. 9 followed from a case presented in 

the Analysis chapter. 

 

Analysis 

In this chapter the fault tree analysis and results of an example will be reviewed. For the example a 

cruise control system will be used. In Fig. 5 the cruise control system [10] is given. First the system is 

depicted, then the AADL conversion to fault tree. The results of the fault tree and the graph for 

optimal points follow after. 
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Fig. 5: Configuration of a cruise control system explained in [10] 

From Fig. 5 it can be derived that there are some receiving and requesting connections from the 

center component. In order for the fault tree to be converted the requesting connection will be 

taken as an outport. This fault tree can be found in the figure below. 
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Fig. 6: AADL and fault tree diagram of a cruise control system  

The value ranges, of the inports and hardware configurations, in the following tables Table 3 and 

Table 4 will be used for optimization. Inputs can provide faulty values; these are therefore translated 

to a failure probability range. From these options one will be chosen randomly and assigned to some 

inport or process.  

Input 1 Input 2 Input 3 Input 4 Input 5 HW1 HW2 HW3 

0.03 
– 

0.06 

0.01 
– 

0.02 

0.02 
– 

0.03 

0.01 
– 

0.03 

0.04 
– 

0.06 

0.01 
 –  

0.09 

0.1 
 –  

0.35 

0.2 
 –  

0.5 

Table 3: Options for inputs and hardware with probabilities of failure 

HW1 HW2 HW3 

€200,- €125,- €75,- 

Table 4: Cost of a certain hardware 

The distribution of the fault tree for an example configuration is given in Table 5. In Table 4 the 

hardware costs are given. Cheaper hardware can have a larger chance of failure. The last three 

columns relate the processes CruiseControlMain (CCM), SelfCarControl (SCC), ForwardRecognition 

(FCR) to a certain hardware configuration.  

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 CCM SCC FR 

Input 1 Input 4 Input 3 Input 3 Input 3 Input 2 Input 3 HW1 HW3 HW1 

Table 5: An example input configuration 

The configuration above will result in the shape of distribution seen in Fig. 8. This distribution is 

found by running 10000 samples of the given configuration. The received values are the average 

probabilities after running it through the fault tree. This can be passed to the tool which optimizes 

the safety value against hardware costs in a later stage. In the cruise control system all the (logical) 
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gate types are generally defined with an OR gate as the system does not require information from all 

inputs to receive a valid output.  

In general, when the input range is set to, for example 0.4 – 0.6, this will create a peak at 0.5. Having 

input ranges [0.3 – 0.5] and [0.5 – 0.7] results in a ‘fatter’ normal distribution than in the previous 

example. High bars on the right side of a graph are worse than high bars to the left, because lower 

probabilities are better. 

Input 1      
      
Input 2      
      
Input 3      
      
Input 4      
      
Input 5      
      
Input 6      
      
Input 7      

0,01 0,02 0,03 0,04 0,05 0,06 

Fig. 7: Ranges of the inputs given in a visual representation 

 

 

Fig. 8: Distribution of a fault tree with a certain probability configuration 

The shape of the distribution is mainly caused by the used input values. In this case there is a slightly 

fatter peak towards the right. Looking at the input values from the above configuration one can see 

that it has more probability values and should shape more to the left from the ‘median’ (Fig. 7). 

However in the graph the distribution has shaped more to the right. This is due to the hardware 

probability failure, which (in absolute terms) strongly pulls the larger values to the right. One can see 

this from formula (1) in the chapter Safety aspect. 

The position of the distribution is between 0.18 – 0.26. This means the probability of a system failure 

is 18% – 26%. Systems with such failure percentages are not appealing to use in real time systems. 
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However these numbers result from randomly chosen input values, hardware failure in particular, 

which of themselves have a relatively high chance of failure.  

After running the optimizer the following pareto graph is obtained: 

 

Fig. 9: Optimal solutions for cost against safety values 

In Fig. 9 the red dots are the dominant points which define the pareto front when connected to each 

other. Grey dots are dominated by the red ones, and are therefore irrelevant to take into account. 

The vertical axis contains the cost values and the horizontal axis the probability values.  Choosing the 

dot highest on the vertical axis gives a solution for the best configuration for safety, but worst for 

cost. This because the lower the probability number, the lower chance of a failure. This also counts 

the other way around; choosing the most right point of the horizontal axis will give the solution for 

best cost, but worst for safety. 

Usually there are no solutions in a pareto graph, where one is better than the other, when there are 

no criteria for selection. However a remark about the bottom two solutions in Fig. 9 can be made. 

The top solution, 4 in Table 6, of the two has a cost factor which is greater than the bottom solution 

which is greater than the bottom solution 5. Because relatively the probabilities of the two do not 

differ much and the cost values do, one can say that solution 4 is not an interesting option to look at.  

The red points are referenced in a separate output file where the configuration for that solution is 

recorded in. These values are given below. 

No. Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 CCM SCC FCR Probability HW Cost 

1 Input 2 Input 2 Input 3 Input 1 Input 3 Input 4 Input 2 HW3 HW1 HW3 0.14014 1.000 

2 Input 5 Input 2 Input 4 Input 2 Input 4 Input 3 Input 2 HW3 HW1 HW3 0.15057 0.667 

3 Input 4 Input 2 Input 1 Input 4 Input 2 Input 2 Input 2 HW2 HW2 HW1 0.1806 0.583 

4 Input 2 Input 3 Input 2 Input 3 Input 3 Input 2 Input 1 HW1 HW1 HW2 0.22728 0.458 

5 Input 2 Input 3 Input 1 Input 2 Input 2 Input 3 Input 3 HW3 HW2 HW3 0.2306 0.375 

Table 6: Optimal solutions corresponding to a red dot (top to bottom) in Fig. 9 
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From this table one can obtain the configuration of one of the solutions in the graph. The order of 

the table is the order of the dots from top to bottom in the graph. The cost values are normalized. 

Thus where normalized cost is 1.000 in the table, it is €350,- in currencies. This can be calculated 

from the hardware configuration (HW3, HW1, HW3) with the prizes in Table 4. The probability values 

in Table 6 are not normalized, however in the graph they are. In the table there are cases where 

there is more than one of the same hardware type: HW2, HW2, HW1. It is possible that only two 

hardware types were used. So the processes CCM, SCC and FCR in solution 3 (Table 6) might have run 

CCM and SCC on HW2 and FCR on HW1, but also possible is CCM and SCC on two separate HW2 and 

FCR on HW1. The optimization tool does not show which of the two configurations it used. This 

however can manually be checked afterwards by looking at the HW Cost of the solution. 

 

Conclusion 

This paper discussed the integration of the safety aspect for it to be optimized with the cost factor. 

By converting an AADL model to a fault tree structure the safety aspect can be defined in a chance of 

failure of the system. The method provided the inports of the fault tree with a certain defined range 

of a failure probability and continued through following the edges via logical gates (nodes) until the 

top level is reached. These logical gates corresponded to components of the system, which are 

connected to a certain resource. This resource also influences the probability and will be taken into 

account after leaving a logical gate. Repeating this a number of times will result in the probability of 

failure of the entire system. This would then be passed to the optimizer, where it will be plotted 

against the cost factor. 

The results of the cruise control system showed that the configuration of a hardware configuration 

influences the systems failure probability significantly. With a certain distribution of the input the 

hardware configuration altered the shape, by shifting it more to the right. Of the twelve possible 

combinations, five options formed the pareto front. One solution deviates from the front, but 

generally returns solutions which are distinct and therefore options which can be chosen for a 

specific criterion. The use of fault tree analysis to prove the safety of a system is an effective method, 

because the tree would be built by reading an AADL model when running the optimizer tool. 

Furthermore it is used in the aviation industry which is less error prone. Components can be added to 

the model in the future and therefore automatically added to the fault tree. 

During the modeling of the example model of the cruise control, it appeared that some models 

received and requested from their sources (cycle). The result of this would be that the fault tree 

could not be converted from the model. For this problem the requests could be seen as outports, 

because when receiving from its sources the probability of failure from requests is included. 

Furthermore there could be several outports as seen in the example. These outports can be 

connected by adding an additional process with an appropriate gate type. The general structure of 

the model does not need to be altered for it to run through the optimizer. Processes with more than 

one path however, must be split into several equal to the number of paths that the original had. 

During the analysis of the cruise control system it is good to see that the integration of different 

aspects (as safety) can easily be connected to the optimizer. When some other features need to be 
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implemented the connecting will be no problem. The optimization itself requires some time to 

calculate the optimal points. The source causing some significant calculation time is the fault tree. In 

order to get better results for the optimizer more samples (until a certain point, after that more 

samples will not affect the general distribution) are needed.  

 

Future work 

The current version of the tool has the possibility of optimizing systems for cost, number of hardware 

components and safety. To further improve the validity of the safety aspect, it is possible to add 

more options for the tool to analyze. This will increases the quality of the safety measure. Another 

small suggestion is to increase the reach of the conversion. A system can be differently modeled in 

AADL. Some methods might not be recognized by the tool.  Though for fundamental research this is a 

less relevant topic. 

An improvement on the implementation part is required for larger problems. This is not due to time 

complexity, but to the speed of read operations of the calculating system. In the current 

implementation the tree structure is constructed by reading several times per iteration from an XML 

file. As the file is on the hard drive and cannot be moved to the memory (by means of using a java 

function), the read operation must be reduced to one iteration and store the read structure in the 

memory. 

Next to increasing the quality for the safety the features of the tool can be extended. There can for 

example be checked on reliability. This is somehow related to safety, but defines the time that the 

required functions of a system operate without having an error. For safety-critical systems this would 

therefore be interesting to analyze.  
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Appendix A 

//import java.io.File; 
package edu.leiden.aqosa.safety; 
 
 
//import java.io.IOException; 
import java.util.Random; 
import java.io.*; 
 
import javax.xml.parsers.DocumentBuilder; 
import javax.xml.parsers.DocumentBuilderFactory; 
import javax.xml.parsers.ParserConfigurationException; 
//import javax.xml.transform.Result; 
//import javax.xml.transform.Source; 
//import javax.xml.transform.Transformer; 
//import javax.xml.transform.TransformerConfigurationException; 
//import javax.xml.transform.TransformerException; 
//import javax.xml.transform.TransformerFactory; 
//import javax.xml.transform.TransformerFactoryConfigurationError; 
//import javax.xml.transform.dom.DOMSource; 
//import javax.xml.transform.stream.StreamResult; 
import javax.xml.xpath.XPath; 
import javax.xml.xpath.XPathConstants; 
import javax.xml.xpath.XPathExpressionException; 
import javax.xml.xpath.XPathFactory; 
import java.util.Date; 
 
 
//import org.w3c.dom.DOMException; 
import org.w3c.dom.Document; 
//import org.w3c.dom.Element; 
import org.w3c.dom.NodeList; 
//import org.w3c.dom.xpath.XPathExpression; 
import org.xml.sax.SAXException; 
 
 
 
 
public class faultTree{ 
  
 protected double[][] generatedSamples; 
 protected int numberOfSamples; 
 protected int inports; 
 protected double[] topProbability; 
 protected double[][] hardwareFailBounds; 
 protected double[][] hardwareFailCalc; 
 protected String systemName; 
 protected String[] hardwareName; 
 protected int inportNumber; 
 protected int sampleNumber; 
 protected String aadlFile; 
 
 public faultTree(int inputSamples, String aadlString) throws XPathExpressionException, 
ParserConfigurationException, SAXException, IOException{ 
  this.aadlFile = aadlString; 



Automated Safety Analysis for Supporting Design of System Architectures 20 
 

 
 

  this.systemName = null; 
  this.numberOfSamples = inputSamples; 
  this.inports = getInports(); 
  this.generatedSamples = new double[this.numberOfSamples][this.inports]; 
  this.topProbability= new double[this.numberOfSamples]; 
  this.inportNumber = 0; 
  this.sampleNumber = 0; 
 } 
  
 
 public double[] faultTreeAnalysis(double[][] inputProbabilities, String[] hardwareNames) throws 
ParserConfigurationException, SAXException, IOException, XPathExpressionException { 
   
  generateSamples(inputProbabilities); 
   
  //GET SYSTEM NAME 
  NodeList xPathQuery = getXPath("//systemType/@name"); 
  if (xPathQuery.getLength() > 0) 
   this.systemName = xPathQuery.item(0).getNodeValue(); 
  else 
   throw new IllegalArgumentException(); 
 
  //GET AND SET HARDWARE FAILURE PROBABILITIES 
  getHardwareFailure(this.systemName, hardwareNames); 
 
  //GET ALL PROCESSES, NUMBER OF PROCESSES IN SYSIMPL ARE ALWAYS TOTAL-INPORTS-
OUTPORT 
  xPathQuery = 
getXPath("//systemImpl[@name='"+this.systemName+".impl']/subcomponents/processSubcomponent/@class
ifier"); 
  String[] processNames = new String[xPathQuery.getLength()-this.inports-1]; 
  int counter = 0; 
  for(int i = 0; i < xPathQuery.getLength(); ++i){ 
   if (xPathQuery.item(i).getNodeValue().indexOf("inportProcess") < 0 && 
xPathQuery.item(i).getNodeValue().indexOf("outportProcess") < 0){ 
    processNames[counter] = getSubstr(xPathQuery.item(i).getNodeValue(), 
"/processImpl[@name="); 
    counter++; 
   } 
  } 
   
  //GET TOP LEVEL 
     NodeList nodes = getXPath("//processType//dataPort[@name='psink']/@name"); 
 
     if(nodes.getLength() > 0) { 
      double[] results = new double[2]; 
      double average = 0; 
      //System.out.println("---BEGIN---"); 
      //Time now = new Time(); 
      Date today = new Date(); 
      StringBuilder stringBuilder = new StringBuilder(); 
   stringBuilder.append("out"); 
   stringBuilder.append(today.getTime()); 
   stringBuilder.append(".txt"); 
   File file = new File(stringBuilder.toString()); 
      Writer output = null; 
      output = new BufferedWriter(new FileWriter(file)); 
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      double total = 0; 
      for(int i = 0; i < this.numberOfSamples; ++i){ 
       average = followEdges(nodes.item(0).getNodeValue(), hardwareNames); 
       this.sampleNumber++; 
       this.inportNumber = 0; 
       System.out.println(i+": "+average); 
       output.write(Double.toString(average)+"\n"); 
       average += total; 
      } 
      output.close(); 
      System.out.println(); 
      //System.out.println("Average: "+average/this.numberOfSamples); 
      results[0] = average/this.numberOfSamples; 
      results[1] = getCost(hardwareNames); 
      //System.out.println("Cost: "+ results[1]); 
      //System.out.println("---END---"); 
      return results; 
     } 
     else 
      throw new IllegalArgumentException(); 
   
 } 
  
 //RECURSIVELY BUILD TREE, DFS 
 private double followEdges(String dstNode, String[] hardwareNames) throws 
ParserConfigurationException, SAXException, IOException, XPathExpressionException  { 
  String processName = null; 
  NodeList xPathQuery = getXPath("//dataPort[@name='"+dstNode+"']/../../@name"); 
  if(xPathQuery.getLength() > 0){//IF outportProcess 
   if(xPathQuery.item(0).getNodeValue().equals("outportProcess")){ 
    processName = xPathQuery.item(0).getNodeValue(); 
    xPathQuery = 
getXPath("//systemImpl/connections/dataConnection[@dst='/aadlSpec[@name=" + this.systemName + 
"]/processType[@name=" + processName + "]/features/dataPort[@name=" + dstNode + "]']/@src"); 
    if(xPathQuery.getLength() > 0){ 
     followEdges(getSubstr(xPathQuery.item(0).getNodeValue(), 
"/dataPort[@name="), hardwareNames); 
    } 
   }else if(xPathQuery.item(0).getNodeValue().equals("inportProcess")){//IF 
inportProcess 
    this.inportNumber++; 
    return this.generatedSamples[this.sampleNumber][this.inportNumber-1]; 
   }else{//IF other processes 
    processName = xPathQuery.item(0).getNodeValue(); 
     
    //System.out.println(processName); 
    //FLOW NAME OF PROCESS 
    String flowName = null; 
    xPathQuery = 
getXPath("//processType[@name='"+processName+"']/flowSpecs/flowPathSpec/@name"); 
    if(xPathQuery.getLength() > 0) 
     flowName = xPathQuery.item(0).getNodeValue(); 
  
       //GET INTERNAL FLOW OF PROCESS  
       NodeList flowImpl = 
getXPath("//processImpl[@name='"+processName+".impl']/flows/flowPathImpl[@name='"+flowName+"']/flo
wElement/@*"); 
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       String[][] flowArray = new String[flowImpl.getLength()][3];  
       for(int i = flowImpl.getLength()-1; i >= 0; --i){ //READ TOP LEVEL -> LOWEST 
LEVEL 
        String flowImplementation = flowImpl.item(i).getNodeValue(); 
        flowArray[i][0] = null; flowArray[i][1] = null; flowArray[i][2] = null; 
        if(flowImplementation.indexOf("/flowPathSpec[@name=") > -1) 
         flowArray[i][0] = getSubstr(flowImplementation, 
"/flowPathSpec[@name="); 
               
        if(flowImplementation.indexOf("/threadSubcomponent[@name=") > -1){ 
         flowArray[i][1] = getSubstr(flowImplementation, 
"/threadSubcomponent[@name="); 
         //System.out.println(flowArray[i][1]); 
        } 
        if(flowImplementation.indexOf("/dataConnection[@name=") > -1) 
         flowArray[i][2] = getSubstr(flowImplementation, 
"/dataConnection[@name="); 
       } 
       //END GET FLOW 
     
       String[][] sinkNames = null; //SINK NAME AND PROBABILITY 
       String[][] pathName = new String[1][2];  //PATH NAME AND PROBABILITY 
//quick fix 
       for(int i = flowImpl.getLength()-1; i >= 0; --i){ 
        if(flowArray[i][1] != null){ 
         xPathQuery = getXPath("//processImpl[@name='" + processName + 
".impl']/subcomponents/threadSubcomponent[@name='" + flowArray[i][1] + "']/@classifier"); 
 
         String threadName = 
getSubstr(xPathQuery.item(0).getNodeValue(), "/threadImpl[@name="); 
         if(threadName == null) 
          threadName = 
getSubstr(xPathQuery.item(0).getNodeValue(), "/threadType[@name=")+".impl"; 
         if(xPathQuery.getLength() > 0){ 
          xPathQuery = getXPath("//threadImpl[@name='" + 
threadName + "']/@compType"); 
          threadName = 
getSubstr(xPathQuery.item(0).getNodeValue(), "/threadType[@name="); 
          xPathQuery = getXPath("//threadType[@name='" + 
threadName + "']/flowSpecs/flowPathSpec/@src"); 
          //SINKS 
          NodeList xPathQuery2 = 
getXPath("//threadType[@name='" + threadName + "']/flowSpecs/flowSinkSpec/@src"); 
          sinkNames = new String[xPathQuery2.getLength()][2]; 
          for (int j = 0; j < xPathQuery2.getLength(); ++j){    
    
           sinkNames[j][0] = 
xPathQuery2.item(j).getNodeValue(); 
          } 
          //END SINKS 
          //System.out.println("dst:"+"//processImpl[@name='" + 
processName + ".impl']/connections/dataConnection[@dst='" + xPathQuery.item(0).getNodeValue() + 
"']/@src");          
          xPathQuery = getXPath("//processImpl[@name='" + 
processName + ".impl']/connections/dataConnection[@dst='" + xPathQuery.item(0).getNodeValue() + 
"']/@src"); 
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          dstNode = getSubstr(xPathQuery.item(0).getNodeValue(), 
"/dataPort[@name="); 
          pathName[0][0] = dstNode; 
           
 
           
       xPathQuery = 
getXPath("//systemImpl/connections/dataConnection[@dst='/aadlSpec[@name=" + this.systemName + 
"]/processType[@name=" + processName + "]/features/dataPort[@name=" + dstNode + "]']/@src"); 
       //System.out.println(processName+":"+dstNode); 
      
 //System.out.println(getSubstr(xPathQuery.item(0).getNodeValue(), "/dataPort[@name=")); 
       if(xPathQuery.getLength() > 0){ 
        pathName[0][1] = 
Double.toString(followEdges(getSubstr(xPathQuery.item(0).getNodeValue(), "/dataPort[@name="), 
hardwareNames)); 
        //System.out.println(pathName[0][1]); 
        //this.inportNumber++; 
       } 
        
 
       for (int j = 0; j < xPathQuery2.getLength(); ++j){ 
         
           xPathQuery = getXPath("//processImpl[@name='" 
+ processName + ".impl']/connections/dataConnection[@dst='" + sinkNames[j][0] + "']/@src"); 
           dstNode = 
getSubstr(xPathQuery.item(0).getNodeValue(), "/dataPort[@name="); 
        xPathQuery = 
getXPath("//systemImpl/connections/dataConnection[@dst='/aadlSpec[@name=" + this.systemName + 
"]/processType[@name=" + processName + "]/features/dataPort[@name=" + dstNode + "]']/@src"); 
        if(xPathQuery.getLength() > 0){ 
         sinkNames[j][1] = 
Double.toString(followEdges(getSubstr(xPathQuery.item(0).getNodeValue(), "/dataPort[@name="), 
hardwareNames)); 
         //this.inportNumber++; 
        } 
          } 
          xPathQuery = getXPath("//processImpl[@name='" + 
processName + ".impl']/flows/flowPathImpl/properties/propertyAssociation/@propertyDefinition"); 
          String gateType = ""; 
          if(xPathQuery.getLength() > 0) 
            gateType = 
getSubstr(xPathQuery.item(0).getNodeValue(), "/propertyDefinition[@name="); 
          double sinkTemp = 1; 
          double sinkTotal = 0; 
          for (int j = 0; j < sinkNames.length; j++){ 
           if(gateType.equals("andFlow")){ 
            this.topProbability[this.sampleNumber] = 
Double.parseDouble(pathName[0][1]) * Double.parseDouble(sinkNames[j][1]); 
           }else if(gateType.equals("orFlow")) 
            sinkTemp *= (1-
Double.parseDouble(sinkNames[j][1])); 
           else if(gateType.equals("xorFlow")){ 
            for (int k = 0; k < sinkNames.length; k++){ 
             if(k != j) 
              sinkTemp *= (1-
Double.parseDouble(sinkNames[k][1])); 
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            } 
            sinkTemp *= 
Double.parseDouble(sinkNames[j][1]); 
            sinkTotal += sinkTemp; 
           } 
          }           
          if(gateType.equals("orFlow")) 
           this.topProbability[this.sampleNumber] = 1-((1-
Double.parseDouble(pathName[0][1]))*sinkTemp); 
          else if(gateType.equals("xorFlow")) 
           this.topProbability[this.sampleNumber] = 
sinkTotal; 
          if(sinkTotal == 0 && sinkTemp == 1) 
           this.topProbability[this.sampleNumber] = 
Double.parseDouble(pathName[0][1]); 
         } 
         break; 
        } 
       } 
        
       //System.out.println(processName+": "+this.topProbability[this.sampleNumber]); 
       for(int i = 0; i < this.hardwareName.length;++i){ 
        if(processName.equals(hardwareName[i])){ 
         this.topProbability[this.sampleNumber] *= 
(1+this.hardwareFailCalc[0][i]); 
         break; 
        } 
       } 
       //System.out.println("After HF : "+this.topProbability[this.sampleNumber]); 
       return this.topProbability[this.sampleNumber]; 
   }//else 
  }//if 
  return this.topProbability[this.sampleNumber]; 
 } 
 //END followEdges() 
 
  
  
 //GET COST OF CONFIGURATION 
 public double getCost(String[] hardwareNames) throws XPathExpressionException, 
ParserConfigurationException, SAXException, IOException{ 
  Double costTemp = 0.0; 
  Double max = 0.0; 
  for(int i = 0; i < hardwareNames.length; ++i){ 
   NodeList xPathQuery = 
getXPath("//systemImpl/subcomponents/processorSubcomponent[@name='" + hardwareNames[i] + 
"']/@classifier"); 
   if(xPathQuery.getLength() > 0){ 
    String procModel = getSubstr(xPathQuery.item(0).getNodeValue(), 
"/processorImpl[@name="); 
    xPathQuery = getXPath("//processorImpl[@name='" + procModel + 
"']/properties/propertyAssociation[@propertyDefinition='/aadlSpec[@name=" + this.systemName + 
"]/propertySet[@name=AQOSA]/propertyDefinition[@name=Cost]']/propertyValue/@value"); 
    if(xPathQuery.getLength() > 0){ 
     costTemp += 
Double.parseDouble(xPathQuery.item(0).getNodeValue()); 
    } 
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   } 
  } 
  NodeList xPathQuery = 
getXPath("//processorImpl/properties/propertyAssociation[@propertyDefinition='/aadlSpec[@name=" + 
this.systemName + 
"]/propertySet[@name=AQOSA]/propertyDefinition[@name=Cost]']/propertyValue/@value"); 
  for(int i = 0; i < xPathQuery.getLength(); ++i){ 
   if(Double.parseDouble(xPathQuery.item(i).getNodeValue()) > max) 
     max = Double.parseDouble(xPathQuery.item(i).getNodeValue()); 
  } 
   
  return costTemp /= (max*hardwareNames.length); 
    
 } 
 //END getGost() 
  
  
 private void getHardwareFailure(String systemName, String[] hardwareNames) throws 
XPathExpressionException, ParserConfigurationException, SAXException, IOException{ 
     //GET HARDWARE BINDING 
     NodeList hardFail = 
getXPath("//systemImpl[@name='"+systemName+".impl']/properties//propertyAssociation/@appliesTo"); 
     String[][] hardBinding = new String[hardFail.getLength()][2]; 
      
     this.hardwareName = new String[hardFail.getLength()]; 
     this.hardwareFailBounds = new double[hardFail.getLength()][2]; 
     this.hardwareFailCalc = new double[1][hardFail.getLength()]; 
     for(int i=0; i < hardFail.getLength(); ++i){ 
      if(hardFail.item(i).getNodeValue().indexOf("/processSubcomponent[@name=") > -1){ 
       hardBinding[i][0] = getSubstr(hardFail.item(i).getNodeValue(), 
"/processSubcomponent[@name="); 
       this.hardwareName[i] = hardBinding[i][0]; 
       if(hardwareNames.length > i) 
        hardBinding[i][1] = hardwareNames[i]; 
      } 
     } 
 
     NodeList hardFail3 = 
getXPath("//systemImpl[@name='"+systemName+".impl']/properties//propertyAssociation/propertyValue/@r
eferenceElement"); 
     String[] hardwarenow = new String[hardFail3.getLength()]; 
     for(int i=0; i < hardFail3.getLength(); ++i){ 
      hardwarenow[i] = getSubstr(hardFail3.item(i).getNodeValue(), 
"/processorSubcomponent[@name="); 
     } 
     for(int i=0; i < hardFail3.getLength(); ++i){ 
      for(int j=0; j < hardFail3.getLength(); ++j){ 
       if(hardwarenow[i].equals(hardwarenow[j]) && i < j){ 
        if(hardBinding[j][1] == null){ 
         hardBinding[j][1] = hardBinding[i][1]; 
        }else{ 
         hardBinding[i][1] = hardBinding[j][1]; 
        } 
       } 
      } 
     } 
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     for(int i = 0; i < hardFail.getLength(); ++i){ 
      if(hardFail.item(i).getNodeValue().indexOf("/processSubcomponent[@name=") > -1){ 
        System.out.println(hardBinding[i][1]); 
       NodeList hardFail2 = 
getXPath("//systemImpl[@name='"+systemName+".impl']/subcomponents/processorSubcomponent[@name=
'"+hardBinding[i][1]+"']/@classifier"); 
       if(hardFail2.getLength() > 0){ 
           if(hardFail2.item(0).getNodeValue().indexOf("processorImpl[@name=") > -1){ 
            String hardFailName = getSubstr(hardFail2.item(0).getNodeValue(), 
"processorImpl[@name="); 
             
            NodeList processHardFail = 
getXPath("//processorImpl[@name='"+hardFailName+"']/properties/propertyAssociation/@propertyDefinition
"); 
            for(int l=0; l < processHardFail.getLength(); ++l){ 
          NodeList boundValue = 
getXPath("//processorImpl[@name='"+hardFailName+"']/properties/propertyAssociation[@propertyDefinition
='"+processHardFail.item(l).getNodeValue()+"']/propertyValue/@value"); 
          for(int k=0; k < boundValue.getLength(); ++k){ 
          String bound = 
getSubstr(processHardFail.item(l).getNodeValue(), "propertyDefinition[@name="); 
          if(bound.equals("Probability_LowerBound")) 
           this.hardwareFailBounds[i][0] = 
Double.parseDouble(boundValue.item(k).getNodeValue()); 
            
          else if(bound.equals("Probability_UpperBound")) 
           this.hardwareFailBounds[i][1] = 
Double.parseDouble(boundValue.item(k).getNodeValue()); 
          } 
         } 
           } 
          } 
      } 
     } 
 
     //for(int i = 0; i < numberOfSamples; ++i){ 
     int i = 0; 
      generateHardwareFail(i); 
     //} 
     //END HARDWARE BINDING 
 } 
  
 
 private void generateHardwareFail(int k){ 
  Random randomizer = new Random(); 
  for (int j=0; j < this.hardwareFailBounds.length; ++j) { 
   double lowerBound = hardwareFailBounds[j][0]; 
   double upperBound = hardwareFailBounds[j][1]; 
   double intervalWidth = upperBound - lowerBound; 
   if (intervalWidth < 0)  
    throw new IllegalArgumentException(); 
   if (intervalWidth == 0) {// lowerBound == upperBound 
    //for (int i = 0; i < this.generatedSamples.length; i++) { 
     this.hardwareFailCalc[k][j] = lowerBound; 
    //}       
   } else { // generate random value within interval 
    //for (int i = 0; i < this.generatedSamples.length; i++) { 
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     double nextRandomValue = randomizer.nextDouble(); 
     this.hardwareFailCalc[k][j] = (nextRandomValue * intervalWidth) + 
lowerBound; 
    //}      
   }   
  } 
 } 
  
 //GET NUMBER OF INPORTS 
 private int getInports() throws ParserConfigurationException, SAXException, IOException, 
XPathExpressionException  { 
  NodeList xPathQuery = 
getXPath("//systemImpl/subcomponents/processSubcomponent/@classifier"); 
  int counter = 0; 
  for (int i = 0; i < xPathQuery.getLength(); ++i){ 
  if (xPathQuery.item(i).getNodeValue().indexOf("inportProcess.impl") > -1) 
   counter++; 
  } 
  return counter; 
 } 
  
 //GENERATE PROBABILITIES FOR THE INPORTS AND ALL SAMPLES 
 private void generateSamples(double[][] inputProbabilities) throws XPathExpressionException, 
ParserConfigurationException, SAXException, IOException { 
  Random randomizer = new Random(); 
  double[][] inportBounds = new double[this.inports][2]; 
   
  //INPUT PROBABILITY IS SET BY THROTTLEEVALUATIONFUNCTION 
  if(inputProbabilities.length < 1){ 
   NodeList dataPortName = 
getXPath("//processType[not(@name='outportProcess')]//dataPort[not(@direction)]/@name");  
   for (int j=0; j < dataPortName.getLength(); ++j) { 
    NodeList inportSrc = 
getXPath("//dataPort[@name='"+dataPortName.item(j).getNodeValue()+"']/properties/propertyAssociation/@
propertyDefinition"); 
    NodeList boundValue = 
getXPath("//dataPort[@name='"+dataPortName.item(j).getNodeValue()+"']/properties/propertyAssociation/pr
opertyValue/@value"); 
    for(int i=0; i < inportSrc.getLength(); ++i){ 
     String bound = getSubstr(inportSrc.item(i).getNodeValue(), 
"propertyDefinition[@name="); 
     if(bound.equals("Probability_LowerBound")) 
      inportBounds[j][0] = 
Double.parseDouble(boundValue.item(i).getNodeValue()); 
     else if(bound.equals("Probability_UpperBound")) 
      inportBounds[j][1] = 
Double.parseDouble(boundValue.item(i).getNodeValue()); 
    } 
   } 
  }else{ 
   for(int i=0; i<inputProbabilities.length;++i){ 
    inportBounds[i][0] = inputProbabilities[i][0]; 
    inportBounds[i][1] = inputProbabilities[i][1]; 
   } 
  } 
  for (int j=0; j < this.inports; ++j){ 
   double lowerBound = inportBounds[j][0]; 



Automated Safety Analysis for Supporting Design of System Architectures 28 
 

 
 

   double upperBound = inportBounds[j][1]; 
   double intervalWidth = upperBound - lowerBound; 
   if (intervalWidth < 0) 
    throw new IllegalArgumentException(); 
   if (intervalWidth == 0) {// lowerBound == upperBound 
    for (int i = 0; i < this.generatedSamples.length; i++) { 
     this.generatedSamples[i][j] = lowerBound; 
    }       
   } else { // generate random value within interval 
    for (int i = 0; i < this.generatedSamples.length; i++) { 
     double nextRandomValue = randomizer.nextDouble(); 
     this.generatedSamples[i][j] = (nextRandomValue * intervalWidth) + 
lowerBound; 
    }      
   }   
  }  
 } 
  
 //NON FUNDAMENTAL FUNCTION, GET SUBSTRING  
 private String getSubstr(String str, String substr){ 
     if(str.indexOf(substr) > -1) 
      return str.substring(str.indexOf(substr)+substr.length(), str.length()-1); 
  return null; 
 } 
 
 //NON FUNDAMENTAL FUNCTION, GET RESULTS FOR A XPATH QUERY 
 private NodeList getXPath(String query) throws ParserConfigurationException, SAXException, 
IOException, XPathExpressionException  { 
  DocumentBuilderFactory domFactory = DocumentBuilderFactory.newInstance(); 
  domFactory.setNamespaceAware(true);  
  DocumentBuilder builder = domFactory.newDocumentBuilder(); 
  Document doc = builder.parse(this.aadlFile); 
  XPath xpath = XPathFactory.newInstance().newXPath(); 
  javax.xml.xpath.XPathExpression expr = xpath.compile(query); 
     Object result = expr.evaluate(doc, XPathConstants.NODESET); 
     return (NodeList) result; 
 } 
   
} 


