
Internal Report 2011–14 August 2011

Universiteit Leiden

Opleiding Informatica

Active Guided Evolution Strategy

for

Dynamic Vehicle Routing Problems

Maarten Groeneweg

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Active Guided Evolution Strategy for

Dynamic Vehicle Routing Problems

Maarten Groeneweg
Supervisor: Michael Emmerich

August 17, 2011

Universiteit Leiden



ABSTRACT

This thesis presents an implementation and the adaptation of the active guided
evolution strategies to solve dynamic vehicle routing problems. In the dynamic
routing problem new requests and uncertain values are revealed and handled
during execution of a routing schedule. Heuristics for creating solutions as well
as adapting them to events are described. The used heuristics consist of a com-
bination of route construction, guided local search and evolution strategies.



1. INTRODUCTION

Vehicle routing problems (VRP) describe the challenges of determining the rout-
ing schedule of a fleet of vehicles visiting customers at their locations. These
challenges are widely faced in the logistics of transportation and delivery of
goods or persons, as well as in the work of mobile service providers. In a vehicle
routing problem the routes of vehicle are planned, where vehicles have to start
from a depot location and visit a number of customers to complete their requests
before returning to the starting depot. Each of the customer requests have to
be completed by exactly one of the vehicle to satisfy the problem. Determining
the number of vehicles, distributing the requests among them and planning the
order of the visits gives a solution for the problem. The large amount of possible
combinations possible in these solutions leads to a complex problem for which
no optimal solution can be found through deterministic algorithms.

The vehicle routing problem is an optimisation problem with the goal of
minimising the cost of the vehicles and travel. Usually this requires minimising
the number of vehicles and the length of the routes. Besides the requirement
of visiting each request the problems are commonly limited by additional con-
straints:

Capacitated Vehicle Routing Problems (CVRP) [5] model the limitations of ve-
hicle capacity. The sum of the demands on that capacity of the requests
visited by a vehicle can not exceed that vehicles capacity. Normally vehicle
fleets are used with a uniform capacity for each vehicle.

Vehicle Routing Problems with Time Windows (VRPTW) [4] model the con-
straints customers place on the time of delivery. A time window is given
for each request during which the visiting vehicle must arrive. Vehicles
arriving early can wait until the customer is ready for them, but late
arrivals violate the constraint. This is taken as a soft constraint by adding
a penalty to the route cost.

Vehicle Routing Problems with duration limits have an upper bound on the to-
tal time or distance for each route. Vehicles have to be back at the depot
before reaching this limit.

Pick-up and Delivery Vehicle Routing Problems [2] have paired requests, requir-
ing a pick-up of goods at one location before the delivery of those goods
to the second location by the same vehicle. This problem type will not be
subject of this study.

The common availability of mobile communication has led to increasing op-
tions to deal with the uncertainties of real world use and to provide customers
with faster service by scheduling new or changed requests as soon as possible.
Dynamic vehicle routing problems (DVRP) allow the problem instance to be



1. Introduction 4

changed at any time while the solution schedule is being executed. New infor-
mation that was not available while planning the solution can be revealed at a
later time. This allows new requests from customers to be included in an active
route. Uncertain values in the input data can also be changed as the early esti-
mations are adjusted to the final actual values. When new information becomes
available events are generated to notify the solving algorithm. In response the
solution has to be adjusted to match the changes. The demand for fast response
times to these events places increased importance on the execution time of a
solving algorithm. On the other hand real-time methods can continue to im-
prove solutions during execution after the initial construction and after first
event responses.

This study of dynamic routing problems will focus on mixed instances with
part of the requests known a priori and part of the requests revealed during exe-
cution. During simulation of the solutions execution, travel times, service times
and demands are given stochastic values that will be revealed after travel or
processing of a request is completed. To avoid repeated course changes, vehicles
are given their next destination after completing the previous request. When
facing waiting time due to time window constraints vehicles may spend some of
the waiting time before receiving travelling orders. During this time the route
can still be changed to insert a different request with less waiting time.



2. PROBLEM FORMULATION

Fig. 2.1: A vehicle routing solution graph

The vehicle routing problem is modelled as a complete undirected graph
G = (V,E) following the notation of Mester and Bräysy [5] and using large
parts of the problem formulation from Bent and Van Hentenryck [2]. The set
of vertexes V = {v0, v1, . . . , vn} represent the locations of the problem instance
with the depot at v0 and customers at the remaining vertices. Associated with



2. Problem formulation 6

each customer index are the variables with the other input data.

ci,j = The distance cost between vertices vi and vj given as travel time.

qi = The demand of goods for customer vi (qi ≥ 0, q0 = 0)

si = The service time to complete the request of customer vi (si ≥ 0, s0 = 0)

ei = The earliest time service can start for customer vi (ei ≥ 0)

li = The latest time service can start for customer vi (li ≥ ei)

l0 = The duration limit.

Q = The maximum capacity of the vehicles.

A solution S for a vehicle routing problem is a routing schedule, consisting
of a set of routes where each route is the path for one vehicle. A route is given
as a sequence of locations to visit, starting and ending at the depot.

S = {r1, r2, . . . , rv} (2.1)

ri = 〈v0, vi1 , vi2 , . . . , vin−1
, vin , v0〉 (2.2)

customers(ri) = 〈vi1 , vi2 , . . . , vin−1
, vin〉 (2.3)

This schedules the vehicle to visit the customers(ri) in the given order. With
the distance cost between the locations given, the travel cost of each route can
be calculated as the sum of the costs of travelling from each visit to the next.

t(ri) = c0,i1 + ci1,i2 + · · ·+ cin−1,in + cin,0 (2.4)

A valid solution has each customer scheduled in a route while avoiding re-
peated visits to the same customer. With the problem being modelled as a
complete graph, vertices only need to be visited to service requests, not as in-
termediate points in a travelling path.

v
⋃

i=1

customers(ri) = V \ v0 (2.5)

customers(ri) ∩ customers(rj) = ∅ ∀i, j ∈ {1, . . . , v}, i 6= j (2.6)

The used capacity q of a vehicle by the serviced requests is the sum of the
demands of those requests. To allow more flexibility in intermediate solutions
used during event handling in real-time VRPs, the capacity constraint is used
as a soft constraint. The capacity violation vc adds a penalty to the cost of a
solution.

q(r) =
∑

vi∈r

qi (2.7)

vc(r) = wvc
·min(q(r)−Q, 0) (2.8)

wvc
= Penalty weight for capacity violations.

To check the time windows the arrival time ai and departure time δi of
visited requests have to be found. The earliest possible times can be derived
from the departure time of the preceding requests in the route noted as i−.



2. Problem formulation 7

ai = max(δi− + ci−,i, ei) 0 < i ≤ n (2.9)

δi =

{

e0 i = 0

ai + si 0 < i ≤ n
(2.10)

Arriving later than the end of the time window adds a lateness violation penalty
vl to the solution cost.

vl(r) = wvl
·

∑

vi∈r\v0

min(ai − li, 0) (2.11)

wvl = Penalty weight for time window violations.

Looking at the time window limit for the remainder of the route can help skip
some computations while evaluating operations. The time limit is the latest
arrival time at a request which allows the remainder of the route including that
request to be completed without exceeding time window constraints.

l∗i = min(li, l
∗
i+ − ci,i+ − si) (2.12)

The cost of routes C(r) adds the travel cost and the penalty costs. To find
better solutions the number of vehicles |S| and the total cost C(S) have to
be minimised. Solutions are evaluated by an objective function g(S), using a
lexicographic order to prioritise vehicle count over travel cost.

C(ri) = t(ri) + vl(ri) + vc(ri) (2.13)

C(S) =

v
∑

i=1

C(ri) (2.14)

g(S) =
(

|S|, C(S)
)

(2.15)



3. IMPROVEMENT HEURISTICS

To solve complex vehicle routing problems in real time, heuristic methods are
needed that provide good solutions with a limited amount of calculations. Based
on the literature review of Van Wezel [7] the fastest performing algorithm is the
active guided evolution strategy (AGES) from Mester and Bräysy [4, 5]. Since
that algorithm also provided the second highest quality solutions, this algorithm
has been selected for further study. The objective of this thesis is to adapt the
AGES algorithm from the static VRP to a real time algorithm for the dynamic
vehicle routing problem.

Active guided evolution strategies are a metaheuristic combining a construc-
tion heuristic and two improvement heuristics to apply the different strengths
of the methods during different stages of solution construction. In the construc-
tion phase a solution is created from scratch based on a problem instances input
data. The best solution from the construction phase forms the starting point
for the improvement phase. The improvement heuristics explore the solution
space of a current solution further by allowing non-improving operations. The
current solution is compared by the objective function g(S) (2.15) to the best
known solution to detect new best solutions. The improvement phase uses one
heuristic focussed mainly on improvement to rapidly optimise a solution. When
that stage reaches a local minimum the second stage switches to a exploration
focussed heuristic to find other minima.

3.1 Local Search

The basis for all stages is a local search for better solutions in the neighbourhood
of a current solution. Whenever a local search for improvements is performed,
all possible single applications of an improvement operator are evaluated. The
operation with the highest cost savings is selected and applied to create the
new current solution. These steps are reiterated as long as the best operation is
improving the solution.

The operators used for the improvements are the relocate and 1-interchange
operators illustrated in Figure 3.1. The relocate operator removes one request
and reinserts it in a new position in a route. This route can be the same as or
different from its previous route. The 1-interchange operator exchanges the route
positions of two requests. This operation is used for inter-route moves only. Since
the constraints time windows place on the order of requests, operators making
larger changes provide less benefit on those problems and have not been used.

Because the evaluation of operations is repeated for all possibilities, they are
the focus of the algorithms efficiency. Rather than re-evaluating the full solution
for every operation each insertion or removal of a request from a route sequence
is evaluated to efficiently find the effect of an operation. The cost change of the



3. Improvement heuristics 9

Fig. 3.1: Relocate and 1-interchange operators

travel time for an insertion of request i between p and n adds two new edges
to and from the new request and removes the old edge. The cost is given by
Osman [6] as cp,i + ci,n − cp,n. For removals the cost is the negative of that and
multiple steps taken for an operation add their cost changes together. By keeping
track of the arrival and departure times of requests and the remaining free space
of a vehicles capacity the cost of penalties can also be found as the difference
between the before and after situations. All requests following an insertion can
be affected by the changes in the time schedule however. The evaluation has
to step through the following requests as well to find increased violations of
the time windows. Storing the time limits l∗ (2.12) for the remaining route can
be used to stop that evaluation early. If the new arrival time of a request is
below the remaining routes time limit and it was not exceeding its time window
before, then evaluation of the change can stop there. By using these methods the
evaluation of operations can be calculated in constant time for many common
cases, although it has a worst case complexity in the order of the number of
requests in the affected routes.

3.2 Cheapest reinsertion heuristic

To create an initial solution a simplified implementation of Mesters [4, 5] cheap-
est reinsertion heuristic is used. The solution is created initially with all known
requests served by a separate route. For each request, all relocation positions to
routes later in the search are evaluated. The request is then reinserted to the
position with the cheapest cost if it is an improvement over the current position.
The heuristic reiterates from the start as long as more emptied routes can be
removed from the solution.

The cost evaluations for these reinsertions are modified by a weight param-
eter to influence the likelihood of reinsertions. Multiple starting solutions are



3. Improvement heuristics 10

created with different values of the parameter to find the best basis for the rest
of the algorithm. The cost changes for the removal and reinsertion are combined
so that for the reinsertion of request i from in between h and j to a position
between p and n the saving cost is:

(ch,i + ci,j + cp,n)− α(cp,i + ci,n + ch,j) (3.1)

The first term has the costs of edges removed by the reinsertion and the second
term has the new costs. Unlike in Mesters original proposal of the algorithm,
the difference of the costs before and after the reinsertion is taken similar to the
other operations. In the original the costs of a position were added together,
but this did not seem to make much difference. Another difference is that the
solutions are not improved during construction. After the best solution is chosen
from the different weighted constructions, the full solution is improved by the
local search heuristic. By avoiding earlier searches more parameter values can
be attempted resulting in better solutions, using 25 values between 0.1 and 1.5.
However the full local search is often a performance bottleneck for large scale
problems.

3.3 Guided local search

The guided local search metaheuristic is an adaptation of the local search by
influencing it with an altered objective function. While the local search is still
based on improving moves, improvements based on the modified objective func-
tion can be non-improving for the original objective. This gives a improvement
focused heuristic that can escape from some local minima. The method of the
guided local search is similar to tabu search, it tries to minimise costs by re-
moving the graph edges contributing the most to the cost. The heuristic guides
the local search by increasing the cost of edges it wants to discourage further.
Higher costs of an edge increase the saved cost of its removal which increases
the possibilities of those operations.

The GLS objective function is based on the regular objective function with
the travel cost values replaced. The modified travel costs are the original values
with penalties added to them.

c′i,j = ci,j + pi,jλL (3.2)

pi,j = The number of penalties applied to the edge between vertices i and j.

λ = 0.01,A penalty weight parameter.

L = The average travel cost per edge in the initial solution.

To decide which edges should be penalised all edges in paths used by the current
solution are evaluated for the utility of penalising them:

Ui,j =
ci,j

(1 + pi,j)
(3.3)

The edge with the highest utility is penalised by incrementing its penalty count
by one. The utility function selects edges with a high travel cost, but reduces
the utility when the edge has been tried repeatedly. This avoids getting stuck
on a costly but necessary edge.



3. Improvement heuristics 11

The two vertices connected by the edge are then used as the centre of the
local search. To limit the number of possible operations to evaluate, the im-
provement phase restricts its search to one variable neighbourhood at a time.
These neighbourhoods are formed by selecting a subset of routes from the solu-
tion. For the guided local search the neighbourhood is called a penalty variable
neighbourhood (PVN) and is selected from routes close to the latest penalised
edge. The neighbourhood start from the route containing the penalised edge.
One of the vertices connected by the penalised edge is selected in alternating
order. A search finds the vertex geographically nearest to the penalised vertex
which is in a route that is not already present in the neighbourhood. This route
is added to the neighbourhood. More routes are added until the total of the
requests of the selected routes reaches lPV N , a desired amount of requests. The
target amount is chosen before every iteration of the GLS based on an upper
bound set once.

lPV N = l
upper
PV N a2 (3.4)

l
upper
PV N = (0.2 + 0.5× a2)× nr. customers (3.5)

a = Random value between 0 and 1.

A local search is performed on the penalty variable neighbourhood, using
the penalised objective function for its evaluations. When the local search can
find no further improvements, the guided search can be repeated by finding a
new edge to penalise in the full solution.

3.4 Evolution strategy

When the guided local search fails to find its way out of local minima as well, the
second improvement metaheuristic is engaged for a slower but wider exploration
of the search space. The evolution strategies search stage reuses the penalty
variable neighbourhood from the earlier stage to restrict the size of the problem.
The amount of data to work on is also limited to the use of a (1+1)-evolution
strategy, from the one original neighbourhood a single new solution is generated
through mutation of the route representation. A best-accept selection picks the
best of those two solutions as the parent for the next iteration of the evolution
strategies search.

For the evaluation of fitness used by the selection, the penalised objective
function of the guided search is used, letting it guide the direction of the evo-
lution strategies search as well. The mutation method used is a remove-insert
scheme. A portion of the requests in the variable neighbourhood is removed,
and are later reinserted one by one in the remaining routes. The requests to be
removed are chosen randomly, and in each iteration a new number of requests
to remove is picked. There is a 5% chance of selection all requests in the neigh-
bourhood to remove, otherwise a random fraction between 0.2 and 0.7 of all
the requests in the neighbourhood is chosen. The reinsertion of requests is done
with the cheapest insertion heuristic of the construction phase. The parameter
weighing the cheapest reinsertion costs is used to vary the mutation rate of
the evolution strategy. The evolution strategies search is always executed as a
set of 5 iterations, using one of the reinsertion parameters (0.6, 0.8, 1.0, 1.2, 1.4)
for each iteration. The child solution created is improved with the local search
heuristic before getting evaluated and compared against its parent solution.



4. EVENT HANDLING

For dynamic vehicle routing problems a real-time optimisation agent is needed to
maintain the solution. Every time a change occurs during execution of a routing
schedule the optimising agent is notified through an event. The agent must apply
the change and create a new solution feasible for the changed circumstances in
as short a time as possible.

For the developed dynamic AGES algorithm event handling is divided in two
stages. The first stage applies the events changes and re-optimises the altered
solution through improving operations only. This stage creates the first response
to the event. The second stage optimises the solution further by also using the
non-improving operations of the guided local search and evolution strategies
search. Better solutions found later can replace the routes being executed as long
as only unvisited requests are changed. The event types investigated initially are
based on the regular operation of routing executions.

Arrival events notify the arrival of a vehicle at the location of a request. At
this point the final travel time from the vehicles previous location to that
request is known and the time schedule for the remaining route can be
updated.

Processed events notify the completion of service for a request. After completion
the service time and demand used by the request are known. The updated
solution for this event is used to provide the next destination of the relevant
vehicle.

Departure events notify the optimising agent of the destination a vehicle has
chosen as its next target and the time it has departed towards that des-
tination. Once the next destination has been determined it can no longer
be changed. Solutions should match this decision and avoid relocation the
destination in improvement operations.

Dynamic request events are new requests revealed during execution. The new
requests must be inserted into the pending portion of one of the routes in
the solution. The larger changes induced by these events lead to most of
the challenges of dynamic routing problems.

4.1 Applying events

To create an updated solution for an event the last best solution is used as
the basis. The current solution undergoing improvements is discarded and the
improvements are paused. The changes needed to apply the event are made to
the solution, replacing changed values and cascading their effects through the
rest of affected routes. For the insertion of new requests all insertion positions



4. Event handling 13

in the pending sections of all routes are examined with the cheapest reinsertion
evaluation. The weight parameter is not used for this case.

After the event is applied a first round of improvements is made on the solu-
tion to adjust it to the changes. Based on the same ideas of the penalty variable
neighbourhood used by the guided local search, an event variable neighbour-
hood is defined. This neighbourhood is centred on the request affected by the
event and consists of the geographically closest routes to that request. To create
a new solution suitable for direct replacement only improving operations are
used. This requires resetting all penalties applied by the guided local search
to avoid them influencing improvements. The event variable neighbourhood is
improved by the local search heuristic until no new improvements are found. A
suitable response solution is ready at this point.

4.2 Improving events

After the event is applied improvement can continue on the affected routes. Be-
cause non-improving operations are used again these improvements keep a copy
of the last best solution to compare against. The event improving stage keeps the
event variable neighbourhood of an event to focus the follow-up improvements
on that area. The same metaheuristics used for solution optimising are used
to improve the event neighbourhoods. Guided local search is used by selecting
an edge used in the neighbourhoods routes to penalise. Rather than forming
a penalty variable neighbourhood the event neighbourhood is used for the fol-
lowing local search. When no improvements have been found for a number of
iterations, the evolution strategies search is used instead. The evolution strategy
is repeated until that fails to improve as well. At this point the events improve-
ment is ended. When no event applications or improvements are remaining the
regular improvement phase resumes to work on the full solution.

4.3 Slack requests

In dynamic problems with part of the requests revealed later, the solution cre-
ated before execution of the routes start is based on limited information. With a
smaller number of initial requests the solution will likely be over optimised. Re-
quests added later can then not be inserted without large violations of capacity
and time window constraints. Slack space has to be added in vehicle capacity
and in the routes to reserve room for future requests. To do this, dummy requests
are generated as a representation of the slack space. The created solutions will
have to include those requests in their routes together with the regular requests.
The advantage of these dummy requests is that slack space can be replaced with
the real dynamic request on a one to one basis. This keeps the total number
of real requests and slack space requests correct. Each time a dynamic request
is inserted, the geographically closest slack request to it is dropped from the
solution first.

The number of slack requests generated is based on an estimation of the
number of dynamic requests. The slack requests are spread over the area of
the regular requests, placed on random uniformly distributed coordinates. An
even spread of locations encourages slack space to be divided equally among
the routes, although this is not enforced. Basing the locations on a regular grid



4. Event handling 14

distribution or on historical data could be investigated as well. The averages of
the service times and demands of the initial requests are used to seed the slack
requests. They do not use time windows.



5. EXPERIMENTS

The effectiveness of the algorithm was tested on the large scale test sets created
by Gehring and Homberger [3]. The benchmark has test instances of 200, 400,
600, 800 and 1000 requests. Six problem types are used; the C-instances consists
of clustered locations, the R-instances consists of randomly spread locations and
the RC-instances have a mix of those two. The C1, R1 and RC1-instances have
narrow constraints on the time windows, leading to routes servicing few requests
in an order with little flexibility. The C2, R2 and RC2-instances have wider
constraints, allowing long routes servicing many requests. For each combination
of size and type there are 10 test instances. However, only the first of each has
been used in tests due to time pressure. For comparison with other algorithms,
the best known results from the SINTEF transportation optimisation portal [1]
were used.

The test instances were turned into dynamic problems by taking 50% of
the requests in the test set as dynamic requests, and leaving the remainder as
initial requests. The dynamic requests are revealed at a uniformly distributed
submission time between the start of the simulation and shortly before the end
of the requests time window. A minimum submission time of 300 seconds before
the closing of the time window is given to allow some time for scheduling. The
travel distances, service times and demands of the tests sets are used as the
input data for the algorithm. During simulation these values are randomized
with a normal distribution with a mean centred on the original value and a
standard derivation scaled to the size of that value. The travel time uses a
standard derivation of 10% of its original value, service time and demand use
5% of its value.

The experiments ran on a PC with a Intel Core 2 dual core 2.66 GHz pro-
cessor and 2 GB of memory. The optimising agent got 15 minutes to create an
optimised solution based on the initial data. After that the execution of that
solution was simulated, with communication of events and updated solutions
continuing between simulator and optimising agent. The simulator used the
time values interpreted as seconds and ran the time at double speed. The 1000
customer problems had trouble keeping up at that rate and were run with 30
minutes preparation time and normal speed simulation. To allow route changes
while a vehicle is waiting for the opening of time windows, the vehicle spends
the excess time at its previous location while leaving its next destination open
to change. The estimation of waiting time is done with a safety margin of twice
the standard derivation of the travel time to the current destination.



5. Experiments 16

Problem Vehicles Distance Overcapacity Lateness
wvl

= 200, wvc
= 10000

C1-6-1 65 17964 0 2235
C2-6-1 21 10069 0 82
R1-6-1 60 30243 3 577
R2-6-1 13 20663 0 18
RC1-6-1 64 24086 2 444
RC2- 6-1 16 14735 0 320
wvl

= 500, wvc
= 100000

C1-6-1 64 18656 0 3406
C2-6-1 23 10909 0 40
R1-6-1 60 25642 3 271
R2-6-1 12 20667 0 34
RC1-6-1 62 21908 3 334
RC2-6-1 15 14408 0 262

Tab. 5.1: Effect of penalty weights.

Problem Vehicles Distance Overcapacity Lateness
Minimal submission time: 100s.
C1-6-1 65 17964 0 2235
C2-6-1 21 10069 0 82
R1-6-1 60 30243 3 577
R2-6-1 13 20663 0 18
RC1-6-1 64 24086 2 444
RC2- 6-1 16 14735 0 320
Minimal submission time: 200s.
C1-6-1 68 18351 0 356
C2-6-1 22 9663 0 51
R1-6-1 66 28451 0 250
R2-6-1 12 19730 0 38
RC1-6-1 80 24760 0 149
RC2-6-1 15 14189 0 211
Minimal submission time: 300s.
C1-6-1 63 16554 0 165
C2-6-1 23 9268 0 1
R1-6-1 58 23319 4 128
R2-6-1 12 19771 0 14
RC1-6-1 60 19241 0 141
RC2-6-1 16 14075 0 133

Tab. 5.2: Effect of minimum submission time before closing of time windows.

5.1 Results

Some initial tests were done to sample the effect of some of the parameters on
solution quality. The median problem sets of 600 requests were taken for these
tests, with a simulation of the six instance types. These tests were mainly done
to reduce the amount of lateness, the violation of time window constraints. The
first attempt was to increase the weights for penalties. The results of this is in
Table 5.1. Larger penalties give some improvements, but one large deterioration
as well.

More significant results have been gotten from increasing the minimal time
between submission and the end of the time window. These results are shown
in Table 5.2. These constraint violations have gotten to an acceptable level. It
does demonstrate a difficulty in responding to urgent new requests.

The effect of varying the ratio of dynamic and initial requests is recorded in



5. Experiments 17

Problem Vehicles Distance Overcapacity Lateness
25% dynamic
C1-6-1 65 16235.15 0 89
C2-6-1 23 9174.41 0 6
R1-6-1 61 23235.93 1 124
R2-6-1 13 19181.48 0 36
RC1-6-1 58 18395.04 1 184
RC2-6-1 18 13342.72 0 20
50% dynamic
C1-6-1 61 15373.38 0 61
C2-6-1 23 9014.29 0 0
R1-6-1 59 23164.95 1 150
R2-6-1 12 19687.62 0 13
RC1-6-1 58 18634.74 2 67
RC2-6-1 16 14793.65 0 123
75% dynamic
C1-6-1 63 15859.29 0 104
C2-6-1 22 9328.48 0 0
R1-6-1 58 22850.43 7 109
R2-6-1 11 20727.04 0 21
RC1-6-1 58 18689.07 0 140
RC2-6-1 13 14671.75 0 1243

Tab. 5.3: Effect of the percentage of dynamic requests.

Table 5.3. Surprisingly this does not appear to have much effect on the results.
The numbers vary between different runs, but no clear direction to improvement
or degradation can be found.

The quality of the algorithm without the effects of the dynamic problem was
measured by running the static test instances until no improvements could be
found. In Table 5.4 the results of the static tests are compared with the best
known results from SINTEF [1]. A few matches with the best results where
achieved. Most are slightly worse, requiring a few more vehicles, on average
6.19% more. With the extra vehicles the distances can often be reduced a bit,
although the large 50% savings are due to the results from Blocho and Czech
having much longer distances than other methods.

In Table 5.5 the results of the dynamic simulations are shown. Compared
to the best known static results, the travel distances are quite a bit larger now.
With the additional difficulties of a dynamic problem, this was to be expected.
Most of the distances are about 10% larger, which seems reasonable enough.
The total number of vehicles needed is very close to the results of the static
problem with only 3 more vehicles used. Violations of constraints, especially
of time windows, is unfortunately common. This should be a goal for further
improvement.

The time taken by event handling is listed in Table 5.6, giving times for
the first response after applying the event, and for finishing all improvements.
The first response should usually come well within 100 milliseconds, which is
a good result. Only for the largest problems does the maximum start going
over a second. The finishing times for the improvement rounds are much larger,
but these are not critical. Running over real world travel times instead of short
simulations will free up even more time for event handling.



5. Experiments 18

Problem AGES Solution Best known solution Difference
Vehicles Distance Time Vehicles Distance Vehicles Distance

C1-2-1 20 2704.57 0:11 20 2704.57 0.00% 0.00%
C2-2-1 6 1931.44 3:57 6 1931.44 0.00% 0.00%
R1-2-1 22 4733.71 1:41 19 5024.65 15.79% -5.79%
R2-2-1 5 4080.27 7:42 4 4483.16 25.00% -8.99%
RC1-2-1 20 3552.86 1:18 18 3602.80 11.11% -1.39%
RC2-2-1 7 2958.94 12:37 6 3099.53 16.67% -4.54%

C1-4-1 40 7152.06 1:53 40 7152.02 0.00% 0.00%
C2-4-1 12 4116.33 11:02 12 4116.05 0.00% 0.01%
R1-4-1 41 10567.38 4:00 38 11084.00 7.89% -4.66%
R2-4-1 10 8718.49 24:53 8 9213.68 25.00% -5.37%
RC1-4-1 39 8775.06 11:34 36 8630.94 8.33% 1.67%
RC2-4-1 15 6316.50 14:59 11 6688.31 36.36% -5.56%

C1-6-1 60 14095.64 9:27 60 14095.64 0.00% 0.00%
C2-6-1 22 8512.26 28:16 18 7774.10 22.22% 9.50%
R1-6-1 59 21907.18 15:10 59 21131.09 0.00% 3.67%
R2-6-1 14 17512.17 38:39 11 18291.18 27.27% -4.26%
RC1-6-1 57 17536.25 22:25 55 17317.13 3.64% 1.27%
RC2-6-1 21 12347.89 1:02:47 14 25524.13 50.00% -51.62%

C1-8-1 80 25184.38 5:13 80 25030.36 0.00% 0.62%
C2-8-1 24 11703.70 2:17:05 24 11654.81 0.00% 0.42%
R1-8-1 80 38653.40 48:31 79 39612.20 1.27% -2.42%
R2-8-1 17 28031.67 2:11:56 15 28392.87 13.33% -1.27%
RC1-8-1 77 31323.95 51:03 72 35102.79 6.94% -10.77%
RC2-8-1 26 19676.26 1:27:02 18 42243.22 44.44% -53.42%

C1-10-1 100 42529.43 1:19:27 100 42478.95 0.00% 0.12%
C2-10-1 34 18129.29 2:44:32 30 16879.24 13.33% 7.41%
R1-10-1 100 55251.62 33:10 100 53904.23 0.00% 2.50%
R2-10-1 20 44410.67 3:15:20 19 42467.87 5.26% 4.57%
RC1-10-1 92 48113.40 3:22:43 90 47143.90 2.22% 2.06%
RC2-10-1 29 29729.47 3:28:40 20 63373.15 45.00% -53.09%
Total 1149 550256.24 1082 620148.01 6.19% -11.27%

Tab. 5.4: Results of static vehicle routing problem instances.



5. Experiments 19

Problem AGES Solution Constraint violations Best known solution Difference
Vehicles Distance Capacity Lateness Vehicles Distance Vehicles Distance

C1-2-1 20 2748.80 0 15 20 2704.57 0.00% 1.64%
C2-2-1 8 2054.72 0 0 6 1931.44 33.33% 6.38%
R1-2-1 21 4864.02 0 6 19 5024.65 10.53% -3.20%
R2-2-1 5 4116.14 0 2 4 4483.16 25.00% -8.19%
RC1-2-1 20 3598.91 0 11 18 3602.80 11.11% -0.11%
RC2-2-1 6 3453.84 0 4 6 3099.53 0.00% 11.43%

C1-4-1 41 7775.80 0 77 40 7152.02 2.50% 8.72%
C2-4-1 15 4713.67 0 0 12 4116.05 25.00% 14.52%
R1-4-1 42 10820.67 2 69 38 11084.00 10.53% -2.38%
R2-4-1 9 9254.28 0 17 8 9213.68 12.50% 0.44%
RC1-4-1 41 9523.66 1 123 36 8630.94 13.89% 10.34%
RC2-4-1 10 7496.46 0 570 11 6688.31 -9.09% 12.08%

C1-6-1 61 15373.38 0 61 60 14095.64 1.67% 9.06%
C2-6-1 23 9014.29 0 0 18 7774.10 27.78% 15.95%
R1-6-1 59 23164.95 1 150 59 21131.09 0.00% 9.62%
R2-6-1 12 19687.62 0 13 11 18291.18 9.09% 7.63%
RC1-6-1 58 18634.74 2 67 55 17317.13 5.45% 7.61%
RC2-6-1 16 14793.65 0 123 14 25524.13 14.29% -42.04%

C1-8-1 85 28383.13 0 342 80 25030.36 6.25% 13.39%
C2-8-1 32 15734.63 0 19 24 11654.81 33.33% 35.01%
R1-8-1 78 40972.93 0 294 79 39612.20 -1.27% 3.44%
R2-8-1 15 32075.80 0 54 15 28392.87 0.00% 12.97%
RC1-8-1 76 32908.67 1 542 72 35102.79 5.56% -6.25%
RC2-8-1 20 22064.58 0 119 18 42243.22 11.11% -47.77%

C1-10-1 103 48920.02 3 13082 100 42478.95 3.00% 15.16%
C2-10-1 40 21932.43 0 59 30 16879.24 33.33% 29.94%
R1-10-1 96 59854.60 5 592 100 53904.23 -4.00% 11.04%
R2-10-1 20 46068.62 0 68 19 42467.87 5.26% 8.48%
RC1-10-1 96 52564.38 2 941 90 47143.90 6.67% 11.50%
RC2-10-1 24 33298.86 0 108 20 63373.15 20.00% -47.46%
Total 1152 605868.25 1082 620148.01 6.47% -2.30%

Tab. 5.5: Results of 50% dynamic vehicle routing problem instances.



5. Experiments 20

Problem Event application Event improvement
Average (ms) Maximum (ms) Average (ms) Maximum (ms)

C1-2-1 2 29 77 1.518
C2-2-1 2 17 67 598
R1-2-1 2 25 47 438
R2-2-1 4 69 269 2.751
RC1-2-1 1 27 48 359
RC2-2-1 5 110 285 3.965

C1-4-1 6 50 93 1.657
C2-4-1 16 206 1.419 62.095
R1-4-1 9 103 327 6.851
R2-4-1 13 253 751 42.799
RC1-4-1 37 1.002 50.450 86.914
RC2-4-1 16 383 995 19.745

C1-6-1 23 227 741 28.264
C2-6-1 42 838 63.288 213.077
R1-6-1 20 317 468 9.399
R2-6-1 30 920 3.275 65.008
RC1-6-1 28 325 20.592 58.022
RC2-6-1 58 2.236 110.417 225.515

C1-8-1 52 1.206 41.060 119.962
C2-8-1 49 2.005 38.420 191.869
R1-8-1 86 3.069 114.290 211.250
R2-8-1 75 1.932 134.556 396.650
RC1-8-1 48 1.186 38.583 84.006
RC2-8-1 59 867 79.509 208.905

C1-10-1 104 2.953 128.630 287.871
C2-10-1 75 951 26.906 178.082
R1-10-1 92 1.068 50.962 159.695
R2-10-1 100 3.273 125.118 574.476
RC1-10-1 195 7.170 292.949 515.590
RC2-10-1 276 7.909 513.091 1.230.120

Tab. 5.6: Event handling times in milliseconds for dynamic problem instances.



6. CONCLUSIONS

The developed method of solving dynamic vehicle routing problems with a real-
time optimising agent is functioning. It can create a solution and keep it updated
to match events. First response times are usually a fraction of a second, the effort
invested in the implementation of efficient evaluations and concurrent processing
of events has paid off here. The use of dummy slack request to reserve space
for dynamic requests also does its job, resulting in a similar amount of vehicles
used in static and dynamic problems.

The quality of the generated solutions has more room for improvement to
be able to match other implementations. Travel distances do get increased a
bit from the disruptions of dynamic insertions and stochastic travel times. The
initial full improvement search in the construction phase could also use improve-
ment in its execution time. The enforcement of soft constraints on the solution
has turned out fairly unreliable despite high penalty weights. The use of hard
constraints might have been a better choice in hindsight, perhaps using a com-
bination of enforcing hard constraints during the construction and improvement
phases while allowing soft constraints for the insertion of dynamic requests.



BIBLIOGRAPHY

[1] Transportation optimization portal of sintef applied mathematics.
http://www.sintef.no/Projectweb/TOP/, retrieved on 8-8-2011.

[2] R. Bent and P. van Hentenryck. A two-stage hybrid algorithm for pickup
and delivery vehicle routing problems with time windows. Computers & OR,
33:875–893, 2006.

[3] H. Gehring and J. Homberger. A parallel hybrid evolutionary metaheuris-
tic for the vehicle routing problem with time windows. In K. Miettinen,
M. Mäkelä, and J. Toivanen, editors, Proceedings of EUROGEN99, number
A 2 in Series A. Collections, pages 57–64. University of Jyväskylä, 1999.
Benchmark data: http://www.fernuni-hagen.de/WINF/touren/inhalte/
probinst.htm, retrieved on 11-5-2011.

[4] D. Mester and O. Bräysy. Active guided evolution strategies for large-scale
vehicle routing problems with time windows. Computers & OR, 32:1593–
1614, 2005.

[5] D. Mester and O. Bräysy. Active-guided evolution strategies for large-scale
capacitated vehicle routing problems. Computers & OR, 34:2964–2975, 2007.

[6] I. H. Osman. Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problem. Annals of Operations Research, 41:421–451,
1993.

[7] M. van Wezel. Literature review, problem variants, algorithms and research
directions for the real-time vehicle routing problem in the deliver project,
2010.


