
Internal Report 2011-11 august 2011

Universiteit Leiden

Opleiding Informatica

The beginning of a theory for set-nets

Bas van Stein

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

BACHELOR THESIS
August 30, 2011
Supervisor: Jetty Kleijn

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

The beginning of a theory for set-nets

Bas van Stein

LIACS, Leiden University
Leiden, 2300 RA The Netherlands

bvstein@liacs.nl

September 1, 2011

Abstract. We create the beginning of a theory for a new kind of Petri
Nets: set-nets. The key difference between standard Petri Nets and set-
nets is that the former uses a quantitative approach while the latter
uses a qualitative approach. This means that set-nets only look if some
resources exist while other Petri Net systems want to know how many
instances of a resource exist.

We investigate to what extent the existing theories for PT and EN sys-
tems can be applied to set-nets. We first investigate set-nets without
inhibitor and activator arcs. For these we modify the existing concepts
for PT and EN systems to create new fundamental concepts for set-nets.
We create new concepts for things we only see in set-nets and not in PT
or EN systems. We then introduce a partial ordering semantics for set-
nets based on occurrence nets and processes. After that we introduce the
extended set-nets with inhibitor arcs and activator arcs. We show that
these arcs make our model more powerful and that there exists extended
set-nets that cannot be simulated by non-extended set-nets.

2 B.v.Stein

1 Introduction

This work is created as a bachelor thesis within LIACS at the University of
Leiden. Set-nets [6] are a new Petri Net (PN) model inspired by processes in
biology [5] such as the chemical reactions taking place in cells where molecules
can be consumed or created by, facilitate or prohibit reactions. These nets were
introduced by the Theoretical Computer Science Group at LIACS in the year
2011.

The major difference with other PN models is that this model does not
care how much of a resource is present but only that a resource is present or
absent. This allows several transitions (reactions) to share resources, while in
other models this would be a conflict. This model can be compared with other
related models like EN systems and PT systems in order to initiate a basic theory
for set-nets.

We start this work by studying other related work.
Most definitions and proofs assume a working knowledge of EN and PT sys-
tems [9, 4].

We will cover several aspects in this paper starting by the basic notions. We look
at the basic notions conflict, concurrency and causality. We take these notions
for EN and PT as our starting point and look to what extent we can apply them
to set-nets. We then investigate how configuration graphs of set-nets differ from
configuration graphs of PT and EN systems. We create new notions for behaviour
in these configuration graphs that is specific to set-nets. We then look at another
analytical tool: Occurrence nets. In what extent can we create occurrence nets
in the same way like we do for EN and PT occurrence nets. How can we modify
this method to create partial ordering semantics based on occurrence nets and
processes to be correct. After this we look to set-nets extended with inhibitor arc
and activator arc. We show that these arcs add something useful to our set-net
model. We show that there exists extended set-nets that cannot be simulated by
non-extended set-nets.

2 Preliminaries

In this section basic principles of net theory are outlined. First we explain the
structure of nets. Next we define their dynamics and give semantics.

2.1 Structure

Let us begin by giving the definitions of the different net types and their under-
lying structure.

Definition 1 (Net).
A net is a tuple:

The beginning of a theory for set-nets 3

N = (P, T, F)

P and T are finite disjoint sets of respectively places and transitions and
F ⊆ (P × T) ∪ (T × P) is the flow relation of N.

⊓⊔

We denote the input places of a transition t ∈ T as •t and the output places
of t as t•. For places we do the same, •p meaning all input transitions of place
p ∈ P and p• all output transitions of place p.

Definition 2 (Self-loop free). A net N = (P, T, F) is self-loop free if:

∀t ∈ T, t• ∩ •t = ∅
⊓⊔

Definition 3 (Isolated places). A net N = (P, T, F) contains no isolated
places if:

∀p ∈ P, p• ∪ •p 6= ∅
⊓⊔

p1

p2

p3

p4

t1

t2

Fig. 1. A net with places (circles) and transitions (rectangles). An isolated place p4

and a self-loop on t1, p1.

A place in a net can hold tokens denoted by black dots in the place. A token
distribution over the places is said to be a configuration (marking) of the net.
Markings will be the states in the operational dynamics of the net system. In
set-nets and EN systems a marking is just a subset of all places, i.e. each place
is either marked or empty. In a PT system the marking is a function C : P → N

(where N is the set of natural numbers (0, 1, 2, . . .) and N+ is the set of all nat-
ural numbers higher than zero (1, 2, 3, 4 . . .)) that allocates a natural number to
each place. So places in PT systems can hold more tokens at the same time and
therefore these systems can be seen as “counting” systems.

4 B.v.Stein

Definition 4 (Elementary Net system).
An Elementary Net system is a tuple:

EN = (P, T, F,M0)

where (P, T, F) is a self-loop free net and
M0 ⊆ P the initial marking of EN. ⊓⊔

Note that the net of figure 1 is not the underlying net of an EN system
because of the self-loop.

p1

p2

p3

t1

t2

Fig. 2. EN system with initial marking {p1}, tokens are small black dots or sometimes
a number to represent that number of small black dots.

Definition 5 (Place/Transition System).
A P/T system is a tuple:

MN = (P, T, F,W,M0)

where (P, T, F) is a net
W : F → N+ is the weight function, and
M0 : P → N is the initial marking. ⊓⊔

Definition 6 (Set-net).
A set-net (SN) is a tuple:

SN = (P, T, F,M0)

where (P, T, F) is a net
M0 ⊆ P is the initial marking. ⊓⊔

Note that PT systems and set-nets can contain self-loops.

The beginning of a theory for set-nets 5

2

p1

1

p2

p3

t1

t2

Fig. 3. PT net with initial marking M(p1) = 2, M(p2) = 1.

2.2 Dynamics

Transitions are the active elements in net models. Whether or not a transi-
tion can occur is determined by the current marking. There are different kinds
of enabledness depending on the type of net class (EN, PT or SN). In every
definition, lemma and theorem from now on we will notate the net class for
which this definition, lemma or theorem applies at the start (EN, PT, SN) or if
it applies to every one of them we denote it by a N where N= (P, T, F,M0) or
= (P, T, F,W,M0) a general net system where W is the weight function of a PT
system that is only present if we want to apply this definition for PT .

Definition 7 (EN enabled). Let EN = (P, T, F,M0) be an EN system, let
C ⊆ P be the current marking of EN. A transition t ∈ T is enabled at C
(t con C) if:
•t ⊆ C ∧ t• ∩ C = ∅. ⊓⊔

Definition 8 (PT enabled). Let PT = (P, T, F,W,M0) be a PT system, let
C : P → N be the current marking of PT. A transition t ∈ T is enabled at C
(t con C) if:
∀p ∈ •t : W (p, t) ≤ C(p). ⊓⊔

Definition 9 (SN enabled). Let SN = (P, T, F,M0) be a SN system, let C ⊆ P
be the current marking of SN. A transition t ∈ T is enabled at C (t con C) if:
•t ⊆ C. ⊓⊔

Having the concept of enabled nets, we want to do something with it. If a
transition t is enabled at the marking C, then t can occur at C C[t〉. What
happens when t fires (occurs) at a given marking is determined by the firing rule
which in turn is dependent on the chosen net model.

Definition 10 (EN firing rule). Let EN = (P, T, F,M0) an EN system. If a
transition t ∈ T is enabled at configuration C, then it may occur and lead to a
new configuration. This is D denoted by C[t〉D and defined by:
D = (C − •t) ∪ t•. ⊓⊔

6 B.v.Stein

Definition 11 (PT firing rule). Let PT = (P, T, F,W,M0) a PT system. If a
transition t ∈ T is enabled at configuration C, then it may occur and lead to a
new configuration. This is D denoted by C[t〉D and defined by:
∀p ∈ P,
D(p) = C(p) − W (p, t) + W (t, p). ⊓⊔

Definition 12 (SN firing rule). Let SN = (P, T, F,M0) a SN system. If a
transition t ∈ T is enabled at configuration C, then it may occur and lead to a
new configuration. This is D denoted by C[t〉D and defined by:
D = (C − •t) ∪ t•. ⊓⊔

Because of these firing rules we normally do not need isolated places in nets
because they are not affected by transitions and hence not relevant to the dy-
namic behaviour of the net. We want no isolated transitions and we even want
them to always contain at least one input place and one output place. We will
see later on that it does not matter for the behavior whether we apply these
restrictions or not but it makes it easier to analyze and proof things.

2.3 Steps

When two or more transitions are enabled at the same marking, they may fire
simultaneously provided that they do not interfere.
What interference means depends on the type of net as we will see shortly.

Definition 13 (Neighbourhood). Let N = (P, T, F) a net. The neighbour-
hood of a transition t ∈ T consists of its input and output places.
nbh(t) = t• ∪ •t. ⊓⊔

The most common interpretation of non-interference is when transitions have
disjoint neighbourhoods. This is the assumption underlying concurrent steps,
that is, sets of simultaneously occurring transitions in EN systems.

Definition 14 (EN concurrent step). Let EN = (P, T, F,M0), C ⊆ P . A
nonempty set U ⊆ T is a concurrent step occurring at C if:

(1) for every two distinct transitions t1, t2 ∈ U : nbh(t1) ∩ nbh(t2) = ∅.
(2) for every t ∈ U : t con C, denoted by U con C.
(3) if U occurs at C then this leads to a new configuration D, denoted by

C[U〉D where D = (C − •U) ∪ U•.
⊓⊔

Simultaneously is also called independence in EN systems, since transitions
with disjoint neighbourhoods are completely independent of one another.

Definition 15 (PT concurrent step). Let PT = (P, T, F,W,M0), C : P → N.
A non-empty set U ⊆ T is a concurrent step occurring at C if:

∀p ∈ •U :
∑

∀t∈U

W (p, t) ≤ C(p)

There are enough tokens in every input place for all the transitions together.

The beginning of a theory for set-nets 7

if U occurs at C then this leads to a new configuration D, denoted by C[U〉D
where:
∀p ∈ P,
D(p) = C(p) − (

∑

∀t∈U

W (p, t)) + (
∑

∀t∈U

W (t, p)). ⊓⊔

Note that also “auto-concurrency” is possible with PT systems but that is
not considered here.
Non-interference for PT systems is a dynamic property instead of a structural
property. It needs enough tokens in every input place for a step to be enabled.

Definition 16 (SN concurrent step). Let SN = (P, T, F,M0), C ⊆ P . A non-
empty set U ⊆ T is a concurrent step occurring at C if:

for every t ∈ U : t con C, denoted by U con C.
if U occurs at C, then this will lead to D, denoted by C[U〉D where D =

(C\•U) ∪ U•.
⊓⊔

Note that for SN systems transitions never interfere with each other. Every
set of enabled transitions in a set-net can fire simultaneously.
When sequences of transitions and steps occur from the initial marking we get
a lot of new configurations. We may want to see all these configurations in one
graph. If we do so we call this graph the configuration graph. If we leave the steps
out of this graph, then we get the sequential configuration graph. The effect of
a step consisting only one transition {t} is the same as the effect of the single
transition t.

Definition 17 (N Step-reachable markings). Let N = (P, T, F,M0) a net
system. The step-reachable markings CsM of N are all the possible markings
that we can create by firing sequences of steps starting from the initial marking
M0.

⊓⊔

note that a step of only one transition is still a step.

Definition 18 (Reachable markings). Let N = (P, T, F,M0) a net system.
The Reachable markings CM of N are all the possible markings that we can
create by firing sequences of transitions starting from the initial marking M0.

⊓⊔

Definition 19 (N configuration graph).
Let N = (P, T, F,M0) a net system. A configuration graph (CG) of N contains
all the step-reachable markings CsM in the net from the initial marking M0

where we construct the graph as follows:
let C be the current marking beginning with C = M0

for every step U that can occur at C and leading to a configuration D we
create a new node D and a directed edge from the node C to D labeled with
U . ⊓⊔

8 B.v.Stein

Definition 20 (N sequential configuration graph).
Let N = (P, T, F,M0) a net system. A sequential configuration graph (SCG) of
a net contains all the reachable markings CM in the net from the initial marking
M0 where we only allow single transitions to occur:

let C be the current marking beginning with C = M0

for every transition t that can occur at C and leading to a configuration D
we create a new node D and a directed edge from the node C to D labeled with
t. ⊓⊔

3 Set-nets : Basic notions

Now that we have these basic definitions and see the differences between the
systems we can go into more detail. In this section we will investigate the basic
notions conflict, concurrency and causality for set-nets. We look to what extend
we can apply these notions already known for EN and PT systems.

3.1 Conflict

Conflict normally occurs when two or more transitions interfere.

Definition 21 (N conflict). Let C ⊆ P and t1, t2 ∈ T . Two transitions t1, t2
are in conflict at C if:

t1 con C ∧ t2 con C ∧ ¬{t1, t2} con C.
⊓⊔

This is conflict because the transitions cannot fire simultaneously. In set-
nets conflicts as just defined cannot occur. If t1 con C and t2 con C then
{t1, t2} con C (Definition 16). However there are situations in which the word
conflict would be appropriate for set-nets.
Consider Figure 4.

p1

p2

p3

t1

t2

Fig. 4. A set-net with conflict?

The beginning of a theory for set-nets 9

If t1 occurs in its initial marking, t2 cannot occur after since its input is
consumed by t1. However initially t2 could occur simultaneously with t1. There
are two ways of firing transitions: Either sequentially or simultaneously. If we
only look at the sequential way we can say in this situation that there is a
conflict.
Let us introduce a new kind of conflict called the sequential conflict.

Definition 22 (N sequential conflict). Let N = (P, T, F,M0), t1, t2 ∈ T and
C a configuration of N . t2 is in sequential conflict with t1 at C if:

t1 con C ∧ t2 con C ∧ ¬t2 con D where D = C[t1〉D.
⊓⊔

Now consider Figure 5.

p1

p2

t1

t2

Fig. 5. Another conflict type?

In this set-net t1 con C and t2 con C and t1 con D where D is C[t2〉D. If
we look at Definition 22 this says there is no sequential conflict between t2 and
t1, but t2 cannot occur after t1, so t1 is in sequential conflict with t2. We can
distinguish symmetric sequential conflict and a-symmetric sequential conflict.

Definition 23 (N symmetric sequential conflict).
Let N = (P, T, F,M0), t1, t2 ∈ T and C a configuration of N . t1 and t2 are in a
symmetric sequential conflict at C if:

t1 is in sequential conflict with t2 at C and t2 is in sequential conflict with
t1 at C. ⊓⊔

The asymmetric sequential conflicts are caused by self-loops. Because of these
self-loops it can be that a transition outputs his own input and therefore does
not disable other transitions connected to this input place.

Theorem 1. Let SN = (P, T, F,M0). If SN is self-loop free then all sequential
conflicts are symmetric.

10 B.v.Stein

Proof. Let t1, t2 ∈ T , C ⊆ P and t1 is in sequential conflict with t2 at C
Since t1 is in sequential conflict with t2, both transitions are enabled at C. If
t1 occurs then t2 becomes disabled. This can only be the case if •t1 ∩ •t2 6= ∅.
Since SN has no self-loops we know that •t2 ∩ t•2 = ∅. Hence if t2 occurs then t1
becomes disabled.
So t2 is in sequential conflict with t1

⊓⊔

Now we have seen the situation that transitions share an input place without
having this place as output place and the situation that one of the transitions
had this shared input place as output place. There is one situation left we did
not do yet. Two transitions can also share input places that they also have as
output places (with self-loops). In this case we do not speak of any type of con-
flict since they can fire in every order.
A concurrent step can also be in sequential conflict with another step.

Definition 24 (N sequential conflict for steps).
Let N = (P, T, F,M0), U ⊆ T, V ⊆ T and C a configuration of N . U is in
sequential conflict with V at C if:

U con C ∧ V con C ∧ ¬V con D where D = C[U〉D.
⊓⊔

3.2 Concurrency

We have called two transitions concurrent if they can fire “simultaneously” at a
given configuration. In set-nets all transitions that are enabled, are not in conflict
and can fire simultaneously. We will now look at differences between simultane-
ously, independence and unordered firing of transitions. Then the question arises
if the concurrent step has the so called diamond structure in its configuration
graph.

Definition 25 (N diamond structure). Let U ⊆ T,C ⊆ P . A step U has a
diamond structure in the configuration graph of N if:

for every distinct two subsets U1, U2 ⊆ U where U1 6= ∅∧U2 6= ∅ and U1∪U2 =
U,∀C ∈ CsM : C[U〉 ⇒ ∃(C,D,D′, F ⊆ P) so that C[U1〉D,C[U2〉D

′, D′[U1〉E
and D[U2〉E.

And there must be at least one C ∈ CsM where U con C. ⊓⊔

Definition 26 (N substep property). Let U ⊆ T,C ⊆ P . If a step U is
enabled at C then

every substep V of U is enabled at C
⊓⊔

The beginning of a theory for set-nets 11

t1 t2

t2 t1

{t1, t2}

Fig. 6. diamond structure in CG.

EN and PT systems have the substep property, SN systems have this property
as well. Moreover in SN systems it is also the case that if a number of substeps
are enabled at C that form U , U is enabled at C as well. This is not the case
with EN or PT systems, since EN or PT transitions can be in conflict.

For EN we only need the sequential configuration graph to create the com-
plete (concurrent) configuration graph (CG). For SN this is not the case. The
concurrent steps in SN can create complete new configurations that do not ap-
pear in the sequential configuration graph and can lead to different behaviour.
In EN systems the diamond property is something very structural, we can see
if a step has the diamond structure by looking at the structure of the substeps.
If these substeps are disjoint then there is a diamond structure in EN systems.
Can we see if a step has the diamond structure in SN at the net structure as
well?

p1

p2

p3

t1

t2

Fig. 7. A set-net where U = t1, t2 creates a diamond structure in the CG.

To see what kind of steps create this diamond structure we will split concur-
rent steps into four different groups.

Definition 27 (SN independent). Let SN = (P, T, F,M0), U ⊆ T . U is in-
dependent if:

∀ distinct pair of transitions t1, t2 ∈ U, nbh(t1) ∩ nbh(t2) = ∅
. ⊓⊔

12 B.v.Stein

Note that these independent steps are just the ones we have seen earlier (for
EN). We added them here again for set-nets to explain the differences between
these steps and other step types.

Definition 28 (SN semi-unordered). Let SN = (P, T, F,M0), U ⊆ T . U is a
semi-unordered step if:

(1) ∃t1, t2 ∈ U , (∃p ∈ P : p ∈ •t1 → p ∈ t•2 ∧ p /∈ •t2)∨
(∃q ∈ P : q ∈ •t2 → q ∈ t•1 ∧ q /∈ •t1)

(2) ∀ distinct pair of transitions t1, t2 ∈ U, •t1 ∩
•t2 ⊆ t•1 ∩ t•2

⊓⊔

Semi-unordered steps are steps where we can fire the substeps in every order
we want, but the order in which we fire them results in different end configura-
tions.

Definition 29 (SN unordered). Let SN = (P, T, F,M0), U ⊆ T . U is an
unordered step if:

(∀ distinct pair of transitions t1, t2 ∈ U, •t1 ∩
•t2 ⊆ t•1 ∩ t•2)

⊓⊔

To let these steps occur they of course need to be enabled at the current
marking. Recall that every enabled step is simultaneous as well.
The possibility to be a semi-unordered, unordered or simultaneous step is struc-
tural. However, to know that a step occurs in such way we have to look at the
behaviour.

Lemma 1 (SN semi-unordered step in CG). Let SN = (P, T, F,M0), U ⊆
T,C ⊆ P . If U is a semi-unordered step at a configuration C then

U together with all fire sequences consisting of non empty distinct subsets of
U : (U1 ∪ U2 ∪ . . . ∪ Un = U) at C give a structure in the configuration graph
of SN that leads to at least two different end configurations. So D 6= D′ where
C[U〉D and C[UiUk . . . Ul〉D

′ and Ui ∪ Uk ∪ . . . ∪ Ul = U .

In PT systems semi-unordered steps would create a diamond structure and
in EN systems they would not be a step because of contact. The structure in the
configuration graph gives for each order of firing a possible different configura-
tion. That is why we cannot call them only unordered. We are still able to fire
them in every order, so in that respective we could call them unordered.
These semi-unordered steps do not have the diamond structure in its configu-
ration graph (Definition 25). That is why this new name is created for set-nets.
All other names already exists for PT systems.

We can divide these semi-unordered steps in two categories: symmetric and
asymmetric. They create either three different configurations (b) or two different
configurations (a) when firing in all possible orders (figure 6):

The beginning of a theory for set-nets 13

(a)

t1 t2

t2 t1

{t1, t2}

(b)

t1 t2

t2 t1

{t1, t2}

Fig. 8. SN asymmetric semi-unordered (a), symmetric semi-unordered (b).

(a)

p1

p2

p3

p4

t1

t2

(a′)

t1 t2

t2 t1

{t1, t2}

(b)

p1

p2

p3

t1

t2

(b′)

t1 t2

t2 t1

{t1, t2}

(c)

p1

p3

p4

t1

t2

(c′)

t1 t2

{t1, t2}

(d)

p1

p2

p3

p4

t1

t2

(d′)

t1 t2

t2 t1

{t1, t2}

Fig. 9. SN Independent (a) with CG (a′), unordered (b) with CG (b′), simultaneous (c)
with CG (c′), semi-unordered (d) with CG (d′)

14 B.v.Stein

When a semi-unordered symmetric step (with two transitions) occurs, three
different configurations dependent of the order of firing (t1t2), (t2t1), {t1, t2} (last
one is simultaneous) could exist. This is unique in set-nets and cannot happen
in EN and PT systems. This occurs when places already filled will be “overwrit-
ten” when a transition fires that has that place as an output place and then get
emptied by the other transition. In EN this is called contact and makes the step
disabled.

Theorem 2 (SN diamond property). Let SN = (P, T, F,M0), U ⊆ T and
CG the configuration graph of SN .
The diamond property of SN systems: U has the diamond structure in CG iff:

U is unordered and not semi-unordered and
U is enabled at a configuration C ∈ CsM .

Proof. ←
Assumption: U is unordered and not semi-unordered and can occur at C ∈
CsM .
To prove: U has the diamond structure in the CG.
Not semi-unordered means∀t1, t2 ∈ U : (•t1 ∩ t•2 = ∅) ∧ (•t2 ∩ t•1 = ∅).
C[t1, t2〉 = C[t2, t1〉 because the output of t1 is not used as input for t2
and vice versa. So they both create output that will not be affected by the other.
Because U is unordered we know that we can fire C[t1, t2〉 only if we can fire
C[t2, t1〉 so U has the diamond structure in CG.
→
Assumption: U has the diamond structure in the CG.
To prove: U is unordered and not semi-unordered and can occur at C ∈ CsM .
U can occur at a C ∈ CsM because if he could not U would not be in the CG
and therefor can never has a diamond structure in the CG.
The substeps of U have either shared input or not. If they have no shared input
then U is unordered since no transition can disable others within this step (they
cannot consume the input of other substeps).
If the substeps have shared input then U is unordered or cannot fire sequentially:
∃t1, t2 ∈ U : ¬(t1t2 con C)∨¬(t2t1 con C). In the latter case U is not unordered
and has no diamond structure so U has to be unordered for our assumption. U
cannot be semi-unordered since then there ∃t1, t2 ∈ U, p ∈ P : p ∈ •t2 ∧ p /∈
•t1 ∧ p ∈ t•1. If t1 fires the token produced in place p, the token will “disappear”
because there already was a token (otherwise t2 was not enabled). Firing t1t2
gives another configuration then t2t1 and so has no diamond structure. U has
to be unordered and not semi-unordered. ⊓⊔

Now we have four groups of concurrent steps that cover all the possible
configuration structures occurring in set-nets. All steps are simultaneous, those
that are not in sequential conflict are unordered. We have a subset of unordered
steps that create new and special structures in the configuration graph: semi-
unordered (unordered steps with contact between substeps). And last but not

The beginning of a theory for set-nets 15

least we got a subset of unordered that would have a diamond property in EN
systems as well: independent.

3.3 Causality

Causality is the notion that transitions are the cause of other transitions. In
other words, to enable a transition that is not yet enabled at a given configura-
tion another transition has to fire first.

Definition 30 (EN causality). Let EN = (P, T, F,M0), t1, t2 ∈ T,C ⊆ P .
Transition t2 is caused by transition t1 at C if:

t2 con C does not hold but t1t2 con C does hold.
⊓⊔

In EN systems we have two kinds of concession, input and output concession.
Input Concession: p ∈ (t•1 ∩

•t2) where p contains no token
Output Concession: p ∈ (•t1 ∩ t•2) where p contains a token

In SN we only have input concession.
The EN causality does not work in the same way for several situations with
set-nets:

Transitions can be caused by a step rather than caused by one transition.
Steps can have different behaviour as firing these transitions sequentially. See
Figure 10.
Output concession is based on the notion of contact and this does not exist for
set-nets.

Definition 31 (SN causality). Let SN = (P, T, F,M0), t ∈ T , a non-empty
set U ⊆ T , t /∈ U , C ⊆ P .
t is caused by a set of transitions U at C if:

U ⊆ T, t ∈ T , t con C does not hold
but Ut con C does hold

Moreover U is the minimal set that causes t if in addition:
there does not exist a V ⊂ U where V t con C does hold. (U is the minimal

set)
⊓⊔

In EN systems transitions can also be the cause of more than one other
transition. If this is the case then this transition is the cause of each single
transition in the step at a specific C. In set-nets it may happen that because of
self-loops like in Figure 10 that a transition is the cause of a step U but not the
cause of each individual transition in U (at any C). But even without self-loops
this is possible as we see in Figure 11.

See Figure 10 for a set-net in which this set causality occurs.

16 B.v.Stein

p1 p2

p3

t1

t2

t3

Fig. 10. t3 is caused by {t1, t2}

p1 p2

p3 p4

t1

t2

t3t4

Fig. 11. t3 is caused by {t1, t2, t4}

We can even be more general and say that a set of transitions can be caused
by a set of transitions.

Definition 32 (SN Causality for steps). Let SN = (P, T, F,M0), C ⊆ P,U, V ⊆
T , V ∩ U 6= U .
U is the cause of another step V at C if:

U ⊆ T, V ⊆ T, V con C does not hold
but UV con C does hold

Moreover U is the minimal step cause of V if in addition:
there does not exist a W ⊂ U where WV con C does hold. ⊓⊔

This however is because for all t ∈ V there is a minimal subset W ⊆ U where
t is caused by W or t was already enabled before U . Because set-nets have the
subset property (definition 26) we know that each transition in V is enabled
after we fired U .
We do not need this extra definition. Let SN be a set-net and V,U steps as
above.
A transition in V was not enabled or already enabled before the firing of U . If

The beginning of a theory for set-nets 17

the transition t ∈ V was already enabled in U then there exists a V − t that
is caused by U . If the transition t ∈ V is not enabled before U then there is
a W ⊆ U that enables t because t is enabled after firing U . So when steps are
caused by other steps this is just because all the transitions inside this step are
caused by the first step.

3.4 Contact-freeness and complement

In this section we will investigate if we can complement set-nets to make them
contact-free. We do so because this would be very useful when we look at occur-
rence nets and processes. Contact-free means that transitions only occur when
their output places are empty.

Definition 33 (EN,SN contact-free). Let M = (P, T, F,Cin) be an EN or SN
system.
M is contact-free if for all t ∈ T and C ∈ CM : if •t ⊆ C then t• ∩ C = ∅. ⊓⊔

To create contact-free EN systems we use to complement places.

Definition 34 (EN, SN complement). Let M be an EN or SN system and let
p, q ∈ PM and M0 the initial marking of M .
Then p and q are complementary, denoted by p com q, if p• = •q and •p = q•

and M0(p) = 1 − M0(q). ⊓⊔

We may want to use this complementing for set-nets as well. We can just
construct this complementing in the same way as for EN systems. If we comple-
ment a place we want to know if the behaviour of the net system is not affected.
Lets find out if we can use complementing for set-nets as well.

Definition 35 (SN complement construction).
Let M be a set-net (PM , TM , FM ,M0M), p ∈ PM and K = cpl(M,p, q) (M with
p complemented by a new place q).
K will then be (PK , TK , FK ,M0K) where PK = PM ∪ {q}, TK = TM .
FK = FM with in addition:
∀e ∈ PM : if (e, p) ∈ PM then (q, e) ∈ FK , if (p, e) ∈ PM then (e, q) ∈ FK .
M0K = M0M with in addition M0K(q) = 1 − M0M (p). ⊓⊔

Theorem 3 (Complementing in set-nets). Let M a set-net and M ′ =
cpl(M,p, q) as in definition 35, then M can be simulated by M ′ (M ′ accepts
the same step firing sequences of M),
iff ∀U ⊆ TM : p /∈ •U ∩ U•.

Proof. Let M be a set-net and p ∈ PM . We create a new set-net M ′ by taking
the complement of p: p′. If the behaviour is unaffected then all transition steps
should have the same effect on either M and M ′ with the difference that p′ will

18 B.v.Stein

contain a token when p does not and vice versa.

Let U be non-empty a step of transitions. p ∈ nbh(U) or p /∈ nbh(U). If
p /∈ nbh(U) in M then p /∈ nbh(U) ∧ p′ /∈ nbh(U) in M ′.

If p ∈ nbh(U) in M then this can occur in three ways:

– p ∈ •U − U•

then there is a t ∈ U so that p ∈ •t and p′ ∈ t•. and there does not exists
a t where p′ ∈ •t and p ∈ t•. When U fires in M the token from p will be
removed. When this happens in M ′ the token will also be removed from p
and a token will be added in p′. The complemented place is still working
since it contains a token while the original place does not.

– p ∈ U• − •U
then there is a t ∈ U so that p′ ∈ •t and p ∈ t•. and there does not exists
a t where p ∈ •t and p′ ∈ t•. When this step happens in M , p gets a new
token. When this happens in M ′ the token will also be added to p and a
token will be removed from p′. The complemented place is still working since
it contains no token while the original place does.

– p ∈ U• ∩ •U
then there is a t ∈ U so that p ∈ •t and p′ ∈ t•. and there also exists a t where
p′ ∈ •t and p ∈ t•. When this step happens in M the token from p will be
removed and another token will be putted back in. When this step wants to
fire in M ′ it requires a token from p and p′ witch may never occur so the new
set-net with a complement of p has different behaviour then the original one.

Conclusion: complementing places in set-nets does not affect the behaviour
if and only if the complemented places are only used as input or only used as
output place. Contact-free is not a normal form for set-nets.

⊓⊔

4 Configuration graphs

4.1 Complexity

It is rather easy to create a CG for a given set-net. We can just check all possible
transitions and combinations of transitions that can fire in the initial configu-
ration and we can calculate what new configuration these transitions or set of
transitions lead to.
But, there is one little problem with set-nets, since the firing of steps (a set of
transitions) could have different behaviour then firing them sequentially, differ-
ent configurations can arise from those steps. So we need to include all steps to

The beginning of a theory for set-nets 19

see what configurations are reachable.
If a certain configuration allows n transitions to fire, there are n2 different steps
that can fire as well. All possible sets of enabled transitions can fire from that
configuration. Creating the full configuration graph can be time consuming de-
pending on the amount of enabled transitions per configuration.

4.2 Finite

A set-net has always a finite configuration graph because:
(1) a set-net has a finite number of places
(2) every place has one token or no token at all,

so for every place there exists two possible markings.
(3) a finite number of places with a maximum of 2 configurations per

place gives us a maximum of 2n where n = #P (number of places in P)
possible configurations in the graph.

4.3 Special configurations

There are a few special configurations that can occur in set-nets. Deadlocks are
the dead ends of the CG, because the CG is finite we can always detect dead-
locks.
Another very special configuration is a configuration in which transitions can
fire, but if they fire the configuration does not change. Let us call these config-
urations ‘stable configurations’.

Definition 36 (N stable configuration). Let N = (P, T, F,M0), C ⊆ P .
A configuration C is stable if:

for all U ⊆ T , U con C ⇒ C[U〉C.
⊓⊔

Deadlocks are a special case of these stable configurations. In deadlocks no
transitions can occur.

Definition 37 (N Deadlocks). Let N = (P, T, F,M0), C ⊆ P .
A configuration C is a deadlock if:

C is a stable state and for all U ⊆ T , U con C implies U = ∅.

C[U〉C can also be written as •U ⊆ U• ∧ U• ⊆ C to show that the possible
appearance of these configurations can be detected by looking at the structure of
the net rather than the behaviour. A typical set-net with a stable configuration:

20 B.v.Stein

p1

p2

t1

Fig. 12. set-net with a stable configuration.

Stable configurations create self-loops in the configuration graph.
This is an interesting property of a configuration as we will see when we try to
convert set-nets to other related boolean net systems. We may want to name a
configuration with such loops. Not only if all transitions at C have this property
but also if only one transition has this property at C.

Definition 38 (N self-loop configuration). Let N = (P, T, F,M0), C a con-
figuration of N,U ⊆ T .
C is a self-loop configuration if:

there exists a non-empty U , U con C ⇒ C[U〉C.
⊓⊔

A net without self-loops can also have a self-loop configuration. This is caused
by steps as we can see in Figure 13.

(a)
p1 p2

t1

t2 (b)

{p1, p2}

{p2} {p1}

t1 t2

t2

t1

{t1, t2}

Fig. 13. self-loop configuration (b) without self-loops in net structure (a)

5 Occurrence nets and partial orderings

Occurrence nets are nets that provide insight into the causal relations between
occurrences of transitions. They are different from configuration graphs because

The beginning of a theory for set-nets 21

they represent a single concurrent run of the net and the relations between the
transitions occurring in that run.
Two major problems arise when constructing occurrence nets for set-nets.

We extract occurrence nets from partial orders of transitive occurrences.

Definition 39 (Partial Ordering). Let A be a finite set. A binary relation
ρ ⊆ A × A is a partial order on A if ρ is irreflexive and transitive; (A, ρ) is
also called a partially ordered set. A subset B of A is linearly ordered if for all
a, b ∈ B : a ρ b or b ρ a or a = b.

⊓⊔

A partial ordering of transitions in a run of an EN system shows how tran-
sitions precedes and succeeds one another.

5.1 Occurrence nets

Definition 40 (Occurrence nets). A net N = (B,E,R) is an occurrence net
if:
(1) N is acyclic. and
(2) #(•b) ≤ 1 and #(b•) ≤ 1 for all b ∈ B.

⊓⊔

Labeled occurrence nets for EN systems are created by unfolding the net
according to a step firing sequence of the system. We begin with all places
invectively labeled according to Cin from our EN system in our new labeled
occurrence net OCEN . Now let us assume that our labeled occurrence net is
partly finished and all places in OCEN that do not have output edges corre-
spond to the marking reached in our original EN system (hypothesis). Step U
fires and we show how the labeled occurrence net is now extended.
We add t ∈ U with a new transition labeled “t” to OCEN . We then find the
places that matches •t in our labeled occurrence net and that have no output
transition. We add directed arcs from every labeled place we selected to the new
transition. We add new places to the OCEN due for each output place of U and
label them accordingly and create directed edges between the labeled transition
and all his labeled output places. We repeat this for all steps in the step firing
sequence.

When we create processes of SN systems by unfolding the net in the same
way, a very strange thing occurs: branching places.
This is in contrast with the second part of Definition 40. In set-nets places can
be the input place of more then one transition, where those transitions can fire
simultaneously. This creates branching places in our occurrence net.
We could adapt the definition and just say they are cyclic, but we can also choose
to change the way we create these occurrence nets, we choice the latter option
because cyclic occurrence nets cannot be abstracted to valid partial orders.

22 B.v.Stein

If we look at set-nets and how they differ from EN systems, we see that in set-
nets sets of transitions can fire simultaneously as a step with shared input. If a
step occurs at a configuration and they do share input then we see a branching
place in our occurrence net. Now instead of modeling a branching place we just
model the set of transitions as one single combined labeled transition. If we do
so then there are no branching places anymore. This idea leads to the following
definitions and constructions.

Definition 41 (SN Dependent substeps). Let SN = (P, T, F,M0) be a set-
net, U ⊆ T a step.
We say that U1U2 . . . Un is a partition of U and are dependent substeps if:

For all these substeps Uk and all t ∈ Uk: ∃t′ ∈ Uk where
nbh(t) ∩ nbh(t′) 6= ∅ and for all t ∈ Uk,∀l ∈ N ≤ n, l 6= k : ¬∃t′ ∈ Ul

such that nbh(t) ∩ nbh(t′) 6= ∅.

This partition of substeps is always unique because every transition is such
a substep is dependent on at least one other transition in the step and not
connected to any other transition outside this step. There is always at least one
dependent substep for a step U .

Lemma 2 (SN Dependent substeps firing). Let SN = (P, T, F,M0) be a
set-net, U ⊆ T a step, U1U2 . . . Un dependent substeps of U . All the substeps are
enabled at C if U is enabled at C and the firing order of the dependent substeps
does not matter for the end result after firing all substeps or U as a step.

Proof. Because of the substep property every substep of U is enabled if U is
enabled. Every dependent substep has no shared places with other dependent
substeps. Therefore firing a substep would not change the state of the input and
output places connected to the other dependent substeps and so the result after
firing all substeps will be the same as firing U .

Each dependent substep will be modeled as a single transition. Since the
dependent substeps are independent with respect to other substeps, firing the
dependent substeps after each other has the same effect as firing them as one
big step. This is why we create a new transition for each dependent part of such
a big step instead of one transition for the whole step.

Definition 42 (construction SN occurrence net). Let SN = (P, T, F,M0)
be a set-net. Let OCS0 = (B0, E0, R0, Φ0) be our initial labeled occurrence net.
Let V1V2 . . . Vn be the step firing sequence we use for our construction and OCSk

the labeled occurrence net we have after firing step Uk.
We start with the occurrence net OCS0 where Φ is our labeling function
between OCS and SN . Φ(B) → P,Φ(E) → P(T)

E0 = R0 = ∅. ∀p ∈ M0 : B0 = {bp0
: p ∈ M0} Φ(bp0

) = p.
now for every step U = Vk from our step firing sequence we fire in SN :

(1) U ⊆ T,U 6= ∅. We first split U

The beginning of a theory for set-nets 23

in parts that are independent from each other by using definition 41.
(2) For each dependent substep Ul we add a new labeled transition e to

E and extend Φ with Φ(e) = Ul.
We then apply for each U the steps below. (3-7)
(3) We find all places b where Φ(b) = p, p ∈ •Ul let this be P1.
(4) We take all places P2 ⊆ P1 such that P •

2 = ∅.
(5) ∀b ∈ P2 we add (b, e) to R (directed edges).
(6) ∀p ∈ U•

l , we add a new b to B
and extend Φ with Φ(b) = p, let this set be P3.

(7) ∀b ∈ P3 we add (e, b) to R (directed edges).

(a)

p1 p2

p3

t1

t2

t3

(b)

p1 p2

p3

p2

t1

t2

t3

Fig. 14. Set-net (a) with standard occurrence net (b) for {t1}{t2, t3} with branching
places.

(a)

p1 p2

p3

t1

t2

t3

(b)

p1 p2

p3

p2

t1 {t2, t3}

Fig. 15. Set-net (a) with new occurrence net (b) for {t1}{t2, t3} without branching
places.

This notation of occurrence nets for set-nets is much more natural than
the EN occurrence net notation. Not only because it eliminates the problem of
branching places but because it gives the right information for contact-free set-
nets as well. If we look at Figure 14.a then we see that the configuration {p2, p3}
is caused by the transitions t2 and t3. We don’t know that p2 is caused by of t2

24 B.v.Stein

for example. It could be that firing a step leads to different configurations and
therefore to different effects.
In the new notation (figure 15.a) we see that the configuration {p2, p3} is caused
by the step {t2, t3} and that is exactly what we want.

Theorem 4 (SN labeled step occurrence nets). Let SN = (P, T, F,M0).
If OCS = (B,E,R,Φ), Φ(E) ⊆ P(T), is a labeled step occurrence net of SN
according to definition 42 then:
(1) OCS is acyclic. and
(2) #(•p) ≤ 1 and #(p•) ≤ 1 for all p ∈ B.

Proof. Every step in SN consists of 2 or more transitions sharing places or
not sharing places (steps with 1 transition are just single transitions). If they
do not share places then we have just two concurrent transitions without any
branching at all in our OCS. If they do share places then we can create a new
combined transition that models the step by just taking the combined effect of
the transitions. OCS is acyclic because we add new places every time a transition
occurs. We never take places already in OCS as an output place, so no cycles
can be made. ⊓⊔

By creating occurrence nets this way (definition 42) we will not get branching
places. We also have the nice side effect that a lot of the EN theorems about
occurrence nets now also hold for contact-free set-net occurrence nets, because
we can unfold them almost the same way. As another side effect we get imme-
diately the information if a step has taken place or whether transitions fired
independently.
We want that an occurrence net displays only possible histories of the set-net
and one of those histories has to be the one we fired to create the occurrence net.
This is now the case for contact-free set-nets. However we know that contact-free
is no normal form for set-nets. For non contact-free set-nets this construction
does not work.
We do not see the causal relations between the transitions inside the step any
longer. Steps are a very basic and an important aspect of set-nets. We could see
the firing of steps as an elementary behaviour. We can even say we only fire sets
in set-nets where those sets consist of one or more transitions. Recall that those
steps could have different behaviour then the single transitions, that’s why we
want to treat them differently.

When a step with shared places happens in the occurrence net we do not
know if the transitions after this step are being caused by the step or a subset
of the step. Since we do not know that the step is the minimal set to enable
these transitions, we cannot say this step has to happen before the transitions
he causes. We therefor introduce an already known relation: weak causality [7].
Normal causality (denoted by U ≺ t) means that U need to occur before t.

The beginning of a theory for set-nets 25

Definition 43 (Weak causality). Let SN = (P, T, F,M0) a set-net, U ⊆ T
a step and t ∈ T a transition. U precedes t in a weak causal way (denoted by
U ⊏ t) if:

U ≺ t or U occurs at the same time as t. ⊓⊔

Definition 44 (SN inside step relations). If SN = (P, T, F,M0), OCS =
(B,E,R,Φ) be a labeled step occurrence net of SN , U a step in SN with a
labeled transition in OCS, v a transition or step preceding U then:

for all t ∈ T , t ∈ U ∧ v ≺ U ⇒ v ≺ t
for all t1 ∈ U, t2 ∈ U, t1 6= t2 : t1 ⊏ t2 ∧ t2 ⊏ t1

⊓⊔

Transitions inside steps have a weak causality because we only know that
they can fire simultaneously while it might be that they can also fire after one
another.

5.2 Occurrence nets for non contact-free set-nets

The semantics of our new occurrence nets (created by construction 42) need to
be correct (soundness of the occurrence net). This means that if we create an
occurrence net by our construction method then we get an occurrence net with
only correct histories according to the original set-net. One of the histories has
to be the one we fired to create the occurrence net.
Firing a transition in an occurrence net works the same way as firing transitions
in set-nets (same rules apply).

Our proposed occurrence net model so far works for contact-free set-nets,
however there is a big problem we did not solve yet: contact.
We did not handle contact and that is a problem as we will see in the next
examples. (Figure 16)

For EN systems we already know that we can only create an occurrence net if
the elementary net is contact-free (Definition: 33). We can make these contact-
free EN systems by complementing places. Recall that complementing places
does not work in set-nets. We cannot make a given set-net contact-free because
the contact situations give us different behaviour of the net.

Contact violates the soundness of our occurrence net. To deal with this prob-
lem we need to modify our occurrence net structure. When contact happens in
the set-net we need to preserve the specific firing order in our occurrence net
without making it to strict. We can do this by creating new, so called, shadow
places. Places that do not really count to the configuration but who indicate that
contact happened due to this particular place. When we then fire a transition
from the real place we have to take all tokens from their shadow places as well.
This way we force the firing sequence to be correct in the occurrence net.

26 B.v.Stein

(a)
p1 p2

p3

t1 t2

t3

(b)

p1

p2

p3

p2

p3

p1 p2

t1

t2

t3 t1

Fig. 16. Proposed occurrence net (b) for {t1}{t2}{t3}{t1} of the set-net (a) with con-
tact is not sound!

Definition 45 (slice). Let OCS = (B,E,R,Φ) be a labeled step occurrence
net.
A slice is a maximum set of places not connected to each other by R∗. ⊓⊔

We need the following additional rules for creating our occurrence nets:

– When we fire a step U with t ∈ U at C with p ∈ t• ∩ C then we create a
shadow place S(pk) in our labeled occurrence net where Φ(S(pk)) = p and
add a directed arc from the step to the shadow place. (k is a number that
gets increased every time we add a new place.

– When we fire a transition t at C with input places •t ⊆ P , t has Bt as input
places in the labeled occurrence net with Φ(Bt) = •t and S(Bt) as shadow
input places in the occurrence net denoted by a dashed directed edge.

The construction for our labeled step occurrence nets will now be as follows:

Definition 46 (SN labeled step occurrence net construction). Let SN =
(P, T, F,M0) be a set-net. Let OCSN0 = (B0, E0, R0, Φ0) be our initial labeled
occurrence net. Let V1, V2 . . . Vn be the step firing sequence we use for our con-
struction and OCSNk the labeled occurrence net we have after firing step Uk

We start with the occurrence net OCSN0 where Φ is our labeling function
between OCSN and SN . Φ(B) → P,Φ(E) → P(T).

E0 = R0 = ∅. ∀p ∈ M0 : bp0
, B0 = {bp,0 : p ∈ M0} Φ(bp0

) = p

The beginning of a theory for set-nets 27

now for every step U = Vk from our step firing sequence we fire in SN at
the current configuration C:

(1) U ⊆ T,U 6= ∅. We first split U

in parts that are independent from each other by using definition 41.

(2) For each dependent subset Ul we add a new labeled transition e to E
and extend Φ with Φ(e) = Ul.

We then apply for all substeps Ul of the partition each step below (3-7).
(3a) We find all places b where Φ(b) = p, p ∈ •Ul let this be P1.
(3b) We find all places S(b) where Φ(S(b)) = p, p ∈ •Ul let this be SP1.
(4a) We take all places P2 ⊆ P1 such that P •

2 = ∅.
(4b) We take all places SP2 ⊆ SP1 such that SP2

• = ∅.
(5a) ∀b ∈ P2 we add (b, e) to R (directed edges).
(5b) ∀S(b) ∈ SP2 we add (S(b), e) to R (dashed directed edges).
(6a) ∀p ∈ U•

l ∧ p /∈ C, we add new b to B.
and extend Φ with Φ(b) = p, let this set be P3.

(6b) ∀p ∈ U•
l ∧ p ∈ C, we add new S(b) to B.

and extend Φ with Φ(S(b)) = p, let this set be P4.
(7a) ∀b ∈ P3 we add (e, b) to R (directed edges).
(7b) ∀S(b) ∈ P4 we add (e, S(b)) to R (directed edges).

⊓⊔

We also need some additional rules for firing transitions in our occurrence
nets:

– We can only fire a transition if all its input places and shadow input places
are filled. (so we threat shadow places like normal places if it comes to
enableness)

– A transition cannot fire to a shadow place S(p) if p is not in the current
slice.

– We only allow fire sequences in our process net that begin with the initial
marking and fire until the end marking (last possible marking of the occur-
rence net) has been reached.

The shadow places in the occurrence net (figure 17) force us to fire the se-
quence in the occurrence net that we fired in the original set-net to create the
occurrence net. This assures us that this is a correct history of the net. We lose
some information about the relations between these transitions, that is why we
create dashed edges between the shadow places and the transitions that “de-
pend” on them. The soundness of our occurrence net can now be proved.

Theorem 5 (SN occurrence net soundness).
The occurrence net we get from a firing sequence in a set-net is sound.

Proof. Let SN = (P, T, F,M0) be a set-net and OCSN = (B,E, F, Φ) a labeled
occurrence net for SN . Every configuration of OCSN corresponds to a config-
uration in SN . Φ(B) → P . If we fire a transition e in OCSN we can also fire

28 B.v.Stein

(a)
p1 p2

p3

t1 t2

t3

(b)

p1

p2

p3

p2

p3

p1 p2

t1

t2

t3 t1

Fig. 17. The set-net (a) with its occurrence net (b) with shadow places.

the corresponding transition or step Φ(e) in SN . This is because the transition
e in OCSN must have all input places (also shadow places) filled and therefor
all input places of the corresponding step or transition in SN are filled as well.
We can fire the step firing sequence we used to create OCSN from the initial
marking because of our construction. This step firing sequence is valid in our
OCSN and because of all this the occurrence net is sound. ⊓⊔

5.3 Partial orders

We can create a partial ordering of the SN occurrence net the same way we did
by EN occurrence nets. Just by removing the places in the occurrence net. We
then need to specify what to do with shadow places. We remove the shadow
place and use a dashed directed edge from the transition before the shadow
place to the transition after the shadow place. This way we again enforce the
fire sequence to be correct while we still have the information that contact did
happen and that the causality between these transitions are not strict.

Theorem 6 (SN partial order correctness).
The partial order we get when we erase all places from our labeled step occurrence
net is correct.

Proof. The fire sequences that can be made from the partial ordering are all
valid fire sequences of the occurrence net and set-net. All the fire sequences

The beginning of a theory for set-nets 29

t1

t2

t3 t1

Fig. 18. Partial order of the occurrence net of Figure 17.

in the partial ordering correspond one to one to a sequence of the occurrence
net since every place is now exactly connected to only one input transition and
only one output transition from the occurrence net. We already proved that our
occurrence net was sound for set-nets so our ordering works correct. ⊓⊔

Theorem 7 (SN partial orders to occurrence nets). Given a partial order
from a set-net we can convert the order back to an occurrence net.

Proof. If we have the partial ordering we can add the input and output places
between the arcs again for every transition. Between a dashed arc we create
a shadow place with an input edge and a dashed output edge. The produced
occurrence net is isomorph to the original occurrence net. ⊓⊔

Given all these we can conclude that the semantics of our occurrence net
model are correct for set-nets. But if a set-net has contact somewhere we lose
some information about the specific causal relations between the affected tran-
sitions. We can however regain this information if more occurrence nets with
different sequences are provided or being made.

6 Extended set-nets

Extended set-nets are set-nets with additional types of arcs: Inhibitor and acti-
vator arcs. These arcs added to the normal set-nets to check whether a certain
event can occur or not (in biological reactions there are catalysts (activators)
and inhibitors). In the next section we define these extended set-nets and prove
that they add something useful to the set-net model.

6.1 Definitions

An extended set-net is a set-net with activator arcs and inhibitor arcs.

Definition 47 (extended set-net). An extended set-net is a tuple:

SNIA = (P ,T ,F , Inh,Act ,M0)

30 B.v.Stein

where (P, T, F,M0) is a set-net and

Inh ⊆ P × T

Act ⊆ P × T

are respectively the sets of inhibitor and activator arcs. ⊓⊔

An inhibitor arc ends with a small open circle, while an activator arc ends
with a small black circle.
For a transition t we use:

◦t = {q | (q, t) ∈ Inh} and ¨t = {q | (q, t) ∈ Act}

to denote the inhibitor and activator places of t.

Inhibitor arcs and activator arcs have a special effect on the enabling of
transitions. Places with an activator arc to a transition t have to be filled and
all places with an inhibitor arc to t have to be empty in order for t to be enabled.

Definition 48 (enabled extended set-net).
Let SNIA = (P, T, F, Inh,Act,M0) be an extended set-net, C ⊆ P , a non-empty
set U ⊆ T . U is enabled at configuration C if

•U ∪ ¨U ⊆ C and ◦U ∩ C = ∅; .

The firing rule of enabled steps and transitions in extended set-nets are the same
as those of normal set-nets, inhibitor and activator arcs do not affect them.
Thus, inhibitor arcs check if there is no token in a place connected to it, while
activator arcs check if there is a token in its connected places. Both arcs do not
affect the tokens in the connected places.

6.2 Expressive power

Why would we use inhibitor arcs and activator arcs?
If we can use normal set-nets only, things would be much simpler as you can
imagine. If we can prove that normal set-nets have the same expressive power
as extended set-nets we do not need inhibitor arcs and activator arcs.

The first thing we may try is to get rid of all the inhibitor arcs by comple-
menting the places with these arcs and give their complements an activator arc.
This works only when complementing does not affect the behaviour of the net.
As we have seen in Theorem 3 this only works when the place with an activa-
tor or inhibitor arc has only output arcs or only input arcs. Every set-net that
has inhibitor or activator arcs only to places that can be complemented, can be
replaced by a set-net with respectively activator or inhibitor arcs which can be
simulated with the original set-net. This is only a very small set of nets, so not

The beginning of a theory for set-nets 31

very useful.

We may try is to see whether there is a SNIA with a configuration graph
that does not exist with only normal input and output arcs. This would prove
that inhibitor arcs really add something to the net system.

(a)

x

y

z

a

b

(b)

{x, y}

{z, y}
a

{a, b}

b

Fig. 19. an extended set-net (a) with its configuration graph (b).

Figure 19 shows an extended set-net with an inhibitor arc that has a rather
special configuration graph. Transition b can fire multiple times from the initial
configuration but when a or the set {a, b} occurs, b will be disabled. If we try
to do this with a normal set-net we fail to achieve this configuration structure.
The set in which b itself is an element, could never disable b in a normal set-net.
This is because b alone does not disable itself (in a normal set-net b would have
a self-loop). This proves that inhibitor arcs really extend set-nets as a model.

We can also give an extended set-net with a special configuration graph to
prove that activator arcs just like inhibitors add something to our set-net system
(figure 20).

However Figure 19 and Figure 20 can be converted into each other by using
complementation since the places that use the inhibitor arc respectively activator
arc only use input or only use output arcs.
However it is very simple to create a similar net that cannot be complemented
(because the place with inhibitor or activator arc has input and output edges)
and still has a configuration graph that normal set-nets cannot have (Figure 21).
However this does not prove that both arc types are needed for the expressive
power. One extended arc type might be enough but this will not be proven in
this paper.

32 B.v.Stein

(a)

x

y

z

a

b

(b)

{y, z}

{x, y}
a

{a, b}

b

Fig. 20. An extended set-net (a) with its configuration graph (b).

We can conclude that there exists extended set-nets with a CG where there
is no normal set-net able to simulate this extended set-net.

7 A comparison of set-nets and EN systems

In this section we investigate whether set-nets can be converted into EN sys-
tems and extended set-nets into EN systems with inhibitor and activator arcs.
This should then make it possible to say more about equivalence and the be-
haviour of set-nets and their structure with respect to EN and other net systems.

With converting we mean that the set-net or extended set-net can be simu-
lated by an EN system or ENIA (EN with inhibitor and activator) system. With
simulation we mean that the valid step firing sequences of the SN or SNIA,
correspond one to one with a valid firing sequence of the EN or ENIA system.
For example, when a step firing sequence for a SN is {t1}{t2t3}{t4} then the
corresponding sequence that has to be correct for the EN system will be: t1t23t4
where t23 is a single transition corresponding to the step {t2t3}. If this convert-
ing is vice versa (from EN to SN) then they have to accept exactly the same
step fire sequences.

Theorem 8 (Contact-free set-net to EN). Let SN = (P, T, F,M0) be contact-
free. Then there exists an EN system that is able to simulate the given set-net.

Proof. For all U ⊆ T and reachable C in SN we have if •U ∈ C then •U ⊆
C∧U•∩C = ∅. We copy SN as the new EN system and in addition for every U ,
we have a new transition tU with the same input and output places as U . The

The beginning of a theory for set-nets 33

x

y

z

w

a

b

c

Fig. 21. Extended set-net where the activator arc cannot be replaced by complementing

new EN system simulates the original SN system because every valid step firing
sequence {U1}{U2} . . . {Un} for SN can be converted to a valid firing sequence
tU1tU2 . . . tUn for EN. ⊓⊔

Theorem 9 (Contact-free extended set-net to ENIA).
Let SNIA = (P, T, F, Inh,Act,M0) be contact-free. Then there exists an EN
system with inhibitor and activator arcs (ENIA) that is able to simulate the
given set-net.

Proof. Let us use Theorem 8. Since activator and inhibitor arcs are used in the
same manner for both net systems, we can just copy these arcs directly from our
extended set-net to our EN system. ⊓⊔

Theorem 10 (Contact-free and conflict-free EN system to SN). Let
EN = (P, T, F,M0) be contact-free and conflict-free EN system. Then there
exists a set-net that is able to simulate the given EN system.

Proof. We can copy the net into a new set-net that has the same net structure
and exactly the same behaviour as the original EN system. Since there is never
a conflict between transitions, only those steps can occur that were concurrent
steps in the original EN system. And because the net is also contact-free, all
enabled transitions in the set-net will be the same as in the original EN system.

⊓⊔

Theorem 11 (Contact-free and conflict-free ENIA to SNIA). Let ENIA =
(P, T, F, Inh,Act,M0) be contact-free and conflict-free. There exists an extended
set-net (SNIA) that is able to simulate ENIA.

34 B.v.Stein

x

y

z

w

a

b

c

Fig. 22. Extended set-net where the inhibitor arc cannot be replaced by complementing

Proof. Let us use Theorem 10. The inhibitor and activator arcs affect each kind
of net system the same way, so we can just copy them as well. ⊓⊔

Thus set-nets can be converted to EN systems if they are contact-free. And if
a SN system is contact-free and conflict free it behaves exactly as an EN system.

8 Related boolean net systems

In this section we briefly refer to two boolean net models that appear to be
related to set-nets in that they have different enable rules than EN systems.

In the early sixties Petri nets were founded by Carl Adam Petri [8]. Some of
the early Petri nets where called condition event nets (C/E). These nets where
actually the same as the now known EN systems. The only difference was that
they also looked at case classes. A case class is actually a large set of all case
graphs (now called configuration graphs (Definition 19) or reachability graphs)
of a given net without a specific begin marking. It is unclear why we don’t look
at these case classes anymore but it is neither clear why they did this before.
Because these nets are not used anymore and almost identical to EN systems we
did not pay further attention to them in this paper.
Another related net model is the flipflop system [10]. These systems are like EN
systems but in addition they have some different type of arcs. They consist of
four relations : +,−,×,= between places and transitions. The + and − are the
normal EN relations where + gives the place a token and − removes one token.
The = means that there is no arc and the × either removes a token or adds a
token depending if there already is a token or not (the × gives the behaviour as
in a flipflop). These flipflop systems where created to solve the synthesis problem

The beginning of a theory for set-nets 35

in polynomial time. These flipflop nets can be seen as an extension of the EN
system. Set-nets differ from EN systems because of their enabling and firing rules
while these flipflop nets differ from EN systems by structure (and firing rules).
Their enabling rule is the same as the rule for EN systems. × arcs do not affect
the enabling since they just swap tokens either if there is a token present or not.
So this net system is related to set-nets because it has different enabling rules
than EN systems by means of the × arcs, but they are still very different from
set-nets because these flipflop systems do have contact and do not have steps as
in set-nets.

9 Concluding remarks

We have investigated the new set-nets, a Petri net model prior introduced to
model reaction systems following already existing theories for EN systems in-
spired by Elementary Net Systems [9]. The main difference with existing net
classes is the occurrence of steps with shared input that messes up our notions
of conflict and concurrency as we know them from EN and PT systems. Contact
is also a big difference because we do not have the notion of contact in set-nets.
We have proposed a theory for the concurrent and causal behaviour of set-nets
as well as a method to derive semantically correct occurrence nets and partial
orderings. We focused mostly on set-nets but also on an extended set-nets with
inhibitor and activator arcs. We proved that this extended set-net model has
more expressive power then our standard set-net model. The rewriting of our
notions and findings with respect to set-nets in this paper for this extended set-
net model would be future work.

Set-nets deserve their place in the full Petri net theory because they have
proven to be very different from EN and PT systems while very useful for the
modeling of biological reactions. Because of the ability to fire steps with shared
input and output places, the set-net system is quite powerful. With only a few
transitions, many firing combinations arise and all may give different behaviour
and configurations.

The phenomenon causing the differences between set-nets and PT/EN sys-
tems is semi-unorderedness. Semi-unordered steps are proved to be quite useful
in understanding set-nets and the differences between set-nets and other Petri
net systems. Set-nets without these steps and without self-loops can be simu-
lated by EN systems.

Semi-unordered steps lead to problems for the creation of occurrence nets
and partial orderings. We have proposed a model to construct occurrence nets
for SN by using the new concept of shadow places and arcs. Shadow places should
ensure that the model would be sound, in the sense that every occurrence net
associated with SN allows only valid step firing sequences. From these sound

36 B.v.Stein

occurrence nets we could then derive partial orderings that resemble the causal
relations between transitions and steps in our set-net.

While some questions have been answered about set-nets in this paper, there
are many more to be answered in the future. For extended set-nets a lot of
problems have not yet been solved and interesting questions could be: Has SN
with inhibitor arcs or SN with activator arcs the same expressive power as SN
with both activator and inhibitor arcs? How can we create processes for these
extended set-nets and do the inhibitor arcs and activator arcs cause additional
problems?
This and other questions give us a nice challenge in future works. The beginning
of a theory for set-nets has been written but it is far from finished.

References

1. E.Badouel and P.Darondeau: Theory of regions. LNCS 1491 (1998) 529–586
2. L.Czaja: A Calculus of Nets. Cybernetics and Systems 29 (1993) 185–193
3. P.De Bra, G.J.Houben and Y.Kornatzky: A Formal Approach to Analyzing the

Browsing Semantics of Hypertext. Proc. CSN-94 Conference (1994) 78–89
4. J.Desel, W.Reisig: Place Transition Petri Nets, LNCS 1491 (1998) 122–173
5. A.Ehrenfeucht and G.Rozenberg: Reaction Systems. Fundamenta Informaticae 76

(2006) 1–18
6. J.Kleijn, M.Koutny and G.Rozenberg: Modelling Reaction Systems with Petri

Nets Proceedings of the International Workshop on Biological Processes and Petri
Nets (2011) 36–52

7. J.Kleijn and M.Koutny: Formal Languages and Concurrent Behaviours, New De-
velopments in Formal Languages and Applications. Studies in Computational
Intelligence (2008) Springer Berlin / Heidelberg 125–182

8. C.A.Petri: Kommunikation mit Automaton, Bonn: Institut fur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, (1962). In German.

9. G.Rozenberg, J.Engelfriet: Elementary Net Systems. LNCS 1491 Petri Nets
(1996) 12–121

10. V.Schmitt: Flip-flop nets, 13th Annual Symposium on Theoretical Aspects of
Computer Science Grenoble, France, February 22–24, 1996 Proceedings

11. A.Yakovlev, M.Kishinevsky and A.Kondratyev and L.Lavagno: OR Causality:
Modelling and Hardware Implementation. Application and Theory of Petri Nets
(1994) 568–587

