

Universiteit Leiden

Computer Science

Optimizing octree updates for visibility determination

on dynamic scenes

Name: Hans Wortel
Student-no: 0607940

Date: 28/07/2011

1st supervisor: Dr. Michael Lew
2nd supervisor: Dr. Erwin Bakker

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 3
1.1 The rendering pipeline . 3

1.1.1 Step 1: Preparing scene data 3
1.1.2 Step 2: Updating data structures 4
1.1.3 Step 3: Collecting visible objects 4
1.1.4 Step 4: Sending the visible objects to the GPU 4
1.1.5 Step 5: Creating the image 4

1.2 The goal of the project . 5
1.3 Related work . 5

2 Visibility determination methods 6
2.1 Frustum Culling . 6
2.2 Z-buffering . 8
2.3 PVS/Portal rendering . 8
2.4 Hierarchical z-buffer . 9
2.5 Hardware occlusion queries . 9

3 Data structures and update methods 10
3.1 Algorithm: Octree 1 . 10
3.2 Algorithm: Octree 2 . 11
3.3 Algorithm: Octree 3 . 13

3.3.1 version 1 . 13
3.3.2 version 2 . 14
3.3.3 version 3 . 14

3.4 Algorithm: Octree 4 . 14
3.5 Optimizations on several trees 16

3.5.1 Depth reduction . 16
3.5.2 Object checklist . 17

3.6 Overview . 18

1

4 Testing methods and setup 20
4.1 Definitions . 20
4.2 Test Scenes . 21
4.3 Testing methods . 22

5 Tests 24
5.1 Visible mesh count . 24
5.2 Tree updates . 26

5.2.1 Test results . 26
5.2.2 Result analysis . 30

5.3 Results . 33

6 Conclusion and Future work 35
6.1 Conclusion . 35
6.2 Future work . 35

2

Chapter 1

Introduction

Visible surface determination concerns the selecting of those parts of a scene
that are visible from a certain viewpoint. When this has been determined
only those parts need to be rendered. Rendering the scene will usually be
done by the graphics processing unit (GPU). While the GPU will take care
of rendering the scene correctly, this can be done much faster when less scene
geometry is passed to the GPU.

Finding the visible objects in a scene efficiently can be done using a
hierarchical data structure like a octree, kd-tree or a bsp-tree. The objects
in the scene are kept in the nodes of such a tree. If a node is not visible than
its children will not be visible either, which means the visible objects can be
found without checking every object separately.

When objects in the scene are moving the data structure needs to be
updated which can take a lot of time. In this project I will attempt to find a
data structure and method of updating that will allow efficient visible surface
determination on dynamic scenes.

1.1 The rendering pipeline

During the process of rendering, a 2d image will be rendered from 3d scene.
Using the known scene geometry and an viewpoint in the scene, an image
will be created that shows the scene as it would look from the viewpoint.
The following steps will be taken when rendering an image in real-time.

1.1.1 Step 1: Preparing scene data

The scene geometry consists of a large number of polygons which are collected
in objects. These objects have a certain position in the scene which, in case

3

of a dynamic object, will change over time. The first step is to determine for
all these objects what their location for the currently rendered frame should
be.

1.1.2 Step 2: Updating data structures

The objects may be kept in a data structure that allows for a more efficient
rendering process (see chapter 3). In the case of a scene with dynamic objects
in it this data structure may require updating. When rendering in real-time,
recreating the data structure for every frame will usually be too slow. De-
pending on the data structure the update may be very fast or can otherwise
take a significant amount of time.

1.1.3 Step 3: Collecting visible objects

Of all the objects in the scene, some will affect the image that is being ren-
dered, while others will not. An object may be behind the current viewpoint
or it may be hidden behind a larger object. In such a case the final image will
be unaffected by the object’s existence in the scene. To allow efficient ren-
dering these objects may be recognized and discarded early in the rendering
process, so no further processing will be done on them.

To find the objects that will be visible a data structure may be used. If it
allows for faster processing, too many objects may be selected at this point.
This will not affect the image, while making the whole rendering process
faster.

1.1.4 Step 4: Sending the visible objects to the GPU

At this point the polygons of the objects selected in step 3 can be send to
the GPU, which will render them. As communication between the GPU and
CPU is slow, many polygons will usually be sent to the GPU at once, rather
than sending few polygons many times.

1.1.5 Step 5: Creating the image

The GPU translates the polygons with respect to the viewpoint. At this
point a depth for every polygon is known. Every polygon is then drawn on
the output image, using z-buffering (see section 2.2) to ensure that every
pixel only shows the closest one of the polygons that are located on that
pixel.

4

1.2 The goal of the project

In this project the goal is to improve the efficiency of step 3 of the rendering
pipeline of section 1.1, by creating a data structure and update method that
results in little time being spent on the data structure update, while not
having an adverse effect on the whole rendering process.

1.3 Related work

Temporal bounding volumes

In [9] a temporal bounding volume (TBV) is used to avoid having to do
many updates on the data structure. A TBV is a volume that an object is
guaranteed to be in for some number of frames. This object is inserted into
the tree instead of the object itself. While this TBV remains hidden there
will be no updates necessary for this object, unless the TBV needs to be
updated. This works best when the movement of the objects is well known.

Dynamic irregular Octree

The dynamic Irregular Octree[8] is a tree in which objects are inserted in
the root and moved down only during a visibility query. Objects are moved
down until a leaf node is reached or a slitting plane prevents the object from
moving down further. Nodes are split when the number of objects in the node
exceeds a threshold value, at which point the objects in the node are used to
choose a splitting point, rather than dividing the node in eight equal volumes.
Updates are done by removing the object and reinserting it. Disadvantages
of this tree are that many more meshes are found than are really visible, the
tree can get unbalanced over time and in some cases many objects need to
be moved down the tree at once.

Regular grid

In [2] the use of a regular grid instead of a hierarchical data structure is sug-
gested. Fast updates can be done on such a grid, while losing the advantages
of an hierarchical data structure. Their algorithm also uses TBVs.

5

Chapter 2

Visibility determination
methods

In this chapter I will briefly discuss visible surface determination methods in
order to establish the role of the data structures in these algorithms. Many
surveys of visibility determination have been done [4, 7].

2.1 Frustum Culling

Frustum culling is used to find the objects that are visible from a certain cam-
era location in the scene. A volume, called the view frustum, is constructed
that contains the part of the scene that is visible. A hierarchical data struc-
ture can then be used to efficiently determine the objects contained in the
view frustum. Starting from the root node an intersection test between the
volume of the tree node and the view frustum is done. If the node’s volume is
outside the view frustum the objects in the node’s subtree will not be visible.
If the node’s volume is fully contained in the view frustum no more visibil-
ity test need to be done on its children as they will all be within the view
frustum. If only part of a node’s volume is contained in the view frustum
intersection tests will be done for all the node’s children.

Although frustum culling removes many of the objects in the scene it
leaves in the objects that are obscured by other objects. Removing these
objects is referred to as occlusion culling, for which many methods have been
developed. Frustum culling and occlusion culling are illustrated in figure 2.1.
Figure 2.2 illustrates frustum culling using an octree.

6

Figure 2.1: Frustum culling and occlusion culling. Taken from [4].

Figure 2.2: Frustum culling using an octree. Taken from [7].

7

2.2 Z-buffering

In a z-buffer a depth value is kept for every pixel that is being rendered. This
depth value is used to determine if an object should be drawn. If the object
is closer than the object currently shown on a pixel, the object is drawn and
the z-buffer is updated. This algorithm ensures that the correct objects are
drawn and is implemented in the GPU for this task, however it requires that
all objects are evaluated which will take a long time when many objects are
passed to the GPU.

2.3 PVS/Portal rendering

Often used methods for occlusion culling are PVS rendering and portal ren-
dering. In these methods the scene is divided into convex sectors that can be
stored in a kd-tree or a BSP tree. Every sector is only visible from other sec-
tors via so called portals, for example windows and doors. The set of visible
sectors is either precomputed and stored as a potentially visible set (PVS)
[1, 10] or computed on the fly [6]. This method works best for indoor scenes
and requires that sectors and portals are defined for the scene. It is not very
well suited to dynamic scenes and therefore it will not be considered for this
project. This method is illustrated in figure 2.3

Figure 2.3: PVS rendering: The sectors that are visible(light blue) from a
source sector(dark blue). Taken from [10].

8

2.4 Hierarchical z-buffer

Another occlusion culling method is the hierarchical z-buffer [5]. In this
method a hierarchy of z-buffers is used where each element in one z-buffer
holds the furthest value of a 2x2 block in the z-buffer one level lower. The
high level z-buffers can thus be used to quickly cull large occluded volumes.
The visible objects are found by traversing a scene octree front to back. For
every node it is determined if the node is visible using the hierarchy of z-
buffers, before drawing the objects associated with the node. As it requires
reading the z-buffer this method would require a hardware implementation
in order to work efficiently.

Figure 2.4: The hierarchical z-buffer. Taken from [7].

2.5 Hardware occlusion queries

A similar method is using the hardware occlusion queries that are supported
by modern hardware. While traversing a octree front to back occlusion queries
can be used to determine the visibility of the nodes before they are drawn.
Although the hardware occlusion queries are slow, an algorithm like Coherent
Hierarchical Culling [3] shows that this can be efficiently used.

9

Chapter 3

Data structures and update
methods

Many algorithms for visible surface determination have been developed and
many of these use octrees or kd-trees. These methods are usually only ap-
plied to static scenes. For a dynamic scene such a data structure would have
to be updated or recreated for every frame, but this can be slow. In this
project some algorithms have been developed with the intention of finding
an implementation of an octree that may be updated faster for dynamic
scenes.

The octrees store objects that are determined to either be completely
visible or not visible at all. A test scene will contain up to several hundreds
of thousands of meshes. Axis-aligned bounding boxes are used to represent
the volume of the objects.

The implementation of these octrees allows them also to be used as
quadtrees. Quadtrees are better suited to some of the tests.

3.1 Algorithm: Octree 1

Several algorithms have been implemented. The most standard one uses an
octree in which every object is stored in the smallest node that can contain
it, which is the node that has a splitting plane that intersects the object.
This means that many objects will be stored in the high (large) nodes as
there are likely many objects intersecting their splitting planes, which means
that with this octree often many more object than necessary will be drawn.
Possible solutions for this are splitting these objects into two objects that
fit into the lower nodes, or allowing the whole object to be stored in several
nodes. As both of these solutions seem to make the moving of the objects

10

more complicated they have not been implemented. Splitting the object may
have to be done every time it is moved while storing the object in several
nodes means that more nodes need to be updated.

When an object moves and thereby leaves the volume of the node that the
object is kept in, the tree needs to be updated. This update can be done by
removing the object, then updating its location and inserting it in the octree
again. As the objects will usually only move a small distance in one frame,
this update can be done more efficiently by stopping the removal step when
a node is reached that contains the object at its new location and inserting
the object starting in this node. This update method has been implemented.
Since in this octree objects are moved down in the tree as far as is possible
it can also be that after an object moves it can be moved to a lower node in
the tree. If this is not done whenever possible some objects may stay in high
nodes for a long time after updating, as these nodes are much larger and it
may take a long time for a moving object to leave its volume.

3.2 Algorithm: Octree 2

The tree that is used in this algorithm is a modified version of octree 1 that
uses nodes that are larger then they would usually be. Child nodes then
overlap so objects will be more likely to fit into one of a node’s child nodes.
This way objects will be kept lower in the tree and less objects will be found
to be visible when they are not. With this larger tree with overlapping nodes
it does take longer to find the visible meshes. Updating the tree when objects
move will also take longer when the tree is larger. In order to avoid the tree
getting too large a maximum depth can be set. The extra size of the nodes
is a fraction of their normal size (the size they would be if it were a standard
octree). A size divisor value can be set as a parameter of this tree to determine
the extra size of the nodes. The normal size of the octree node divided by
this size divisor is added to its volume at both sides of the volume, meaning
that the final size of the node’s volume is its normal size plus two times that
size divided by the size divisor.

Object depth

While in octree 1 any object can be as high as the root of the tree or as low
as the smallest node that may contain it, the overlap in nodes in octree 2
means that some objects can always be moved down from a certain depth.

During many tests the size divisor value that was used was 2, making
every node twice as large as it would ordinarily be. This means that the full

11

size of a node’s children equals the node’s own normal size. In this situation
an object can always be moved down the tree while its size is less than or
equal to the normal size of the next node, regardless of its exact location, as
even if the center of the object is on the border of the node’s normal volume,
the extra size will be enough to contain the object. When for the first time
while moving down the tree a node is encountered of which the normal size
is not larger or equal to the object’s size, the object may still be moved down
if it is sufficiently close to the center of that node. This is always possible
as, if the current node’s normal size is larger or equal than the object’s size,
the full size of its children will be large enough to contain the object as well.
Moving down yet further is always impossible as that node’s full size will
equal that normal size that was found to be smaller than the object. Thus
depending on its exact location any object will be at one of two depth levels
in this tree.

If a larger size divisor value is used, the extra size will be small relative
to the node’s normal size. In this case objects can get stuck high in the tree
when close to border of a node’s normal volume, while if closer to the center
of lower nodes it may still move down more than one level. Thus in this case
an object may be kept in more that two different levels depending on its
location. This is the case with octree 1, which could be seen as a version of
octree 2 with an extra node size of 0.

If a size divisor smaller then 2 is used this results in nodes much larger
than their normal size. In such a tree it is possible that a certain object can
always be moved down from a particular depth because of the large extra
size of the children at that depth, while it can never be moved down further
as those nodes will be too small to contain the object. Thus in this situation
objects may exist that will always be kept the same depth.

In the case that an object of a particular size can only be kept at a limited
number of depths, this can still change when the object rotates, as when an
object is rotated the size of its axis-aligned bounding box may change.

Tree Updates

Updates on this tree are done as with the octree 1. When an object moves
out of the volume of the node it is kept in, the object is moved up in the tree
until a node is encountered that he object does fit in, from where the object
is then moved down again as far as it can. Note that while moving up in the
tree, the normal volume of the nodes is used instead of the larger volume
used in this octree, as this will often allow the object to move down further
to a lower level of the tree. As with octree 1, when objects move an update
on the tree may be required to move the object down if this is possible.

12

3.3 Algorithm: Octree 3

3.3.1 version 1

This algorithm uses an octree that has a limited number of object associated
with every node. This octree avoids keeping many objects in high level nodes
while still keeping every object in only one node. Instead of using the object’s
bounding volumes to insert them into the tree, insertion in this tree is done
using the object’s location, while the size of a subtree’s bounding volume is
kept separately using the bounding volumes of the objects in the subtree.
Thus the child nodes of one node may have gaps between their bounding
volumes or these volumes may overlap while the point that defines the loca-
tion of an object is always within the node’s proper volume. Many meshes
in a node results in a smaller tree that can be updated faster, but which will
determine many object to be visible when they are not. Few meshes per node
will result in a smaller number of meshes being drawn, but updates will take
longer. Another way the number of meshes found visible by this method can
be decreased is by forcing the highest levels of the tree to be empty. A start
depth can be set from which the nodes will contain meshes, higher nodes will
always be empty.

Tree updates

Updating this tree involves updating the node’s and parent node’s bounding
volumes and moving an object up in the tree if necessary. The object will
then be inserted in the smallest node that contains its location and has
less than the maximum number of meshes per node. This update method is
relatively complex; the bounding volumes need to be updated every time a
mesh moves to another node but also when a mesh’s movement causes the
bounding volume of its node and that if its parent nodes to change.

This update can be made faster by not always shrinking the bounding
volumes when this is possible. Not only will this save the time of shrinking
a node’s bounding volume (and possibly that of its parents), it also means
the bounding volumes will not have to grow as often. The disadvantage of
this is that the meshes in a node may seem visible when actually the node’s
bounding volume should be smaller. Thus a shrinking step is done during
visibility determination instead of during the tree update step. With this
update method the movement of a mesh will lead to an update of the tree
less often, while the part of the tree corresponding to the visible part of the
scene will remain updated as necessary. The visibility determination step
will take more time with this method, but since the meshes are still always

13

updated when moving to a different node, this shrinking step should never
take too much time.

3.3.2 version 2

A different version of this algorithm(3b) was made that allows for faster
updates. This tree does not keep an exact bounding volume for every node,
instead every node only keeps track of the size of the largest meshes in its
subtree, keeping a minimum and maximum value in every dimension. The
bounding volume of a node is then determined as its normal volume with
added to it these size values. This way the tree does not need to be updated
as long as meshes stay within the volume of their nodes, making the updates
faster, however this tree will perform worse at visibility determination.

3.3.3 version 3

A third version of this algorithm(3bR) is similar to 3b but has been some-
what simplified. Instead of keeping minimum and maximum values in every
dimension the nodes in this tree only keep the radius of the largest object
(the radius of its bounding sphere) in its subtree. This method is used for
scenes with many rotating objects. As these meshes constantly decrease and
increase in size in particular dimensions, they might cause updates to a sub-
tree on every frame in the other versions of this tree. This simplification to
the update process would make this tree faster to update in general, while
performing worse on visibility determination.

3.4 Algorithm: Octree 4

In octree 3 the size of the nodes is dictated by the meshes kept in them
while meshes are kept in the first available node. In octree 4 the size of the
nodes depends on their depth, with meshes kept at the depth of the smallest
nodes that may contain them. This means that a particular mesh should
always be kept at the same depth in the tree. As with octree 3 the meshes
are inserted using their location, while the depth that the object will end
up at is determined by its radius still being small enough to have the whole
mesh fit in the node. Object do not need to be moved up and down as often
in this tree as in octree 1 as they always stay at the same depth, furthermore
this tree does not have the limitation of having nodes with a fixed object
capacity like octree 3.

14

The size of a node is determined as its normal size plus one value that is
added to the size in each dimension twice, as this value represents how much
of an object is allowed to be outside the normal volume of the node while the
object’s center is within the normal center of the node. This value is obtained
by taking the largest value in the two or three dimensions of the node size and
dividing it by a size divisor value that can be set during the creation of the
tree. This means that this extra size for each node is half of that of its parent
and that if one mesh is twice as large as another it will be placed one level
higher in the tree. A maximum depth can be set for this tree that prevents
that very small objects are placed in very deep nodes that are smaller than
is useful for visibility determination. This depth limit together with the size
divisor value also allows the tree to be arranged such that updates will be
fast for a particular scene, while the performance of visibility determination
is still good.

While this is how the node size is determined in this implementation,
different ways of determining node size could be used that will result in
objects being kept at different depths.

This algorithm is somewhat similar to octree 2 in which there is also a
limited number of depths at which some object may be kept. A difference
between the trees is that octree 2 checks object’s bounding volumes while
octree 4 only checks object locations, what is comes down to is that in tree 4
objects are moved down to the smallest node that will contain them regardless
of the object’s exact location within the node, while in octree 2 objects may be
moved down further if at their current location a lower node will also contain
it. This means that in octree 4 objects may sometimes be kept higher that
they would be in octree 2, which is bad for visibility determination, but it
means less updates need to be done and the depth of any particular object
will be known from the start regardless of their exact location or rotation.

Although every node has a depth at which it should usually be kept,
when a new node is created during insertion of an object in an (sub)tree,
this mesh will be put in this new node instead of more nodes being created
on a path down to the proper depth for that mesh. When during visibility
determination a leaf with one mesh is found, the visibility test is done with
the bounding volume of that mesh, rather than the volume of the node. This
ensures that objects placed higher than they should be are not found to be
visible more often then necessary. When during mesh insertion a leaf node
with one mesh is encountered with that mesh being higher in the tree that
it should be, that mesh is put at least one level lower to ensure that a mesh
can only be kept in a higher node than it should be kept in when it is the
only mesh in a leaf node and visibility determination can be correctly done.
While kept in such a high node the mesh is less likely to move outside of the

15

node’s volume and require an update on the tree.

3.5 Optimizations on several trees

3.5.1 Depth reduction

In any algorithm that keeps objects at all time in nodes small enough to
allow for effective visibility determination, regular updates will be required.
In practice many of the updates will not have been necessary as the object
already requires another update before that part of the tree was used. To get
a significant improvement in performance it would be useful to reduce the
number of updates done. This could be done by keeping objects in higher,
larger nodes for most of the time, while still being kept in low nodes when
this is useful for visibility determination.

This can be done by moving objects down to an appropriately small
node only when their visibility is being considered. If this would require a
significant part of the octree to be created during visibility determination
this would take too long, however moving objects just a few steps down in
the part of the tree of which the visibility is being considered may not take
much time.

On octree 4

Octree 4 is particularly well suited to such a optimization as in this tree every
object has an proper depth at which it should be kept in the tree. A reduction
to this depth can be set that will be used whenever a mesh is moved. This
means that when a object moves out of the volume of its node it may only be
moved up in the tree to the larger node that it does fit in, or otherwise not be
moved down at much as it usually would when reaching that node. During
visibility determination if a node is only partly visible then the objects in
the node that are supposed to be lower in the tree are moved down one level,
however if the node was already found to be completely visible the objects
can instead be marked as visible without being moved in the tree. This means
that when using a higher depth reduction (DR) the number of nodes that
need to be visited will often be less. The time that visibility determination
takes will increase from the objects that need to be moved down, but at the
same time the smaller number of nodes that is visited will make it faster.

16

On octree 3

Although this methods was originally only used for octree 4, a similar opti-
mization can be done on octree 3 using the start depth that can be set to
affect the visibility determination performance of this tree. Beyond this start
depth any objects is allowed at any depth, however objects can also be put
some levels above this depth using a depth reduction variable. During mesh
insertion and tree updates caused by moving objects the reduced start depth
is used, while during visibility determination objects too high in the tree are
moved down if the node is only partly visible.

Other algorithms

Octree 1 and octree 2 do not implement this optimization as the object in
those trees do not have a clear depth at which they should be kept in the tree.
An implementation of this optimization on these algorithms would therefore
probably be more complex, thus this method is only tested on octree 3 and
octree 4 in this project.

3.5.2 Object checklist

When an object moves it may leave the volume of the node it is kept in in
the octree, which then requires an update. This means that when an object
moves it needs to be checked; that is its location or bounding box needs to
be checked against the node’s volume. If a maximum speed is known for the
object it may be known that the object will not move out of a node’s volume
for a certain number of frames. In that case no check needs to be done on
this object for some frames.

This has been implemented in some of the algorithms. After every time
an object is checked it is determines what the minimum distance between
the object and one its node’s bounds is. The object is then set to be checked
again only once in may have reached this border. Exceptions are when the
object is moved down in the tree during visibility determination if depth
reduction is used or when an object jumps from one location to another,
further than its usual maximum speed. In these cases the object is set to be
checked during the next tree update.

This optimization works well together with depth reduction, as when
objects are kept in large nodes they will often be very far away from the
node’s borders.

17

Implementation

This optimization has been implemented as a number of lists of objects that
should be checked at a certain iteration. Every iteration the first of these
object checklists (OCL) is used and deleted while the other lists are shifted
one iteration forward and a new, empty list is created for the furthers iteration
for which updates are being considered. This means a lot more work needs
to be done for every check when mesh checklists are used then when they
are not. Thus using mesh checklists is only beneficial when it does result in
significantly fewer checks. The implementation of the octrees allows also to
be used without these lists.

Only octree 3 and octree 4 implement this optimization. In octree 1 and
octree 2 object are moved down when they can, thus the tree requires up-
dates when an object leaves a nodes volume or when it becomes completely
contained in the volume of a lower node. This would make determining the
minimum distance the object may move to require an update take more time
while the distance will often be smaller. Furthermore as those trees do not
have depth reduction many objects will be kept in smaller nodes.

3.6 Overview

This section provides an overview of the used methods and their designations
as used in the test section of this report.

Octree 1 Basic octree, objects as deep as possible.

Octree 2 Octree with larger nodes, node size multiplied, objects as deep as
possible.

Octree 3 Limited number of meshes per node, objects put in first node with
room left, node size determined by meshes in subtree, node size partly
updated during visibility determination.

Octree 3b Limited number of meshes per node, objects put in first node
with room left, node size that of normal octree plus size of largest object
in subtree.

Octree 3bR Limited number of meshes per node, objects put in first node
with room left, node size that of normal octree plus radius of largest
object in subtree.

18

Octree 4 Node size normal plus fraction of size in longest dimension added
in each dimension, object location within normal octree node size, ob-
ject depth lowest possible while object radius not larger than extra
node size.

19

Chapter 4

Testing methods and setup

4.1 Definitions

Some definitions of some of the terms used in the next chapters.

Move time (MT) The time it takes to determine the proper location in
the scene for every object. This does not include any processing on the
data structure yet.

Update Time (UT) The time the update of the octree takes when objects
have moved. This includes checking whether objects are still in the
right node in the tree and making all the changes that are required to
put all objects in the right node.

Visibility determination time (VT) The amount of time it takes to de-
termine which objects may be visible according to the algorithm’s vis-
ibility determination method. This means traversing the tree starting
at the root, visiting all nodes that need to be visited according to the
algorithm and adding the found objects to a list of visible objects.

Render time (RT) The time it takes to send the object data to the GPU
as well as the time it takes the GPU to render the final image.

Tree traversal steps The number of steps taken through the tree, only
while updating the tree. This amounts to the number of times a higher
or lower node is checked in order to find the node an object would be
moved to.

Tree updates Number of tree updates. One tree update is when one objects
needs to be kept in another node after it moved through the scene.

20

Node visibility checks The number of times it is determined if a node’s
objects are visible. This includes nodes that are already known to be
visible because their parent node was found to be completely visible.

4.2 Test Scenes

The data structures are tested on two scenes. One of this scenes is a city scene.
In this scene there are a number of city blocks with between them roads with
cars and sidewalks with pedestrians. The people in this scene are composed
of several animated objects. This scene has objects of different sizes moving
at several different speeds. For the tests this scene is usually generated with
250000 objects. Figure 4.1 shows a screenshot from this scene, from the level
of the viewpoint during the tests. Figure 4.2 gives a better view of what the
scene looks like. The 250000 objects of the tests results in a city scene of 19
by 19 blocks.

Figure 4.1: City scene.

The other test scene is a cloud of spheres of which half move randomly.
Some spheres are larger than others, the largest spheres are 4 times as large
as the smallest ones. All moving spheres move at the same speed. This is a
simpler scene but it is less flat and may make better use of an octree. This

21

Figure 4.2: City scene.

scene is usually generated with 200000 objects for the tests. Figure 4.3 shows
a screenshot from one of the tests on this scene.

In both scenes the viewpoint starts close to the center of the scene. As
the performance of some of the tested methods depends on what part of the
scene is visible, the viewpoint moves through the scene. The viewpoint moves
along a straight line while rotating.

4.3 Testing methods

The scenes can be generated with any number of objects. Then the data
structure is initialized and the initial tree is build. After that the main loop
is started which executes these steps for a certain number of frames:

Moving objects The locations and bounding boxes of the objects and the
viewpoint are updated.

Updating data structure It is determined if any of the objects should be
kept in different nodes and the tree is updated accordingly.

Determining visible objects Frustum culling is used to determine the ob-
jects that should be drawn from the current viewpoint.

22

Figure 4.3: Sphere scene.

Rendering The visible meshes are rendered using OpenGL. (optional)

The time that each of these steps takes is measured and averaged to get the
results of the test. Rendering can be done during the tests but it can also be
turned of, so many tests can be done somewhat faster.

The main measure in these test is the time it takes to update the data
structures. However the time it takes to find the visible objects is also impor-
tant as some of the methods do some of the work during this step. Further-
more fast tree updates are not very useful if visibility determination takes a
long time on that tree. Thus in practice the goal is to minimize the sum of
the visibility determination time and the update time. The number of meshes
found is also important to note as a data structure that can be updated fast
is only useful if it still performs well on visibility determination. The methods
have some parameters that can be adjusted to change the performance of the
tree. These will be set so that the tree’s performance is as good as possible
while still performing well on visibility determination.

Visibility determination is done using frustum culling with a distance
limit. Octrees that can be updated fast are also useful for more advanced
methods of visibility determination (see chapter 2), but for this project frus-
tum culling is enough to make sure the quality of the octree is sufficient.

23

Chapter 5

Tests

5.1 Visible mesh count

Every method has some parameters that can be used to find a balance be-
tween good visibility determination performance and fast updates. To be able
to compare the update times of the octrees the parameters are set to find
a number of visible meshes that is about 1.1 times the minimum number
of visible meshes, as determined by checking every mesh against the view
frustum. This number is not a strict maximum as parameters like maximum
depth do not allow for small changes.

Figures 5.1 and 5.2 shows the number of visible meshes found using the
different algorithms on the two scenes. For most methods this number is
around 1.1 times the actual number of visible meshes, however octree 1 always
finds too many meshes regardless of its maximum depth setting. This is
because objects stay in high nodes when they do not completely fit into one
of the node’s children.

This is demonstrated in figures 5.3, which shows a top down view of
the sphere scene with the visible meshes as determined by octree 1. The
viewpoint is in the middle of the scene. Note that this means the viewpoint
is on the border of many of the node’s in the bottom half of the screen, if
the viewpoint was moved forward only a little, many of those meshes would
not be visible. During the test the camera moves instead of standing still in
the center of the screen. Figure 5.4 shows the same situation only with just
the actually visible meshes drawn. The visible meshes found using octree 4
are shown in figure 5.5, in which about 1.1 times as many meshes are shown
as in figure 5.4, which was the goal for this test.

It seems that octree 1 without any adaptations to make it better at visi-
bility does not perform well enough for it to be possible to compare its update

24

Figure 5.1: Number of meshes found visible and actual number of visible
meshes in the sphere scene.

Figure 5.2: Number of meshes found visible and actual number of visible
meshes in the city scene.

25

performance with that of the other methods. Octree 2 is a modified version
of octree 1 that uses larger nodes, which allows it to find much fewer visible
meshes.

Figure 5.3: Top down view of the sphere scene when using octree 1.

5.2 Tree updates

5.2.1 Test results

Figure 5.6 shows the performance of the algorithms on the sphere scene. The
parameters used for these tests were:

1 Maximum depth: 8.

2 Maximum depth: 7, size divisor: 3.

3 Meshes per node: 2, start depth: 5.

3b Meshes per node: 2, start depth: 7.

3bR Meshes per node: 8, start depth: 7.

3bR DR/OCL Same, but uses depth reduction of 3 and OCL.

26

Figure 5.4: Top down view of the actually visible meshes in the sphere scene.

Figure 5.5: Top down view of the sphere scene when using octree 4.

27

4 Max depth: 6, size divisor 6.

4 DR/OCL Same, but uses depth reduction of 3 and OCL.

Figure 5.8 shows the performance of the algorithms on the city scene.
The parameters used for these tests were:

1 Maximum depth: 10.

2 Maximum depth: 9, size divisor: 2.

3bR Meshes per node: 168, start depth: 9.

3bR DR/OCL Same, but uses depth reduction of 3 and OCL.

4 Max depth: 10, size divisor 2.

4 DR/OCL Same, but uses depth reduction of 4 and OCL.

In figures 5.7 and 5.9 some statistics about some of the trees are shown.
Every value of octree 2 has been set to 100 so that the different statistics can
easily be shown and compared in one graph. Shown are the number of times
than an object moved and was found to still be contained in its node in the
tree, the number of nodes in the tree at the end of the test, the number of
steps up and down the tree that were done during the updates on the tree,
the number of times the tree needed to be updated because an object had
left the volume of its node and the number of nodes that were visited during
visibility determination.

Figure 5.6: Update and visibility determination times of several methods on
the sphere scene.

28

Figure 5.7: Statistics of several methods on the sphere scene.

Figure 5.8: Update and visibility determination times of several methods on
the city scene.

29

Figure 5.9: Statistics of several methods on the city scene.

5.2.2 Result analysis

Sphere scene tests

Octree 1 Octree 1 takes the least amount of time to find the visible meshes,
which is to be expected as that octree is smaller than the others and finds
many more objects than the other methods. Still octree 1 takes more time
to update than octree 2. When comparing the statistics of the two trees it
can be seen that while octree 1 is smaller and less steps through the tree are
taken to update it, the number of times that an update needs to be done
is much higher than it is for octree 2. This is because in octree 1 when an
object leaves the volume of a node it will usually be only partly in another
node at the same depth, meaning that whenever an object has to be updated
it initially ends up higher in the tree. Eventually the object will be able to
move down the tree again, meaning that several updates are done for every
time an object leaves a node. The other trees avoid this by somehow putting
an object in a node that it will probably be able to stay in for some time
after it leaves the volume of its node.

Octree 3 Octree 3 is slower than any other, even though its visibility deter-
mination takes less time than most other trees. The reason octree 3 performs
well on visibility determination is because its nodes are only as large as they
need to be to contain the objects in their subtree. This is what allows octree
3 to put objects in its nodes starting at a depth of 5 rather than 7 like the
other versions of octree 3, because the visibility checks are done on smaller,

30

more accurate volumes the number of meshes found with this octree will
be relatively small at a given start depth. This tree checks and updates the
volume of the nodes in part during visibility determination, which does not
seem to slow it down much. The complicated updates on the node’s volume
do make this tree take very long on tree updates, node volumes may need to
be updated even when meshes stay within the node’s normal volume.

In octree 3 only 2 objects can be kept per node because it starts keeping
objects in nodes relatively high in the tree. Allowing it to keep more object
in a node means too many will be kept at such high levels and thus found
to be visible when they are not. In order to get good visibility determination
performance octree 3b and octree 3bR can only keep objects starting at depth
7, which is deep enough that nodes will be small enough so that there will
not be many objects in one node regardless of the node’s capacity. Octree 3b
therefore has a node capacity of 2, more would only waste space. Octree 3bR
on the other hand has depth reduction implemented in it, making it beneficial
for nodes to have a larger capacity so that many objects from different low
level nodes may be kept in one higher level node.

While octree 3b and octree 3bR have a start depth of 7, octree 2 uses a
maximum depth value of 7. In all these octrees most objects are probably
kept at that level. In octree 2 however some objects may be kept slightly
higher while in 3b and 3bR some are kept slightly lower. At that depth the
nodes of octree 2 will be slightly larger, as the nodes in octree 3b and octree
3bR are only as large as they need to be for the objects kept in those nodes,
while the extra size of the nodes at depth 7 of octree 2 is apparently large
enough to allow objects in them. This means octree 2 takes somewhat longer
at visibility determination, for which it visits more nodes, while updating a
little faster, as object are slightly higher in the tree, and have more room to
move within their nodes. The difference in performance between these tree
is however not very large. Octree 3bR is slightly faster then octree 3b, which
is likely because its updates are simpler.

With DR and OCL octree 3bR updates takes less than half the time
they otherwise take. Visibility determination is slightly slower but overall
this method works quite well.

Octree 4 Octree 4 is about one third faster on this scene than octree 2. The
reason for this is in part that objects in octree 4 may be kept in higher nodes
that usual if they are the only mesh in that node’s volume. To prevent these
meshes from being found visible too often the visibility check on such a node
is done on the object’s volume instead of on the node’s volume. Although
meant mostly for those meshes that are higher in the tree than they should

31

be, this check on only the object’s volume also decreases the number of visible
meshes found in general. This allows this octree to work well with a maximum
depth of only 6 and nodes that are smaller that those of octree 2.

Using DR and OCL on octree 4 makes it yet a lot faster. The updates on
the tree take on average only 3.33 ms, which is about one fourth of the time
the updates take on octree 2. Visibility determination takes slightly longer
then when not using depth reduction, but it still takes less time than with
most other octrees. Together updating the tree and determining the visible
meshes takes about half the time it takes with octree 2.

DR/OCL The result of depth reduction on both octree 3bR and octree 4
is that the tree is smaller and requires less updates. The number of nodes
visited for visibility determination is also slightly lower as when objects are
kept higher in the tree and nodes are completely visible, creating and visiting
lower nodes is not necessary. Using object checklists means that checks on
objects need to be done less often, especially for objects kept in high nodes.
This can be seen in the ‘Object Ok’ statistic in figure 5.7 which shows the
number of times a check was done on an object when an update was not
necessary.

City scene tests

The tests on this scene were done with quadtree version of the methods
rather than octrees as it is a very flat scene for which a quadtree is better
suited than an octree. Another significant difference is that this scene is much
bigger and less objects are visible at once. The result of this is that visibility
determination is much faster on this scene than on the sphere scene, as can
be seen in figure 5.8. The higher depth limits used on this scene is also a
result of that; as these are quadtrees the number of nodes in the trees is no
more for this scene than for the sphere scene.

Octree 1 performs relatively well on this scene. This tree is no smaller
than the other trees, with some object being kept very far down in the tree.
Those objects that end up higher in the tree still keep it from performing
well on visibility determination. As before when an object leaves a node it
often requires several updates on the tree, making updates on the tree slow.

The performance of tree 2, tree 3bR and tree 4 is very similar on this scene.
They all keep the meshes at about the same depth. For tree 2 this means a
maximum depth of 9, resulting in slightly fewer nodes and updates for this
tree. Tree 3bR keeps nodes starting at depth 9, but keeps many objects per
node is this scene. This large number of nodes is once again useful when
using depth reduction, while without DR it results in all objects being kept

32

at depth 9. Octree 4 requires a maximum depth of 10 on this scene. This
small difference may be because this tree keeps some of the larger objects in
the scene, like cars and the static parts of the scene, in higher nodes than tree
2, which keeps them as far down as possible. To compensate for those objects
being visible too often the smaller meshes in the scene may be required to
be kept deeper in the tree.

DR/OCL Using depth reduction and object checklists makes trees 3bR
and 4 much faster in this scene. The visible object determination does not
take much time on this scene and keeping meshes higher in the tree does not
change that, while the objects in higher nodes require much fewer updates.
As this scene is very large many of the objects are never visible, which makes
depth reduction work very well on this scene. For tree 3bR the start depth is
reduced by 3, and the number of meshes set to 168, resulting in most meshes
being much higher in the tree than they would usually be. For tree 4 the
depth reduction is 4, but this is with a maximum depth of 10 at which many
objects would otherwise be kept in this tree.

5.3 Results

In table 5.1 the time that the steps took is shown. Also shown is the per-
centage increase in performance of the tree operations, being any necessary
updates on the tree and visibility determination. This performance increase
compares the times for the algorithms with octree 2, the most standard octree
implementation with comparable visibility determination performance.

Algorithm MT UT VT RT total %tree %total
1 70.00 15.6 0.26 29.96 115.81 -14.84 3.47
2 69.41 13.52 0.28 36.75 119.98 0 0
3bR 69.8 12.51 0.45 36.19 118.95 6.14 0.85
3bR DR/OCL 69.57 2.13 0.49 35.85 108.04 81.02 9.94
4 70.50 13.75 0.37 35.76 120.38 -2.26 -0.33
4 DR/OCL 70.35 1.87 0.41 35.53 108.16 83.47 9.84

Table 5.1: The times that the different steps took with the algorithms on the
city scene. As well as percentage improvement over octree 2 All time values
in ms.

The fastest algorithm is octree 4 with depth reduction and using object
checklists. This algorithm is 83.47% faster than octree 2 on the octree oper-
ations. The performance increase for the whole rendering process is 9.84%.

33

More time is spent on the object movement step than on any other. To
improve the total processing time of this implementation some improvements
to this step would be possible. The animated limbs could be processed a lot
faster if the animation was only done for nearby objects or made much simpler
by using a larger bounding volume that contains the small movement of the
limbs. However for this implementation it was more interesting to calculate
the smaller bounding volumes of the limbs as this makes more use of the
data structure. The object movement step could also be made much faster if
done multithreaded.

34

Chapter 6

Conclusion and Future work

6.1 Conclusion

A standard octree and a modified version of this octree that finds fewer
visible meshes, as well as two alternative octrees were tested on two scenes.
The tests show that the trees may be updated faster on dynamic scenes by
keeping objects higher in the trees and lowering them if necessary during
visibility determination. For this a proper depth for objects has to be set
which can be done in different ways. When kept in such a high node it may
not be necessary to consider an objects at all for some number of frames if
something about the object’s speed is known. By using octree 4, there was
a 83.47% improvement over the standard octree algorithm with respect to
stages 2 and 3 of the graphics pipeline. This corresponds to an improvement
of 9.84% for the entire pipeline.

Although otherwise the performance of the octrees was fairly similar, it
does seem that some performance gain may be achieved in several other ways.
Keeping track of node size depending on the objects in a subtree can make
nodes smaller and visibility determination faster. Determining the depth an
object should always be kept at may reduce the number of updates as objects
are immediately moved to a proper node when they require an update, as
well as allowing for other optimizations on the tree, and objects do not need
to be moved down from a leaf if any required visibility tests can be done on
the object’s volume.

6.2 Future work

Different node sizes for octree 4 could be tried. It may in some scenes make
more sense to put more objects all at the same depth or it may be possible to

35

keep track of the largest object in a subtree of octree 4, as is done in versions
of octree 3. This would make the high level nodes smaller and make visibility
determination faster on this tree.

In these tests only octree 4 did visibility tests on leaf nodes on the volume
of the object if there was only one object in the node. This may be a good
thing to do in other octrees, as the number of visibility tests stays the same
while the results are more accurate.

Depth reduction of objects was only done on octree 4 in which the depth
of objects was known and on the start depth of octree 3bR. It could also be
implemented in other octrees by reducing the maximum depth that is used
during tree updates.

36

Bibliography

[1] J. M. Airey. Increasing Update Rates in the Building Walkthrough Sys-
tem with Automatic Model-Space Subdivision and Potentially Visible Set
Calculations. PhD thesis, University of North Carolina, 1990.

[2] H. C. Batagelo and S.-T. Wu. Dynamic scene occlusion culling using
a regular grid. Graphics, Patterns and Images, SIBGRAPI Conference
on, page 43, 2002.

[3] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent
hierarchical culling: Hardware occlusion queries made useful. Computer
Graphics Forum, 23(3):615–624, 2004.

[4] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A sur-
vey of visibility for walkthrough applications. IEEE Transactions on
Visualization and Computer Graphics, 9:412–431, 2003.

[5] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’93, pages 231–238. ACM, 1993.

[6] D. Luebke and C. Georges. Portals and mirrors: simple, fast evaluation
of potentially visible sets. In Proceedings of the 1995 symposium on
Interactive 3D graphics, I3D ’95, pages 105–ff., New York, NY, USA,
1995. ACM.

[7] I. Pantazopoulos and S. Tzafestas. Occlusion culling algorithms: A com-
prehensive survey. Journal of Intelligent & Robotic Systems, 35:123–156,
2002.

[8] J. Shagam, J. Pfeiffer, and Jr. Dynamic irregular octrees, 2003.

[9] O. Sudarsky and C. Gotsman. Dynamic scene occlusion culling. IEEE
Transactions on Visualization and Computer Graphics, 5:13–29, Jan-
uary 1999.

37

[10] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive
walkthroughs. In Proceedings of the 18th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’91, pages 61–70, New
York, NY, USA, 1991. ACM.

38

