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Abstract

The game of Sokoban has been the subject of many scientists’ fascina-

tion, because of the complexity of the nature of the puzzle despite its

apparent simplicity. When trying to solve a Sokoban puzzle, remem-

bering where one has already been is crucial. In this thesis, we present

our findings with regards to hashing states with the use of minimum

memory resources. We will go beyond the subject of hashing a state

and attempt to efficiently map the state graphs of entire puzzles using

several methods. We will also consider the impact of different hashing

methods on these state graphs and their corresponding strongly con-

nected components. Furthermore, we calculate a difficulty indication

for a puzzle called the solution factor.
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1 Introduction

Sokoban is a popular and complex game. First, we will familiarise the reader

with the rules of Sokoban. Then we ponder the nature and prevention of

deadlocks, which will aid us, along with the introduction of ed2.2 encoding,

to efficiently and reversibly store a Sokoban game state. Our efforts in these

subject will then enable us to generate the state graph of a Sokoban puzzle.

Before we get into the game of Sokoban, it is important that we look a little

bit closer to how we are going to represent a graph of Sokoban states.

2 Basic rules of Sokoban

The word Sokoban means warehouse keeper in Japanese, and that covers

the game quite rightly. The player must find a way to push his/her boxes to

their targets within the warehouse.

The player controls the warehouse keeper in a two-dimensional m*n grid

(the warehouse). There is exactly one man in puzzle, and outer sides consist

of walls. The goal is to push all of the boxes onto target squares. This results

in the seven possible configurations of a square. In Table 1, all possibilities

are shown. Two additional constraints are that the number of boxes must be

equal to the number of target squares, and that the number of $’s is equal

to to number of .’s plus the number of +’s. Furthermore, the player cannot

pull a box, and can only push a box if the square behind it is empty. In

Figure 1, a basic example illustrates our rules.

O
c
c
u
p
a
n
t
s Square types

normal target wall
empty . #

man @ + n/a
box $ * n/a

Table 1: Possible square configurations in Sokoban.

As described by Culberson [1] and Hearn [2], Sokoban is PSPACE-

complete. This qualifies Sokoban to be among the hardest problems in
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#####

#@$.#

#####

Figure 1: A simple Sokoban puzzle.

PSPACE (which is the set of decision problems solvable in polynomial

space).

In this paper we shall refer to two sets of puzzles: the original Sokoban

set [6] and the Microban set [5].

2.1 State graphs

This paper aims to illustrate the structures in which Sokoban states relate

to one another within one puzzle. We shall call this structures state graphs.

Although it sounds rather new, we have solid ground on which we can base

our state graph definition. We will use the concept of finite automata (as

described by [4]).

Definition The state graph of a Sokoban puzzle is defined as quintuple G

= (Q, Σ, q0, S, δ), where

• Q is finite set of ordered strings of occupation of non-wall squares,

prepended with a binary representation of the man’s room number1;

• Σ is a finite set of box moves2;

• q0 ∈ Q (the initial state);

• S ⊆ Q (the set of solved states);

• δ is a function from Q× Σ to Q (the transition function).

In Section 6, we will elaborate further on this definition.

1For a expanded explanation and additional methods, see Section 4.
2We define a box move as the coordinates of the box and the direction of the move.

The positions of the man before and after the move can be derived from this.
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3 Deadlock

There are situations from which a solution can no longer be reached. We call

these states deadlocks: for some reason, it is impossible to finish the game

with all boxes on a target square. Since any state in deadlock is a waste

of time at best when looking for a solution, it is well worth the effort of

identifying a deadlock. We distinguish between the two deadlock categories

deadspot and positional deadlock.

3.1 Deadspots

Deadspots are squares from which, once a box has entered it, the game can

no longer be solved. So, to create a deadlock by means of deadspot, one

needs only to move a single box. Because of this, deadspots are a very useful

and cheap way of detecting deadlock. In the first subsection, we define the

simplest type, static deadspot. In the second subsection, a more complicated

type is introduced, called indirect deadspots.

Note that all deadspot types are independent of the position of the man:

once a box is placed on such a square, it can no longer reach a target square.

Definition Let P be a Sokoban puzzle. Let S be the set of static deadspots

of P , and let I be the set of indirect deadspots of P . Then, S ∩ I = ∅ and

S ∪ I = D, where D is the set of all deadspots of P .

3.1.1 Static deadspots

A static deadspot, simply put, is a corner. It effectively immobilizes a box,

and it is obvious that if a box can no longer be moved and it is not on a

target square, the game is frozen. The enumeration below defines a static

deadspot’s features:

1. the square is not a target square;

2. the square is adjacent to at least two walls;

3. at least two of the adjacent walls are not on the opposite side of the

square.
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#######

# #

# . #

# $ #

# @ #

#######

#######

#x x#

# . #

# #

#x x#

#######

#######

# xxx #

#x. x#

#x x#

# xxx #

#######

Figure 2: An example puzzle and its static and indirect deadspots.

When a box is placed on a static deadspot, it causes static deadlock. For

an example, see the middle panel in Figure 2, where four static deadspots

are denoted with an x. Since only one box is involved, static deadlock is very

easy to detect.

3.1.2 Indirect deadspots

The extent to which corners cause deadlock are significant but by no means

exclusive. Therefore, we discuss indirect deadspots. The reason we call them

indirect is because, to a layman, the deadlock is not yet visible. Perhaps all

boxes can still be moved to some extent. Along some walls boxes can still

be moved without causing static deadlock, and the player will only realise

after a certain number of box moves that the game has become unsolvable.

Because of their complicated nature, we have to define indirect deadspots

recursively, rather than statically. A square is an indirect deadspot when:

1. the square is not a target square;

2. the square is not a static deadspot;

3. a box placed on the square cannot reach a square which is not a

deadspot (either static or indirect).

In defining deadspots, we do not take any other boxes into account ex-

cept the one that is hypothetically placed onto the relevant square. For a

visualisation, see the puzzle on the right hand side in Figure 2, where x is

used to denote the 10 indirect deadspots.
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mark all non-walls as deadspots
mark all non-walls as not yet processed
mark all target squares as non-deadspots

for (every square which is not yet processed and non-deadspot) do
sq1 = this square
for (each direction) do

neighbour = square in direction
if (neighbour is not yet processed and

box from neighbour could be pushed to sq1 )
mark neighbour as non-deadspot

fi

od

mark sq1 as processed
od

Figure 3: The algorithm for finding all deadspots in pseudocode.

3.2 Algorithm

To find all deadspots within a puzzle, we cannot instantly determine a square

to be one based on static definitions. We have to go look for them. To this

aim, we have developed the following algorithm (Figure 3).

This algorithm uses a reversed solving technique (as demonstrated by

[8, 7]. It works back from the target squares to find squares which can lead

to those targets. Since any square which can lead to a target is valid, any

square which can lead to any of these squares it automatically valid as well.

The algorithm takes advantage of this property. Note that static and indirect

deadspots are detected equally, since both satisfy the property of not having

a valid box move path to a target square. Figure 4 illustrates how this works

in practice.

If the box is pushed to one of the four walls, it can no longer reach the

target square. Therefore, all the squares immediately adjacent to the walls

are marked as deadspot, since they produce a deadlock. For the sake of

simplicity, we will call all squares within the walls of the puzzle which are

neither deadspot nor wall valid squares.
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######

####

#xx##

#xxx##

#?xxx#

#xxxx#

######

####

#xx##

#?xx##

# ?xx#
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#xxxx#
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####
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Figure 4: An example puzzle and our deadspot search algorithm animated.
First the regular representation (with ., @ and $ as the target square, the
man and the box). After that, four iterations of our deadspot search algoritm
as described in Figure 3. After the regular representation (the first panel),
all non-wall squares are marked as deadspots (panel two). A ? denotes that
that square will be examined in the next iteration. After four iterations, no
question marks remain so the algorithm finishes.

3.3 Positional deadlock

Whereas deadspots rely on a single box to produce deadlock, positional

deadlock concerns two or more boxes. A positional deadlock is the presence

of one or more boxes on a non-target square, which cannot be moved to

a target square because of other boxes which cannot be moved. Figure 5

portrays examples of positional deadlock. The boxes shown in this example

cannot be moved to any target square. The squares on which they stand

are in themselves harmless, and it is because of the other boxes that they

trigger a positional deadlock.

Note that these deadlocks do not follow directly from the locations where

the boxes are, but rather from the combination of box locations and their

relation to each other. Because of this, positional deadlocks are much more

complicated to detect than deadlocks caused by deadspots. They require a

complete check of the warehouse after every box move to see if deadlock

patterns have appeared. Alternative methods exist, but further exploring

them is not the aim of this paper and we will not go into further detail here.
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###############

###### ....... $**.#

#. .#$ $$ .#####

#$ $$ $$ $#

#$ .$ #

#. @ ######

###########

Figure 5: Examples of positional deadlock.

4 Representing a state

When it comes to states, there are several ways in which we can describe

them. The most obvious one is rather inefficient, and we shall discuss the

techniques we used to reduce memory problems while maintaining all necesse-

cary information.

4.1 Basic description

One can view the puzzle as a two-dimensional grid in which each square can

have one of the following values: @, +, $, *, , . or #. In the example of

puzzle 1 of the original testset [6] (Figure 6), the grid size is 11 by 20. If we

assign a char, which is 1 byte, for each square, this sums up to 220 bytes.

4.2 Reduction of redundancy

If we reason that the walls and target square will remain unchanged through

the length of the game, we can store them externally and, thus, only once.

From this, it follows that only the positions of the boxes and of the man are

unique for each state. Now, when we store these, if would be efficient if we

only take valid squares into account (so no deadspots). If we look at Puzzle

1, the valid squares would look like those in Figure 6. There are 41 squares

left. Notice that by ignoring the deadspots we save 15 squares.

Of these squares, we really only need to know whether there is box on it

or not. Now that is quite a decrease, from 220 bytes to 41 bits. In addition,
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the man’s position can be recorded either as the (rather expensive) x and

y coordinates or as a single room number. Since the man can move freely

in any room without making irreversible moves, the exact location of the

man does not matter. As long as the room, or a group of squares is known,

this is enough to uniquely identify the state. Note that the man suffers no

penalty for standing on a deadspot: therefore, deadspots are taken into ac-

count when calculating room numbers. In any given puzzle, room numbers

are assigned deterministically, and in this process boxes as treated as walls.

To see this in practice, see Figure 6. In addition to the flags of the valid

squares, one only needs to add the room index to fully describe the state.

The starting state of puzzle 1 would be thus represented:

10000101010000000000100100000000000000000

followed by room number 3.

4.3 Encoding Digits algorithm

In the previous section, we desribed a rudimentary way of representing a

state. One can easily see there is a tremendous amount of redundancy packed

in this string. For example, after encountering six one’s, meaning six boxes,

one does not have to look any further since all boxes are accounted for.

For this situation, we have developed the Encoding Digits algorithm.

Remember that we are still trying to encode as much information into as

few bits as possible without losing any data. This means that all states that

differ from one another will be uniquely represented in this way.

We shall be using the ed2.2 algorithm. The distances between subse-

quent boxes will be encoded in binary. To be able to see where one distance

ends and another begins, the base number of 0’s and 1’s is set to 2 (hence

the .2). To accomodate distances greater than 3 (= 22− 1), the value of two

ones is used to denote that the value of the additional two digits following

this block should be added to this value. In this fashion, we would describe

a distance of 4 as 11 01 (which means 3 + 1), a distance of 3 as 11 00 (3
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0 ##### | | _____

1 # # | 111 | _XXX_

2 #$ # | $11 | _..._

3 ### $## | 11$ | ___...__

4 # $ $ # | 22$1$3 | _X....X_

5 ### # ## # ######| 2 4 3 | ___._.__._ ______

6 # # ## ##### ..#|222 4 3 3333| _X.._.__._____X..._

7 # $ $ ..#|2$22$333333333333| _X................_

8 ##### ### #@## ..#| 3 3 @ 3333| _____.___._X__X..._

9 # #########| 33333 | _XXXXX_________

0 ####### | | _______

0 _ _ _ _ _

1 _ . . . _

2 _ 1 2 3 _

3 _ _ _ 4 5 6 _ _

4 _ . 7 8 910 . _

5 _ _ _11 _12 _ _13 _ _ _ _ _ _ _

6 _ .1415 _16 _ _17 _ _ _ _ _ .181920 _

7 _ .21222324252627282930313233343536 _

8 _ _ _ _ _37 _ _ _38 _ . _ _ .394041 _

9 _ . . . . . _ _ _ _ _ _ _ _ _

0 _ _ _ _ _ _ _

Figure 6: Puzzle 1 of the original testset. Clockwise, starting top left: the
puzzle, its room numbers, deadspots and valid squares. Note that we have
omitted the walls outside enclosing walls for readability purposes.
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0 ##### | _ _ _ _ _

1 # # | _ . . . _

2 #$ $# | _ 1 2 3 _

3 ### ## | _ _ _ 4 5 6 _ _

4 # $ # | _ . 7 8 910 . _

5 ### # ## # ###### | _ _ _11 _12 _ _13 _ _ _ _ _ _ _

6 # # ## ##### ..# | _ .1415 _16 _ _17 _ _ _ _ _ .181920 _

7 # $ @$ ..# | _ .21222324252627282930313233343536 _

8 ##### ### # ## .*# | _ _ _ _ _37 _ _ _38 _ . _ _ .394041 _

9 # ######### | _ . . . . . _ _ _ _ _ _ _ _ _

0 ####### | _ _ _ _ _ _ _

Figure 7: Puzzle 1 of the original testset, partially solved: the puzzle (left)
and valid squares (right).

+ 0) and a distance of 10 as 11 11 11 01 (which means 3 + 3 + 3 + 1).

When we look at Puzzle 1 (Figure 6), the valid square numbers on which

a box stands would be 1, 6, 8, 10, 21 and 24. From this it follows that the

distances between the boxes are 0, 4, 1, 1, 10 and 2. Keep in mind that we

start counting from square 0, and that we define distance as the amount of

valid squares which lie in between. Our previous distance list is encoded into

00 11 01 01 01 11 11 11 01 10, (which means 0, 3 + 1, 1, 1, 3 + 3 + 3

+ 1, 2). For further illustration, Table 2 is included.

Valid square numbers 1 6 8 10 21 24

Distance from previous 0 4 1 1 10 2

Encoded value (2 bits) 00 11 01 01 01 11 11 11 01 10

Table 2: Encoding of puzzle 1

However, this method is still flawed. Take a look at Figure 7, which shows

again Puzzle 1, but now partially solved. The encoding of this state using

two bits as the standard length is shown in Table 3.

Note the many 11’s in the middle; these bits are costly. If we could oc-

casionally increase the bit length of each distance, this could decrease the

overall length of the total bitstring, i.e., the value 6 could be encoded as 110
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Box number 1 2 3 4 5 6

Valid square number 1 3 9 21 30 41

Distance from previous 0 1 5 11 8 10

Encoded
value

2 bits 00 01 11 10 11 11 11 10 11 11 10 11 11 11 01

3 bits 000 001 101 111 100 111 001 111 011

4 bits 0000 0001 0101 1011 1000 1010

Table 3: Encoding of Puzzle 1 as shown in Figure 7.

instead of 11 11 00. To achieve this, each string will be preceded by two

multiplier bits, which contain a binary encoded integer. This integer stands

for the number of additional bits used to encode each distance. This new

way of encoding is shown in Table 3 as well, with multiplier values of one

and two. Note how the total length of the bitstring decreases. By prepending

the two multiplier bits, we add flexibility to the encoding algorithm.

The room number of the man’s position is encoded within 8 bits and pre-

fixed to the previously discussed string. We get:

00000001 10 0000 0001 0101 1011 1000 1010

We have two reasons for choosing the ed2.2 algorithm3. Because of the

short base length, puzzles with a relatively large number of boxes (which

imply small distances between) can be encoded efficiently. Secondly, puz-

zles with relatively few boxes can be encoded efficiently as well, as the two

multiplier bits allow for maximum distance of 304. Within the context of

Sokoban, this is assumed to be sufficient.

5 Generating all possible states

We use the algorithm described in Figure 8 to find all states in a puzzle. This

method is based on breadth-first search. The algorithm processes a queue of

Sokoban states, and for each of these states, their children (states that are

3The first 2 stands for the number of multiplier bits and the second 2 stands for the
base length of a binary distance.

430 is encoded as 11100, 31 is encoded as 11111 00000, and so on.
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one box move away) are generated and pushed to the queue.

input: Sokoban state S

output: set of hashes

queue Q ← ∅

hash set H ← ∅
Q.push(S)

while (Q is not empty) do
state current ← Q.pop();
if (current is in H) then

break

fi

H.push(current)
for (each box in current)

for (each direction)
if (the box can be moved in this direction) then

state N ← current // create a new state
N .moveBox(x,y,direction)
if (N is not in deadlock) then

Q.push(N)
fi

fi

rof

rof

od

Figure 8: Pseudocode for our exhaustive breadth-first search algorithm.

6 Strongly connected components

In the previous section we described a manner in which we can generate all

possible states of a Sokoban puzzle: the state graphs as defined in Section

2.1. These graphs can be cycles: groups of states in which any state can lead

to another. We call these groups strongly connected components.
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#######

# #

# $ .#

#######

(a)

#######

# #

# $ .#

#######

(b)

#######

# #

# $.#

#######

(c)

#######

# #

# *#

#######

(d)

Figure 9: Examples of equivalence. For illustration purposes, the man has
been left out.

6.1 Equivalency

If there is a cycle in the state graph, it implies that there is at least one

state which can reach itself through one or more other states. Imagine a box

that can be pushed freely between three empty spaces (Figure 9 (a), (b) and

(c)). Note that (a) can lead to (b) and vice versa. Also note that (b) can

lead to (c) and vice versa. This implies that any state that can be reached

from (a) can also be reached from (b) and (c), and vice versa. A move to

state (d) is irreversible. In this way, in a state graph, we can treat (a), (b)

and (c) as the same state. They are what we shall call equivalent.

Definition Let G be a state graph (Q, Σ, q0, S, δ), and p, q ∈ Q. If and

only if for n,m ≥ 0, there are s1, s2, . . . , sn ∈ δ and t1, t2, . . . , tm ∈ δ

such that

p
s1→ p1

s2→ p2 → . . .
sn→ pn = q (with pi ∈ Q for i = 1, . . . , n− 1) and

q
t1→ q1

t2→ q2 → . . .
tm→ qm = p (with qj ∈ Q for j = 1, . . . ,m− 1),

then p ∼ q (p and q are equivalent to each other). Note that this is indeed

an equivalence relation:

1. for all p ∈ Q, p ∼ p (reflexivity);

2. for all p, q, r ∈ Q, if p ∼ q and q ∼ r, it also holds that p ∼ r

(transitivity);

3. for all p, q ∈ Q, if p ∼ q, it also holds that q ∼ p (symmetry).
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6.2 Equivalence classes and the SCC graph

In this paper, among other things, we are looking for the number of equiv-

alence classes of a given puzzle. We define equivalence classes as subgroups

in which each state can lead to any of the others through some number of

transitions; in other words, strongly connected components.

Definition Let G = (Q, Σ, q0, S, δ) be a state graph of a Sokoban puzzle.

The equivalence class E ⊆ Q of an element s ∈ S consists of all s′ ∈ S such

that s ∼ s′.

In this way we define the generalized state graph of a puzzle, where the

These equivalence classes are the nodes of the so-called SCC graph. There

is an edge from class E1 to class E2 if and only if there are s1 ∈ E1 and

s2 ∈ E2 with an edge from s1 to s2.

6.3 Tarjan’s Algorithm

An efficient algorithm to detect strongly connected components in a graph

is Tarjan’s algorithm [9]. See Figure 10 for a detailed description of the

algorithm. It basically returns a list of lists of equivalent nodes/states.

The algorithm makes a depth first traversal of the graph, labeling each

node with its index. The lowlink label of a node n is intended for the smallest

lowlink of any of its children. If a child node has already been assigned an

index, this is assumed to be the highest up in the graph one can get and

this value is stored, through the recursion, in all of the node’s predecessors,

up until the node itself (since it is the parent of the others). This first node

is the root of the strongly connected component.

7 The application of Tarjan’s algorithm

We will combine the techniques discussed and displayed in the previous

chapters: the generation of an exhaustive breadth-first search, which pro-

duces nodes and edges (the state graph). When we apply Tarjan’s algorithm

to this graph, cycles are detected and replaced by a single node.
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input: graph G = (V , E)
output: set of strongly connected components (SCC; set of vertices)

index ← 0
S ← ∅ // an empty stack of nodes
for each v in V do

if (v.index is undefined) then
tarjan(v)

fi

od

function tarjan(v)
v.index ← index // set the depth index for v
v.lowlink ← index
index ← index + 1
S.push(v)

for each (v, w) ∈ E do // consider successors of v
if (w.index is undefined) then

tarjan(w)
v.lowlink ← min(v.lowlink, w.lowlink)

else if (w ∈ S) then
v.lowlink ← min(v.lowlink, w.index)

fi

od

scc ← ∅ // an empty list of integers
// if v is a root node, pop the stack and generate a SCC
if (v.lowlink = v.index) then

do

w ← S.pop()
scc.push(w) // add w to current SCC

while (w 6= v)
od

output scc
fi

end function

Figure 10: Pseudocode for Tarjan’s algorithm.
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7.1 Microban puzzle #2

In Figure 11, we can see Microban puzzle #2 and its state graphs. The

extent to which the original state graph with potential cycles is reduced to

an SCC graph is characteristic. Since any of the first eight states (states 0

to 7) can be reached from any of the other seven, they are all equivalent to

each other and thus form an equivalence class. Since state 4 is a solution,

the entire class is marked as a solution in the SCC graph. State 8, the last

state, has no outward arrows and forms its own equivalence class.

######

# #

# #@ #

# $* #

# .* #

# #

######

1

0start 3

2

5

4

76

8

8
6start

Node Contains

8 8

6 6 7 5 3 4 2 1 0

Figure 11: The starting state of Microban puzzle #2 (top left), its state
graph (top right) and SCC graph (bottom left). The table (bottom right)
contain the nodes that correspond to the original state graph.

It is important to note that, though we have elimated deadlocks via

static and indirect deadspots, positional deadlocks remain. Since state 8 has

no outward arrows which could lead to a solution, it is in positional deadlock.

A little mental box-pushing will show you that in state 8 all three boxes are

17



adjacent to the wall in the middle of the puzzle. They obediently avoid the

deadspots, yet cannot, by themselves, prevent the positional deadlock which

immobilizes them all.

7.2 Microban puzzle #1

The previous example animated the process in a comprehensive way. Since

Microban puzzle #1 is a little more complicated, the state and SCC graphs

are a bit larger, as can be seen in Figure 12. These graphs are obviously

dwarfed by graphs of real Sokoban puzzles, but depicting those countless

tangling lines and entangled nodes would serve no purpose.

7.3 Interesting cases

All the puzzles we have seen thus far produce state graphs with a single

accepting state. But multiple different solutions are not impossible. All so-

lutions share one feature, namely that all boxes should be placed on a target

square. But the final position of the man is not fixed. Figure 13 displays a

custom made puzzle, whose SCC graph exemplifies the above statement.

8 Difficulty indicators

As we have seen in the previous chapter, puzzles of serious complexity can

be reduced through Tarjan’s algorithm to quite comprehensible and simple

graphs. Any puzzle’s state graph can be explosive in size, but the SCC graph

more closely represents the true nature of the puzzle. Can we use the SCC

graph to indicate a difficulty level?

The number of unique paths through the SCC graph from start to so-

lution is relevant in this context. In addition, the number of non-accepting

states with no outward arrows (or sinks) is useful here as well. The size of

the graph is also a viable indicator, since any increase in size will most likely

increase the proportion of wrong paths which do not lead to solutions. This

goes for the reverse as well: any reduction in SCC graph nodes will raise the

percentage of solution paths.
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####

# .#

# ###

#*@ #

# $ #

# ###

####

20

21

1

0start

3

2

5

4

7

6

9

8

11

10

13

12

15

14

17

16

19

18

11
13

15

17

19

3

5start
4

7

6

9

Node Contains

4 4

6 6

3 3

9 9

7 7

13 13

19 19 21

11 11

17 17

15 15 20 18 16 14
12 10 8

5 5 2 1 0

Figure 12: The starting state of Microban puzzle #1 (top left), its state graph
(top right), its SCC graph (bottom left), and a list of nodes corresponding
to SCC’s (bottom right).
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############ ############ ############

#@ ## # # ## # # ## #

# ## # # ## # # ## #

# $ .. $ # # @$$ # # $$@ #

# ## # # ## # # ## #
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Figure 13: The starting state of a custom made puzzle (top left), and the
two possible solutions (top middle and top right). The SCC graph (bottom
left) and the corresponding node table (bottom right).

8.1 The solution factor

We have combined the aforementioned properties into a recursive algorithm.

This algorithm labels each node from the SCC graph with a difficulty indica-

tion of the puzzle at that game state. This marking expresses the probability

of reaching a solution by randomly choosing next nodes until a solution is

encountered or the game becomes unsolvable5. We shall call this measure of

solvability the solution factor. The solution factor of a puzzle is defined as

5We assume that the probability of reaching a next node is equally distributed, although
in reality some transitions/arrows might have greater probability than others.
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the solution factor of its starting node. The solution factor of a node n is

calculated by summing all the solution factors n’s children, divided by the

number of children;

Definition The solution factor of a node n is defined as SF (n), where

• SF (n) = 1 is n is a solution;

• SF (n) = 0 is n is a sink and not a solution;

• SF (n) =
q
∑

i=1

(

SF (mi)
q

)

with m1, . . ., mq being the q children of n with

q ≥ 1, if n is not a solution.

When we apply this algorithm to the SCC graph of Microban puzzle #2,

we get results as presented in Figure 14. The sinks have been represented by

a “forbidden” sign to emphasize their null solution factor, and the solution

state has a 1 by default.

0
1

1 1

2

6

1
2

1

0
2

0.25
4start

0
2

Figure 14: The SCC graph of Microban puzzle #2 with added solution fac-
tors. The solution factor of the starting state is 0.25

4 = 0.0625. Nodes marked
with a / are a sink (since they have no outward arrows).

We would like to note that this recursive algorithm only works on acyclic

graphs. Fortunately, SCC graphs are acyclic by default so we do not have to
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concern ourselves with this limitation. One might imagine to have a tech-

nology similar to Google’s PageRank algorithm [3] to eliminate the dangers

of recursion and produce a balanced solution factor for all nodes. PageRank

uses an iterative approximation method instead of a recursive one.

Furthermore, if a graph’s solution factor is 1, this does not mean that

there are no sinks in the graph: sinks may very well occur within such a

graph. It is important to realize that any sink positioned beyond a solution

node is not represented in the solution node’s solution factor, since that is

always equal to 1. Imagine the starting node of Figure 14 to be a solution

node: the graph’s solution factor would be 1, even though there are several

sinks in the graph.

It is also clear that staying in one SCC node might be very hard. If an

SCC node contains a lot of outgoing arrows and but a few internal arrows,

it is more likely that you will perform an irreversible move (i.e., to another

SCC or node). The internal structure of an SCC is not taken into account

in the solution factor calculation.

9 Method

It is time to put all pieces of the puzzle together, and see what results that

yields. The variable we are going to test will be the hashing of a state.

We will use several methods, using ed2.2 as a one-to-one method, as well

as other real hashing methods in which collisions will appear. If a collision

does appear, i.e., we think that we have already visited this state before, we

will assume this to be true. In this way, when hashing, we can encounter

false positives which will invalidate our state graph. Note that false negatives

(i.e., we deem a state to be unvisited although we have seen it before) remain

impossible. We are interested in the extent to which the hashing method has

an impact on our state graph.
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9.1 Data

We will compare our true graph, obtained by perfect hashing (referred to as

one-to-one), to other graphs, which are generated using many-to-one hashing

methods. We will use three methods:

1. Using No man hashing, we omit the man’s room number from the hash.

In puzzles with a high box-to-square ratio, this should have quite an

impact since box configurations with different positions of the man are

treated as though they were the same.

2. With the 2-digit hashing method, we combine every two bits into one

bit using a binary and operation, effectively halving the original string.

3. 3-odd-parity hashing takes three bits. The resulting bit is set to 1 when

the amount of 1’s is odd.

The results of these hashing methods compared with their “perfect”

counterpart can found in Table 4. Also given is the solution factor for the

perfect hash method.

Some puzzles have a solution factor of 1. This may seem impossible,

since almost every puzzle is subject to positional deadlock. However, if the

solution is in the same SCC as the starting state (each can result in the

other), the solution factor is 1 by definition (see Section 8.1).

It is obvious that the 2-digit hashing (which loses over half of the data)

is overshooting the target. The 3-odd-parity hashing destroys over 75% of

the data, yet it results in the same figures as the 2-digit hashing. There is a

significant difference between the results of the first and the second hashing

method and the third and fourth. From these results, we might interpret

methods three and four to lack accuracy and therefore usefulness.

Method “No man” achieves reasonable results, even though it omits 8

bits. An important feature is that this method distinguishes between the

importance of bits: it always excludes the man room data, whereas the

other two methods randomly exclude bits of information, boxes and man

room alike.
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One-to-one No man 2-digit 3-odd-parity

L
e
v
e
l

S
iz
e

B
o
x
e
s Nodes Solution

factorstate
graph

SCC
graph

state
graph

SCC
graph

state
graph

SCC
graph

state
graph

SCC
graph

1 9 2 22 11 21 11 3 1 3 1 0.062500

2 5 3 9 2 9 2 1 1 1 1 1

3 11 2 83 61 44 32 5 4 5 4 0.002315

4 8 3 56 4 56 4 4 2 4 2 1

5 12 4 496 10 495 9 1 1 1 1 1

6 14 3 465 143 212 66 4 1 4 1 0.000457

7 12 6 922 18 922 18 28 2 28 2 1

8 15 2 133 102 64 44 2 1 2 1 0.000290

9 8 2 19 17 14 11 1 1 1 1 0.125000

10 14 3 161 73 66 41 2 2 2 2 0.001157

11 13 2 92 21 62 18 5 4 5 4 0.035714

12 9 2 35 32 24 14 1 1 1 1 0.038580

13 14 3 409 125 275 96 1 1 1 1 0.003105

14 6 2 15 3 12 4 3 1 3 1 1

15 8 2 36 12 21 15 1 1 1 1 0.125000

16 21 3 1515 780 1267 536 1 1 1 1 0.287833 · 10−7

17 9 3 72 19 64 19 3 1 3 1 0.340278

18 13 2 91 43 71 27 2 1 2 1 0.002344

19 11 2 75 47 16 6 1 1 1 1 0.002604

20 12 2 74 35 44 14 7 1 7 1 0.029412

21 5 2 11 3 8 4 3 2 3 2 1

22 12 2 72 13 66 15 6 2 6 2 0.010204

23 11 2 24 8 24 8 2 1 2 1 1

24 10 2 63 42 44 26 1 1 1 1 0.007937

25 9 3 97 17 84 25 1 1 1 1 1

Table 4: This table describes general information about the first 25 puzzles
of the Microban testset. The number of nodes in the state graph and the
SCC graph are shown, next to a puzzle’s solution factor. Calculating these
data took under 6.5 seconds on a 2.2 GHz machine.
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10 Conclusions and future work

In this paper, we have applied the theory of finite automata to Sokoban

puzzles to produce state graphs. We defined the aspects of deadlock and

its causes and applied a primitive form of deadlock prevention. To improve

encoding efficiency, we introduced the ed2.2 algorithm. Using Tarjan’s algo-

rithm, we can create SCC graphs which more accurately represent a puzzle’s

structure. We have introduced the solution factor as a difficulty indicator.

The mapping of Sokoban puzzles into comprehensible graphs bring us

more insight into the different kinds of puzzles. Although the ed2.2 algo-

rithm is a leap forward in efficient state storage, more improvement can be

made. For example, the starting square and the direction from which the

distances are counted can be made dependent on the optimal orientation.

Instead of from left to right and top to bottom, the algorithm could count

bottom to top, right to left if that would yield smaller distances or take less

squares before having “touched” all the boxes.

The selective hashing method (the no man hash) performs quite well.

The greedy hashing methods exclude too much data, and destroy a puzzle’s

characteristics. Perhaps other selective methods (such as removing the last or

first box from the hash) can yield similar performance and memory savings.

The solution factor as a difficulty indicator can further be explored. It

might be exploited in relation to the state graph, in addition to the SCC

graph as demonstrated here. The threat of cycles in state graphs might

be handled using an approach similar to PageRank [3]. Whether or not

the solution factor converges with human perception of difficulty might be

investigated in an experiment. One could also compare the solution factor

for different hash methods and see if it correlates with the level size, box-

to-square ratio, etc. There is a plethora of possibilities for data analysis.
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