

Universiteit Leiden

Computer Science

Smart Grid: Combining RF mesh grid and public

carrier networks for last-mile communications

Name: B.J.C. van der Drift
Student-no: s0522929

Date: 16/06/2011

Supervisor: Todor Stefanov

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Smart Grid
Combining RF mesh grid and public carrier

networks for last-mile communications

B.J.C. van der Drift

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Westland Infra

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

1

Table of contents

Table of contents ... 1

1 Introduction and background knowledge ... 3

1.1 Introduction to smart grid .. 3

1.2 Smart grid approach... 4

1.3 Introduction to smart metering ... 5

1.4 Introduction to streetlight control ... 6

1.5 Thesis organization .. 7

2 Problem definition and available solutions .. 9

2.1 Problem definition .. 9

2.2 Available technologies .. 11

2.2.1 Power Line Carrier ... 12

2.2.2 Cable internet .. 12

2.2.3 Wireless internet ... 13

2.2.4 Radio frequency mesh grid ... 14

2.3 Related research .. 14

2.4 Research contributions .. 16

3 Smart grid last-mile communications ... 17

3.1 Introduction to the river system model .. 17

3.2 Used technologies and motivation .. 18

3.3 Gateway description ... 21

3.4 Smart metering solution ... 22

3.5 Streetlight control solution ... 23

3.5.1 IDE and programming ... 24

3.5.2 Basic operation .. 24

3.5.3 Communication ... 25

3.5.4 Light intensity plan .. 25

3.5.5 Autonomous operation ... 25

3.5.6 Current and voltage measurement ... 26

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

2

4 Case study .. 27

4.1 Software .. 27

4.1.1 Job .. 27

4.1.2 Scheduler .. 29

4.1.3 Gateways and modules .. 30

4.1.4 Commands and scripts ... 31

4.1.5 Statistics ... 33

4.1.6 Challenges .. 33

4.2 Experiments ... 35

4.3 Results ... 38

4.4 Analysis ... 42

4.5 Case study conclusions .. 44

5 Conclusions .. 46

6 Future Research ... 47

7 Acknowledgements .. 49

8 References .. 50

Appendix A. R script and raw data files .. 54

plotresults.r .. 54

sl_jpm.dat ... 58

sm_jpm.dat ... 58

da_jpm.dat .. 59

Appendix B. C++ source code ... 60

client.cpp ... 60

gateway.h ... 69

gateway.cpp.. 69

scheduler.h ... 69

scheduler.cpp ... 71

Socket.h ... 83

Socket.cpp ... 85

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

3

1. Introduction and background knowledge

1.1 Introduction to smart grid

Power grids have been run the same way for decades all around the world. Since the Alternating

Current camp won the War of Currents in the late 1880’s and all countries around the world

adopted the resulting electricity system, not much has changed about the way electricity is

delivered to the customers. Although technology throughout the grid has been added and

updated, many utilities still don’t know about outages until they receive a phone call from one

of their customers. This leads to a lower reliability of the power grid. An unreliable grid

damages the economy, as outages are extremely costly for many businesses. A healthy

electricity network is crucial for a healthy economy.

Other problems that have emerged are related to environmental issues such as global warming

and carbon emissions. These problems are a threat to mankind and need to be dealt with.

Governments and institutes around the world have set goals to counter these issues, but a lot of

work is still to be done to reach those goals. Another related problem is the depletion of fossil

fuels. Because of the enormous amount of fossil fuels we are using, we have been slowly

depleting the earth’s natural resources, and one day, this supply will come to an end. In order to

cope with this problem, we need to start using fossil fuels in a more responsible and

conservative way. We also need to be looking for alternative energy sources, such as solar and

wind power, to supply us with renewable energy that has no impact on the environment and

cannot be depleted. However, the use of these technologies poses some challenges, as these

sources are uncontrollable, variable and unpredictable.

By improving and optimizing the power grid, we can help countering these problems, and create

a smart gird. Smart grid is a term that covers many improvements and additions to the power

grid, which helps improving it by making it more reliable, energy and cost efficient,

environmentally friendly, monitorable and controllable. It encompasses technologies such as

smart metering, distributed generation, outage detection and peak load reduction. Using these

technologies, we can transform the traditional grid and create a smart grid that is ready to cope

with the challenges that the future will bring.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

4

One interesting and diverse problem, is how to communicate with devices at the end of the

electricity chain: the actual customers. For smart metering, utilities’ data networks need to reach

all the way to the homes of their subscribers. Some experts even foresee utilities will be able to

control customers’ appliances such as air conditioners and heating systems, in order to spread

the load on the grid, and thus reducing the peak load. In this paper, we focus on these last-mile

communications to a great extent.

1.2 Smart grid approach

Smart grid is a concept that has no clear definition. Around the world, many governments,

utilities, regulatory bodies and businesses are involved in smart grid development. Each of these

stakeholders have their own approach to the smart grid concept in correspondence with their

policies and business models. Opinions differ about a variety of matters, such as what the main

focus of smart grid should be, which technologies are included in smart grid and which are not,

and how the smart grid should be constructed. In previous work, we have gone into these

difference of smart grid visions around the world in great detail. [1]

In this paper, our intent is to research smart grid communications from a general perspective,

holding value for a global public. Especially the technical realization of smart grid

communications is important for many smart grid stakeholders in many parts of the world. It is

also a core aspect, independent of higher-level, more conceptual aspects of the grid.

Although written from an independent, scientific perspective, it should be taken into account

that our research is performed in collaboration with Dutch utility Westland Infra. As a result,

their vision and interests are somewhat reflected in our research, meaning that we might go into

detail at points that are interesting to them, and discuss matters more superficially where this

interest does not exist. Additionally, some assumptions, restrictions, advantages and

disadvantages might not hold for other parties due to differences in regulations, funding or

environmental properties, for example.

Westland Infra is the utility of the Westland area, which is characterized by its greenhouses.

These enterprises typically consume a lot of power, which makes energy efficiency rewarding

for them. It also opens opportunities for the utility to optimize the electricity network. As a

result, Westland Infra has been using smart grid technologies since before the term was coined.

Asset management, demand response and smart metering have steadily advanced over the years,

and Westland Infra maintains a Wide Area Network that spreads throughout their service area,

and provides a robust network which connects many points in the grid.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

5

This situation explains our focus on last-mile communications, since this is the only link that

misses between the utility and residential customers and businesses that are not covered by the

network yet, or for which the connection could be improved.

1.3 Introduction to smart metering

One of the smart grid technologies that gets a lot of attention is smart metering. Smart metering

is the automated reading of electricity metering data without the physical intervention of a

person near the electricity meter.

The benefits of smart metering are numerous. First of all, there is no need for an employee of

the utility to physically interact with the electricity meter, which results in a cost reduction in

the long run. It’s also convenient for the occupants of homes where meters are located, because

there is no need to stay home to let the utility employee in.

Another advantage is that meter readings can be performed more frequently, and also billing can

be done monthly, instead of yearly. This gives consumers a better insight into their electricity

use, and can stimulate them to conserve more energy because they are more frequently

confronted with the amount of energy they use. This can even be taken further. Meter readings

could be performed daily, hourly or even every 5 minutes. This data can then be presented to the

consumer through an internet portal or on an in-home display. That way, consumers can see

how much energy they are consuming at any time. If they are trying to save energy, they can

also immediately see if it has effect, which can be very encouraging.

Smart metering also allows utilities to see when energy was consumed by the customers. This

can be used to vary the pricing of electricity based on the time of the day, such that electricity is

more costly during peak hours and less expensive during off-peak hours. We call this dynamic

pricing. This stimulates consumers to use energy demanding appliances during off-peak hours,

and not during peak-hours. As a result, less energy will be consumed during peak hours,

resulting in peak reduction. When peaks are lower, this means that the equipment throughout

the grid also require less capacity, which leads to cost reductions. Lower peaks also lead to less

strain on the electricity network, which expands its lifespan. [2]

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

6

Smart metering also enables a better demand response. Demand response is reacting to changes

in electricity use to stabilize the power signal and be able to supply the capacity that is

demanded. When metering data can be retrieved in near real time, this gives information about

how much energy is being consumed in the grid, and the supply can be adapted to exactly match

that demand.

Smart metering also enables a reliable method of outage detection. When a building is not

receiving any power, smart meters will immediately be aware of that and can report to the

utility. This gives the utility an immediate indication where outages are occurring and which

buildings are affected by the outage. They can use this data to determine where the outage is

caused and quickly respond to fix the malfunction.

Lastly, smart metering is an important technology to stimulate the use of Distributed Energy

Generation (DEG). DEG is the generation of energy at the place where the energy is used. The

energy can be generated by solar cells or wind turbines, but DEG by fossil fuels is also more

energy efficient than traditional generation and distribution. [3] Renewable energy can be used

for DEG in a domestic situation as well, especially solar power. However, because of the

variability of solar power, at certain times more power is generated that necessary, while at

other times not enough energy can be generated by the solar cells. Although storing energy in

batteries can be a partial solution, a lot of energy can still be lost, reducing the financial

attractiveness of solar panels. Traditional power meters do not have the capability to register

energy flowing back into the grid. Smart meters would allow residents to sell redundant energy

back to the utility, which makes investing in solar panels a lot more attractive.

1.4 Introduction to streetlight control

Streetlights are important instruments to keep traffic safe and give people a feeling of safety in

their neighbourhoods. They have been used since the old Roman and Greek civilizations, and

cities without streetlights have become unimaginable. However, these lights do require a lot of

power to burn every night, and they can also cause light pollution in certain areas, and the

amount of light that needs to be generated by streetlights is often only required during rush

hours.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

7

As a solution to these problems, streetlights can be altered so that they vary their light intensity

over time. This allows them to run on full capacity during rush hours, and save energy and

reduce light pollution in the middle of the night. It is possible to equip streetlights with light

sensors or timing mechanisms to determine how much illumination is needed at a certain time.

However, due to the changing lengths of night and day over the year, the times and intensities

may also change throughout the year. There can also be certain situations and events for which

different requirements apply, such as festivals or calamities, which require more control over

the streetlights’ light intensities.

In order to realize this level of control, reliable communications with each lamppost will be

required. But streetlights can be located throughout a large area and in different environments.

Length of the lampposts, the distance between them and obstacles can all have an influence on

the communications that are best suited to control the streetlights.

1.5 Thesis organization

After the introduction to smart grid and some of its technologies in this chapter, we will

continue to formulate some problems that are encountered when realizing smart grid

communications in chapter 2. In this chapter, we also examine related research that has been

done on the subjects we discuss in this paper.

In chapter 3, we will discuss the system we developed to solve the problems introduced in

chapter 2. We give a description of all the different components of the network and its topology.

Then we will describe a case study we performed to examine the capabilities of our network in

chapter 4. We will explain the experiments we have performed, present and analyse the results,

and then conclude what these results imply.

In chapter 5, we will conclude how well suited our system is for smart grid communications,

reflecting back to the requirements we set in the beginning.

We will then continue with discussing possible future research that could be performed to

expand upon our research in chapter 6.

After this, we include two appendices. Appendix A contains the script which we used to

generate the graphs we use to present the results of our case study, as well as the raw result data

files that are used to generate the graphs.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

8

Appendix B contains all the source code of the program we developed to perform the

experiments. This is a C++ program and consists of several header and implementation files.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

9

2. Problem definition and available solutions

2.1 Problem definition

The European Union has set goals to counter environmental issues through smart grid

technology. One of these goals is to equip 80% of all European households with smart meters.

[4] This forces utilities to start rolling out smart meters in large numbers. However, retrieving

metering information from these meters is a complicated process which has no clear best

practice. One can think of many ways that theoretically enable communications with smart

meters, from cable internet to wireless GSM communications. However, all these approaches

have their advantages and disadvantages, and there isn’t much public knowledge about the best

way to realize smart metering communications.

Many utilities have rolled out smart meters with different communication technologies, but

information about their costs and success are very hard to find, since these companies usually

do not wish to share any of their knowledge with others. This became very clear when we

contacted some utilities around the world that are known to be smart grid innovators and tried to

obtain some information about the way they constructed their smart metering communications

infrastructure. None of them provided us with any useful information whatsoever. However, we

learned through informal channels about utilities that had rolled out smart grid technology, but

were having problems with reliability and regulations that did not allow them to get maximum

results. Official statements also make it clear that realizing a reliable smart grid network can

lead to many problems and high costs. [5][6]

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

10

Another problem is the combination of various smart grid technologies over the same network.

Most existing knowledge about smart grid communications deal with only one type of

application communicating over the network, which makes it possible to create a network

around the specific needs of that particular application. However, it is problematic to deploy a

new network for every single smart grid application. If we are rolling out smart meters and a

streetlight control system, and supply them both with a separate network, we will have double

work and double costs. We should also expect more smart grid applications to be added in the

future. It is not possible to supply every single smart grid technology with its own network,

since this would create an enormous amount of management and maintenance. For this reason, a

standardized and transparent approach must be taken. We must find a solution that allows

different applications to use a similar infrastructure and use the available technologies in an

appropriate way.

These are the major requirements that a smart grid communications network needs to fulfil:

- Reliability: Failure to communicate is devastating for smart grid applications, since the

entire smart grid concept is based on reaction to changes elsewhere in the grid. Without

successful communication between different parts of the grid, smart grid applications

will fail to do what they are designed for. For some applications, such as demand

response, forecasting models can be used to substitute live data and react according to

these predictions in case of a failure. However, the advantage of smart grid over

traditional operation is lost in these situations.

- Latency and datarate: Multiple smart grid applications can together generate a lot of

data that is to be sent elsewhere in the grid. In order to allow swift delivery of this

information, the communications infrastructure needs to provide enough bandwidth and

throughput for these communications. Since smart grid is all about reaction to changes

elsewhere in the grid, a low latency can also be an important requirement. In the smart

grid design, future expansions and additions of new smart grid functionality should also

be estimated and taken into account.

- Security: With new applications sending data all over the grid, cyber security is an

important factor in smart grid designs. With smart metering, personal information about

customers’ energy use is being sent over the network, which has given cause to privacy

concerns. Groups or individuals with malicious intent also pose a threat to the grid, as

hackers could take down (part of) the grid if security not be tight.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

11

- Adaptability and upgradability: No matter how good a network you’ve created,

circumstances can always change. New applications may be added to the grid, resulting

in higher or different requirements, such as a larger bandwidth or better range. Once in

place, it is important that changes can be made to the communications infrastructure to

keep it up to date and well-fitted for the grid. Utilities are not necessarily responsible for

this themselves. Utilizing a public carrier service will most likely guarantee new

upgrades and an up-to-date network. Private networks require utilities to do this

themselves, but do give them control over the specific upgrades that are done.

- Flexibility: Circumstances can differ greatly within the service area of a utility. Some

areas might be densely populated, whereas other areas are more rural in nature. High-

rise blocks can require different communications than regular houses. A certain degree

of flexibility is required to be able to provide communications in all these

circumstances. The use of multiple technologies that can be combined and switched out

is probably required.

Some utilities already maintain a large Wide Area Network (WAN), which spreads throughout

their service area to connect stations and other facilities to each other. [7] This is mostly

implemented through copper wire and optic fibre cables, which provide reliable

communications and a high datarate. In this case, the challenge is to connect the

communications infrastructure all the way to the end-point smart grid devices, such as smart

meters, which are located at homes and businesses. In the next section we discuss various

options to realize these last-mile smart grid communications.

2.2 Available technologies

Many existing technologies could be used for smart grid communications. All of these have

some advantages and disadvantages. In this section, we will discuss the most appealing

technologies and why none of them is the holy grail which can individually provide us with the

communications requirements we need.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

12

2.2.1 Power Line Carrier

Power Line Carrier (PLC) is a technique that many utilities are already familiar with. PLC is

being used by utilities for a variety of purposes such as switching public lighting on and off.

Utilities own the power cables, and they lead to all homes and businesses, as well as to

substations and other control buildings where smart grid technologies could be deployed. This

theoretically makes PLC an ideal candidate for smart grid communications. Many utilities

already use PLC as part of their smart metering infrastructure. [8][9]

However, the reliability of PLC communications is not without question. Especially interference

issues give rise to doubts among utilities about the feasibility of reliable PLC communications.

[10][11][12][13] Another large disadvantage of PLC is the fact that communication fails during

outages and electrically abnormal events, and it’s exactly those situations in which the smart

grid could provide a means to quickly diagnose and solve the problem. [14]

2.2.2 Cable internet

Internet Protocol based technologies have proved to enable a reliable network that can handle a

high datarate. Extending a utility’s existing WAN and directly connecting smart meters to this

network would be ideal. However, placing cables leading to all residents and businesses can be

very expensive. Even though the costs of cables have reduced over the years, they would still

have to be placed, leading to every meter in the grid. [15][16] Also, the provided bandwidth

would be overkill for simple communications such as smart metering. For these reasons, this

option is not relevant to most utilities. Some utilities have laid optic fibre cables to homes, and

justify the costs by also offering data, video and voice communications over these lines. [17][18]

However, not all utilities are in a position to do so, mostly because of the separation of internet

and electricity providers in many countries.

In this case, another option is to use the internet, to which virtually all businesses and residences

have a connection already. Equipping smart grid devices with internet modems and connecting

them to the internet would allow broadband communications without large infrastructural

investments. However, sending smart grid information over the internet would pose some

security threats, which could raise concerns from users who fear for their privacy. Internet

subscription costs could also be considerable, and more than utilities want to spend on smart

grid communications. Furthermore, the internet service provider as an additional stakeholder

would make the situation more complex, and requires negotiation about who pays which portion

of the connection costs, which can be quite hard to determine.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

13

2.2.3 Wireless internet

As an alternative to cable internet, utilities can opt for a wireless internet solution. Since cables

do not need to be laid, this saves a lot of initial costs, and can speed up the roll-out of smart

meters and other equipment. The main choice for utilities when going for wireless

communications, is between deploying a self-owned and maintained wireless network, or using

the services of a public carrier. [19]

Many reasons exist why utilities would choose public carriers over a private network, such as

good coverage and bandwidth, and no added responsibility to maintain the network. Carrier

prices for data connections have dropped recent years, which makes this option more and more

appealing. [20][21]

The reasons to choose a private network are plenty as well. Deploying a self-maintained

network places all control in the hands of the utility. It can decide what type of network to use,

where coverage needs to be realized, and when to upgrade their network, whereas a utility using

a public carrier network heavily depends on the carrier for maintenance and upgrades. Another

reason is that public carriers may provide far more bandwidth than needed for certain

technologies such as smart metering, depending on what data the utility wants to receive, or

how often to receive it. The maintenance costs for private networks might also be lower than the

subscription costs to public networks. [21][22]

Another disadvantage of public networks, is the limitation of the amount of connections per

base station. As a result, the combined datarate of all the connections will be much less than the

sum of the achievable datarates by the single connections. To solve this problem,

communications could be scheduled by turn, limiting the amount of connections at each

moment. This means additional functionality is required to determine which connection should

be switched. It also limits the ability to quickly react to important, unpredicted events, since an

end-node would have to wait for its turn to be able to send urgent information.

There is a great variety of wireless internet solutions that can be chosen from. Choosing a public

carrier to supply the service will most likely lead to GPRS or UMTS communications. When a

large bandwidth is required, WiMAX is a 4G technology that could provide this. When thinking

about private wireless internet, Wi-Fi is the first thing that comes to mind. However, this

technology is mostly restricted to local networks. If a larger range is required, this leads us to

wireless mesh grids.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

14

2.2.4 Radio frequency mesh grid

Radio frequency (RF) mesh grids can provide a flexible, reliable and secure network that can

span a considerably large area. This is achieved by hopping, which means that a message is

passed down by multiple nodes until it reaches its destination. Once in place, operation is

relatively cheap. The network is self-forming and self-healing, so if one node stops functioning,

the rest of the network is not damaged. RF mesh technology can operate at a number of different

frequencies, which results in a variable reach and datarate. This means that utilities can choose

which frequency they use according to their needs.

In North-America, RF mesh is the most popular technology for smart metering. [23][24] In

Europe, these networks have not yet emerged as much. This may be due to a variety of reasons.

One important factor is the difference in regulations concerning unlicensed radio

communications, which are more flexible in North-America than in Europe. Utilities that use

radio communications above a certain power level need to apply for a license, usually for a

different frequency, which brings extra costs to the project. [25] Available frequencies and costs

can differ between countries.

Although large distances can be covered by hopping, this does require a certain density of

nodes. When the distance between neighbouring nodes becomes too large, mesh grids will fail

to deliver a robust and reliable network. There also is a limit to the amount of nodes that can

exist in one RF mesh network. More hopping also means a larger reaction time.

2.3 Related research

Many papers have been written about smart grid and smart metering communications. Many

discuss the requirements of a smart grid, and give recommendations about how this can be

realized. This includes papers from the Electricity Advisory Committee, the U.S. Department of

Energy and the European SmartGrids Technology Platform. [26][27][28] These papers explain

the necessity of the smart grid, and discuss what it should be capable of doing, and what this

would mean for the future.

These papers are supplemented by white papers from utilities, commercial enterprises and field

experts, who project their vision of smart grid and discuss specific aspects of the smart grid [29],

give a step-by-step plan to move towards a smart grid [30] or summarize recent smart grid pilot

projects. [31] In other words, the amount of papers on smart grid and related matters is

enormous, ranging from the fields of engineering and computer science to economics and

management.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

15

Last-mile communication is often shortly mentioned in papers, but few studies are fully

dedicated to this subject. A. Clark and C.J. Pavlovski research mobile network services, utility

operated WiMAX and mesh networks for last-mile communications. [32] Their main conclusion

is that there is a “need to select several technologies and suppliers to ensure the 100 per cent

coverage required by the electricity supplier”, and “it is anticipated that a combination of

several wireless solutions will provide breadth of coverage in an economical way”. They do not

consider wireless mesh networks a practical option, however. Their main reasons are:

• “It was not clear how meshing may evolve longer term”

• “Traffic from other mesh cells is routed through another household and the full

implications of this may not be clearly understood from a security, privacy, and

customer perspective”

• “A lack of proven ability to scale and offer telecommunications industry standards”

• “The electricity industry, regardless of who operates the network, is better positioned

when deploying standard telecommunications technologies as opposed to introducing

its own solutions”

• “By accepting market trends for telecommunications, longer term certainty is enhanced”

It should be noted though, that these arguments are not technological in nature, and only provide

extra motivation to research mesh networking capabilities.

Deconinck gives an overview of smart metering possibilities for Flanders, Belgium. [13]

Different technologies are compared, and the author concludes that “for future-proof smart

meter applications, it is clear that no single communication means on its own will be able to

meet all requirements”, and “When it is necessary that a set of meters is reached within a given

time span as for smart metering control applications (real time requirements), then the medium

shall support a form of broadcasting or parallelism. This favours solutions such as PLC or RF,

or other wireless solutions (PMR, UMTS).”

In a ZigBee for smart metering study, K. Liu concludes that “ZigBee fulfills the basic

requirements of electricity meter applications”. [33] “ZigBee has a fairly large transmission

range within line of sight both indoor and outdoor”, “it has an effective data rate” and “supports

a large network size and provides 8 levels of security to ensure the integrity and confidentiality

of metering data”.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

16

2.4 Research contributions

As we have shown in the previous section, multiple sources agree that a combination of

technologies is probably the best solution for smart metering and other smart grid applications.

However, studies that actually experiment with combinations of different technologies and

applications are scarce, if existent at all.

This is what motivated us to our thesis, and we provide the following research contributions:

• Realization of last-mile smart grid communications using multiple technologies

• Realization of last-mile smart grid communications involving multiple applications

• Description of the development process to provide a transparent communications

infrastructure

• Implementation of ZigBee in smart grid networks

• Examination of the reliability and capacity of the communications

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

17

3. Smart grid last-mile communications

3.1 Introduction to the river system model

In terms of dataflow, a smart grid can be constructed following the model of a river system.

Small ‘streams’ of data emerge at the beginning of the system: smart meters, smart streetlights

and other end-devices. These data streams can originate from a wide area, but do not usually

account for a high datarate individually. These streams can be combined together, streaming in

the direction of the control centre of the utility. They form a bigger stream, one which requires a

higher datarate, combining the datarates of the streams before it and the data that is generated on

that location. These streams can then again be combined, and so on, slowly forming the ‘river’

of data which will arrive at the control centre.

At any point, the communications should meet a combination of the requirements for everything

further down the network, not only in terms of bandwidth, but also reliability and stability. A

failure in the design at one point in the grid affects the communications from that point on, all

the way upstream to the end-points. We can imagine that this model shows many similarities to

the network of electricity cables itself, which also starts with a lot of power flowing through

large cables, and slowly branching off into smaller cables with a lower capacity.

There is an exception to this model when communication is required between multiple parts of

the grid, but not to the control centre. However, in this case, there is a sub-model in place

following the same principles as discussed above. Also, communication to the control centre is

still desirable, because a smart grid demands monitoring and control of all processes. It is also

possible that data streams are processed at one point, such that the amount of data flowing

onwards to the control centre is smaller than the combination of data that arrive at that point.

However, the model is still accurate for the other requirements besides datarate.

It is also possible to deploy separate networks. For example, a single utility might have a

network comprised of an optic fibre WAN, leading to copper wire cables and later into a

WiMAX network. A second network could run via the internet, cellular services and a wireless

mesh network.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

18

Another thing to keep in mind is the fact that data does not necessarily flow in one direction like

in a river system, but also in the opposite direction, towards the end-points. For some

technologies, the properties of the up- and downstream and not identical, and this should be

taken into account at design-time.

Taking our river system model in mind, this also leads us to a way to analyze whether an

existing network is ready for new applications. We just follow the path from the place where the

new system will be placed, back to the control centre, and check whether the network can

handle requirements of the new application. For example, when planning implementation of

advanced metering infrastructure (AMI), the entire network should be ready to handle the data

from homes to the utility. If this is not the case, deploying such a system will probably not be a

good idea.

Utilities should also keep in mind whether other smart grid upgrades will later be made as well.

Maybe the network can handle AMI now, but congestion and bottlenecks may arise when other

applications are added. For this and other reasons, it seems a good strategy to start with smart

grid advancements closer to the utility in the network, instead of starting with AMI. [34][35]

Last-mile communications are analogous with the starting data streams of the river system

model. Although the term can be interpreted with some flexibility, the last mile minimally

includes the path from the end-point to the first node in the network at which data is bundled,

separated, extracted or processed. However, when this first link is remarkably short in distance,

which can be the case in RF mesh networks, paths further down the network can also be

considered last-mile.

3.2 Used technologies and motivation

Smart grid applications require reliable communications, and also a certain form of flexibility.

Some applications require more bandwidth than others, and their environments can change from

location to location. For these reasons, we developed a communications framework for smart

grid applications with the use of two communication technologies: ZigBee and UMTS. These

two technologies are well suited to supplement each other in a network, because many of the

disadvantages of one of these can be countered due to the characteristics of the other. We will

describe the limitations of these technologies, and explain why the use of the other, or a

combination of both counters these problems.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

19

Problem: ZigBee has a limited range. Although ZigBee is suited for densely populated areas,

problems may arise in rural areas.

Solution: Large coverage by the mobile network in one of the main merits of UMTS. In many

places, almost any home can be reached by the mobile network.

Problem: When networks become too large, messages may take very long to travel to the

control centre, while the smart grid requires near real-time communications.

Solution: A ZigBee network can easily be split up into multiple networks. These separate

networks can then be individually managed over a UMTS connection. This allows swift

delivery of information to the control centre.

Problem: Although subscription costs have dropped over recent years, communicating with

each and every electricity meter and streetlight still brings a considerable amount of costs each

month.

Solution: By splitting a UMTS connection over multiple smart grid end-points through a

ZigBee network, subscription costs drop considerably. Only one public carrier subscription is

needed to reach all end-points in the ZigBee network.

Problem: Although 3G technology allows more simultaneous connections than before, there

still is a limit to the amount of devices that can connect via the same site tower. If all smart grid

end-points have an individual UMTS connection, this requires some turn-taking regulation

among these devices. This brings extra development costs and communication requirements.

Solution: By using ZigBee networks to split up UMTS connections over multiple smart grid

devices, the amount of necessary simultaneous connections to site towers is greatly reduced.

This allows any end-point device to be reached at any point in time.

Naturally, some additional technology is required to be able to route data over the public carrier

network to a certain location, and vice versa. In order to realize this, we developed a gateway

that allows transparent communication from the control centre, over the public carrier network

via UMTS, up to a smart grid end-point device over the ZigBee network. Below is a simplified

diagram that shows how the network is structured.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

20

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

21

3.3 Gateway description

In order to route data from smart grid end-points to the control centre over a ZigBee network,

and then over a UMTS network, we need a gateway to send messages from the UMTS

connection over the ZigBee network, and vice versa. In order to do this, we combined a UMTS

modem and a microcontroller with a ZigBee module. The UMTS modem forwards the data it

receives over UMTS to the microcontroller via an Ethernet cable.

We can now communicate with the microcontroller by sending a message to the IP-address of

the UMTS modem. The modem automatically forwards any data it receives to the

microcontroller.

In order to control the gateway, we developed a protocol in which commands can be given to

the microcontroller. These include commands which control the ZigBee module of the

microcontroller. This module is the coordinator of its corresponding ZigBee network, which

means that it regulates network configuration, and end-point devices log into this coordinator

when they join the network. The gateway protocol allows us to modify certain ZigBee network

behaviour, such as changing encryption or discovering new ZigBee nodes that might have

appeared in the network.

In order to communicate with an end-device in the network, we wrap the data we wish to send

in a command to the gateway which specifies the ZigBee address of the end-point. The gateway

then extracts the data, and wraps it in a ZigBee packet, which it then sends to the addressed

ZigBee node.

Data which is sent from an end-point to the control centre works in a symmetrical manner. The

gateway receives a message from an end-device, extracts the data and wraps it in a gateway

protocol message, in which it also specifies the address of the ZigBee node from which the

message originates.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

22

Multiple ZigBee networks exist when multiple gateways are placed in an area. Which network

is joined by a specific end-device is automatically determined. The ZigBee node determines to

which coordinator it has the best connection, and joins that network. The gateway keeps track of

which nodes have joined its network, and this list is periodically retrieved from the control

centre. Using this data, we can determine to which gateway we need to connect when we want

to communicate with an end-device. This also allows end-points to join a different network

when a gateway malfunctions, as long as another gateway is in reach. This means that all end-

devices can remain reachable when a gateway gets destroyed or is unreachable for any other

reason.

3.4 Smart metering solution

Many different types of smart meters exist today, incorporating different types of protocols and

communication technologies. However, we were not able to find any smart meters working with

ZigBee, so we had to find another solution to communicate with smart meters through our

ZigBee network. To realize this, we used a modem that extracts data it receives over ZigBee,

and transparently sends it over a RS-232 port. Since most smart meters incorporate RS-232 or

similar input, this is a very reusable method to enable ZigBee connectivity on smart meters.

Since the data is transferred transparently to the smart meter, this gives us full control over the

smart meter from the control centre. Smart meters use a variety of protocols, and we can simply

wrap any message we want to send to the meter in the gateway protocol and address it to the

ZigBee module of the RS-232 modem that is connected to the meter. This means that when new

meters are installed, or a meter is replaced by one using a different protocol, no other hardware

needs to be switched or modified. The control centre simply decides which protocol to use to

communicate with the smart meter, and the data gets transparently passed along by the different

devices in the network.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

23

3.5 Streetlight control solution

There are several different ways and available technologies to remotely control public lighting.

However, this is still a quite new development, and we did not find any solution suitable to our

needs. For this reason, we developed our own system using the technologies we have discussed

earlier.

A custom module was designed to be placed in every streetlight. These modules contain a

ZigBee module to communicate with the gateway. A schematic representation of the system is

shown below.

The module’s main function is controlling the light intensity of the streetlight. The board is

controlled by a PIC processor, which is a robust, low-cost microprocessor. The PIC processor

manages all the activities that happen inside the control module. It also contains an EEPROM

chip, where a diversity of information is stored.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

24

3.5.1 IDE and programming

We programmed the PIC processor using the microC PRO for PIC software, developed by

MikroElektronika. [36] This IDE allowed us to program the module entirely to suit our needs in

the C programming language. We utilized two ways to load the binaries into the PIC processor.

The first method is using a PICFlash2 to load the program directly from microC to the PIC via

the USB port of the development PC. [37] As an alternative, we used the Kanda handheld PIC

programmer. [38] This allows us to program streetlight modules on location, without the need to

bring a laptop or other large device.

MikroElektronika PICFlash2 Kanda handheld PIC programmer

3.5.2 Basic operation

The module gets powered when the public lighting is switched on. At that moment, the light

intensity starts at 100%, and remains that way for a period of 5 minutes. This is a physical

requirement for a certain type of streetlight, and also allows the ZigBee module to join the

network and notify the gateway. After these 5 minutes, the control module can gradually reduce

its intensity according to a certain intensity plan. The module comes with a standard intensity

plan, but a new one can also be sent from the control centre. During the operation time, a variety

of commands can be sent to the module to control its operation or acquire information about the

module and the streetlight. As the power goes off at the end of the night, some information is

stored in the EEPROM, which then can be used the next night.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

25

3.5.3 Communication

The PIC processor communicates with a ZigBee module that is also located on the board. The

ZigBee module is configured in AT mode, which roughly means that the payload of the packets

that are received by the ZigBee module are extracted and sent to the PIC. Similarly, the data that

the PIC sends to the ZigBee module is automatically packetized and sent to the gateway. As

such, it provides transparent communication with the gateway from the side of the control

module, and the software does not have to deal with matters such as checksums and addressing.

When the module is powered, it connects to the gateway with the best signal, and remains in

that network until the power goes off. The ZigBee module will also send a notification to the

gateway when it joins its network. From that point on, all messages from the control module are

automatically sent to that gateway.

3.5.4 Light intensity plan

The light intensity is regulated according to a plan that is sent to the control module. The plan

contains times and light intensities for all seven nights of the week. Each night is divided into

ten intervals. The plan specifies at which time these intervals begin, and what intensity

percentage corresponds to that interval. When the power is turned on, and the ZigBee notifies

the gateway about joining the network, the current time and day of the week are sent to the

control module. With this information, the control module can follow the plan and dim the light

accordingly throughout the night without any other communication.

3.5.5 Autonomous operation

When there is no connection with the gateway, or when transmission of intensity plan or day

and time information fails, the control module will automatically follow a standard plan that is

hardcoded into the module. This plan contains the same information as the week-based intensity

plan, but just for one day.

However, when the module is powered, the module does not know yet what time it is, which it

needs to determine when a certain interval begins. To solve this, the control module contains an

advanced algorithm that is used to estimate the time it was turned on, using data collected over

the past days. From that point on, the module uses this time to follow the standard plan.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

26

This mechanism prevents unwanted situations, such as a reduction of light intensity at an

unwanted time, for example during traffic rush hours. This is potentially dangerous and should

be avoided. It also prevents different streetlights to emit light at a different intensity. This

situation is unwanted, because it makes people call the utility when they notice the difference. If

all streetlights emit light at a similar intensity, people do not tend to notice.

3.5.6 Current and voltage measurement

The control module contains a chip that measures the voltage and current of the streetlight. With

this information, we can also calculate the apparent power, and add up these values every

second to obtain an accurate estimation of the use of energy. This can be very useful

information, because it allows the user to experiment with different intensity plans and find out

how much energy was saved.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

27

4. Case study

In order to evaluate our smart grid last-mile communications model using ZigBee and UMTS,

we decided to perform some experiments and register how our system performs. To accomplish

this, we developed a program that allows us to control the communications with a series of

smart meters and smart streetlights on a detailed level. This software registers statistics such as

the amount of messages sent, the success rate of the communications, etc. We will use this

software to run some experiments and then analyze the results to examine how well our system

performs.

4.1 Software

We developed a program in Visual C++, which provides a console interface to schedule

communications to ZigBee end-points in our system. On the console, a number of commands

can be entered to perform certain actions, such as adding a job, viewing which jobs are

scheduled and what the results of the communications have been. Using the command line, the

user can control jobs that are scheduled in the scheduler. The scheduler regulates which jobs

need to run at which moment.

4.1.1 Job

A job is basically a collection of information about a certain message or series of messages that

need to be sent to a specific end-point. A job can run once, or at a specified interval. Below is

the job class definition.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

28

class job {

 public:

 job(char m[256], Gateway *gw, bool per, bool sr, int intv, bool is_meter, string

mod); // Constructor

 void run(); // Main loop

 char message[256]; // Message to send

 Gateway *gateway; // Gateway to the module

 bool periodic; // Should job be repeated?

 bool should_reply; // Do we expect a reply from an end-point?

 bool pending; // indicates the message needs to be sent asap

 int interval; // Interval between jobs

 int count_down; // How long until next job?

 bool is_metering; // Is it a metering job?

 bool terminate; // Signal job to end

 string module; // End-point address

};

The job has only two functions; the constructor and the run() function. This last function is

called once and keeps looping until the program stops. In this function, it determines when its

messages should be sent. It does so by decrementing a timer, and setting pending to true once

the timer reaches zero. This notifies the scheduler that the job needs to be performed. Below is

the run() function.

void job::run() {

 unsigned long loopt;

 extern Scheduler *pSch; // Pointer to the scheduler

 extern bool pause; // Bool to pause operation

 count_down = interval * 10; // Initial countdown

 time_t tijd = time(NULL); // Now

 tm *local = localtime(&tijd); // Local time

 long oldsec = local->tm_sec;

 long newsec; // oldsec and newsec to detect second elapsed

 // Keep decrementing the count_down until it reaches 0

 // then pending is set to tue, and the counter is restarted

 while (!terminate) {

 Sleep(100);

 tijd = time(NULL); // Get the time again

 local = localtime(&tijd); // Create local time

 newsec = local->tm_sec; // Extract seconds

 if (newsec != oldsec) { // See if a second has passed

 oldsec = newsec; // Pass to oldsec

 if (!pause && pSch->InActiveTime()) {

 count_down -= 10; // Tick

 if (count_down <= 0) {

 // The job needs to be run

 if (pending) {

 // We are already pending, this means we are too slow: skip

 pSch->skipped++;

 if (strstr(message, "Transparant")) pSch->m_skipped++;

 }

 pending = true;

 count_down = interval * 10; // Reset countdown

 }

 }

 }

 }

}

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

29

4.1.2 Scheduler

The scheduler checks every job to see if it is pending, and then executes that job if it is. The

scheduler also keeps track of the communications statistics, such as how many messages have

been sent, how many have been answered, etc. The class definition is shown below.

class Scheduler {

 public:

 Scheduler(); // Constructor

 ~Scheduler(); // Destructor

 void run(); // The basic loop of the scheduler

 void add_job(char message[256], Gateway *gateway, bool periodic, bool

should_reply, int interval, bool metering = false, string module = ""); // Add a job

 bool rm_job(int n); // Remove a job

 void print_jobs(); // Print info about jobs

 void show_comm(); // Print communication on the screen

 void hide_comm(); // Don't print communication on the screen

 bool get_show(); // Should communication be printed?

 int get_max_job_length(); // Maximum length of a job message

 void rearrange(); // Rearrange jobs with similar intervals to spread them out

 unsigned char CalculateCrc(unsigned char pData[]); // Checksum calculation

 void DestroyAllSockets(); // Cleanup

 void SetActiveTimes(const char *start_time, const char *end_time); // Set when

communication ends / starts

 bool InActiveTime(); // Are we in the activity time?

 job *seljob; // The selected job

 vector <job*> jobs; // Vector of all the jobs

 // statistics for all messages (including metering messages)

 long totaltime; // Time we are running

 long msg_count; // Messages sent

 long msg_fail; // Failed messages

 long msg_success; // Successful messages

 long connectfail; // Connection failures

 long ackfail; // Acknowledgement failed

 long replyfail; // Reply failed

 long skipped; // Job was skipped

 // statistics for metering messages only

 long m_totaltime; // see above

 long m_job_count; // see above

 long m_job_fail; // see above

 long m_job_success; // see above

 long m_connectfail; // see above

 long m_ackfail; // see above

 long m_replyfail; // see above

 long m_skipped; // see above

 long socket_to; // Socket timeout in ms

 unsigned long SentBytes; // Total amount of bytes sent

 unsigned long RecvBytes; // Total received bytes

 unsigned long SentZigBytes; // Bytes sent by the ZigBee

 unsigned long RecvZigBytes; // Bytes received by the ZigBee

 private:

 void add_job(job* newjob); // Add a job

 // Send a message

 bool SendMsg(char message[], Gateway *to, bool should_reply, char *term_seq =

NULL);

 // Parse a received message

 bool ParseMessage(char msg[], char command[], char arg1[], char arg2[], int &i);

 string GetMod(int mod, char arg[]); // Find a module

 void prnt(string out); // Print a message to the screen and log file

 bool is_element(vector<int> vec, int val); // Check if exists in vector

 int num_occ(int val); // return number of occurrences of val in jobs intervals

 bool show; // Print communication to screen?

 char logl[1024]; // Line to print to log

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

30

 active_time start_t; // Time to start

 active_time end_t; // Time to end

 bool at_set; // Active Time Set?

};

The scheduler also contains a run() function in which it keeps looping as long as the program

runs. This function is shown below. However, a large part of the function deals with executing a

metering job. Because of the length of this piece, we abbreviated this by the theoretical

RunMeteringJob() function, which does not actually exist in our program. What remains is

a loop in which we loop over all the jobs that are contained in the scheduler. For each job, we

check if it is pending, and if so, we execute the job by sending its message(s).

void Scheduler::run() {

 long mts, mte; // track time for jobs

 extern bool pause;

 bool success;

 while (true) {

 Sleep(100);

 EnterCriticalSection(&CriticalSection);

 if (!pause && InActiveTime()) {

 for (int i = 0; i < jobs.size(); i++) {

 seljob = jobs[i];

 success = false;

 if (jobs[i]->pending) {

 // We need to send the message

 jobs[i]->pending = false;

 // See if it's a metering job

 if (strstr(jobs[i]->message, "Transparant")) {

 RunMeteringJob();

 } // if Transparant

 else {

 SendMsg(jobs[i]->message, jobs[i]->gateway, jobs[i]->should_reply);

 } // else: no metering job

 // If not periodic, erase the job

 if (!jobs[i]->periodic) rm_job(i);

 }

 }

 }

 LeaveCriticalSection(&CriticalSection);

 }

}

4.1.3 Gateways and modules

The IP addresses and ports of gateways are defined in a text file. Because we are using UMTS

modems, these really are the addresses of the UMTS modems, but it allows us to transparently

connect to the gateways. The modules are also specified in a text file. They are defined by either

only their ZigBee address for the streetlight modules, or by both the ZigBee address and the

electricity meter identifier for the smart meters, which is required to communicate with the

meter. Below is an example of a modules file that defines two smart meters and two streetlight

modules.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

31

0x0013A20040477C54, 87823121

0x0013A200405E0968, 87856549

0x0013A200405C821A

0x0013A200405E0989

These two files are automatically loaded by the program on start-up.

4.1.4 Commands and scripts

To control the behaviour of the program and to add or remove jobs, the user enters commands

on the command line of the program. Below is a table of the available commands and a short

description:

Command Description

help / list Print a list of commands

pause Put all communication on hold

run Resume communication

jobs Show the table of jobs

gateways Show the table of gateways

modules Show the table of modules

selgw Select a gateway

selmod Select a module

exit / quit / q Exit the program

addjob Add a job to the scheduler

addmjob Add a meter job to the scheduler

rmjob Remove a job

rmall Remove all jobs

setto Set the ack and reply timeout in milliseconds

comm Show communication with gateway. The command prompt will not be

available. Press Ctrl+C to return

stats Print success rate and average time

file Execute commands stored in a file

arr Arrange the coundown of the jobs, such that the
timegaps are equal for similar interval times

sset Set the start and end times - No messages will be sent outside of this interval

Format: 'hh:mm' or 'hh:mm:ss'

stopt Stop all communication after this period (minutes)

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

32

When a command is typed that needs some parameters, the user will be prompted for this

information. However, it is also possible to type this data in the same line to immediately

include the arguments.

The file command also enables the use of files in which commands are stored. This way, we

can make scripts that initiate a certain experiment. Below is an example of such a script. The

lines that start with a hash sign (#) are comments, and are not processed by the program.

pause

set stop time to 15 minutes

stopt 15

1st meter

selmod 1

addmjob y 10

2nd meter

selmod 2

addmjob y 10

1st streetlight module

selmod 3

addjob Geef_Update y y 10

2nd streetlight module

selmod 4

addjob Geef_Update y y 10

set timeout to 2 seconds

setto 2000

rearrange the jobs in time

arr

print the jobs on screen

jobs

start the communications

run

print communication on screen

comm

This script first pauses any scheduler activity to prevent the program from starting before all

configurations have been made. It then sets the end-time to 15 minutes from now. Next it starts

adding the jobs to the scheduler. First two metering jobs are added, and then two jobs are added

to get a status update from two streetlights. These jobs all occur at an interval of 10 seconds.

The timeout is set to 2 seconds.

The arr command rearranges the triggers of the jobs in such a way, that they are not triggered

to be run at the exact same time. In other words, the intervals of the jobs stay the same, but they

receive an offset such that they trigger distributed over time.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

33

4.1.5 Statistics

The scheduler keeps track of all the statistics of the jobs throughout its operation. Every job that

is initiated is either successful or it fails. Three reasons exist for a job to fail:

• Connection failure: the program could not connect to the gateway, so no messages could

be sent.

• Acknowledgement failure: A message was sent to the gateway, but the gateway did not

respond with an acknowledgement within the specified timeout time.

• Reply failure: A message was sent to the gateway and also acknowledged, but the

ZigBee end-point did not reply to the message within the specified timeout time.

Only one job can be run at a specific time. If a previous job is still being handled while a new

job is scheduled to commence, the new job will wait until the current job is completed. If jobs

are too densely scheduled, a job might not be able to be initiated before the next occurrence of

the same job is scheduled to take place. In this case, the job will not be performed, and be

marked as a skipped job. If a job is initiated, but does not succeed for any of the mentioned three

reasons, it will be marked as a failed job. Retries are not implemented, such that the rate of

failed jobs gives an accurate representation of the reliability of the communications.

4.1.6 Challenges

During the development of our program, we encountered several challenges. One thing we

struggled with, was communicating with the smart meters. We found out that this was caused by

the fact that the meters were expecting a different parity on their serial port than the ZigBee RS-

232 modem was outputting. The meters were expecting 7 data bits and 1 odd parity bit, whereas

the ZigBee modems were outputting 8 data bits. It turned out parity was a setting in the ZigBee

modules. However, the ZigBee firmware only supports 8 data bits, or 8 data bits and 1 parity

bit, but not 7 data bits and 1 parity bit.

This meant that we either had to convert the parity of the data between the ZigBee modem and

the smart meter, which would require additional hardware, or convert the data

softwarematically. We chose to convert the data in the software, but this required some

thinking, because the ZigBee gateway protocol could not be encoded in this way, as this would

make it unreadable for the gateway. In other words, we had to change the parity of only the

payload of transparent messages to the meters, and leave the rest of the messages in the standard

8 bit data format. Below are the functions we used for the parity conversion.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

34

void Parity8to7(unsigned char str[]) {

 int i = 0;

 while (str[i] != '\0') {

 // Print the character in binary format in a string

 char *bits;

 bits = byte_to_binary(str[i]);

 // Count the parity of the character by counting the 1s in the string

 int ones = 0;

 for (int j = 0; j < 8; j++) if (bits[j] == '1') ones++;

 // Add the parity bit to the left

 if (ones % 2) str[i] += 128;

 i++;

 delete bits;

 }

 pSch->SentZigBytes += strlen((char *) str);

}

char *byte_to_binary(int x) {

 char *b;

 b = new char[9];

 for (int i = 7; i >= 0; i--) {

 if (x % 2) b[i] = '1';

 else b[i] = '0';

 x /= 2;

 }

 b[8] = '\0';

 return b;

}

What we are basically doing in this function, is converting every single character in the str[]

array to a char array in which the character is represented by eight '1' or '0' characters. We

do this by constantly checking whether the character is even or odd, which tells us whether the

last bit is a 1 or a 0, and then dividing the character by 2, which basically just shifts the byte

such that the second least significant byte is now the least significant. We repeat this for all the

bits in the character. This allows us to count the amount of ones in the original character to

determine whether the parity bit should be a one or a zero. If the amount of ones is even, the

parity bit is added by adding 128 (10000000) to the character.

Please note that this function will fail when any of the characters are already higher or equal to

128, but these characters cannot be represented by 7 data bits and 1 parity bit anyway.

The next function converts incoming data back to a readable form.

void Parity7to8(unsigned char str[]) {

 int i = 0;

 while (str[i] != '\0') {

 // Remove the parity bit if it exists

 str[i] %= 128;

 if (str[i] < 32 || str[i] == 127) str[i] = '_';

 i++;

 }

}

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

35

This conversion is easy, because we only have to remove the parity bit if it is present. In other

words, subtract 128 from a character if it is higher or equal to 128. This is the same as taking

modulo 128 over the character. This function also replaces every non-printable character by an

underscore (_). We purely do this because we will be printing the incoming data to the screen.

This step should not be done if the converted data is actually processed later on.

4.2 Experiments

For all our experiments, we will use one gateway with a ZigBee coordinator, through which all

ZigBee communications are routed. We connect to this coordinator via a UMTS modem. The

network further consists of 3 ZigBee enabled streetlights and 5 ZigBee enabled smart meters,

operating at a frequency of 2,4 GHz. The ZigBee coordinator and the streetlights are placed

outside of a building. The distance between the streetlights and the building is 25 m. The smart

meters are located inside this building, at a distance of 1 m from the wall. The 5:3 ratio

effectively simulates a realistic situation, where smart meters are located inside the homes of

customers, but there isn’t a streetlight in front of every house. See the diagram below for a

schematic representation of the setup.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

36

The objective of our experiments is to determine how many jobs can be run per minute. In order

to get a comprehensive view on the capabilities of the ZigBee network, we will be varying two

different parameters during our tests:

1) Applications. We have two different applications which will communicate over the

ZigBee network:

a. Smart metering. This is the smart metering application, in which

communications from the coordinator to the meters are required.

b. Streetlight control. This only involves the streetlights and the coordinator.

There is no communication with the meters.

2) Jobs per minute. We will test different time intervals between communication tasks of

the application(s). In other words, we will vary the amount of jobs per minute that are

scheduled to be performed.

A job for the streetlight control application consists of just one simple message over the ZigBee

network from the coordinator to the streetlight, and one from the streetlight back to the

coordinator. A smart metering job requires more communication; a total of six messages from

coordinator to meter, and six from meter to coordinator. Because the smart meters need to

transmit a lot more data per job than the streetlight control application, we will also test at

different amounts of jobs per minute for the different applications. Besides separately, we will

also perform experiments in which we run both applications simultaneously. We call these the

dual application experiments. The scheduled amount of jobs for the smart metering application

will always equal the scheduled amount of jobs for the streetlight control application.

The PC software registers many statistics during the experiments, which allows us to get a good

insight into the performance of the applications. One of the things we are curious about, is the

amount of attempted jobs that result in a successful reception of data. In other words, what is the

effective success rate of the attempted jobs (Seff). This is simply the percentage of jobs that

succeed compared to the ones that are attempted.

Another interesting statistic is the amount of successfully performed jobs in relation to the

amount of jobs that were originally scheduled (Ssch). This is calculated by the following

formula:

sch

suc
sch

J

J
S =

Where Jsuc is the amount of successfully performed jobs, and Jsch is the amount of originally

scheduled jobs.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

37

In other words, Seff is the success rate of the jobs that were actually initiated, Ssch is the success

rate of the jobs that should have been run according to the schedule. We would expect Ssch to

decline when we keep scheduling more jobs per minute, because there is only a fixed amount of

jobs that can be performed in one minute, since we are only performing one job at the time.

When we schedule more jobs than can be attempted, Ssch will drop. However, it is uncertain if

Seff will also decline when more jobs are scheduled. This could be the case, because more

densely scheduled jobs might put more strain on the network, which could lead to a lower

reliability. However, even if this is the case, it is also uncertain if this effect will be noticeable in

our results.

The software also registers the average time it takes to perform a job. Using this statistic, we

might be able to see if messages take longer to return when more jobs per minute are sent over

the network. If we take the average of these jobtime averages, we get the total jobtime average

over all experiments (tavg). We would normally expect that the length of the experiment divided

by tavg would be equal to the amount of jobs, if we assume an Seff of 100%. However, this

number might be slightly off for individual experiments, because there may be some variance in

the performance of the network between different times. Especially the UTMS network might

perform differently at certain moments. In order to measure the variability of the network, it is

useful to compare the results of individual experiments with the averages. We do this by

mathematically deriving two averaging functions from our defined results statistics.

With the use of tavg, we can calculate the value that Ssch should have for a specific experiment if

the network performance was always constant, because we know how many jobs are scheduled

to be performed in one minute: the amount of scheduled jobs per minute (jpmsch), which also

gives us the scheduled amount of jobs per second (jpssch). If we use tavg to calculate how many

jobs can be performed in the total time of the experiment (ttot), we can use this to define a

function that gives the expected value of Ssch given a certain jpssch. We get the following

formula:

Averaging method 1:

schavg

eff

totschavg

toteff

totsch

avg

tot
eff

sch

suc
sch

jpst

S

tjpst

tS

tjps

t

t
S

J

J
S

⋅

=

⋅⋅

⋅
=

⋅

⋅

==

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

38

Another way to calculate Ssch for a given jpssch is by using the average amount of jobs we were

able to perform in the experiments. However, we should not include those experiments in which

we had spare time between the jobs, because this will result in a lower maximum amount of

jobs per minute, which will throw off our average. In other words, we should only take the

average of all the saturated experiments, which means we could not have performed more jobs

than we did for that experiment. This will give us the average maximum amount of jobs per

second (jpsmax). We get the following formula:

Averaging method 2:

sch

max

totsch

totmax

sch

suc
sch

jps

jps

tjps

tjps

J

J
S =

⋅

⋅
==

We will later use these methods to compare the individual results of the experiments to the

averages and see if our results differ from these methods at certain points.

4.3 Results

We first performed experiments using the streetlight control application only. The results are

shown in the table below.

jpmsch Seff Ssch tavg (messages)

45 99,852 99,852 0,493

60 100,00 100,00 0,185

90 99,926 99,851 0,433

180 99,963 99,703 0,189

The table shows the amount of scheduled jobs per minute, the effective success rate, the

scheduled success rate and the average time of the messages that were sent.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

39

The graph below shows the success rates of the streetlight experiments.

The data shows that we’ve been able to perform 180 requests per minute to the streetlights, with

a success rate of close to 100%. This means that performing 180 jobs per minute was not a

problem for the streetlight control application, and sending with a higher jpmsch did not result in

a lower success rate.

For the next experiments, we only sent requests to the smart meters. Please note, that the

streetlights were involved in the network, so communications could be routed via the

streetlights, but there was no application level interaction with the streetlights. The results are

shown below.

jpmsch Seff Ssch tavg (messages) J (metering) tavg (metering)

15 100,00 100,00 0,444 224 2,439

20 100,00 100,00 0,448 299 2,413

25 100,00 98.649 0,444 365 2,431

27,27 100,00 87.654 0,458 355 2,496

30 100,00 82.183 0,443 369 2,421

33,33 100,00 73.948 0,454 369 2,418

37,5 99,725 64.706 0,461 363 2,458

In this table, the second column from the right represents the total amount of metering jobs that

were attempted in the experiment. The rightmost column is the average time of the metering

jobs during the experiment.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

40

The graph below shows the success rates during these experiments.

The results show that we were not able to perform 25 or more meter readouts in one minute.

After that, the scheduled success rate steadily declined, as was to be expected. The effective

success rate stayed at 100%, with exception of the last experiment at a jpmsch of 37,5, but it was

not significantly lower and might just be coincidental.

Finally, we performed the dual application experiments. Here we combined the smart metering

and streetlight control applications. The amount of jobs were distributed evenly, which means

that a similar amount of jobs were scheduled for both applications. The results are shown in the

table below.

jpmsch Seff Ssch tavg (messages) J (metering) tavg (metering)

30 100,00 100,00 0,397 224 2,444

40 100,00 100,00 0,398 229 2,418

46,15 100,00 95,942 0,407 331 2,452

50 100,00 87,366 0,415 325 2,474

54,55 100,00 79,268 0,418 325 2,518

60 100,00 75,333 0,405 339 2,429

66,67 99,692 65,191 0,416 324 2,522

75 100,00 58,824 0,410 330 2,508

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

41

The graph below shows the success rates for the smart metering jobs during these experiments.

This graph shows a similar shape as the previous one. The jpmmax seems to lie around 40 here.

Since half of the jobs were metering jobs, we could maximally perform around 20 metering jobs

per minute. This is slightly lower than in the previous experiments, which is straightforward,

since we simultaneously had the streetlight control application running.

The next two graphs show the average message times and the average metering job times

respectively, for both the smart metering experiments and dual application experiments. The

dotted horizontal line represents the total average over all the experiments.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

42

The first graph shows that the average message took longer for the smart metering application

than for the dual application experiments. This is obviously caused by that fact that the

streetlight control application messages are included in this average, which are faster than the

smart metering messages. In the second graph, we see that for all experiments, the average

metering job takes longer in the dual application experiment than in the smart metering

experiment. This also clearly results in a higher overall average. Looking at both graphs, it gives

the impression that the average time increases for a higher jpmsch. The fact that in the second

graph the dual application average is higher than the smart metering average also supports this

idea.

4.4 Analysis

In this section we will apply the averaging methods we derived to the results of the experiments,

and compare it to the individual experiment results. Since Seff is 100% in almost all

experiments, we will adopt this value in the averaging functions. In other words, we assume that

all initiated jobs succeed. The following graph shows the two averaging methods for the smart

metering experiments. The two vertical lines mark the intersections with the 100% line, and

thus represent the average maximal jpmsch which results in a Ssch of 100% according to the

respective method.

We can see here that a minimal difference exists between the two averaging methods. Method 1

gives a higher Ssch for all saturated experiments. We also observe that none of the individual

results differ greatly from the averages. Both methods give a good average of the actual results

of the experiments, and neither can be easily identified as the best method.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

43

We will now proceed to calculate the jpmmax for the first averaging method, assuming an Seff of

100%. The experiments reveal a tavg of 2,439 for the smart metering experiments. This results in

the following calculation:

4100,0jps1
jps439,2

1
1

jpst

S
sch

schschavg

eff
=⇒=

⋅

⇒=

⋅

Multiplied by 60, this leads to an average jpmmax of 24,60.

The experiments resulted in an average of 364,2 jobs at a ttot of 15 minutes, which means a

jpmmax of 24,28. By definition, this is also the average jpmmax of averaging method 2.

The next graph shows the averaging methods for the dual application experiments.

Both averaging methods again show similar results. However, this time method 2 gives a higher

Ssch for all saturated experiments. The actual results from the experiments are again quite close

to the averages, with only the results at a jpmsch of 60 differing significantly from both

averaging methods.

The experiments resulted in a tavg of 1,398. Again, we calculate jpmmax according to averaging

method 1, assuming an Seff of 100%:

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

44

7153,0jps1
jps398,1

1
1

jpst

S
sch

schschavg

eff
=⇒=

⋅

⇒=

⋅

This results in a jpmmax of 42,92.

The experiments performed an average of 658,0 jobs at a ttot of 15 minutes, which results in a

jpmmax of 43,87. By definition, this is also the average jpmmax of averaging method 2.

4.5 Case study conclusions

Our experiments have shown that when jobs are handled one by one, nearly all jobs are

completed successfully. Especially the streetlight control application was very reliable. It was

also faster than the smart metering application, since a lot more jobs per minute could be

completed. But the smart metering results also show reliable communication with the smart

meters, which means that ZigBee has no problem communicating through a stone wall.

Similarly, the dual application experiments resulted in a high effective success rate.

We formulated two methods to average the amount of jobs that can be completed relative to the

amount of jobs that are scheduled, using the values we gathered from the experiments.

Comparing the averages of the two methods reveals that they are quite similar. The differences

between them can be explained by the fact we assumed an Seff of 100% for the first averaging

method, which is quiet accurate but not completely correct. Although method 1 resulted in a

higher success rate than method 2 for the smart metering experiments, method 2 revealed a

higher success rate than method 1 for the dual application experiments. By comparing the

averaging methods to the actual results, we can conclude that the individual results do not differ

greatly from the averages. This means that the performance of the network is quite stable

throughout the experiments, which contributes to its reliability.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

45

We also compared the average time of a metering job during the individual experiments, as well

as the average time of individual messages. The results give the impression that the average

jobtime increases as the number of performed jobs increase as well. This is both supported by

the slight increase of message- and jobtime relative to the amount of jobs, and the fact that the

dual application experiments had a higher smart metering jobtime average than the smart

metering application. The latter observation supports the idea that jobs take longer when more

jobs are scheduled, because the dual application experiments are communicating with the

streetlights in addition to the smart metering jobs. This means that the dual application

experiments had more data being transmitted over the network than the smart metering

experiments with an equal amount of smart metering jobs. However, the gathered data is not

convincing enough to conclude that this impression is valid. Additional research is needed to

confirm or disprove our assumption.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

46

5. Conclusions

In chapter 2, we summarized the requirements that smart grid communications networks need to

meet. The first of these was reliability. In our case study we have shown that our system is

capable of very reliable communications. Not only did we manage an effective success rate of

nearly 100% is all cases, but we also showed that the performance of the network doesn’t

deviate so much, which means that the datarate and latency are stable.

The amount of messages we were able to send was more than enough for the amount of end-

points we used, and is probably also enough when many more end-points are added. This of

course depends on the requirements of the specific application, but when a higher datarate is

required, we can simply add a gateway to create a new network, and thus double the datarate of

the entire system.

We did not research the security of the network in this paper, but related research indicated that

the security of ZigBee networks is tight [33], and public carrier networks are widely trusted as

well.

Adaptability, upgradability and flexibility are the most important features of our solution. This

is reflected in many aspects of the network. ZigBee networks are very flexible, because they are

self-forming and self-healing. Relocating and adding end-points or coordinators can be done

without any changes in the configuration, as long as there is a possible path from an end-node to

a coordinator. Because gateways can be added at any point, this also enables us to adapt to new

requirements of the applications and the network. It also allows us to adapt the networks to local

requirements, without changing the functional behaviour of the system. Lastly, due to the

transparent communications throughout the system, new applications can be easily added

without having to change the software of the gateway or any other hardware in the field.

We have also shown that our system is well suited for the readout of smart electricity meters,

which means that it is a viable means to reach the requirements set by the European Union to

equip 80% of all European households with smart meters.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

47

6. Future Research

We have experimented with a small-scale setup of smart meters and streetlights in a largely

controlled environment. In a realistic situation, more meters and streetlights will be involved in

the network, which will probably change the properties of the network as well. Researching the

behaviour of larger networks could be useful to predict how many meters can be handled by one

ZigBee network in combination with certain requirements.

Additionally, the distribution of communication with the streetlights could be varied, resulting

in a better approximation of reality, in which communications can be demanding during short

periods, but sparse for the rest of the time.

Sending messages simultaneously to different smart meters or streetlights could also be

experimented with. In our experiments, we always waited for one job to complete before the

next was initiated. It would be interesting to see what happens if multiple jobs are being handled

simultaneously.

Also, the physical distances between the various objects in the setup could be altered and the

effects examined. For example, increasing the distance between the streetlights and wall of the

building might slow down communications or decrease effective success rate.

The obstruction of other objects and materials could also be experimented with, such as

vegetation and different types of walls. High-rise blocks also form an interesting situation.

Smart meters situated on multiple stories require hops through multiple floors and walls, which

might burden communications significantly.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

48

Other interesting research could be performed with other mesh grid protocols. For example,

6LoWPAN, which implements the IP protocol over wireless mesh grid, is based on the same

IEEE standard as ZigBee. ZigBee is a new protocol for many utilities, whereas knowledge

about IP technology is present in every major organisation. Besides this difference, 6LoWPAN

shares many of the specifications of ZigBee, such as the frequency bands in which it operates.

As a result, it also has a similar range and datarate. ZigBee is also developing an IP based

variation which could be interesting.

Finally, other frequencies for ZigBee could be examined. In Europe, the 868 MHz radio band is

also license-free. This frequency potentially provides a better reach, but a lower datarate.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

49

7. Acknowledgements

For certain, I could not have written this paper without the help of a variety of people. First, I

would like to thank all the people at Westland Infra who have helped me out by showing me

around, assisting in realizing the communications with the meters, and conducting the

experiments. Especially my internship supervisor, Jeroen Gronsveld, helped me out greatly by

thinking with me and arranging anything I needed to complete my work.

Secondly, I would like to thank Todor Stafanov of Leiden University for guiding me through

the process of writing this thesis, keeping me on the right track, yet giving me the freedom to

explore and invest the things I wanted.

Lastly, I would like to thank the people from Delmation BV, the company at which we

developed the streetlight control system, and where all this work started. I would especially like

to thank my father, Kees van der Drift, for trusting in my skill and helping me with anything I

needed to complete my research, and Peter Lorsheijd, who helped me a lot during the

development phase of the system.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

50

8. References

[1] Smart Grid: A comparison between Europe, the USA and Asia

 B.J.C. van der Drift

 Leiden Institute of Advanced Computer Science (LIACS) Leiden University

[2] SmartGridNews

 http://www.smartgridnews.com/artman/publish/article_441.html

[3] U.S. distributed generation fuel cell program

 M.C. Williamsa, J.P. Strakeyb and S. C. Singhal

Journal of Power Sources, Volume 131, Issues 1-2, 14 May 2004, Pages 79-85

[4] European Smart Metering Industry Group

http://www.esmig.eu/newsstor/press-release-european-parliament-expresses-its-broad-support-for-smart-

metering

[5] SmartGridNews

http://www.smartgridnews.com/artman/publish/Business_Policy_Regulation_News/Boulder-

SmartGridCity-Cost-Overruns-How-Bad-is-it-Really-1868.html

[6] TradingMarkets

http://www.tradingmarkets.com/news/stock-alert/xel_boulder-smart-grid-costs-blow-up-puc-orders-more-

transparency-latest-rate-increase-charges-all-col-758721.html

[7] Implementing Smart Grid Communications: Managing Mountains of Data Opens Up New Challenges for

Electric Utilities

 J.G. Cupp, M.E. Beehler

Burns & McDonnell

[8] Vattenfall

http://www.e-control.at/portal/page/portal/medienbibliothek/presse/dokumente/pdfs/

Vattenfall_experience_in_Smart_Metering_Iiro_Rinta-Joupp.pdf

[9] Électricité Réseau Distribution France

 Smart meters, ERDF continues deploying Linky

http://www.erdfdistribution.fr/medias/dossiers_presse/DP_ERDF_210610_1_EN.pdf

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

51

[10] Power line carrier interference caused by DC electric arc furnaces

 G.A. Franklin, S.M. Hsu

 IEEE Power Engineering Society General Meeting, 2003

[11] Power line carrier interference from HVDC converter terminals

 P.J. Tatro, K.A. Adamson, M.A. Eitzmann, M. Smead

 IEEE Transactions on Power Delivery, vol. 8, issue 3, 1993

[12] Powerline Carrier (PLC) Communication Systems

 K.H. Zuberi

 Department of Microelectronics and Information Technology

 Royal Institute of Technology

 IT-Universitetet, Kista, Stockholm, Sweden

[13] G. Deconinck

 An evaluation of two-way communication means for advanced metering in Flanders (Belgium)

 K.U.Leuven

 IEEE International Instrumentation and Measurement Technology Conference, May 12–15, 2008

[14] Sensus

Licensed versus Unlicensed Spectrum for Utility Communications

 http://www.sensus.com/Module/Catalog/File?id=524

[15] SmartGridNews

http://www.smartgridnews.com/artman/publish/Business_Policy_Regulation_News/Boulder-

SmartGridCity-Cost-Overruns-How-Bad-is-it-Really-1868.html

[16] TradingMarkets

http://www.tradingmarkets.com/news/stock-alert/xel_boulder-smart-grid-costs-blow-up-puc-orders-more-

transparency-latest-rate-increase-charges-all-col-758721.html

[17] GigaOM Network

http://gigaom.com/cleantech/xcel%e2%80%99s-smartgridcity-can-thank-fiber-for-ballooning-costs/

[18] GigaOM Network

http://gigaom.com/cleantech/does-fiber-have-a-role-in-the-smart-grid-a-tennessee-utility-thinks-so/

[19] GigaOM Network

 http://gigaom.com/cleantech/smart-grid-networks-the-public-vs-private-debate/

[20] GigaOM Network

 http://gigaom.com/cleantech/10-reasons-why-utilities-want-to-use-public-networks/

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

52

[21] Electric Light & Power

http://www.elp.com/index/display/article-display/3427940556/articles/utility-automation-engineering-

td/volume-15/Issue_5/Features/The_Smart_Grid_Debate_Public_vs_Private_Networks.html

[22] GigaOM Network

 http://gigaom.com/cleantech/10-reasons-utilities-want-to-build-their-own-smart-grid-networks/

[23] Chartwell

 http://www.energylibrary.com/index.cfm/ID/7/iNewsID/197/

[24] SmartGridNews

http://www.smartgridnews.com/artman/publish/Technologies_Communications_News/Mesh-Networks-Is-

Communications-Winner-in-Utility-Survey-1645.html

[25] PennEnergy

http://www.pennenergy.com/index/power/metering/display/2702271845/articles/utility-automation-

engineering-td/volume-15/Issue_5/Features/Toward_a_Global_Smart_Grid_-_The_US_vs_Europe.html

[26] Electric Advisory Committee

Smart Grid: Enabler of the New Energy Economy

http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf

[27] U.S. Department of Energy

Exploring the imperative of revitalizing America’s electric infrastructure

http://www.smartgrids.eu/documents/vision.pdf

[28] European SmartGrids Technology Platform

Vision and Strategy for Europe’s Electricity Networks of the Future

http://www.smartgrids.eu/documents/vision.pdf

[29] Xcel Energy

 Smart Grid: A White Paper

http://smartgridcity.xcelenergy.com/media/pdf/SmartGridWhitePaper.pdf

[30] S.E . Collier

 Ten Steps To A Smarter Grid

http://www.milsoft.com/downloads/presentations/10%20Steps%20to%20a%20Smarter%20Grid%2001302

009.pdf

[31] World Economic Forum

 Accelerating Successful Smart Grid Pilots

http://www.greenbiz.com/sites/default/files/WEF_EN_SmartGrids_Pilots_Report_2010.pdf

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

53

[32] A. Clark and C.J. Pavlovski

Wireless Networks for the Smart Energy Grid: Application Aware Networks

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol II

[33] K. Liu

Performance Evaluation of ZigBee Network for Embedded Electricity Meters

KTH Electrical Engineering

[34] SmartGridNews

http://www.smartgridnews.com/artman/publish/Delivery_Distribution_Automation_News/Are-We-

Building-the-Grid-Backwards-2796.html

[35] BusinessGreen

 http://www.businessgreen.com/bg/news/1933073/silver-spring-networks-uk-flawed-smart-grid-future

[36] MikroElektronika

mikroC PRO for PIC

http://www.mikroe.com/eng/products/view/7/mikroc-pro-for-pic/

[37] MikroElektronika

PICFlash2

http://www.mikroe.com/eng/products/view/392/picflash2/

[38] Kanda

Handheld PIC Programmer

http://www.kanda.com/pic-keyfob-handheld.html

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

54

 Appendix A. R script and raw data files

We generated the graphs in this paper using the R programming language. Below is the script

that reads the raw data from the experiments and generates the graphs. It also contains the

calculations of the averaging methods.

plotresults.r

1. ###

2.

3. global_res <- 256

4. global_w <- 1600

5. global_h <- global_w

6. global_jpm_sm1

7. global_jpm_sm2

8. global_jpm_da1

9. global_jpm_da2

10.
11. ###
12.
13. sl_avg <- function() {
14. data <- read.table("C:/R/sl_jpm.dat", header=T)
15. if (length(data$time) > 0) sl_avg <- sum(data$time) / length(data$time)
16. else sl_avg <- 0
17. }
18.
19. ###
20.
21. plotresults <- function(input, output, title, expected = FALSE, duap = TRUE) {
22.
23. png(file=output, width=global_w, height=global_h, res=global_res)
24.
25. # Set size of window
26. windows.options(width=6, height=6)
27.
28. # Read data from file
29. data <- read.table(input, header=T)
30.

31. # Define colors to be used for lines
32. plot_colors <- c(rgb(r=0.8,g=0.0,b=0.0), rgb(r=0.0,g=0.0,b=0.8),

rgb(r=0.0,g=0.7,b=0.0), rgb(r=0.6,g=0.0,b=0.6))

33. line_types <- c(1, 2, 3, 3)
34.
35. # Set margins
36. par(mar=c(5, 5, 4, 2))
37.
38. # Draw graph: 1 connected line and 1 dots
39. plot(data$s, data$sent, type="o", col=plot_colors[1], lwd=3,
40. lty=line_types[1],
41. ylim=range(50:100),
42. xlim=range(data$s),
43. ylab="% Successful",
44. axes=FALSE, ann=FALSE, pch=19)
45.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

55

46. # Draw second line
47. lines(data$s, data$total, type="o", lty=line_types[2], lwd=3, col=plot_colors[2],

pch=19)

48.
49. if (expected) {
50. xdat <- seq(min(data$s),max(data$s),0.1)
51. ydat <- seq(min(data$s),max(data$s),0.1)
52. ydat2 <- seq(min(data$s),max(data$s),0.1)
53.
54. # Calculate expected success rate based on maximum jobs
55.
56. avgjobs <- 0
57. div <- 0
58. # Calculate average jobs in 15 min
59. for (i in data$perf) {
60. if (i > 300) {
61. avgjobs <- avgjobs + i
62. div <- div + 1
63. }
64. }
65. avgjobs <- avgjobs / div
66.
67. is_found1 <- FALSE
68. is_found2 <- FALSE
69. tavg <- sum(data$jobtime) / length(data$jobtime)
70. if (duap) tavg <- tavg + sl_avg()
71.
72. cat("tavg = ", as.character(tavg), "\n")
73. cat("avgjobs = ", as.character(avgjobs), "\n")
74.
75. for (i in 1:length(xdat)) {
76. # Averaging method 1
77. ydat2[i] <- 100 / (tavg * (xdat[i] / 60))
78. if (duap) ydat2[i] <- ydat2[i] * 2
79. if (ydat2[i] > 100) ydat2[i] <- 100
80. else {
81. if (is_found2 == FALSE) {
82. last <- xdat[i]
83. cat("Intersection = ", as.character(last), "\n")
84. abline(v=last, lty=line_types[3], lwd=2, col=plot_colors[3], pch=19)
85. is_found2 <- TRUE
86. }
87. }
88. # Averaging method 2
89. sch_jobs <- (xdat[i] * 15)
90. if (duap) sch_jobs <- sch_jobs / 2
91. ydat[i] <- (avgjobs / sch_jobs) * 100
92. if (ydat[i] > 100) ydat[i] <- 100
93. else {
94. if (is_found1 == FALSE) {
95. last <- xdat[i]
96. cat("Intersection = ", as.character(last), "\n")
97. abline(v=last, lty=line_types[4], lwd=2, col=plot_colors[4], pch=19)
98. is_found1 <- TRUE
99. }
100. }

101. }

102. # Draw the lines for the averages

103. lines(xdat, ydat2, type="l", lty=line_types[3], lwd=3,

col=plot_colors[3], pch=19)

104. lines(xdat, ydat, type="l", lty=line_types[4], lwd=3,

col=plot_colors[4], pch=19)

105. }

106.

107. # Set the title

108. title(main=title, cex.main=1.7, font.main=2)

109.

110. # Label the x and y axes with italic font

111. title(xlab= "Jobs per minute", font.lab=3, cex.lab=1.7)

112. title(ylab= "Success rate (%)", font.lab=3, cex.lab=1.7, line=3.4)

113.

114. # Create a legend

115. if (expected) {

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

56

116. legend("bottomleft", c("Effective success rate", "Schedule success

rate", "Averaging method 1", "Averaging method 2"), cex=1.5, col=plot_colors,

117. lty=line_types, lwd=3, bty="o", box.lwd=0, box.lty=0)

118. }

119. else {

120. legend("bottomleft", c("Effective success rate", "Schedule success

rate"), cex=1.5, col=plot_colors,

121. lty=line_types, lwd=3, bty="o", box.lwd=0, box.lty=0)

122. }

123.

124. # Make x axis tick marks without labels

125. axis(1, las=1, cex.axis=1.5)

126.

127. # Plot y axis with smaller horizontal labels

128. axis(2, las=1, cex.axis=1.5)

129.

130. # Create box around plot

131. box()

132.

133. dev.off()

134.

135. if (duap) {

136. global_jpm_da1 <<- 2 * 60 / tavg

137. global_jpm_da2 <<- 2 * avgjobs / 15

138. }

139. else {

140. global_jpm_sm1 <<- 60 / tavg

141. global_jpm_sm2 <<- avgjobs / 15

142. }

143. }

144.

145. ###

146.

147. plottimes <- function() {

148. # Read the files

149. sm_data <- read.table("C:/R/sm_jpm.dat", header=T)

150. da_data <- read.table("C:/R/da_jpm.dat", header=T)

151.

152. # Divide jobs by two for dual application

153. for (i in 1:length(da_data$s)) da_data$s[i] <- da_data$s[i] / 2

154.

155. png(file="msg_times.png", width=global_w, height=global_h,

res=global_res)

156.

157. # Define colors to be used for lines

158. plot_colors <- c(rgb(r=0.8,g=0.0,b=0.0), rgb(r=0.0,g=0.0,b=0.8),

rgb(r=0.0,g=0.6,b=0.0))

159.

160. # Set margins

161. par(mar=c(5, 6, 4, 2))

162.

163. # Draw graph

164. plot(sm_datas, sm_datatime, type="o", col=plot_colors[1], lwd=3,

165. ylim=range(c(0.35,0.5)),

166.

xlim=range(min(c(min(sm_data$s),min(da_data$s))):max(c(max(sm_data$s),max(da_data

$s)))),

167. ylab="Time (s)",

168. axes=FALSE, ann=FALSE, pch=19)

169. # Draw average line

170. avg <- sum(sm_data$time) / length(sm_data$time)

171. abline(h=avg, lty=3, lwd=3, col=plot_colors[1], pch=19)

172.

173. # Draw second line

174. lines(da_datas, da_datatime, type="o", lty=1, lwd=3,

col=plot_colors[2], pch=19)

175. # Draw average line

176. avg <- sum(da_data$time) / length(da_data$time)

177. abline(h=avg, lty=3, lwd=3, col=plot_colors[2], pch=19)

178.

179. # Make x axis tick marks

180. axis(1, las=1, cex.axis=1.5)

181.

182. # Plot y axis with smaller horizontal labels

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

57

183. axis(2, las=1, cex.axis=1.5)

184.

185. # Create box around plot

186. box()

187.

188. # Set the title

189. title(main="Average message time", cex.main=1.7, font.main=2)

190.

191. # Label the x and y axes with italic font

192. title(xlab= "Metering jobs per minute", font.lab=3, cex.lab=1.7)

193. title(ylab= "Time (s)", font.lab=3, cex.lab=1.7, line=4)

194.

195. legend("bottomleft", c("Smart metering", "Dual application"), cex=1.5,

col=plot_colors,

196. lwd=3, bty="n");

197.

198. dev.off()

199. }

200.

201. ###

202.

203. plotjobtimes <- function() {

204. # Read the files

205. sm_data <- read.table("C:/R/sm_jpm.dat", header=T)

206. da_data <- read.table("C:/R/da_jpm.dat", header=T)

207.

208. # Divide jobs by two for dual application

209. for (i in 1:length(da_data$s)) da_data$s[i] <- da_data$s[i] / 2

210.

211. png(file="job_times.png", width=global_w, height=global_h,

res=global_res)

212.

213. # Define colors to be used for lines

214. plot_colors <- c(rgb(r=0.8,g=0.0,b=0.0), rgb(r=0.0,g=0.0,b=0.8),

rgb(r=0.0,g=0.6,b=0.0))

215.

216. # Set margins

217. par(mar=c(5, 6, 4, 2))

218.

219. # Draw graph

220. plot(sm_datas, sm_datajobtime, type="o", col=plot_colors[1], lwd=3,

221. ylim=range(c(2.3,2.6)),

222.

xlim=range(min(c(min(sm_data$s),min(da_data$s))):max(c(max(sm_data$s),max(da_data

$s)))),

223. ylab="Time (s)",

224. axes=FALSE, ann=FALSE, pch=19)

225. # Draw average line

226. avg <- sum(sm_data$jobtime) / length(sm_data$jobtime)

227. abline(h=avg, lty=3, lwd=3, col=plot_colors[1], pch=19)

228.

229. # Draw second line

230. lines(da_datas, da_datajobtime, type="o", lty=1, lwd=3,

col=plot_colors[2], pch=19)

231. # Draw average line

232. avg <- sum(da_data$jobtime) / length(da_data$jobtime)

233. abline(h=avg, lty=3, lwd=3, col=plot_colors[2], pch=19)

234.

235. # Make x axis tick marks

236. axis(1, las=1, cex.axis=1.5)

237.

238. # Plot y axis with smaller horizontal labels

239. axis(2, las=1, cex.axis=1.5)

240.

241. # Create box around plot

242. box()

243.

244. # Set the title

245. title(main="Average metering job time", cex.main=1.7, font.main=2)

246.

247. # Label the x and y axes with italic font

248. title(xlab= "Metering jobs per minute", font.lab=3, cex.lab=1.7)

249. title(ylab= "Time (s)", font.lab=3, cex.lab=1.7, line=4)

250.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

58

251. legend("bottomleft", c("Smart metering", "Dual application"), cex=1.5,

col=plot_colors,

252. lwd=3, bty="n");

253.

254. dev.off()

255. }

256.

257. ###

258.

259. plotresults("C:/R/sl_jpm.dat", "sl_jpm.png", "Streetlight success rate")

260. plotresults("C:/R/sm_jpm.dat", "sm_jpm.png", "Smart metering success

rate")

261. plotresults("C:/R/da_jpm.dat", "da_jpm.png", "Dual application success

rate")

262. plotresults("C:/R/sm_jpm.dat", "est_sm_jpm.png", "Smart metering success

rate", TRUE, FALSE)

263. plotresults("C:/R/da_jpm.dat", "est_da_jpm.png", "Dual application

success rate", TRUE)

264. plottimes()

265. plotjobtimes()

266.

267. cat("Smart metering max JPM method 1: ", as.character(global_jpm_sm1),

"\n")

268. cat("Smart metering max JPM method 2: ", as.character(global_jpm_sm2),

"\n")

269. cat("Dual application max JPM method 1: ", as.character(global_jpm_da1),

"\n")

270. cat("Dual application max JPM method 2: ", as.character(global_jpm_da2),

"\n")

271.

272. ###

sl_jpm.dat

This is the raw data of the streetlight experiments. The values under s represent jpmsch, sent

represents Seff, total represents Ssch, and time is the average time of a single message.

s sent total time

180 99.963 99.703 0.189

90 99.926 99.851 0.433

60 100.0 100.0 0.185

45 99.852 99.852 0.493

sm_jpm.dat

This is the raw data for the smart metering experiments. The first columns are the same as in the

previous file. The values under perf represent the amount of attempted metering jobs, and

jobtime is the average time it took to perform a metering job.

s sent total time perf jobtime

37.5 99.725 64.706 0.461 363 2.458

33.33 100.0 73.948 0.454 369 2.418

30 100.0 82.183 0.443 369 2.421

27.27 100.0 87.654 0.458 355 2.496

25 100.0 98.649 0.444 365 2.431

20 100.0 100.0 0.448 299 2.413

15 100.0 100.0 0.444 224 2.439

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

59

da_jpm.dat

These are the results of the dual application experiments.

s sent total time perf jobtime

30 100.0 100.0 0.397 224 2.444

40 100.0 100.0 0.398 229 2.418

46.15 100.0 95.942 0.407 331 2.452

50 100.0 87.366 0.415 325 2.474

54.55 100.0 79.268 0.418 325 2.518

60 100.0 75.333 0.405 339 2.429

66.67 99.692 65.191 0.416 324 2.522

75 100.0 58.824 0.410 330 2.508

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

60

 Appendix B. C++ source code

This appendix contains the source code of the program that we developed to perform the

experiments.

client.cpp

1. // link WS2_32.lib

2. #pragma comment(lib, "ws2_32.lib")

3.

4. #include <iostream>

5. #include <fstream>

6. #include <string>

7. #include <time.h>

8. #include <vector>

9. using namespace std;

10.
11. #include "gateway.h"
12. #include "meter.h"
13. #include "scheduler.h"
14.
15. #define DEF_GW "10.8.48.39"
16.
17. //--
18. // FUNCTION DEFINITIONS
19. //--
20.
21. void handle_cmd(istream *source);
22. void add_prompt(istream *source);
23. void add_m_prompt(istream *source);
24. void quit(int code = 0);
25. void load_gateways();
26. void print_gateways();
27. void load_modules();
28. void print_modules();
29. void add_module(char *mod);
30. void print_stats();
31. void Parity8to7(unsigned char str[]);
32. void Parity7to8(unsigned char str[]);
33. char *byte_to_binary(int x);
34.
35. //--
36. // GLOBAL VARIABLES
37. //--
38.
39. CRITICAL_SECTION CriticalSection;
40. Scheduler* pSch;
41. fstream gwf;
42. fstream mdf;
43. bool bexit;
44. vector<string> modules;
45. vector<string> meters;
46. string* selmod;
47. string* selmet;
48. vector<Gateway*> gateways;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

61

49. Gateway* selgw;
50. bool pause;
51.
52. //--
53. // FUNCTION IMPLEMENTATIONS
54. //--
55.
56. // Start the scheduler thread
57. DWORD WINAPI Thread(LPVOID pParam) {
58. Scheduler * pS;
59. pS = (Scheduler *) pParam;
60. pS->run();
61. return 0;
62. }
63.
64. BOOL WINAPI ConsoleHandler(DWORD CEvent) { // To catch the Ctrl+C
65. switch(CEvent) {
66. case CTRL_C_EVENT:
67. pSch->hide_comm();
68. break;
69. default:
70. quit();
71. }
72. return TRUE;
73. }
74.
75. int main() {
76. system("color f0");
77. SetConsoleTitle("ZigBee Meter");
78.
79. cout << " ___" <<

endl;

80. cout << " | ______ _ ______ ___ ___ _ |" <<
endl;

81. cout << " | |___ /(_) | ___ \\ | \\/ | | | |"
<< endl;

82. cout << " | / / _ __ _| |_/ / ___ ___ | . . | ___| |_ ___ _ __ |" <<
endl;

83. cout << " | / / | |/ _` | ___ \\/ _ \\/ _ \\ | |\\/| |/ _ \\ __|/ _ \\ '__|
|" << endl;

84. cout << " | ,/ /___| | (_| | |_/ | __/ __/ | | | | __/ |_| __/ | |" <<
endl;

85. cout << " | _____/|_|__, |_____/___|___| |_| |_|___|__|___|_|
|" << endl;

86. cout << " | __/ | |" <<
endl;

87. cout << " | |___/ |" <<
endl;

88. cout << " |___|" <<
endl << endl;

89.
90. cout << endl << "ZigBee Meter - (c) Bart van der Drift, 2010" << endl;
91. cout << "Leiden University - Westland Infra" << endl;
92. cout << endl << "Type 'help' for a list of commands" << endl << endl;
93. string command;
94.
95. if (SetConsoleCtrlHandler((PHANDLER_ROUTINE)ConsoleHandler,TRUE)==FALSE)
96. cout << "Unable to install handler!\n";
97.
98. pSch = new Scheduler;
99.
100. load_gateways();

101. load_modules();

102.

103. InitializeCriticalSection(&CriticalSection);

104.

105. // Start de scheduler

106. HANDLE hThread = CreateThread(NULL, 0, Thread, pSch, 0, NULL);

107.

108. pause = false;

109. bexit = false;

110.

111. while (!bexit) {

112. handle_cmd(&cin);

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

62

113. }

114.

115. return 0;

116. }

117.

118. void handle_cmd(istream *source) {

119. string command;

120. string indicator = "--?> ";

121. if (source == &cin) cout << endl << indicator;

122. *source >> command;

123. if (source != &cin && command[0] != '#') cout << endl << "[" << command

<< "] ";

124. if (command == "list" || command == "help") {

125. cout << "List of commands:" << endl;

126. cout << " +---------------------+------------------------------------

----------------+" << endl;

127. cout << " | COMMAND | DESCRIPTION

|" << endl;

128. cout << " +---------------------+------------------------------------

----------------+" << endl;

129. cout << " | help / list | Print a list of commands

|" << endl;

130. cout << " +---------------------+------------------------------------

----------------+" << endl;

131. cout << " | pause | Put all communication on hold

|" << endl;

132. cout << " +---------------------+------------------------------------

----------------+" << endl;

133. cout << " | run | Resume communication

|" << endl;

134. cout << " +---------------------+------------------------------------

----------------+" << endl;

135. cout << " | jobs | Show the table of jobs

|" << endl;

136. cout << " +---------------------+------------------------------------

----------------+" << endl;

137. cout << " | gateways | Show the table of gateways

|" << endl;

138. cout << " +---------------------+------------------------------------

----------------+" << endl;

139. cout << " | modules | Show the table of modules

|" << endl;

140. cout << " +---------------------+------------------------------------

----------------+" << endl;

141. cout << " | selgw | Select a gateway

|" << endl;

142. cout << " +---------------------+------------------------------------

----------------+" << endl;

143. cout << " | selmod | Select a module

|" << endl;

144. cout << " +---------------------+------------------------------------

----------------+" << endl;

145. cout << " | exit / quit / q | Exit the program

|" << endl;

146. cout << " +---------------------+------------------------------------

----------------+" << endl;

147. cout << " | addjob | Add a job to the scheduler

|" << endl;

148. cout << " +---------------------+------------------------------------

----------------+" << endl;

149. cout << " | addmjob | Add a meter job to the scheduler

|" << endl;

150. cout << " +---------------------+------------------------------------

----------------+" << endl;

151. cout << " | rmjob | Remove a job

|" << endl;

152. cout << " +---------------------+------------------------------------

----------------+" << endl;

153. cout << " | rmall | Remove all jobs

|" << endl;

154. cout << " +---------------------+------------------------------------

----------------+" << endl;

155. cout << " | setto | Set the ack and reply timeout in

milliseconds |" << endl;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

63

156. cout << " +---------------------+------------------------------------

----------------+" << endl;

157. cout << " | comm | Show communication with gateway.

The command prompt|" << endl;

158. cout << " | | will not be available. Press Ctrl+C

to return |" << endl;

159. cout << " +---------------------+------------------------------------

----------------+" << endl;

160. cout << " | stats | Print success rate and average time

|" << endl;

161. cout << " +---------------------+------------------------------------

----------------+" << endl;

162. cout << " | file | Execute commands stored in a file

|" << endl;

163. cout << " +---------------------+------------------------------------

----------------+" << endl;

164. cout << " | arr | Arrange the coundown of the jobs,

such that the |" << endl;

165. cout << " | | timegaps are equal for similar

interval times |" << endl;

166. cout << " +---------------------+------------------------------------

----------------+" << endl;

167. cout << " | | Set the start and end times - No

messages will be |" << endl;

168. cout << " | sset | sent outside of this interval.

|" << endl;

169. cout << " | | Format: 'hh:mm' or 'hh:mm:ss'

|" << endl;

170. cout << " +---------------------+------------------------------------

----------------+" << endl;

171. cout << " | stopt | Stop all communication after this

period (minutes) |" << endl;

172. cout << " +---------------------+------------------------------------

----------------+" << endl;

173. } else if (command == "pause") {

174. cout << "Communication on hold!" << endl;

175. EnterCriticalSection(&CriticalSection);

176. pSch->DestroyAllSockets();

177. LeaveCriticalSection(&CriticalSection);

178. pause = true;

179. } else if (command == "run") {

180. cout << "Communication resumed!" << endl;

181. pause = false;

182. } else if (command == "jobs") {

183. pSch->print_jobs();

184. } else if (command == "gateways") {

185. print_gateways();

186. } else if (command == "selgw") {

187. cout << "Enter gateway number to select: ";

188. int num;

189. *source >> num;

190. if (num < 0 || num >= gateways.size()) cout << "Cannot select gateway

" << num << endl;

191. else {

192. selgw = gateways[num];

193. cout << "Gateway " << num << " selected!";

194. }

195. } else if (command == "selmod") {

196. cout << "Enter module number to select: ";

197. int num;

198. *source >> num;

199. if (num < 1 || num > modules.size()) cout << "Cannot select module "

<< num << endl;

200. else {

201. selmod = &modules[num - 1];

202. selmet = &meters[num - 1];

203. if (*selmet == " -") cout << "Module " << num << "

selected!";

204. else cout << "Module and meter " << num << " selected!";

205. }

206. } else if (command == "modules") {

207. print_modules();

208. } else if (command == "exit" || command == "quit" || command == "q") {

209. quit();

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

64

210. bexit = true;

211. } else if (command == "addjob") {

212. add_prompt(source);

213. } else if (command == "addmjob") {

214. add_m_prompt(source);

215. } else if (command == "rmjob") {

216. cout << "Enter jobnumber to remove: ";

217. int num;

218. *source >> num;

219. cout << "Removing job..." << endl;

220. EnterCriticalSection(&CriticalSection);

221. if (pSch->rm_job(num)) cout << "Job removed!" << endl;

222. else cout << "Job could not be removed!" << endl;

223. LeaveCriticalSection(&CriticalSection);

224. } else if (command == "rmall") {

225. int njobs = pSch->jobs.size();

226. cout << "Removing jobs..." << endl;

227. EnterCriticalSection(&CriticalSection);

228. for (int i = 0; i < njobs; i++) pSch->rm_job(0);

229. LeaveCriticalSection(&CriticalSection);

230. cout << "All jobs removed!" << endl;

231. } else if (command == "setto") {

232. long to;

233. do {

234. cout << "Enter new timeout value in milliseconds: ";

235. *source >> to;

236. } while (to <= 0);

237. pSch->socket_to = to;

238. } else if (command == "comm") {

239. cout << "Showing communication. Press Ctrl+C to return." << endl;

240. pSch->show_comm();

241. // loop until Ctrl+C is pressed

242. while (pSch->get_show()) Sleep(50);

243. } else if (command == "stats") {

244. print_stats();

245. } else if (command == "file") {

246. string filename;

247. cout << "Enter filename: ";

248. *source >> filename;

249. ifstream filestream;

250. filestream.open(filename.c_str());

251. if (filestream.is_open()) {

252. while (!filestream.eof()) handle_cmd(&filestream);

253. filestream.close();

254. }

255. else {

256. cout << "Could not open file " << filename << "!" << endl;

257. }

258. } else if (command == "arr") {

259. pSch->rearrange();

260. } else if (command == "sset") {

261. string t1, t2;

262. cout << "Enter start time: ";

263. *source >> t1;

264. cout << "Enter end time: ";

265. *source >> t2;

266. pSch->SetActiveTimes(t1.c_str(), t2.c_str());

267. } else if (command == "stopt") {

268. int min;

269. int h, m;

270. char t1[10], t2[10];

271. time_t t = time(NULL);

272. tm *local = localtime(&t);

273.

274. cout << "Enter time (min): ";

275. *source >> min;

276. m = local->tm_min + min;

277. h = local->tm_hour;

278. while (m >= 60) {

279. h = (h + 1) % 24;

280. m -= 60;

281. }

282. sprintf(t1, "%02d:%02d:%02d", local->tm_hour, local->tm_min, local-

>tm_sec);

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

65

283. sprintf(t2, "%02d:%02d:%02d", h, m, local->tm_sec);

284. pSch->SetActiveTimes(t1, t2);

285. } else if (command[0] == '#') {

286. // The # is for commenting in the files - loop until linefeed is

encountered

287. char dum;

288. do {

289. dum = source->get();

290. } while (dum != '\n');

291. for (int i = 0; i < indicator.length(); i++) cout << '\b'; // remove

indicator

292. } else {

293. cout << "Unknown command: " << command << endl;

294. }

295. }

296.

297. void add_prompt(istream *source) {

298. char mes[256];

299. char instr[64];

300. char inc;

301. int ini;

302. bool rep = false;

303.

304. cout << "Enter command: ";

305. *source >> instr;

306.

307. do {

308. cout << "Message to module? (y/n) ";

309. *source >> inc;

310. } while (inc != 'n' && inc != 'y');

311.

312. if (inc == 'y') {

313. sprintf(mes, "##%s&%s$", instr, selmod->c_str());

314. rep = true;

315. }

316. else sprintf(mes, "##%s$", instr);

317.

318. do {

319. cout << "Repeat message periodically? (y/n) ";

320. *source >> inc;

321. } while (inc != 'n' && inc != 'y');

322.

323. if (inc == 'y') {

324. cout << "Repetition period in seconds: ";

325. *source >> ini;

326. pSch->add_job(mes, selgw, true, rep, ini);

327. }

328. else pSch->add_job(mes, selgw, false, rep, 0);

329. cout << "Job added!" << endl;

330. }

331.

332. void add_m_prompt(istream *source) {

333. string mID;

334. char msg[256];

335. char meterm[256];

336. unsigned char umeterm[256];

337.

338. // The opening message

339. sprintf(meterm, "/?%s!!%c%c", selmet->c_str(), 0x0D, 0x0A);

340. for (int i = 0; i < 256; i++) {

341. umeterm[i] = meterm[i];

342. }

343. Parity8to7(umeterm);

344. sprintf(msg, "##Transparant&%s&%s$", selmod->c_str(), umeterm);

345.

346. // Periodical

347. char inc;

348. int ini;

349. do {

350. cout << "Repeat message periodically? (y/n) ";

351. *source >> inc;

352. } while (inc != 'n' && inc != 'y');

353. if (inc == 'y') {

354. cout << "Repetition period in seconds: ";

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

66

355. *source >> ini;

356. pSch->add_job(msg, selgw, true, true, ini, true, *selmod);

357. }

358. else pSch->add_job(msg, selgw, false, true, 0, true, *selmod);

359. cout << "Job added!" << endl;

360. }

361.

362. void print_stats() {

363. // Stats for all messages

364. cout << "-----------------------------" << endl;

365. cout << " Statistics for all messages" << endl;

366. cout << "-----------------------------" << endl;

367. cout << "Total messages: " << pSch->msg_count << " (" << pSch-

>msg_count + pSch->skipped << ")"<< endl;

368. cout << "Successful messages: " << pSch->msg_success << endl;

369. cout << "Failed messages: " << pSch->msg_fail << endl;

370. cout << "Connect fails: " << pSch->connectfail << endl;

371. cout << "Ack fails: " << pSch->ackfail << endl;

372. cout << "Reply fails: " << pSch->replyfail << endl;

373. cout << "Skipped messages: " << pSch->skipped << endl;

374. if (pSch->msg_count)

375. cout << "Success rate: " << 100 * pSch->msg_success / pSch->msg_count

<< "%" << endl;

376. else

377. cout << "Success rate: " << "-" << endl;

378. if (pSch->msg_success)

379. cout << "Average time: " << pSch->totaltime / pSch->msg_success << "

ms" << endl;

380. else

381. cout << "Average time: " << "-" << endl;

382.

383. // Stats for metering jobs

384. cout << endl << "------------------------------" << endl;

385. cout << " Statistics for metering jobs" << endl;

386. cout << "------------------------------" << endl;

387. cout << "Total jobs: " << pSch->m_job_count << " (" << pSch-

>m_job_count + pSch->m_skipped << ")"<< endl;

388. cout << "Successful jobs: " << pSch->m_job_success << endl;

389. cout << "Failed jobs: " << pSch->m_job_fail << endl;

390. cout << "Connect fails: " << pSch->m_connectfail << endl;

391. cout << "Ack fails: " << pSch->m_ackfail << endl;

392. cout << "Reply fails: " << pSch->m_replyfail << endl;

393. cout << "Skipped messages: " << pSch->m_skipped << endl;

394. if (pSch->m_job_count)

395. cout << "Success rate: " << 100 * pSch->m_job_success / pSch-

>m_job_count << "%" << endl;

396. else

397. cout << "Success rate: " << "-" << endl;

398. if (pSch->m_job_success)

399. cout << "Average time: " << pSch->m_totaltime / pSch->m_job_success

<< " ms" << endl;

400. else

401. cout << "Average time: " << "-" << endl;

402. cout << endl;

403. cout << "------------------------------" << endl;

404. cout << endl;

405. cout << "Total sent bytes: " << pSch->SentBytes << endl;

406. cout << "Total received bytes: " << pSch->RecvBytes << endl;

407. cout << endl;

408. cout << "Sent bytes over ZigBee: " << pSch->SentZigBytes << endl;

409. cout << "Received bytes over ZigBee: " << pSch->RecvZigBytes << endl;

410. }

411.

412. void quit(int code) {

413. delete pSch;

414. DeleteCriticalSection(&CriticalSection);

415. cout << "See ya! :-)" << endl;

416. exit(code);

417. }

418.

419. void load_gateways() {

420. char ip[32];

421. int port;

422.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

67

423. gwf.open("gateways.txt");

424. if (!gwf) {

425. cout << "Cannot load gateways from file" << endl;

426. selgw = NULL;

427. }

428. else {

429. // Load all the gateways

430. while (!gwf.eof()) {

431. gwf >> ip >> port;

432. Gateway *ng = new Gateway(ip, port);

433. gateways.push_back(ng);

434. }

435. gwf.close();

436. if (gateways.size()) selgw = gateways[gateways.size() - 1];

437. else selgw = NULL;

438. }

439. }

440.

441. void print_gateways() {

442. if (gateways.size()) {

443. cout << "+----+-----------------+-------+" << endl;

444. cout << "| # | IP Address | Port |" << endl;

445. cout << "+----+-----------------+-------+" << endl;

446. for (int i = 0; i < gateways.size(); i++) {

447. if (selgw == gateways[i])

448. printf("|>%2d<| %15s | %5d |\n", i, gateways[i]->ip, gateways[i]-

>port);

449. else

450. printf("| %2d | %15s | %5d |\n", i, gateways[i]->ip, gateways[i]-

>port);

451. }

452. cout << "+----+-----------------+-------+" << endl;

453. }

454. else cout << "No gateways!" << endl;

455. }

456.

457. void load_modules() {

458. mdf.open("modules.txt");

459. if (!mdf) {

460. cout << "Cannot load modules from file" << endl;

461. selmod = NULL;

462. selmet = NULL;

463. }

464. else {

465. // Load all the modules

466. while (!mdf.eof()) {

467. string mod;

468. string meter;

469. string line;

470. getline(mdf, line); // Get line from the file

471. if (line.length() > 18) {

472. // There's also a meter defined

473. mod = line.substr(0, 18);

474. modules.push_back(mod);

475. // Now find the first character of the meter

476. int mstart = 18;

477. while ((line[mstart] < '0' || line[mstart] > '9') && line[mstart]

!= '\0') mstart++;

478. meter = line.substr(mstart, 8);

479. meters.push_back(meter);

480. }

481. else {

482. modules.push_back(line);

483. meters.push_back(" -");

484. }

485. }

486. mdf.close();

487. }

488. if (modules.size()) {

489. selmod = &modules[0];

490. selmet = &meters[0];

491. }

492. else selmod = NULL;

493. }

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

68

494.

495. void print_modules() {

496. if (modules.size()) {

497. cout << "+----+--------------------+----------+" << endl;

498. cout << "| # | Module | Meter |" << endl;

499. cout << "+----+--------------------+----------+" << endl;

500. for (int i = 0; i < modules.size(); i++) {

501. if (&modules[i] == selmod) printf("|>%2d<| %s | %s |\n", i+1,

modules[i].c_str(), meters[i].c_str());

502. else printf("| %2d | %s | %s |\n", i+1, modules[i].c_str(),

meters[i].c_str());

503. }

504. cout << "+----+--------------------+----------+" << endl;

505. }

506. else cout << "No modules!" << endl;

507. }

508.

509. void add_module(string mod) {

510. ofstream modf;

511. modf.open("modules.txt", ios::app);

512. if (!modf) cout << "cannot open module file" << endl;

513. else {

514. modf << endl << mod.c_str();

515. modf.close();

516. cout << "ädded" << endl;

517. }

518. modules.push_back(mod);

519. }

520.

521. void Parity8to7(unsigned char str[]) {

522. int i = 0;

523. while (str[i] != '\0') {

524.

525. // Print the character in binary format in a string

526. char *bits;

527. bits = byte_to_binary(str[i]);

528.

529. // Count the parity of the character by counting the 1s in the string

530. int ones = 0;

531. for (int j = 0; j < 8; j++) if (bits[j] == '1') ones++;

532.

533. // Add the parity bit to the left

534. if (ones % 2) str[i] += 128;

535. i++;

536.

537. delete bits;

538. }

539. pSch->SentZigBytes += strlen((char *) str);

540. }

541.

542. void Parity7to8(unsigned char str[]) {

543. int i = 0;

544. while (str[i] != '\0') {

545. // Remove the parity bit if it exists

546. str[i] %= 128;

547. if (str[i] < 32 || str[i] == 127) str[i] = '_';

548. i++;

549. }

550. }

551.

552. char *byte_to_binary(int x) {

553. char *b;

554. b = new char[9];

555. for (int i = 7; i >= 0; i--) {

556. if (x % 2) b[i] = '1';

557. else b[i] = '0';

558. x /= 2;

559. }

560. b[8] = '\0';

561. return b;

562. }

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

69

gateway.h

1. #pragma once

2.

3. #include <vector>

4. using namespace std;

5.

6. #include "Socket.h"

7.

8. class Gateway {

9. public:

10. Gateway(char ip_adres[32], int port_num);
11. void DestroySocket();
12. SocketClient *s;
13. char ip[32];
14. int port;
15. };

gateway.cpp

1. #include "gateway.h"

2.

3. Gateway::Gateway(char ip_adres[32], int port_num) {

4. s = NULL;

5. strcpy(ip, ip_adres);

6. port = port_num;

7. }

8.

9. void Gateway::DestroySocket() {

10. s->Close();
11. delete s;
12. s = NULL;
13. }

scheduler.h

1. #pragma once

2.

3. #include <WinSock2.h>

4. #include <windows.h>

5. #include <string>

6. #include <fstream>

7. #include <iostream>

8. using namespace std;

9.

10. #include "gateway.h"
11.
12. class job {
13. public:
14. // Constructor
15. job(char m[256], Gateway *gw, bool per, bool sr, int intv, bool is_meter,

string mod);

16. void run(); // Main loop
17. char message[256]; // Message to send
18. Gateway *gateway; // Gateway to the module
19. bool periodic; // Should job be repeated?
20. bool should_reply; // Do we expect a reply from an end-point?
21. bool pending; // indicates the message needs to be sent asap
22. int interval; // Interval between jobs
23. int count_down; // How long until next job?
24. bool is_metering; // Is it a metering job?
25. bool terminate; // Signal job to end
26. string module; // End-point address
27. };

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

70

28.
29. class active_time {
30. public:
31. int hr;
32. int min;
33. int sec;
34. bool operator>(active_time& t2) const;
35. bool operator>=(active_time& t2) const;
36. bool operator<(active_time& t2) const;
37. bool operator<=(active_time& t2) const;
38. };
39.
40. class Scheduler {
41. public:
42. Scheduler(); // Constructor
43. ~Scheduler(); // Destructor
44. void run(); // The basic loop of the scheduler
45. void add_job(char message[256], Gateway *gateway, bool periodic, bool

should_reply, int interval, bool metering = false, string module = ""); // Add a

job

46. bool rm_job(int n); // Remove a job
47. void print_jobs(); // Print info about jobs
48. void show_comm(); // Print communication on the screen
49. void hide_comm(); // Don't print communication on the screen
50. bool get_show(); // Should communication be printed?
51. int get_max_job_length(); // Maximum length of a job message
52. void rearrange(); // Rearrange jobs with similar intervals to spread them out
53. unsigned char CalculateCrc(unsigned char pData[]); // Checksum calculation
54. void DestroyAllSockets(); // Cleanup
55. void SetActiveTimes(const char *start_time, const char *end_time); // Set

when communication ends / starts

56. bool InActiveTime(); // Are we in the activity time?
57.
58. job *seljob; // The selected job
59.
60. vector <job*> jobs; // Vector of all the jobs
61. // statistics for all messages (including metering messages)
62. long totaltime; // Time we are running
63. long msg_count; // Messages sent
64. long msg_fail; // Failed messages
65. long msg_success; // Successful messages
66. long connectfail; // Connection failures
67. long ackfail; // Acknowledgement failed
68. long replyfail; // Reply failed
69. long skipped; // Job was skipped
70. // statistics for metering messages only
71. long m_totaltime; // see above
72. long m_job_count; // see above
73. long m_job_fail; // see above
74. long m_job_success; // see above
75. long m_connectfail; // see above
76. long m_ackfail; // see above
77. long m_replyfail; // see above
78. long m_skipped; // see above
79.
80. long socket_to; // Socket timeout in ms
81.
82. unsigned long SentBytes; // Total amount of bytes sent
83. unsigned long RecvBytes; // Total received bytes
84. unsigned long SentZigBytes; // Bytes sent by the ZigBee
85. unsigned long RecvZigBytes; // Bytes received by the ZigBee
86.
87. private:
88. void add_job(job* newjob); // Add a job
89.
90. // Send a message
91. bool SendMsg(char message[], Gateway *to, bool should_reply, char *term_seq =

NULL);

92. // Parse a received message
93. bool ParseMessage(char msg[], char command[], char arg1[], char arg2[], int

&i);

94. string GetMod(int mod, char arg[]); // Find a module
95. void prnt(string out); // Print a message to the screen and log file
96. bool is_element(vector<int> vec, int val); // Check if exists in vector

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

71

97. int num_occ(int val); // return number of occurrences of val in jobs
intervals

98. bool show; // Print communication to screen?
99. char logl[1024]; // Line to print to log
100.

101. active_time start_t; // Time to start

102. active_time end_t; // Time to end

103. bool at_set; // Active Time Set?

104. };

105.

106. extern CRITICAL_SECTION CriticalSection;

scheduler.cpp

1. #include "scheduler.h"

#include <time.h>

2.

3. string space(int n);

4.

5. extern void Parity8to7(unsigned char str[]);

6. extern void Parity7to8(unsigned char str[]);

7.

8. DWORD WINAPI StartJobThread(LPVOID pParam) {

9. job * pJ;

10. pJ = (job *) pParam;
11. pJ->run();
12. return 0;
13. }
14.
15. bool is_num(char c) {
16. if (c < '0') return false;
17. if (c > '9') return false;
18. return true;
19. }
20.
21. job::job(char m[256], Gateway *gw, bool per, bool sr, int intv, bool is_meter,

string mod) {

22. strcpy(message, m);
23. gateway = gw;
24. periodic = per;
25. should_reply = sr;
26. interval = intv;
27. terminate = false;
28. if (per) pending = false;
29. else pending = true;
30. count_down = 0;
31. is_metering = is_meter;
32. module = mod;
33.
34. // Only start a thread if we need one
35. if (periodic) CreateThread(NULL, 0, StartJobThread, this, 0, NULL);
36. }
37.
38. void job::run() {
39. unsigned long loopt;
40. extern Scheduler *pSch;
41. extern bool pause;
42. count_down = interval * 10;
43. time_t tijd = time(NULL);
44. tm *local = localtime(&tijd);
45. long oldsec = local->tm_sec;
46. long newsec;
47. // Keep decrementing the count_down until it reaches 0
48. // then pending is set to tue, and the counter is restarted
49. while (!terminate) {
50. Sleep(100);
51. tijd = time(NULL);
52. local = localtime(&tijd);
53. newsec = local->tm_sec;
54. if (newsec != oldsec) { // See if a second has passed

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

72

55. oldsec = newsec;
56. if (!pause && pSch->InActiveTime()) {
57. count_down -= 10;
58. if (count_down <= 0) {
59. if (pending) {
60. pSch->skipped++;
61. if (strstr(message, "Transparant")) pSch->m_skipped++;
62. }
63. pending = true;
64. count_down = interval * 10;
65. }
66. }
67. }
68. }
69. }
70.
71. Scheduler::Scheduler() {
72. show = false;
73.
74. at_set = false;
75.
76. msg_count = 0;
77. msg_success = 0;
78. msg_fail = 0;
79. totaltime = 0;
80. connectfail = 0;
81. ackfail = 0;
82. replyfail = 0;
83. skipped = 0;
84.
85. m_job_count = 0;
86. m_job_success = 0;
87. m_job_fail = 0;
88. m_totaltime = 0;
89. m_connectfail = 0;
90. m_ackfail = 0;
91. m_replyfail = 0;
92. m_skipped = 0;
93.
94. socket_to = 2000;
95.
96. SentBytes = 0;
97. RecvBytes = 0;
98. SentZigBytes = 0;
99. RecvZigBytes = 0;
100. }

101.

102. Scheduler::~Scheduler() {

103. DestroyAllSockets();

104. }

105.

106. void Scheduler::show_comm() {

107. show = true;

108. }

109.

110. void Scheduler::hide_comm() {

111. show = false;

112. }

113.

114. bool Scheduler::get_show() {

115. return show;

116. }

117.

118. void Scheduler::run() {

119. long mts, mte; // track time for jobs

120. extern bool pause;

121. bool success;

122. while (true) {

123. Sleep(100);

124. EnterCriticalSection(&CriticalSection);

125. if (!pause && InActiveTime()) {

126. for (int i = 0; i < jobs.size(); i++) {

127. seljob = jobs[i];

128. success = false;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

73

129. if (jobs[i]->pending) {

130. // We need to send the message

131. jobs[i]->pending = false;

132.

133. // See if it's a metering job

134. if (strstr(jobs[i]->message, "Transparant")) {

135. m_job_count++;

136. prnt("\n");

137. prnt("------------------------------ METERING JOB -----------

-------------------");

138. prnt("\n");

139.

140. char *ss = new char[256];

141. unsigned char *us = new unsigned char[256];

142. char nmsg[256];

143.

144. // First Message: addressing

145. mts = GetTickCount();

146. if (SendMsg(jobs[i]->message, jobs[i]->gateway, jobs[i]-

>should_reply)) {

147.

148. // Second message: baudrate

149. sprintf(ss, "%c051%c%c", 0x06, 0x0d, 0x0a);

150. for (int j = 0; j < 256; j++) us[j] = ss[j];

151. Parity8to7(us);

152. sprintf(nmsg, "##Transparant&%s&%s$", jobs[i]-

>module.c_str(), us);

153. if (SendMsg(nmsg, jobs[i]->gateway, true)) {

154.

155. // Third message: password

156. sprintf(ss, "%cP1%c(00000000)%ca", 0x01, 0x02, 0x03);

157. for (int k = 0; k < 256; k++) us[k] = ss[k];

158. Parity8to7(us);

159. sprintf(nmsg, "##Transparant&%s&%s$", jobs[i]-

>module.c_str(), us);

160. if (SendMsg(nmsg, jobs[i]->gateway, true)) {

161.

162. // Fourth message: Read Data

163. //sprintf(ss, "%cR2%cC003()%c%c", 0x01, 0x02, 0x03,

0x10); // Ask time

164.

165. // Generate string for times. THIS FAILS AROUND

MIDNIGHT!!!

166. int h1, h2, m1, m2;

167. time_t tijd = time(NULL);

168. tm *local = localtime(&tijd);

169. h2 = local->tm_hour;

170. h1 = local->tm_hour;

171. m2 = (local->tm_min / 5) * 5; // Floor to a fivefold

172. m1 = m2 - 5;

173. if (m1 < 0) {

174. h1--;

175. m1 += 60;

176. }

177. char timestr[32];

178. sprintf(timestr,

"0%02d%02d%02d%02d%02d;0%02d%02d%02d%02d%02d",

179. local->tm_year % 100, /* 1 year */

180. local->tm_mon + 1, /* 1 month */

181. local->tm_mday, /* 1 day */

182. h1, /* 1 hour */

183. m1, /* 1 minutes */

184. local->tm_year % 100, /* 2 year */

185. local->tm_mon + 1, /* 2 month */

186. local->tm_mday, /* 2 day */

187. h2, /* 2 hour */

188. m2 /* 2 minutes */

189.);

190. sprintf(ss, "%cR5%cP.01(%s)%c", 0x01, 0x02, timestr,

0x03); // Metering data

191. for (int j = 0; j < 256; j++) us[j] = ss[j];

192. char crc = CalculateCrc(us);

193. int cnull = 0;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

74

194. while (us[cnull] != '\0') cnull++; // Find the end of

the string

195. us[cnull] = crc;

196. us[cnull+1] = '\0';

197. Parity8to7(us);

198.

199. sprintf(nmsg, "##Transparant&%s&%s$", jobs[i]-

>module.c_str(), us);

200. char terms[2] = {3, 0}; // Carriage return, End of

text, Null

201. if (SendMsg(nmsg, jobs[i]->gateway, true, terms))

success = true;

202. } // M3

203. } // M2

204.

205. // Fifth message: There is an open connection, so we close

it

206. sprintf(ss, "%cB0%c%c", 0x01, 0x03, 0x71);

207. for (int j = 0; j < 256; j++) us[j] = ss[j];

208. Parity8to7(us);

209. sprintf(nmsg, "##Transparant&%s&%s$", jobs[i]-

>module.c_str(), us);

210. SendMsg(nmsg, jobs[i]->gateway, false); // Will not reply

211.

212. if (success) {

213. // Save the elapsed time if the message was successful

214. mte = GetTickCount();

215. }

216. } // M1

217.

218. delete ss;

219. delete us;

220. ss = NULL;

221. us = NULL;

222. if (success) {

223. m_job_success++;

224. m_totaltime += mte - mts;

225. sprintf(logl, "Total time of job: %ld ms\n", mte - mts);

226. prnt(logl);

227. }

228. else m_job_fail++;

229. } // if Transparant

230. else {

231. prnt("\n");

232. prnt("---

-------------------");

233. prnt("\n");

234. SendMsg(jobs[i]->message, jobs[i]->gateway, jobs[i]-

>should_reply);

235. } // else: no metering job

236. // If not periodic, erase the job

237. if (!jobs[i]->periodic) rm_job(i);

238. }

239. } // for loop

240. } // if pause

241. LeaveCriticalSection(&CriticalSection);

242. } // while

243. } // void run

244.

245. void Scheduler::add_job(job* newjob) {

246. jobs.push_back(newjob);

247. }

248.

249. void Scheduler::add_job(char message[], Gateway *gateway, bool periodic,

bool should_reply, int interval, bool metering, string module) {

250. job *j = new job(message, gateway, periodic, should_reply, interval,

metering, module);

251. add_job(j);

252. }

253.

254. bool Scheduler::rm_job(int n) {

255. if (n < 0 || n >= jobs.size()) return false;

256. // Tell the thread to terminate

257. jobs[n]->terminate = true;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

75

258.

259. // Wait until we're sure the thread has terminated

260. Sleep(200);

261.

262. // Delete the job instance from the vector

263. jobs.erase(jobs.begin() + n);

264. return true;

265. }

266.

267. void Scheduler::print_jobs() {

268. int j;

269. if (jobs.size()) {

270. int maxlength = get_max_job_length();

271. cout << endl;

272. cout << "+-----+-"; for(j=0;j<maxlength+1;j++)cout<<"-"; cout << "+--

---------------+-------+--------------+-------+" << endl;

273. cout << "| # | Message" << space(maxlength - 7).c_str() << " | IP

address " << " | Intv. " << "| Next trigger | Reply |" << endl;

274. cout << "+-----+-"; for(j=0;j<maxlength+1;j++)cout<<"-"; cout << "+--

---------------+-------+--------------+-------+" << endl;

275. for (int i = 0; i < jobs.size(); i++) {

276. char msg[256];

277. // If it is a metering message, we do not print the content of

jobs[i]->message because of linefeeds etc

278. if (strstr(jobs[i]->message, "Transparant")) sprintf(msg,

"<Metering Message>");

279. else strcpy(msg, jobs[i]->message);

280. if (jobs[i]->periodic) {

281. printf("| %3d | %s%s | %15s | %5d | %12d |",

282. i,

283. msg,

284. space(maxlength-strlen(msg)).c_str(),

285. jobs[i]->gateway->ip,

286. jobs[i]->interval,

287. jobs[i]->count_down / 10);

288. }

289. else {

290. printf("| %3d | %s%s | %15s | - | - |",

291. i,

292. msg,

293. space(maxlength-strlen(msg)).c_str(),

294. jobs[i]->gateway->ip);

295. }

296. if (jobs[i]->should_reply) cout << " YES |";

297. else cout << " NO |";

298. cout << endl;

299. }

300. cout << "+-----+-"; for(j=0;j<maxlength+1;j++)cout<<"-"; cout << "+--

---------------+-------+--------------+-------+" << endl;

301. }

302. else cout << "No jobs!" << endl;

303. }

304.

305. int Scheduler::get_max_job_length() {

306. int max = 0;

307. for (int i = 0; i < jobs.size(); i++) {

308. int len = strlen(jobs[i]->message);

309. if (len > max) max = len;

310. }

311. return max;

312. }

313.

314. string space(int n) {

315. string s = "";

316. for (int i = 0; i < n; i++) s += " ";

317. return s;

318. }

319.

320. bool Scheduler::SendMsg(char message[], Gateway *to, bool should_reply,

char *term_seq) {

321. long te, ts;

322. char recv[4096];

323. char c[1024];

324. char a1[1024];

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

76

325. char a2[2048];

326. int start;

327. bool success = false;

328. bool retval = true;

329. bool retry = true;

330.

331. bool meterjob = strstr(message, "Transparant");

332.

333. msg_count++;

334.

335. lbl_retry:

336. try {

337. if (to->s == NULL) {

338. // Create a new socket

339. to->s = new SocketClient(to->ip, to->port);

340. }

341.

342. // Connect

343. int ret_val = to->s->Connect();

344. if (!ret_val) {

345. sprintf(logl, "Connected to %s on port %d", to->ip, to->port);

346. prnt(logl);

347. }

348.

349. if (retry) sprintf(logl, "Sending message: %s", message);

350. else sprintf(logl, "Retry to send message: %s", message);

351. Parity7to8((unsigned char*) logl);

352. prnt("\n");

353. prnt(logl);

354. prnt("\n");

355.

356. ts = GetTickCount();

357. to->s->SendLine(message);

358. SentBytes += strlen(message);

359.

360. // Wait for the ACK

361. string l = "";

362. success = to->s->ReceiveLine(l);

363. if (!should_reply) te = GetTickCount();

364. if (success) {

365. strcpy(recv, l.c_str());

366.

367. // parse the message we received

368. start = 0;

369. ParseMessage(recv, c, a1, a2, start);

370.

371. unsigned char *us = new unsigned char[1024];

372. for (int i = 0; i < 1024; i++) us[i] = a2[i];

373.

374. Parity7to8(us);

375. if (strcmp(a2, "")) sprintf(logl, "%s, %s, %s\n", c, a1, us);

376. else sprintf(logl, "%s, %s\n", c, a1);

377. prnt(logl);

378.

379. if (strstr(message, "Geef_Modules")) {

380. extern vector<string> modules;

381. // We gaan de gevonden modules extracten

382. ofstream modfile;

383. int Nmodules = (strlen(a2) + 1) / 19; // Een adres is 18

karakters, en een ampersand

384. if (Nmodules) {

385. modfile.open("modules.txt", fstream::app);

386. }

387. if (modfile.is_open()) {

388.

389. for (int m = 0; m < Nmodules; m++) {

390. string adr = GetMod(m, a2);

391. bool newmod = true;

392.

393. for (int i = 0; i < modules.size(); i++)

394. if (modules[i] == adr) newmod = false;

395.

396. if (newmod){

397. // The module is new: add it to the modules.txt file

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

77

398. modfile.seekp(0, ios::end);

399. modfile.put('\n');

400. modfile << adr.c_str();

401. // Also add to vector

402. modules.push_back(adr);

403. }

404. }

405. modfile.close();

406. }

407. }

408.

409. // Wait for reply

410. if (should_reply) {

411. success = false;

412. vector<string> recvec;

413. string l = "";

414. success = to->s->ReceiveLine(l);

415. recvec.push_back(l);

416. if (term_seq) {

417. // Keep receiving until we receive the terminating sequence

418. while (success && !strstr(l.c_str(), term_seq)) {

419. l = "";

420. success = to->s->ReceiveLine(l);

421. recvec.push_back(l);

422. }

423. }

424. if (success) {

425. te = GetTickCount();

426. for (int i = 0; i < recvec.size(); i++) {

427. l = recvec[i];

428. strcpy(recv, l.c_str());

429.

430. // Parse the reply

431. start = 0;

432. ParseMessage(recv, c, a1, a2, start);

433.

434. if (strcmp(a2, "")) {

435. if (meterjob) {

436. unsigned char *ua2 = new unsigned char[2048];

437. for (int i = 0; i < 2048; i++) ua2[i] = a2[i];

438. Parity7to8(ua2);

439. sprintf(logl, "%s, %s, %s\n", c, a1, ua2);

440. }

441. else sprintf(logl, "%s, %s, %s\n", c, a1, a2);

442. }

443. else sprintf(logl, "%s, %s\n", c, a1);

444. prnt(logl);

445. if (show) cout.flush();

446. }

447. sprintf(logl, "Received after %ld ms\n", te - ts);

448. prnt(logl);

449.

450. totaltime += te - ts;

451. }

452. else {

453. replyfail++;

454. if (meterjob) m_replyfail++;

455. sprintf(logl, "Failed: no reply received!\n");

456. prnt(logl);

457. }

458. }

459. else {

460. if (show) cout.flush();

461. sprintf(logl, "Received after %ld ms\n", te - ts);

462. prnt(logl);

463. }

464. }

465. else {

466. if (retry) {

467. retry = false;

468. delete to->s;

469. to->s = NULL;

470. goto lbl_retry;

471. }

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

78

472. ackfail++;

473. if (meterjob) m_ackfail++;

474. sprintf(logl, "Failed: no ack received!\n");

475. prnt(logl);

476. }

477. }

478. catch (const char* s) {

479. sprintf(logl, "Failed: '%s'\n", s);

480. prnt(logl);

481. connectfail++;

482. if (meterjob) m_connectfail++;

483. retval = false;

484. to->DestroySocket();

485. }

486. catch (std::string s) {

487. sprintf(logl, "Failed: '%s'\n", s.c_str());

488. prnt(logl);

489. connectfail++;

490. if (meterjob) m_connectfail++;

491. retval = false;

492. to->DestroySocket();

493. }

494. catch (int i) {

495. sprintf(logl, "Failed: errorcode %d\n", i);

496. prnt(logl);

497. connectfail++;

498. if (meterjob) m_connectfail++;

499. retval = false;

500. to->DestroySocket();

501. }

502. catch (...) {

503. sprintf(logl, "Failed: unhandled exception\n");

504. prnt(logl);

505. connectfail++;

506. if (meterjob) m_connectfail++;

507. retval = false;

508. to->DestroySocket();

509. }

510. /*if (disconnect) {

511. to->s->Close();

512. prnt("Disconnected!\n");

513. delete s;

514. }*/

515.

516. if(!success) msg_fail++;

517. else msg_success++;

518.

519. return success;

520. }

521.

522. string Scheduler::GetMod(int mod, char arg[]) {

523. // Get the XBee address of the 'mod'-th module in arg

524. string m;

525. m = "";

526. for (int i = mod * 19; i < mod * 19 + 18; i++) {

527. m += arg[i];

528. }

529. return m;

530. }

531. //---

532.

533.

534. void Scheduler::prnt(string out) {

535. time_t nu = time(NULL);

536. tm *local = localtime(&nu);

537. if (out != "\n") {

538. char t[32];

539. strftime(t, 32, "[%x - %X] ", local);

540. string time = t;

541. out = time + out;

542. }

543.

544. ofstream log;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

79

545. if (show) cout << out;

546. char filename[32];

547. strftime(filename, 32, "log/log %Y-%m-%d.txt", local);

548. log.open(filename, ios::app);

549. if (!log && show) cout << "Cannot open log file" << endl;

550. else log << out;

551. }

552.

553. bool Scheduler::ParseMessage(char msg[], char command[], char arg1[],

char arg2[], int &i) {

554. // Hier gaan we een string zoals hij over ethernet binnenkomt,

555. // parsen en stoppen hem in command, arg1 en arg2

556.

557. // Eerst tellen we de ontvangen bytes op

558. RecvBytes += strlen(msg);

559.

560. int index;

561. while (msg[i] != '#' && i < 4096) i++; // Stop if i becomes too

large

562. if (msg[i] == '#' && msg[i+1] == '#') {

563. index = 0;

564. // Zoek het eerste scheidingsteken en plaats alles ervoor

in command

565. for (i += 2; msg[i] != '&' && msg[i] != '$'; i++) {

566. // Loop tot we & of $ vinden

567. if (msg[i] == '!') {i++; index++;} // Escape

568. command[index] = msg[i];

569. index++;

570. }

571. command[index] = '\0';

572. if (msg[i] == '&') {

573. // Er is een argument

574. index = 0;

575. for (i++; msg[i] != '&' && msg[i] != '$'; i++) {

576. // Loop tot we & of $ vinden

577. if (msg[i] == '!') {i++; index++;} // Escape

578. arg1[index] = msg[i];

579. index++;

580. }

581. arg1[index] = '\0';

582. if (msg[i] == '&') {

583. // Er is nog een argument

584. index = 0;

585. for (i++; msg[i] != '$'; i++) {

586. if (msg[i] == '!') {i++; index++;}

// Escape

587. // Loop tot we $ vinden

588. arg2[index] = msg[i];

589. index++;

590. }

591. arg2[index] = '\0';

592. }

593. else arg2[0] = '\0';

594. }

595. else arg1[0] = '\0';

596.

597. // Register sent and received bytes

598. if (!strcmp(command, "Transparant")) {

599. RecvZigBytes += strlen(arg2);

600. }

601. else if (strcmp(command, "ACK")){

602. RecvZigBytes += 1 + 2 + 2 + 2 + 4 + 4;

603. SentZigBytes += 1 + 2 + 2 + 2 + 4 + 4;

604. }

605. }

606. else {

607. return false;

608. }

609. return true;

610. }

611.

612. void Scheduler::rearrange() {

613. int i;

614. vector<int> exist_intv;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

80

615.

616. // First we check which intervals are present in the jobtable

617. for (i = 0; i < jobs.size(); i++) {

618. if (!is_element(exist_intv, jobs[i]->interval)) {

619. exist_intv.push_back(jobs[i]->interval);

620. cout << "Added value to vector: " << jobs[i]->interval << endl;

621. }

622. }

623.

624. cout << "Arranging..." << endl;

625.

626. // Here we start looping over the different intervals

627. for (i = 0; i < exist_intv.size(); i++) {

628. cout << "Arranging jobs with interval " << exist_intv[i] << endl;

629.

630. // Calculate the number of jobs with this interval

631. int njobs = num_occ(exist_intv[i]);

632. cout << "This interval has " << njobs << " occurrences" << endl;

633.

634. // Reassign the countdown value for all jobs with this interval

635. int job_idx = 0;

636. for (int j = 0; j < njobs; j++) {

637.

638. // Find the next job with this interval

639. while (jobs[job_idx]->interval != exist_intv[i]) job_idx++;

640.

641. // Reassign countdown value

642. jobs[job_idx]->count_down = (10 * exist_intv[i] * (j + 1)) / njobs;

643. cout << "Reassigned countdown to " << jobs[job_idx]->count_down /

10 << " for job " << job_idx << endl;

644. job_idx++;

645. }

646. }

647. }

648.

649. bool Scheduler::is_element(vector<int> vec, int val) {

650. for (int i = 0; i < vec.size(); i++) {

651. if (vec[i] == val) return true;

652. }

653. return false;

654. }

655.

656. int Scheduler::num_occ(int val) {

657. int retv = 0;

658. for (int i = 0; i < jobs.size(); i++) {

659. if (jobs[i]->interval == val) retv++;

660. }

661. return retv;

662. }

663.

664. unsigned char Scheduler::CalculateCrc(unsigned char pData[]) {

665. // Calculate the BCC of the specified data block

666. int idx = 0;

667.

668. // Skip Start of Heading and Start of Text

669. while ((pData[idx] == 1 || pData[idx] == 2) && idx < 9999) idx++;

670.

671. unsigned char cCrc = pData[idx];

672. idx++;

673.

674. // Loop until the string is terminated by '\0'

675. while (pData[idx] != 0 && idx < 9999) {

676. cCrc ^= pData[idx];

677. idx++;

678. }

679. return cCrc;

680. }

681.

682. void Scheduler::DestroyAllSockets() {

683. extern vector<Gateway*> gateways;

684. for (int i = 0; i < gateways.size(); i++) gateways[i]->DestroySocket();

685. }

686.

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

81

687. void Scheduler::SetActiveTimes(const char *start_time, const char

*end_time) {

688. int h1, h2, m1, m2, s1, s2;

689. // First some error checks

690. if (!start_time || !end_time) cout << "Start/End times cannot be set:

NULL string" << endl;

691. else if (strlen(start_time) != strlen(end_time)) cout << "Start/End

times cannot be set: strings of different length" << endl;

692. else if (strlen(start_time) != 5 && strlen(start_time) != 8) cout <<

"Start/End times cannot be set: incompatible string" << endl;

693.

694. // Hours and minutes specified

695. else if (strlen(start_time) == 5) {

696. if (!is_num(start_time[0]) || !is_num(start_time[1]) ||

!is_num(start_time[3]) || !is_num(start_time[4]) ||

697. !is_num(end_time[0]) || !is_num(end_time[1]) ||

!is_num(end_time[3]) || !is_num(end_time[4]))

698. cout << "Start/End times cannot be set: strings should follow

format 'hh:mm' or 'hh:mm:ss'" << endl;

699. else {

700. // convert the string to times

701. h1 = 10 * (start_time[0] - '0') + (start_time[1] - '0');

702. h2 = 10 * (end_time[0] - '0') + (end_time[1] - '0');

703. m1 = 10 * (start_time[3] - '0') + (start_time[4] - '0');

704. m2 = 10 * (end_time[3] - '0') + (end_time[4] - '0');

705.

706. // Two more checks

707. if (h1 > 23 || h2 > 23 || m1 > 59 || m2 > 59) {

708. cout << "Start/End times cannot be set: times are out of bounds"

<< endl;

709. return;

710. }

711. if (h1 == h2 && m1 == m2) {

712. cout << "Start/End times cannot be set: times are equal" << endl;

713. return;

714. }

715.

716. // We passed all checks: set the active times

717. start_t.hr = h1;

718. start_t.min = m1;

719. start_t.sec = 0;

720. end_t.hr = h2;

721. end_t.min = m2;

722. end_t.sec = 0;

723. at_set = true;

724.

725. cout << "Start and end times successfully set to '" <<

726. start_t.hr << ":" << start_t.min << ":" << start_t.sec << "' and

'" <<

727. end_t.hr << ":" << end_t.min << ":" << end_t.sec << "'" << endl;

728. }

729. }

730.

731. // Hours, minutes and seconds specified

732. else if (strlen(start_time) == 8) {

733. if (!is_num(start_time[0]) || !is_num(start_time[1]) ||

!is_num(start_time[3]) || !is_num(start_time[4]) ||

734. !is_num(end_time[0]) || !is_num(end_time[1]) ||

!is_num(end_time[3]) || !is_num(end_time[4]) ||

735. !is_num(end_time[6]) || !is_num(end_time[7]) ||

!is_num(start_time[6]) || !is_num(start_time[7]))

736. cout << "Start/End times cannot be set: strings should follow

format 'hh:mm' or 'hh:mm:ss'" << endl;

737. else {

738. // convert the string to times

739. h1 = 10 * (start_time[0] - '0') + (start_time[1] - '0');

740. h2 = 10 * (end_time[0] - '0') + (end_time[1] - '0');

741. m1 = 10 * (start_time[3] - '0') + (start_time[4] - '0');

742. m2 = 10 * (end_time[3] - '0') + (end_time[4] - '0');

743. s1 = 10 * (start_time[6] - '0') + (start_time[7] - '0');

744. s2 = 10 * (end_time[6] - '0') + (end_time[7] - '0');

745.

746. // Two more checks

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

82

747. if (h1 > 23 || h2 > 23 || m1 > 59 || m2 > 59 || s1 > 59 || s2 > 59)

{

748. cout << "Start/End times cannot be set: times are out of bounds"

<< endl;

749. return;

750. }

751. if (h1 == h2 && m1 == m2 && s1 == s2) {

752. cout << "Start/End times cannot be set: times are equal" << endl;

753. return;

754. }

755.

756. // We passed all checks: set the active times

757. start_t.hr = h1;

758. start_t.min = m1;

759. start_t.sec = s1;

760. end_t.hr = h2;

761. end_t.min = m2;

762. end_t.sec = s2;

763. at_set = true;

764.

765. printf("Start and end times successfully set to '%02d:%02d:%02d'

and '%02d:%02d:%02d'\n",

766. start_t.hr, start_t.min, start_t.sec, end_t.hr, end_t.min,

end_t.sec);

767. }

768. }

769. }

770.

771. bool Scheduler::InActiveTime() {

772. // Activetime not set: always true

773. if (!at_set) return true;

774.

775. time_t t = time(NULL);

776. tm *local = localtime(&t);

777. active_time now;

778. now.hr = local->tm_hour;

779. now.min = local->tm_min;

780. now.sec = local->tm_sec;

781.

782. if (end_t < start_t) {

783. // De eindtijd ligt VOOR de starttijd

784. if (now >= start_t) return true; // Het is na de begintijd (of

gelijk)

785. if (now < end_t) return true; // Het is voor de eindtijd

786. }

787. else {

788. // De eindtijd ligt NA de starttijd

789. if (start_t <= now && now < end_t) return true;

790. }

791. return false;

792. }

793.

794. bool active_time::operator>(active_time& t2) const

795. {

796. if (hr > t2.hr) return true;

797. if (hr == t2.hr) {

798. if (min > t2.min) return true;

799. if (min == t2.min && sec > t2.sec) return true;

800. }

801. return false;

802. }

803.

804. bool active_time::operator>=(active_time& t2) const

805. {

806. if (hr > t2.hr) return true;

807. if (hr == t2.hr) {

808. if (min > t2.min) return true;

809. if (min == t2.min && sec >= t2.sec) return true;

810. }

811. return false;

812. }

813.

814. bool active_time::operator<(active_time& t2) const

815. {

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

83

816. if (hr < t2.hr) return true;

817. if (hr == t2.hr) {

818. if (min < t2.min) return true;

819. if (min == t2.min && sec < t2.sec) return true;

820. }

821. return false;

822. }

823.

824. bool active_time::operator<=(active_time& t2) const

825. {

826. if (hr < t2.hr) return true;

827. if (hr == t2.hr) {

828. if (min < t2.min) return true;

829. if (min == t2.min && sec <= t2.sec) return true;

830. }

831. return false;

832. }

Socket.h

The following code was completely written by René Nyffenegger, and was not altered for our

program.

1. /*

2. Socket.h

3.

4. Copyright (C) 2002-2004 René Nyffenegger

5.

6. This source code is provided 'as-is', without any express or implied

7. warranty. In no event will the author be held liable for any damages

8. arising from the use of this software.

9.

10. Permission is granted to anyone to use this software for any purpose,
11. including commercial applications, and to alter it and redistribute it
12. freely, subject to the following restrictions:
13.
14. 1. The origin of this source code must not be misrepresented; you must not
15. claim that you wrote the original source code. If you use this source code
16. in a product, an acknowledgment in the product documentation would be
17. appreciated but is not required.
18.
19. 2. Altered source versions must be plainly marked as such, and must not be
20. misrepresented as being the original source code.
21.
22. 3. This notice may not be removed or altered from any source distribution.
23.
24. René Nyffenegger rene.nyffenegger@adp-gmbh.ch
25. */
26.
27. #pragma once
28.
29. #ifndef SOCKET_H
30. #define SOCKET_H
31.
32. #include <WinSock2.h>
33. #include <string>
34. #include <iostream>
35. using namespace std;
36.
37. enum TypeSocket {BlockingSocket, NonBlockingSocket};
38.
39. class Socket {
40. public:
41.
42. virtual ~Socket();
43. Socket(const Socket&);
44. Socket& operator=(Socket&);

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

84

45.
46. bool ReceiveLine(string &s_out);
47. string ReceiveBytes();
48.
49. void Close();
50.
51. // The parameter of SendLine is not a const reference
52. // because SendLine modifes the std::string passed.
53. void SendLine (string);
54.
55. // The parameter of SendBytes is a const reference
56. // because SendBytes does not modify the std::string passed
57. // (in contrast to SendLine).
58. void SendBytes(const string&);
59.
60. unsigned long SetTimeout(unsigned long t_ms);
61.
62. protected:
63. friend class SocketServer;
64. friend class SocketSelect;
65.
66. Socket(SOCKET s);
67. Socket();
68.
69.
70. SOCKET s_;
71.
72. int* refCounter_;
73.
74. unsigned long timeout;
75.
76. private:
77. static void Start();
78. static void End();
79. static int nofSockets_;
80. };
81.
82. class SocketClient : public Socket {
83. public:
84. SocketClient(const string& host, int port);
85. int Connect();
86. private:
87. sockaddr_in addr;
88. std::string error;
89. };
90.
91. class SocketServer : public Socket {
92. public:
93. SocketServer(int port, int connections, TypeSocket type=BlockingSocket);
94.
95. Socket* Accept();
96. };
97.
98. // http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winsock/wsapiref_2tiq.asp

99. class SocketSelect {
100. public:

101. SocketSelect(Socket const * const s1, Socket const * const s2=NULL,

TypeSocket type=BlockingSocket);

102.

103. bool Readable(Socket const * const s);

104.

105. private:

106. fd_set fds_;

107. };

108.

109.

110.

111. #endif

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

85

Socket.cpp

The following code was completely written by René Nyffenegger. We only altered the character

in ReceiveLine() that represents the end of a line. This originally is a linefeed ('\n'), but

the gateway protocol messages end with a dollar sign ('$'), so we changed this in line 154.

1. /*

2. Socket.cpp

3.

4. Copyright (C) 2002-2004 René Nyffenegger

5.

6. This source code is provided 'as-is', without any express or implied

7. warranty. In no event will the author be held liable for any damages

8. arising from the use of this software.

9.

10. Permission is granted to anyone to use this software for any purpose,
11. including commercial applications, and to alter it and redistribute it
12. freely, subject to the following restrictions:
13.
14. 1. The origin of this source code must not be misrepresented; you must not
15. claim that you wrote the original source code. If you use this source code
16. in a product, an acknowledgment in the product documentation would be
17. appreciated but is not required.
18.
19. 2. Altered source versions must be plainly marked as such, and must not be
20. misrepresented as being the original source code.
21.
22. 3. This notice may not be removed or altered from any source distribution.
23.
24. René Nyffenegger rene.nyffenegger@adp-gmbh.ch
25. */
26.
27.
28. #include "Socket.h"
29. #include <WinSock2.h>
30.
31. int Socket::nofSockets_= 0;
32.
33. void Socket::Start() {
34. if (!nofSockets_) {
35. WSADATA info;
36. if (WSAStartup(MAKEWORD(2,0), &info)) {
37. throw "Could not start WSA";
38. }
39. }
40. ++nofSockets_;
41. }
42.
43. void Socket::End() {
44. WSACleanup();
45. }
46.
47. Socket::Socket() : s_(0) {
48. Start();
49. // UDP: use SOCK_DGRAM instead of SOCK_STREAM
50. s_ = socket(AF_INET,SOCK_STREAM,0);
51.
52. if (s_ == INVALID_SOCKET) {
53. throw "INVALID_SOCKET";
54. }
55.
56. refCounter_ = new int(1);
57.
58. timeout = 2000;
59. }
60.
61. Socket::Socket(SOCKET s) : s_(s) {
62. Start();

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

86

63. refCounter_ = new int(1);
64. };
65.
66. Socket::~Socket() {
67. if (! --(*refCounter_)) {
68. Close();
69. delete refCounter_;
70. }
71.
72. --nofSockets_;
73. if (!nofSockets_) End();
74. }
75.
76. Socket::Socket(const Socket& o) {
77. refCounter_=o.refCounter_;
78. (*refCounter_)++;
79. s_ =o.s_;
80.
81. nofSockets_++;
82. }
83.
84. Socket& Socket::operator=(Socket& o) {
85. (*o.refCounter_)++;
86.
87. refCounter_=o.refCounter_;
88. s_ =o.s_;
89.
90. nofSockets_++;
91.
92. return *this;
93. }
94.
95. void Socket::Close() {
96. try {
97. closesocket(s_);
98. }
99. catch (...) {;}
100. }

101.

102. std::string Socket::ReceiveBytes() {

103. std::string ret;

104. char buf[1024];

105.

106. while (1) {

107. u_long arg = 0;

108. if (ioctlsocket(s_, FIONREAD, &arg) != 0)

109. break;

110.

111. if (arg == 0)

112. break;

113.

114. if (arg > 1024) arg = 1024;

115.

116. int rv = recv (s_, buf, arg, 0);

117. if (rv <= 0) break;

118.

119. std::string t;

120.

121. t.assign (buf, rv);

122. ret += t;

123. }

124.

125. return ret;

126. }

127.

128. bool Socket::ReceiveLine(std::string &s_out) {

129. s_out = "";

130. struct timeval tv;

131. tv.tv_sec = timeout;

132. if (setsockopt(s_, SOL_SOCKET, SO_RCVTIMEO,(char *)&tv,sizeof(struct

timeval)))

133. cerr << "Couldn't set socket timeout" << endl;

134. while (1) {

135. char r;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

87

136.

137. switch(recv(s_, &r, 1, 0)) {

138. case 0: // not connected anymore;

139. // ... but last line sent

140. // might not end in \n,

141. // so return ret anyway.

142. return false;

143. case -1:

144. return false;

145. // if (errno == EAGAIN) {

146. // return ret;

147. // } else {

148. // // not connected anymore

149. // return "";

150. // }

151. }

152.

153. s_out += r;

154. if (r == '$') { // Terminating character is dollar sign ($)

155. return true; // Terminating character changed to '$'

156. }

157. }

158. }

159.

160. void Socket::SendLine(std::string s) {

161. s += '\n';

162. send(s_,s.c_str(),s.length(),0);

163. }

164.

165. void Socket::SendBytes(const std::string& s) {

166. send(s_,s.c_str(),s.length(),0);

167. }

168.

169. SocketServer::SocketServer(int port, int connections, TypeSocket type) {

170. sockaddr_in sa;

171.

172. memset(&sa, 0, sizeof(sa));

173.

174. sa.sin_family = PF_INET;

175. sa.sin_port = htons(port);

176. s_ = socket(AF_INET, SOCK_STREAM, 0);

177. if (s_ == INVALID_SOCKET) {

178. throw "INVALID_SOCKET";

179. }

180.

181. if(type==NonBlockingSocket) {

182. u_long arg = 1;

183. ioctlsocket(s_, FIONBIO, &arg);

184. }

185.

186. /* bind the socket to the internet address */

187. if (bind(s_, (sockaddr *)&sa, sizeof(sockaddr_in)) == SOCKET_ERROR) {

188. closesocket(s_);

189. throw "INVALID_SOCKET";

190. }

191.

192. listen(s_, connections);

193. }

194.

195. Socket* SocketServer::Accept() {

196. SOCKET new_sock = accept(s_, 0, 0);

197. if (new_sock == INVALID_SOCKET) {

198. int rc = WSAGetLastError();

199. if(rc==WSAEWOULDBLOCK) {

200. return 0; // non-blocking call, no request pending

201. }

202. else {

203. throw "Invalid Socket";

204. }

205. }

206.

207. Socket* r = new Socket(new_sock);

208. return r;

209. }

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

88

210.

211. SocketClient::SocketClient(const std::string& host, int port) : Socket()

{

212. hostent *he;

213. if ((he = gethostbyname(host.c_str())) == 0) {

214. error = strerror(errno);

215. throw error;

216. }

217.

218. addr.sin_family = AF_INET;

219. addr.sin_port = htons(port);

220. addr.sin_addr = *((in_addr *)he->h_addr);

221. memset(&(addr.sin_zero), 0, 8);

222. }

223.

224. int SocketClient::Connect() {

225. int ret_val = ::connect(s_, (sockaddr *) &addr, sizeof(sockaddr));

226. if (ret_val) {

227. // Return value is not 0, but socket might already be connected

228. int nerr = WSAGetLastError();

229. if (nerr != WSAEISCONN) {

230. // Significant error

231. error = strerror(nerr);

232. if (error == "Unknown error") throw nerr;

233. throw error;

234. }

235. }

236.

237. // Set the keep alive option

238. char optval = 0xFF;

239. setsockopt(

240. s_, // descriptor identifying a socket

241. SOL_SOCKET, // level

242. SO_KEEPALIVE, // optname

243. &optval, // input buffer,

244. sizeof(char) // size of input buffer

245.);

246.

247. return ret_val;

248. }

249.

250. SocketSelect::SocketSelect(Socket const * const s1, Socket const * const

s2, TypeSocket type) {

251. FD_ZERO(&fds_);

252. FD_SET(const_cast<Socket*>(s1)->s_,&fds_);

253. if(s2) {

254. FD_SET(const_cast<Socket*>(s2)->s_,&fds_);

255. }

256.

257. TIMEVAL tval;

258. tval.tv_sec = 0;

259. tval.tv_usec = 1;

260.

261. TIMEVAL *ptval;

262. if(type==NonBlockingSocket) {

263. ptval = &tval;

264. }

265. else {

266. ptval = 0;

267. }

268.

269. if (select (0, &fds_, (fd_set*) 0, (fd_set*) 0, ptval) == SOCKET_ERROR)

270. throw "Error in select";

271. }

272.

273. bool SocketSelect::Readable(Socket const* const s) {

274. if (FD_ISSET(s->s_,&fds_)) return true;

275. return false;

276. }

277.

278. unsigned long Socket::SetTimeout(unsigned long t_ms) {

279. unsigned long retval = timeout;

280. timeout = t_ms;

281. struct timeval tv;

B.J.C. van der Drift Smart Grid: Combining RF mesh grid and public carrier networks for last-mile communications

89

282. tv.tv_sec = timeout;

283. if (setsockopt(s_, SOL_SOCKET, SO_RCVTIMEO,(char *)&tv,sizeof(struct

timeval)))

284. cerr << "Couldn't set socket timeout" << endl;

285. return timeout;

286. }

