

Software Architecture Documentation

A cognitive perspective

Hugo Schoonewille

Natura non facit saltum

Charles Darwin - On the origin of species (1859)

Author: Hugo H. Schoonewille h.h.schoonewille@umail.leidenuniv.nl

1st Supervisor: Werner Heijstek heijstek@liacs.nl

2nd Supervisor: Michel R. V. Chaudron chaudron@liacs.nl

Software Architecture Documentation

A cognitive perspective

Leiden, January 17th 2011

Abstract

How do software developers comprehend software architectures? The main

question addresses several aspects inherent to software development

and this research aims to reveal the effects of the behaviour displayed

by developers and subsequently provide ideas for future directions in

research.

Experiments were conducted using the Think Out Loud method to

gain insight into the developers’ minds. Experiments were recorded,

transcribed and subsequently coded in order to uncover patterns of

behaviour, following the qualitative method of Grounded Theory.

Results show that usage of “common sense” to supplement excluded or

unclear details of a software design correlates with a participant being

certain or uncertain. In addition, several participants showed a

tendency towards certainty or uncertainty – regardless of their answer

being correct or incorrect – and there exists a positive correlation

between that and their self-rated skills and -experience in software

development. A third observation was that several participants were

inclined to base most of their answers on a single medium. Last but not

least, unanswerable questions combined with an architecture with false

friends increases the amount of common sense applied.

Results based on an additional analysis using the stages of the Active

Processing Assumption as codes revealed that answering during

integration is undesirable as more answers given during this stage were

incorrect.

Combining these outcomes with extensive research into the principles

of the Cognitive Theory of Multimedia Learning, Global Software

Development and Object-Oriented Development, provides a solid

ground for future research with a vast amount of hypotheses to be

addressed in the quest for an answer to the great question: How can

software architecture documentation be improved?

Software Architecture Documents: a cognitive perspective 1

Table of contents

section page

1 Introduction 5

2 Background & Related work 5

2.1 Documentation in Global Software Development 5

2.2 Object-Oriented Development 6

2.3 Cognitive Psychology 7

 2.3.1 Human memory and understanding 7

 2.3.2 Cognitive Theory of Multimedia Learning 9

3 Research Question 11

4 Experiment & Analysis 12

 4.1 Research design 12

 4.1.1 Experimental Setup 12

 4.1.2 Participants 13

 4.1.3 Conduction 13

 4.2 Approach analysis 14

 4.2.1 Methods applied 14

 4.2.2 Why these methods? 14

 4.2.3 Constructing a theory 15

 4.2.4 A second approach: concept-driven coding 16

 4.2.5 Results 16

5 Analysis 1: Grounded Theory 17

 5.1 Introduction 17

 5.2 Code Acquisition & Analysis 17

 5.2.1 Code development 17

 5.2.2 Further Analysis 18

 5.2.3 Assuming and Certainty 19

Software Architecture Documents: a cognitive perspective 2

section page

 5.2.3.1 Introduction 19

 5.2.3.1.1 Assuming 19

 5.2.3.1.2 Certainty 19

 5.2.3.2 Examples 20

 5.2.3.3 Analysis 20

 5.2.3.4 Related literature 23

 5.2.3.5 Conclusion, discussion and practical implications 24

 5.2.3.6 Future research 25

 5.2.4 Common Sense 26

 5.2.4.1 Introduction 26

 5.2.4.2 Examples 26

 5.2.4.3 Analysis 28

 5.2.4.4 Related literature 28

 5.2.4.4.1 The Cognitive Theory of Multimedia Learning 28

 5.2.4.4.2 The conciseness of documentation 29

 5.2.4.5 Conclusion, discussion and practical implications 30

 5.2.4.5.1 Discussion 30

 5.2.4.5.2 Conclusion and implications 30

 5.2.4.6 Future research 30

 5.2.6 Single Medium Based Answer (SMBA) 32

 5.2.6.1 Introduction 32

 5.2.6.1.1 Definition 32

 5.2.6.2 Examples 32

 5.2.6.3 Analysis 33

 5.2.6.4 Related literature 39

Software Architecture Documents: a cognitive perspective 3

section page

 5.2.6.5 Conclusion, discussion and practical implications 39

 5.2.6.6 Future research 40

 5.3 Conclusions 41

6 Analysis 2: Active Processing 43

 6.1 Introduction 43

 6.2 Theoretical Underpinnings 43

 6.2.1 The participant chosen 43

 6.2.2 Encodings & Guidelines 44

 6.2.2.1 Why coding? 44

 6.2.2.2 Guidelines for reliability 44

 6.2.3 Hypothesis 46

 6.3 Results 47

 6.4 Conclusions 51

 6.4.1 The initiation process 51

 6.4.2 The final process 51

 6.5 Limitations 52

 6.6 Future research 52

7 Observations & Conclusions 54

8 Limitations & Threats to validity 55

9 Implications & Future research 57

 9.1 Direct & indirect implications 57

 9.2 Future research 58

 9.2.1 Exploring the experimental results 58

 9.2.2 Other suggested research 59

10 References 60

Software Architecture Documents: a cognitive perspective 4

Appendices

A1 Multimedia Learning

A2 Object-Oriented Development

A3 Global Software Development

B The Analysis

C The Active Processing Assumption - transcript

Software Architecture Documents: a cognitive perspective 5

1. Introduction

Translating a software architecture into good code corresponding to the architecture, requires a

process of understanding the documentation, rendering the human element critical in software

development [52]. Humans have the innate ability to integrate pictorial and verbal models (in

this case diagrams and textual descriptions) in one so-called mental model. In Software

Development, this mental model is constructed from Software Architecture Documents (SAD)

and subsequently consulted for programming decisions and problem solving [44]. A more

complete mental model decreases error and mistake sensitivity, and increases development

speed at the same time. Supporting the construction of such mental models is thus of great

importance and a cognitive perspective on this challenge might yield interesting implications.

2. Background & Related work

These fields of study are relevant to this work. It provides a motive for the importance of the

current study but virtual tools and conceptions that enable us to perform adequate research and

draw solid conclusions as well.

2.1. Documentation in Global Software Development1

The search for competitive advantages often forces companies to look abroad for cost

reduction, quality enhancement, flexibility increase, risk dilution and productivity improvement

[56]. Globally distributed software development has many potential benefits but brings lots of

drawbacks as well [9, 16, 55, 8]. Moreover, the assumed benefits do not seem to materialise

[20].

Either way, the benefits of Global Software Development (GSD) cannot be exploited without

effective mechanisms for information- and knowledge-sharing [49, 59, 36, 34]. Research

indicates that GSD imposes several problems: increased communication delay and work

completion time, both due to a lack of informal communication and difficulties in finding the

right expertise and knowledge [14]. Therefore, the main challenges lie in the complexity of

maintaining efficient communication and coordination when teams are dispersed [40, 36].

1 Appendix A3

Software Architecture Documents: a cognitive perspective 6

Investing in innovative tools to increase cross-site awareness and ameliorate communicative

impediments, and research into the workings of development methods are two ways to go, but

documentation plays an important role as well. However, the unpredictable nature of

development requires tools for documentation to facilitate easy changeability and means to

make those modifications noticed by the involved developers as well. Furthermore, improved

capture of informal, transient designs, and a decrease in effort required to keep them up-to-

date mitigates some difficulties [42].

“The solution to the problems introduced by GSD is neither to add more documentation nor

to abandon it: it is to get better documentation. We must go towards lean, concise

documentation” [1]. The combination of a well established common ground, – the knowledge

different people have in common and that they are aware of the fact they do1 – easily accessible

knowledge and concise documentation appears to fit GSD best.

2.2. Object-Oriented Development2

The Object-Oriented (OO) paradigm was introduced in the late 60s with Simula 67, when

several events in the development of hardware, programming languages and methodologies and

database models allowed for it [2, 10: 33-34]. The idea was to exploit the human mind’s

natural capabilities for thinking about the world in terms of objects and actions to deal with the

ever-increasing complexity of software systems [27]. And indeed, research has shown that

novices tend to prefer OO-techniques over procedural techniques [46]. Also, the construction

of a design solution based on structures in Long Term Memory (LTM) eases its maintenance

and improves robustness. Moreover, besides the cognitive advantages, improved reusability of

design increases development pace, quality and flexibility [10: 74-76; 57, 51].

However, these are not merely improvements: a stumbling block to obtaining the benefits of

OO is learning the approach [46]. Also, individuals may construct invalid analogies, using their

prior experience inappropriately [46], or may not even possess the relevant design schemas

[57]. Moreover, while objects, classes and inheritance certainly have an intuitive flavour, their

formal version in OOD differs in important ways from their origins [27].

1Common ground is easily established when collocated, because developers then not only share cultural and

linguistic backgrounds, but there is also better awareness about the microcontext – what one’s doing, what

remains to be done et cetera [49]. Common ground is also known as transactive memory.
2 Appendix A2

Software Architecture Documents: a cognitive perspective 7

In conclusion, more research is needed on why OOD does not always alleviate the difficulties

encountered and what could be done to improve and ease the processes intrinsic to software

development. Where Brooks thought that “[t]he most important single effort we can amount

to is to develop ways to grow great designers”, we think that there is much to be gained from

improving the development methods and means themselves as well [11].

2.3. Cognitive psychology

2.3.1. Human memory and understanding1

People have to process stimuli before understanding can

occur. This path can be expounded into the processes of

selecting (or attending), processing, storing (or encoding) and

retrieving of information. Research on the cognitive

foundations of these processes resulted in several models, of

which Baddeley and Hitch’s is most successful [3, 4, 6]. Its

success hinges to its ability to explain a wide range of

emperical phenomena [29, 4]. Hence, this model will be

discussed here.

As can be seen in figure 1, human memory is subdivided into

three major parts of which the Working Memory (WM) is

most interesting here. WM is used to keep information active

while performing complex tasks such as reasoning and

comprehension [6]. Here resides a mental model consisting of

attended information, available for consults during cognitive

tasks.

1 Appendix A1, section 2

Figure 1: Human memory systems,

adapted from [5: 2]

Software Architecture Documents: a cognitive perspective 8

The WM can be divided into several subsystems,

depicted in figure 2. The phonological loop processes

auditory and verbal information; the visuo-spatial

sketchpad handles the visual information. The central

executive represents an all-purpose attentional controller

and supervisor of its slave systems. Recently, the episodic

buffer was introduced, which is assumed to facilitate

integration of information in the other subsystems.

However, further research is needed to gain more insight into its workings [4, 6]. The total

capacity of WM is limited, but each subsystem could be loaded more or less independently. .

Storing information from WM into LTM occurs through encoding. During encoding,

information is organised and structured into a schema (a knowledge construct) and linked to

existing schemas residing in LTM.

Believed is that the organisation and integration phases (described below) account for human

understanding and enables them to retrieve suitable schemas to apply when encountering new

situations [44]. Understanding occurs as a result of selecting the right information and

combining it with apt existing knowledge [38].

Figure 2: Model of the Working Memory,

adapted from [6]

Software Architecture Documents: a cognitive perspective 9

2.3.2. Cognitive Theory of Multimedia Learning 1

At the basis of the cognitive theory of multimedia learning stands the idea that the design of

multimedia messages should be consistent with the way people process information. This is

based upon three principles of the cognitive sciences:

1. Dual-Channel assumption;

2. Limited Capacity assumption;

3. Active Learning assumption.

In short, the Dual-Channel assumption represents the separation of channels for processing

visual and auditory information; the Limited Capacity assumption assesses the limitation on

the amount of information humans can process per channel at a time; and the Active Learning

assumption refers to the idea that humans need to construct knowledge from presented

material rather than just to absorb it.

The integration of verbal and pictorial models is crucial in successful multimedia learning, and

can be equated with the Active Learning-assumption: this assumption is again subdivided

into 3 separate processes (depicted by the annotated arrows in figure 3):

1. Selecting;

2. Organising;

3. Integrating.

Information enters the pathway through the eyes or ears in the sensory memory, and

subsequently the first stage of cognitive processing commences: first, one selects interesting

information out of all stimuli. Second, the learner constructs separated verbal- and pictorial

models and third, the models built are integrated into one mental model.

1 Appendix A1, section 3

Figure 3: Cognitive Theory of Multimedia Learning [44: 61]

Software Architecture Documents: a cognitive perspective 10

As described above, learning requires cognitive processing and hence induces cognitive load.

Three kinds of cognitive load are to be discerned:

1. Extraneous Processing;

2. Essential Processing;

3. Generative Processing.

Extraneous Processing encloses cognitive processing that does not serve the instructional goal.

Essential Processing is required to represent the essential material in WM and Generative

Processing is required to create a deeper understanding of the presented materials. In order to

ameliorate the process of selecting, organising and integrating, Mayer has proposed several

guidelines for instructional design to improve the transfer of information and construction of

knowledge: instructional designers need to reduce extraneous processing, manage essential

processing and foster generative processing [44].

The assertion that people learn better from words and pictures than from words alone is built

on the hypothesis that learners are able to create a better mental model using both media.

This enhanced model in turn enables them to obtain a deeper understanding of the presented

material. Mayer’s empirical research generally endorses this stance [44].

Software Architecture Documents: a cognitive perspective 11

3. Research Question

GSD introduces complexities that corrode most of the intended improvements. The majority

of these new problems are brought about by new impediments in communication and

coordination between different teams. Unambiguous, straightforward and quick

communication is important [40, 28], but of even greater importance when physically

separated teams work on one project [31]. A decrease in both the amount and effectivity of

communication, imposes the software architect with the task of not only designing the

structure of the software, but he has to take into account the development task dependencies as

well [31]. An SAD has several fingers in this communication-pie being the foundation of

many software projects. Increased intelligibility of this documentation could hence make or

break the software product aimed at.

It ultimately is the software developer who has to understand what the architect wants.

Unfortunately, this is not as straightforward as one might think: Object-Oriented Designs like

UML use the innate intuition of using objects and actions, but this sometimes clashes with the

very intuitions it produces [27]. Slight differentiation between the intuition and the formal

object-model impose (unnecessary) difficulties upon each party involved.

Also, the increasingly complex SADs lead to a restricted perceived application domain,

resulting in the fact that developers do not use its full potential [58], primarily in the early

stages of the system development process [23, 24]. Together, this makes that inconsistencies in

SADs are not noticed or simply ignored [23]. As a primary motive, many studies using

Protocol Analysis examine the theoretical underpinnings of SE in order to advance the

maturity of the discipline [37]. To understand how developers comprehend SADs is of vast

importance as good understanding of an SAD reduces the probability of incompatibilities

between the work of different development teams, hence ameliorating the software quality.

With this research we want to add our own attribution to this process.

Thus, the idea behind this research is to find ways to improve documentation to fit the

workings of the human cognition to a further extend. Therefore, our research question is:

How do software developers comprehend software architectures?

Software Architecture Documents: a cognitive perspective 12

4. Experiment & Analysis
The better the researcher and setup, the better the data and the less participants needed. However, a lot of low quality data

can never replace less high quality data [12: 230].

This section describes the experimental setup and research materials used, and provides an

overview of the methods of analysis applied.

4.1. Research design

4.1.1. Experimental setup

To create a situation in which we could acquire data, we created a set of 4 different SADs, all

consisting of both a textual description and a diagram based on UML. These SADs was

presented to people with experience in software development and we questioned them about

specific properties of the system depicted by the documentation. Using a video camera and

voice recorder, their behaviour was recorded as they were posed with the different questions.

Two questionnaires were devised: a pre-questionnaire to collect background information on

the participants (e.g. their current knowledge, employment and native language). A second

questionnaire following the experiment was used to see how the participants evaluate the

experiment: how they think they used the documentation and what their thoughts are about its

utility.

Figure 4 and 5 depict the physical setup and placement of the participant. Figure 5 also shows

the positions where the documentation is placed. In order to prevent biases (i.e. uncertainty

with the first question and preference for left or right), the order of documentation presented

changes with each participant and the position of the text and diagram with every

documentation. Furthermore, per participant we used documents with different levels of

verboseness: alternately the text and diagram will contain the more verbose description.

Figure 4: Experimental setup Figure 5: Position participant

Software Architecture Documents: a cognitive perspective 13

4.1.2. Participants1

We aimed to find participants who are currently working in the software development

industries. However, taking into account the difficulty to find people who want or are able to

spend half an hour on participating in our experiment, we looked for students as well. In this

experiment, only a small amount of 11 subjects drawn from a pool of 47 were analysed in

depth. This is mostly due to time constraints, but qualitative research in general never relies on

notions of statistical representativeness.

Because the experiments already started prior to my arrival, sampling occurred only after

finishing the experiments. This contradicts Grounded Theory as described below, but we assert

that it in spite of this will result in more or less unbiased outcomes: we selected the most

articulate participants; the other properties of excellent participants were satisfied anyhow2.

4.1.3. Conduction

After the pre-questionnaire, the participants received example documentation and an

accompanying question to get familiar with our expectations. The participants were asked to

think out loud (ToL) during the complete experiment, a part of Protocol Analysis, as defined

by Ericsson and Anders [25]. We recorded what the subjects are looking at and what they are

trying to find. After the example question, 4 other SADs follow, accompanied with 3 questions

each. In every execution of the experiment, we changed the order of SADs, position of the text

and diagram and their verboseness following the experiment design. As a backup for the audio

and video recordings, we took notes of what the participants say and do as well.

1 Appendix B, section 4.1
2 Excellent participants meet the following requirements [12: 231]:

- They are known with the phenomenon under investigation;

- They are willing and have the time to participate;

- They are articulate.

Software Architecture Documents: a cognitive perspective 14

4.2. Approach analysis

Two separate approaches in analysis were taken. The first and main approach is discussed in

sections 4.2.1 through 4.2.3. Description of the second approach can be found in section 4.2.4.

4.2.1. Methods applied1

The gathered data needs to be analysed to be able to derive a theory from it. The collected data

in our experiment consists of video and audio fragments of subjects looking for information

that could help them answering the questions. Audio was chosen to be the main source of data,

as we asked the subjects to think aloud (using ToL from Protocol Analysis) while working on

the questions.

Grounded Theory (GT) will be applied to analyse the data in further detail. This method is an

inductive form of qualitative research that claims to construct theories that remain grounded in

observations rather than being generated in the abstract [26, 43]. With GT one does not

establish hypotheses prior to performing research; the researcher creates them after profound

analysis of all data available.

4.2.2. Why these methods2

Although GT has proven to be a difficult approach, we unflinchingly faced this alleged

complexity: because we could safely presume we do not know anything about the actual

processes going on in the heads of our subjects, an open approach like that of GT seemed

suitable. Besides, it is commonly used for similar studies. Furthermore, the phases of GT

provide guidance to structure the data and disclose its unapparent properties. In addition, GT

is a relatively new method in Software Engineering and it is acknowledged that theories can

prove their relevance because the method of inquiry is uncommon in the area under

investigation [17: 153].

The combination of both methods enables us to obtain qualitative data as objective as possible

and it provides us with a tool to analyse this data, again in an unbiased and open manner.

Therefore we assert that data gathered using ToL is pre-eminently suitable for being analysed

through GT.

1 Appendix B, section 1
2 Ibid.

Software Architecture Documents: a cognitive perspective 15

4.2.3. Constructing a theory

The construction of a theory is an intricate and complex task. First, the data needs to be

transcribed1 in order to get a grip onto the data. Henceforth, the transcribed data is

segmented2 into units of more or less context independent information. In our analysis, these

segments consist of the answers to the question, each individually. Once finished, the segments

need to be coded3 using data-driven coding4. Such an emergent vocabulary suits GT very well,

especially when the researcher refrains from reading literature. However, we did read literature:

it is impracticable to start the analysis with a complete tabula rasa: especially novices with GT

need a perspective to be able to distinguish relevant data from the irrelevant and to abstract

significant theories.

After complete saturation5 is achieved, the outcomes need to be categorised6. During all

phases, we write notes and memos to capture our nascent ideas about the structure in the data,

to conceptualise and produce an abstract account of it [12: 245]. Writing those memos is

accounted to be the fundamental process in generating a grounded theory; transcribing,

segmenting, coding and categorising are mere tools to aid this process. During categorising,

codes are chosen for their importance and generality regarding the aspects under investigation.

The researcher is obliged to look at relations between the codes with the aim to raise the level

of concept from descriptive to analytic, ultimately to construct a better theory or hypothesis

[17: 186].

Finally, the stage of theory construction7 announces. During coding, categorising and its

concomitant memoing, structure in the raw data became apparent. One or more core categories

have emerged and memos contain nearly all important information, all data could be tied

together. Memos and categories are looked over once more during the final writing and

rewriting of a research thesis.

1 Appendix B, section 4
2 Ibid., section 5
3 Ibid., section 6
4 A data-driven coding vocabulary is constructed through analysis of the data: codes simply emerge from the

data, hence enables the researcher to remain open and unbiased towards unexpected discoveries.
5 Saturation is the process in which codes are still developing. It is the cristallisation of codes, categories or the

theory. Saturation is reached when the researcher does not perceives anything new anymore [12: 117]: when

saturation is reached, there is no new data that could not be accounted for by the grown hierarchy of codes,

categories, and eventually the grounded theory.
6 Appendix B, section 7
7 Ibid., section 8

Software Architecture Documents: a cognitive perspective 16

The result of the whole process, from inquiry to writing, is a theory that theorises about the

meaning of actions and relations between them [17: 151]. The emergent theory is vividly

described and cogently underpinned with the use of the written memos accompanied by an

introduction and conclusion. Besides that, extensive literature review from the field under

investigation as well as other domains back up the constructed grounded theory. The result is

an argument fully based in empirical observations [43].

4.2.4. A second approach: concept-driven coding

Contrary to the data-driven approach with GT, we analysed the transcript of 1 participant

from another angle as well. A predefined coding scheme based on the phases of active

processing (see figure 6 and section 6.1) was applied to one participant complying with the

properties of an excellent participant. By using the phases of active processing as vocabulary,

high reliability could be achieved. In addition, it enables for an incorporation of the results into

a larger body of research due to the use of equivalent (static) terminology.

Figure 6: Phases of the Active Processing Assumption, adapted from [44: 61].

4.2.5. Results

The results will be discussed in two parts, as the analysis was twofold as well. Section 5

discusses the analysis based on GT, in section 6 the analysis based on the phases of active

learning is expounded and an overall conclusion will be drawn in section 7.

Software Architecture Documents: a cognitive perspective 17

5. Analysis 1: Grounded Theory

5.1. Introduction

All methods for knowledge elicitation – including the application of Grounded Theory (GT)

– rely upon interpretation by the experimenter. This renders the analysis phase a crucial

creative step in the development of any substantial theory [53]. Once the phases of

experimenting, transcribing, and coding are finished, the moment of theory construction

announces oneself.

The results presented in this section are obtained during careful analysis of the emerged codes.

Writing memos to externalise thoughts and ideas, and to saturate categories, enabled us to

link the emerging theories and to create an overview of the researched area.

The structure of this section is as follows: section 5.2 describes the codes obtained and will

expound their underlying rationales and section 5.3 reflects upon the results and draws

conclusions; Limitations can be found in section 8.

5.2. Code Acquisition & Analysis

5.2.1. Code development

The codes analysed were all obtained following the protocol of GT. Using this in

combination with Think out Loud (ToL) the most objective and thorough results were

acquired. Before the process of coding could commence, the data was transcribed and

segmented into segments containing one answer per unit. Following GT, we chose to code

these segments using a data-driven coding scheme: at the risk of a decreased reliability we

wanted to remain open to every (unexpected) pattern of behaviour. To capture the behaviour

to the fullest extend, allocation of multiple codes to each single segment was allowed. When

the emerged codes were fully saturated, the subsequent phase of categorising was initiated.

More detailed information on rationale and realisation of the above mentioned processes can

be found in Appendix B.

Software Architecture Documents: a cognitive perspective 18

5.2.2. Further Analysis

During the coding stage, 20 different codes emerged, which could roughly be divided into

two separate categories: behaviour and state types. The first category captures the behaviour

expressed by the participant. The state category on the other hand, captures the “state” or

“attitude” in which the participant gave his answer. The latter is most interesting in this

analysis, largely because the behaviour-codes can be assessed quantitatively as well, as has been

shown by Heijstek et al. [30]. The following table depicts the emerged codes and divides

them into the two categories:

Behaviour State

1 Medium thorough Certainty

2 Media thorough Assuming

Component First Search Confusion

Property First Search Definition

Cross-media check Technical knowledge

Rerequest question quick Common sense

Rerequest question slow Superfluity

Scan Single Medium Based Answer

Term search Remembering

Related term search Misunderstanding

Table 1: Codes and categories

The surplus value of the “state” category made that the emphasis in the analysis will lie on the

codes contained by this category. Furthermore, the analysis will be restricted to four codes of

this category, chosen based on value and evidence available. The more elaborate reasons for

them being picked are discussed in the accompanying introductions.

The structure in the continuation of this section will be as follows: sections 5.2.3 through

 5.2.5 will describe the codes and provide empirical evidence for them. After that, relations to

other codes and generalisations amongst participants will be discussed, along with probable

theoretical underpinnings and resulting conclusions. In the final subsection, an overview of

the conclusions drawn is given.

Software Architecture Documents: a cognitive perspective 19

5.2.3. Assuming and Certainty

5.2.3.1. Introduction

Both codes are chosen based on their omnipresence in the data, which assures us of plenty

evidence available. In addition, these codes are especially fascinating because it is interesting

to know whether an attitude of a participant towards his own answer implies something for its

correctness or not. Results could be used to notice uncertainties in an early stage and

consequently deal with it.

5.2.3.1.1. Assuming

This code could be defined in the following way: “The participant clearly makes assumptions

to form an answer.” Roughly, the following utterances imply this code:

• I think …

• It seems …

• I guess/it's a wild guess …

• I don't know, but I choose …

• “I would say …” in combination with some assumptions or explicit limitations in

searching through the documentation mentioned. (i.e. the participant mentions that

he only looked into one of the media and bases the answer on that – incomplete –

information.

• Well then I’m going with …

However, it excludes:

• “Yes/no, it should(n't) be a problem.” (For constructions based on this, see common

sense in the upcoming section 0).

• “I would say …” in general. See above for other cases. Verbalisations of this kind

neither get this code nor the code certainty.

5.2.3.1.2. Certainty

Answers given confidently are coded as certain. These answers are recognisable mostly on

their concise form and that they are uttered with great confidence. Other characteristics that

are taken into consideration are for example utterances like “I’m sure …” or “It must …”

Software Architecture Documents: a cognitive perspective 20

5.2.3.2. Examples

An example of an answer coded as assuming can be found in the answer of participant 29 on

question Delta 3:

“The only thing I see is SQL, and that doesn’t give me anything about security. So I

would say it’s not secure.”

Participant 35 on question Delta 1 is assuming as well:

“And, well, the protocol doesn’t say anything about what kind of information is present.

Well, it does say something but … I see an attribute about billing client but it doesn’t say

anything about the messages. Well, it’s linked to the billing server, so I think its messages

about the clients the bill of the client …”

An example of an answer coded certainty is the answer of participant 19 on question Gamma

2:

“Mortgage webserver ... No.”

And another quotation depicting behaviour coded as certainty comes from participant 28 and

his answer on question Alpha 1:

“Which external system … Paraplu.”

5.2.3.3. Analysis

First should be noted that both codes complement each other: they never appear together

with one answer. The following table contains the answers coded as assuming or certainty and

whether the coded answer was correct or incorrect. The hypothesis is that most answers coded

certainty will be correct and that assuming will have a higher percentage of incorrect answers.

 Correct Incorrect Total

Assuming 35 (56%) 27 (44%) 62

Certainty 49 (74%) 17 (26%) 66

Table 2: Answers correct or incorrect per code

Software Architecture Documents: a cognitive perspective 21

Correctness of answers per code

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Assuming Certainty

Code

P
e
rc
e
n
ta
g
e
 c
o
rr
e
c
t

Incorrect

Correct

Diagram 1: Answers correct or incorrect per code

The above diagram depicts our expectations merely partially: in the case of the answers coded

with certainty, there is a majority of answers correct; when participants based their answer on

assumptions and were somewhat uncertain about their answers, they still guessed correct in

somewhat over 50% of the cases.

Placing these results in the light of every individual separately, it appears that some

participants have a tendency to be certain or assuming. This propensity towards one of both

codes results in expected patterns of unwanted behaviour. For example, participant 16, who is

overly certain about his answers (11/13 of his answers were coded with certainty), gave 8

correct answers of which 7 were coded certainty. The same holds for participant 33: he has 9

of his 13 answers coded with certainty, of which only 5 were correct. Diagram 2 depicts this

very nicely: participants 16 and 33 stand out in their certainty, yet the percentage of correct

answers does not deviate from average. The other way around there is less evidence: the most

compelling case is to be found with participant 19: 10 of the 13 answers are coded as assuming

of which only 5 were correct.

Software Architecture Documents: a cognitive perspective 22

Certainty or Assuming and Correctness

0

10

20

30

40

50

60

70

80

90

100

16 18 19 21 25 27 28 29 33 35 44

Participant

P
e
rc
e
n
ta
g
e

Certainty Assuming Correct

Diagram 2: Correlation between certainty, assuming and correctness

Furthermore, notable is the fact that, while participant 16 was overly certain, he rated his

experience and modeling skills above average. The evidence for participant 33 however is less

compelling: he rated only his modeling skill at the maximum level. On the other hand, we see

that participant 19 rated those significantly below average. Diagram 3 is sorted on the amount

of answers coded certainty to make this average trend stand out clearer. The ‘mean level of

experience’ represents the averaged value of all self-rated skills and experience.

Certainty or Assuming and Level of Experience

0

10

20

30

40

50

60

70

80

90

100

19 18 25 21 28 29 35 44 27 33 16

Participant

P
e
rc
e
n
ta
g
e
 c
o
d
e
d

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

L
e
v
e
l
o
f
e
x
p
e
ri
e
n
c
e
Certainty Assuming Mean level of experience

Diagram 3: Correlation between certainty, assuming and level of experience

Software Architecture Documents: a cognitive perspective 23

Combining the results of both diagram 2 and 3 in diagram 4, we see that a higher level of

experience only on average relates to the amount of correct answers. Outliers for example, are

participant 27 and 44, who rate their experience below average but together perform a little

above average. On the other hand we have participants 16 and 25 who rate their abilities

above average but do not perform accordingly.

Level of Experience and Correctness

0

10

20

30

40

50

60

70

80

90

100

16 18 19 21 25 27 28 29 33 35 44

Participant

P
e
rc
e
n
ta
g
e
 c
o
rr
e
c
t
(%
)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

L
e
v
e
l
o
f
e
x
p
e
ri
e
n
c
e

Mean level of experience Percentage correct

Diagram 4: Level of experience related to correctness

5.2.3.4. Related literature

Very little is known about how to interpret convictions verbalised by someone who answers a

question. Research by Holmes [35] addresses the expression of doubt and certainty in English

but she focuses on second language learners and the fact that for them it is especially difficult

to master the linguistic devices that modify the information conveyed. Furthermore, her

research aims to reveal the social aspects of expressing an attitude.

Nevertheless, a possible threat to validity upon the codes in this section is to be found in her

study: “[L]earning to express and interpret modal meaning presents problems for second

language learners” [35]. As most of the participants in our experiment were non-native

English speakers, this is very well relevant in interpretation of the results.

Not so much related in this research, but very important in practice is the effect of the

discussed behaviours on GSD. The desired behaviour of a developer is never to assume

anything but to ask for clarification when something appears to him equivocal. Unfortunately,

the distance in GSD negatively affects communication [14]: separate developing locations,

dissimilar cultural backgrounds, a lack of common ground and deficient management all

inhibit effective communication and lead to decisions differing strongly when developers

Software Architecture Documents: a cognitive perspective 24

encounter ambiguity or incompleteness in the Software Architecture Documentation.

Developers simply are less inclined to communicate with the designer as they do not know

who it is or where he is situated [32, 21].

Sending out liaisons to establish common ground and personal relationships have been

showed to increase productivity: knowing the context and knowledge of other teams increases

effectiveness [40, 49] and establishes trust among teams [36]. Due to hindered

communication, in GSD it is particularly important that every development team knows what

to expect from related components produced by other teams. It are the undetected

inconsistencies that cause the most problems [48]. Therefore, informal communication

should be encouraged [7, 50] and documentation should be clearer and more explicit in

conveying designs and decisions.

5.2.3.5. Conclusion, discussion and practical implications

First, relation between certainty and correctness was found, but the correlation between

correctness and assuming was not. The fact that this last hypothesis was not corroborated by

experiment could indicate that utterances used to convey uncertainty are a sign of a participant

who guesses based on scarce, but apparently sufficient information to give the correct answer.

Second, some developers display a propensity towards one of both ends: they are either overly

certain or overly assuming. This exemplifies unwanted behaviour: more assuming might

indicate that the developer is less knowledgeable; more certain might indicate that the

developer has an overrated self-image regarding development. A decreased correspondence

between their abilities and their own perceived abilities could cause problems as it might

increase the amount of unnoticed errors or mistakes. It then is only at integration of multiple

pieces of code that it comes to light that the system does not behave like expected.

Third, it seems that there exists a relation between self-rated experience and skill, and

confidence or attitude (certainty versus assuming): higher ratings of experience and modeling-

skill appear to coincide with greater amounts of answers coded certainty. The other way

around is corroborated by this research as well, however with less evidence. However, the

outliers are more interesting as they provide us the exceptions to this rule.

Fourth, there is a general relation between mean level of experience and correctness of

answers. Interestingly, part of the relation between self-ratings and correct answers was also

found on quantitative basis in an analysis on a larger set of data from the same experiment,

done by Heijstek et al. [30]. However, as mentioned earlier, it are the outliers that supply the

more interesting information: here as well as with the tendency towards being certain or

Software Architecture Documents: a cognitive perspective 25

uncertain an increased difference between self rated experience and correctness could be a

cause for problems.

Different implicit assumptions about the communication between or responsibilities of

components result in systems behaving erratic, and with problems of which the source could

only be found with the investment of great effort. That is obviously not a wanted outcome.

Being certain is good, be it on the right grounds only. Important is that the developer is able

to notice the situations in which he himself is uncertain. This should probe him to ask the

designer for disambiguation or explication of the unclear properties of the software

architecture.

5.2.3.6. Future research

Future research should address the tendency of developers towards being certain or uncertain,

whether or not this certitude is justified and what the effects are of such conviction on the

decisions made during development. As proposed by Holmes [35], such attitudes could be

projected onto a scale ranging to attain the degree of certainty expressed. This quantitative

measure could subsequently be related to the effect size of, for example, defect density.

Other research could assess the self-awareness of developers about their attitude. We

hypothesise that increased self-awareness results in better software, as the developer then

knows when to ask for elucidation. Results could be used to construct awareness training for

developers to increase efficiency.

Software Architecture Documents: a cognitive perspective 26

5.2.4. Common Sense

5.2.4.1. Introduction

The documentation of a system should be explicit about every important or major property,

especially when it comes to responsibilities of components and the properties of

communication between them [47: 43]. Unfortunately, this is by far not always the case, and

it is in these cases that developers have to choose how they react on such imperfection.

Previous research shows that developers solve an inconsistency preferably by communicating

with the creator of the documents or with other colleagues, but also that physical separation

of a mere 50 meters results in the end of all regular communication [47, 33].

Our research takes this investigation one step further: not based on a survey but on empirical

experiment, we try to assess what developers choose to do in such cases: do they acknowledge

that they did not find the answer (implying that they would ask the designer for more

information) or do they assume properties of the absent information?

Several kinds of information could be distilled from answers coded as common sense. This

analysis looks at developers’ behaviour: their reaction on ambiguous or absent information,

and the types of utterances used forming an answer in order to infer their certainty or

knowledge bases used.

5.2.4.2. Examples

In our study, typical behaviour for exceptionally unconfident participants was to use pre-

existent knowledge about the domain of the system, or in short, use their common sense.

This fragment of the answer of participant 19 on question Beta 3 constitutes a typical

example:

“Yes, but what kind of message? Or, is it just general request? Ok. Well, yes, it shouldn’t

be ignored. Because the external request interface with the booking system which booking

system send messages when a customer tries to book something online. He puts all his

data, which are .. they’re send to the server. So, sending messages. So, that’s a request ..

request messages. So it shouldn’t be ignored.”

From this short fragment is becomes clear that he does not know what to look for in the

presented documentation. The importance of the messages he mentioned is rated crucial, but

this assessment is based on nothing but common sense. The appraisal of importance is not

bad in itself – for example, developers sometimes implicitly use the Level of Detail in a UML

Software Architecture Documents: a cognitive perspective 27

diagram to successfully assess the importance of a component [47: 32] – but the source of

information on which it is based is. The basis of this answer lies not in the documentation

but rather in a personal perception of the domain of the system. Hence, the answer of

participant 19 on this question was incorrect.

Another example of incorrect reasoning is to be found with participant 21, answering

question Beta 3 as well:

“There’s no special thing about this one. Messages can be ignored is a general.. It’s

unclear about this one so I guess yes, they can be ignored.”

The participant infers some property of a component based on common sense. He probably

thinks that the assumption that a message can be ignored is the safest option. But what if we

are not talking about a system that manages bookings for flights? Of course we could suppose

that the developer would have made another choice, knowing that the correctness and speed

of the system is then of higher importance, but we will never be sure the developer will

assume the same as we expect him to.

Participant 16 does the same when answering the Example question:

“Well, I see at first you have your table Task Log and for me it’s very obvious to store

your history there.”

As a last example, take a look at participant 29’s answer on question Beta 3:

“Well, I see an external system request but I think this is the other way around. And I

think such request can be ignored, but it’s just my conception of what an external system

is. And since we don’t have any control over it, it can always be ignored. That’s what I

would say.”

Software Architecture Documents: a cognitive perspective 28

5.2.4.3. Analysis

Deviating from the general structure of the sections, most of the analysis was directly put

besides the examples above. Nevertheless, generalisations about the relation between the

codes common sense and assuming are still made here.

Except for participant 16’s answer on the Example question, every other common sense answer

is coded assuming as well. This indicates that uncertainty and the act of completing the

information needed to answer the question with pre-existent knowledge go hand in hand.

Also, one could try to relate the use of common sense to viewing habits: the amount of

switching between the two media presented and the time spent while answering the question.

Unfortunately, in this small data-set no patterns based on this behaviour could be found.

5.2.4.4. Related literature

5.2.4.4.1. The Cognitive Theory of Multimedia Learning

According to Mayer [44] information that has to be understood and remembered by a

learner, has to be presented in a concise manner. The Limited Capacity and Active

Processing assumptions – explained in further detail in Appendix A1 – show that irrelevant

information distracts the learner from the essential information and that the presentation of

too much information creates a cognitive overload. This problem is twofold:

1. The distraction of the learner from important material by useless information;

2. The cognitive overload created by presenting too much information.

The first problem seems to contradict the hypothesis to document as explicit as possible, but

this is merely a paradox. In the case of incomplete SADs, developers have to assume certain

properties of the system: a developer only has to assume something when necessary

information could not be found or is simply absent. Mayer assesses this problem as well:

empirical evidence only showed absence of a positive effect of concise presentations over

elaborate ones when the concise description of a system “may have been so short that it

excluded some essential material.” [44: 104]. Besides, the increased amount of information in

SAD does not turn down the coherence principle: research showed that simplified diagrams

most strongly support information integration, but those simplified diagrams are stripped of

representational complexity only1 [13].

1 Complexity of diagrams can be divided into two different types: their essential and their representational

complexity. Essential complexity refers to the minimal amount of information it should contain in order to convey

Software Architecture Documents: a cognitive perspective 29

Second, a cognitive overload could be introduced when SADs present too much information.

This cognitive overload can be reduced, especially by applying the spatial contiguity principle

– in which corresponding information is presented in close proximity. The presentation of

information in one diagram could be structured using this principle, but when even more

information needs to be conveyed, other principles like segmenting, signaling and pre-training

should be applied to reduce the strain on one’s cognitive resources.

Learning consists of 3 processes [44: 71]: selecting, organising and integrating. This active

learning takes place at the cost of cognitive processing. Reducing the need for processing (i.e.

reducing the need for extraneous processing by taking the coherency principle into account)

leaves attentional resources untouched, so they can be spent on essential and motivational

processes in order to construct an enhanced mental model that ameliorates learning.

Based on the cognitive theory of multimedia learning, one would expect that less switches

result in a less extensive and inferior mental model, requiring common sense to come up with

any answers at all: when a learner switches often between the two media, he segments the

data into bite-sized chunks himself, in order to be organised and integrated. It is only after

understanding has occurred that the learner moves on to a next segment. Although opposite

results have been found by Heijstek et al. [30], we cannot judge this because this research

does not investigate upon this.

5.2.4.4.2. The conciseness of documentation

An upper limit of about two pages per artefact appears to be a reasonable amount: the

majority of the developers simply do not want to read more than that [1]. So it should be

noted that explicitness in documentation has its limits in use: within many organisations

there exists a common ground, consisting of a characteristic corporate culture, shared

knowledge and shared development methods [49]. Documentation about software systems

probably may leave out elements commonly available to all developers through common

ground in order to come up with more concise documentation. This does not conflict with

the coherence-principle, because documents containing information that is part of the

common ground, contain extraneous information, thus violating this principle. The

the required knowledge; Representational complexity refers to its fidelity and is made up of extraneous material

that is irrelevant to the message [13].

Software Architecture Documents: a cognitive perspective 30

combination of a well established common ground, easily accessible knowledge and concise

documentation appears to fit (Global) Software Development best.

5.2.4.5. Conclusion, discussion and practical implications

5.2.4.5.1. Discussion

What we saw while examining this code was that of the 5 participants, 4 had their answer on

question Beta 3 coded as using common sense. Probably this has something to do with the type

of question or the domain of the system presented. Because this question is regarded difficult

– its indeterminable nature and the implementation of a false friend1 contribute to this – and

the availability of expectations about how such a system should behave, make this question

susceptible to implementation of knowledge regarded as common sense.

Second, the fact that the codes assuming and common sense coincide appears to be no accident:

it could safely be assumed that when knowing less, one assumes more and while assuming,

one integrates common sense and pre-existent knowledge into their answer.

5.2.4.5.2. Conclusion and implications

What could be read in section 5.2.3.4 also readily applies to this code: developers who make

assumptions because some property that is unclear or ambiguous, express unwanted

behaviour: different conceptions about what a component should do, ultimately clash at

integration stage. In addition, when a design specification is outdated and a developer

unknowingly does choose to use it, the same problems occur as well. In order to overcome

this, Cataldo et al. advocate to promote lateral communication, identify dependencies

amongst components and development teams and close the documentation-source code gap

[15].

5.2.4.6. Future research

It might be interesting to investigate the relation between assuming and common sense,

especially concerning the direction of this relation. Does an assuming nature of the developer

implies increased use of common sense or is it the other way around? In the present research,

common sense implies assuming in most cases but that does not show us its cause. Does a

1 A false friend is a property that could be expected mislead someone. For example: there exit a component A

with property a and a component B. The question asks about a and B. The participant then may be falsely

inclined to ascribe a to B instead of the actual A.

Software Architecture Documents: a cognitive perspective 31

familiar system domain automatically implies increased use of common sense and if so, why?

Is it because the designer left out details he (actively or passively) expected to be known with

the developer or is it because the developer is inclined to use knowledge that is most readily

available to him – i.e. in his memory rather than in the documentation – an effect known as

the availability bias [60]. Future research should be performed in order to assess these

relational directions.

Still other research should address the correctness and completeness of the mental model. The

contents of it are usually a mixture of perceived and retrieved information, but the proportion

between them should be correct. We think that increased application of common sense

implies a mental model with too much information from the LTM.

Software Architecture Documents: a cognitive perspective 32

5.2.6. Single Medium Based Answer (SMBA)

5.2.6.1. Introduction

As with the previous codes, SMBA was chosen for its abundance. Furthermore, it appears to

be a reliable code because matching cases are easily discernable. Besides the analytical

advantages it is noteworthy to know whether 1 medium appears a subject to suffice in giving

an answer.

5.2.6.1.1. Definition

Answers coded as SMBA have to conform to the following rules:

1. The participant is willing to base his answer on only one of both media when he is

unable to find support for the answer in the other medium;

2. The participant only looks into one of the two media and comes up with an answer.

3. The participant looks into both media but only peeks shortly (presumably too short to

see anything valuable) into one of the two, before uttering an answer.

Because this code relies on the transcribed switches in viewed media, those switches will be

included in the following examples. [D] indicates that the participant is looking towards the

diagram, [T] means that the participant looks into the text.

5.2.6.2. Examples

First an example of participant 16 answering question Gamma 1:

“[T] Hmhm.. I cannot find any details [D] on the diagram [T] [D] on the Back Office

System component, of the responsibilities. [T] Therefore I’m now looking at the [text].

(…) [D] [T] The responsibility is that it contains all the data that is relevant to the

Mid- and Front Office [D] [T] systems. That’s my answer.”

This participant did look into both media, but found out that the answer was not to be found

in the diagram. This answer is an SMBA based on the first principle described in section

 5.2.6.1.1.

Another example is of participant 29 on question Beta 2:

“[D] I see the Frontend at the left, and the only authentication I see is in a lower right

corner. And then I see the component “User database” and I don’t see it anywhere else in

Software Architecture Documents: a cognitive perspective 33

the big picture. So I would say no it cannot directly authenticate the user (…). So I don’t

think it’s possible to directly authenticate the user.”

Clearly, participant 29 did not even bother to look into the textual part of the SAD. This is

an example of the second principle described in section 5.2.6.1.1.

5.2.6.3. Analysis

Because of the first property of described in section 5.2.6.1.1, the code called cross-media check

(CMC) is not the opposite: according to that property, the participant could still look into

both media, but come up with an answer based on only one medium1. With SMBA, the

participant’s incentive to look into the other medium – if he does so – is not to verify or

falsify; answers coded as CMC are motivated by such goals.

Of all 92 answers coded SMBA, 39 given answers were incorrect, so those results contradict

what one would expect: if someone only uses a single medium, inconsistencies in the

documentation would presumably pass unnoticed, leading to unpredictable behaviour by the

developer and hence to a system behaving erratic or not functioning at all. Despite this, most

answers coded as SMBA are correct. This can be seen in diagram 5: only participants 19 and

28 had a larger amount of incorrect answers coded as SMBA.

1 Thoroughness in general implies that the participant checks his/her initial answer in the other medium.

This may give the participant:

1. extra certainty about the correctness of his/her answer;

2. give contradictions;

3. provide insight in the fact that the answer is only stated in one of the two media;

4. Relations between both media. This might be done in order to find extra information or to come up

with relations not thought about yet.

This code is applied regardless of whether the cross-media check was successful or not. This code excludes the

following case:

1. The participant does not find the answer to the question in the medium it looked in first and therefore

looks into the other medium to find the answer. It should be noted that this and point 3 are both coded

SMBA.

Software Architecture Documents: a cognitive perspective 34

SMBA and Correctness

0

10

20

30

40

50

60

70

80

90

100

16 18 19 21 25 27 28 29 33 35 44

Participant

P
e
rc
e
n
ta
g
e SMBA correct

SMBA incorrect

Total Correct

Diagram 5: SMBA and correctness

What we see in diagram 6 is that participants have a tendency to give answers coded SMBA or

not: 6 participants gave 9 or more answers coded as SMBA covering a large majority of 64 out

of 92 answers coded this way; the remaining participants stay around 5 answers coded as

SMBA. Of those 6 participants, 24 of the 64 answers are incorrect, whereas 14 out of 28

answers of the remaining group are incorrect. Based on this small amount of evidence

however, it seems that there is no real difference between people who tend to give multiple

answers based on only one medium versus the other groups.

Answers coded SMBA

0

1

2

3

4

5

6

7

8

9

10

11

12

13

16 18 19 21 25 27 28 29 33 35 44

Participant

A
n
s
w
e
rs
 c
o
d
e
d

SMBA Incorrect

SMBA Correct

Diagram 6: Percentage coded SMBA per participant

Software Architecture Documents: a cognitive perspective 35

The left two columns in diagram 7 display only a slight decrease in amount of correct answers

coded SMBA when compared to the total average. But again, it should be remarked that

answers coded as SMBA do not imply that the participant only looked into one medium.

Rather, it shows that the participant is willing to base his answer on only one of the two

media. What is interesting as well, the middle two columns show that participants who

tended to give less than 9 (out of 13) answers SMBA were incorrect more often; participants

with 9 or more answers coded SMBA reside at just the same level as the overall average.

However, when leaving the restriction of answers coded SMBA behind however, the

difference disappears and each participant – whether having less, or more than 9 answers

coded SMBA – performs roughly the same.

SMBA and Correctness

91 53
13

40 41 50

52 39
15

24 24 28

0%

20%

40%

60%

80%

100%

Overall SMBA overall Less than 9

answ ers SMBA

9 or more

answ ers SMBA

Overall less than

9 SMBA

Overall 9 or more

SMBA

Category (participant)

Incorrect

Correct

Diagram 7: SMBA and correctness per participant category. The middle two categories consist of the answers

coded SMBA of respectively participants who gave less than 9 answers SMBA and more than 9 answers SMBA.

The rightmost 2 columns show the same, but than for all answers of the participants divided into the same 2

categories. The numbers represent the actual amount.

Software Architecture Documents: a cognitive perspective 36

Certainty and Assuming

0

10

20

30

40

50

60

70

80

90

100

19 21 25 27 28 16 18 29 33 35 44

Participant

P
e
rc
e
n
ta
g
e
(%
)

Certainty Assuming

``

Diagram 8: Certainty and assuming. The left 5 columns are constituted (displayed using a gradient) by the

participants in the ‘less than 9 answers SMBA ‘ group; the right 6 in the category of ‘9 or more answers SMBA’.

As follows from diagram 8, participants answering less than 9 answers using SMBA, are more

often assuming than the participants in the other group. A possible explanation for this

decrease in correctness could be that the participants were less certain about their answer.

Hence, they construct or devise their answer using both media rather than just verbalising

presented information. That they chose to construct answers could be due to the absence of

required data, – but then every participant should show the same pattern – their inability to

extract the requested information or that they excessively wanted to ensure themselves.

Software Architecture Documents: a cognitive perspective 37

Results demonstrate as well that the questions Gamma 1 through Gamma 3 are all coded as

SMBA at least 1 time more often than the total average. The participants here appear satisfied

easier or are find it less problematic to use evidence found in only 1 document for a decisive

answer. This could probably be ascribed to the architecture under question, but that is just a

tentative guess. These questions do not contain any recognised differences compared to the

other questions, so that leaves the architecture as the instigator of the difference in codes. It is

only question Gamma 3 that is unanswerable and has a false friend implemented as well.

Furthermore, questions Alpha 3, Delta 1 and Delta 2 are coded SMBA 1 time less than

average. When taking a closer look at those questions, they share a common denominator:

they are all of topological nature. Apparently, people are more difficult to satisfy with such

questions, or, answers for the mentioned questions are available only by combining both

documents.

Amount coded SMBA per question

5 6 7 8 9

Delta 2

Delta 1

Alpha 3

Example

Alpha 2

Alpha 1

Delta 3

Beta 3

Beta 2

Beta 1

Gamma 2

Gamma 1

Gamma 3

Average

Q
u
e
s
ti
o
n

Amount coded

Diagram 9: Amount of SMBA per question

Software Architecture Documents: a cognitive perspective 38

Remarkable is the difference between the categories ‘less than average’ and ‘greater than

average’: both deviate from the total average as presented in diagram 10. Answers given in the

first category are correct more often; answers in the second category less than average. From

these results it can be deduced that there exists an inverted relation between the amount of

answers coded SMBA and the amount of correct answers: questions that make a participant

more susceptible to answer it using only one medium, increases the amount of errors. Still,

different causes for the existence of this relation could be appointed. The present research

however cannot provide conclusive thoughts regarding this.

Results SMBA more or less than average

14

14 53

4

11 39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Less than average Greater than average Overall

Category (question)

incorrect

correct

Diagram 10: Results of questions coded SMBA. The category ‘less than average’ are constituted by questions

A3, D1 & D2; ‘greater than average’ are questions G1, G2 & G3. ‘Overall’ consists of only answers coded

SMBA and corresponds to the second column in diagram 6. The numbers represent the actual amounts.

Software Architecture Documents: a cognitive perspective 39

5.2.6.4. Related literature

In a study of Nugroho, it is tried to relate the Level of Detail of UML diagrams to problems

at implementation. They found that a lower level of completeness in UML diagrams leads to

deviations and hence problems in implementation [47: 46]. The current research however, has

been performed with a wider scope: mainly looking at completeness and correspondence

between multiple media-types involved in conveying software architectures through

documentation. Therefore, the results of Nugroho and the current research complement each

other, as textual descriptions are still needed to understand the documentation.

The conclusion of research by Kalyuga et al. is that experts learn better from information not

integrated [39]. SMBAs do not support nor refute this because this is a disparate character

from the expertise reversal effect: if an experienced participant tends to answer a question

based on only one medium, it might even be helpful to include more elaborate information

into the observed medium as it gives him access to all needed information using only the one

medium. More information about the Expertise Reversal Effect can be found in section 9.1.

5.2.6.5. Conclusion, discussion and practical implications

A few conclusions can be drawn from the analysis above. First, answers coded as SMBA

tended to be wrong slightly more often than average. This conclusion however, is limited due

to the fact that the SADs did not contain any contradictions or incorrect information.

Second, participants who tended to give less than 9 (out of 13) answers SMBA surprisingly

were incorrect more often than average. While the difference disappears when leaving the

restriction of answers coded SMBA behind, it is highly interesting that participants with a

tendency of answering less questions SMBA are incorrect more often. Further results subscribe

to the viewpoint that these participants are uncertain: they use multiple media in forming

(constructing, devising: i.e. not merely reading) an answer, hence no SMBA was applied.

Third, a few questions were noted to be coded as SMBA 1 time more or 1 time less than

average. In addition, there is an inverted relation between the amount of answers coded

SMBA and the amount of correct answers: it appears that questions that make a participant

more susceptible to answer it using only one medium, increases their rate of error. Considered

sources for these differences are variations in architectures and questions, but it lacks

indisputable evidence, both here as well as in the previous paragraph.

Fourth, more than 60% of the answers were given SMBA. This SAD usage has some major

implications on the construction of such documentation: a provocative question remains: is it

profitable to use multiple media?

Software Architecture Documents: a cognitive perspective 40

5.2.6.6. Future research

What was neither examined nor found, is how contradicting or incomplete SADs affect the

quality of the resulting software. It might be interesting to research the effect of inconsistent

architectural documentation in software development more deeply. A hypothesis – tentatively

founded in the present research – is that there exists a disadvantage basing an answer on only

one medium: incompletenesses or inconsistencies in or between the two media will pass

unnoticed by the developer if he does not check his answer or is not able to check it. In some

cases, this will lead towards inconsistencies in the developing system [47], but it is further

research that should come up with a decisive answer.

Furthermore, the second conclusion in section 5.2.6.5 could be examined to a further extend:

why is it that participants who answered less questions SMBA were less certain?

Also, the last observation needs further research: why choose people to use only one medium?

Is integration between multiple sources too burdensome or are it personal preferences?

2 As a part of the Cognitive Theory of Multimedia Learning. See Appendix A1, section 3 for more information.

Software Architecture Documents: a cognitive perspective 41

5.3. Conclusions

The observation of participants while trying to solve the problems proposed, yielded lots of

information, but even more ideas for future research. In depth and conclusions and

accompanying justifications are drawn with each code, so only an overview of them is given

here:

1. There is a positive relation between certainty and correctness but between assuming and

incorrectness there is not;

2. Some participants leaned towards a certain or assuming attitude;

3. There exists a positive relation between self rated experience and modeling skill, and

confidence or attitude. In addition, a positive relation between self-rated experience and

modeling-skill, and correctness also holds;

4. Unanswerable questions with architectures with implemented false friends increase the

amount of common sense applied;

5. Questions answered using common sense are in all but 1 case coded assuming as well;

6. Answers coded SMBA are slightly more often wrong than average;

7. Participants who tended to give less than 9 answers SMBA were incorrect more often

than average;

8. Questions that increase a participant’s liability to answer it SMBA increase the amount

of errors made as well;

9. Some participants were answered (almost) all questions based on a single medium.

However, it are the outliers that supply the more interesting information. For example

regarding conclusion 2 and 3, an enlarged difference between one’s perceived skill and their

actual skill could be a cause for problems.

The implications of these conclusions are manifold: developers behave in typical ways and have

different levels of knowledge and expertise. However, today architectural documentation is the

same for all those different people, which results in unpredictable variation in decisions made.

This study investigated upon the sources and effects of participants using different procedures

while answering questions in order to reduce the effectiveness of a developer to several of his

characteristics. Knowledge about these characteristics enables researchers and software

architects to improve documentation in such a way that a wider range of developers can use it

in a more successful manner.

Software Architecture Documents: a cognitive perspective 42

Apart from consequences for documentation, it became apparent that an increase of awareness

about attitudes one has regarding decisions during software development might increase the

quality of the product as well. Knowing better when to ask for explication, uncertainties and

ambiguities in documentation are spotted earlier and consequently solved. This results in

quicker and cheaper fixes and hence more stable software. However, further research is

required to assess whether or not this is an actual possibility. Probably this is realisable through

a training programme to raise this awareness.

At this point, the attentive reader might have missed the theory or hypothesis that Grounded

Theory should have come up with (see Appendix B, section 2.2.2). However, the goal of this

experiment in particular never was to devise something like that: a shortage of time resulted in

a relatively small amount of analysed subjects (still not a problem ibid. section 3.1) and a

somewhat more shallow analysis. Together with the acknowledged difficulty of GT (ibid.

section 8.2) it was unfeasible to aim that high. Nevertheless, the findings – which could be

regarded as hypotheses as well – show directives for future experimentation or more in depth

analysis.

Software Architecture Documents: a cognitive perspective 43

6. Analysis 2: Active Processing

6.1. Introduction

Following the Active Processing/Learning Assumption described in [44: 71], another type of

analysis with encoding based on processes was performed. The transcript of one participant

was analysed using a prescribed encoding vocabulary: the three phases of the Active

Processing assumption2 – selecting, organising and integrating – were treated as codes and

applied to the transcript of participant 21.

As could be seen in figure 7, there exist three phases in the cognitive processing of

information. These phases allegedly take place in consecutive order, and it should therefore be

possible to discern them in a transcript of the verbalisations induced using Think Aloud/Talk

Aloud.

Figure 7: Phases of the Active Processing Assumption, adapted from [44: 61].

6.2. Theoretical Underpinnings

6.2.1. The participant chosen

Because this analysis is only additional to the main research, it was chosen to process only one

participant. As could be read in Appendix B, section 3.1, excellent participants are typified by

several properties [12: 231]. The one participant in this additional analysis was chosen based

on these guidelines: participant 21 meets all the proposed requirements and was subsequently

chosen. He was

- known with the phenomenon under investigation;

- willing to participate;

- articulate.

Software Architecture Documents: a cognitive perspective 44

6.2.2. Encoding & Guidelines

6.2.2.1. Why coding?

As described in Appendix B, section 5, codes form the focus for thinking about the text and

its interpretation [26: 40]. Because codes help to organise the relatively unstructured

qualitative data, in this analysis the encoding approach is applied as well.

Following roughly the same approach as Ericsson and Simon [25] in their Verbal Protocol

Analysis methodology, a prescribed ecoding vocabulary was used. The main difference

however, between Ericsson and Simon’s method and the approach applied here, lies in the

fact that they performed a formal task analysis to derive an encoding vocabulary [25: 276]; we

took existing labels of cognitive processes that take place, and applied those to the data

available. Moreover, the application of equivalent terminology enables for incorporation of the

results into the larger body of research, hence hopefully proving useful.

6.2.2.2. Guidelines for reliability

In order to reach as high levels of reliability as possible, several guidelines for the decision

making processes are required. Guidelines like the ones described below can be equated to the

process of saturation of codes in Grounded Theory (GT). However, while the codes emerging

during GT are changing as saturation proceeds; the aim here is to define a set of rules by

which the three codes can be defined or recognised in a transcript, especially the specific

transcript in this analysis.

Several coding cycles were applied to the transcript in order to discover any deviations from

the guidelines, and adjustments were made to the constituted rules when it was thought

necessary, just like in the normal process of saturation [12: 117] – of course without shifting

meaning: they still describe the same phenomena, but only become more articulated.

Software Architecture Documents: a cognitive perspective 45

Below, the emerged guidelines for utterances that are encoded in one of the three categories

are stated:

Selecting

- Cues for reading or searching (“So, I’m looking for…”, “I’m reading…”);

- Cues for direction (“I look at the diagram first…”);

- Description of perceived material (“I see…”).

Organising

- Description of one perceived medium (mostly in use to form the answer);

- Conclusions (“No, it’s not related”, “I found something again…”).

Integrating

- Use of LTM (i.e. “I think it was...” or “I read somewhere that…” or “I just knew”);

- Both media are combined or compared.

In general, utterances forming answers will not carry a code because the action “answering” is

not covered by this model: after having finished all stages of active processing, the participant

simply verbalises that final thought, which happens to be the answer. In some exceptions, the

giving of an answer is incorporated in organisation or integration stages: it is in these cases

that the answer will be coded accordingly. In general, these cases depict uncertainty (assuming

in section 5.2.3.1.1) and transience of the answer given. Mere uncertainty will not get the

answer coded accordingly. Answers where one or two media were used extensively while

giving the answer will be coded as well, because these occurances depict the use of the

presented material in organising or integrating an answer.

As portrayed in Figure , the transcript will be encoded following the three phases of active

processing. They are depicted by three coloured ovals, using the same colour-code as the

words below:

- Selecting

- Organising

- Integrating

Software Architecture Documents: a cognitive perspective 46

However, because the distinction between the latter two processes might not always be clear,

an additional code was introduced that combines the two processes into one group:

- Organising & Integrating undiscernable

6.2.3. Hypothesis

It would be expected that the participant first selects texts, then organises the obtained

information and more or less simultaneously does the same for the diagram as well. After

finishing these both processes, in order to compare and combine both sources and to come up

with the (most) correct answer, integration would take place. Subsequently, the produced

mental model is consulted to verbalise an answer.

Software Architecture Documents: a cognitive perspective 47

6.3. Results1

Not all answers were encoded, as some of them did not bear any useful verbalisations. This

applies to the answers on question EQ32 and EQ43, which will be absent during further

investigation. As could be seen in the transcript, the participant was not very outspoken and

showed during these answers only a sequence of pauses and gaze-changes, hence leaving us

uncertain about how to code the transcript of these answers.

Below, all resulting state diagrams are showed. Each row depicts an activity of the Active

Processing Assumption: selecting, organising or integrating. The arrows depict the same

activities and the boxes the (unnamed) state in which the participant came out after that

activity. Furthermore, the diagrams are to be read from left to right, where the ellipse at the

left is the begin-state and the oval at the rightmost position the answer. Finally, there is no

specific time-scale applied here.

1 The transcript can be found in Appendix C

Software Architecture Documents: a cognitive perspective 48

Software Architecture Documents: a cognitive perspective 49

Software Architecture Documents: a cognitive perspective 50

Software Architecture Documents: a cognitive perspective 51

6.4. Conclusions

The previous diagrams show the activity pathways participant 21 took while answering the

questions. This section will portray the conclusions that can be drawn from these results.

6.4.1. The initiation process

As could be expected, every process first engaged in was selecting. Simply put, the participant

first needs to extract the information from the SAD to answer the question. However, in

some cases this search probably was guided by information acquired with a previous question.

A clear example of this is answer Gamma 3, where the participant mentions that he is

searching for a specific value or property because he encountered it with the enquiry for an

answer on preceding questions about the current architecture.

6.4.2. The final process

As described by the hypothesis in section 6.2.3, and therefore expected, not a single answer

was given during the selecting process. However, 5 out of 11 times the answer was given in the

organising state. This indicates that the LTM was not used in giving this answer, but also that

there did not occur integration between the two media presented. This latter remarkable

result might be ascribed to the fact that an answer was not always present in both media,

hence forcing the participant to base his answer on a single medium. Another explanation

hereof could be that the integration took place successfully and that the participant had an

adequate mental model available for inquiry. Four out of these five instances endorse these

stances by showing that the participant earlier tried to integrate information. Furthermore, all

of these answers were correct, indicating that the participant’s choice was a proper one.

In four cases, the last process was an integration-one. Two out of four answers meeting this

property where incorrect. However, every participant examined in the previous more elaborate

research1 had these specific answers (Beta 3 and Gamma 3) incorrect, so without knowing

whether or not these questions misled the participants in using the wrong strategy in

answering them (as could be found by analysing the other participants in depth as well) or

simply because these questions where indistinctly put, no conclusions can be drawn from this

result. It could nevertheless be deduced that integration as a final process is undesirable. That

late integration is annulling for correct answers could be due to the fact that this overdue

1 Section 5

Software Architecture Documents: a cognitive perspective 52

integration is one’s last expedient: the participant is still gathering information to construct a

sound answer.

The remaining two cases – answers on question Alpha 1 and Delta 1 – are too indistinct to be

put into one of the three categories.

6.5. Limitations

Based on the guidelines in section 6.2.2.2, there might appear to be a clear distinction

between organising and integration, but there is not. In some cases the transcript simply could

not provide a decisive answer on whether the participant used 1 or both media: he could have

looked into both media but still chose to use the information from only 1 medium (see SMBA

in section 5.2.5).

Because the indistinctness between the different codes, the order of processes in which each

answer was given, might not always be completely correct. This in turn could lead to

unexpected outcomes, of which the fact that several answers were given in the organising stage

rather than the expected integrating stage might be one. Furthermore, the conclusion drawn

based on this the analysed information is equivocal as well: the conclusion that acquired

information was not integrated during the presenting of an answer does not mean that

integration did not take place. It might be the case that integration took place earlier and that

the integrated mental model was already available in the working memory.

6.6. Future research

Based on the limitations expounded in section 6.5, adaptation of the straight on model of

figure 7 for this specific type of experimentation and analysis seems indispensable. Future

work should address the applicability of this model and aim to find better ways of inquiry (i.e.

to improve the method of information acquisition), and to improve the correspondence and

aptness of the Active Processing model with the data.

One suggestion involves an addition to the existing coding vocabulary. It could prove useful in

discriminating between integrating WM models and retrieving previous knowledge from the

LTM to add a code called retrieval. In discerning this process from integration, higher quality

of data is obtained. The fitting in of new information – whether from LTM or the SAD –

can then just be coded as integration and information fetched from LTM as retrieval.

Software Architecture Documents: a cognitive perspective 53

The use of this vocabulary consisting of the processes in the Active Processing assumption,

combined with research on general-purpose encoding schemes could be useful as template to

determine the basic structure of a coding scheme [37]. Because one should avoid too much ad

hoc changes to a theory – as it then looses its scientific value. Application of any arbitrary

variation to a theory would render it unfalsifiable: it is then unable to rule out anything [54,

25: 264] – such general-purpose coding scheme should be devised prior to its application.

Another idea for future research involves the incorporation of a time scale; not merely states

and transitions between them. The transcriptions were performed as an abstraction of the rich

data, preserving only the relative sequence of processes. Measurement of the actual time spent

during a specific process might then be an indication of invested effort. It should be noted

however, that independent measurements of speech and read rates then are necessary to

normalise the data of the experiment [25: 250].

Because much more information could be distilled from the material obtained using Think

Aloud/Talk Aloud, this type of analysis should be done in further depth as has been

performed here. The limited time resources forced us to focus this analysis on only one

participant, but nevertheless it was tried to explicate the method used in detail so future

investigation could be done using the described techniques as used here.

Software Architecture Documents: a cognitive perspective 54

7. Observations & Conclusions

It is tempting to overestimate the impact of the results, but we need to absent ourselves from

overgeneralisations. By positing the conclusions within our research, some interesting

observations were made. More in depth justifications of these conclusions can be found in the

previous sections of this thesis.

• Conclusion 1.1: There is a positive relation between certainty and correctness but between

incorrectness and assuming there is not;

• Conclusion 1.2: Participants show a tendency in attitude.

• Conclusion 1.3: There exists a slight positive relation between self rated experience, modeling

skill and confidence or attitude. In addition, a positive relation between self-rated experience

and modeling-skill, and correctness also holds;

• Conclusion 1.4: Unanswerable questions combined with architectures with implemented

false friends increase the amount of common sense applied.

• Conclusion 1.5: Questions answered using common sense are in all but 1 case coded

assuming as well;

• Conclusion 1.6: Answers coded SMBA are slightly more often wrong than average;

• Conclusion 1.7: Participants who gave less than 9 answers SMBA were incorrect more often

than average;

• Conclusion 1.8: Questions that inclrease a participant’s liability to answer it SMBA also

increases the amount of errors made;

• Conclusion 1.9: Some participants were inclined to answer almost all questions based on a

single medium.

• Conclusion 2.1: Answers given in the integration-stage are undesirable.

Software Architecture Documents: a cognitive perspective 55

8. Limitations & Threats to validity

The analysis of qualitative data is only as good as the way the data was collected [18].

Moreover, inherent to any type of qualitative research is the interpretation of data by the

researcher – who is in his turn again influenced by his experience and background. By devising

experiment & analysis protocols and following them meticulously, it was tried to ameliorate the

data quality. In spite of this, some threats to validity or advisable modifications to our research

could still be appointed:

• During the experiment, we used an undetermined amount of time before prompting

the subjects to keep verbalising. This resulted in gaps in the recorded data, rendering

some answers unanalysable. “A short amount of time” should have been more specific.

• Purposeful sampling should have been applied to find subjects that were most

interesting to analysis 1. Instead, apart from the selection on properties of an excellent

participant, we applied convenience sampling. This might have caused some interesting

results to remain covered.

• Little is known about how to interpret conviction verbalised by someone who answers a

question. Research by Holmes [35] addresses the expression of doubt and certainty in

English. A possible threat to validity upon results could be found in her study:

“[L]earning to express and interpret modal meaning presents problems for second

language learners” [35]. As most of the participants in our experiment were non-native

English speakers, this is very well relevant to interpret the results.

• Another threat to validity is attributed to the reliability of codings2. By constant

comparison of the already encoded transcripts with the transcript currently being

processed and the application of a fairly broad context of one answer as a segment, we

did our best to neutralise any possible cause for bias. Therefore the recommended

second encoder was not applied [37], and neither was multiple encodings based on

different segment sizes [18].

On the other hand, the application of two different methods of analysis might increase validity

– that is, if they do not contradict each other. Triangulation – the act of using different sources

to verify results from different viewpoints – could then be applied to improve research validity

2 Appendix B, section 6.4.5

Software Architecture Documents: a cognitive perspective 56

[26]. Despite this, we did not construct any such direct link between the results of both

analyses, mainly due to the limited commensurability of the codes. I borrowed the meaning of

the term commensurability from Kuhn’s work ([41]) in relation to paradigms: two subsequent

major paradigms are incommensurable because their notions of elementary concepts are

fundamentally different. With respect to our research, we applied two different “frameworks”

(or vocabularies) applied on dissimilar levels of behaviour. Although the difference being not as

fundamental as with paradigms, straightforward translation is not possible either.

Besides all actual limitations above, the appearance of an overwhelming amount of “counter

examples” to the cases made might lead us to think this is a limitation as well. At this point, it

is interesting to look again at one of the key characteristics of qualitative research: GT, along

with other types of qualitative research, does not rely on notions of statistical representativeness

to make claims about the generalisability and authenticity of the findings. Using particularly

deviant cases in the main results ensured us to miss no important cases that might lead to

question the outcomes1.

1 Appendix B, section 4.1

Software Architecture Documents: a cognitive perspective 57

9. Implications & Future research

9.1. Direct & indirect implications

Proper documentation should decrease the amount of ambiguous understandings of a system.

For example, false friends should be put more distinct to reduce their fake “friendliness”.

Where the purely experimental implications reach their boundaries, together with the

performed literature research, these implications could be extended much further. Combining

our research with literature on multimedia learning [44], some ideas come to mind that might

help to improve its communication1:

• Redundancy might improve learning & understanding, but only when narration and

text are presented separately. This could be applied through segmenting (dividing a

SAD into smaller graspable units) or pre-training (provide a verbal description of the

system prior to providing the SAD);

• Use signaling words, but sparingly;

• Spatial contiguity of related or highly coupled elements eases understanding;

• Integration of instructional guidance could be overdone2: Kalyuga et al. demonstrated

that experts sometimes exhibit decreased performance with integrated guidance as it

conflicts with their existing cognitive schemas. As a result, high-experienced learners

obtain extra cognitive load by trying to cross-reference both representations or by trying

to ignore the redundant information. The most important instructional implication of

this effect is that instructional design should be tailored to the level of experience of

intended learners [39].

Apart from the cognitive advantages that could be gained, increased formalisation of the

graphical language enables for more extensive and computerised type checks to decrease the

amount of inconsistencies [22]. Furthermore, the cost of creating, adjusting and using design

documentation should be decreased: if documents are always up-to-date and easy to find, they

could become a way of communication [42, 19].

1 Appendix A1, section 5.3 & Appendix A2, section 3
2 Appendix A1, section 5.2.2

Software Architecture Documents: a cognitive perspective 58

9.2. Future research

Virtually every implication given above is in need of at least some further investigation.

However, some ideas exceed even the propositions in the previous section. Besides, the new

questions raised due to insights gained by the results of our experiment have to be assessed by

further experimentation as well.

9.2.1. Exploring the experimental results

For example, future research should assess the direction of correlation between common sense

and assuming: discrimination between the source and its consequence could prevent from

treatment of symptoms.

Second, other research should be addressed to the tendency of developers towards being certain

or uncertain, whether this certitude is justified and what the effects are of such conviction.

Related to this, it might be interesting to somehow measure the awareness of their certitude.

Results could help developers prevent from making inequitable decisions based on incomplete

or ambiguous information. In addition, further research should shed light upon the feasability

of a training programme for developers to raise awareness about their attitudes regarding

decisions based on SADs: knowing better when to ask for explication, uncertainties and

ambiguities in documentation are spotted earlier and consequently solved. Increased awareness

therefore could decrease both cost and time to market.

Third, the effects of contradicting or incomplete SADs on the quality of the resulting software

should be examined. Our hypothesis is that it is a major disadvantage basing an answer on only

one medium: incompletenesses or inconsistencies in or between the multiple media will pass

unnoticed by the developer if he does not check his answer or is not able to check it.

The additional analysis also requires some extra deepening. First, expansion of the used

vocabulary with specific codes – to enable for higher resolutions in data and analysis – might be

an interesting step. Second, an incorporated time scale might indicate the effort invested on

each cognitive process.

Software Architecture Documents: a cognitive perspective 59

9.2.2. Other suggested research

Apart from elaborating the results from our experiment, some ideas for connected research

came to mind. A first example addresses consistency within SADs. This might be appointed

using dynamic signaling: when a developer selects a component in the diagram, accompanying

text should be selected as well. This eases his integration-stage and as a result facilitates

consistency checks by the developer. In addition, while the designer should introduce the

relations between documents explicitly, he is forced to check consistency as well. Apart from

highlighting relations across documents, relations and dependencies within one document

should be dynamically signalled as well: with the selection of one component, all related

components should become highlighted to increase visibility of dependencies.

Assessment of the different levels of knowledge and expertise per developer should allow

designers to fit a system’s design to the developer’s needs. Or, even better: tools should provide

functionality to capture different levels of detail (LoD) to enable the developer to choose his

preferred type of documentation and LoD.

An idea for an actual experimental setup could be to provide a participant with a SAD and

instruct him to convert it into some sort of scaffolding code. While he is busy, he should be

interrupted at various points in time or progress and asked about his current goals, sub goals

and actions performed in order to obtain his current understanding of the described system.

This task is more realistic than our experiment, so more reliable results could be expected.

Besides, more detailed data could be obtained than the application of mere ToL did in our

experiment. Several of the research directions proposed in section 9.2.1 could be assessed using

this experiment.

Software Architecture Documents: a cognitive perspective 60

10. References

[1] AGERFALK, P. J., AND FITZGERALD, B. Flexible and distributed software processes:

Old petunias in new bowls? Communications of the ACM 49, 10 (October 2006), 27–34.

[2] ARMSTRONG, D. J. The quarks of object-oriented development. Communications of the

ACM 49, 2 (February 2006), 123–128.

[3] BADDELEY, A. Working memory. Life Sciences 321 (1998), 167–173.

[4] BADDELEY, A. D. Is working memory still working? European Psychology 7, 2nd (June

2002), 85–97.

[5] BADDELEY, A. D. The Essential Handbook of Memory Disorders for Clinicians. John

Wiley and Sons, 2004.

[6] BADDELEY, A. D. Working memory. Current Biology 20, 4 (February 2010), 136–140.

[7] BATRA, D. Modified agile practices for outsourced software projects. Communications of

the ACM 52, 9 (September 2009), 143–148.

[8] BIANCHI, A., CAIVANO, D., LANUBILE, F., RAGO, F., AND VISAGGIO, G. Distributed

and colocated projects: a comparison. In Proceedings of the seventh workshop on emperical

studies of software maintenance (November 2001), pp. 65–69.

[9] BIRD, C., NAGAPPAN, N., DEVANBU, P., GALL, H., AND MURPHY, B. Does

distributed development affect software quality? an empirical case study of windows

vista. Communications of the ACM 52, 8 (August 2009), 85–93.

[10] BOOCH, G. Object Oriented Analysis and Design. With applications, 2nd ed. Addison

Wesley Longman, 1994.

[11] BROOKS, F. P. No silver bullet: Essence and accidents of software engineering. IEEE

Computer 20, 4 (1987), 10–19.

[12] BRYANT, A., AND CHARMAZ, K., Eds. The SAGE Handbook of Grounded Theory. Sage

Publications, 2007.

[13] BUTCHER, K. R. Learning from text with diagrams: Promoting mental model

development and inference generation. Journal of Educational Psychology 98, 1 (2006),

182–197.

[14] CARMEL, E., AND AGARWAL, R. Tactical approaches for alleviating distance in global

software development. IEEE Software 18, 2 (March/April 2001), 22–29.

[15] CATALDO, M., BASS, M., HERBSLEB, J. D., AND BAS, L. On coordination

mechanisms in global software development. In International Conference on Global

Software Engineering (2007), pp. 71–80.

Software Architecture Documents: a cognitive perspective 61

[16] CATALDO, M., WAGSTROM, P. A., HERBSLEB, J. D., AND CARLEY, K. M.

Identification of coordination requirements: implications for the design of collaboration

and awareness tools. In Computer Supported Cooperative Work: Proceedings of the 2006

20th anniversary conference on Computer supported cooperative work (November 2006),

pp. 353–362.

[17] CHARMAZ, K. Constructing Grounded Theory. Sage Publications, 2006.

[18] CHI, M. T. H. Quantifying qualitative analyses of verbal data: A practical guide.

Journal of the Learning Sciences 6, 3 (1997), 271–315.

[19] CHISAN, J., AND DAMIAN, D. E. Towards a model of awareness support of software

development. In The 3rd International Workshop on Global Software Engineering (May

2004), pp. 28–33.

[20] CONCHÚIR, E., AGERFALK, P. J., OLSSON, H. H., AND FITZGERALD, B. Global

software development: Where are the benefits? Communications of the ACM 52, 8

(August 2009), 127–131.

[21] CURTIS, B., KRASNER, H., AND ISCOE, N. A field study of the software design process

for large systems. Communications of the ACM 31, 11 (November 1988), 1268–1287.

[22] DUKE, D. J., DUCE, D. A., AND HERMAN, I. Do you see what i mean? IEEE Computer

Graphics and Applications 25, 3 (May/June 2005), 6–9.

[23] ERICKSON, J., AND SIAU, K. Theoretical and practical complexity of unified modeling

language: Delphi study and metrics analyses. In 25th ICIS (2004), pp. 183–194.

[24] ERICKSON, J., AND SIAU, K. Can uml be simplified? practitioner use of uml in separate

domains. In Proceedings of the Workshop in Exploring Modeling ’07 (2007).

[25] ERICSSON, K. A., AND SIMON, H. A. Protocol Analysis: Verbal reports as data, 2nd ed.

MIT Press, 1993.

[26] GIBBS, G. R. Analyzing Qualitative Data. Sage Publications, 2007.

[27] HADAR, I., AND LERON, U. How intuitive is object-oriented design? Communications of

the ACM 51, 5 (May 2008), 41–46.

[28] HAYES, J. H. Do you like piña coladas? how improved communication can improve

software quality. IEEE Software 20, 1 (2003), 90–92.

[29] HEALY, A. F., PROCTOR, R. W., WEINER, I. B., FREEDHEIM, D. K., AND SCHINKA,

J. A., Eds. Handbook of Psychology: Experimental psychology. John Wiley and Sons, 2003.

[30] HEIJSTEK, W., KÜHNE, T., AND CHAUDRON, M. R. V. An experiment in media

effectiveness in software architecture representation. 2010.

Software Architecture Documents: a cognitive perspective 62

[31] HERBSLEB, J. D. Global software engineering: The future of socio-technical

coordination. In FOSE’07 (2007).

[32] HERBSLEB, J. D., AND GRINTER, R. E. Splitting the organization and integrating the

code: Conway’s law revisited. In Proceedings of the 21st International Conference on

Software Engineering (1999), pp. 85–95.

[33] HERBSLEB, J. D., AND MOCKUS, A. An empirical study of speed and communication

in globally distributed software development. IEEE transactions on Software Engineering

29, 6 (June 2003), 481–494.

[34] HERBSLEB, J. D., AND MOITRA, D. Global software development. IEEE Software 18,

2 (March/April 2001), 16–20.

[35] HOLMES, J. Expressing doubt and certainty in english. RELC Journal 13, 9 (1982), 9–

28.

[36] HOLSTRÖM, H., FITZGERALD, B., AGERFALK, P. J., AND CONCHÚIR, E. . Agile

practices reduce distance in global software development. Information Systems

Management 23, 3 (June 2006), 7–18.

[37] HUGHES, J., AND PARKES, S. Trends in the use of verbal protocol analysis in software

engineering research. Behaviour & Information Technology 22, 2 (2003), 127–140.

[38] KALYUGA, S. Knowledge elaboration: A cognitive load perspective. Learning and

Instruction 19 (2009), 402–410.

[39] KALYUGA, S., AYRES, P., CHANDLER, P., AND SWELLER, J. The expertise reversal

effect. Educational Psychologist 38, 1 (2003), 23–31.

[40] KOTLARSKY, J., VAN FENEMA, P. C., AND WILLCOCKS, L. P. Developing a

knowledge-based perspective on coordination: the case of global software projects.

Information and Management 45 (2008), 96–108.

[41] KUHN, T. S. The Structure of Scientific Revolutions, 3rd ed. The University of Chicago

Press, 1996.

[42] LATOZA, T. D., VENOLIA, G., AND DELINE, R. Maintaining mental models: A study

of developer work habits. In International Conference on Software Engineering (May

2006), pp. 492–501.

[43] LYONS, E., AND COYLE, A., Eds. Analysing Qualitative Data in Psychology. Sage

Publications, 2007.

[44] MAYER, R. E. Multimedia Learning, 2nd ed. Cambridge University Press, 2009.

Software Architecture Documents: a cognitive perspective 63

[45] MOODY, D., AND VAN HILLEGERSBERG, J. Evaluating the visual syntax of uml: An

analysis of the cognitive effectiveness of the uml family of diagrams. Software Language

Engineering (2009), 16–34.

[46] MORRIS, M. G., SPEIER, C., AND HOFFER, J. A. An examination of procedural and

object-oriented systems analysis methods: Does prior experience help or hinder

performance? Decision Sciences 30, 1 (Winter 1999), 107–136.

[47] NUGROHO, A. The Effects of UML Modeling on the Quality of Software. PhD thesis,

Leiden Institute of Advanced Computer Science, October 2010.

[48] NUSEIBEH, B., EASTERBROOK, S., AND RUSSO, A. Making inconsistency respectable

in software development. The Journal of Systems and Software 58 (2001), 171–180.

[49] OLSON, G. M., AND OLSON, J. S. Distance matters. Human-Computer Interaction 15

(2000), 139–178.

[50] PAASIVAARA, M., AND LASSENIUS, C. Using iterative and incremental processes in

global software development. In The 3rd International Workshop on Global Software

Engineering (May 2004), pp. 42–47.

[51] PARNAS, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15, 12 (December 1972), 1053–1058.

[52] PERRY, D. E., STAUDENMAYER, N. A., AND VOTTA, L. G. People, organizations and

process improvement. IEEE 11, 11 (July/August 1994), 36–45.

[53] PIDGEON, N. F., TURNER, B. A., AND BLOCKLEY, D. I. The use of grounded theory

for conceptual analysis in knowledge elicitation. International Journal of Man-Machine

Studies 35 (1991), 151–173.

[54] POPPER, K. R. The Logic of Scientific Discovery. Rootledge Classics, 2002.

[55] PRIKLADNICKI, R., AUDY, J. L. N., AND EVARISTO, R. Global software development

in practice. lessons learned. Software Process: Improvement and Practice 8 (2003), 267–

281.

[56] PRIKLADNICKI, R., AUDY, J. L. N., AND EVARISTO, R. An empirical study on global

software development: Offshore insourcing of it projects. In The 3rd International

Workshop on Global Software Engineering (May 2004), pp. 53–58.

[57] ROSSON, M. B., AND ALPERT, S. R. The cognitive consequences of object-oriented

design. Human-Computer Interaction 5 (1990), 345–379.

[58] SANDERS, K., BOUSTEDT, J., ECKERDAL, A., MCCARTNEY, R., MOSTRÖM, J. E.,

THOMAS, L., AND ZANDER, C. Student understanding of object-oriented

programming as expressed in concept maps. In SIGSE’08 (2008).

Software Architecture Documents: a cognitive perspective 64

[59] SHRIVASTAVA, S. V., AND DATE, H. Distributed agile software development: a review.

Journal of Computer Science and Engineering 1, 1 (May 2010), 10–17.

[60] TVERSKY, A., AND KAHNEMAN, D. Judgements under uncertainty: Heuristics and

biases. Science 185 (1974), 1124–1131.

About this research & me

My interest in the topic of Software Engineering founded a few years back during the

homonymously named course. While I wanted to know more of this field, preferably through

research, the idea for a thesis about the notational conventions of UML came to mind.

Despite it being an interesting topic I abandoned it due to its large-scale (judging by the

recently published paper of Moody and Hillegersberg, which is almost the research I had in

mind [45]) and got side-tracked. At that time I followed several courses in cognitive

psychology as well – and philosophy, but that’s not the point here – that caught my attention.

While my interest had always gone out for more than computer science alone, cognitive

psychology proved to be the latent interest.

For my BSc thesis I wanted to examine the cognitive principles behind software architecture

documentation (SAD), and I had the good fortune that a PhD student at LIACS was

performing experiments that fitted these conditions. Subsequently I joined his

experimentation and crystallised a research and analysis proposal meanwhile. It became the

analysis of verbal protocols using Grounded Theory to gain insight into participant’s minds –

what are they doing to solve the proposed problem?

My knowledge of the mentioned methods of experiment and analysis was infinitesimal, so at

least a little literature research into those fields was necessary to be able to apply them in a

credible manner. Apart from this literature research, some motivation for this research – why

would one want to know whether or not the current SAD fits human cognition? – appeared

reasonable. My viewpoint here chosen was from the still upcoming practice of Global

Software Development (GSD): due to impeded communication ways to reduce such

difficulties should be found. I thought some liberation could be achieved through

improvement of SAD and I still believe this to be true – now even with justified

underpinnings.

Personally I gained much more than mere insight into the heads of our participants:

performing literature research and executing an investigation and analysis was something I

hadn’t done before. Besides the obvious scientific value I want to emphasise this “non-

functional” aspect: it was really worth doing it.

Appendix A1: Multimedia Learning 1

Appendix A1

Multimedia Learning

Overview

This appendix provides an overview of a

current model of the human memory

system and extends that model with the

cognitive theory of multimedia learning by

Mayer. Last, the implications for Software

Architecture Documentation are discussed.

1. Introduction

“People learn better from words and pictures than from words alone”. This statement is built

on the hypothesis that learners are able to create a better internal representation using both

media, a so-called mental model, which enables them to obtain a deeper understanding of the

presented material. The most intriguing aspect of the qualitative rationale is that this

understanding occurs when learners are able to build meaningful connections between verbal

and pictorial representations.

The effects of multimedia learning are extensively researched by Mayer and colleagues and

recently bundled in [15]. Mayer proposed the Cognitive Theory of Multimedia Learning to

explain the effects of instructional design and hence multimedia learning. Section 2 will

provide an outline of the cognitive memory systems, sections 3 and 4 will be based completely

upon Mayers book and provide an introduction to the cognitive theory of multimedia learning

and its implied guidelines for instructional design. Finally, in section 5 additional literature

will be reviewed and implications for design documentations will be discussed.

Appendix A1: Multimedia Learning 2

2. Human understanding

At the basis of the cognitive theory of multimedia learning lies the way humans obtain,

process, store and retrieve information. Extensive research in the area of cognitive psychology

proposed several kinds of knowledge, several types of memory stores and theories about

human attention and awareness, all in order to account for the complex human behaviour.

This section will try to shed some light upon these intricacies of human learning,

remembering and understanding.

2.1. Types of knowledge

Robillard, provides a clear overview of types of knowledge in his research into the role of

knowledge in software development [20]. A common view nowadays subdivides knowledge

into two main groups:

1. Procedural;

2. Declarative.

Procedural memory is implicit, and stores all information related to basic skills used to

interact with our environment (e.g. walking, typing and cycling). Declarative memory on the

other hand is stores explicit knowledge (e.g. facts and relations between objects). The second

type is again dividable into separate groups: semantic and episodic knowledge. Semantic

knowledge (sometimes also called encyclopaedic or topic knowledge) refers to definitions and

meanings of words. The second type of declarative memory contains episodic knowledge, which

consists of autobiographical events (like times, places, emotions and contextual knowledge).

Appendix A1: Multimedia Learning 3

2.2. Types of memory stores

2.2.1. Sensory stores

Perceptual information is briefly stored in modality-

specific sensory stores and must be processed further to

be able to reach conscious awareness. Sensory

memory can be characterised by a large capacity and

short duration of a few seconds. It includes the

echoic and iconic memory types [12]:

1. Echoic memory is the auditory store of sensory

memory. It can be divided into two stages: an

ear-specific representation of the physical

characteristics of the stimulus (referred to as

an ‘echo’) and the combination of

information obtained by both ears.

2. Iconic memory is the visual store of the sensory

memory. It also has two stages: the retinal

afterimage and a later stage in which

information of both eyes is combined.

2.2.2. Working Memory

Information is held active in the working memory (WM), which is commonly supposed to be

capable of processing both spatial and phonological information in respectively the visuo-

spatial sketchpad and the phonological loop [12]. It generally refers to systems that are

assumed to be necessary in order to keep things in mind while performing complex tasks such

as reasoning, comprehension and learning [5].

The visuo-spatial sketchpad processes visual

information whereas the phonological loop

handles auditory and verbal information. The

possession of a WM allows us to reflect and

choose our actions, rather than instinctively

react automatically to stimuli. Besides the

phonological loop and the visuo-spatial

Figure 1: Human memory systems, adapted

from [4: 2]

Figure 2: Model of the Working Memory,

adapted from [5]

Appendix A1: Multimedia Learning 4

sketchpad, a controller called the central executive was introduced as well. The central

executive is an all-purpose attentional controller and presumed to supervise and coordinate the

work of its slave-systems [1]. In addition, relatively recently the existence of an episodic buffer

was proposed. This buffer is assumed to facilitate integration of information in the

phonological loop and the visuo-spatial sketchpad in a way that allows active maintenance and

manipulation [2]. While in its initial form the buffer was assumed to play an active role in

binding information, more recent research suggests that it serves as a rather passive store than

an active processor [5 and references therein]. However, more research needs to be done on

the workings of this component [3].

2.2.3. Long Term Memory

The Long Term Memory (LTM) consists of the memory types described in section 2.1: the

procedural and declarative types. Converting information from WM to LTM is called

consolidation [12]. This consolidation is supposed to take place in the form of schema

construction or knowledge construction or simply encoding in Error! Reference source not found..

During this process, information is organised and structured into a schema (a knowledge

construct) and linked to existing schemas residing in LTM.

2.2.4. Another model of memory

Of course the model of WM and LTM above is not the only one. For example, Cowan

proposed a model in which WM constitutes an active part of the LTM [9]. The dissociation

between Cowan’s model, and Baddeley and Hitch’s shed light on the problem from two

different angles: Cowan derived his model from an initial focus on the psychological principle

of attention, whereas Baddeley and Hitch were influenced by short-term verbal memory [5].

Nevertheless, Baddeley recognises: “[I]n practice, Cowan and I tend to agree with each other

on most aspects (…) despite using very different theoretical metaphors” [5]. I will henceforth

base the discussion of memory on the most used model of Baddeley and Hitch.

Appendix A1: Multimedia Learning 5

2.3. Attention and awareness

Experts are better at what they do because they have ways to diminish the cognitive load

needed in order to execute a task or engage in problem solving. Previous experience delivered

them schemas that enable them to depend more on LTM, thus freeing up WM resources for

other tasks [12: 282]. Increasing one’s level of expertise in a domain is a major means of

reducing WM load [14]. However, at the downside, one has a decreased situation awareness.

Situation awareness can be described as “being aware of and understanding both the current

situation and the way in which it is evolving, such that appropriate decisions can be made

actions taken” [12: 280]. Loss of situation awareness due to over reliance on poor, incorrect or

inappropriate schemas, generally increases the amount of errors made [12: 282].

2.4. Conclusion: how do humans understand?

A conclusion cannot be put as indisputable as might be expected from the evidence above: the

social sciences have not come up with a conclusive account yet. Nevertheless, we do know that

experience plays a major role in any knowledge-related activity. At the basis of experience lies

the attainment of information and the appropriate organisation for simple retrieval. Believed

is that the organisation and integration phases (described below) account for human

understanding of problems and enables them to retrieve suitable schemas to apply when

encountering new situations [15]. Understanding occurs as a result of selecting the right

information and combining it with apt existing knowledge [13].

Appendix A1: Multimedia Learning 6

3. Cognitive theory of multimedia learning

At the basis of the cognitive theory of multimedia learning stands the idea that the design of

multimedia messages should be consistent with the way people process information. This

‘way’ is based upon three principles of the cognitive science:

1. Dual-Channel assumption;

2. Limited Capacity assumption;

3. Active Learning assumption.

In short, the Dual-Channel assumption is the separation of channels for processing visual and

auditory information; the Limited Capacity assumption assesses the limitation on the amount

of information humans can process in a channel at a time; and the Active Learning assumption

refers to the idea that humans need to construct knowledge from presented material rather

than just to absorb it.

The integration of verbal and pictorial models is crucial in successful multimedia learning.

This can be equated with the Active Learning-assumption and could be subdivided into 3

moments:

1. Selecting;

2. Organising;

3. Integrating.

Figure 3: The Cognitive Model for Multimedia Learning [15: 61]

Each of the annotated arrows in figure 3 is linked to the mentioned processing stages.

Information enters the pathway through the eyes or ears in the sensory memory, and

subsequently the first stage of learning/understanding commences: first, one selects interesting

information out of all presented stimuli. Second, the learner constructs separated verbal- and

Appendix A1: Multimedia Learning 7

pictorial models by creating connections between the obtained verbal elements and between

the obtained pictorial elements. Last, the models built are integrated into one mental model.

As described above, learning requires cognitive processing and hence induces cognitive load.

Three kinds of cognitive load are to be discerned:

1. Extraneous Processing;

2. Essential Processing;

3. Generative Processing.

The first type encloses cognitive processing that does not serve the instructional goal. Essential

Processing is required to represent the essential material in working memory and Generative

Processing is required to create a deeper understanding of the presented materials. In order to

ameliorate the process of selecting, organising and integrating, instructional designers need to

reduce extraneous processing, manage essential processing and foster generative processing.

All principles described in section 4 will serve one or more of these goals.

4. Principles

1. Coherence

People learn better when extraneous information is excluded rather than included. This works

because learners are actively trying to make sense of the presented material and adding

extraneous information gets in the way of this structure building process. The implications of

this principle for multimedia design are clear: do not add extraneous words or pictures in a

multimedia presentation. Needed elaboration should only be presented after the learner has

constructed a coherent mental representation of the concise cause-and-effect system.

2. Signaling

People learn better when the essential material is highlighted. The signals are intended to

guide the learner towards essential material and to help the learner organise this information

into a coherent structure. Evidence for the signaling principle is promising but still

preliminary only shows a medium effect. Signals should be used sparingly, with a maximum of

1 or 2 per paragraph. Nevertheless, current research only provides evidence for verbal

signaling; not for visual signaling.

Appendix A1: Multimedia Learning 8

3. Redundancy

People learn better from graphics and narration than from graphics, narration and written

text. This principle builds on the idea that concurrently using these media induces cognitive

overload: people try to compare all incoming information streams and hence fail to retain

adequate cognitive resources to integrate all information.

Implications are clear: do not add concurrent written text to narration and graphics. However,

when the redundant text consists of only a few words, the effect of this principle vanishes.

Moreover, learning is improved when the narration is presented first and written and pictorial

materials afterwards.

4. Spatial Contiguity

People learn better when corresponding information is presented near rather than separated

far from each other. This principle builds on the idea that presenting corresponding

information close to each other reduces the need for visual search. The learner is then better

able to hold the information in his WM, hence retaining cognitive capacity that can be used

to integrate information. The spatial contiguity principle works best when …

1. … the learner is not familiar with presented information.

2. … the diagrams need words to be understood.

3. … the material is complex.

5. Temporal Contiguity

People learn better when corresponding words and pictures are presented simultaneously

rather than successively. When both media are presented concurrently, the learner is better

able to hold presentations of both media in his WM, hence improving their ability to build

mental connections between the verbal- and pictorial representations.

6. Segmenting

People learn better when the information is presented in user-paced segments than in a

continuous stream. This will allow the user to complete each step in the process of

understanding, from selection to integration at their own pace. Segments should be

meaningful and have to serve a clear sub goal.

Appendix A1: Multimedia Learning 9

7. Pre-training

People learn more deeply from a multimedia message when they know the names and

characteristics of the main concepts. People then have the opportunity to build the

component model first and subsequently a causal model. A component model consists of the

name and behaviour of each component; the causal model consists of causal chains between

those components. This principle works because these two essential processes in learning are

divided and presented successively. Ensuring that learners possess appropriate knowledge

beforehand helps to prevent cognitive overload in essential processing.

8. Modality

People learn more deeply from spoken text and pictures than from printed text and pictures.

This principle positively affects learning by off-loading the visual channel when text is

communicated via the verbal channel. The modality effect applies the strongest when

understanding is required rather than mere retention.

On the downside, this principle may not apply when people experience difficulty in finding

corresponding diagram-parts to the narrated text, but signaling might be a solution to this.

Also, printed text may be favoured over narration when using many jargon terms, when the

learners are non-native speakers, hearing-impaired or when the lesson contains hard to

pronounce words and symbols.

9. Multimedia

People learn better from pictures and words than from words alone. Words and pictures are 2

qualitatively different systems for the representation of knowledge. The act of building

connections between those mental models is an important step in conceptual understanding,

thus fostering generative processing.

Complementary research on the multimedia principle is research on graphic advance organisers.

They usually consist of graphics and text and foster understanding, especially by priming prior

knowledge that can be integrated into the incoming message.

Appendix A1: Multimedia Learning 10

10. Personalisation

People learn better when words are presented in a conversational manner rather than in a

formal style. People try harder to understand what the author is saying when they perceive as

if the author is talking with them. Also, people tend to understand information better when

the narrating voice is human rather than mechanical, especially when the narrator is similar to

the learner self in terms of gender, race, ethnicity and emotional state. However, more

research is needed to establish guidelines on how to add personalisation without overdoing it.

4.1. General boundary conditions

All of these principles require further research to find out more about their applicability. In

general, the principles described above have the following boundaries:

1. They apply best to low-skilled and low-experienced learners. Sometimes they even

invoke what is called the Expertise Reversal Effect;

2. The presentation of information is fast-paced rather than low-paced or user-paced.

High-knowledge learners may be able to create pictorial representations by themselves,

therefore being hindered by integration of pictures and text: high-knowledge learners learn

best using pictorial messages only. More information on this Expertise Reversal Effect can be

found in section 5.2.2.

The second boundary condition can be explained by the effects of cognitive overload. When

the presentation of information is rather fast-paced, the learner may not be able to process all

necessary material and integrate it into one mental model. User-paced presentations enable

the learner to finish a complete sequence of selecting, organising and integrating before

moving on to the next segment.

Appendix A1: Multimedia Learning 11

5. Implications for SADs

5.1. A change of paradigm

The implications of these principles for Software Architecture Documentation are manifold.

First, it is clear that a paradigm shift from the information-delivery view1 to the knowledge-

construction view is required in order to see the problems and their solutions: it is not only the

completeness, style and rigor of design documents that results in improved communication,

but clearly the way it is tried to convey as well. The designers have to think about how

developers extract meaning from their documents (psychophysics), what people understand

from it (cognition), and how it is imbued with meaning (semiotics) [10]. In order for humans

to understand and use information to solve problems and make good programming decisions,

they need at least a high-quality mental model which can only be built when the presentation

of information allows for the construction of such a rich model.

The creation of a rich mental model takes effort and produces understanding of the system at

hand: hence, it would be practical to find a way of storing that information into generally

accessible media. Almost automatically, this leads us back to SADs: while understanding –

schema construction and subsequent schemas – is subjective2, one could still try to fit

documentation to an average schema. Furthermore, if documentation facilitates easy storage –

by better tooling – and simple retrieval – by applying the principles of Multimedia instruction

– developers might be more inclined to use it as a vehicle of useful and up-to-date

information about the system.

5.2. Related research

5.2.1. Diagrams

Related research on comprehension of UML class diagrams has been performed with the use

of an eye-tracker [22]. Yusuf et al. found that, compared to novices, experts tend to make more

use of stereotype information as colouring and textual annotations, and use the layout to

1 Within the information-delivery view, humans are seen as single-channel, unlimited capacity, passive-

processing systems [15: 61].

2 Note the difference between information and knowledge: even a record of a mental model does not consist of

knowledge, as that is only something that can reside in someone’s head. A written down mental model merely

consists of the components and behaviour, and the connections in between them.

Appendix A1: Multimedia Learning 12

explore and navigate through the class diagrams. Specifically, they state that experts have a

tendency to navigate from the centre to the edges. Novices on the other hand, read the diagram

top-down and left-to-right, without taking into account any of those signals. Other research

has shown that advanced learners may be able to immediately see the higher-level structures in

material while novices could only see random low-level components [13]. This indicates that

experienced individuals tend to use a top-down approach, grouping problems based on their

underlying structure, while novices use bottom-up approaches and hence group sets of

problems based on surface features [16] and references therein].

Other research on model comprehension came up with the conclusion that less intuitive

notations lead to improved error detection [19]. Purchase et al. ascribe this finding to the idea

that their participants might be less at ease with an unintuitive notation, hence increasing

diligence in seeking for mistakes. Hadar and Leron draw a matching conclusion from their

research: “Intuition is a powerful tool, which helps us navigate successfully through most

everyday tasks. However, it may at times get in the way of more formal processes.” [11].

Cherubini et al. did some research on the extend to which drawings are used [8]. They found

that most drawings were informal and transient (i.e. they were lost after a meeting finished, so

they had no later value) and that they were mostly used to increase understanding, to design

and to communicate with others. In their results, the size of a box sometimes intuitively

encoded the importance of the entity it represented. Also, relationships were indicated with

arrows (instead of arrowless lines in UML), and related components were drawn together as a

group (an example of the Spatial Contiguity principle).

5.2.2. Cognitive psychology

Research closely related to the cognitive theory of multimedia learning, was carried out by

Butcher [6]. Her investigation upon the potential effects of different diagram representations

resulted in a differentiation between levels of detail: although more abstract diagrams are

usually more difficult to understand, they supported learners to generate more integration

inferences. Moreover, those inferences are more correct as well. Participants using diagrams

engage in more useful comprehension processes more frequently. Furthermore, she states that

a reduction of a diagram’s representational complexity (i.e. application of the Coherence

principle) in the service of highlighting structural relationships support understanding. In

another recent study by Butcher, she investigated upon the effects of interactive diagrams in

learning [7]. The outcomes speak volumes: diagram interaction resulted in even better transfer

Appendix A1: Multimedia Learning 13

performance. Additionally, an increased amount of deep cognitive processes like self-

explanations was invoked.

Paas et al. have shed some light upon the cognitive load aspect [18]. In their search for

literature about cognitive load, they found astounding amounts of literature that supports the

main hypothesis behind the cognitive theory of Multimedia Learning [15]: “Differences in

effectiveness between instructional formats are largely based upon differences in memory

load” [18] and references therein]. Furthermore: “[P]erformance has been shown to degrade

by either underload or overload”.

Corresponding research by Kalyuga et al. has been done upon the Expertise Reversal Effect

and knowledge elaboration [13, 14]. They identified the negative consequences of

instructional guidance – like the principles described in section 4 – and identified a cause.

While instructional guidance for novices acts as a substitute for missing schemas from LTM

and as a means of constructing new schemas, for experts it only interferes with their existing

schemas. Experts have a rich collection of different schemas that could readily be applied to a

situation. Overlap between the pre-existent schemas and provided instructional guidance will

induce cross-referencing between the two. Like the effects of improper application of the

Redundancy principle, this extra process might cause a cognitive overload and hence thwart

learning [14].

5.2.3. Object-Oriented Development

Research about the cognitive consequences of Object-Oriented Development (OOD) on

problem understanding has been carried out by Rosson and Alpert [21]. They suggest that

“[t]he problem understanding achieved must be one whose structure suggests a solution plan”

and indicate that a design solution that “can be built on top of existing structures in memory

(…) will be easier to maintain”. This is assessed by the great benefit OOD brought: “Perhaps

the greatest strength of an object-oriented approach to development is that it offers a

mechanism that captures a model of the real world.” [21] and references therein]. More

information about OOD can be found in Appendix A2.

Appendix A1: Multimedia Learning 14

5.3. Practical implications

The combination of empirical research in software engineering and a theoretical framework –

which is based on empirical work as well, for that matter – of cognitive psychology constitutes

a strong fundament upon which to build. Several guidelines can be constructed:

• Research on diagrams showed that emphasising crucial elements might help

developers in assessing their importance. This could be achieved using the Signaling

principle, by increasing the size relatively to importance or by using colours to assign

importance [8], and the Coherence principle to strip the diagrams from extraneous

materials [6].

• A central placement of important elements seems to be recommended.

• The Spatial contiguity principle should be used to group similar or highly coupled

elements [15].

• The Segmenting or Pre-training principles should be applied in order to separate the

essential processes of understanding into multiple sessions at user pace: first obtain the

names and behaviours of components separately and subsequently their relations [15].

This is also partly supported by Butcher, who recognises that visual summaries –

diagrams – may prompt learners to integrate information and provide cues for recall

[6].

• Following the boundary condition of the Redundancy principle and the idea behind the

Pre-training principle, the offering of a spoken overview of the system first and

subsequently the written documentation and text increases understanding. This could

be pushed into practice by design exploration meetings with designer and developers

together, applying a literal version of the Personalisation principle.

• Appropriately measuring levels of knowledge per developer in real time is important to

effectively balance the executive external guidance [13]. Another, perhaps easier

realisation might be a tool with an adaptive Level of Detail (LoD). Supporting

different LoDs enables a developer to adjust the documentation to his needs. For

novices, then even a record of common ground3 could be implemented at the lowest

LoD.

3 Common ground refers to the knowledge that different people have in common and that they are aware of the

fact they do. Common ground is easily established when collocated, because developers then not only share

cultural and linguistic backgrounds, but then there also exists better awareness about the microcontext – what

one’s doing, what remains to be done et cetera [17]. Common ground is also known as transactive memory.

Appendix A1: Multimedia Learning 15

• Consistency in SADs might be appointed using dynamic signaling: when a developer

selects a component in the diagram, accompanying text should be selected as well.

This eases the integration-stage and as a result facilitates consistency checks by the

developer. In addition, while the designer should introduce the relations between

documents explicitly, he is forced to check consistency as well.

• Apart from highlighting relations across documents, relations and dependencies

within one document should be dynamically signalled as well: with the selection of

one component, all related components should become highlighted to increase

visibility of dependencies.

Besides the above mentioned guidelines, it are not only the cognitive advantages that can be

exploited to a further extend. For example, increased formalisation of a graphical language

paves the way for more extensive type checks [10]. More information about this can be found

in Appendix A2.

Of course the list of ideas expounded above is by no means exhaustive. Following research on

cognition and combining it with the domain of software development, much more is to be

gained by the improvement of software architecture documentation.

Appendix A1: Multimedia Learning 16

6. References

[1] BADDELEY, A. Working memory. Life Sciences 321 (1998), 167–173.

[2] BADDELEY, A. The episodic buffer: a new component of working memory? Trends in

Cognitive Science 4, 11 (November 2000), 417–423.

[3] BADDELEY, A. D. Is working memory still working? European Psychology 7, 2nd (June

2002), 85–97.

[4] BADDELEY, A. D. The Essential Handbook of Memory Disorders for Clinicians. John

Wiley and Sons, 2004.

[5] BADDELEY, A. D. Working memory. Current Biology 20, 4 (February 2010), 136–140.

[6] BUTCHER, K. R. Learning from text with diagrams: Promoting mental model

development and inference generation. Journal of Educational Psychology 98, 1 (2006), 182–

197.

[7] BUTCHER, K. R. How diagram interaction supports learning: Evidence from think

alouds during intelligent tutoring. Diagrammatic Representation and Inference (2010), 295–297.

[8] CHERUBINI, M., VENOLIA, G., DELINE, R., AND KO, A. J. Let’s go to the

whiteboard: how and why software developers use drawings. In Proceedings of the SIGCHI

conference on Human factors in computing systems (April-May 2007), pp. 557–566.

[9] COWAN, N. Working Memory Capacity. New York: Psychology Press, 2005.

[10] DUKE, D. J., DUCE, D. A., AND HERMAN, I. Do you see what i mean? IEEE

Computer Graphics and Applications 25, 3 (May/June 2005), 6–9.

[11] HADAR, I., AND LERON, U. How intuitive is object-oriented design? Communications

of the ACM 51, 5 (May 2008), 41–46.

[12] JOHNSON, A., AND PROCTOR, R. W. Attention: Theory and Practice. SAGE

publications, 2004.

[13] KALYUGA, S. Knowledge elaboration: A cognitive load perspective. Learning and

Instruction 19 (2009), 402–410.

[14] KALYUGA, S., AYRES, P., CHANDLER, P., AND SWELLER, J. The expertise reversal

effect. Educational Psychologist 38, 1 (2003), 23–31.

[15] MAYER, R. E. Multimedia Learning, 2nd ed. Cambridge University Press, 2009.

[16] MORRIS, M. G., SPEIER, C., AND HOFFER, J. A. An examination of procedural and

object-oriented systems analysis methods: Does prior experience help or hinder performance?

Decision Sciences 30, 1 (Winter 1999), 107–136.

Appendix A1: Multimedia Learning 17

[17] OLSON, G. M., AND OLSON, J. S. Distance matters. Human-Computer Interaction 15

(2000), 139–178.

[18] PAAS, F., TUOVINEN, J. E., TABBERS, H., AND VAN GERVEN, P. W. M. Cognitive

load measurement as a means to advance cognitive load theory. Educational Psychologist 38, 1

(2003), 63–71.

[19] PURCHASE, H. C., COLPOYS, L., MCGILL, M., CARRINGTON, D., AND BRITTON, C.

Uml class diagram syntax: an empirical study of comprehension. In APVis ’01: Proceedings of

the 2001 Asia-Pacific symposium on Information visualisation (Darlinghurst, Australia,

Australia, 2001), vol. 9, Australian Computer Society, Inc., pp. 113–120.

[20] ROBILLARD, P. N. The role of knowledge in software development. Communications of

the ACM 42, 1 (January 1999), 87–92.

[21] ROSSON, M. B., AND ALPERT, S. R. The cognitive consequences of object-oriented

design. Human-Computer Interaction 5 (1990), 345–379.

[22] YUSUF, S., KAGDI, H., AND MALETIC, J. I. Assessing the comprehension of uml class

diagrams via eye tracking. International Conference on Program Comprehension 15 (June 2007),

113–122.

Appendix A2: Object-Oriented Development 1

Appendix A2

Object-Oriented Development

Overview

This appendix constitutes an introduction to

Object-Oriented Development (OOD). As

it is the method used in our experiments,

some basic knowledge about its history,

features, alleged merits and complexities

helps getting the bigger picture. Also,

solutions to mitigate some of the inherent

complexities will be proposed.

1. Introduction

1.1. What is Object-Oriented Development? Its characteristics.

There exist five types of programming styles that are fundamentally different from each other

[2: 37]:

- Procedure-oriented (which is structured around algorithms)

- Object-oriented (uses classes and objects)

- Logic-oriented (often expressed using predicate calculus)

- Rule-oriented (with the use of mere If-then clauses)

- Constraint-oriented (based upon invariant relationships)

The orientation under investigation here, Object-Oriented Development (OOD), has several

distinguishing properties and concepts that make it a unique approach software development

[1]:

- Inheritance: A mechanism that allows the data and behaviour of one class to be included

in or used as the basis for another class.

- Object: An individual, identifiable item, either real or abstract, which contains data

about itself and descriptions of its manipulations of the data. It has a state, behavior,

and identity [2: 81].

- Class: A description of the organisation and actions shared by one or more similar

objects.

Appendix A2: Object-Oriented Development 2

- Encapsulation: A technique for designing classes and objects that restricts access to the

data and behaviour by defining a limited set of messages that an object of that class can

receive.

- Method: A way to access, set or manipulate an object’s information.

- Message Passing: The process by which an object sends data to another object or asks

the other object to invoke a method.

- Polymorphism: The ability of different classes to respond to the same message and each

implement the method.

- Abstraction: The act of creating classes to simplify aspects of reality using distinctions

inherent to the problem.

Although the list of concepts above is by no means the only one constructed, Armstrong et al.

claim they did capture all the important facets of OOD. Despite the wide usage of OO-

approaches, there still is both a lack of consensus on its fundamental concepts and the

understanding how they can be classified to characterise the OO approach. This is found very

confusing, especially for the developer trying to master the OO approach [1].

Because the decomposition of the problem space is based upon objects and not algorithms, this

is called an object-oriented approach or decomposition [2: 16]. Hence, central to OOD is the

metaphor of communicating objects [22].

Appendix A2: Object-Oriented Development 3

Figure 1: Properties of an object: State, Behaviour and Identity [2]

A state of an object encompasses the static properties and dynamic values of it. The behaviour

is how an object acts and reacts on other objects through Message Passing. It is a way of

manipulating the structure of itself or other objects: a state changes occur as a result of

behaviour [1]. The identity is the property that distinguishes an object from all other objects

[2: 82-89].

Some have called the OO-approaches a new paradigm for software development [19 and

references therein]. It is different from other types of programming languages: the focus is on

what rather than on how. Especially compared to Procedure-oriented development, OOD

starts off more high level with structure, filling in the technical details at later stages [22]. This

is fully compliant with the recognition of Brooks that software entities should be grown instead

of built. According to him, systems should first be made to run and subsequently be fleshed out

[3].

Appendix A2: Object-Oriented Development 4

2. The evolution of Object-Oriented Development

2.1. Its introduction

OO was introduced in the late 60s with Simula 67 [1, 2: 34]. The propagation of this new

approach took form due to several events back then [2: 33 and references therein]:

1. Advances in computer architecture starting over 35 years ago with the development of

hardware support for operating system concepts;

2. Advances in programming languages, as demonstrated with Simula, Smalltalk, CLU,

and Ada;

3. Advances in programming methodology, including modularization and Information

Hiding [20];

4. Advances in database models (through the Entity-Relationship approach);

5. Research in Artificial Intelligence.

2.2. Alleged merits

The intention with the creation of the Object-Oriented paradigm was to deal with the ever-

increasing complexity of software systems. The idea was to exploit the human mind’s natural

capabilities for thinking about the world in terms of objects and actions [11], and indeed,

research has shown that novices tend to prefer OO-techniques over Procedural techniques

[19]. Although all subjects in this study by Morris et al. shown a higher cognitive load when

using OO-techniques, it seems that OO-techniques are simpler because they fit the cognitive

functions of humans to a greater extend [2: 74-76]:

- Because a design schema represents a relatively stable structure comparable to a

cognitive schema in LTM1, it serves as an organising function, supporting storage and

retrieval of intermediate solutions. If a design solution can be built on top of such

existing structures, it will be easier to maintain as it is further defined and tested. Also,

it will be more robust when a design becomes more complex [22 and references

therein].

1
 A cognitive schema or knowledge construct consists of organised and structured information in LTM. In

addition, it is linked to other existing schemas residing in LTM, forming some sort of semantic network.

Appendix A2: Object-Oriented Development 5

- OO-designing allows a designer to generate an initial design model in the context of

the problem itself, rather than requiring a mapping onto computer science constructs. It

supports a better integration of problem and solution: designers can simply devote more

attention to problem understanding rather than technical details [22]. For example,

objects often correspond to “real world” items from the problem domain instead of

prescribed constructs [19].

- Objects can represent separable chunks which simplifies the mental representation [22,

20]. It helps to subdivide a big system into smaller parts which are simple enough to be

understood [7].

Besides these cognitive advantages, reusability of design increases development pace, quality

and flexibility and hence decreases cost [2: 74-76, 22, 20].

2.3. Complexities

2.3.1. … of software development in general

Software entities are recognised to be far more complex for their size than perhaps any other

human construct: no two parts are alike. Furthermore, scaling up a software entity necessarily

results in an increase of the number of distinct elements. Greater project sizes come with

enlarged difficulty of communication which is a part of the complexity of software

development as well [14, 3]. Much complexity comes from conformation to other interfaces.

Nevertheless, the biggest hindrance is the absence good metaphors for software due to its non-

spatial nature: the structures of software remain inherently unvisualisable, hence impeding the

process of design in one mind and communication of it among minds. Unfortunately, these

complexities are regarded as essential rather than accidental: the essence of the software are its

complexities (such as communication and integration between different components) [3].

2.3.2. … of Object-Oriented Development

Developers with previous experience in Procedural development encounter impediments of

OOD: a designer’s past experience unavoidably influences the ease of generating object-based

problem representations [22]. A stumbling block to obtaining the benefits of OO is learning

the approach, regardless any previous experience [19]. In research by Morris et al. both novice

and subjects experienced with Procedural development methods demonstrate higher Subjective

Mental Workload (SMW) when using OO [19]. Nevertheless, novices prefer OO-techniques

Appendix A2: Object-Oriented Development 6

over Procedural techniques and find these techniques easier as compared to users experienced

with Procedural methods [19].

The construction of a design solution based on structures in LTM eases its maintenance and

improves robustness. Besides, our cognitive system certainly makes extensive use of objects and

categories in real life [11]. Nevertheless, individuals may construct invalid analogies, using their

prior experience inappropriately [19], or may not even possess the relevant design schemas [22

and references therein]. Moreover, while objects, classes and inheritance certainly have an

intuitive flavor, their formal version in OOD differs in important ways from their intuitive

origins [11].

2.3.3. …of communicating a design

In addition to the complexities of the design and development itself, there is the difficulty of

communicating a design with all stakeholders. Such communication is of critical importance as

it has considerable influence on the success of a development project [16, 12, 13, 17]: it

provides the only possibility that the separate task groups will be able to consolidate their

efforts into a unified system [7].

Designs are subdue to interpretation: both the designer and the programmer need to

understand the notational convention and use it accordingly in order to transfer knowledge

effectively. Drawings might be the standard way of communication in other engineering areas,

in computer science they are not: code is king [18]. This results in a tendency to adopt

informal, ad hoc notations [5]. However, for a project to be successful, common

representational conventions and terminology need to be established to facilitate effective

communication [16, 8].

Both formal and informal interpersonal communication is valuable in software development

[17]. However, in the light of GSD, there is a lack of informal and unplanned “coffee machine

talk” [21], which increases the burden on the formal methods of communication like (design-)

documentation. Because the nature of software requirements and design is to be unstable – all

successful software gets changed [3] – documents tend to get out-of-date easily [16, 4, 5, 15,

14, 8].

Appendix A2: Object-Oriented Development 7

3. Applying Object-Oriented Development

Object-Oriented Development has several benefits over the traditional Procedural

Development. However, software development remains to be a creative task in which the

relative ease of solving a problem will depend on how successful the solver has been in

representing critical features of the task environment in his problem space [19 and references

therein, 3]. As Object-Oriented programming can only remove accidental complexities, it will

not be the “silver bullet” to the ever increasing complexity in the software venture [3]. Evidence

in the previous section suggests that the OOD paradigm could be advantageous but should not

merely be applied. There exist some marginalia.

3.1. Notation

First, although the idea to use objects and actions in a development paradigm seems fruitful,

the slight modifications of the basic elements of the paradigm (like objects, classes and

inheritance) as compared to the intuitive application appears detrimental. Some gain could be

obtained using minor adjustments in notation – like UML.

In addition, at least a modest form of formality is advisable here: because software architecture

documents (SAD) are used in collaborative activities (i.e. software development), a shared

graphic vocabulary and hence shared meaning and usage of its components is required to come

to the best results. Furthermore, formalisation eases automated checks like type-checking [10].

3.2. Style

Second, apart from notational modifications, modeling style could be adjusted as well. As

mentioned before, designs are subdue to interpretation: differences in intention of the designer

and the interpretation of the programmer result in a gap between model and code which

probably leads to problems at integration and may ultimately result in a failed software project.

In order to decrease the risk of misunderstandings and ambiguities in communicating a design,

principles coined by research in cognitive psychology could be applied. More information

about these principles and its implications for software development can be found in Appendix

A1.

Appendix A2: Object-Oriented Development 8

3.3. Ease of documenting

Third, tooling should be employed in order to elicit documentation of both explicit and implicit

design decisions. “Lots of design information is kept in people’s heads”, thus never written

down nor shared amongst people [18]. For example, designers mostly use free-form notations

with ad hoc semantics to capture ideas while brainstorming, while a formal modeling language

like UML was only used at a later stage. Tools supporting software design therefore should

support different levels of formality, which is currently not the case [5, 9]. In addition, as

software development is rarely a fully predictable undertaking, it should accomodate easy

changes and means to make those changes noticed by the developers involved as well.

3.4. Using design documentation

Fourth, the cost of using design documents should be reduced: an increased likelihood that the

right document can be found, better capture of informal, transient designs, and a decrease in

necessary effort to keep them up-to-date should be somehow implemented in new tools [18].

If documents are always up-to-date and easy to find, they could become a way of

communication [18, 6].

4. Conclusion

Intuition is a powerful tool, which helps us navigate successfully through most everyday tasks,

but may get in the way of more formal processes like the development of software [11]. OOD

made a step into a direction where the power of our built in system for using objects and

actions is exploited. However, the solutions raised in the sections above are just appealing to

the surface-features of the apparent difficulties. More research is needed on why it does not

always alleviate the problems encountered, and what could be done to improve and ease the

processes intrinsic to software development. Where Brooks thought that “[t]he most important

single effort we can amount to is to develop ways to grow great designers”, we think that there

is much to be gained from improving the development methods and means itself as well [3].

Appendix A2: Object-Oriented Development 9

5. References

[1] ARMSTRONG, D. J. The quarks of object-oriented development. Communications of the

ACM 49, 2 (February 2006), 123–128.

[2] BOOCH, G. Object Oriented Analysis and Design. With applications, 2nd ed. Addison

Wesley Longman, 1994.

[3] BROOKS, F. P. No silver bullet: Essence and accidents of software engineering. IEEE

Computer 20, 4 (1987), 10–19.

[4] CATALDO, M., BASS, M., HERBSLEB, J. D., AND BAS, L. On coordination mechanisms

in global software development. In International Conference on Global Software Engineering

(2007), pp. 71–80.

[5] CHERUBINI, M., VENOLIA, G., DELINE, R., AND KO, A. J. Let’s go to the whiteboard:

how and why software developers use drawings. In Proceedings of the SIGCHI conference on

Human factors in computing systems (April-May 2007), pp. 557–566.

[6] CHISAN, J., AND DAMIAN, D. E. Towards a model of awareness support of software

development. In The 3rd International Workshop on Global Software Engineering (May 2004),

pp. 28–33.

[7] CONWAY, M. E. How do committees invent? Datamation 14, 1 (April 1968), 28–31.

[8] CURTIS, B., KRASNER, H., AND ISCOE, N. A field study of the software design process

for large systems. Communications of the ACM 31, 11 (November 1988), 1268–1287.

[9] DEKEL, U. Supporting distributed software design meetings: what can we learn from

co-located meetings? In Proceedings of the 2005 workshop on Human and social factors of software

engineering (2005), pp. 1–17.

[10] DUKE, D. J., DUCE, D. A., AND HERMAN, I. Do you see what i mean? IEEE Computer

Graphics and Applications 25, 3 (May/June 2005), 6–9.

[11] HADAR, I., AND LERON, U. How intuitive is object-oriented design? Communications of

the ACM 51, 5 (May 2008), 41–46.

[12] HERBSLEB, J. D. Global software engineering: The future of socio-technical

coordination. In FOSE’07 (2007).

[13] HERBSLEB, J. D., AND GRINTER, R. E. Splitting the organization and integrating the

code: Conway’s law revisited. In Proceedings of the 21st International Conference on Software

Engineering (1999), pp. 85–95.

Appendix A2: Object-Oriented Development 10

[14] HERBSLEB, J. D., AND MOCKUS, A. An empirical study of speed and communication

in globally distributed software development. IEEE transactions on Software Engineering 29, 6

(June 2003), 481–494.

[15] HERBSLEB, J. D., PAULISH, D. J., AND BASS, M. Global software development at

siemens: experience from nine projects. In Proceedings of the 27th international conference on

Software engineering (May 2005), pp. 524–533.

[16] KOTLARSKY, J., VAN FENEMA, P. C., AND WILLCOCKS, L. P. Developing a

knowledge-based perspective on coordination: the case of global software projects. Information

and Management 45 (2008), 96–108.

[17] KRAUT, R. E., AND STREETER, L. A. Coordination in software development.

Communications of the ACM 38, 3 (March 1995), 69–81.

[18] LATOZA, T. D., VENOLIA, G., AND DELINE, R. Maintaining mental models: A study

of developer work habits. In International Conference on Software Engineering (May 2006),

pp. 492–501.

[19] MORRIS, M. G., SPEIER, C., AND HOFFER, J. A. An examination of procedural and

object-oriented systems analysis methods: Does prior experience help or hinder performance?

Decision Sciences 30, 1 (Winter 1999), 107–136.

[20] PARNAS, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15, 12 (December 1972), 1053–1058.

[21] PERRY, D. E., STAUDENMAYER, N. A., AND VOTTA, L. G. People, organizations and

process improvement. IEEE 11, 11 (July/August 1994), 36–45.

[22] ROSSON, M. B., AND ALPERT, S. R. The cognitive consequences of object-oriented

design. Human-Computer Interaction 5 (1990), 345–379.

Appendix A3: Global Software Development

1

Appendix A3

Global Software Development

Overview

This appendix is an introduction in what

Global Software Development (GSD) is,

why we use it and what the problems are

with geographically separated development

locations. Next, we will sketch a future of

GSD with some best practices and possible

technologies that might become available.

Finally, we come up with the implications

that GSD has for Software Architecture

Documents.

1. Introduction

The process of globalisation in parts of the economy

other than software development began back in the early

19th century. It is therefore a very modern phenomenon

with many unknown aspects [33]. The globalisation of

software development started off around the 60s and 70s

[29], but began its real sprint only about ten years ago

[14]. Unfortunately, most of the incentives for both outsourcing1 and offshoring2 are still not

well founded and the understanding of the effects it produces resides therefore still in its

infancy: practice appears to be ahead of research as yet [30, 1]. Both successes and failures are

experienced with GSD, but not very much is known about the reasons for this contrast [38,

32]. Despite this, outsourcing was incorporated in many organisational strategic plans, in both

large firms with mature IT departments [29] and small to medium sized companies [5]. As a

result, software development is becoming a multi-site and multicultural undertaking, impacting

1 Outsoucing is the transferral of certain parts of software development to third-party service providers. I will use

the term outsourcing instead of offshored outsourcing.
2 A company can offshore when it has multiple departments in different countries. Contrary to outsourcing, this

kind of displaced development is still in-house. I will use the term offshoring instead of offshored insourcing.

Both offshored outsourcing and offshored insourcing are handled the same in this appendix, since the two are

equivalent for most pragmatic purposes [2].

Appendix A3: Global Software Development

2

not only marketing and distribution, but also the way products are conceived, designed,

constructed and tested [38] and references therein].

2. Current state of practice and research

The search for competitive advantages often forces companies to look abroad for cost

reduction, quality enhancement, flexibility increase, risk dilution, and productivity

improvement [39]. Globally distributed software development has many potential benefits but

brings lots of drawbacks as well [4, 11, 38, 3]. Moreover, the assumed benefits that drive

companies to go global turn out to be not that overwhelming either [14]. People simply

suppose the current technology enables them to effortlessly collaborate over distance [32].

2.1. Advantages?

The most frequently cited advantage of GSD is that of the reduced development costs [30, 14].

By moving parts of the development to lower waged countries, the same work could be done

with a smaller investment. While the obtained savings seem like a large benefit at first, there

are reasons to believe that GSD introduces complexities that corrode these initial cost savings

[14]. Enlarged impediments in communication and structural congruence3 lead to increased

complexity in control, coordination, and elongated response times [14, 26, 11, 22, 21]

moderating at least the development speed: conveying what to build and how to work together

is considered very difficult [24].

This last consequence mitigates another assumed benefit: reduced development duration induced

by leverage of time-zone effectiveness. Because the cost of initiating contact is much higher

when situated at different locations, developers do not try to communicate as frequently as they

would have in collocated environments [21, 16]. Furthermore, the more time-zones crossed,

the less time there is that people are at work the same time. This leads to increased tension as

all synchronous communication should take place in a smaller time frame [24, 32]. But most

3 Structural congruence refers to the match between the organisational structure and the ability of that organisation

to carry out a task. The organisational structure is influenced, among several factors, by the interdependencies

amongst tasks. As reseach by Cataldo et al. shows, structural congruence is associated with shorter development

times [11].

Appendix A3: Global Software Development

3

important for this mythical benefit: cycle times increase, even if messages are answered

promptly [21]. Hence, different companies tend to shift their working hours in order to

maximise overlap, providing more time for synchronous communication [14, 8]. However, it

seems that software quality does not have to be affected by geographical separation of teams

[32], if only the developers take their own responsibility of staying in close contact with other

sites [4].

Yet another benefit of GSD might be the possibility to subdivide the development work into

modules that can be developed in parallel across multiple sites. While the modularity approach

has proven to be very useful [36], the relationship between product structure and task structure

is not as simple as previously thought [9, 11, 15]. Unfortunately, this model seems to be far

from reality [1] and references therein]: although there are some advantages, companies need

to be wary of the reduced communication between sites, leading to the persistence of incorrect

or conflicting assumptions made, which in its turn can result in problems at the integration

stage [14, 26, 11, 31, 21, 16]. The work should therefore be divided into loosely coupled

modules: long distance dependencies have to be straightforward and unambiguous [32].

Fourth, the access to a large pool of skilled developers would be eased when the company moves to

places with large numbers of experienced developers. Different backgrounds could lead to

increased innovation and sharing of best practices. Unfortunately, serious cultural differences

causing misunderstandings attrite this benefit: because developers have little opportunity to

communicate in an informal ad hoc manner, the building of mutual trust is impaired. Hence

there is little incentive for sharing [41, 14, 26, 38, 23, 32, 21]. People simply are scared to share

one’s best ideas if they were then to be seen as common instead of unique [32]. Furthermore,

they fear loss of control and jobs when work is outsourced [24, 23, 32].

Last, there is the benefit of a closer proximity to market and customer. Easier ways to

communicate directly with customers could ameliorate the interaction needed in requirements

engineering and subsequent software development. Having employees located proximate to the

market implies that they are closer to the customer on cultural and linguistical grounds [14, 7].

Unfortunately this comes at an expectable expense: having developers with different cultural

backgrounds will introduce the same socio-cultural problems as aforementioned.

Appendix A3: Global Software Development

4

2.1.1. Conclusion

The previous information implies that the benefits of GSD cannot be exploited without

effective mechanisms for information- and knowledge-sharing [41, 25, 23]: distance still

matters [32]. Research indicates that GSD imposes several problems: increased

communication delay and work completion time, both due to a lack of informal

communication and difficulties in finding expertise and knowledge [8] and references therein].

Therefore, the main challenges lie in the complexity of maintaining good communication and

coordination when teams are dispersed [26, 25]. Luckily, there are some ways to lessen the

introduced problems.

Appendix A3: Global Software Development

5

2.2. Communication, coordination and control

The recurring theme in the previous section clearly is communication and the effects of a lack

thereof. Confusions and misunderstandings happen all the time, even with collocated

development [1], but they are exacerbated in GSD because the availability of communication

channels is restricted to less rich forms. Also, the common ground4 between the separately

located developers is less well established [32]. Moreover, geographic differentiation leads to

compartmentalisation5, increasing in-group cohesiveness, ethnocentrism and unwillingness to

trade information, inhibiting cross-site collaboration [40].

The different work groups and companies have different application knowledge and different

technical vocabularies that needs alignment [16]. People construct common ground from

whatever cues they have: the fewer cues one has, the more likely misinterpretations will occur

[32]. For a project to be successful, common representational conventions and terminology

need to be established to facilitate effective communication [26, 16]. However, even with all

emerging communication technologies, face-to-face contact is essential to both overcome and

avoid cultural misunderstandings and enhance the development of trust [24]: distance still

affects how humans interact [32].

Complications in communication with GSD have different appearances and dimensions, such

as a lack of effective documentation, a lack of synchronisation resulting in incompatibilities

when integrating work, cultural differences leading to chronic misunderstanding, the difficulty

of sharing knowledge, and a lack of teamness, resulting in trust issues, conflicting work styles

and a worse likelihood of helping each other out when necessary [26, 20, 25, 22, 38, 23, 31, 21,

27]. The ability to communicate directly, quickly and effectively is greatly impaired with

dispersed software development [21]. However, while effective communication could still take

place, the effort to do so is usually quite large [32]. The question remains whether it is possible

4 Common ground refers to the knowledge that different people have in common and that they are aware of the

fact they do. Common ground is easily established when collocated, because developers then not only share

cultural and linguistic backgrounds, but there is also better awareness about the microcontext – what one’s doing,

what remains to be done et cetera [32]. Common ground is also known as transactive memory.
5 Compartmentalisation is the limiting of information to persons who require it in order to perform their tasks

[42].

Appendix A3: Global Software Development

6

to accomplish the same engagement of trust and teamness at a distance as when collocated

[32].

Communication (and subsequently coordination as well) is of critical importance as it has

considerable influence on the success of a development project [26, 20, 21, 27]: it provides the

only possibility that separate task groups will be able to consolidate their efforts into a unified

system [15]. While developers spend a large proportion of their time communicating [37], a

physical separation of a mere 50 meters would result in the end of all regular communication

[22]. Suggested practices tend to minimise the perceived distance between the desks in all

dimensions: geographical, temporal and cultural [7, 30, 20]. However, the implementation of

these practices repeatedly conflicts with cost saving strategies [30], therefore being economised

often [26].

2.2.1. Communication tools

One of the ways used to create an environment that puts people in virtual proximity is by the

utilisation of tools. Many of the tools used for collocated development – like version control

and change management – lend themselves quite well to GSD [20], and the ongoing

technological progress has come up with several communication tools to alleviate the

remaining problems at minimal cost [38]: improvements in tools allow groups from different

locations and backgrounds to come together as a team [39]. To compensate the lack of

informal and unplanned “coffee machine talk” people would engage into when collocated [37],

new channels for communication were introduced, such as email and instant messaging [10,

38, 31]. Yet, developers still prefer face-to-face communication: using electronic ways to

communicate often results in misinterpreted meaning of the question, and a different level of

detail in the answer than the recipient required [28, 24, 8]. Furthermore, what appeared to be

merely “casual conversations around the water cooler” often served as an important way to

exchange knowledge and information critical to project coordination [23, 21]. Research by

Batra and Herbsleb showed the significance of this type of communication: their participants

were not aware of any need to communicate, leaving the tools introduced for communication

inadequate [2, 21].

As awareness about both the status of development at other sites and the knowing who to

contact is important for the feeling of ‘teamness’ [4, 22, 21] and synchronisation amongst sites

[10], keeping in contact on a close and frequent basis is vital [26, 37, 16]. Simple tools like an

Appendix A3: Global Software Development

7

audio connection and a shared text editor have proven to be insufficient for the job when there

is little common ground; people who have established a lot of common ground can

communicate well, even over such impoverished media [26, 32]. There have been some

attempts to recreate the sense of collocated awareness remotely, but several studies indicate that

this has not been fully successful yet: distance still negatively affects communication [2, 8, 32]

and references therein]. Even in GSD it still is the human element that is critical and

dominant; not the tools. Perhaps we need to look at organisational issues for ways to improve

the development process as well [40, 37, 16].

2.2.2. Improved alignment of technology and processes

It is not solely communication that needs improvement: the distribution of software

development tasks amongst separated development sites is likely to introduce technical

incongruities as well [30, 4, 39, 31, 21]. Sites often differ on issues such as development

environments, change and version management systems, development methodology and

corporate culture [26, 20, 23, 31]: for example, developers’ tool use frequently correlates with

their preference instead of the standard of the organisation [28]. Differences like these lead to a

wide variety of problems such as misunderstandings, management problems and a lack of

awareness about the current status of a project [4, 20], but the greatest problem of all will arise

when entering the integration stage [14, 26, 21], as different work groups might have used

incompatible development methodologies. Processes have proven to evolve eventually, and

because the dispersion of development teams the likelihood that this evolution will develop in a

corresponding manner across sites is very low [21]: shared change management systems, the

preservation of one code branch and frequent builds can help to overcome these challenges

[24].

2.2.3. Reduction of interdependence

Studies have shown that there is an even greater need to communicate when developers are

located separately, causing coordination overhead [3]. However, there is a cost increase to

communicate effectively in GSD [21, 16]. Also, the way and intensity developers apply

communication tools and recommended development methods differs per person and

organisation [9, 28, 22]. Because the conflicting nature of those facts, it might be an idea to

look for ways to reduce the need for inter-site communication [8, 21, 16].

Appendix A3: Global Software Development

8

An ideal arrangement would let the sites operate as independent as possible while providing for

easy, flexible, and effective communication across sites [23]. Previous studies have shown that

people will automatically reorganise work in such a way that they do not have to rely on tight

collaboration with a remote team member, even when this initially was the case [32]. Instead of

integrating the work of all development sites closely, the software development task could be

divided into nearly independent parts [32], diminishing the needs for communication amongst

work groups [28, 21, 16, 15]. By this, one of the advantages of geographic dispersion – a

reduction in dependencies amongst modules resulting in easier change management and

maintenance – is applied to its full extend [36]. This modularisation approach has proven to be

very useful for dividing complex tasks into manageable units [9, 36], but unfortunately it is still

vulnerable to an imperfect foresight and the emergence of unexpected events [1, 35, 22, 21].

Software is constantly subject to change [6]. Many people make the mistake to think that

extensive and long documentation will pave a clear way for the developers, but this is both not

possible and unwanted [5, 16]. Over-engineered documentation only increases interference

when events were wrongly anticipated [21]; only in ideal circumstances no further events would

occur that affect the nature of requirements after conclusion of the elicitation phase6 [13].

Informal communication channels are critical to complement explicit coordination mechanisms

as way to both resolve unclear details in a matter of minutes and create a feeling of trust [41,

19, 21, 27]: most such interactions are less than five minutes long apiece but have a total of 75

minutes each day [37].

The reduction of interdependencies amongst work groups is a noble goal to strive for;

unfortunately, unpredictability of software development projects spoils the game: formal means

of communication often cannot keep up with the changes of requirements, increasing the

needs for informal communication to solve uncertainties and transfer knowledge [12].

6 But that is not completely true either: all successful software gets changed [6].

Appendix A3: Global Software Development

9

2.2.4. Conclusion

Software entities are far more complex for their size than perhaps any other human construct:

no two parts are alike [6]. Because there tend to be more people involved in distributed work

compared to same-site work, there is an increase in coordination difficulty and an unavoidable

need to guide the communication pathways [22]. Greater project sizes come with enlarged

difficulty of communication [22, 6].

The combination of communication tools and proper modularisation could ease the

communication problems encountered in GSD [23]. Unfortunately, that is not all of it: people

still have to be guided to use the equipment in the right way, and to its full extend [9].

Development methods and practices help us to tackle these challenges.

2.3. Development means & methods

Perhaps the need to communicate in an informal manner needs to be acknowledged and other

ways than extensive documenting have to be examined. Rather than devising methods to

minimise communication, a goal should be to improve efficiency interpersonal communication

[27].

Despite the fact that the decrease in practiced communication and increase in needed

communication is contradictory [35, 25], the process of iterative and incremental design7 (IID)

suits GSD extremely well [34] since it actually helps to reduce the problems caused by

distribution. The communication principles of agile have the potential to alleviate the

impediments in coordination and communication [35, 25].

2.3.1. Agile practices

IID being a core practice in agile methodologies [34] and references therein], this is where

agile methods can jump in: agile methods promote frequent communication, continuous

integration and regular builds [35]. Agile methods are characterised by short, iterative cycles of

development driven by product features, periods of reflection and introspection, collaborative

7 As recognised by Brooks in 1987, systems should not be build but grown by incremental development: it should

first be made to run with dummy functionality and then be fleshed out. Morale effects are startling when a

system first runs, even when it does not do anything. Brooks: “I find that teams can grow much more complex

entities in four months that they can build” [6]. IID is the more developed and expanded version of this idea.

Appendix A3: Global Software Development

10

decision making, incorporation of rapid feedback and continuous integration of code changes

into the system under development [25] and references therein]. This leaves several benefits: an

increase in transparency, instant feedback possibilities, flexibility for customers and developers,

and avoidance of ‘big bang’ integration [41, 18, 34].

2.3.2. Documentation in GSD

In general, developers avoid using design documents when possible, preferring code

explorations and face-to-face talks with their team mates to attain understanding of the code

[28, 23]. Unfortunately, the simplicity of strolling to another team broke down into difficulty

with the introduction of GSD; in GSD developers have to document more meticulous: context

and implicit knowledge differs across sites because a less well-founded common ground.

Flexibility and agility are necessary for successful software development, especially in small to

medium sized companies – be it distributed or not [2, 5, 1, 15]. However, documentation is a

very impoverished and slow-paced form of communication [24]. The nature of software

requirements and design is to be unstable; documents in general are not, therefore easily

getting out-of-date [26, 9, 12, 22, 16]. The focus has been for decades on developing structure

in documentation, while the true reasons for which they have been developed were slowly

forgotten [1]. We have to avoid a means-end inversion where documents are made because we

have to, instead of the additional value they were intended to bring [1]. By avoiding to over-

engineer a process description and trusting on the creativity of developers, we can reduce

interference with documentation that anticipated on future events wrongly [21, 25] and

references therein]. The question remains: is there actually even any need documents itself?

The lack of rich communication leaves story cards insufficient because one cannot rely on tacit

knowledge alone; there is a need for supplementary documentation [41, 2, 1]. At all times, the

design should stay simple, using low-tech techniques to create a shared group visualisation of

the project progress [25]. This allows for an improved awareness and visibility of the ongoing

process, leading to more mutual trust and an increased feeling of responsibility [25, 35].

Documentation is still important, but it has to be concise and, even more essential, congruous

with the current state of the project [1, 23].

Appendix A3: Global Software Development

11

2.3.3. Communication with agile methods in GSD

Agile methods are basically an attempt to satisfy the quest for more lightweight and faster

development [25]. Since designs never exhibit perfect modularity and are never error-free,

process executions rarely flawless, and the world is never completely predictable, informal

communication will be essential to maintain project coordination [21]. Hence, informal

communication should be encouraged [2, 34].

Despite this, formal communication is a necessary complement to the informal channels [23,

27]. Elementary probability theory tells us that the number of possible communication paths is

approximately half the square of the number of people in an organisation, which in turn tells us

that sheer informal communication will soon become too burdensome [15]. Formal

communication could be realised through for example (virtual) meetings and deployment of

liaisons8. Meetings allow the diverse groups involved to come together in a regular, controlled

way [27]. Liaisons should be in an agile team, together with some programmers and designers.

The agile team’s purpose is to communicate on a daily basis in order to evaluate and monitor

the project. This group would then be a hub facilitating communication and coordination [2].

2.3.4. Conclusion

It is clear that frequent communication is a central prerequisite with the application of GSD in

general [8], and especially for successful implementation of IID in GSD [34]. Agile methods

bring ways to alleviate the problems encountered with dispersed development, but there are

principles that just are not feasible when deploying agile methods in a GSD context [2]. It

should be noted that, although most studies report that agile development practices are easily

adopted and work well, it seems that the principles work best – or only – with relatively small

teams [2, 18, 5], but further research is needed here.

Some kind of hybrid agile and document-driven development appears to fit GSD best, as it

harmonises agility and discipline [2]. The combination of concise documents and the

encouraged use of formal and informal communication is a very strong one, as it combines the

best and leaves the most impracticable, unfeasible principles of both worlds behind [2, 18, 1].

8 Typically, a liaison is someone who has spend a reasonable period of time in the country whereto the offshoring

takes place. Its informal role is to facilitate the cultural, linguistic, and organisational flow of communication [8].

Appendix A3: Global Software Development

12

3. The future of Global Software Development

3.1. Introduction

It is unlikely that the advent of GSD will come to an end. The additional impediments in

communication and coordination with GSD require solutions in order to remain or become

profitable. There exist three approaches to tackle the problems and they need to be applied all:

the technical- and documentation-routes, and the development of teamness. All provide a

means to enhance cross-site coordination.

3.2. Improvement of coordination and awareness

3.2.1. Tooling and communication technologies

New tooling could reduce the perceived distance between physically separated development

teams. Because people tend to adapt their behaviour rather than fix the technologies used,

emphasis should be put on development in a user-centred manner [32, 37]. Despite this, new

tools should always support current practices first before trying to enhance them: people have

to get convinced of its use. Adoption simply takes time: innovations should be introduced in

small steps [32, 17].

First, to increase the ease of communication, new tools need to facilitate the use of multiple

channels together (i.e. multiple applications combined with audio and video stream) to

approach the normal face-to-face way of work [8]. Integration of currently existing IDEs with

communication tools could be such a solution, as developers than have to switch less between

different tools and environments [28, 24, 6]. An IDE must become a medium of

communication to integrate people, tools and information [16].

Second, increased awareness and ease to stay up-to-date should be achieved: IDEs should not

merely be integrated with, for example, version control management and new communication

channels: it should make it easier to find information, check availability of colleagues and

remain aware of changes in software related to the developer’s activities. In addition, more

effective cross-site meetings, both planned and spontaneous, should be facilitated [21]. Because

the ease of getting information is a critical determinant in choosing what source to draw upon,

Appendix A3: Global Software Development

13

tools should enable developers to exchange knowledge and help them finding the right

expertise [27]. Tools should help others see where the most recent activity took place to enable

developers in avoiding interference with ongoing work, and identify conflicts in between

requirements [17, 16, 27]. Furthermore, tools must accommodate changes in the software

design as an ordinary process and support the representation of uncertain design decisions [16].

Third, keeping documentation up-to-date should be an easy task, only then developers would

use the design documents as reference, and not the code [28, 23].

In even further future, there might be technical ways to not only replace face-to-face

communication, but even augment it. However, Olson and Olson remark that they feel that

several key elements of interactivity will be very resistant to support [32]. For example,

primitive Virtual Reality is already available in software development, but the use of this

technology in this domain is only scarcely out of its egg, yet [32].

Concluding from the above, new tooling should introduce a virtual proximity in which

developers can easily communicate on frequent basis. Identification of conflicts in requirements

and executed work should be done by tools instead of humans.

3.2.2. Documentation

Second, there is documentation as a form of communication. Proper modularisation reduces

dependencies across sites and hence the need for communication. However, as development is

rarely a fully predictable undertaking, it should accommodate easy changes and means to make

those changes noticed by the developers involved as well. Furthermore, better capture of

informal, transient designs, and a decrease in necessary effort to keep them up-to-date could do

the trick [28]. When documenting, an upper limit of about two pages per artefact is advised:

the majority of developers simply do not want to read more [1].

The solution to the problems introduced by GSD is neither to add more documentation nor to

abandon it: it is to get better documentation. We must go towards lean, concise documentation

[1]. The combination of a well established common ground, easily accessible knowledge and

concise documentation appears to fit GSD best.

Appendix A3: Global Software Development

14

3.2.3. Teamness

Apart from the application of new communication technologies, the feeling of teamness is a

determinant in the success or failure of a software project as well. Teamness could be established

by better communication technologies as described in section 3.2.1, but the establishment of

common ground should be facilitated in other ways as well.

Common representational conventions need to be established for successful development.

Research has revealed that, for example, cultural issues could be overcome fairly quickly: if only

one visits the other site on a relatively frequent basis [24]. The more common ground one has,

the higher the productivity, because more effective answers could be given. Knowing the

context and knowledge of the other involved people increases effectivity [26, 12, 32].

Establishing common ground could be done by sending liaisons [24].

Second, the maintenance of an extensive interpersonal network is associated with better project

outcomes: the constructed greater awareness aids inter group coordination [27]. Research by

Shami et al. showed that developers without a collaborative history tend to form strong in-

group biases that inhibit cross-site collaboration: compartmentalisation [40]. Using tools and

liaisons, both the allocation of appropriate knowledge should be eased and the willingness to

share should be increased.

In conclusion, the maintenance of long-term relationships and a well established common

ground between the different participating development sites alleviates the problems thwarting

a feeling of teamness.

3.3. Conclusion
To improve processes and design, first a concise, accurate and meaningful information about

the existing situation must be obtained [37] and references therein]: what are the exact

problems and their possible solutions. Better tooling, improved teamness and more appropriate

documentation should be applied all together to reduce the communication difficulties.

Unfortunately, research by Smite et al. concluded that – up till now – there exists still no recipe

for successful and efficient performance in globally distributed software engineering [30].

Appendix A3: Global Software Development

15

4. Implications for the SAD

4.1. Introduction

In GSD, the communication problems accompanying collaborated work are exacerbated. As

concluded in section 3.3, the solution is neither to add more documentation nor to abandon it:

it is to get better documentation. We must go towards lean, concise documentation [1].

Regardless of this, there is reason and evidence to put both more and less emphasis on

documentation in GSD environments.

4.2. Contra documentation

Many developers see documentation as a weak form of communication, pointing at the

tardiness, incompleteness and ambiguities [16]. As a result, developers prefer exploration of the

code to find answers. When that fails, they still favour the consulting of knowledgeable team

mates rather than design documents [28]. In addition, all forms of written documentation are

judged as less valuable than personal contacts [27]. Other properties, like visualisations in

documentation, are rarely used for the core of the development process [12].

There exist plenty of reasons for a developer not to record changes: the effort of checking out

the code, editing it and checking back in, possibly triggering all sorts of conflicts, is enough to

dissuade him. This leads to the fact that lots of design information is kept in peoples’ heads

and never written down [28, 23].

4.3. Pro documentation

The aforementioned reasons are all directed towards tardiness: it is too difficult to keep

documentation up-to-date. As was already assessed, future tools should accommodate easy

changeability. Also, they should be able to actively notify the developer of any changes. Only if

documents are always up-to-date and easy to find, they could become a way of communication

[28, 13].

Appendix A3: Global Software Development

16

4.4. Conclusion

Documentation as a means of formal communication is important: it eases the coordination

and improves modularisation of work to a great extend. Of course, informal mechanisms of

communication to complement documentation are necessary as well, but the required

communication could be channelled by documentation in order to keep it manageable.

Accurate and up-to-date, straightforward to understand and easily updated documentation is

necessary in larger software projects, and especially in GSD.

Unfortunately, people are reserved when it comes to new techniques: when they have

experience with tardy and ambiguous documentation, they will not adopt the new and

improved type without ado: once burned, twice shy [32]. Introducing new technologies and

methods takes time.

Appendix A3: Global Software Development

17

5. Conclusion

Software development is not an isolated activity: no single developer has the ability to create or

even fully understand large complex systems [11, 28, 27, 15]. Hence, most developers spend a

significant part of their day communicating with various other co-workers [37]. Unfortunately,

collocated development becomes increasingly impracticable as the needs for quick and cheap

development are rising, therefore pushing companies to Global Software Development [39].

However, this aggravates most possibilities for unplanned, informal communication [2, 16],

leaving devastation behind: hindered communication will pave the way for misunderstandings,

frustration, and ultimately failure of a successful ending of a software development project [26,

16]. The need to communicate with separately located co-workers should be lessened by proper

modularisation in which the modules are loosely coupled [28, 23, 32, 36, 15]. The remaining

required communication should be supported by a well established common ground and good

inter site relationships. Communication tooling, liaisons, and training could provide help in

founding such a common ground, alleviating most of the communication problems

encountered [26, 24]. However, documentation is important in outsourced projects too: one

cannot rely on tacit knowledge alone as there is less group knowledge, especially when the

collaboration is for a short period of time [2, 16].

In spite of all this, distance will continue to matter [32] and collocated development remains

the best option regarding software quality and cycle time. All we can do is try to approach the

experience of face-to-face communication as close as possible.

Appendix A3: Global Software Development

18

6. References

[1] AGERFALK, P. J., AND FITZGERALD, B. Flexible and distributed software processes:

Old petunias in new bowls? Communications of the ACM 49, 10 (October 2006), 27–34.

[2] BATRA, D. Modified agile practices for outsourced software projects. Communications of

the ACM 52, 9 (September 2009), 143–148.

[3] BIANCHI, A., CAIVANO, D., LANUBILE, F., RAGO, F., AND VISAGGIO, G. Distributed

and colocated projects: a comparison. In Proceedings of the seventh workshop on emperical studies

of software maintenance (November 2001), pp. 65–69.

[4] BIRD, C., NAGAPPAN, N., DEVANBU, P., GALL, H., AND MURPHY, B. Does

distributed development affect software quality? an empirical case study of windows vista.

Communications of the ACM 52, 8 (August 2009), 85–93.

[5] BODEN, A., NETT, B., AND WULF, V. Coordination practices in distributed software

development of small enterprises. In International Conference on Global Software Engineering

(2007), pp. 235–244.

[6] BROOKS, F. P. No silver bullet: Essence and accidents of software engineering. IEEE

Computer 20, 4 (1987), 10–19.

[7] CARMEL, E., AND ABBOTT, P. Why ’nearshore’ means that distance matters.

Communications of the ACM 50, 10 (October 2007), 40–46.

[8] CARMEL, E., AND AGARWAL, R. Tactical approaches for alleviating distance in global

software development. IEEE Software 18, 2 (March/April 2001), 22–29.

[9] CATALDO, M., BASS, M., HERBSLEB, J. D., AND BAS, L. On coordination mechanisms

in global software development. In International Conference on Global Software Engineering

(2007), pp. 71–80.

[10] CATALDO, M., AND HERBSLEB, J. D. Communication networks in geographically

distributed software development. In Proceedings of the ACM 2008 Conference (2008), pp. 579–

588.

[11] CATALDO, M., WAGSTROM, P. A., HERBSLEB, J. D., AND CARLEY, K. M.

Identification of coordination requirements: implications for the design of collaboration and

awareness tools. In Computer Supported Cooperative Work: Proceedings of the 2006 20th

anniversary conference on Computer supported cooperative work (November 2006), pp. 353–362.

Appendix A3: Global Software Development

19

[12] CHERUBINI, M., VENOLIA, G., DELINE, R., AND KO, A. J. Let’s go to the whiteboard:

how and why software developers use drawings. In Proceedings of the SIGCHI conference on

Human factors in computing systems (April-May 2007), pp. 557–566.

[13] CHISAN, J., AND DAMIAN, D. E. Towards a model of awareness support of software

development. In The 3rd International Workshop on Global Software Engineering (May 2004),

pp. 28–33.

[14] CONCHÚIR, E., AGERFALK, P. J., OLSSON, H. H., AND FITZGERALD, B. Global

software development: Where are the benefits? Communications of the ACM 52, 8 (August

2009), 127–131.

[15] CONWAY, M. E. How do committees invent? Datamation 14, 1 (April 1968), 28–31.

[16] CURTIS, B., KRASNER, H., AND ISCOE, N. A field study of the software design process

for large systems. Communications of the ACM 31, 11 (November 1988), 1268–1287.

[17] DEKEL, U. Supporting distributed software design meetings: what can we learn from

co-located meetings? In Proceedings of the 2005 workshop on Human and social factors of software

engineering (2005), pp. 1–17.

[18] DYBA, T., AND DINGSOYR, T. Empirical studies of agile software development: A

systematic review. Information and Software Technology 50 (2008), 833–859.

[19] HARGREAVES, E. J., AND DAMIAN, D. E. Can global software teams learn from

military teamwork models? In The 3rd International Workshop on Global Software Engineering

(May 2004), pp. 21–23.

[20] HERBSLEB, J. D. Global software engineering: The future of socio-technical

coordination. In FOSE’07 (2007).

[21] HERBSLEB, J. D., AND GRINTER, R. E. Splitting the organization and integrating the

code: Conway’s law revisited. In Proceedings of the 21st International Conference on Software

Engineering (1999), pp. 85–95.

[22] HERBSLEB, J. D., AND MOCKUS, A. An empirical study of speed and communication

in globally distributed software development. IEEE transactions on Software Engineering 29, 6

(June 2003), 481–494.

[23] HERBSLEB, J. D., AND MOITRA, D. Global software development. IEEE Software 18, 2

(March/April 2001), 16–20.

Appendix A3: Global Software Development

20

[24] HERBSLEB, J. D., PAULISH, D. J., AND BASS, M. Global software development at

siemens: experience from nine projects. In Proceedings of the 27th international conference on

Software engineering (May 2005), pp. 524–533.

[25] HOLSTRÖM, H., FITZGERALD, B., AGERFALK, P. J., AND CONCHÚIR, E. . Agile

practices reduce distance in global software development. Information Systems Management 23,

3 (June 2006), 7–18.

[26] KOTLARSKY, J., VAN FENEMA, P. C., AND WILLCOCKS, L. P. Developing a

knowledge-based perspective on coordination: the case of global software projects. Information

and Management 45 (2008), 96–108.

[27] KRAUT, R. E., AND STREETER, L. A. Coordination in software development.

Communications of the ACM 38, 3 (March 1995), 69–81.

[28] LATOZA, T. D., VENOLIA, G., AND DELINE, R. Maintaining mental models: A study

of developer work habits. In International Conference on Software Engineering (May 2006),

pp. 492–501.

[29] LEE, J., HUYNH, M. Q., KWOK, R. C., AND PI, S. It outsource evolution - past, present

and future. Communications of the ACM 46, 5 (May 2003), 84–89.

[30] ŠMITE, D., WOHLIN, C., GORSCHEK, T., AND FELD, R. Empirical evidence in global

software engineering: a systematic review. Empirical Software Engineering 15 (2010), 91–118.

[31] MOCKUS, A., AND HERBSLEB, J. D. Challenges of global software development. In

Proceedings of the seventh international software metrics symposium (2001), pp. 1–3.

[32] OLSON, G. M., AND OLSON, J. S. Distance matters. Human-Computer Interaction 15

(2000), 139–178.

[33] O’ROURKE, K. H., AND WILLIAMSON, J. G. When did globalisation begin. European

Review of Economic History, Cambridge University Press 6, 1 (April 2002), 23–50.

[34] PAASIVAARA, M., AND LASSENIUS, C. Using iterative and incremental processes in

global software development. In The 3rd International Workshop on Global Software Engineering

(May 2004), pp. 42–47.

[35] PAASIVAARA, M., AND LASSENIUS, C. Could global software development benefit

from agile methods? In IEEE International Conference on Global Software Engineering (2006).

[36] PARNAS, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15, 12 (December 1972), 1053–1058.

Appendix A3: Global Software Development

21

[37] PERRY, D. E., STAUDENMAYER, N. A., AND VOTTA, L. G. People, organizations and

process improvement. IEEE 11, 11 (July/August 1994), 36–45.

[38] PRIKLADNICKI, R., AUDY, J. L. N., AND EVARISTO, R. Global software development

in practice. lessons learned. Software Process: Improvement and Practice 8 (2003), 267–281.

[39] PRIKLADNICKI, R., AUDY, J. L. N., AND EVARISTO, R. An empirical study on global

software development: Offshore insourcing of it projects. In The 3rd International Workshop on

Global Software Engineering (May 2004), pp. 53–58.

[40] SHAMI, N. S., BOS, N., WRIGHT, Z., HOCH, S., KUAN, K. Y., OLSON, J., AND OLSON,

G. An experimental simulation of multi-site software development. In Proceedings of the 2004

conference of the Centre for Advanced Studies on Collaborative research (2004), pp. 255–266.

[41] SHRIVASTAVA, S. V., AND DATE, H. Distributed agile software development: a review.

Journal of Computer Science and Engineering 1, 1 (May 2010), 10–17.

[42] WIKIPEDIA. Compartmentalization,

http://en.wikipedia.org/wiki/Compartmentalization_(intelligence), July 2010.

[43] WOLF, T., NGUYEN, T., AND DAMIAN, D. E. Does distance still matter? Software

Process: Improvement and Practice 13 (2008), 493–510.

Appendix B: the Analysis 1

Appendix B

The Analysis

transcribing, encoding and theorising

Overview

This appendix provides the reader with an

introduction on the methods used in the

analysis phase and give rationale for the

decisions made to get well-founded results.

In general, each section will start off with a

description of the theoretical background

behind the property, process or method,

then proceed with a section about the merits

and demerits, and conclude on how we used

it in our experiment.

1. Introduction

After gathering data it needs to analysed in order to be able to derive theories from it. The

collected data in our experiment consists of video and audio fragments of subjects looking for

information that could help them answering the question we asked them. In our experiment,

we chose audio as the most important source of data, as we asked the subjects to think aloud

while working on the questions.

The founding of new theories could be done without transcribing or encoding, which allows

access to prosodic and paralinguistic features of the data. Unfortunately, direct analysis of data

cannot give us a good overview of what we are actually doing. To keep grip on the massive

amount of data produced by this experiment, we need to transcribe and encode the recorded

audio.

Although it is usually the case that in the process of encoding only more data is generated, it is

this additional data that permits us to find general patterns and concepts, which is exactly the

goal of our experiment: the verbal protocols produced in our experiment are qualitative data

from which we want to infer meaning and draw inferences about what the participants think

[9].

Appendix B: the Analysis 2

2. Methodologies

2.1 Protocol Analysis

In Protocol Analysis, the processes of solving a problem or making decisions are the focus. The

processes of problem solving correspond to the sequence of problem states the subject

undertakes as he applies permissible operators [4].

Retrieving information about the cognitive processes occurs through a method called Think

out Loud/Talk out Loud (ToL). Several studies show that the thoughts verbalised correspond

to the usually covert thought activity. Therefore, they are useful to obtain the strategies subjects

use to get to an answer without affecting the ongoing cognitive processes during problem

solving [5].

While it may sound as a controversial method of gathering data and performing analysis, it is

not that alien: in actual life we frequently find ourselves explaining something to others or

trying to communicate our thinking. In addition, when a task is difficult or an intricate text has

to be read, we tend to vocalise our thoughts – especially in noisy environments. The

corresponding elements of these examples show that in most cases we are not even aware of the

fact we vocalise; in certain situations, people even find it almost impossible to suppress these

overt verbalisations. This evidence strongly implies the absence of overhead any vocalisation

might cost us1. Moreover, what subjects report during a ToL session, most often is what the

researcher wants to hear. All the aforementioned greatly supports both the relevance and

nonexistent impact of thinking out loud on problem solving [5].

1 On a level 2 at most. There exist 3 levels of thinking out loud [5: 79]:

1. Mere thoughts;

2. Explications of thoughts (decreases speed of cognition but leaves these processes undisturbed) ;

3. Explanation of thoughts (requires links to the LTM and therefore decreases reliability of

verbalisations).

Appendix B: the Analysis 3

2.2 Grounded Theory

2.2.1 What is Grounded Theory

Grounded Theory (GT) is an inductive form of qualitative research where data collection and

analysis are conducted together. With GT one does not establish hypotheses prior to

performing research; the researcher creates one after profound analysis of all data available. The

main claim in GT is that theories remain grounded in the observations rather than being

generated in the abstract [6, 9].

2.2.2 Goals

The goal of GT is to offer the reader a conceptual explanation of a latent pattern of behaviour

that holds significance within the social setting under study. It is the abstract concept that is

under study, not the descriptive detail [1: 268]. The skill of a grounded theorist is to abstract

concepts by leaving the detail of the data behind, lifting the concepts above the data and

integrating them into a theory that must explain, not merely describe what is happening [1:

272-273]. GT should eventually come up with a coherent account of the phenomena under

investigation, clustered around one or two core categories derived from the data [9]. Bottom

line: the essential quality of GT is that it makes sense when applied properly: its outcome

should be relatable to actual situations [1: 114].

2.2.3 Principles and concepts

GT consists of two basic principles of category2 building:

1 Categories should emerge from the data; they should not be forced onto it;

2 Researchers should be able to see relevant data and reflect upon it using theoretical

terms. This is called theoretical sensitivity.

Unfortunately, by the contradicting nature of those two principles they are difficult to

reconcile. Hence, one needs to see the “emergence of categories out of data” in an

epistemologically informed way: the development of categories is dependent on the availability

of theoretical concepts [1: 193 & 206].

2 Categorising is the analytic step in GT. The researcher selects codes that are applied to transcripts and tries to

combine them into a more abstract, theoretical code: a category. More information about categorising can be

found in section 6.

Appendix B: the Analysis 4

GT benefits from low falsifiable or sensitising concepts (in contrast with quantitative research

with which high falsifiable concepts are preferred from initiation onwards). Sensitising

concepts do not force existing categories or preconceptions onto data; instead they serve as a

heuristic device, merely showing a direction along which to look for answers, hence helping to

identify theoretically relevant phenomena [1: 207]. However, in order to generate useful

theories, eventually – when reached fairly advanced stages of the theory building process [1:

212] – high falsifiable hypotheses should be formed [10].

GT requires that the researcher enters the research field without any preconception of problem

statements or literature reviews in order to remain truly open to exploring the area and let a

new theory emerge out of the data obtained [1: 269]: in an ideal case, the search for literature

related to the experiment comes after the construction of the grounded theory [1: 123].

However, some researchers counter this principle by mentioning that at least some notion of

the field under investigation could alert them for gaps in theorising and help them see whether

something discovered is interesting, useful or even undiscovered before [1: 254]. Also, GT is

regarded difficult, especially for beginning researchers. In our research we will not stick to the

strict GT principle described here. Rather, in order to get a direction in which to search for

interesting phenomena or how to explain situations and emerging correlations the alternative

stance will be pursued: literature on multimedia principles, cognitive principles and guidelines

on communication will be explored during the analysis stage.

2.2.4 Why GT

Because we do not want to investigate hypotheses generated beforehand – we simply have no

founded clue of how people would handle the proposed problems and questions – an

alternative research method than one from the old-fashioned hypothetico-deductive corner

should be applied. Luckily, GT provides exactly the tools to do that: it is particularly useful in

situations where little is known about the topic or when a new approach to a familiar area is

required [9].

Appendix B: the Analysis 5

2.3 How to combine Protocol Analysis and Grounded Theory

2.3.1 Differences and similarities

There exists one fundamental difference between GT and PA: where with PA one needs to

identify the coding vocabulary in advance, GT almost screams for open coding without any

preconception about the research domain. Regardless, both methods unsurprisingly are

proponents of objective theorising. PA wants to achieve this by extensive task analysis

beforehand to predetermine some of the operations and goals a subject could have during the

experiment [5: 276]; GT wants to approach objectivity by only looking at the data and deriving

every code and category from appearing actions in order to prevent a theoretical framework

from being forced onto the data.

2.3.2 Our implementation

We will combine the two methodologies by abandoning the requirement of a predefined

coding scheme as declared in PA to remain open and as unbiased as possible towards

discoveries of new patterns or unexpected processes. We only keep the rules as that are to be

followed while conducting ToL “interviews” and ignore the rest [5]. In fact, the method we

applied is most strongly related to GT: the only divergence is that we already finished the data-

gathering phase before starting with the analysis. However, we still generate some kind of a

new theory based on the observations made, and our hypothesis will be constantly adapting to

new data added during analysis, following all the principles of GT. Therefore we think it is

legitimate to build onto this theoretical framework proposed by Glaser and Strauss in their first

methodological book The Discovery of Grounded Theory.

In addition, after having developed a new theory or hypothesis we could still apply such task

analysis to see if there are any similarities between the two. Any occurrence of corroboration

between the two will only increase its suspected correctness and our confidence in the emergent

theory3.

3 Strengthening of theories is possible by the use of the Bayesian Approach. The result of a task analysis could be

seen as evidence for the developed theory. When this evidence supports the theory developed, the probability of

its correctness is increased [2]. To determine which theory is best, Bayes’ Theorem could be used [5: 281].

Appendix B: the Analysis 6

2.3.3 Conclusion

In the end, it seems only abundantly clear to combine the two methods: in PA one stimulates

the subject to talk about whatever they think, do and look at during some kind of task. We

could safely presume we do not know anything about the actual cognitive processes going on in

the heads of our particular subjects. Therefore they are black boxes to us: we could have ideas

about the underlying processes, but we will never know unless they tell us. The verbal protocols

this process of verbalisation produces contains unbiased data from our subjects about their

thoughts. Therefore we assert that data gathered using ToL is pre-eminently suitable for the

construction of a grounded theory.

3. Doing Grounded Theory

After having defined the conceptual framework we chose to use, we will have to be more

specific about how to concretise this. This section will describe every step we have to go

through to get to an intelligible intermediate result, ready to be analysed further into a concrete

theory or hypothesis.

The practice of encoding leaves several questions to be answered:

1. What to transcribe;

2. How to segment the transcripts;

3. What to code;

4. How to design a coding scheme;

5. How to categorise.

The plain demarcation between the items in the abovementioned list might not be as clear in

practice, but for the sake of simplicity, we deal with them on individual basis here. Section 4

through 7 will try to explain the problems and come up with solutions to them we think are

best. Section 8 then ties all ends together and describes how to devise a theory based on all

preliminary work.

Appendix B: the Analysis 7

4. Transcribing

4.1 Choosing samples

Due to the time consuming nature of Protocol Analysis, verbalisation recordings are usually

sampled or reduced [7]. In fact, it is even encouraged to purposely select data samples – which

is different from selecting samples out of convenience – because it is believed they can

contribute to the topic under investigation and make easier identification of variations within

the new developing theory possible. If applied well, this process of selection does not impair

the rigor of the research but even improves it. However, it is important to define what we are

looking for and to define these criteria explicitly [1, 9, 11]. Excellent participants meet the

following requirements [1: 231]:

- They are known with the phenomenon under investigation;

- They are willing and have the time to participate;

- They are articulate.

In spite of the properties an excellent participant should have, we need to start our analysis

with convenience sampling to get an overview of the research domain. After having constructed

this outline, we can move on to the next stage of sampling: purposeful or theoretical sampling.

When a potential core variable has been identified, subsequent data collection could be

delimited to that which is relevant to the emerging conceptual framework: the process of data

collection is controlled by the emerging theory [1: 280]. With purposeful sampling one can try

to find participants that confirm or disconfirm what the first stage of sampling brought us to

advance the developing theory [1: 117]. The new data should be selected to falsify4 the

hypothesis in order to obtain the widest range of possible occurrences conforming to the

premises. In this way, our theory should be able to meticulously describe the actual

4 Because confirmation or verification is logically impossible, falsificationism was introduced in the first half of the

20th century. The aim here is to find data to falsify the current hypothesis in order to strengthen it. When

conflicting data is found, there are several solutions to overcome that problem. First, one chould change the

hypothesis in a way that it from thereon will account for both the formerly conflicting and expected occurances.

Second, the observations itself could be refuted or thirdly, the theory could be renounced and a new hypothesis

could be devised. However, we should be wary of ad-hoc changes to the hypotheses: those only add more

constraints and will make the theory less applicable and hence weaker [2, 10]. (Unfortunately these are not the

only problems with naive falsificationism. However, the general idea still holds for our case. For a broader, yet

still very surveyable account on Philosophy of Science in general, please take a look at [2]).

Appendix B: the Analysis 8

phenomenon. Only in this way it is possible to capture most variation within the research

domain, hence allowing us to terminate the sampling when no further saturation5 is achieved

[1: 235-239].

Grounded Theory, along with other types of qualitative research, does not rely on notions of

statistical representativeness to make claims about the generalisability and authenticity of the

findings. We use the best (or worst) cases as those contain the most clear examples of the

phenomena under investigation; only if we have made those phenomena apparent, we could

use the average samples as well [1: 234]. Looking for deviant cases enables to ensure no

important cases were missed that might lead to question the applicability of the newly

generated theory [6: 96]. However, we need to be wary for outliers: if a participant is a true

outlier (i.e. in both quantitative and qualitative respects) he or she may be ignored [1: 240]. In

addition, a sample size of around 20 and 30 interviews or hours of experiment is recognised to

deliver enough data to construct a well-founded GT [1: 117].

As should be clear from the few paragraphs above, pure randomization during sampling is not

an option in qualitative research. When using random samples, the interesting factors would be

distributed normally: this would leave us with lots of data about common events and

inadequate data about the less common events. In fact, by random sampling we would even

introduce a bias: by not attending to the meaningful scope of the phenomenon under

investigation we would gather lots of data not useful for saturation of the codes, categories and

theory. This clearly is inefficient [1: 234].

Following the theoretical background depicted above, we will define our criteria as follows: we

will search for data of subjects who were at least moderately outspoken during the experiment.

This will give us the most clear view on the strategies those particular subjects used. Avoiding

the relatively silent subjects saves us much time while we assume they could contribute only

little to the theory in production. Although the common way of reducing data volume is to

process only a sub-set of all subjects’ protocols [7], this is based on the assumption that each

5 Saturation is the process in which the forming of a grounded theory has not finished. Every phase in GT has to

reach its own saturation before one can move on to the next. Saturation could be explained as the cristallisation

of codes, categories or the theory. Saturation is reached when the researcher does not perceives anything new

anymore [1: 117]: when saturation is reached, there is no new data that could not be accounted for by the grown

hierarchy of codes, categories, and eventually the grounded theory.

Appendix B: the Analysis 9

subject participates around 1 to 2 hours in an experiment; our experiment will take only about

half an hour, so sampling within a protocol would only leave us an inadequate amount of data.

Unfortunately, due to time constraints, we will not carry on with the stage of purposeful

sampling after we have constructed an outline of the phenomena occurring. Furthermore, due

to the same time constraints, we will be only able to transcribe, code and segment around 10

participants, resulting in approximately 5 hours of data to be analysed.

4.2 What to transcribe from the samples

Intonation, stress and pauses are not easily transcribed [5]. Luckily, in transcriptions it is

neither usual nor necessary to transcribe these prosodic, paralinguistic or extralinguistic6

elements [9]. However, as these elements might indicate a shift of cognitive structures, – an

active mental model as content of the WM – they could prove useful when segmenting the

data [5: 221-225]. Therefore, to get data as sensitive as possible, we do transcribe pauses and

hesitations, but leave stress and intonation out of the transcriptions.

A thing to be wary of are meta-comments made by the subjects. Meta-comments are a

subject’s attempts to verbalise its own cognitive regularities [5: 311]. Such comments are of

little value as the LTM plays too big a role in this process: the LTM is unreliable, inaccurate

and reports from it are almost indefinitely incomplete: meta-comments should therefore be at

least taken very cautiously [5: 115-116]. Luckily, determining whether a verbalisation is a

meta-comment is relatively easy: in most cases the information in such verbalisations will not

be used in subsequent behaviour [5]. However, we will transcribe meta-comments if they

occur, and deal with them in the encoding stage when needed.

To increase reliability verbalised terms could be replaced with synonyms, but this may result in

a loss of semantic content [5]. To avoid this, we will not replace general terms with synonyms,

but only references to one of the two presented documents: this will make it easier for us to

search through the transcripts without troublesome tricks.

The capturing of what people are looking at defines what they see: their stimulus [5: 278]. We

have video data that contains this information, and because of the valuable information it

contains, we will use it in our transcriptions by mentioning in which direction they were

looking during particular verbalisations. However, the camera will not capture the exact gaze of

6 Paralanguage refers to the non-verbal elements of communication used to modify meaning and convey

emotion. Prosody is the rhythm, stress and intonation of speech. Extralinguistic elements are mostly gestural

means of expression.

Appendix B: the Analysis 10

the participant and hence we will not have data about what the participants are looking at

specifically; such data could be obtained by using an eye-tracker. For more information we

refer to other studies [8, 12]. Because of this little woolliness, we have to be a bit loose on the

meaning of the rough gaze of a participant into a certain direction – the exact stimulus remains

unknown.

5. Segmenting

Before we can commence coding, we have to decide how we want to segment the transcripts.

Although there is no standard definition of a segment, there exist a few issues to consider [4]:

1. Granularity

Varying unit sizes could be utilised, such as at proposition, sentence, idea, paragraph or

specific event level. A decision about the grain size has to be made a priori: using a finer

grain size increases data sensitivity, but at laborious costs.

2. Correspondence between granularity and the objective of research

For one type of research an appropriate unit size might be a reasoning chain, which usually

involves a grain size of several sentences, while others would want to gain insight in atomic

events of a process. In general, one needs to worry about whether the chosen grain size is

appropriate to interpret the results meaningfully.

3. Characteristics of the data

When participants need more sentences to convey an idea, it might be useful to group these

sentences together to get meaningful units of information.

Units of articulation correspond to integrated cognitive structures. Different cues like pauses,

contours, intonation and syntactical markers can be used to segment encodings, but encoding

based solely on pauses might not be sufficient; larger syntactic or semantic units are then

required to keep each verbalised segment context independent [5: 205, 225, 279; 7]. Because

highly related concepts are usually activated simultaneously, related features often produce a

clustering effect in retrieval of cognitive structures from LTM. As a consequence, connected

information tends to co-occur: efficient segmenting occurs with unit sizes multiple sentences.

In addition to the support of segmenting on semantic features, primary cues for differentiating

thoughts are their verbs and tenses [5: 223]. This again indicates that semantic boundaries are

most important, and that they could be found in many different ways. Based on the previous, it

proves often psychologically more meaningful to use semantic boundaries [4].

Appendix B: the Analysis 11

Line-by-line segmentation (and hence coding) is recommended by many grounded theorists,

because it forces analytic thinking with the researcher whilst staying close to the data. We will

come back to this in section 6.1.2 and explain why we will not apply this technique in our case.

The only segmenting applied, is the dividing of complete transcripts into segments containing

complete answers, one segment per question. Each segmented unit should be large enough to

contain all information for the encoding decision to be made in the next phase, and with

segmenting per question, this doubtlessly is the case [5: 290]. Pauses and hesitations are

preserved for the use of data interpretation. These noncontent elements enable us to determine

from the transcriptions whether a participant was busy with one of the two media in silence or

when he was verbalising thoughts.

6. Coding

After segmenting the transcripts into units of more or less context independent data is done, it

has to be coded. Coding is the first step in the creative analysis of the data: it is used as a way

of both managing and organising data, and for the development of clusters, hierarchies and

eventually categories [6: 39, 1: 253]. The aim of coding in general is to define what the data are

about [6: 38]. In short, codes form a focus for thinking about the text and its interpretation [6:

40], allowing to know more about the field we study, yet carrying the abstraction of the new [1:

84].

6.1.1 Coding cycles

In general, two distinct cycles of coding could be discerned, each acting at a different level of

abstractness. The first coding cycle is fairly simple and direct. During this cycle, low level,

descriptive, in vivo, and/or structural codes are used to identify pieces of data. The second cycle

is more challenging as it requires more analytic skills. During the second coding cycle, data is

reorganised and reanalysed: categories and subcategories, core themes and relations amongst

them are then developed [11: 45].

Most of the literature about qualitative research distinguishes second cycle coding into a

different part called categorising. We assert this dissection is fairly grounded on the basis that

categorising takes not only place at a whole different level of abstraction, it also involves the

profound use of memos in the art of picturing categories and core themes. Therefore the

Appendix B: the Analysis 12

categorising phase will be discussed in the separate section 7. Hence, the continuation of this

section only handles first cycle coding methods.

6.1.2 Line-by-line coding

Segmentation was based largely on semantic features in order to get meaningful units of

information which are context independent or require only a very narrow one. However, there

is exists a method of coding that could be applied independently of the segmentation, directly

onto the initial transcripts. With line-by-line coding, the researcher takes each line in the

transcripts – which almost never constitutes a complete sentence – and tries to encode it

according to its content. This approach has one advantage: it forces the researcher to look

closely at the data which minimises the chance of missing out on important information [1:

275]. Although it should merely be a device for the initial breaking down of data – not to track

down complete and true meaning [1: 196] – it nevertheless creates much overhead during

analysis and its profits are questionable. As nicely put by Stern: “I never do a line-by-line

analysis because there is too much filler to skip over. Rather, I do a seizure operation looking

for cream in the data” [1: 118]. We will stay with her: we segmented the data according to

certain principles and during coding, we will stick to this. So, no line-by-line coding for us.

6.2 What to code

There are several sources of data that could be coded. In GT, these usually consist of not only

recorded audio and video, but field notes and memos made by the researcher as well. All of

these should be taken into account during the process of encoding.

As mentioned earlier, all important features of the video along with audio will be transcribed to

preserve the closest connection between the two. Obviously we subsequently encode all

transcribed data: meta-comments, comments or remarks by the experimenter; every piece of

data is taken into consideration for the sake of an accurate theory. This leaves us with field

notes and memos written during the experiments and analysis phase. Unfortunately, not much

was written down while experimenting, but because both audio and video was captured, we

claim that this data will suffice in writing post hoc memos. This process will be explained and

developed in further detail in section 6.5.

Another data source – which is often overlooked – is the background of the experimenter.

Because human research is not neutral, one must incorporate analyses of the effects of the

background of the researcher [1: 261]. Reflexivity is the recognition that the product of

Appendix B: the Analysis 13

research inevitably reflects some aspects of the milieu, predilections, experience, education and

many more properties of the researcher. Explicit formulation of these preconceptions and the

underlying epistemology is crucial for objective results to emerge [6]: 91-93]. Nevertheless, we

will not code this data but only include an account of the colouring aspects of the researcher

involved. The outcomes of the research then can be interpreted further by the reader.

Selection of participants is discussed in section 4.1; selection within each of the chosen

protocols is treated in section 4.2.

6.3 How to code

6.3.1 Focal points

While coding, there are several questions one could ask oneself about the data to improve the

quality of the codes under development [6: 41, 1]:

- What is going on?

- What is the subject doing?

- What does the above imply / what inferences are used by the subject?

- When does this happen, and under what conditions?

- What are the consequences

- How do the structure and context serve to support these actions and statements?

Following these guidelines, the resulting encoding vocabulary has a broad coverage of

phenomena and is at the same time on an analytic level.

6.3.2 Interpretation of segments

There are two difficulties on separate levels that arise while coding [4]:

- How to resolve ambiguities in interpretation?

- How much context to consider in the interpretation?

Both questions relate to the amount of context needed in order to resolve uncertainties and

ambiguities in interpretation of a segment. Despite the fact that segmenting itself delivered

fairly isolated units of information, they are only context independent to a certain level. The

broadness of context allowed to use therefore needs to be determined.

The use of a broad context could improve reliability of encoding, but may bias the encoder

towards expected operations (hence making inferences for the subject, which are not verbalised.

Consequently, the distance between analysis and actual data increases) [5: 289]. The advisable

Appendix B: the Analysis 14

approach is to keep the interpretation at a fairly local level. However, this holds only when

using multiple subjects, as the availability of more data then obviates the extra noise generated

[4]. Either way one should always be consistent in terms of how broad a context to consider

throughout a specific coding [4].

Because of the segment size applied, we do not expect interpretation to be a problem when

investigating the segments to assign codes. Nonetheless, when there is no unequivocal way of

interpretation, we allow ourselves to include one preceding and one following segment in the

act of code construction and assignment as well.

6.4 Encoding vocabulary

After deciding what information is allowed to use in interpreting the segments, we have to

think about how – by what means – we will interpret the segments and what codes to assign to

capture its meaning best.

6.4.1 Data-driven or concept-driven?

First: should we use a coding scheme that is data-driven, or one that is concept-driven?

According to Ericsson and Simon, encoding decisions should be based upon the task model,

the theory under test and/or the problem space. They are clear that the vocabulary should be

explicated prior to encoding to avoid data contamination by ad hoc theory [5: 264, 7]. On the

other end of concept-driven encoding exists common, “predeveloped” coding schemes. Some

attempts have been made to design a coding scheme that can be tailored to suit various

research studies. Results indicate that such general-purpose encoding schemes could be helpful

as template to determine the basic structure of a coding scheme [7].

On the other hand, supporters of the GT method strongly advocate data-driven coding. By

letting the codes emerge from data, they say, the data will come to its rights best. Because no

predefined codes are then to be forced upon the data, the researcher remains open and as

unbiased as possible towards discoveries of new patterns or unexpected processes. In addition,

several practices of research in the field of Software Engineering support the data-driven

approach as well [7].

Nevertheless, it is impracticable to start the analysis with a complete tabula rasa: especially

novices with GT need a perspective to be able to distinguish relevant data from the irrelevant

and to abstract significant theories.

Appendix B: the Analysis 15

If desired, the codes and categories of pre-existent frameworks together with outcomes of a

task analysis can be compared to the emerged codes. This could eventually lead to better, more

analytic codes, implying enhanced inter protocol comparability [6]. However, due to time

constraints, such a comparison will be skipped – something that clearly should not be left out

in successive research.

6.4.2 Analytical or descriptive codes?

Next is the question what type of codes – what words or short phrases – we will use. It is

acknowledged that there are several advantages to use a somewhat direct encoding scheme to

capture the units and structure of verbalisation [5: 309]:

- It is easier and more reliable to encode;

- Automation of encoding is achieved easier;

- More information can be encoded.

Direct encoding vocabularies will consist of codes derived from the transcription in a most

straightforward – hence reliable – manner. However, to get at a certain analytical level, one has

to raise a level. An increase in analytical level results in an increase of abstractness. As a

consequence, it becomes harder to reliably find codes that suit what the data tries to convey.

Unfortunately, this is the price that has to be paid for improved inter protocol compatibility

and a wider range of vocabulary applicability.

6.4.3 Size of vocabulary

Third, there is the size of the vocabulary under development. There exist some guidelines on

the size of an encoding vocabulary in order to maintain its reliability and ease of use: when

vocabularies grow too large for instance, it is likely to contain many similar codes. This

increases the risk of applying different code to analogous events [5: 206]. The amount of codes

has no magical limit but should be kept to a minimum to keep analysis coherent [11].

6.4.4 Codes per segment

Forth, in order to capture the behaviour to the fullest extend, multiple codes could be assigned

to a single datum [9]. Since behaviour is composed of various components, each component

should be covered with at least one code.

Appendix B: the Analysis 16

6.4.5 Reliability

Finally, reliability and consistency should be assessed. Typically this is done by the use of a

second encoder [7], but in our case we have no access to such resources and neither have we the

time to employ such practices. We assert that reliability can be assured by constantly

comparing the already encoded transcripts with the transcript currently being encoded. A

technique called flip-flop – i.e. moving back and forth between raw data and conceptualisation

– aids with this. Flip-flop (or constant comparison) is the process of updating the codes emerged

from previously encoded transcripts with new data [9, 6, 1: 193]. A decrease in correspondence

between the data and its model then is duly noted and action could be taken to bring it back at

an acceptable level.

However, mere encoding reliability7 is not enough: multiple encoders could make the same

faulty steps in encoding, leading to the same but incorrect result [5: 290]. Task analysis and/or

predeveloped coding vocabularies could increase reliability, but only at cost of decreased

creativity and open-mindedness.

6.4.6 Pitfalls

Designing a code vocabulary and relations between the codes has several benefits, including

initial analysis of the data by providing insight into relations among the codes and a better

overview.

However, care should be taken when interpreting data: interpretive steps are susceptible to

misinterpretations induced by, for example, bias of a researcher towards one solution [6: 43].

The use of computer programs could aid during the analysis, but the actual work still needs to

be done with human hands and heads [1: 233]. In order to minimise a possible bias, segments

should be encoded in random order, which prevents the encoder from using previously

encoded segments. Because professional encoders have experience in encoding work and

probably prior knowledge of the experiment, they might be biased towards the hypothesis of

the experiment and may expect the subjects to think same as themselves. More information

about this reflexivity can be found in section 6.26.2.

7 Encoding reliability: An encoding is reliable when multiple different transcripts are encoded in similar ways

using the same labels for segments containing similar elements. Inter coder reliability and intra coder reliability

refer to respectively reliability between coders and reliability within one coder.

Appendix B: the Analysis 17

6.4.7 Our implementation

As described, we stay close to the GT approach and apply data-driven coding: at the risk of

decreased reliability, we remain open to every (unexpected) pattern in behaviour. Every change

in the emerging encoding vocabulary will be allowed, and as we advance, the vocabulary grows

and shrinks until all data is covered. Subsequently, the amount of codes will be reduced by

removing duplicates.

Unfortunately, due to time constraints, triangulation of the emerged vocabulary with a task-

analysis will be skipped. Also, segments will not be encoded in random order: the “segmenter”

and encoder are both the same person and regardless of the encoding order, bias will occur.

Nevertheless, an account of the researcher will be provided.

6.5 Memoing

During the process of coding, researchers look into the underlying meaning of each transcript.

Coding compels them to think about the data, to make interpretations and look for

connections. This provides insight into what is happening and at the same time concretises

ideas about these processes. It is important to write those ideas down into memos, store them

and be able to access this information in the upcoming stage of analysis. Writing memos is

accounted to be the fundamental process in generating a grounded theory through which the

researcher analytically interprets the data: segmenting and coding are mere tools to structure

the data in order to ease the development of new ideas and interpretations. Memos are meant

to conceptualise the data, to produce an abstract account of the phenomena, rather than to

describe them [1: 245].

During the processes of transcription, segmentation and coding, we will write memos to

structure our thinking, to record our ideas, hypotheses and remarkable phenomena: they are

the account of ourselves talking to ourself [1: 119 & 249]. As literature on GT describes, they

will often be messy, incomplete and consisting of only nascent ideas at first. Nevertheless, as

the process of growing a grounded theory progresses, they will become increasingly clear and

consistent [1: 249]. To be thorough, memos about memos will be written and treated like data

as much as the encoded transcriptions [1: 258].

Appendix B: the Analysis 18

The main characteristic of memoing applied here relates to the emergence of codes and how

they are saturated. In the later stages these memos will be used in writing more extended

memos to correlate the codes to other codes and properties of the particular answer. These so-

called extended memos will be regarded more as drafts of the first research report. It is them that

will evolve into more concrete, better structured and more expounded accounts of the results of

the research.

6.6 Summary

The aim of initial coding is to capture the detail, variation and complexity of the source data

[9]. The initial descriptive codes provide indicators for the more abstract codes ultimately

aimed at [1: 272]. Throughout this process the researcher gets acquainted with the data and

establishes preliminary understanding of what is happening: patterns begin to emerge.

Recognition of these patterns will give the researcher confidence in the coding process and

their own creativity [1: 276]. Concurrently, he partakes in the act of memoing to aid

saturation, and structuring of codes. The emerging codes become less descriptive and more

analytic and, as a consequence, saturate [6: 46]. Complete saturation is reached when the

vocabulary fully covers all variations in the data. When – after some time and effort is spent –

the emerged codes cover the data to a satisfying extend, one is ready for the subsequent phase

of categorising.

7. How to categorise

7.1 What is categorising?

Categorising is the analytic step in GT in which certain codes are selected that appear to have

more importance than others or are more abstractly describing the common themes in data.

During categorising, the researcher is obliged to look at relations between the codes with the

aim to raise the level of concept reached with coding from descriptive to analytic. The

combination of codes and relations amongst them results in categories that help the researcher

in constructing a better theory or hypothesis [3: 186].

Appendix B: the Analysis 19

7.2 How is it applied

The codes that came up during the previous phase have to be organised into groups or

subcategories and related to one another. In GT a hierarchically ordered structure of

subcategories can develop from which a few core categories ultimately emerge. As with coding,

categorising has its own process of saturation. Much analysis and reanalysis is required to verify

categories – especially the core categories – through saturation, relevance, and workability [1:

280]. Those relations among categories and subcategories are regarded as theoretical properties

of the raw data as opposed to the perceptible intrinsic properties [1: 196]. Researchers then are

encouraged to find major themes by comparing the initially found categories and determining

its relevance [1: 194]. Such a major theme is to be called a core category, which relates to as

many other categories and their properties as possible, and it accounts for a large portion of the

variation in a pattern of behaviour [1: 280].

7.3 Inherent difficulties

Similar to memoing, this process of categorising is more high-level than coding. The

researcher’s ingenuity is pushed to its limits in order to gain creative insights and come up with

unapparent relations between different behaviours. It is because this resemblance that the

memos of the previous phase are very helpful in devising the categories. Even more than with

coding, developing categories is no algorithmic task: it relies purely on insight and creativity of

the researchers.

One should be wary of overlap in categories, as that results in unnecessary intricacies and

ambiguities, hence thwarting reliability [5: 208]. Also, an overlap increases the number of

categories which has the same negative results as with coding (see section 6.4.3). Around five

to ten categories seems to be a reasonable aim, depending on the sample size [5: 206].

Appendix B: the Analysis 20

8. Constructing grounded theory

The finishing step is of course the construction of the grounded theory itself. However, not

much is left to be said because most of the work is already been done in the previous phases.

However, there still is no theory. What is still in need of our exertion?

During coding, categorising and its concomitant memoing, structure in the raw data became

apparent. One or more core categories have emerged and memos contain all information

necessary to form an extensive theory.

8.1 What to do?

The next step is to write the research thesis, which is more than just mere reporting: writing

and rewriting are crucial phases in the analytic process of writing down a theory [3: 154].

Compelling arguments for the theory at hand are to be manufactured. The researcher should

ask himself: “So what? What is it about?”. Sections containing strong arguments should answer

this question without hesitance [3: 156]. Through sorting the memos following his own

scheme, even more cross joints become visible. The emerging sorting then could serve as basis

for the developing grounded theory [1: 120]. Again, memos serve as the fundamental link

between data and the emergent theory [1: 249].

Besides the writing, literature review is an important process of this last phase as well:

knowledge of a wide range of disciplines enhances a researcher’s ability to see his emergent fit

to a developing theory. Reading from both the research domain and other disciplines opens the

researcher to serendipitous discovery of new theoretical codes, categories and relations from

other disciplines. The more open one is to recognising the larger integrative patterns around

us, the more one can exploit their imagery in proposing theories of behaviour [1: 283]. The

extensive use of literature also enables a researcher to remark gaps in theorising and helps him

see whether something discovered is interesting, useful or even new [1: 254].

Appendix B: the Analysis 21

8.2 Contributions and intended result

Of course, at first, the contributions of the theory under construction to the specialty field

might not be as clear as one would like, but theories can prove their relevance because the

method of inquiry is relatively new to the area under investigation [3: 153]. New methods of

experiment and analysis pave the way for other researchers by opening their eyes to other

previously unapparent aspects of their research domain: the theory should shed light upon a

phenomenon from a different angle than the existing body of research already did.

Furthermore, it should contain intrinsic value as well: theories should be falsifiable in order to

have any scientific value [2, 10]. More falsifiable theories describe more aspects of the inquired

in a broader sense and hence are better. Because of that, good theories should be plainly put

and precise: the more intelligible a theory is, the easier and more accurate its effects are

reproducible, and the better it could be tested [2].

The result of the whole process, from inquiry to writing, is a theory that theorises about the

meaning of actions and relations between them [3: 151]. The emergent theory is vividly

described and cogently underpinned with the use of the written memos accompanied by an

introduction and conclusion. Besides that, extensive literature review from the field under

investigation as well as other domains back up the constructed grounded theory. The whole is

an argument fully based in empirical observations [9].

Appendix B: the Analysis 22

9. Threats to validity

Most threats to validity were discussed alongside the appropriate topics. However, few subjects

are in need of some elaboration, more than previously accounted for.

9.1 Falsifiability

Because GT is data-driven, some adversaries of GT claim that theories devised in such manner

do not contain any scientific value: they object that, when rejection should occur because of a

fundamentally disparate occurrence, grounded theorists do not even renounce the theory; they

simply modify it. Broad coverage then is guaranteed, but it then cannot distinguish the correct

from the faulty incidents.

As with every inductive method, eventually high falsifiable hypotheses should be formed; in

GT however, this should only happen when reached fairly advanced stages of the theory

building process [1: 212].

9.2 Experience

GT is a difficult method of experiment and analysis: novice researchers often underestimate the

dedication necessary to come to interesting results. The skill of a grounded theorist is to

abstract concepts by leaving the detail of the data behind, lifting the concepts above the data

and integrating them into a theory that must explain, not merely describe what is happening

[1: 272-273]. Such skills develop while applying GT. Hence, inexperienced researchers often

do not come up with as striking new theories as the seasoned researchers. Nevertheless, when

applied correctly, at least no incorrect theories are constructed.

Appendix B: the Analysis 23

10. References

[1] BRYANT, A., AND CHARMAZ, K., Eds. The SAGE Handbook of Grounded Theory. Sage

Publications, 2007.

[2] CHALMERS, A. F. What is this thing called Science?, 3rd ed. Open University Press,

2008.

[3] CHARMAZ, K. Constructing Grounded Theory. Sage Publications, 2006.

[4] CHI, M. T. H. Quantifying qualitative analyses of verbal data: A practical guide. Journal

of the Learning Sciences 6, 3 (1997), 271–315.

[5] ERICSSON, K. A., AND SIMON, H. A. Protocol Analysis: Verbal reports as data, 2nd ed.

MIT Press, 1993.

[6] GIBBS, G. R. Analyzing Qualitative Data. Sage Publications, 2007.

[7] HUGHES, J., AND PARKES, S. Trends in the use of verbal protocol analysis in software

engineering research. Behaviour & Information Technology 22, 2 (2003), 127–140.

[8] KWINT, B. How do we look at uml? BSc. Thesis at Leiden Institute of Advanced

Computer Science, August 2010.

[9] LYONS, E., AND COYLE, A., Eds. Analysing Qualitative Data in Psychology. Sage

Publications, 2007.

[10] POPPER, K. R. The Logic of Scientific Discovery. Rootledge Classics, 2002.

[11] SALDANA, J. The Coding Manual for Qualitative Researchers. Sage Publications, 2009.

[12] YUSUF, S., KAGDI, H., AND MALETIC, J. I. Assessing the comprehension of uml class

diagrams via eye tracking. International Conference on Program Comprehension 15 (June 2007),

113–122.

Appendix C2: the Active Processing Assumption 1

Appendix C

The Active Processing Assumption

Transcript of participant 21, coded according to the colour scheme introduced in section 6.1

of the accompanying thesis.

Example

EQ
P
[T] [D] [p1] Ok [p1] So I’m looking for a task execution, so I’m looking on the right side through the [p1]
graphics. I see [p1] task [p1] schedule, log, so I prefer it’s a history call so I’m going for a log. [T] On
the left paper I’m just scanning.. [p1] Is there a time limitation or something?
E
There’s no time limitation.
P
Ok. Then I’m just reading it once, [p1] slowly. {mumbles while reading} [p3]. I found something again:
[p1] logging? [p2] Ok.. [p3] I’m looking for the history right?
EQ
P
Ok. [p3] [D] [p1] [T] The problem is in the text it tells me it’s batch result table [p3] or the batch [D] log
[T] table. So [p1] I guess [D] it’s the [T] log table [p1] in the database [p2] the history.
E
The log table?
P
It’s not quite [p1] just guessing.
E
The log table.
P
[p2] Yes. [p2] Oh, no, sorry [p1] “The additional logs can be found [p1] The batch result table is the
basic [D] answer
E
The batch result table?
P
Yes.

Architecture 1: Alpha

EQ11
P
[D] Personal details, source [p1] [T] external [D] [p1] Ok. [p1] [T] [p2] [D] [p1] [T] [p3] [D] [p1] [T] I think
it’s the [p1] Paraplu-system.
E
Paraplu system?
P
Yes.

EQ12
P
[D] [p2]
E
Try to think out loud if you can.
P
[p1] I see at the graphic [p1] on the left it’s a search [p1] has to be a structure it works [p1] with the
integration service. [T] I’m back in the [p1] document on the right [D] [T] There was something [p1]

Appendix C2: the Active Processing Assumption 2

before the preparation interface service [D] is the [p1] [T] headline of the footchapter. It’s a proxy
service [p2]
E
Proxy service?
P
Yes.
E
Ok. Third question ..
P
[D] {Says something}
E
Sorry
P
No..

EQ13
P
[D] [T] [D] [p1] Ok, [p1] I’m looking again at the [p1] graphics if there’s something like searching. [p2]
Webservice [p1] There is something called search repository hidden down on the left. [p1] Person
data, Paraplu [p1]
[T] I’m looking for [D] words in the text like search repository [T] or repository. [p2] [D] [p1] [T] {Mubles
text} [p2] Last sentence: “In this way Paraplu will be search based on the application profile.” [p1] [D]
[p3] [T] [p3] The question was how does Paraplu [D] search? Or..
EQ13
P
[p1] [T] [p3] [D] [p2] It works all with the preparation interface system. [p1] It gets, [p1] I have to look at
the graphics for this one, it goes out and up [p1] to the left preparation interface system which gets
down [p1] the search repository [p1] of the Paraplu data webservice personal data.
E
Ok.

Architecture 2: Beta

EQ21
P
[T] [p1] [D] Ok. [p1] I look at the [p1] graphics first. [p1] It’s a bit [p1] unstructured, so I’m starting
somewhere in the middle [p1] bus messages, no [p1] it’s not related [p1] manage use database, user
database, [p1] private [p1] webinterface sounds a bit like [p1] security [p1] webfrontend, [p1] here’s
authentification, there’s another one which could sound like.
[T] I’m going back to the text [D] because the [p1] paper is not good [T] [p1] So, I’m looking for [p1]
eight [p1] numbers [p1] something written out, but [p1] It’s not clearly, so I’m starting again [p1]
Enterprise, intercommunication provides service, [p2] straight connections are not possible [p1] only
via webfrontend.. [p2] Login names must be unique and passwords must be between 6 and 9
characters, so eight characters would be good.
E
Ok.

EQ22
P
[D][T][p1][D] The what users?
EQ22
P
Authenticate, [T] ok .. [p1] [D] [p1] Looking at the graphic webfrontend webinterface. [p2] It says [T] it
generates the bus message, so it’s unclear.. [p3] So in the text it states that in the middle [p1] that its
[p1] enterprise message bus takes care of it. [p3] It’s working on the authentication system which is
connect to user database. [p1] Ok. [p1] So, [p1] message [D] I think [T] would no [p2]
E
No?
P
No.

Appendix C2: the Active Processing Assumption 3

EQ23
P
[T] Ok [p1] [D] So again, [p1] external system is on the graphic [p1] request availability [p1] is on top
left [p1] that’s generates bus message: it’s all [p1] connect somehow to the [p1] enterprise bus.
[p1] So, [p1] external [T] request system is the thing [p1] “All components can be collect [p1] that [p1]
accept something that .. {mubles text}” [p2] To verify, can you [p1] repeat the question again?
EQ23
P
Availability. [p3] Right now I’m just scanning the document for availability or anything which could give
me clues.. [p3] There’s no [p1] special thing about this one. [p1] Messages can be ignored is a
general.. [p2] It’s unclear about this one so I guess yes, [p1] they can be ignored.

Architecture 3: Gamma
EQ31
P
[D] [p2] Ok [p1] The graphic looks quite good for it, [p1] it’s nicely strucured [p1] I think.. [p1] Backoffice
system is easy to find, so
[T] I will look in the text.. [p1] [D] One of the [p1] [T] services. [p3] Ok, so [p1] there’s nothing about, the
text about big about it’s. I have to [p1] [D] look at the [p1] graphics only.
So, [p2] client data administration let me put it everything in the graphic basically. [p2] Is this as an
answer to you..?..
E
Yes? Ok.

EQ32
P
[T] [p1] [D] [p3] No.
E
No?
P
No.

EQ33
P
[T] [p1]
E
Try to think out loud if you can.
P
Yes, I’m [p1] [D] I read this [p1] before [T], so I’m just looking. I think it was 300k. [p1] I’ll have to
check. [p1] “Decreased backoffice, mortage actions,.. requests may have a maximum size of 300kB”
[p1] So, [p1] yes, this could [D] be a limitation. [p1] I just read before, just remembered somehow.. [p2]
It’s not really in the graphics so [p1] [T] in the text, 300kB [D] [p1] [T]
E
So your answer is yes?
P
Yes.

Architecture 4: Delta

EQ41
P
[D] [p2] So, in the graphic, [p1] it’s [p1] very nice [p1] nicely structured, [p1] on the left is [p1]
management server, it’s using SOAP.. [p2] So, [p1] billing system, {mumbles} [T] ok, [p1] back to the
text [D] [p1] [T] booking for management server [p1]. There’s no management server in the headline
[p1] so I have to search for it. [p3] So, [p1] there’s something .. [p1] management [p1] no. [p1] Normal
read. [p3] Question again please?
EQ41
P
[D] [p1] [T] [p2] Billing information [D]
E
Billing information.

Appendix C2: the Active Processing Assumption 4

P
Yes.

EQ42
P
[D] [p1] Ok, I’m back in the right page. I’m looking for the [p1] schedule creator [p1] thing. [p2]
{mumbles text} .. “get their credits .. [p1] using SOAP to access the webserver.” [p3] [T] Question
again [D] please?
EQ42
P
[p1] [T] The problem is here [p1] the definition ‘node’. I can [p2] .. {mumbles} .. before [D] I guess it’s
the [T] webserver [p1] but I’m unsure.. [p2] {mumbles ‘node’, as if he’s looking for that word in the text}
[D] [T] [p2] [D] It says [p1] it communicates [T] through the webserver [D] by the means of SQL. [p1]
So I guess it’s webserver.
E
Webserver?
P
Yes.

EQ43
P
[D] [p2] [T] [p3] [D] [T] [p1] I think no.
E
No?
P
No.
E
Ok.

