
Internal Report 2011–01 January 2011

Universiteit Leiden

Opleiding Informatica

Improving Mapnik With

Label Placement Algorithms

Bertram Bourdrez

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Improving Mapnik with Label Placement Algorithms

Bertram Bourdrez, Leiden University

January 27, 2011

Abstract

The Mapnik map renderer, used by the OpenStreetMap project, suffers from poor aesthetic
qualities. One of the issues affecting the quality of the output is the placement of labels. Labels
are too small, poorly positioned or missing altogether. As automatic label placement has been a
subject of research in computer science, an obvious solution would be to apply one of the algorithms
developed over the past two decades to the problem. This paper attempts to research, implement
and evaluate such an algorithm that could be implemented within the flexibility and performance
constraints of the OpenStreetMap project while providing accurate and visually pleasing output.

1 Introduction

With the rise of computer- and internet-based mapping applications, the desire has come — inspired
by the free software model — to have access to a freely usable source of map data. The ability
to embed commercially available map data into an application or website is seriously limited by a
host of restrictive licensing conditions, and is often impossible due to technical and legal constraints.
The success of Wikipedia and other user-contributed sources of data has led to the idea of user-
contributed mapping data as obvious approach that could provide high-quality unencumbered data
to non-commercial users and companies alike.

The OpenStreetMap project aims to create such a freely available world map, describing itself as “a
project aimed squarely at creating and providing free geographic data such as street maps to anyone
who wants them.” The project provides an infrastructure for volunteers to provide and edit mapping
data; many of these volunteers are ordinary people who explore and record their environment. Unlike
commercially available sets of data which often only contain data relevant to a particular usage,
OpenStreetMap aims to record any information which can be agreed on as relevant to users of its
geographic data.

1.1 Problem description

For all its strengths, OpenStreetMap is let down by its map renderer, Mapnik, which generates maps
which, while technically quite adequate, are not particularly visually pleasing. One of the issues with
the Mapnik -generated maps is that they do not show enough labels for towns and regions, and the
labels it does display are too small. Both of these faults can be traced back to a very poor labeling
algorithm. In order to improve Mapnik, the labeling must be improved dramatically. This involves
finding an algorithm to solve the Point Feature Label Placement problem. Thousands of modifications
are made to the OpenStreetMap dataset every day, and new maps (at a wide range of zoom levels)
have to be generated after every modification, making it imperative that the algorithm runs in as
short a time as possible.

Therefore, our goal is to find an algorithm that adequately labels maps for the OpenStreetMap
project and provides pleasing and legible results in a short runtime.

The theoretical background is discussed in Section 2, with a description of the problem some
solutions in 3. The existing algorithm is discussed in Section 4. A possible solution is discussed in
Section 5, with the three solving algorithms discussed in Sections 6, 7 and 8. The evaluation method
is described in Section 9 and the conclusions are summarised in Section 10.

This paper is a bachelor thesis, under the supervision of Walter Kosters (Leiden University).

2



Bertram Bourdrez, Leiden University

2 Label Placement

Computer-generated cartography was seriously discussed for the first time in the early 1960s, when
guidelines [1] for mechanically-generated maps were drafted, despite the necessary equipment and
software being unavailable available at the time. The real breakthrough came in the early 1980s, when
the price of mechanical map generation was about to overtake manpower (cartographers spend most
of their time on label placement, placing about 20 to 30 labels an hour [2]).

2.1 Types of labels

The cartographic conventions [1] set out in the 1960s specify three general kinds of labels to be placed
in general-purpose maps:

1. Point feature labels are labels associated with a point feature such as mountain peaks, stations,
libraries as well as — at low1 zoom levels — towns, parks and lakes. These labels are best placed
close to the object they denote.

2. Area feature labels are used to mark labels with clear boundaries, such as towns and lakes
at higher zoom levels, and countries and seas at lower zoom levels. These labels are best placed
inside the area in question.

3. Line feature labels are placed alongside line features such as rivers and roads. Whereas point
and area features are generally placed horizontally for the sake of legibility, line feature labels
follow the general shape of the line, and at high zoom levels are even positioned inside the outline
of a road or river.

These three kinds of labels require different algorithms. Compared to point and area feature labels,
line feature labels are obviously a completely different type of label, the placement of which has less
to do with avoiding conflict with other labels and more with finding an ideal contour to follow that
is both intuitive and easy to read. These labels are generally only rendered at the very highest zoom
levels, at a zoom level where there are very few point feature labels. Rendering line feature labels is
another interesting problem, but it lies outside the scope of this paper.

Point feature label placement focuses on trying to place the labels for each point feature in the
most optimal place, without overlaying labels on each other or other features. Various strategies for
placing area labels exist, although by their nature they tend to be easy to place. When used under the
right conditions, area and point feature labels can be placed simultaneously with the same algorithm.

2.2 Desired properties

To prevent confusion, point feature labels are ideally placed to the immediate right or left of the point
they label, with a slight preference to the right. The label should line up below or above the point,
which many algorithms interpret to mean that the top or bottom of the label should line up with the
point, which conveniently divides the area around the point into four quadrants in which a label can
be placed (see Figure 1).

1

2 3

4

Figure 1: Possible positions of a label in one possible order of preference

1Note that low level of zoom means “not zoomed in much”, i.e., zoomed out. This might seem contradictory to some.

3



Bertram Bourdrez, Leiden University

In many cases this is too restrictive, however, and an additional four positions can be allowed as
outlined in Figure 2. Note that for many algorithms, this increases the complexity of the problem by
a factor of two or more.

5

6

8

7

Figure 2: Another four possible label positions, to be combined with Figure 1

Other algorithms allow a label to be placed anywhere, as long as the point with which it is
associated lies somewhere on the edge of the bounding rectangle.

3 PFLP algorithms

PFLP (Point Feature Label Placement) can be defined in a variety of ways, depending on the type of
map and the demands placed on it. Most versions of the problem reduce it to a relatively narrowly
constrained question, either to reduce the complexity or to make sure that the solution fits a specialist
problem at hand.

At its most general, the problem is defined [3] as

A set of point features and a set of constraints (such as permissible amount of overlap) for
placing labels. The goal of the problem is to label each feature so as to satisfy the constraints.

The constraints used are the ones that make sense from a usability, aesthetics and complexity point
of view. Commonly applied constraints include:

� Amount of overlap allowed, both between the labels themselves and between the labels and the
rest of the map features.

� Positions of a label which are acceptable — either a discrete number based on what is known
to be a satisfactory and unambiguously distinguishable placement, or any position that meets
certain distance and relative position criteria.

� The angle at which a label may be placed. Most algorithms currently do not change the angle
at which a label is rendered as it increases the complexity and is difficult to do in a way which
conforms to cartographic standards.

In addition there is the Point Selection problem. If one accepts a solution where some labels do
not appear, selecting which labels to show and which to hide is a separate problem [4] which must be
solved at the same time. The importance of labels is often not given, or at least not with sufficient
accuracy that would allow the algorithm to determine whether one or more labels can be dropped.

3.1 Satisfaction algorithms

Due to their clearly bounded complexity, satisfaction algorithms were among the first applied to the
PFLP problem.

Lemma 3.1. PFLP with no overlap, no selection and two acceptable placements per label can be
reduced in polynomial time to 2sat.

4



Bertram Bourdrez, Leiden University

Proof. For each point p, consider both possible label placement p1 and p2. Find all placements
p′i′ , p

′′
i′′ , p

′′′
i′′′ , . . . for other labels that intersect with this placement. Construct logic statements of the

form ¬(pi ∧ p′i′) = ¬pi ∨ ¬p′i′ for each of those intersections. Finally, construct for each label p state-
ments of the form ¬(p1 ∧ p2) = ¬p1 ∨ ¬p2 to specify that at most one label per point is placed and
statements of the form p1∨p2 to ensure that at least one label per point is placed. Each of these steps
can be performed in O(n2) time for n labels. The conjunction of all these statements can be computed
using 2sat.

This means that PFLP problems with two possible placements are computable in real-world sce-
narios.

Lemma 3.2. PFLP problems with no overlap, no selection and two acceptable placements per label
can be computed in polynomial time and are NL-complete.

Proof. Since the conjunction of disjunctions above is in Conjunctive Normal Form, 2sat algorithms
can be applied. These are known to run in polynomial time and nondeterministic logarithmic space [5].

Using a similar technique we can reduce the 3sat problem, which is NP-complete, to the PFLP
problem with more than two positions. Therefore, allowing more than two placements per label requires
a more constrained version of the problem or a solution that is not guaranteed to be optimal.

3.2 Other deterministic algorithms

Greedy algorithms perform surprisingly well on the PFLP problem. They will make decisions based
on what provides the greatest immediate improvement at any point during the algorithm — which
generally means placing a label in an unoccupied position if possible. When no such position exists, such
an algorithm backtracks to the last position where an alternate choice was available. These algorithms
perform remarkably well on simple data sets, but suffer from variable run times and struggle with
more complicated data sets [6].

Many algorithms restrict the size or shape of a label to either specific shapes (circles [3] and
squares [5] provide good results) or to a single uniform rectangle size. These algorithms use geomet-
ric properties of the labels to exclude impossible placements and therefore reduce the search space
considerably. Of course, the size constraint on the labels means that this solution can only apply to
certain highly specific domains.

3.3 Non-deterministic algorithms

Selecting a placement for n labels gives nq possible solutions when choosing between q possible label
placements per label. For all but the lowest values of n and q the complexity of performing anything
approaching an exhaustive search through the solution space becomes very time-consuming. Therefore
we turn to non-deterministic algorithms like Simulated Annealing and Evolutionary Algorithms.

Annealing is a metallurgical process which is used to change properties such as hardness and
strength. To this end the metal is heated until it is white hot, and then slowly cooled down. During
this process, the heat imparts energy onto metal atoms, causing them to oscillate more wildly. During
the cooling down process, atoms will find new — and hopefully more — positions to settle down.
While creating a computer model of this cooling process, chemical engineers came up with a model [7]
where during each step, atoms were given a random displacement. If the total amount of energy
E in the system was decreased by this motion, the displacement was accepted and the atom was
moved. However, if the energy went up, the movement would be accepted with a likelihood of P =
exp(−∆E/kBT ), where ∆E is the increase in energy, kB is Boltzmann’s constant (a certain amount
of energy per degree of temperature) and T is the temperature. As temperatures go down during the
cooling process, the likelihood of displacements that increase energy will go down steadily.

Simulated Annealing is an algorithm which mirrors the process of metallurgical annealing: a
process in which randomness is introduced in order to bring about small, iterative improvements.
Intriguingly, it also closely mirrors the algorithm that simulates the annealing process by iteratively

5



Bertram Bourdrez, Leiden University

accepting new states that are either better than the current state or — with ever decreasing likeli-
hood — somewhat worse than the current one [8]. In this “simulation of simulated annealing” one can
even use the same probability function P = exp(−∆E/kBT ) or a variant thereof.

Evolutionary Algorithms [9, 10] treat candidate solutions to a problem as individuals in a
population and uses well-known evolutionary biology concepts such as crossover, mutation and recom-
bination to create new solutions which are then added to the population. A selection mechanism picks
the individuals which are to survive to the next iteration of the algorithm based on their suitability as
a solution to the problem, as calculated by an objective or fitness function. There are various different
kinds of Evolutionary Algorithms which differ, for example, in the way in which they represent the
solution as a genome, and the operations they perform on them during every generation.

Evolutionary Algorithms and Simulated Annealing are both non-deterministic algorithms which
use a random element to attempt to avoid getting stuck in a local optimum; Simulated Annealing will
randomly accept a worsening iteration, and Evolutionary Algorithms use selection algorithms which
keep a balance between locally optimal as well as clearly non-optimal individuals in the gene pool.

Both algorithms need an objective or fitness function which evaluates a solution and represents
the degree to which it fits the constraints as a number.

4 Mapnik

Mapnik is one of the map rendering tools used by the OpenStreetMap project. The only popular
alternative, osmarender, is considered to be a dead end in development as it is written in XSLT, which
puts serious restrictions on performance and maintainability.

Mapnik is therefore the main way of representing OpenStreetMap data. It generates the tiles for the
main slippy map2 on the http://www.openstreetmap.org/ front page and most of the other graphic
representations generated for the project.

4.1 Design

Mapnik works by parsing an XML configuration file called a style file, which contains information about
which features should be rendered. These features are organised in layers, which the renderer outputs
from bottom to top — i.e., the first layer defined in the style file is rendered first, and subsequent
layers are rendered over it, possibly obscuring elements previously rendered. Each layer specified in
the style file has a list of geographical features which should be represented on that layer, and style
properties such as colour and width for those features. Feature types include (using the names of the
Mapnik classes):

� Point, such as towns and mountain peaks.

� Line, including roads and rivers.

� Polygon, used for the outlines of objects such as built-up areas and lakes.

� Text
Unfortunately, both line features and point features are handled by almost exactly the same
code path and data structures, distinguished only by a label placement flag:

– point features are always aligned horizontally, and need to be placed near their associated
point.

– line features should match as closely as possible with the line (road, waterway) they label.

� Shield, for marking motorways with the road number on a coloured background (see Figure 3).

2A slippy map is a map that can be dragged around, allowing the user to explore an arbitrarily large area, and change
between zoom levels, without reloading the web page.

6



Bertram Bourdrez, Leiden University

� Building.

� Marker, for icons that denote things like mail boxes and railway stations (see Figure 4).

Various other types are defined for future expansion.

Figure 3: Example of motorway shields
(S112 and A10)

Figure 4: Example of markers (restau-
rants, recycling point, hotel)

4.2 Design deficiencies

Due to the layered design, Mapnik has some issues which make proper label placement more difficult.
Information gathered in the process of generating one layer is not propagated to the next, thus requiring
duplicate work or loss of information. Problems include:

� Text is rendered on various different layers, making it hard to track what is already on the map,
and making it impossible to undo unfortunate placements in later layers.

� Information about geographical features that might conflict with a label placement is lost when
a layer is concluded. Therefore, text is often rendered on top of important landmarks. Only
motorway shields and bitmap markers are exempt from this problem, because they are rendered
last.

� Text is supplied to the text rendering layer with only a set of coordinates as indication as to
where it should be rendered. Whether or not it is acceptable to render onto those coordinates,
or if the label should be next to the coordinates, is not expressed.

� Labels are supplied to the renderer in order of importance, but without a measure of exactly
how important a label is. This makes it impossible to determine whether a poorly-fitting label
should be rendered at all.

� The outlines used to calculate potential collisions between labels are the bounding boxes of
the individual letters instead of the bounding boxes of the whole label. While this allows — in
theory — for more elegant and precise fitting of labels, it does increase the complexity of the
algorithm by an order of magnitude.

However, the most obvious problem with the text rendering in Mapnik is the lack of an actual label
placement algorithm. When the text rendering layer is asked to render a label, it attempts to place
it in the exact position specified. If this is not possible due to a label already being in that position,
the label is ignored and processing moves on to the next label. This pseudo-algorithm explains why
the default font size in Mapnik is so small: bigger fonts would cause too many features to disappear
from the map. If the legibility of Mapnik -generated maps is to be improved, font sizes will have to be
increased and therefore a higher quality label placement algorithm is required.

7



Bertram Bourdrez, Leiden University

5 Algorithm design

Given the size and complex nature of the search space, it is clear that it is unlikely that the single
best solution can be found in a reasonable time. Therefore we must define an objective function that
will approximate the quality of a solution. Finding a solution which largely conforms to the following
quality guidelines will suffice — indeed, manual label placement generally involves finding such an
imperfect solution.

Because of the inconsistent use of terminology in literature on the subject, we begin by defining
the following:

Definition 1. A point is an (x, y) coordinate on a map which should be labeled.

Definition 2. Labels are the text which denote what a point represents, plus the rectangular bounding
box around the text.

Definition 3. Each point has one or more placements, a finite number of possible positions where
a label could be placed.

5.1 Data sources

Label placement is one of the last stages of the map rendering process. By the time the label rendering
layer is invoked, the map should already contain all the geographical features that are to appear on the
finished version. Section 4.2 describes the layered approach to the rendering process, and our labeling
algorithm is one of the last layers to be applied.

Consequently, input to the algorithm consists of the map as rendered up to that point, plus
information of what the label placement algorithm has to do, in the form of a set of points. Each point
is provided with the following information:

Field Type

Font size Integer

Colour RGB value

x coordinate Floating point

y coordinate Floating point

Letter bounding boxes List of rectangles

Table 1: The metadata associated with labels in Mapnik

More fields are provided, but those are either not relevant to the placement, or would only be
relevant when doing more advanced placement (like rotation and wrapping).

Obtaining the relative importance of town labels from this OpenStreetMap data alone is difficult:
OpenStreetMap only supplies four levels of detail for town labels, which make up the majority of the
rendered information at lower zoom levels (see Table 2).

hamlet < 1,000

village 1,000–10,000

town 10,000–100,000

city > 100,000

Table 2: Populations in OpenStreetMap

To counter this problem, official population statistics from Dutch government sources [11] were used
as an additional input. Even though it is possible to create a usable map from the OpenStreetMap
data alone, the government numbers provide a more challenging problem as well as more pleasing
output. Additionally, OpenStreetMap does provide a mechanism for recording a town’s population, and
therefore it is not inconceivable that user-supplied population data will make it into the OpenStreetMap
database in the future.

8



Bertram Bourdrez, Leiden University

Using these sources of information, a model is created in which each point is stored along with the
metadata and information necessary for subsequent calculations. For each label, four or eight possible
placements are created (see Figures 1 and 2). These placements are then checked for intersections with
any of the other placements so that future collision detection calculations can be sped up by being
performed on only the relevant neighbouring placements.

One piece of information of note is the importance which is stored per point. The importance is a
value which indicates how important a point is. Ideally this value is very high for points which should
never be hidden, and very low or even negative for unimportant small towns.

5.2 Desired properties

In order to rank different candidate solutions we need an objective measure of quality. Such an evalu-
ation function will be based on cartographic convention and aesthetic value — or at least a reasonable
approximation thereof. We will attempt to list the qualities that can be evaluated in a reasonable time
by a computer algorithm.

5.2.1 Overlap

The most obvious and easiest to calculate criterion is overlap, specifically the number of overlaps
between pairs of placements. By keeping a list of which placements overlap it is easy to check if
both of those places are actually selected to be used, and if so, a collision is recorded. The overlap
will be calculated based on the bounding rectangles of the labels — a map in which the bounding
boxes overlap but the label text does not will still look very crowded and undesirable, and calculating
collisions between rectangles is an order of magnitude faster than anything else.

5.2.2 Label omissions

In most circumstances, the objective is to place as many of the available points on the map as possible.
Therefore the algorithm will be supplied with a surplus of points, with many of the labels not making
it into the final map representation. The algorithm will be rated on the number and importance of
the points that have been omitted. Leaving out a capital town is inexcusable, whereas leaving out
insignificant objects is perfectly acceptable, since they are only supposed to be rendered if the space
is not occupied by anything else.

5.2.3 Preferred position

Since Western languages are read from left to right and from top to bottom, our preferred (Western-
language) map will have the labels to the right (or possibly below) the point they label. This means
that not all possible placements are treated equally, as seen in Figures 1 and 2.

5.2.4 Distance between labels

In parts of the map with relatively low amounts of conflict between, various solutions might be possible.
To find a preferred solution from the various possible ones, the distance between labels is taken into
consideration. Where possible, placing labels away from each other is preferred to reduce visual clutter.

5.2.5 Overlap with other map features

Map design guidelines [1, 12] suggest that labels should not be placed on top of important map
features, where they would hinder the user’s view of potentially important information. It is one of
the most important quality measures for cartographers, but one of the least considered ones in the field
of automatic label placement due to the difficulty in quantifying the amount of information obscured.

9



Bertram Bourdrez, Leiden University

5.3 Objective function

Armed with a model, we will now attempt to create algorithms that return an acceptable solution.
How acceptable a solution is will have to be determined according to the previously mentioned quality
characteristics. For all these values, it goes that lower is better.

Each point can be in two states, shown or hidden, and for each point, one particular placement is
considered as “picked.” All calculations are done as if all the hidden points will not be shown, and the
label will be rendered in the “picked” placement.

For each point, the following is calculated:

1. Overlap (see Section 5.2.1) The objective function for a label is defined by calculating which
other labels it collides with. For each of these collisions, the point with the lowest importance
(see above) will have the difference in importance between the two points added to its objective
value.

2. The objective function associated with each hidden (see Section 5.2.2) label is simply the
importance of that label.

3. For the preferred position (see Section 5.2.3) of a label according to convention, simple con-
stants are used, with a higher objective value for less desirable positions such as top left.

4. Distance between labels (see Section 5.2.4) is measured by simply checking which nearby
(but non-overlapping) placements are in use. Labels which are closer together cause a higher
objective value.

5. Working out the amount of obscured information (see Section 5.2.5) is quite a difficult prob-
lem, as the relevant geographical data needed to determine whether a placement overlaps with
anything significant is discarded in earlier steps. Even if this information was available, it would
still be quite computationally intensive to do anything with it.

Therefore we will do something simpler and cheaper: we calculate the difference in the colour of
the pixels obscured by the letters. For each such pixel we measure the Euclidean distance in the
RGB colour space between it and its neighbours.3

For each placement, we calculate the following:

Algorithm 1: Algorithm for calculating the information of a rectangle

Sum = 0 ;
foreach pixel p do

if p obscured by text then
foreach neighbour n do

Sum = Sum + (p.red − n.red)2 + (p.green − n.green)2 + (p.blue − n.blue)2 ;
end

end

end

Note that this calculates the square of the distance, but as we are only looking for relative
information values, we can forego the expensive square root. We then order the placements by
this value and apply penalties when the placements that obscure more information are selected.

5.4 Implementation

The original approach to the problem was to modify the Mapnik renderer to hold off on placing the
labels until they were all processed, and then perform a labeling pass. However, the quality of the Map-
nik code leaves something to be desired, and adding functionality would involve a significant rewrite.

3There are more sophisticated ways of calculating colour difference, such as CIEDE2000 [13], which involves more
than 15 variables and dozens of floating point calculations including trigonometry and square roots.

10



Bertram Bourdrez, Leiden University

OpenStreetMap

Mapnik

Population data

Point and
label data

QuadTree

ModelUnlabeled map

Solving
algorithm

Information
value

calculation

Genetic
Algorithm

Simulated
Annealing

Brute
Force

Text
renderer

Figure 5: Diagram of the data flow in the rendering process. Rectangles are algorithms, ellipses are
data. Dashed lines are optional.

Therefore it was decided to modify Mapnik to create a map without any labels on it, accompanied by
a list of the labels and their metadata (see Table 5.1).

With this data we can create a model and solver that is not encumbered by any of Mapnik ’s design
flaws. We can choose a language that is more suitable to rapid prototyping and frequent design changes.
Additionally, since the map is already rendered, we can repeatedly run the map labeler without having
to go through all the other stages of the map creation process.

Figure 5 shows the steps involved in creating a labeled map.

5.5 Collision optimisation using Quad Trees

To determine whether the different positions for labels collide, one has to check whether each of four
(see Figure 1) or eight (see Figure 2) placements collide with every possible position of every other
label, meaning that for n labels one has to do (8× n)× (8× (n− 1)) rectangle intersections, each of
which take four coordinate comparisons, for a total of 256n2 − 256n comparisons.

This relatively unnecessary work slowed down the startup of the rendering process significantly,
especially with moderately high values of n. To speed up the process of working out which placements
conflict with each other, the placements are stored in a Quad Tree [14, 15], a data structure designed
to efficiently find points or rectangles lying in a certain area. With a Quad Tree, all rectangles that

11



Bertram Bourdrez, Leiden University

intersect with a given rectangle can be calculated in O(log n), with a similar cost for inserting the
placement into the Quad Tree. In all, the complexity was reduced by a factor of roughly 8n.

6 The Genetic Algorithm

Since we now have a objective function, one basic requirement for creating a Genetic Algorithm is
fulfilled. To create a working algorithm, we need a representation for candidate solutions, and three
basic operators: selection, combination and mutation.

6.1 Representation

Genetic Algorithms generally use bit strings to represent candidate solutions, and we can store all the
information for a single point with q possible placements in 1+log2 q bits; one bit for whether the point
is hidden and the rest to represent the currently chosen placement. In the four or eight position case,
this would result in three or four bits per point. However, to accommodate more sophisticated crossover
and mutation operators, each point was represented by a bit indicating whether the point was hidden,
and a number that represented which particular placement had been selected. This approach was
faster (as converting from bit representation to selected placement was not necessary) and produced
better results.

6.2 Selection operator

The preferred method for selection is often proportional selection where an individual gets chosen with
a chance which is inversely proportional to its objective value,4 but since the lowest possible objective
value for some problems is often quite high (in particular in very crowded areas where a lot of labels
will either collide or be hidden), the difference in objective value between individuals is often only a
fraction of the total objective value of these individuals. Therefore we apply the simpler method of
rank-based selection, where an individual is selected with a probability function that heavily biases
the individuals with the lower objective value.

6.3 Crossover operator

Crossover operators vary wildly in effectiveness, so four completely different operators were tried:

One-Point and Two-Point Crossover.

Multi-Point Crossover, where each point is selected as a crossover position with a probability
pc. This means that a priori it is not clear how many crossover points there will be.

Uniform Crossover. Note that this is merely the special case of Multi-Point Crossover with
pm = 0.5.

A domain-specific crossover (an implementation of a Bias Crossover operator) is one that is
more likely to select the breaks between clusters as a crossover point. That way, solutions for
parts of the map that are internally optimal are more likely to be preserved.

6.3.1 Clustering

Using a modified [16] version of Kruskal’s Minimum Spanning Tree algorithm, all points can be divided
into clusters of related points. Kruskal’s algorithm [17] works by merging trees until a single spanning
tree is created. In this modified version, when merging would create a tree exceeding a certain size,
the trees are not merged. This results in a forest of trees, all below a certain size. These trees then
form the clusters we are looking for. The ordering of points in our representation is done by cluster,
and the position of the breaks between clusters is stored.

4Remember, lower objective values are better.

12



Bertram Bourdrez, Leiden University

The Bias Crossover operator discussed above will select breaks between clusters with a somewhat
higher probability than other points, thus making it more likely that clusters will make it from one
generation to the next unmodified. However, even if the crossover operator picks a different crossover
point, at most one cluster per crossover will be altered. Any remaining clusters will be preserved
unmodified from one of the parents.

6.4 Mutation operator

After some experimentation with the standard mutation operator, which flips each bit with a certain
probability (say, pm ≈ 0.01), it was found that this does not provide enough mutation to get the
algorithm out of the many local minima in the search space. If a single label is moved, all the labels
around it must often be moved as well if any progress is to be made. In extreme cases four or five
labels would need to be moved to improve a labeling, but each individual move would make the result
worse.

A relatively simple domain-aware mutation operator does not just move a label with probability
pm, but when it does, it also moves all the labels that intersect with both the old and new placement
with a (significantly higher) probability pn. This causes every mutation to cause an “earthquake”
in its immediate neighbourhood, thus increasing the chances that the radical change that would be
necessary to improve the most “stuck” areas of the map would be affected.

A similar approach is to select a particular cluster of points, and then mutate all points within
that cluster with probability pn.

7 Simulated Annealing

The Simulated Annealing algorithm only operates on a single solution, improving it by changing one
label at a time. This makes a single iteration significantly faster (most of the time in both algorithms
is spent calculating the objective function, which only has to be run once per iteration).

The algorithm creates a starting position by selecting a random placement for each label, with all
labels being visible. The temperature is initialised at 1.0 and k is set to a value between 0.1 and 1
(depending on how long the algorithm is allowed to run). The algorithm then proceeds to perform the
steps of Algorithm 2 until the temperature drops below 0.003.

Aside from the speed improvement which results from only having one solution to work with, the
evaluation function can be optimised as only label ` can have changed between invocations of the
evaluation function. Therefore the evaluation function only has to consider ` and any labels ` might
intersect with. For other labels we can use cached information, as the five properties we calculate
are local and do not depend on any information other than properties about the label itself and any
intersecting nearby labels.

The downside of the algorithm is that it has to run several thousands of iterations before the
temperature has dropped sufficiently.

8 Other algorithms

Other algorithms were considered as potential solutions to the PFLP problem. Two notable ones will
be discussed briefly.

8.1 Memetic Algorithms

A type of algorithm that has become quite popular is the Memetic or Hybrid Algorithm [18] which
combines the random approach of Evolutionary Algorithms and Simulated Annealing with search
algorithms that rely on domain knowledge.

Due to the speed constraints on our solution method it would be advisable to incorporate a more
direct search method. This can make it harder to escape from a local optimum but it considerably

13



Bertram Bourdrez, Leiden University

Algorithm 2: Simulated Annealing algorithm

counter ← 0
while temperature < 0.003 do

Oold ← ObjFunction()
`← a random label
if rand() < 0.2 then

if ` is hidden then ` is unhidden
else if ` is unhidden then ` is hidden

else
label ` is moved to another randomly selected position

end
Onew ← ObjFunction()
if Onew > Oold then

if rand() < ea, where a = (Oold−Onew)/Onew

(k·temperature) then
do nothing

else
revert changes to label `

end

end
counter ← counter+1
if counter % 5 = 0 then

temperature ← temperature·0.7
end

end

reduces the run time of the algorithm, and it guarantees that each solution conforms to a minimum
quality level.

One solution which was incorporated into both the Evolutionary Algorithm and the Simulated
Annealing methods was a ‘fix-up’ pass that was run after a certain number of iterations of the algo-
rithm, that checked whether any points needed hiding or unhiding. Any point with a low importance
value that collided with various other (more important) points was hidden, and any point with a high
importance value that could be shown without colliding with anything important would be shown.

8.2 Brute force algorithm

Even though brute force algorithms tend to fare badly at this kind of problem, one is included in the
comparison for three reasons. Firstly, it provides a decent baseline comparison for the other algorithms.
Secondly, if it does turn out to provide a solution that is in any way useful, it will do so in an order of
magnitude less time than the other algorithms, as it does not explore large parts of the search space.
Lastly, it can be used as a hill-climbing algorithm during or after the run of the other algorithms.

The brute force algorithm is exceedingly näıve. Going over all points in a loop, it first tries to
move each label to a more suitable position. In the second and third passes it tries to hide and unhide
labels, respectively. Each operation is only performed if it improves the objective value. This allows
the algorithm to be run repeatedly until it stops improving without the fear of creating an infinite
loop: if the objective value improves each time the algorithm is run there is no way the algorithm can
run forever as either the objective value will hit 0 or it will stop improving.

9 Evaluation

As stated in Section 1, we aim to find an algorithm which ‘provides pleasing and legible results’. In
order to find out whether which of the algorithms succeeded in that, we need a measure of quality for
the labeling.

14



Bertram Bourdrez, Leiden University

To provide a point of reference, the maps generated by the Evolutionary Algorithm (evolve), the
Simulated Annealing algorithm (anneal) and the brute force algorithm (brute) are compared to the
base OSM renderer (original), Yahoo! ’s Static Map rendering service (yahoo) and the Google Maps
API (google). Maps were generated at various zoom levels corresponding to the zoom levels 8 through
11 (inclusive) on Google’s map API, which roughly corresponds to levels 10 through 7 (Yahoo! uses
the reverse order of zoom levels to other online mapping systems [19]).

At first, these commercial mapping solutions were used as points of reference to fine-tune the
evaluation function. Google Maps in particular is widely considered [20] to be a leader in digital
map labeling for consumer applications, so taking their work as an example seems like a good —
if ambitious — goal. The other major company involved in the consumer map website market is
Microsoft with its Bing offering, but the Bing website does not offer a service which could be used in
this comparison, and a recent Bing redesign has severely reduced map label legibility.

Examples of the three solutions (Figures 7, 9 and 11) are shown here for reference, with the
commercial map of the same area shown in Figures 6 and 8 and the current state of OpenStreetMap
in Figure 10.

Figure 6: Google’s rendering Figure 7: Simulated Annealing algorithm

9.1 Website

Side-by-side comparisons of the output of all three algorithms next to web references showed promising
results. However, since we ourselves set the standards by which the objective function judges the
results, the results were always going to conform to our own ideals. These ideals do not necessarily
agree with the map legibility ideals of the general map-reading public. Clearly, to evaluate the result,
another method would be required.

To this end, a website was created, which asked the user to rate a series of maps. On each page,
the following was presented (see Figure 12):

� A pair of maps, one chosen from the set { google, yahoo, original } and one from the set
{ evolve, anneal, brute }.

15



Bertram Bourdrez, Leiden University

Figure 8: Yahoo! rendering Figure 9: Genetic algorithm

Figure 10: Unmodified Mapnik (OSM) Figure 11: Brute force

� In some cases these maps would be in the original colour, in other cases they would be converted
to black and white to make sure the subjects were not being distracted by the colours present
in the map.

� The order in which the maps were presented was random. The reference map was placed on the
left as often as it was on the right.

16



Bertram Bourdrez, Leiden University

� Subjects were asked to rank maps on four criteria:

– Amount of information (information)

– Aesthetics (pleasing)

– Possibility for confusion (confusion)

– Legibility (legible)

Figure 12: Evaluation website

Because it is very hard to rate maps on an absolute scale without a frame of reference, the site
produces numbers which represent how much a map is preferred over another. These numbers rank
from −50 (fully prefer the original) to +50 (fully prefer our version), with 0 expressing ambivalence.

The website was brought to the attention of several dozen subjects — friends, relatives, co-workers,
fellow students — who were asked to rate as many maps as possible. A total of 42 random maps were
rendered in all rendering engines in both colour and monochrome, although no subject rated all 42.
Of the people contacted to participate in this survey, twenty-five responded, providing over 400 map
comparisons.

9.2 Results

Figure 13 shows the results of the survey, showing the performance of each algorithm relative to each
of the three reference labelings. Each bar represents the average of a certain set of ratings. These
averages, again between −50 and +50, are separated out by both our algorithm and the reference
map, so it’s possible to analyse the performance of each of our algorithms against each of the reference
ones.

The results are quite remarkable. As expected our maps fare worst against Google, given Google’s
experience [20] with mapping. Also unsurprising is the performance against Yahoo! and the original
OSM rendering, since both have various obvious flaws that our solutions do not have, like a relatively
low number of labels, a small and hard to read font and fairly naive placement. Several things do
surprise, however. The brute solution (the exceedingly näıve brute force algorithm) fared extremely
well — especially in avoiding confusion, for which it outranks every other algorithm.

17



Bertram Bourdrez, Leiden University

It is also somewhat surprising that our algorithms outscore even Google in the ‘legible’ and ‘con-
fusion’ metrics, although that is probably caused by focusing on just the labeling, where Google must
juggle various user demands which we — without loss of generality — do not consider in this paper.

anneal

brute

evolve

0 2 4 6 8 10 12 14 16 18

legible
confusion
pleasing
information

anneal

brute

evolve

-5 0 5 10 15 20

Compared against Google

anneal

brute

evolve

-5 0 5 10 15 20

Compared against Yahoo

anneal

brute

evolve

0 5 10 15 20

Compared against stock Mapnik

anneal

brute

evolve

0 5 10 15 20

Compared against all

Figure 13: Rating website results. Each bar represents the average of all the ratings in that particular
head-to-head matchup.

10 Conclusions

The evaluation in Figure 13 shows that the brute force algorithm performs at least as well as if not
better than the nondeterministic algorithms. While the solutions it produces are less sophisticated,
some of its very deficiencies could explain why it is rated so highly. For example, it discards labels it
cannot place far more quickly than the other algorithms. This might be seen as data loss, but it also
makes the map clearer. Additionally, since it does not try solving complex arrangements of labels, and
it will not hide major cities, there is an increased likelihood that small towns near big cities will not
be shown. There is evidence to suggest [20] that not showing any labels around a major urban centre
will make it stand out more, thus conforming to the user’s perception of the city.

Given the enormous performance advantages (the brute force algorithm runs several orders of
magnitude faster than the other two algorithms) it is clear that the brute force algorithm is a suitable
way of rendering labels for an organisation like OpenStreetMap; it is fast, easily implemented and gives
a high degree of user satisfaction. Even if it had performed slightly worse than the other algorithms,
it would probably still have been preferable due to the shorter (and more predictable) runtime.

18



Bertram Bourdrez, Leiden University

10.1 Further research

Further avenues of investigation can be identified which run in two very different directions. On the
one hand, the label rendering in Mapnik can be improved in other fields than the PFLP solver. For
example, the line feature label rendering needs work too, and it is probably advisable to create a
separate algorithm which selects which labels to render.

On the other hand there are further improvements to be made to the PFLP solving algorithm.
As indicated in Figure 13, all of the algorithms still lag behind Google in creating a pleasing and
informative map. We tested only if our solution corresponded with what people expected of a map,
and not the ways in which it didn’t. By identifying what people feel needs to be improved, the algorithm
can create maps that are even more readable. Some work [21] has been done in this area already.

19



Bertram Bourdrez, Leiden University

References

[1] E. Imhof. Die Anordnung der Namen in der Karte. Internationales Jahrbuch für Kartographie,
2:93–129, 1962.

[2] A. C. Cook and C. B. Jones. A Prolog rule-based system for cartographic name placement.
Comput. Graph. Forum, 9(2):109–126, 1990.

[3] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. E. Moret, and B. Zhu. Map labeling and its
generalizations. In SODA ’97: Proceedings of the Eighth Annual ACM-SIAM symposium on
Discrete algorithms, pages 148–157, Philadelphia, PA, USA, 1997. Society for Industrial and
Applied Mathematics.

[4] L. R. Ebinger and A. M. Goulette. A constructive genetic approach to point-feature
cartographic label placement. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors,
Metaheuristics: Progress as Real Problem Solvers, pages 205–214. Springer, NY, 2005.

[5] M. Formann and F. Wagner. A packing problem with applications to lettering of maps. In SCG
’91: Proceedings of the seventh Aannual Symposium on Computational geometry, pages 281–288,
New York, NY, USA, 1991. ACM.

[6] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature
label placement. ACM Trans. Graph., 14(3):203–232, 1995.

[7] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[9] S. van Dijk. Genetic algorithms for map labeling, 2001. PhD thesis, Department of Computer
Science, Utrecht University.

[10] F. Hoffmeister and T. Bäck. Genetic algorithms and evolution strategies: Similarities and
differences. In Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer
Science, pages 455–469. Springer Berlin / Heidelberg, 1991.

[11] Centraal Bureau voor de Statistiek. Bevolking – Cijfers, retrieved May 2010.
http://www.cbs.nl/nl-NL/menu/themas/bevolking/cijfers/default.htm.

[12] G. N. Peterson. GIS Cartography: A Guide to Effective Map Design. CRC Press, Boca Raton,
2009.

[13] G. Sharma, W. Wu, and E. N. Dalal. The CIEDE2000 color-difference formula: Implementation
notes, supplementary test data, and mathematical observations. Color Research and
Application, 30, 2005.

[14] R. A. Finkel and J. L. Bentley. Quad Trees: A data structure for retrieval on composite keys.
Acta Informatica, 4:1–9, 1974.

20



Bertram Bourdrez, Leiden University

[15] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, second edition, 2000.

[16] A. Vathy-Fogarassy, B. Feil, and J. Abonyi. Minimal spanning tree based fuzzy clustering.
World Academy of Science, Engineering and Technology, 8, 2005.

[17] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. IEEE Ann.
Hist. Comput., 7(1):43–57, 1985.

[18] P. Moscato and C. Cotta. Memetic algorithms. In Optimization Techniques in Engineering,
pages 53–85. Springer-Verlag, 2004.

[19] J. deVilla. Universal zoom levels for Google Maps, Live Search Maps and Yahoo! Maps,
retrieved November 2010.
http://www.globalnerdy.com/2008/11/09/universal-zoom-levels-for-google-maps-live-

search-maps-and-yahoo-maps/.

[20] J. O’Beirne. Google Maps & label readability – why do Google Maps’s city labels seem much
more readable than those of its competitors?, retrieved November 2010.
http://www.41latitude.com/post/2072504768/google-maps-label-readability.

[21] A. Kling. Label placement survey, retrieved December 2010.
http://www.youthencounter.eu/label-placement/survey-english.php.

21


