
Multi-objective Robust Optimization
Algorithms for Improving Energy

Consumption and Thermal Comfort of
Buildings

M.Sc. Thesis

by

Robert Marijt

Faculty of Computer Science at the University of Leiden, July,

2009

Supervisors

dr.rer.nat. M.T.M. Emmerich, University Of Leiden, Faculty

of Computer Science

dr. C.J. Hopfe, Technical University of Eindhoven, Faculty of

Architecture, Building & Planning; Unit Building Physics and

Systems

prof.dr.ir J. Hensen, Technical University of Eindhoven,

Faculty of Architecture, Building & Planning; Unit Building

Physics and Systems

Acknowledgements

This research was greatly supported by Vabi Software BV.

2

Contents

1 Introduction 3

2 Problem description and hypothesis 4

2.1 Building ’Het Bouwhuis’ . 4

2.2 Building performance simulation tool . 4

2.3 Optimization variables . 5

2.4 Uncertainty variables . 5

2.5 Objectives description . 5

2.6 Problem statement and hypothesis . 6

3 Single objective optimization 8

4 Multi-objective optimization 9

4.1 Introduction . 9

4.2 Hypervolume S-metric . 13

4.3 S-metric selection - evolutionary multi-objective algorithm 14

5 Robustness and optimization 16

5.1 Introduction . 16

5.2 Uncertainty involved in different parts of the system 16

5.3 Effects of uncertainty on the Pareto front. 17

6 Metamodels 20

6.1 Introduction . 20

6.2 Gaussian random field models . 20

6.3 Kriging . 21

6.4 Radial basis functions networks . 23

7 Description of the algorithm 26

7.1 VA114 interface. 26

7.2 Archive characteristics . 26

7.3 Algorithm . 27

8 Results 31

8.1 Introduction . 31

8.2 Uncertainty and sensitivity analysis . 31

1

8.3 Superspheres2D . 31

8.3.1 Metamodel setup results . 32

8.3.2 Robust optimization results for superspheres2D 33

8.4 VA114 results . 33

8.4.1 Metamodel setup . 33

8.4.2 Importance factors . 35

8.5 Robust optimization results for VA114 . 36

8.5.1 Local metamodels results . 38

8.5.2 Global metamodel results . 38

8.5.3 Pure global metamodel results . 40

9 Conclusion and outlook 45

A Multi-objective test problem 46

List of Figures

2.1.1 Building ”Het bouwhuis”. 4

2.6.2 System overview. 7

4.1.1 Pareto dominance. 11

4.1.2 Different Pareto front shapes. 13

4.2.3 Two-dimensional hypervolume example. 14

4.3.4 Ranking differences of SMS-EMOA (left) and NSGA-II (right). 15

5.3.1 Quality-stability trade off in robust optimization. 17

5.3.2 Quality-stability trade off in robust two-dimensional optimization. 18

5.3.3 Pareto front shift. 18

6.2.1 Gaussian Random Field Model in 1-D. 21

6.4.2 Radial Basis Function Network. 24

7.1.1 Matlab interface files for VA114. 26

7.2.2 Sampling types. 27

8.2.1 PCC of weighted overheating hours. 32

8.4.2 Random sampling of a gaussian distributed variable. 35

List of Tables

2.4.1 Uncertainty variables with gaussian distributions. 5

2

8.3.1 Superspheres2D y-y’diagrams for test and optimization runs. 32

8.3.2 Superspheres2D results: SAS plot (left) and hypervolume measures
during optimization (right). 33

8.3.3 Hypervolume measures of final Pareto front. 33

8.4.4 Metamodel errors compared with different neighbourhood size. Left
figures show average errors, the right figure shows maximum errors. . . 34

8.4.5 Metamodel results regarding the importance factor. 36

8.5.6 Scatter plot of the initial population with its perturbations (left) and
the final population and its perturbations (right) for a worst case
scenario. 37

8.5.7 Scatter plot of the initial population with its perturbations (left) and
the final population with its perturbations (right) for a best case
scenario. 37

8.5.8 Robustness comparison of an initial population and a final population
of an optimization. 38

8.5.9 Summary attainment surface plots of the optimizations supported
with a local metamodel with a neighbourhood size of 120. 39

8.5.10 Hypervolume measures for optimizations with a local metamodel with
a neighbourhood size of 120. 39

8.5.11 Summary attainment surface plots of the optimizations supported
with a global metamodel with a neighbourhood size of 120. 41

8.5.12 Hypervolume measures for optimizations with a global metamodel
and a neighbourhood size of 120. 41

8.5.13 Summary attainment surface plots of the optimizations supported
with a global metamodel with a neighbourhood size of 200. 42

8.5.14 Hypervolume measures for optimizations with a global metamodel
and a neighbourhood size of 200. 42

8.5.15 Summary attainment surface plots of the optimizations supported
with a pure global metamodel with a neighbourhood size of 120 and
µ calls to the objective function. 43

8.5.16 Hypervolume measures for optimizations with a pure global meta-
model with a neighbourhood size of 120 and µ calls to the objective
function. 43

8.5.17 Summary attainment surface plots of the optimizations supported
with a pure global metamodel with a neighbourhood size of 200 and
µ calls to the objective function. 44

8.5.18 Hypervolume measures for optimizations with a pure global meta-
model with a neighbourhood size of 200 and µ calls to the objective
function. 44

3

Abstract

Energy efficiency and thermal comfort are of concern in building design. Due to
the fact that one third of national total annual energy consumption is consumed
in buildings, it is estimated that substantial energy savings can be achieved
through careful planning for energy efficiency. Building performance simula-
tion (BPS) is a powerful tool to predict and analyze the dynamic behavior of
performance indicators such as energy consumption and comfort among oth-
ers. Previous work has shown that the use of BPS is mostly limited to code
compliance checking in the detailed design. Also it has been shown that single
optimization does support the detailed design stage. In this thesis we want to
go a step further. An attempt will be made to interface a robust multi-objective
optimization algorithm with a BPS tool. Subjects as uncertainties in building
simulation variables and metamodels to support optimization will be topics of
discussion. This thesis presents results and experiences on extending an exist-
ing BPS tool with a capability for robust multi-objective metamodel supported
optimization. The focus of this work is on algorithmic design and results for the
optimization of energy consumption and thermal comfort in office buildings.

1

Summary

Multi-objective Robust Optimization Algorithms for Improving
Energy Consumption and Thermal Comfort of Building

Energy efficiency and thermal comfort are of concern in building design. Due to
the fact that one third of national total annual energy consumption is consumed
in buildings, it is estimated that substantial energy savings can be achieved
through careful planning for energy efficiency.
Building performance simulation (BPS) is a powerful tool to predict and analyze
the dynamic behavior of performance indicators such as energy consumption
and comfort among others. Previous work has shown that the use of BPS is
mostly limited to code compliance checking in the detailed design. Also it has
been shown that single optimization does support the detailed design stage. In
this thesis we want to go a step further. An attempt will be made to interface
a robust multi-objective optimization algorithm with a BPS tool. A descrip-
tion is given for the optimization and uncertainty variables. The objectives are
explained and additional information is stated regarding the building on which
the case is based on.
Different aspects of multi-objective optimization, like the Pareto front and the
dominance relation between solutions will be discussed. Also from a number
of well-known evolutionary multi-objective algorithms (EMOA) a description
is given. It is substantiated why the S-metric selection EMOA (SMS-EMOA)
is chosen to be the base for the robust algorithm.
To deal with uncertainty a SMS-EMOA is adjusted to support robust optimiza-
tion. Uncertainty may exist in different parts of a system where the objective
function is based on. If robust optimization is applied, this can result in possi-
ble shifts of parts of the Pareto front or the complete Pareto front.
Because of the computationally time consuming objective function a metamodel
is applied to partially replace objective function calls with estimated interpo-
lated values from the metamodel. It is explained how an important parameter
in the model is estimated to get the model calibrated. Locally and globally
metamodel supported optimizations are compared. A metamodel called Krig-
ing is explained and compared to radial basis functions networks to show the
similarity between the two techniques.
The algorithm and the parameters involved are described. Different outlines
show pseudocode of parts of the algorithm. A description is given of the devel-
opment of the algorithm, especially about the estimation of the parameters in
the metamodel.
The conclusion of this thesis is that it is possible to perform a robust opti-
mization with a robust algorithm supported by a metamodel. Furthermore,
different figures and statistics support this conclusion.

2

1 Introduction

For the analysis and prediction of the dynamic behavior of building performance
indicators such as energy consumption and thermal comfort, building performance
simulation (BPS) is a powerful tool. Previous work has shown that the use of BPS
is mostly limited to code compliance checking in the detailed design [Hop09]. The
use of multi-disciplinary optimization [PH02] in building design is still in its early
stages [HSHB06]. Disciplinary specific optimization activities are known by Michalek
et al. [MCP02] in architectural design and for instance by Wright et al. [WZAB04]
in mechanical engineering. In Emmerich et al. [EHM+08] an introduction can be
found of a spectrum of optimization and design space exploration techniques that
can be used by the engineer to find the optimal solution for a building regarding
the performance with respect to the often conflicting objectives. This article mainly
focuses on multi-objective robust optimization of a two-objective problem.

Simple straightforward optimization in BPS is an interesting task, but does not fully
represent building characteristics as they appear in reality. Almost all variables that
participate in the optimization have a degree of uncertainty in it, caused by material
characteristics and external and internal condition changes. These uncertainties may
cause a shift of the global or local Pareto front in a multi-objective optimization.

In this thesis an algorithm will be built that optimizes two objectives and deals with
uncertainties in variables. The different aspects of the algorithm and the techniques
used will be explained and problems that show up will be tackled. A description will
be given of the evolution of the algorithm and its performance.

The next chapter contains a problem statement and additional information regarding
the problem. The chapters following describe different techniques used in de algo-
rithm. Hereafter two chapters give an outline of the algorithm and discuss the results.
In the final chapter a conclusion and some remarks on promising directions of future
research will be given.

3

2 Problem description and hypothesis

2.1 Building ’Het Bouwhuis’

The building is based on a building located in Zoetermeer in the Netherlands called
”Het bouwhuis”. It is the headquarter of Bouwend Nederland, the Dutch organisation
of construction companies. The building is a perfect case study, because it combines
flexibility and function. It is an office building with eleven floors in a T-shaped plan.
There are two levels of underground parking, flexible office concepts, conference facil-
ities and a restaurant with roof garden among others. There is a conventional heating
system and mechanical cooling; the building is conditioned by an all air conditioning
system with constant air volume (CAV) consisting of an air handling unit, supply
and return fans, ducts and control units. Heating is provided by electricity driven
radiators inside the room and an electric heater in the air-handling unit (AHU). The
system is regulated on the air temperature; during the office hours (8-20h, 5 days per
week) and on standby the rest of the time (0-24h, 7 days per week). The AHU keeps
the supply air temperature at 20◦C when the incoming outside air temperature is
16◦C up to 28◦C when the outside air temperature goes up to 40◦C. The ventilation
system provides fresh air with a supply fan (1000 m3/h) and exhausts the air by an
exhaust fan (1000 m3/h). Air change rate is 0.5 per hour. There is no night cooling.
One zone is used in the optimization, as it is sufficient to show some preliminary
results. The shaded area in figure 2.1.1 represents the zone.

Figure 2.1.1: Building ”Het bouwhuis”.

2.2 Building performance simulation tool

Building performance simulation uses computer-based models to assess building per-
formance aspects such as energy consumption and thermal comfort. VA114 forms
part of the uniform environment. The uniform environment is a software tool box
that allows shifting model files between several tools for different types of analysis, in-
cluding heat loss and heat gain calculation. It is a simulation tool that is well-known
and widely used in The Netherlands. This tool is developed by Vabi Software BV
and dedicated to the later phases of the design process. VA114 is an engine dedicated
to assess annual heating and cooling demand and the thermal behavior of a building.
Thermal behavior is measured with a count of underheating and overheating hours,

4

which is discussed further in the objective description. The objective function is em-
bedded within the BPS tool and can be seen as a black box. For extra information
about VA114 and the objective function the reader is referred to [VAB09].

2.3 Optimization variables

The variables mentioned have been studied by Hopfe in an uncertainty and sensitivity
analysis [Hop09], [Jia07] and [HHPW07]. The thesis comes back to this in the result
section. The variable geometry extends the room at one sight. The room varies
between 160-240 m2. The variable height defines the height of the window. The unit
for this variable is meters. The variables persons, equipment and lighting represent
internal heat gains. The ranges are respectively 6-25 Wm−2, 6-35 Wm−2 and 6-20
Wm−2. Examples of internal heat gains are the number of people who work in a
room, the equipment used (such as computers) and the radiation of light.

2.4 Uncertainty variables

Uncertainty analysis (UA) specifies the uncertainty in model prediction due to the
imprecise knowledge of input variables. Uncertainties do arise from many different
sources and can be divided into three groups caused by different parameters: physical,
design, and scenario uncertainties. The uncertainty variables are selected out of a
total of seventy-seven variables. In the result section is explained on which basis these
variables have been chosen. Physical uncertainty variables are Twall3, Cfloor4 and
Croof2, infiltration is a scenario uncertainty and glasswindow is a design uncertainty.

Twall3 stands for Thickness wall layer 3. The unit is meters. Cfloor4 stands for
conductivity floor layer 4. The unit is WmK−1. Croof2 stands for conductivity roof
layer 2. The unit is WmK−1. Infiltration stands for air exchange rate per hour in
the building. The unit is m3h−1. These four variables have gaussian distributed
uncertainties. Their distributions can be found in Table 2.4.1. Glasswindow stands
for single or double glass and can be set to the values zero or one respectively.

Variable Mean Standard deviation

infiltration 0.5 0.17
Cfloor4 0.025 0.00875
Croof2 0.5 0.25
Twall3 0.2 0.02

Table 2.4.1: Uncertainty variables with gaussian distributions.

2.5 Objectives description

The information regarding the objectives is purely to inform the reader about the
background of the problem. For the optimization tool itself this information is not
visible. All technical details about the calculations and applied models are hidden by
the VA114 tool and therefore the objective function can be seen as a black box.

The first objective is thermal comfort. To analyze thermal comfort a Dutch criterion,
called GTO criterion, published by the Rijksgebouwendienst in 1991 [ISSO 2004]

5

is applied. The weighted overheating or underheating hours (Dutch: Weeguren or
GTO) is based on the Fanger Model. In this criterion the extent in which a predicted
mean vote (PMV) of +0.5 is exceeded is expressed by a factor WF (weegfactor).
The predicted mean vote is a modeled average perception of the indoor climate in
buildings valid for a large group of people and is with that a tool for predicting the
level of comfort of people in buildings.

As long as the number of overheating hours stays below 150h per year the condi-
tions are in range. The same holds for the underheating hours. Objective function
values WOH+ and WOH- stand respectively for weighted overheating and weighted
underheating. The unit for both values is h.

The second objective is about the energy consumption in the building. A distinct is
made between annual cooling and annual heating. The unit for both these values is
kWh.

To create a two-dimensional problem of the four objective function values WOH+ is
combined with WOH- and annual cooling is combined with annual heating. The first
objective is composed of the sum of WOH+ and WOH- and represents the thermal
comfort in a building. The second objective is composed of the sum of the absolute
value of annual cooling and annual heating and represent the energy consumption in
a building.

2.6 Problem statement and hypothesis

The objective in this thesis is to build a robust algorithm which finds a series of
solutions for a two-objective minimization problem within a defined search space and
within time constraints and where the objective function is a building performance
simulation tool which acts as a black box.

The following line describes the problem statement: Find an algorithm that solves
a two-objective robust optimization problem where the objective function is based on
the building performance simulation tool: The Hypothesis regarding the problem
statement sounds: In this thesis it hypothesized that a multi-objective evolutionary
algorithm with metamodel support will solve this type of problems.

The simulation tool has a runtime of approximately fourteen seconds. The robust
optimization method chosen in this thesis demands a great number of calls to the
objective function. Each round of the Monte Carlo algorithm for measuring the
solution quality and robustness for a single solution will produce two hundred and one
calls to the objective function. One call to the objective function takes approximately
fourteen seconds. A total of four hundred rounds will be executed per optimization.
The required time to produce the results of one optimization:

Os = 201 ∗ 400 ∗ 14 = 1125600 seconds (2.6.1)

Od =
1125600

3600

24
≈ 13 days (2.6.2)

Equations 2.6.1 and 2.6.2 show the runtime of a single optimization in seconds Os

and days Od. It is obvious that the optimization is a time consuming task. To obtain

6

VA114
Black box

SMS-EMOA

Simulation Optimization Meta modeling

Estimator

Robust
offspring

Objective
function values

Archive

Figure 2.6.2: System overview.

reliable results the optimization is executed multiple times. Taken into account the
thirteen days for one optimization, a logical next step would be an attempt to decrease
the runtime.

There is more than one solution to solve this problem. If the money budget as well as
the time budget is unlimited one can buy enough computers and do the optimizations
simultaneously with parallel computing. The budget for the experiments in this
thesis were limited to one or two computers and one night of runtime. Therefore a
solution must be found in another direction. A model that approximates the expensive
objective function can take care of the majority of the calls to this function. Figure
2.6.2 presents a global overview on how the system will work.

7

3 Single objective optimization

In an earlier research different single objective optimization techniques are examined.
The results of this research can be found in [EHM+08]. The tool that was used in
[EHM+08] is not able to deal with variable uncertainty which makes it necessary to
switch to the earlier mentioned tool VA114. Besides, the test building has also been
changed. This makes it difficult to compare the single objective optimization results
with the new obtained multi-objective optimization results.

A näıve approach to solve the multi-objective problem would be to split up the prob-
lem in multiple single objective problems. In most of these attempts the different
objectives get weight factors and are incorporated in a single weighted objective
function. A disadvantage of this method is that the weights have to be set a priori
which influences the optimization and the outcoming solutions beforehand. If objec-
tives are in conflict with each other, this method can lead to a meaningless objective
function. Another big disadvantage is that in case of concave Pareto fronts only ex-
tremal solutions optimizing one of the objectives can be obtained. However, it would
be interesting to compare these type of algorithms against the multi-objective ones,
but this would be beyond the scope of this thesis.

8

4 Multi-objective optimization

4.1 Introduction

In multi-objective optimization there are two or more objectives which need to be
optimized. When one objective is improving and the other objective reacts in the
same way by also showing improvement the problem is fairly simple. But in general
this is not the case. For instance if a factory needs to produce, with a cost as low as
possible, products of a quality as high as possible. These two goals are clearly the
opposites of each other. The theoretically optimal solution seems to be high quality
without any costs at all. This is of course impossible if one runs a legal business. What
we like to obtain from the optimization is a series of solutions where the two boundary
solutions are low quality, low production cost and high quality, high production cost.
The other solutions will be between these two boundary solutions with none of them
being a solution that can be improved in both objectives at the same time still. With
this information trade-offs can be discovered between the objectives and compromise
solutions can be obtained. The risk in this particular example may be the fact that
cheap products not only end up to be from a low quality but also indirect affect the
environment in a disadvantageous way. Therefore environment-friendliness inevitably
is a third objective in this problem. Which solution eventually is the best depends on
the demands and standards of the company that owns the factory and on legislation
that is applicable to that business. To determine the progress of an optimization one
or more objective functions are created from the design variables. The design variables
describe all the matters that have effect on the optimization process. Mostly these
variables operate in certain ranges. These constraint make sure that only feasible
solutions will be found in the optimization. For the factory mentioned above it can
be the case that all the machines are switched off during the night. This limits the
variable operation hours.

A multi-objective optimization problem can be formulated as

f1,...,n : S→ R (4.1.1)

defined on some search space S where f1,...,n is minimized or maximized.

In order to solve a multi-objective optimization problem, one needs a mechanism
that is able to find and keep all solutions that are equally optimal for the multi-
objective problem. A mechanism that works well on this kind of problems is called
Pareto optimization. In Pareto optimization vectors of objective function values are
compared by a preference relation on the objective function vectors. Given a problem
with multiple objectives to be minimized1 and no constraints (nf > 1, ng = 0) the
preference relation can be defined for arbitrary objective function vectors y ∈ Rnf

and y′ ∈ Rnf

1Maximization problems can be transformed into minimization problems by inverting the sign of
objective functions.

9

y ≺p y′(y dominates y′) :⇔
∀i ∈ {1, . . . , nf} : yi ≤ y′i ∧
∃i ∈ {1, . . . , nf} : yi < y′i

(4.1.2)

This equation can easily be extended to a constraint problem where ng > 0. Let
y ∈ Rnf+gf and y′ ∈ Rnf+gf be two arbitrary solution vectors. Their first nf po-
sitions denote objective functions values to be minimized and the last ng constraint
values. Let yf := (y1, . . . , ynf

)T , yg = (ynf+1, . . . , ynf+ng)
T , y′f := (y′1, . . . , y

′
nf

)T ,

y′g = (y′nf+1, . . . , y
′
nf+ng

)T . Then

y ≺p y′ :⇔
yg ≤ 0 ∧ y′g ≤ 0 ∧ yf ≺p y′f ∨

yg ≤ 0 ∧ y′g > 0 ∨
yg > 0 ∧ y′g > 0 ∧ δ(yg) < δ(y′g)

(4.1.3)

In Pareto optimization, the following definitions are useful: A solution is non-dominated
by a set of solutions, iff no solution in this set dominates the solution. In this case
the solution belongs to the efficient set Se.

x ¹ Se :⇔ @x′ ∈ Se : x′ ≺ x (4.1.4)

The Pareto front is defined as the set

PF = (f1(x), . . . , fm(x))Γ|x ∈ Se) (4.1.5)

Two solutions are incomparable, iff neither x ≺ x′ nor x′ ≺ x.

Figure 4.1.1 shows an example of the ranking of a set S = {x1, ..., x6} of solutions by
means of the Pareto preference relation. Solutions x1, x2, and x3 are non-dominated.
Solution x4 is dominated by x1, x5 is dominated by x1, and x2, solution x6 is dom-
inated by the complete non-dominated set x1, x2, and x3. This makes solutions x1,
x2, and x3 of the same dominance rank and mutually incomparable. Furthermore
points x4, x5, and x6 form together also a set of the same dominance rank. The first
dominance rank is for the non-dominated solutions. If all non-dominated solutions
are removed from the set, the solutions that are non-dominated in the remaining set
are of rank two, etc.

It would be an ideal situation if the complete Pareto front is found. This is a compu-
tationally expensive task and, if the Pareto front is a continuous curve, it can be even
impossible. In this case there are in general infinitely many Pareto optimal solutions
which makes it infeasible to find them all. Most of the time it suffices to find a limited
number of the Pareto-optimal solutions, which include the extremal solutions and so-
lutions in parts of the solution space where good compromise solutions can be found.
Especially the ones located near knee-points. Knee-points are locations where small
changes in the design variables cause major changes in one of the objective function
values while the remaining objectives experience minor changes.

10

1f

2f

)(1xy

)(3xy

)(2xy

)(4xy

)(5xy
)(6xy

Dominated point

Non-dominated point

Figure 4.1.1: Pareto dominance.

Evolutionary multi-objective algorithms (EMOA) are well represented in the domain
of multi-objective algorithms, because of their robustness and flexible design. Well-
known EMOA are PESA, PAES, SPEA, SPEA2, SPEA2+, NSGA, NSGA-II and
SMS-MEOA. A brief description for these algorithms is given below.

In a Pareto envelope based selection algorithm (PESA) selection is only based on
an archive which stores the current non-dominated set. A density measure allows to
sample the archive members differently according to the degree of crowding. Newly
generated offspring is checked for replacement in the archive. Only offspring members
that are not dominated replace dominated members in the archive, the remaining
members are dismissed. This method never allows solutions in the archive to be
dominated by other solutions in the archive.

The Pareto archived evolution strategy (PAES) [KC99] is a simple algorithm with
starts with an initial randomly generated parent solution. To start, first mutate
the parent and generate one offspring. If the offspring, dominates the parent, it
replaces the parent for the next round and is added to the archive. If the offspring is
dominated by the parent, it is discarded. If the parent and offspring are incomparable,
the archive of previously non-dominated individuals is used to compare with. If the
offspring dominates one of the archive members, it will be added to the archive and
becomes the new parent. Any dominated solutions are removed from the archive. If
the offspring does not dominate any member of the archive, both parent and offspring
are checked for their crowded distances to the solutions in the archive. If the offspring
is situated in a least crowded region of the search space compared to the crowded
region of the parent, it is accepted as a parent and added to the archive. Repeat this
cycle from start until a stop condition is reached. The archive maintains population
diversity along the Pareto front.

The strength Pareto evolutionary algorithm (SPEA) [ZLT01] starts with an empty
archive and an initial population. The following steps are repeated in each round: All
non-dominated solutions are copied to the archive and at the same time any duplicates
or dominated solutions are removed from the archive. Whenever the size of the archive
exceeds a predefined limit further deletion takes place based on a clustering technique
which preserves the properties of a non-dominated front. Hereafter fitness values are

11

assigned to the archive solutions and the population members. Each solution i in

the archive is assigned a strength or fitness value S(i) = F (i) =
∑n

j=1(x(i)¹x(j)==true)

n+1

where n is the population size and x(j) is a population member. The fitness F (j) of
a solution in the population is

∑k
i=1 S(i) where x(i) ¹ x(j) where k is the archive size

and x(i) is an archive member. The selection process follows a binary tournament
selection, where each archive member has a higher chance to be selected than any
population member. Finally, the old population is replaced by the resulting offspring
population after recombination and mutation.

There are a couple of issues with SPEA. With one member in the archive the algorithm
behaves like a random search algorithm. Despite of clustering information SPEA may
lose extremal solution. SPEA2 takes care of these problems.

SPEA2’s improvements [ZLT01] with respect to SPEA are the following: an improved
fitness assignment scheme which takes into account for each individual how many
individuals it dominates and it is dominated by. Moreover a nearest neighbour density
estimation technique is used which allows better guidance of the search process, and
finally a new archive truncation method guarantees the preservation of boundary
solution.

SPEA2+ adds three important things to SPEA2: first of all neighbourhood crossover
increases the rate of crossing over individuals that are located close to each other
in the objective space, secondly mating selection is added that reflects all quality
solutions in the archive and third, the use of two archives is supported to maintain
diverse solution in the objective space as well as in the design space.

The non-dominated sorting genetic algorithm (NSGA) [DPAM02] implemented by
Srinivas and Deb works like NSGA II that is described below, but with the shortcom-
ings that after the proposal became clear. A major disadvantage is the estimation of
the sharing parameter, which seems to be a difficult task. Other criticism is about the
computational complexity of non-dominated sorting and the lack of elitism. Elitism
is the ability to preserve certain quality solutions for the next generations.

The criticism of NSGA led to the development of non-dominated sorting genetic
algorithm II (NSGA-II). The non-dominated sorting is improved: Elitist preservation
is added and parameterless niching is included to preserve diversity in the population.

In NSGA-II the current population is first divided in into different fronts according to
the concept of Pareto dominance. Objects in the first non-dominated front are ranked
first, in the second non-dominated front the second highest rank until all fronts are
assigned a rank. See page 9 about Pareto dominance. Within a rank a crowding
measure is used to define an order between the individuals. The sum of the distances
to the closest two neighbour points along each objective is used to define an order
for these points. Extremal solutions that have no neighbouring solutions in at least
one of the coordinate directions are always preferred to non-extremal solutions. After
ranking all solutions, selection can be carried out in the usual way. Typically (µ + µ)
selection is used in NSGA-II. In this way the archive maintains a constant size, while
for PEAS mentioned earlier the size can be flexible.

Though NSGAII and SPEA2 are widely used algorithms, SMS-EMOA2 has shown
in several test problems it performs better. In [EBN05] is demonstrated that SMS-
EMOA in the summarized result outperforms SPEA2 and NSGA-II with the conver-

2SMS-EMOA stands for S-Metric Selection-EMOA

12

gence and S measures on the ZDT-suite. What contributes to the better performance
is that SMS-EMOA covers knee point regions in a better way than NSGAII does. De-
spite of the often stated conjecture that S-metric based selection favors convex parts
of Pareto fronts, empirical results do not provide evidence for this alleged disadvan-
tage. [EBN05] show that SMS-EMOA is able to find a concave Pareto front with
nearly optimal hypervolume for the ZDT2 problem. Recent theoretical results on
optimal distributions of points when the S-metric is maximized comply with this
and disapprove the conjecture. The shape of a Pareto front is not necessarily known
beforehand. The shape can be convex, concave or linear. In figure 4.1.2 the three pos-
sible shapes have been approximated for a two-objective minimization problem with
the SMS-EMOA. The selected EMOA for the algorithm in this thesis is therefore
SMS-EMOA.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

f
1

f 2

convex
concave
linear

Figure 4.1.2: Different Pareto front shapes.

4.2 Hypervolume S-metric

A disadvantage of NSGA-II and other EMOA is the inability to measure improvement
during the optimization. For the SMS-EMOA there is a straightforward way for
measuring progress. S-metric selection is based on the hypervolume measure. This
mechanism can be used to measure the quality of a Pareto front approximation as
well as a criterion for comparing solutions of the same dominance rank.

Figure 4.2.3 illustrates the hypervolume measure for a bi-objective problem. Vector
ymax is chosen in such a way that its elements are larger than every possible value of
y1 and y2. To control the importance of the objectives one can variate the value of
ymax that is assigned to each objective. The size of the dominated space measures
the progress of the optimization. Furthermore, is the space that is dominated by a
point also a measure for the contribution of this point to the current Pareto front.
The hypervolume measure was originally proposed by Zitzler and Thiele [ZT98]. In
two dimensions the hypervolume measure S(M) is the area of the union of rectangles
ri defined by a set of a non-dominated solution mi in A and the reference point ymax

that is dominated by all solutions in A.

13

2y

1yminy

maxy

)1(xy

)4(xy
)5(xy

)2(xy

)3(xy

Dominated Space

Figure 4.2.3: Two-dimensional hypervolume example.

S(M) := {
⋃
i

ri|mi ∈ M} =
⋃

m∈A

{y|m ≺ y ≺ ymax} (4.2.6)

4.3 S-metric selection - evolutionary multi-objective algo-
rithm

The SMS-EMOA is an algorithm that fully utilizes the non-dominating sorting pro-
cedure in combination with the hypervolume measure. As well as for measuring the
quality of a Pareto front as for individual solution replacement the same process is
executed. The population size is kept constant and dominated solutions are allowed
in the population. For a series of populations the following equation always holds
S(Pt+1) ≤ S(Pt). Depending on the choice of the reference point it can affect the
contribution of the extremal solutions to the hypervolume measure. There is some
criticism to this fact. To circumvent this problem an infinite reference point is chosen.
The result of this change is that S(M) becomes an incomparable value for any set
of solutions M . However, the increase in hypervolume 4S = S(M ∪ {x}) − S(M)
can take a finite value for non-extremal solutions. For extremal solutions 4S always
equals infinity. Therefore it has been suggested in [EBN05] to keep extremal solutions
for the next generation. As in the case of two objectives the number of extremal so-
lutions is at most two, this causes no problems in terms of memory size. It would be
interesting to compare the behavior of the crowding distance that is used NSGA-II
to the hypervolume measure that is used in SMS-EMOA regarding single solutions
around a knee-point in convex areas of the Pareto front. This has been done in figure
4.3.4. The hypervolume measures of y(x4) and y(x5) show that solution x4 is pre-
ferred above x5. This seems to be the right way of assessing the two points, indeed
solution x4 is a good compromise point for the two objectives and is interesting for
further exploration. Solutions x5 has less chance to be improved and a small advance
for objective f2 results in large decay of f1. On the other hand, NSGA-II assesses the
two solutions otherwise and prefers x5. This is a point in favor of SMS-EMOA.

14

)(1xy

)(3xy

)(4xy

Dominated
Space

Dominated
Space

)(2xy

)(5xy

1f 1f

2f
2f

)(6xy

)(1xy

)(3xy

)(4xy

)(2xy

)(5xy
)(6xy

Figure 4.3.4: Ranking differences of SMS-EMOA (left) and NSGA-II (right).

An outline of a basic SMS-EMOA is given in Algorithms 1 and 2. First a parent
population is initialized. Next an offspring is created from a randomly selected parent
by variation operators, mutation and recombination. Select µ solutions out of the
µ + 1 solutions for the new population. To replace the worst solution find the worst
dominating front Rw by using non dominating sorting. Next, find the solution with
the lowest hypervolume in the worst front Rw and remove it from the population.
Repeat this round until the stop criterium is reached.

Algorithm 1 SMS-EMOA

1: P0 ← initialize() { initialize random parent population with µ individuals}
2: t ← 0
3: repeat
4: xt+1 ← generate(Pt) {Generate one offspring by variation operator}
5: Pt+1 ← replace4S(Pt ∪ {xt+1}) {Select a maximum of µ individuals for the

new parent population}
6: t ← t + 1
7: until stop criterium is reached

Algorithm 2 replace4S(Q)

1: {R1, . . . , Rl} ← non-dominated-sort(Q)
2: for all x ∈ Rl do
3: 4S(x, Rl) ← S(Rl)− S(Rl\{x})
4: end for
5: x ← arg minx∈Rl

[4S(x, Rl)]
6: Q′ ← Q\{x}

In chapter seven a more elaborate description is given for the different aspects of the
created algorithm.

15

5 Robustness and optimization

5.1 Introduction

Many real-world optimization problems are subject to uncertainties and noise. These
uncertainties and noise are caused by manufacturing errors, measurement errors and
external factors, e.g. unpredictable weather changes. The uncertainties emerge in dif-
ferent parts of the optimization process. This makes it necessary to make a distinction
between the different uncertainties. An overview of robust optimization methods can
be found in [BS07].

5.2 Uncertainty involved in different parts of the system

An objective function with no uncertainty involved is given by f(x, a) were x is a
design variable and a contains the environmental conditions.

There are four categories of uncertainties. A description follows for each of them.

To the first category belong uncertainties that occur because of changing environmen-
tal and operating conditions. Examples are temperature changes, pressure changes,
humidity changes and changing material properties like expanding and shrinking of
material caused by the temperature. The uncertainties are modeled by vector α.
Vector x is a design object with n variables x1, ..., xn. These two vectors form the
input for objective function f(x, α).

f = f(x, α) (5.2.1)

The second type of uncertainties δ arise in the design variables. In real world problems
these uncertainties are mainly caused by approximative realizations of the design
variables. Approximations are sometimes inevitably because of machinery or sensors
which operate under a certain degree of accuracy. Although it may be possible to
minimize the uncertainties by using high precision equipment, the cost for these
equipment may be much higher than the budget allows.

f = f(x + δ, a) (5.2.2)

The use of models instead of precise data and the existence of measurement errors in
the calculation of the system output leads to uncertainties in the objective function
values. Design variable x and environmental variable α are also generated by a model
and therefore subject to uncertainty. The actually output f is a (random) function
of f

f = f [f(x + δ, α)] (5.2.3)

The fourth type of uncertainties that appear in the constraints of design variables are
called feasibility uncertainties.

For the four categories of uncertainties described above, three types of quantifications
are possible. Namely a deterministic, probabilistic and/or possibilistic quantification.

16

1xδ− δ+ δ− δ+2x

Figure 5.3.1: Quality-stability trade off in robust optimization.

The deterministic type defines parameter domains in which the parameters can vary.
For the probabilistic type a probability density functions can be used and the possi-
bilistic type uses fuzzy measures to define the plausibility of a certain event.

In the case study of this thesis the uncertainties are attributed to the environmental
group of uncertainty variables. Four uncertainty variables make use of a probabilistic
quantification and one variable belongs to the deterministic group.

5.3 Effects of uncertainty on the Pareto front

Although the manufacturing errors and measurements errors may be within an ac-
ceptable range, they can have a great influence on the characteristics of the building.
Some minor deviations in the input variables of a system to be optimized may result
in great deviations in the objective function values. The goal of robust optimization
is not only to optimize the objectives, but also to take care of deviations of objective
function values caused by small or large changes or fluctuations in the input vari-
ables. For multi-objective optimization this means that instead of looking for the
global non-robust Pareto front one is looking for the global robust Pareto front.

Figure 5.3.1 illustrates an example of a simple one dimensional optimization prob-
lem for a continuous function with one design variable, where the consideration of
robustness leads to a different global optimum if a worst case scenario is executed
or performance fluctuation is fatal. If one is searching for the global optimum x1 is
the preferred solution above x2, which forms a local optimum. However if the de-
sign variables x1 and x2 are liable to a deterministic quantified uncertainty δ this
should have an effect on the function value of x1 much more than the function value
of x2. Variable x2 has a nearly constant performance with respect to all possible
variations around this variable. Variations around x1 on the other hand result in
relatively higher performance drops and in the worst case the performance drops be-
low the worst objective function value possible for x2. If guaranteed performance is
required one should choose for object x2. If instability of the objective function is not
a problem one can choose for object x1.

17

1f

2f

1x

2x

Objective
space

A

B

A

B

Figure 5.3.2: Quality-stability trade off in robust two-dimensional optimization.

1f

2f

1x

2x

Objective
space

A

B

A

B

C

C

Figure 5.3.3: Pareto front shift.

To understand the idea of a (partially) shifting Pareto front in robust optimization
an example of a two-dimensional minimization problem is given in figure 5.3.2. Now
we have two design variables x1 and x2 and two objectives f1 and f2. The grey areas
around the points in the x1 − x2 diagram represents the uncertainty of the design
variables. Labels A and B connect the two objects with their corresponding objective
function values. In this case B has less decline regarding the average performance
than A has. If one thinks of an imaginary Pareto front through the points (black
dots) in the f1− f2 diagram and thinks of an other one though the worst case points,
one can see a shift in the direction of the upper right corner of the robust Pareto
front. However, the domination of the two objects does not change in this case. The
objective function values of the uncertainty sets A and B are incomparable in the
robust Pareto front.

It can be the case that a non-dominated object in the Pareto front is dominated
by an other object in the robust Pareto front. In this case this object is not of
much interest anymore and is possibly replaced by a non-dominated solution. Figure
5.3.3 demonstrates the case. There is a considerable chance that either B or C gets
dominated in the robust Pareto front.

18

Two different main methods can be used to achieve robustness in your solutions
[DG06]. The first method replaces the objective function with a mean effective func-
tion.

Minimize f eff (x) =
1

|Bδ(x)|
∫

y∈Bδ(x)

f(y)dy and x ∈ S (5.3.4)

Instead of choosing a best solution for the next generations an average solution is
chosen. For this method it is required to have access to the objective function.

The second method calculates a normalized difference between f and the perturbed
function value fp. Operator ‖.‖ can be any suitable norm. Parameter η is a threshold,
which controls the degree of robustness.

Minimize f(x) subject to
‖f p(x)− f(x)‖

‖f(x)‖ ≤ η (5.3.5)

In this thesis a variant of the first method is proposed. Around a solution x two hun-
dred and one perturbations are generated. The objective function value is obtained
for each perturbation and the worst solution is selected. It depends on the choice of
the algorithm which solution is actual the worst. See section 4.3 where SMS-EMOA
and NSGA-II assess two objective function vectors differently. The objective function
is a black box and therefore not adjustable as suggested in expression 5.3.4.

19

6 Metamodels

6.1 Introduction

When an algorithm requires a large number of objective function calls to a computa-
tionally expensive function, this function can be partially replaced with a model used
to compute the objective function faster, but approximated. For the problem in this
thesis, where Monte Carlo sampling is used to allow robust optimization and the ob-
jective function is computationally time expensive it is preferable and even necessary
to partially replace evaluations with metamodels to achieve an acceptable runtime for
the optimizations. Metamodels3 are an important class of surrogate models. They
are based on the data of previous evaluations with the original model, which in most
cases they interpolate.

The model must be capable of spatial interpolation and is able to deal with multi-
objective problems. A type of metamodel that is capable of these demands is a
gaussian random field model (GRFM) and will be discussed in the next section.

6.2 Gaussian random field models

The basics of a gaussian random field model. Assume we have n evaluated search
points

X := [x1, ..., xn] ∈ S (6.2.1)

where S is the search space. Furthermore we have corresponding objective function
values

y := [y1, ..., yn] (6.2.2)

with

y1 = y(x1), ..., yn = y(xn) (6.2.3)

that have been calculated by the original function. Information about the degree of
differentiability of the function is not required. However we assume that the function
is continuous.

Given a new point x′ ∈ S, the aim is to create a model, capable of approximating the
value of y(x′). If x′ ∈ X is a precalculated value y(x′) will be returned.

Figure 6.2.1 shows a visual example of the prediction of y for an unknown point x′.
In the figure there are three precalculated points which are used as training points
to predict the intermediate unknown points. The bold line is the predicted response
ŷ(x), x ∈ R. The two dashed lines which meet at the training points and then diverge
from the training points define the confidence area of the response. The size of the
confidence area is determined by adding or subtracting an estimated local standard
deviation ŝ(x′). If ŷ(x′) equals one of the known values at the location of the training

3Metamodels are named this way as they are models of models

20

y

1x 2x 3x'x

1y

2y

3y

)'(ˆ)'(ˆ xsxy

)'(ˆ xy

)'(ˆ)'(ˆ xsxy !

Figure 6.2.1: Gaussian Random Field Model in 1-D.

patterns, then ŝ(x′) = 0. If this is not the case ŝ(x′) grows relatively to the distance
of the unknown point to the surrounding training points. The divergence speed is
determined by a correlation parameter θ, that will be discussed later in this thesis.

It is plausible to assume that an increasing number of training points in the neigh-
bourhood of the unknown point results in a better qualitative prediction. To validate
this assumption a graph with a comparison of neighbourhood sizes is given in the
result section.

A GRFM predicts the outcome of gaussian random field Fx, x ∈ Rd. A gaussian
random field4 is a mapping that assigns an one-dimensional gaussian distributed ran-
dom variable F(x) with constant mean β := E(Fx) and variance s2 = V ar(Fx) to
each point x ∈ Rd and it quantifies the probability of density Pr(Fx = y) for the
unknown precise output. If Pr(Fx = y) takes a high value, the GRFM predicts that
y is more likely the precise result. Once the gaussian random field has been sampled,
the sample path f(x) forms a non-random function of x. This deterministic function
is called a sample path or a realization.

In GRFM it is assumed that the correlation between the errors of the estimated values
is related to the distance between the corresponding points. Such a spatial correlation
can be expressed by a correlation function.

The following isotropic gaussian correlation is often used.

c(θ) = exp(−θ · |x− x′|) (6.2.4)

6.3 Kriging

This section describes the basics of Kriging. Kriging is a combination of GRFM
and regression models. It is commonly used interpolation technique which takes
surrounding points to predict an unknown point in the search space.

4For d = 1 and sometimes also for d > 1 a gaussian random field is referred to as a gaussian
process.

21

Fx =
nr∑
i=1

βi · ri(x) +Rx (6.3.5)

The part before the plus sign is called the global trend, and after the sign local
deviation.

There are three Kriging variants available. With simple Kriging no trend is assumed,
i.e. Fx = Rx. In ordinary Kriging a constant trend is assumed, Fx = β + Rx and
in universal Kriging a linear trend is assumed like in expression 6.3.5. In this thesis
ordinary Kriging is used to start with.

To make a Kriging model work θ, s2 and β have to be estimated. These parameters
will be estimated in a calibration phase. After the calibration is finished, the param-
eters of the GRF are fixed. At this point predictions can be computed by the model
for every input vector. For a point x′ the model is now able to return a prediction
ŷ(x′) and an error ŝ(x′).

Parameter θ is estimated by the maximum likelihood heuristic [SWMW00], β and s2

are estimated through a sample by a generalized least squares method. The likelihood
of a sample X,y is expressed by the joint distribution of the probability density
function of Fi, i = 1, . . . , n and looks as follows:

PDF(Fx1 = y1 ∧ · · · ∧ Fxm = ym) = (6.3.6)

1

(2π)m/2 · (ŝ)m/2 ·
√

det(C)
exp

[
−(y − 1β̂)T · C−1 · (y − 1β̂)

2ŝ

]

with correlation matrix C obtained from the correlation function c(x, x′) of that field

C =

cθ(x1,x1) · · · cθ(x1,xm)
...

. . .
...

cθ(xm,x1) · · · cθ(xm,xm)

 ,1 =

1
...
1

 (6.3.7)

using the generalized least squares estimates of β and s2

β̂ =
1T · C−1 · y
1T · C−1 · 1 (6.3.8)

ŝ =
(y − 1 · β̂)TC−1(y − 1 · β̂)

m
(6.3.9)

If ŝ in expression 6.3.6 is replaced by expression 6.3.9 parts of the fraction in the
exponent term are crossed out.

1

(2π)m/2 · (ŝ)m/2 ·
√

det(C)
exp

[
−((((((((((((((

(y − 1β̂)T · C−1 · (y − 1β̂)

2 ·(((((((((
(y−1·β̂)T C−1(y−1·β̂)

m

]
(6.3.10)

What follows is the next expression which is to be maximized:

22

1

(2π)m/2 · (ŝ)m/2 ·
√

det(C)
exp(−m

2
) → max (6.3.11)

This is equal to the minimization of the reciprocal term:

(2π)m/2 · (ŝ)m/2 ·
√

det(C) · exp(−m

2
) → min (6.3.12)

After logarithmization and elimination of constant values the following expression
remains to be minimized:

m log ŝ(θ) + log detC(θ) (6.3.13)

After estimation of the parameters the calibration phase has finished. For every x ∈ S
the mean is calculated as follows:

ŷ(x) = β + (y − 1β)TC−1c(x) (6.3.14)

where

c(x) = [cθ(x,x1), . . . , cθ(x,xm)]T (6.3.15)

Above expressions can be rewritten in the form of a linear predictor

ŷ(x) = β +
m∑

i=1

λ(i) · c(x,xi) (6.3.16)

with

[λ(1), . . . , λ(m)] = (y − 1β) ·C−1 (6.3.17)

The local variance of a variable is not used in this thesis and therefore not stated.
More information about the variance is given in [Emm04] .

6.4 Radial basis functions networks

Artificial neural networks (ANN) use a biological analogy for the way networks oper-
ate, in order to process information, just like evolutionary algorithms use the theory
of biological evolution as an analogy in optimizations. The idea of ANN is based on
the structures found in the cerebral cortex in the human brain. The cerebral cortex
contains billions of neurons (processing units) that will or will not fire (let through,
exchange signals) depending on the connections they have with other neurons. A
neuron will fire if a certain electrochemical threshold is reached.

Although the representation is the same as in biology, ANN neurons have a far more
simple representation than their biological counterparts. ANN use interconnected
processing units to form a processing data system. The threshold of these units is a
certain value which can be reached by the sum of weights of incoming units. If an unit

23

2x

dx

1x
)1,(bxh

)2,(bxh

),(mbxh

1y

Two input
layers

Output
layer

)1(ψ

)2(ψ

)(mψ

.

.

.

.
)(m

pψ

)1(
pψ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2x

d
x

1x
)1,(bxh

)2,(bxh

),(mbxh

1y

Two input
layers

Output
layer

)1(
1ψ
)1(

2ψ

)(
1

mψ
)(

2
mψ

2
y

py

Figure 6.4.2: Radial Basis Function Network.

fires a so-called activation function produces the output of unit. Such a connected
network can be trained to learn data (pictures, numbers). When the network has
reached a stable state, it can for example act on incomplete data input and estimate
the unknown values.

Radial basis functions networks (RBFN) are the most common ANN used for the
approximation of functions and especially for interpolation. RBFN consist of three
layers which are all connected. All signals flow from the inputs through the units and
reach the outputs. No signals flow from the hidden layer to the input layer and no
signals flow from the output units to the hidden layer or input layer. Under these
conditions the network is called a feedforward network. A visualization is given in
figure 6.4.2. The network performs a nonlinear mapping from the d inputs to the m
hidden units followed by a linear mapping from the hidden units to the p outputs. In
the left figure p = 1.

Giannakoglou [Gia02] introduced a method which uses a RBF network as a function
interpolater. It will be shown that these networks are actually use the same equations
as in simple Kriging.

Let x(1), . . . , x(m) be the points precalculated by the objective function and y(1) =
y(x(1)), . . . , y(m) = y(x(m)). Then define for each precalculated point x(i) a RBF
center.

b(i) := x(i), i = 1, . . . , m (6.4.18)

Let |.| : Rd → R+
0 denote a norm on R and r : R+

0 → R+
0 a positive definite function

on R+
0 , then the activation function of the hidden layer is defined as follows:

h(x,b(i)) := r(|x− b(i)|), i = 1, . . . , m (6.4.19)

The activation function based on r is called a radial basis function, because it depends

24

on the distance to the RBF center.

ŷ(h(1), · · · , h(m)) =
m∑

i=1

ψ(i)h(x,b(i)) (6.4.20)

The function from the output values of the hidden layer to the output value of the
RBFN is defined as a linear expression with weights ψ that have to be adapted
during the training phase. If the network is given a known input vector x(j) the sum
of functions must be y(j). This gives the general expression:

m∑
i=1

ψ(i)h(x(j),x(i))
!
= y(j), j = 1, . . . , n (6.4.21)

Rewritten in matrix form it results in:

h(x(1),b(1) · · · h(x(1),b(m)

...
. . .

...
h(x(m),b(1) · · · h(x(m),b(m)

︸ ︷︷ ︸
H

ψ(1)

...
ψ(n)

 !

=

︸ ︷︷ ︸
ψ

y(i)

...
y(m)

︸ ︷︷ ︸
y

(6.4.22)

Because of the fact that the RBF centers b(i), i = 1, . . . , m are equivalent to the input
points x(i), i = 1, . . . , m and the symmetry of the distance measure, if follows that
matrix H is a symmetrical matrix.

Under the requirements there are no equal points in the database and the RBF is
positive definite, the weights are given by the solution of this system, i.e.

ψ = H−1y (6.4.23)

At this moment a link to simple Kriging comes into mind. If the correlation function
c in the matrix of equation 6.3.7 in the GRFM is replaced by the activations functions
h in the RBFN, it becomes clear that H=̂C and ψ=̂λ. See 6.3.17. The special case
with simple Kriging where β is given a priori is thus equivalent to the prediction with
RBFN explained here.

The possible advantage of ANN with respect to GRFM is the possibility to have
multiple output units at the same time which allow to train all outputs in one training
phase. This is not researched during the thesis and will not be discussed further.

25

7 Description of the algorithm

7.1 VA114 interface

The interface to the VA114 simulation tool consists of eight Matlab files. Two Matlab
files are for template support. Five Matlab files are used to write data to the VA114
input files, which prepares the VA114 system for the next simulation round. One
Matlab file reads the output file of VA114 and return the objective function values.
See figure 7.1.1.

ff

readdataIWP
template

writedataHOE

writedataIWP

writedataMVE

writedataBFY

writedataTYP

VA114 - interface

B
L
A
C
K

B
O
X

readdataGVU

readdataHOE
template

input

output

Figure 7.1.1: Matlab interface files for VA114.

7.2 Archive characteristics

To support a metamodel it is required to prepare an archive of precalculated points
before the algorithm starts to run. The samples in the archive are preferred to cover
the search space as good as possible. Sampling types are random sampling, latin
hypercube sampling (LHS) and orthogonal sampling. See figure 7.2.2 for visual two-
dimensional representations of these sampling methods. Random sampling does not
guarantee any coverage of the search space at all, but information about the number
of samples is not required to be available before starting. With latin hypercube
sampling the number of points P must be known beforehand. The range of each
variable in the design space is divided in M equally probable intervals and in each
interval a sample point is placed. If this is carried out for each variable eventually all
points lie on a virtual grid and it guarantees that each point is not engaging an other
point on the grid. Orthogonal sampling is LHS with an added restriction. Also the
search space is divided in subspaces of equal size. Besides the LHS distribution each
subspace must be sampled with the same density. Orthogonal sampling is therefore
more difficult to implement. In this thesis latin hypercube sampling is chosen from
the three methods. Attempts are made to create LHS distributions with an improved
total Euclidean distance. As it did not result in noticeable improvements in the
metamodel approximations, the detailed description of this approach is left out.

26

Random Latin
hypercube

Orthogonal

Figure 7.2.2: Sampling types.

Some of the variables with uncertainties involved are unbounded because of the nature
of their uncertainty distributions. The uncertainties all have gaussian distributions.
The lower boundary is set by subtracting four times the standard deviation from the
mean and the upper boundary by adding four times the standard deviation. In this
way at least 99.9% of the search space is covered.

New archive points which are calculated by the objective function, are not allowed
to look similar to existing archive points, as this can disturb the calibration phase of
the metamodel. They do not affect the global metamodel, because this model is only
initialized once before the algorithm starts to run. The local metamodel on the other
hand can use the new archive points as possible neighbours to an unknown solution
that is estimated next.

7.3 Algorithm

The metamodel supported robust (µ + 1) SMS-EMOA has to find robust solutions
by means of a worst case scenario.

There are a number of parameters to be adjusted. One can adjust the size of the
population µ. Whenever the size is to small areas with possibly good solutions are
not represented by the population. If the size to big convergence can slow down.

The mutation strength controls the mutation stepsize. A high mutation strength
means more exploration of the search. This can result in good convergence speed at
the beginning and may avoid local minima. A problem may be slow convergence and
lack of precision to a non-global local minimum. A low mutation strength on the
other hand may steadily improve the population during the complete optimization,
but steps in the first local minimum it encounters.

Simple mutation strength adaptation cuts the mutation strength in half after a fixed
number of unsuccessful rounds where the population did not improve. The number
of unsuccessful rounds can be set.

The neighbourhood size defines how may neighbours will be selected to estimate an
unknown point. Theoretically the size can vary from one to the size of the archive.

The algorithm works as follows. First a parent population Pt is initialized. Each
parent is perturbed with a Monte Carlo sampling of two hundred and one samples.
For each perturbed point the objective function value is estimated with a metamodel.
Non-dominated sorting is executed to partition the fronts in increasing order. The
worst front is the front that is dominated by all remaining fronts. For each point
in the worst front the hypervolume contribution of this point is calculated. For the

27

sample with the smallest hypervolume contribution the precise value is computed by
the objective function. This value is saved in the parent population Pt and in the
archive. An outline is given in Algorithm 3.

Algorithm 3 initializeParentPop(A)

1: Pw ← initialize(µ) {Initialize randomly µ parents}
2: for all p ∈ P do
3: Ye ← ∅ {Array of estimated objective function values}
4: Perturbations ← createPerturbations() {Create perturbations (Monte

Carlo Sampling)}
5: for all pert ∈ Perturbations do
6: Ye ← Ye ∪metamodel(p, pert) {Perturb parent p with perturbation pert

and calculate the corresponding objective function value with a metamodel.
Put the result in Ye}

7: end for
8: indexw ← getWorstIndex(Ye) {Find in Ye the worst objective function value

and return the index}
9: Pw ← Pw ∪ createParent(p, pert[indexw])

10: end for
11: (Pw, A) ← calculatePreciseValuesAndUpdateArchive(Pw)
12: return Pw

After the initialization of the parent population the algorithm will run for a prede-
termined number of rounds. In each round a parent is randomly chosen from the
population and mutated by the variation operator mutation to create an offspring.
The offspring is perturbed with two hundred Monte Carlo samples and the worst
sample ow is found in the same way as in the parent population initialization. To
select µ best solutions from the population extended with the new offspring Pt ∪ ow,
the replacement operator in Algorithm 2 of chapter four is used. If the offspring
indeed improves the parent population, its estimated value is replaced by a precise
value calculated by the objective function. This new calculated point is added to the
archive. An outline is given in Algorithm 4.

In this particular case the objective function is time expensive. When solving a
robust optimization problem this can be an issue because of the high number of
objective function calls that is used. A solution to this issue is the integration of a
metamodel into the algorithm. A metamodel simulates the objective function and
partially replaces calls to the objective function. The metamodel approximates the
original objective function with a limited precision.

At this point a local metamodel is assumed. Initially the parameters θ, β and s2

were set by a simple evolution strategy (ES) algorithm. The ES algorithm maximizes
the likelihood equation 6.3.13 on page 23 that is based on the maximum likelihood
heuristic. The maximum number of rounds is set to one thousand. The setup of
θ in this way does not give the performance aimed at. The optimization of the
likelihood function by itself is too time expensive. In this state of the algorithm a
single optimization would take fifteen days. This even exceeds the required time of an
optimization without metamodel support. The delay is mainly caused by the matrix
inversion and determinant computations needed for maximizing the likelihood term.
Even if the number of rounds is brought back to two hundred and fifty rounds there
will be still left an optimization of three to four days. The expected gain of time

28

Algorithm 4 Robust SMS-EMOA supported by a metamodel

1: A0 ← initializeArchive() {Initialize archive to support metamodel}
2: P0 ← initializeParentPop(A0) {Initialize parent population}
3: t ← 0
4: repeat
5: Ye ← ∅ {Array of estimated objective function values}
6: xt+1 ← generate(Pt) {Generate one offspring by variation operator}
7: Perturbations ← createPerturbations() {Create perturbations (Monte

Carlo Sampling)}
8: for all pert ∈ Perturbations do
9: Ye ← Ye ∪metamodel(At, xt+1, pert) {Perturb offspring xt+1 with

perturbation pert and calculate the corresponding objective function value
with a metamodel model. Put the result in Ye}

10: end for
11: indexw ← getWorstIndex(Ye) {Find in Ye the worst objective function value

and return the index}
12: ow ← createOffspring(xt+1, pert[indexw]) {Create worst offspring from xt+1

and pert[indexw]}
13: (ow, A) ← calculatePreciseValueAndUpdateArchive(ow)
14: Pt+1 ← replace4S(Pt ∪ {ow}) {Select a maximum of µ individuals for the new

parent population}
15: t ← t + 1
16: until stop criterium reached

by introducing a metamodel into the system is consumed by the ES maximizing the
likelihood term. An outline of the likelihood maximization can be found in Algorithm
6 on page 30. The likelihood maximization is actually a minimization of expression
6.3.13 on page 23.

An alternative for setting the parameters is the cross validation tool. With cross
validation one point is left out from the sample set and is estimated by the remaining
points. This is repeated for every point in the sample set. Let yi be the precise
objective fucntion value and y′i be the estimated value then

√∑n
i=1(|y − y′|2) forms

the total error, that must be minimized. This method is from a computationally
point of view even worse than the former one. Again the matrix operation, here
only the inversion is the limiting factor. For each element in the neighbourhood a
matrix inversion of a matrix of size neighbourhood minus one is executed. Although
a computationally unfeasible method, the predicted θ is a better estimation than the
θ produced by the likelihood function. In literature cross validation is mentioned as
a more robust error function and the likelihood function to be more qualitative one.
In this case the opposite is true. Cross validation performs better on the estimation
of θ.

Instead of maximizing the likelihood function or minimizing the cross validation error
with an ES, another possibility is to predefine a series (θ1, θ2 . . .) which start for
example at 10E-09 and increase with stepsize ten on a logarithmic scale to one hundred
thousand. For each θi the likelihood function or cross validation error is calculated
and the best θi is chosen. Again the likelihood function does not come up with the
best possible θ.

29

Again for cross validation the same answer applies as stated before. Running cross
validation slows down the optimization too much and is therefore rejected.

So far the Kriging metamodel is not able to produce reliably quality predictions
with an automatically determined parameter θ. Therefore θ is set manually. An
disadvantage of manually set parameters is obviously the lack of a possibility to let
the model adjust parameter θ during the optimization. If the metamodel gets unstable
and produces nonsense output the optimization must be halted and the parameters
have to be adjusted before starting a new run. But after practical experience it
seems that a metamodel is stable with a constant θ without losing quality in the
predictions. A Kriging model with a constant θ will perform computations that are
formally equivalent to computations with the RBFN introduced in section 6.4.

For a metamodel that is globally applied, the cross validation can be used to set θ. In
this case the estimation of θ will use a fixed amount of time during the initialization
of the optimization.

Algorithm 5 calibratingMetamodel(X, Y , I) Kriging - set parameters θ, β and
s2

1: D ← calculateDistanceMatrix(X, I) {Calculate distance matrix D with
neighbourhood set X and importance factor I}

2: θ ← ES(θ) {Maximize likelihood function maximizeLikelihood with simple ES
with variable θ and return found θ or manually set θ}

3: C ← exp(−θ ·D) { Create Matrix C with values between zero and one}
4: invC ← C−1 {Put the inverse of C in invC}
5: β ← calculateBeta(Y , invC, m) {Calculate least squares estimate of β}
6: s2 ← calculateS(Y , β, invC, m) {Calculate least squares estimate of s2}
7: return β, s2, θ, C, invC

Algorithm 6 maximizeLikelihood(θ, D, Y , m)

1: C ← exp(−θ ·D) { Create Correlation C with values between zero and one}
2: invC ← C−1 {Put the inverse of C in invC}
3: β ← calculateBeta(Y , invC, m) {Calculate least squares estimate of β}
4: s2 ← calculateS(Y , β, invC, m) {Calculate least squares estimate of s2}
5: e ← m · log(s) + log(det(C)) {Calculate energy}
6: return e

30

Algorithm 7 minimizeCrossValidationError(θ, D, Y , m, I)

1: e ← 0 {initialize error to zero}
2: for all di ∈ D do
3: Edi

← (D − di) {Edi
is set D with d excluded}

4: C ← exp(−θ · Edi
) { Create Correlation C with values between zero and one}

5: invC ← C−1 {Put the inverse of C in invC}
6: β ← calculateBeta(Y , invC, m) {Calculate least squares estimate of β}
7: s2 ← calculateS(Y , β, invC, m) {Calculate least squares estimate of s2}
8: λ ← calculateLambda(Y , β, invC) {Calculate λ vector}
9: y′ ← estimateFunctionValue(di, β,s2, invC, λ, invC, D, I)

10: e ← e + (yi − y′)2

11: end for
12: return

√
e

8 Results

8.1 Introduction

The results in this section are a combination of the outcome of variable uncertainty
and sensitivity analysis and graphical and statistical representations of test function,
metamodeling and VA114 results. Furthermore it shows the development process
of the algorithm with the results of the importance factor and the local and global
metamodel optimizations.

8.2 Uncertainty and sensitivity analysis

The optimization and uncertainty variables enumerated in chapter one are based on
uncertainty and sensitivity analysis of seventy-seven variables performed by Hopfe in
[Jia07] and [HHPW07]. The selected variables are important in the robust optimiza-
tion and produce the most effect on the objective function values. An interesting
measure of variable importance is given by Partial Correlation Coefficients (PCC).
It is based on the concept of correlation and partial correlation. In particular PCC
provides a measure of variable importance that tend to exclude the effect of other
variables. Figure 8.2.1 shows the result of the PCC for the weighted overheating
hours.

8.3 Superspheres2D

The bi-objective superspheres function is a well known test function in the field of
optimization. In this thesis the superspheres2D test function is used to validate
the functionality of a metamodel in combination with SMS-EMOA. At the moment
of writing this theses there are no optimal robust Pareto fronts known from the
superspheres2D function. Therefore the validation is done by making a comparison
between a summary attainment surface plot obtained from nine robust optimizations
and a summary attainment surface plot obtained from nine robust optimizations with
a metamodel involved. Since the execution of the superspheres2D function is rather
quickly the metamodel slows down the optimization. However, the goal here is to

31

Metamodel results from test samples - objective y1 (left) and objective y2 (right)

0 2 4 6 8 10
0

2

4

6

8

10

y

y’

0 2 4 6
0

1

2

3

4

5

6

y

y’

Metamodel results from optimization - objective y1 (left) and objective y2 (right)

0 2 4 6
0

1

2

3

4

5

6

y’

y

0 1 2 3 4
0

1

2

3

4

y’
y

Table 8.3.1: Superspheres2D y-y’diagrams for test and optimization runs.

validate a metamodel assisting a robust optimization and not to improve the speed
of the algorithm or the objective function.

8.3.1 Metamodel setup results

The metamodel starts with an archive of two hundred precalculated solutions. A
set of two hundred samples is used to manually set the metamodel parameter θ and
validate the functioning of the model. The upper two figures in table 8.3.1 show the
y − y′ diagrams of the two hundred samples for both objectives. The y stands for
the precise objective function value and the y′ stands for the approximated objective
function value. The points follow nicely the diagonal of the diagram, which means
that the error is minimal. The two lower figures in table 8.3.1 show the y−y′ diagrams
of the points collected during an optimization. These points also follow the diagonal.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Conductivity floor layer 4

Single double glass

Loads people

Loads lighting

Size room

Loads equipment

Infiltration rate

Figure 8.2.1: PCC of weighted overheating hours.

32

Median SAS plots for the superspheres2D function. Hypervolume measures of the Pareto front
during an optimization.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f2

f1

no kriging
kriging

0 50 100 150 200 250
9800

9820

9840

9860

9880

9900

9920

9940

9960

9980

round

hy
pe

rv
ol

um
e

pareto front

Table 8.3.2: Superspheres2D results: SAS plot (left) and hypervolume measures dur-
ing optimization (right).

mean median worst best

no metamodel 9974 9974 9972 9976
metamodel 9975 9974 9973 9977

Table 8.3.3: Hypervolume measures of final Pareto front.

The relative error for objective one lies between 8E-06% and 37% with a median of
0.2% and a mean of 0.01%. For objective two the relative error lies between 5E-
04% and 40% with a median of 0.4% and a mean of 0.01%. Both the minimum and
maximum errors can be regarded as statistical outliers. All other percentages show a
stable performance.

8.3.2 Robust optimization results for superspheres2D

To level out above and below average runs, a total of nine runs are executed. From
the nine runs a median summary attainment surface (SAS) plot is calculated. The
figures in 8.3.2 give a clear view how the metamodel performs. In the left figure both
SAS plots, from the optimization with and without metamodel support, are found
and they look equivalent. The metamodel supported run even performs slightly better
than the normal run, but that is a minimal observation, which can be the other way
around in a next run. The hypervolume measures of the robust optimization of the
superspheres2D problem with metamodel support can be found in table 8.3.3.

8.4 VA114 results

8.4.1 Metamodel setup

Initially a local metamodel model was chosen that is supported by an archive of pre-
calculated points. For an unknown point a neighbourhood set is created from existing
points that are close to the unknown point. After selection of the neighbourhood set,

33

A comparison of different neighbourhood sizes for a local metamodel

0 50 100 150 200
50

100

150

200

250

300

Number of neighbour points

M
ea

n
er

ro
r

0 50 100 150 200
200

400

600

800

1000

1200

1400

1600

Number of neighbour points

M
ax

im
um

 e
rr

or

objective 1
objective 2

objective 1
objective 2

A comparison of different neighbourhood sizes for a global metamodel

0 50 100 150 200
50

100

150

200

250

300

Number of neighbour points

M
ea

n
er

ro
r

0 50 100 150 200
200

400

600

800

1000

1200

1400

1600

Number of neighbour points

M
ax

im
um

 e
rr

or

objective 1
objective 2

objective 1
objective 2

Table 8.4.4: Metamodel errors compared with different neighbourhood size. Left
figures show average errors, the right figure shows maximum errors.

the metamodel is calibrated with the set. In this manner the metamodel calibration is
repeated for each new point that needs to be estimated, which considerably increases
the runtime.

If on the other hand a global metamodel is chosen, calibration is executed only once
in a preprocessing phase before the algorithm actually running. There is a possibility
to update the model once at the moment a new point is added to the archive under
the assumption that a higher amount of neighbouring points increases the quality of
the model. Another option is to update the model after a number of predetermined
calculated points are added to the archive. In the results of the optimizations sup-
ported by a global metamodel the size of the archive is kept constant. This means
that there is no recalibration of the metamodel when new objective function values
are calculated.

Table 8.4.4 shows the results of test runs for an increasing neighbourhood size with
regard to the effect on the average error and maximum error. In the upper figure are
presented the results for a local metamodel. The lower figure shows the results for
a global metamodel. The figures at the left side show the average error and at the
right side the maximum error.

For neighbourhood sizes up to hundred neighbours the local metamodel has better
average error measures than the global metamodel. Between one hundred and one
hundred and fifty neighbours, the average errors of the local and global metamodel
are similar. In the global metamodel the average error of the two objectives diverges
stronger for neighbourhood sizes above one hundred and fifty neighbours.

The maximum error in the local metamodel for objective one strongly decreases after
one hundred and twenty neighbours, but an increased neighbourhood size also dras-
tically increase the runtime. For the global metamodel a neighbourhood size of one
hundred twenty neighbours looks very attractive; The maximum error for both ob-
jectives is low compared to the maximum error of one hundred and sixty neighbours
and more.

34

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

standard deviation(σ)

pr
ob

ab
ai

lit
y(

P
)

Figure 8.4.2: Random sampling of a gaussian distributed variable.

8.4.2 Importance factors

Initially the design dimension were equally weighted in the correlation matrix of the
metamodel. The results of two hundred approximated samples are given in the upper
two y− y′ diagram in table 8.4.5, where the left figure contains the data for objective
one and the right figure for objective two. Objective two already follows nicely the
diagonal and shows no exceptional error. Objective one on the other hand is less
stable and shows a cloud of points. The cloud is however following the diagonal in a
very coarse manner.

The importance factor is a simple weight factor for each dimension in the search
space. It is calculated as follows: for nf objectives and d design variables, take for
each variable the minimum and maximum value in their range, while the remaining
variables are attributed their mean values. For the variables with gaussian distributed
uncertainties the ranges are defined by their mean µ values plus/minus three times the
standard deviation σ. This covers at least 99% of the gaussian distribution. Figure
8.4.2 shows a random sampling of a gaussian distributed variable. The probability
P (x) that a sample x lies in the range of [−3σ, 3σ] is approximately 99.7%.

Now, calculate for the created input vectors the objective function values and put
these in Y1, . . . Ynf

, where Yi = yi, . . . , yd and

yi = f(~xmean + ~ei
ximax − ximin

2
, ~αmean + 3σi~ei)

− f(~xmean − ~ei
ximax − ximin

2
, ~αmean − 3σi~ei)

(8.4.1)

where ei ∈ Rd is the i-th unit vector, and ~α is the mean vector for the environmental
variables (see table 2.4.1).

The importance factor cj for each design dimension is

c
(k)
j =

Y
(j)
k∑nf

i=1 Yk

where j = 1, . . . , d and k = 1, . . . , nf (8.4.2)

35

Metamodel results of sample set without importance factor

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
4

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

y

y’

1 2 3 4

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

y

y’

Metamodel results of sample set with importance factor activated

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
4

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

y

y’

1 2 3 4

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

y

y’

Table 8.4.5: Metamodel results regarding the importance factor.

After introduction of the importance factor in the metamodel correlation matrix, the
test results show much more stable approximations of objective one and approxima-
tions of objective two are improved a little. The results can be found in the lower
two diagrams of table 8.4.5

8.5 Robust optimization results for VA114

Below are all optimization results regarding VA114. A division is made between
optimizations from a local metamodel supported algorithm and optimizations from
a global metamodel supported algorithm. The main difference between these ap-
proaches is the frequency of calls to the metamodel and the update of the metamodel
with new points in the archive.

To give an impression of the performance of the robust optimization the following is
carried out. From the initial population of a run with twenty parents a point is taken
out. Around these point fifty perturbations are randomly created and calculated by
the objective function. The differences between the objective function values of the
point and the objective function values of the perturbations is summed and divided
by the number of perturbations. This results in an average deviation of the fifty
calculated perturbations around the original point. This is repeated for all points in
the populations.

The same method is applied to all points in the final population after four hundred
rounds of optimization starting with the initial population. The results of the aver-
age deviations are found in table 8.5.8. The left part of the table shows the average
deviations for the initial population, the right side of the table contains the average
deviations for the final population. For objective one the solutions in the initial pop-
ulation show a better average robustness than the solutions in the final populations,
in other words, the robustness has been declined. It is objective two that profits from
the robust optimization. The initial population has an average deviation of approxi-
mately 9135 WmK−1. This value is improved to 5313 WmK−1 in the final population.

36

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Sum over− and underheating hours [h]

S
um

 a
nn

ua
l c

oo
lin

g
an

d
he

at
in

g
[k

W
h]

population

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Sum over− and underheating hours [h]

S
um

 a
nn

ua
l c

oo
lin

g
an

d
he

at
in

g
[k

W
h]

population

Table 8.5.6: Scatter plot of the initial population with its perturbations (left) and
the final population and its perturbations (right) for a worst case scenario.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Sum over− and underheating hours [h]

S
um

 a
nn

ua
l c

oo
lin

g
an

d
he

at
in

g
[k

W
h]

population

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Sum over− and underheating hours [h]

S
um

 a
nn

ua
l c

oo
lin

g
an

d
he

at
in

g
[k

W
h]

population

Table 8.5.7: Scatter plot of the initial population with its perturbations (left) and
the final population with its perturbations (right) for a best case scenario.

Because the problem is two-dimensional it is the combination of the two objectives
that is supposed to be robust. This is better explained with figures that show the
objective functions values of the initial and final population together with the objec-
tive function values of the perturbations. The left figure in table 8.5.6 involves the
initial population and perturbations. The figure clearly shows the instability caused
by the uncertainty in the design variables. It is not always the case that perturbed
objection function values are worse compared to their original unperturbed objective
function values, but it is impossible to guarantee the output values in a small range
of the objective space. The right figure in table 8.5.6 shows the final population and
their perturbations. This is certainly much more robuster than it was in the initial
situation.

In the robust optimization in this thesis a worst case scenario is chosen, what means
that the worst solution out of two hundred and one perturbations is compared with
the current parent population. In table 8.5.7 is demonstrated how a best scenario case
performs in a robust optimization. Again, the initial population and final population
are given. The right figure clearly shows that after four hundred optimization rounds
the Pareto front is better than in the worst case, but with much more instability
involved, caused by the uncertainty in the design variables.

37

Round 0 Round 400
obj 1 obj 2 obj 1 obj 2 obj 1 obj 2 obj 1 obj 2

560.84 10125.76 1024.68 3706.50 2670.56 7860.58 1598.62 5533.64
687.58 10391.32 1164.34 11039.58 1279.66 6187.92 867.04 3802.62
1482.88 12356.08 1215.34 4753.06 1368.02 5138.06 1956.68 6706.02
836.48 10444.48 1094.50 5100.72 1177.64 4242.94 873.46 3972.90
1257.26 5828.44 669.88 10944.28 979.18 3795.80 913.86 4485.06
666.12 12387.30 1058.62 10580.40 849.24 4086.56 1499.30 7904.88
760.98 12049.24 1348.74 11143.90 1128.34 5571.32 1492.46 9646.36
658.98 11175.20 605.38 9720.30 1520.82 5461.76 1084.40 5242.50
733.92 10642.38 1084.68 3704.44 1049.30 4195.58 864.56 3896.84
1468.62 5128.00 810.48 11483.22 931.50 3747.48 1257.54 4788.80
Average: obj1: 959.515 obj2: 9135.23 Average: obj1: 1268.109 obj2: 5313.381

Table 8.5.8: Robustness comparison of an initial population and a final population of
an optimization.

8.5.1 Local metamodels results

The setup of the experiments is as follows. The population size is set to ten, fifteen
and twenty parents. Each experiment is repeated with mutation strength adaptation
on and off. The mutation strength is initially set to 0.05. Each experiment is repeated
nine times to obtain a median summary attainment surface plot. The neighbourhood
size is one hundred and twenty neighbours.

Table 8.5.9 contains the results of the robust optimizations supported by a local
metamodel. The two figures in the top of the table and the one in the middle to
the left show the summary attainment surface (SAS) plots for respectively the parent
populations of size ten, fifteen and twenty, with mutation strength adaptation on
and off. If adaptation is on, the SAS plots show for all three populations a stronger
extremal solution at one side of the graph. From Table 8.5.10 can be noticed that
these stronger extremal solutions do not lead to higher hypervolume measures.

The different parent populations that have mutation strength adaptation on show all
improved best runs compared to the runs that have mutation strength adaptation
off. The median, however, is worse for each population size when mutation strength
adaptation is on. The adaptation of the mutation strength can result in finding a
better optimum for one of the nine runs, but does not guarantee this for all runs.

The last two figures in table 8.5.9 show that for both adaptation on and off an
increasing parent population leads to an increasing hypervolume measure for the
mean, median, and best cases.

8.5.2 Global metamodel results

The setup of the experiments is as follows. The population size is set to ten, fifteen
and twenty parents. Each experiment is repeated with mutation strength adaptation
on and off. The mutation strength is initially set to 0.05. Each experiment is re-
peated nine times to obtain a median summary attainment surface plot. The runs
are repeated with a neighbourhood size of one hundred and twenty neighbours and

38

10 parents, adaptation on/off 15 parents, adaptation on/off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

20 parents, adaptation on/off Adaptation on, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Adaptation off, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Table 8.5.9: Summary attainment surface plots of the optimizations supported with
a local metamodel with a neighbourhood size of 120.

run parents adaptation mean median worst best

run 1 10 no 8274513365 8280420688 8077367940 8431328567
run 2 15 no 8369735883 8318621402 8173352253 8569027800
run 3 20 no 8456456772 8478629931 8152189845 8698856757
run 4 10 yes 8241348177 8195346348 8133439409 8473882869
run 5 15 yes 8331754803 8249109739 8159335318 8625906322
run 6 20 yes 8435536355 8348664406 8245511242 8847065079

Table 8.5.10: Hypervolume measures for optimizations with a local metamodel with
a neighbourhood size of 120.

39

two hundred neighbours.

Tables 8.5.11 and 8.5.12 contain the results of the robust optimizations supported by
a global metamodel with a neighbourhood size of one hundred and twenty neighbours
and tables 8.5.13 and 8.5.14 contain the results for a neighbourhood size of two
hundred neighbours. In contrary to the local metamodel the increasing population
size does not automatically lead to an increased hypervolume measure for the median
and best statistics. Also in this case the adaptation of the mutation strength does
not result in an advantage for the optimization. However, the adaptation works a
little bit better than in the local metamodel. In general all outcomes are in the same
ranges.

If a neighbourhood size of two hundred neighbours is chosen the performance of
the optimization drops significantly. This may be caused by the fact that a part of
the two hundred neighbours do not contribute to the metamodel estimation. These
neighbours are too far away to affect the estimation in advantageous way.

If we look at the case of one hundred and twenty neighbours, the results are quite
good compared to the local metamodel results. Besides, the global metamodel is less
time consuming.

8.5.3 Pure global metamodel results

The setup of the experiments is as follows. The population size is set to ten, fifteen
and twenty parents. Each experiment is repeated with mutation strength adaptation
on and off. The mutation strength is initially set to 0.05. Each experiment is re-
peated nine times to obtain a median summary attainment surface plot. The runs
are repeated with a neighbourhood size of one hundred and twenty neighbours and
two hundred neighbours. The objective function is called only µ times after the opti-
mization is finished. The precise values are not calculated by the objective function
for the improved solutions found during the optimization. This saves extra runtime
compared to the global metamodel supported optimization.

For a neighbourhood of one hundred and twenty neighbours the pure global meta-
model optimization is performing very well. The results are comparable to the results
of the local metamodel supported optimization. In tables 8.5.15 and 8.5.16 the results
can be found.

A neighbourhood size of two hundred neighbours shows the same performance drop
that is present in the global metamodel supported optimization with the same neigh-
bourhood size. The results can be found in 8.5.17 and 8.5.18.

Although the (pure) global metamodel optimizations run faster than the local meta-
model optimizations, the highest values for the mean, median, worst and best are all
found in the local metamodel supported statistics. If time is not an issue and the
best solutions are required to be found, local metamodel supported optimization is
the best option, otherwise global metamodel supported optimization satisfies.

40

10 parents, adaptation on/off 15 parents, adaptation on/off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

20 parents, adaptation on/off Adaptation on, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Adaptation off, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Table 8.5.11: Summary attainment surface plots of the optimizations supported with
a global metamodel with a neighbourhood size of 120.

run parents adaptation mean median worst best

run 1 10 no 8267283643 8234988511 8128113139 8527693978
run 2 15 no 8346278895 8356574404 8184536829 8560724197
run 3 20 no 8355317780 8362835910 8171392173 8487982969
run 4 10 yes 8268245999 8297779350 8119494063 8419465921
run 5 15 yes 8294989588 8339822532 8065659995 8411623504
run 6 20 yes 8324085196 8332673023 8162834867 8426057544

Table 8.5.12: Hypervolume measures for optimizations with a global metamodel and
a neighbourhood size of 120.

41

10 parents, adaptation on/off 15 parents, adaptation on/off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

20 parents, adaptation on/off Adaptation on, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Adaptation off, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Table 8.5.13: Summary attainment surface plots of the optimizations supported with
a global metamodel with a neighbourhood size of 200.

run parents adaptation mean median worst best

run 1 10 no 8150330943 8117725647 8043274858 8310061420
run 2 15 no 8198463645 8198081779 8078832413 8302510977
run 3 20 no 8220953268 8243823349 7993938752 8351264678
run 4 10 yes 8155087516 8120635086 8002805790 8429516989
run 5 15 yes 8219794205 8225853963 8114729396 8341335509
run 6 20 yes 8178969461 8179590114 8098361236 8283853156

Table 8.5.14: Hypervolume measures for optimizations with a global metamodel and
a neighbourhood size of 200.

42

10 parents, adaptation on/off 15 parents, adaptation on/off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

20 parents, adaptation on/off Adaptation on, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Adaptation off, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Table 8.5.15: Summary attainment surface plots of the optimizations supported with
a pure global metamodel with a neighbourhood size of 120 and µ calls to the objective
function.

run parents adaptation mean median worst best

run 1 10 no 8222476857 8180687385 8093928156 8487061208
run 2 15 no 8277409446 8271901922 8051140824 8460429972
run 3 20 no 8352302898 8401087950 8211450915 8458035144
run 4 10 yes 8303217390 8337438412 8197624973 8415298946
run 5 15 yes 8274044267 8265246924 8036161236 8468027215
run 6 20 yes 8316819073 8237597956 8144567116 8514178093

Table 8.5.16: Hypervolume measures for optimizations with a pure global metamodel
with a neighbourhood size of 120 and µ calls to the objective function.

43

10 parents, adaptation on/off 15 parents, adaptation on/off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

20 parents, adaptation on/off Adaptation on, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

on
off

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Adaptation off, populations of 10, 15 and 20

 10000

 15000

 20000

 25000

 30000

 5000 6000 7000 8000 9000 10000 11000 12000

S
u

m
 a

n
n

u
a

l
c
o

o
lin

g
 a

n
d

 h
e

a
ti
n

g
 [

k
W

h
]

Sum over- and underheating hours [h]

10
15
20

Table 8.5.17: Summary attainment surface plots of the optimizations supported with
a pure global metamodel with a neighbourhood size of 200 and µ calls to the objective
function.

run parents adaptation mean median worst best

run 1 10 no 8130750432 8153252617 7899730660 8416082756
run 2 15 no 8123799180 8113353784 8056374855 8298518214
run 3 20 no 8231560585 8222782825 8056236004 8420255441
run 4 10 yes 8116492084 8123819191 8037014491 8234980443
run 5 15 yes 8218458400 8210634985 8094757530 8334026605
run 6 20 yes 8237891802 8225151741 8022393544 8562180108

Table 8.5.18: Hypervolume measures for optimizations with a pure global metamodel
with a neighbourhood size of 200 and µ calls to the objective function.

44

9 Conclusion and outlook

The hypothesis in section 2.6 was correct. It is possible to support a multi-objective
algorithm with a metamodel and to optimize the problem to a robust Pareto front.

Estimating the parameters of the metamodel with a maximum likelihood function
does not result in the best possible θ and slows down the optimization. With cross
validation it is possible to estimate the metamodel parameters, but it is too time
consuming. A manually set parameter θ worked out best. The importance factor
makes a clear difference for the quality of the estimation of one of the objective
function values.

A local metamodel supported algorithm is working within the time constraint of one
night of runtime. A (pure) global metamodel performs almost like the local meta-
model and saves even more time. Kriging is a suitable metamodel for the problem in
this thesis. A disadvantage of Kriging is the limitation in the number of design vari-
ables (1-20) at which the metamodel still does quality estimations. This problem can
be circumvented by reducing the number of parameters with the help of uncertainty
and sensitivity analysis to identify the most sensitive variables.

A comparison to another multi-objective optimization tool, like NSGA-II, was not
carried out. That is the reason why it is not possible to decide whether the choice for
SMS-EMOA was the best choice for this moment. Future work can be done regarding
parameter settings and neighbourhood sizes. A local search method to fine tune the
convergence to a local or global optimum is another task for the future.

An idea is to compare a metamodel Assisted EA to an EA, that uses parallel com-
puting. With the increasing number of cores in processors these days this is not that
expensive anymore.

It would be of interest to see how the outcome of this thesis can be applied in prac-
tice. And backwards, how practical experience can lead to improvements of robust
optimizations algorithms for building design.

45

A Multi-objective test problem

The superspheres2D problem is described as

f1(x) =
d∑

i=1

(xi)
2

f2(x) =
d∑

i=1

(xi − 1)2

(A.0.1)

The problem has a convex Pareto front with extrema y1 = 0, y2 = 1 and y1 = 1,
y2 = 0. The known Pareto front is f2 =

√
(1− f1)2.

46

References

[BS07] H.-G. Beyer and B. Sendhoff. Robust optimization - A comprehen-
sive survey. Computer Methods in Applied Mechanics and Engineering,
196(33-34):3190–3218, July 2007.

[DG06] K. Deb and H. Gupta. Introducing robustness in multi-objective op-
timization. Evolutionary Computation, Vol. 14(4):463–494, December
2006.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation (IEEE-TEC), 6(2):182–197, April 2002.

[EBN05] M.T.M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm
using the hypervolume measure as selection criterion. In C. Coello Coello
et al., editor, Proc. Evolutionary Multi-Criterion Optimization: Third
Int’l Conference (EMO 2005), volume 3410/2005, pages 62–76. Springer,
Berlin, March 2005.

[ED07] M.T.M. Emmerich and A.H. Deutz. Test problems based on lamé super-
spheres. In Evolutionary Multiobjective Optimization 2007 (EMO2007),
volume 4403/2007, pages 922–936. Springer, May 2007.

[EHM+08] M.T.M. Emmerich, C.J. Hopfe, R. Marijt, J.L.M. Hensen, C. Struck,
and P. Stoelinga. Evaluating optimization methodologies for future inte-
gration in building performance tools. In Ian Parmee, editor, Proceedings
of the 8th Int. Conf. on Adaptive Computing in Design and Manufacture
(ACDM), 29 April - 1 May, Bristol, April 2008.

[Emm04] M.T.M. Emmerich. Single- and Multi-objective Evolutionary Design Op-
timization assisted by Gaussian Random Field Metamodels. PhD thesis,
University of Dortmund, Department of Computer Science, 2004.

[Gia02] K.C. Giannakoglou. Design of optimal aerodynamic shapes us-
ing stochastic optimization methods and computational intelligence.
Progress in Aerospace Sciences, 38(1):43–76, January 2002.

[HHPW07] C.J. Hopfe, J.L.M. Hensen, W. Plokker, and A.J.T.M. Wijsman. Model
uncertainty and sensitivity analysis for thermal comfort prediction. In
Proceedings of the 12th Symp for Building Physics, 19-31 March, Tech-
nische Universitat Dresden., pages 103–112, 2007.

[Hop09] C.J. Hopfe. Uncertainty and sensitivity analysis in building performance
simulation for decision support and design optimization. PhD thesis,
Univertity of Eindhoven, Department of Building Engineering, 2009.

[HSHB06] C.J. Hopfe, C. Struck, J. Hensen, and M. Böhms. Adapting engineering
design approaches to building design- potential benefits. In proceedings
of 6th Int. Postgraduate Research Conf. in the Built and Human Envi-
ronment, 6-7 April, Technische Universiteit Delft, BuHu, University of
Salford, pages 369–378, 2006.

47

[Jia07] Yi Jiang, editor. Uncertainty and sensitivity analysis for detailed design
support, 2007.

[KC99] J. Knowles and D. Corne. The pareto archived evolution strategy: A new
baseline algorithm for pareto multiobjective optimisation. In P.J. An-
geline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, editors,
Proceedings of the Congress on Evolutionary Computation, volume 1,
pages 98–105. IEEE Press, June-September 1999.

[MCP02] J.J. Michalek, R. Choudhary, and P.Y. Papalambros. Architectural lay-
out design optimization. Engineering Optimization, 34(5):461–484(24),
January 2002.

[PH02] I.C. Parmee and P. Hajela. Optimization in Industry. The Chartered
Institute Of Purchasing And Supply, 2002.

[SWMW00] J. Sacks, W. J. Welch, W. J. Mitchell, and H.-P. Wynn. Design and anal-
ysis of computer experiments. Statistical Science, 4(4):409–435, 2000.

[VAB09] VABI. Handleiding, 2009. http://www.vabi.nl/downloads/handleidingen/.

[WZAB04] J. Wright, Y. Zhang, P.P. Angelov, and R.A. Buswell. Building sys-
tem design synthesis and optimization. In Final Report to ASHRAE on
Research Project 1049-RP, 2004.

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. Technical Report 103, Computer Engi-
neering and Networks Laboratory (TIK) Department of Electrical En-
gineering Swiss Federal Institute of Technology (ETH) Zurich, Gloria-
strasse 35, CH-8092 Zurich, Switzerland, 2001.

[ZT98] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary
algorithms - a comparative case study. In A. E. Eiben et al, editor,
Parallel Problem Solving from Nature - PPSN V, Amsterdam, pages 292–
301, Berlin, 1998. Springer.

48

