

Internal Report 2010-17 September 2010

Universiteit Leiden

Opleiding Informatica

The NLP-Editor

A case study about

Eclipse Plug-In development

Derk Geene

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

The NLP-editor

An case study about Eclipse plug-in development

Derk Geene (s0110841)

Leiden University, April 2008

Supervisor: Bart Kienhuis

Introduction

The Computer Systems Group of the Leiden Instutute for Advanced Computer Science

developes a design methodology that allows for fast mapping of nested-loop applications

(e.g. DSP, Imaging, or Multi-Media), written in a subset of Matlab onto reconfigurable

devices. This methodology is implemented as a tool chain called Compaan/Laura.

In this context an editor for nested loop programs is a very convenient tool. The topic of

this case study is how to build this kind of an editor on top of the Eclipse Platform

which is directed at building integrated development environments like the editor we

have in mind. The goal is to build an editor that allows for easy development of nested

loop programs using the possibilities of this platform. The editor will also give visual

feedback to the user coming from the different stages of the Compaan/Laura tool chain.

Chapter one gives a short introduction on the Eclipse platform and the way in which it

can be extended using plug-ins to develop an integrated development environment such

as the NLP-editor. The second chapter describes how different editor functions are

implemented using the eclipse platform. These functions include the creation of an

outline using a visitor pattern (2.1), the use of markers to inform the user about a parse

error (2.2), error-recovery (2.3), the extraction of linearization types from an additional

file(2.4), the use of a rule based scanner to add special colourings (2.5) and extra

information using a hover(2.6) to specific statements, the detection of scope errors (2.7)

and the use of a scheduler to delay the parsing in order to prevent performance drops

(2.8).

1. Platform

Eclipse is a platform that has been designed from the ground up for building integrated

web and application development tooling. By design, the platform does not provide a

great deal of end user functionality by itself. The value of the platform is what it

encourages: rapid development of integrated features based on a plug-in model.

Eclipse offers a solution to the problems that arise each time an integrated environment

is needed for a specific goal. The same requirements are their each time an integrated

development environment is needed but in many cases the user ends up with programs

have completely different user interfaces for doing similar tasks. There have been many

announcements about strategic alliances and open architectures that promise to solve this

problem, but most solutions appear to be a set of different tools which are put together

with import/export duct tape to ‘integrate’ them.

The added value of the Eclipse platform is in the totally different approach that is used

to solve the integration problem. It is not directed at providing end user functionality

itself, but it is designed to allow developers to rapidly add the needed functionality to the

Eclipse platform using plug-ins. At the core of Eclipse is an architecture for dynamic

discovery, loading, and running of plug-ins. The platform handles the logistics of finding

and running the right code. The platform UI provides a standard user navigation model.

Each plug-in can then focus on doing a small number of tasks. Typical tasks for an editor

as we are building in this case study are defining, testing, compiling and debugging, but

the tasks that a plug-in can provide are certainly not limited to these. Using plug-ins a

developer can add almost every task in a relatively easy and transparent manner.

Plug-in Development Environment

The Nested Loop Programs editor is developed as a plug-in for the Eclipse platform.

The development of plug-ins for the Eclipse platform is done using the Plug-in

Development Environment (PDE) which provides a set of tools to create, develop, test,

debug and deploy Eclipse plug-ins.

The PDE provides a new project creation wizards which makes the creation of a new

plugin very easy. The PDE also provides form-based manifest editors. Using these multi-

page editors the developer can centrally manage all manifest files of a plug-in or feature.

Other tools the PDE provide include special views such as the error-log, the plug-in

registry and plug-in dependencies which provide the plug-in developer wit hall the

information he needs.

PyDev

The NLP editor is build using the existing Eclipse Plugin PyDev as a basis. PyDev allows

users to use the Eclipse Platform as a Python and Jython development environment. The

Python parser was replaced with the Matlab parser as used in the Compaan/Laura tool

chain. This was the basis for an editor especially designed for the editing of nested loop

programs. Chapter two describes how all the functionality that was needed was than

added to this basis.

2. Editor features

2.1 Creating an outline using a visitor design pattern

The outline view displays an outline of a structured file that is currently open in the

editor area and lists structural elements. The contents of the outline view in eclipse are

editor specific. In the case of the NLP editor the structure of the file is shown by using

the syntax tree that is generated by the JJTree/JavaCC Matlab parser.

To keep the implementation of the outline separated from the parser a visitor pattern is

used. A visitor design pattern is a way of separating an algorithm (in this case: the adding

of an item to the outline view of the eclipse workbench) from an object structure (in this

case: the syntax tree). The advantage of this separation is the ability to add new

operations to the syntax tree without having to modify the syntax tree. That’s why the

visitor pattern will also turn out to be very convenient for the adding of other

functionality to the editor.

In a nutshell the visitor allows for adding new virtual functions to a family of classes

without modifying the classes themselves; instead, a visitor class is created that

implements all of the appropriate specializations of the virtual function. The visitor takes

the instance reference as input, and implements the goal through double dispatch.

Step 1: Adding a visitor to the MatlabParser

The first things needed are a Visitor interface that has a visit() methods for each type of

node of the syntax tree, and accept() methods in the syntax tree that can take the visitor

object as an argument. The accept() method of the node calls back the visit() method for

its class. The visitor class for the outline will contain visit() methods that add the nodes

to the outline.

The adding of this visitor and the accept functions is very easy because the JJTree

treebuilder of JavaCC can generate a visitor implementation. To enable this feature the

visitor option is enabled in the JJTree input file:

options {

 VISITOR=true;

}

After using JJTree and JavaCC to create a new parser, all different classes of the abstract

symbol tree (AST) nodes will contain a jjtAccept function like this:

public class ASTInteger extends SimpleNode {

 ...

 /** Accept the visitor. **/

 public Object jjtAccept(MatlabParserVisitor visitor, Object data) {

 return visitor.visit(this, data);

 }

}

Also a MatlabVisitor interface has been generated by JJTree that looks like this:

package org.totic.pydev.parser.matlab;

public interface MatlabParserVisitor

{

 public Object visit(SimpleNode node, Object data);

 public Object visit(ASTNLP node, Object data);

 ...

 public Object visit(ASTInteger node, Object data);

}

Step 2: Creating the outline visitor

The next step is to build a concrete implementation of the visitor for the outline. The

outline is a tree that needs a model. This model consists of items. Those items are being

added using a new OutlineVisitor that traverses the syntax tree:

class ParsedItem {

 /**

 * Traverses the parsed tree. Fills the array list with the

 * items we are interested in.

 */

 static class OutlineVisitor implements MatlabParserVisitor {

 ArrayList fill;

 ParsedItem parent;

 public OutlineVisitor(ParsedItem parent, ArrayList fill) {

 this.parent = parent;

 this.fill = fill;

 }

 /**

 * Example of a visit function, visit functions exist for all the

 * different type of AST nodes.

 */

 public Object visit(SimpleNode node, Object data) {

 for (int i = 0; i < node.jjtGetNumChildren(); i++) {

 fill.add(new ParsedItem(

 parent,

 (SimpleNode) node.jjtGetChild(i)

));

 }

 return null;

 }

 }

 public ParsedItem[] getChildren() {

 if (children == null) {

 ArrayList allMyChildren = new ArrayList();

 OutlineVisitor v = new OutlineVisitor(this, allMyChildren);

 try {

 if (token != null)

 token.jjtAccept(v, null); // traversal fills in the

children

 children = new ParsedItem[allMyChildren.size()];

 for (int i = 0; i < allMyChildren.size(); i++)

 children[i] = (ParsedItem) allMyChildren.get(i);

 } catch (Exception e) {

 }

 }

 return children;

 }

}

Step 3: Add line-numbers to the syntax tree nodes to allow for highlighting

code and using the outline as a navigation aid.

Now the Outline view of the workbench displays an outline of the code file that is

currently open in the editor area, but at this point when an element in the outline view is

selected the corresponding code in the editor is not being highlighted.

To add this functionality the items of the syntax tree must contain their corresponding

start and end positions in the source file. This information is added to the nodes of the

syntax tree by changing the jjtreeOpenNodeScope and jjtreeCloseNodeScope functions.

void jjtreeOpenNodeScope(Node n) {

 Token t = getToken(1);

 jjtree.pushNodePos(t.beginLine, t.beginColumn);

 n.setBeginLineNumber(t.beginLine);

 n.setBeginColumnNumber(t.beginColumn);

}

void jjtreeCloseNodeScope(Node n) {

 jjtree.setNodePos(n);

 Token t = getToken(0);

 n.setEndLineNumber(t.endLine);

 if (t.toString().equals("\n")) {

 n.setEndColumnNumber(t.endColumn-1);

 } else {

 n.setEndColumnNumber(t.endColumn);

 }

}

Each time a new node scope is started the jjtreeOpenNodeScope function is called using

the current node as its input. The new setBeginLineNumber and

setBeginColumnNumber functions add the correct starting information to the node that

can be used later when the node is visited by the OutlineVisitor. The same holds for the

setEndLineNumber and setEndColumnNumber functions that are added to the function

that is called when the scope is node scope is closed.

The setter and getter functions for the begin- and end-information of the node are added

to SimpleNode which is the base class for all the node types of the syntax tree.

To get the highlighting to work the getPosition function of ParsedItem is changed as

follows:

public IOutlineModel.SelectThis getPosition() {

 IOutlineModel.SelectThis position = new IOutlineModel.SelectThis(

 token.getBeginLineNumber(),

 token.getBeginColumnNumber()-1,

 token.getEndColumnNumber() - token.getBeginColumnNumber()+1);

);

);

2.2 Parse error markers

A very important feature of the editor is the ability to inform the code writer about the

errors he is making. During the course of editing the error information has to be brought

to the user in an understandable way. In Eclipse the resource marker mechanism can be

used to manage this kind of information.

A resource marker is like a yellow sticky note stuck to a resource. A marker can contain

information about a problem (e.g., location, severity) and the user can quickly jump to

the problem location by clicking the marker in the problems view which contains a list of

all the warnings and errors.

The PyParser class is the main parser class of the project. It uses MatlabParser to analyse

the document. PyParser is connected to PyEdit, the editor view, and listens to changes in

the document. On every document change, MatlabParser is asked to generate a new

syntax tree. Clients that need to know when a new syntax tree has been generated can

register as a parseListener. In the case a correct syntax tree has been generated (i.e.,

MatlabParser returns without an error) fireParserChanged() calls the parserChanged()

function of all the listeners. But in the case that MatlabParser returns a ParseException

fireParserError() is called which in turn calls the parserError() functions of all the

listeners.

public class PyParser {

 IDocument document; // document to be parsed

 PyEdit editorView; // the editor associated

 SimpleNode root; //ast for the last successful parsing

 ArrayList parserListeners; // listeners that get notified

 private MatlabParser parser = new MatlabParser(); // the parser

 protected void fireParserError(Throwable error) {

 if (parserListeners.size() > 0) {

 Iterator e = parserListeners.iterator();

 while (e.hasNext()) {

 IParserListener l = (IParserListener) e.next();

 l.parserError(error);

 }

 }

 }

 public void reparseDocument() {

 IEditorInput input = editorView.getEditorInput();

 IFile original = (input instanceof IFileEditorInput) ?

 ((IFileEditorInput) input).getFile() : null;

 try {

 parser = new MatlabParser(inString);

 root = parser.NLP();

 fireParserChanged();

 } catch (ParseException parseErr) {

 fireParserError(parseErr);

 }

 }

}

In the case MatlabParser throws as parseException the parseError() fucntion of all the

PyParser listeners is called. One of the registered listeners is the editor, PyEdit. The

parserError function of the PyEdit class figures out where the error occurred and creates

a marker containing the error message from the MatlabParser on this position.

public class PyEdit extends TextEditor implements IParserListener {

 // This event comes when parse ended in an error

 public void parserError(Throwable error) {

 ...

 int errorStart;

 int errorEnd;

 int errorLine;

 String message;

 // Figure out where the error is in the document

 Token errorToken = parseErr.currentToken.next != null

 ? parseErr.currentToken.next

 : parseErr.currentToken;

 message = parseErr.getMessage();

 IRegion startLine =

 document.getLineInformation(errorToken.beginLine - 1);

 IRegion endLine =

 document.getLineInformation(errorToken.endLine - 1);

 errorStart = startLine.getOffset() + errorToken.beginColumn - 1;

 errorEnd = endLine.getOffset() + errorToken.endColumn;

 errorLine = errorToken.beginLine;

 // Create a marker for the error

 Map map = new HashMap();

 map.put(IMarker.MESSAGE, message);

 map.put(IMarker.SEVERITY, new Integer(IMarker.SEVERITY_ERROR));

 map.put(IMarker.LINE_NUMBER, new Integer(errorLine));

 map.put(IMarker.CHAR_START, new Integer(errorStart));

 map.put(IMarker.CHAR_END, new Integer(errorEnd));

 MarkerUtilities.createMarker(original, map, IMarker.PROBLEM);

 ..

 }

}

This method to display the parse error works very well but has a disadvantage: when

MatlabParser encounters an error it throws a parseException and it stops. This means

that only one error can be detected and the document will only be parsed till the position

where this error occurs. How this problem can be solved is the topic of the next section.

2.3 Multiple error markers by using error recovery

Each time the MatlabParser encounters an error is throws a parseException and stops.

To add the possibility to show multiple errors this behaviour has to be changed.

MatlabParser is created using the JavaCC parser generator. JavaCC allows compiler

writers to deal with error recovery. To use error recovery the production rules for

JavaCC needs some changes.

Let’s take the forStatement production for example:

void forStatement () : {}

{

 (

 <FOR>Identifier() "=" complexExpression()<COLON>Integer()<COLON>

 complexExpression() "," <NEWLINE>

 [listOfAllStatements()]

 <END> <NEWLINE>

)

 {

 }

}

Each time the parser detects a problem in the for statement, it throws the exception

ParseException. To recover from this exception we catch this exception and call a special

function called error_skipto. The new production for the for-statement:

void forStatement () : { }

{

 try {

 <FOR> Identifier() "=" complexExpression()<COLON>Integer()<COLON>

 complexExpression() "," <NEWLINE>

 [listOfAllStatements()]

 <END> <NEWLINE>

 } catch (ParseException e) {

 error_skipto(END);

 }

 {

 }

}

The error_skipto function adds the exception to a new list that contains all the

exceptions and then it skips everything that is not of the kind given as input to the

error_skipto function. In the case of the for-production above, when an error occurs

everything that is not of the kind END will be skipped. After this, the parsing of the rest

of the file will continue as usual. All the exceptions that are found during the parsing

process will be available to the editor so they can al be added as a marker.

The error_skipto function:

void error_skipto(int kind) {

 ParseException e = generateParseException();

 exceptionList.add(e);

 Token t;

 do {

 t = getNextToken();

 } while (t.kind != kind);

 getNextToken();

}

Because the errors are being caught the PyParser will now call the ParserChanged

function in stead of the ParserError function, also in the case there are one or more

parse errors. So now the ParserChanged function of the editor has to add the exceptions

on the exceptionList as a marker to the editor view. This will typically look like this:

public void parserChanged(SimpleNode root) {

 ...

 Enumeration errors = parser.getExceptionList().elements();

 ParseException e;

 while (errors.hasMoreElements()) {

 e = (ParseException)errors.nextElement();

 Map map = new HashMap();

 map.put(IMarker.MESSAGE, new String(e.toString()));

 map.put(IMarker.SEVERITY, new Integer(IMarker.SEVERITY_ERROR));

 map.put(IMarker.LINE_NUMBER, new Integer(e.getLineNumber()));

 map.put(IMarker.TEXT, new String("hallo"));

 MarkerUtilities.createMarker(original, map, IMarker.PROBLEM);

 }

 ...

}

Using error recovery the editor view now contains all the parse errors that MatlabParser

encounters!

2.4 Get linearization types from KPN file

In the Compaan toolchain the matlab files get a kpn file with a corresponding name that

contains a Kahn Proces Network (KPN). These are basically xml documents that contain

a model of computation in which a group of processing units are connected by

communication channels to form a network of processes.

For the NLP-editor some of the information contained in the KPN file is needed to give

a certain color to the ipd-statements in the matlab file. This color corresponds the

linearization type of this ipd statement.

To fetch this information from the .kpn file a new parser is added to the project. The

Kpnparser opens the kpn file, if there is any, that has the same filename as the matlab file

that is currently open in the editor view. When the timestamp of the kpn file is newer

than the matlab file it means that it is generated after the matlab file, so it can be used. In

this case a xml parser is used to create a document object model of the xml file.

Now a visitor is used to visit all the ipd-statements in the syntax tree. The linktype is

added to the node and to a special datastructure that is used to give a certain color to

every ipd statement in the editor view.

2.5 Using a rule based scanner for colouring the ipd statements

according to their linearization type

The actual coloring is done by adding a new rulebased scanner to the editor

configuration.
package org.totic.pydev.editors;

public class PyEditConfiguration extends SourceViewerConfiguration {

 ...

 private MyRuleBasedScanner getMyCodeScanner() {

 MyRuleBasedScanner codeScanner = new MyRuleBasedScanner();

 IToken IOMminToken = new Token(new TextAttribute(colorCache

 .getNamedColor("BLUE")));

 IToken IOMplusToken = new Token(new TextAttribute(colorCache

 .getNamedColor("GREEN")));

 IToken OOMminToken = new Token(new TextAttribute(colorCache

 .getNamedColor("YELLOW")));

 IToken OOMplusToken = new Token(new TextAttribute(colorCache

 .getNamedColor("RED")));

 ...

 LocationRule locationRule = new LocationRule(

 new GreatKeywordDetector(), defaultToken);

 Iterator it = kpnparser.fLocations.entrySet().iterator();

 while (it.hasNext()) {

 Map.Entry pairs = (Map.Entry)it.next();

 Integer[] location = (Integer[])pairs.getKey();

 String[] temp = (String[])pairs.getValue();

 if (temp[1].equals("IOM-")) {

 locationRule.addLocation(location[0]-1, location[1],

 location[2], IOMminToken);

 } else if (temp[1].equals("IOM+")) {

 locationRule.addLocation(location[0]-1, location[1],

 location[2], IOMplusToken);

 } else if (temp[1].equals("OOM-")) {

 locationRule.addLocation(location[0]-1, location[1],

 location[2], OOMminToken);

 } else if (temp[1].equals("OOM+")) {

 locationRule.addLocation(location[0]-1, location[1],

 location[2], OOMplusToken);

 }

 }

 rules.add(locationRule);

 ...

 }

}

The getMyCodeScanner is extended with a new rulebasedscanner that adds colourings to

the ipd statements using the special datastructure (fLocations) that contains the locations

of the all the ipd statements with their corresponding types. Depending on their type

(IOM-, IOM+, OOM- or OOM+) the statements get a different color.

2.6 Adding hover information to the ipd statements

The linearization types are also added to the editor view as a text hover that appears

when the user has his mouse on one of the ipd statements. This is implemented using the

same datastructure containing all the ipd statements with their corresponding type that is

supplied by the KpnParser.

To add the new hovers to the editor a class called MyTextHover is added that

implements ITextHover interface as defined by the eclipse platform. A new function

getTextHover adds our new texthover class to our editor.

public class PyEditConfiguration extends SourceViewerConfiguration {

 public ITextHover getTextHover(

 ISourceViewer sourceViewer, String contentType)

 {

 return new MyTextHover(kpnparser);

 }

}

The MyTextHover class implements the function getHoverInfo which displays the

correct hover for each ipd statement:

package org.totic.pydev.editors;

public class MyTextHover implements ITextHover {

 …

 public String getHoverInfo(textViewer, hoverRegion) {

 IDocument document = textViewer.getDocument();

 if (hoverRegion != null) {

 try {

 if (hoverRegion.getLength() > -1) {

 Iterator it = kpnparser.fLocations.entrySet().iterator();

 while (it.hasNext()) {

 // check if the location of the hover corresponds with

 // the location of the iterated ipd

 if (locations match) {

 return "Linkname: " + linkinfo[0] +

 "\nLinearization: " + linkinfo[1] +

 "\nSize: " + linkinfo[2];

 }

 }

 return textViewer.getDocument().get(

 hoverRegion.getOffset(), hoverRegion.getLength());

 }

 } catch (BadLocationException x) {

 }

 }

 }

}

2.7 Scope error detection

Parse errors are show in the workbench nicely now, however there are more mistakes

that can be made by the programmer. This section explains how scope errors are being

detected and marked in the editor view.

An typical example of a scope error is shown in the following code fragment:

for j = 1 : 1 : N,

 for i = j : 1 : N,

 [out_0] = ReadMatrix_Zeros_64x64;

 [r_1(j, k)] = opd(out_0);

 end

end

The identifier k on the fourth line is not defined in the current scope (assuming that it is

not defined before this fragment). This error is not found by the parser. Support for the

detection of scope errors is added by using the visitor pattern again.

static class KpnVisitor implements MatlabParserVisitor {

 Stack scopeVars; // contains identifiers that are in scope

 public Object visit(ASTforStatement node, Object data) {

 SimpleNode n;

 n = (SimpleNode) node.jjtGetChild(0);

 scopeVars.push(n.getName());

 _visitChildren(node);

 scopeVars.pop();

 return null;

 }

 public Object visit(ASTIdentifier node, Object data) {

 String name = node.getName();

 if (name.length() == 1) {

 if (scopeVars.search(name) == -1) {

 if (name.charAt(0) >= 'a' && name.charAt(0) <= 'z') {

 KpnWarning warning = new KpnWarning(

 node.getBeginLineNumber(),

 node.getBeginColumnNumber(),

 "Identifier " + name + " not in scope"

);

 this.kpnparser.warningList.add(warning);

 }

 }

 }

 _visitChildren(node);

 return null;

 }

 ...

}

The Kpnvisitor is extended with a stack called scopeVars. This stack contains all the

identifiers that are in the current scope. When a for statement is visited, the identifier of

that statement is added to the scope before the code within the for-loop is visited. After

that the identifier is deleted from the scopeVars stack.

When an identifier is visited the scopeVars stack is checked to contain this identifier. If

this is not the case a warning is added to the warninglist containing a the location of the

error and a message that says to the user that this particular identifier is not defined

within the current scope.

The warnings that are generated in this way are shown in the editor by creating markers

in the parserChanged function.

public void parserChanged(SimpleNode root) {

 ...

 // KPN WARNINGS

 warnings = kpnparser.getWarningList().elements();

 KpnWarning kpnwarning;

 while (warnings.hasMoreElements()) {

 kpnwarning = (KpnWarning)warnings.nextElement();

 Map map = new HashMap();

 map.put(IMarker.MESSAGE, new

String(kpnwarning.getWarningText()));

 map.put(IMarker.SEVERITY, new Integer(IMarker.SEVERITY_WARNING));

 map.put(

 IMarker.LINE_NUMBER, new Integer(kpnwarning.getLineNumber()));

 map.put(IMarker.TRANSIENT, new Boolean(true));

 map.put(IMarker.LOCATION, "line " + kpnwarning.getLineNumber());

 MarkerUtilities.createMarker(original, map, IMarker.PROBLEM);

 }

 ...

}

2.8 Parser scheduler

To keep the performance of the application in line with the user requirements a parser

scheduler is added that delays the parsing. When a user starts typing a new thread is

started that will sleep for 1000 milliseconds, each time a new keystoke is detected this

value is reset. When the user stops typing the parsing is done.

public class ParserScheduler {

 public ParsingThread parsingThread;

 private PyParser parser;

 public void parseNow(boolean force) {

 if(!force){

 if(state != STATE_WAITING_FOR_ELAPSE && state != STATE_DOING_PARSE){

 //waiting or parse later

 state = STATE_WAITING_FOR_ELAPSE; // the parser will reset it later

 timeLastParse = System.currentTimeMillis();

 parser.reset(false, TIME_TO_PARSE_LATER);

 checkCreateAndStartParsingThread();

 }else{

 //another request... we keep waiting until the user stops adding requests

 boolean created = checkCreateAndStartParsingThread();

 if(!created){

 parsingThread.okToGo = false;

 }

 }

 }

 ...

 }

 private boolean checkCreateAndStartParsingThread() {

 if(parsingThread == null){

 parsingThread = new ParsingThread(this);

 parsingThread.setPriority(Thread.MIN_PRIORITY); //parsing is low priority

 parsingThread.start();

 return true;

 }

 return false;

 }

 public void reparseDocument() {

 parser.reparseDocument();

 }

 public int getIdleTimeRequested() {

 return parser.getIdleTimeRequested();

 }

}

Each time parseNow is called there is a check in which state the scheduler is. If the

scheduler is not currently waiting or parsing a thread is created that will wait for some

time and then do the parsing. If there is a thread that is waiting or doing the parsing the

scheduler will keep waiting. In this way the parser is not started on every keystroke which

prevents a drop in performance when using the editor.

Conclusions

In this case study an editor for nested loop programs was build on top of the very

popular Eclipse platform. This platform encourages the rapid development of integrated

features based on a plug-in model. Although this particular project has not been an

example of rapid application development, we can conclude that the Eclipse platform

certainly provides everything that is needed for the rapid development of an editor like

the NLP-editor. Significant new features were added and integrated without impact to

other tools. The integration of the editor with the parser is possible because of the use of

a visitor pattern. The native support for a visitor in the Java Compiler Compiler allows

for easy integration of the parser in the Eclipse platform that provides all the visual and

navigation aids that are required in a modern editor.

