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Abstract  
   
In neurons, the dendritic structure is sensitive to changes in the environment. Several 

treatments have been known to create changes in dendritic structure. 3D confocal 
images have been used before to evaluate and quantify changes in dendritic structure. In 
this research, specific treatment with a lentivirus in vivo lead to green fluorescent protein 
expression. Moreover, the lentiviruses were engineered to knock down the glucocorticoid 
receptor. Based on these biological features our work created a method for analysing 
dendritic spines in a semi-automated fashion, which involves the use of a confocal laser 
scanning microscope, deconvolution, the NeuronStudio software, statistical analysis using 

SPSS and the WEKA data mining tool. This research showed that the glucocorticoid 
receptor knockdown causes significant morphological changes in spine structures in the 
hippocampus of mouse brains. These changes indicate more spine maturation. 



Introduction  

    
A neuron is a structural and functional unit of the brain, consisting of a cell soma (cell 

body), one or more dendrites and one axon ending in axon terminals (1). The neuron is 
connected to other neurons, forming a giant complex network. The cerebral cortex 
consists of more than ten billion neurons (2). Dendrites are the branched projections of a 
neuron that act to conduct the electrochemical stimulation received from other neural 
cells to the cell body, or soma, of the neuron from which the dendrites project. Dendritic 
spines, tiny growths on dendrites, increase the richness of connections among neurons. 
The excitability of the neuron is directly related to the amount of dendrites and the 

amount and types of spines on it (3). Three different types of spines can be structurally 
distinguished: stubby, mushroom and thin (1).  
  
A young neuron has short thick dendrites and develops into a complex network of smaller 
dendrites, increasing the surface area. During development of the neuron, an excess of 
spines is formed on the dendrites. Those spines making connections with other neurons 

will thicken and shorten, the unconnected dendrites will elongate and finally drop off  (2). It 
is believed that abnormal formation of the spines is related to learning disorders (2), which 
makes it interesting to do research on. In this way we get a better understanding of the 
underlying morphological changes of such learning disorders.  
Contrary to the long held dogma, neurogenesis, the generation of new nerve cells, occurs 
in the adult mammalian brain. Neurogenesis occurs mainly in two areas of the adult brain 
in mammals: the dentate gyrus (DG) of the hippocampus, and the subventricular zone 
(SVZ), along the ventricles.  
The dentate gyrus (DG) plays an important role in learning and long time memory 
formation (4), (5). It is one of the few brain structures currently known to have high rates 
of neurogenesis during adult life and thus sensitive to changes in mechanisms controlling 
it (neurogenesis) (6). The high rate of neurogenesis in the DG and it's role in learning and 
memory formation are closely related. New neurons are constantly generated from a 
resident population of stem cells located in the border of the hilus and granule cell layer 

of the dentate gyrus. These neural stem cells (NSCs) are defined by their ability to 
undergo multipotent differentiation into major cell lineages, including neurons and 
astrocytes, as well as by their capacity to produce identical cells (self-renew) (7), (8). In 
vitro, NSCs or stem-like cells have been isolated from the dentate gyrus (9). A recent in 
vivo fate analysis study of SRY-related HMG-box transcription factor SOX2 transgenic 
mice showed that a single SOX2-positive cell can generate neurons, astrocytes, and 

identical SOX2+ cells at single-cell level, providing the first in vivo evidence of the 
multipotent and self-renewal properties of NSCs in the adult hippocampus (10).  
Several receptors are believed to influence the development of newborn cells, including 
the glucocorticoid Receptor (GR) (11). Knockdown of GR can lead to a marked change in 
the relative location of newborn cells within the pre-existing granule cell layer (GCL) and 
most likely can promote neuronal differentiation (12), (13).  

   
This research is based on the comparison between normal mouse brains and the brains 
of mice after GR knockdown in terms of the morphology of the dendrites and in particular 
its spines in the hippocampus of the brains. In order to perform this comparison 3D 
images of brain samples are acquired using a confocal laser scanning microscope (CLSM).  
   

To avoid possible bias and to enable the analysis of large quantities of data, the image 
analysis is done in a semi-automated fashion. The NeuronStudio software (NS) as 
developed by the Computational Neurobiology and Imaging Centre in New York  (14) is able 
to automatically detect dendrites and spines in 3D images. This ensures all images are 
handled in exactly the same way.  
   



The output of NeuronStudio can be further analysed to discover certain features of the 
microscopic images, like the amount of a specific type of spine per length unit of the 
dendrite. In this way a large data set with features of the images is acquired. Using data 
mining (15), hidden patterns can be discovered out of this data, which are often hard to see 

without such tools. Using these patterns a classifier can be created that is able to 
distinguish between a normal and a GR knockdown neuron. 
 



Materials and methods  

   

Research groups  

As a model for this research, samples of the hippocampus of mouse brains were used. 
Samples of one and five week old brains of healthy mice were used as control groups, C1 
and C2 respectively. The treatment group, one week old, received a specific treatment 
with a lentivirus leading to the knockdown of the GR.  
   

To knockdown the GR in neuronal progenitor cells (NPC) and their neurogenic progeny in 
vivo, lentivirus suspensions were delivered to the DG of the adult mouse hippocampus by 
stereotaxic injections to the hilar region (13).  
   

Sampling  

Samples of 5 different animals have been used: two animals for C1, one for C2 and two 
for the treatment group. Each sample was stained using anti-green fluorescent protein 
(GFP) antibodies with a 488nm excitation wavelength. The image acquisition was done 
six months after the sampling.  
   

Image acquisition  

An inverted Nikon TE 2000 confocal microscope with Nikon EZ-C1 software has been 
used in combination with a GFP-488 excitation laser. A 60x oil immersion lens (NA, 1.25; 
Nikon) was used for an optimal magnification. A 20x lens was used to create larger scale 
images in order to search for interesting sections of the samples.  
   
Although it is possible to use the microscope manually to view and navigate through 
samples, the microscope can be completely software-operated (Nikon EZ-C1). This 
includes scrolling to different sections of the sample, making 2D as well as 3D images 
and changing image acquisition settings. Creating 2D images is quick and can be used to 
navigate through the sample. To create 3D images the user needs to specify the x, y and 
z coordinates of the desired section of the sample. The software then creates a 3D image 
consisting of multiple images in the x/y plane along the z-axis. In the software this is 

referred to as creating a Z-stack.  
   
Within the software several settings can be adjusted that influence the quality and 
intensity of the acquired image and these have to be set properly. The most important 
settings are the pixel dwell time, pixel size, pinhole size, laser power and laser gain (16), 
because of their big effect on the resulting image.  
   

Deconvolution  

Because of background noise, Huygens Essential (HE) deconvolution software (17) from 
SVI B.V. was used to improve the quality of the acquired microscopic images. Because of 
the underlying algorithms used in the NS software (14), better results can be expected with 
deconvolved images rather than the original ones.  

   
HE provides three different modes for background estimation: lowest value, in/near 
object and widefield. With the lowest value mode, the image is searched for a 3D region 
with the lowest average value. The object mode searches the neighbourhood around the 
voxel with the highest value for a planar region with the lowest average value. Finally, 
with the widefield mode the image is searched for a 3D region with the lowest values to 

ensure that the region with the least amount of blur contributions is found (18). Each mode 



will calculate an average background level which can be manually compared to average 
values of specific regions of the image by using the Twin Slicer tool.  
In HE estimating the background is part of the deconvolution procedure. Depending on 
the selected background mode, the averaged background level will be estimated in a 

region far from or near the main objects in the image. This estimated value must be 
compared with what you actually consider background in the image (18).  

NeuronStudio  

NS is able to detect dendrites and spines using octree partitioning and voxel clustering5. 
By adjusting several settings like the voxel size, size requirements of dendrites/spines 

and the image signal threshold, the algorithm is able to detect the location of dendrites 
and classify its spines into one of the three preset categories: stubby, mushroom, thin 
(see figure 1). All basic data about the dendrites and spines that are found can be 
exported to a text file for further processing.  
   

 
 
Figure 1: Different spine types 

 

Weka  

In order to analyse the data that is created with NS the Weka software package is used 

(19). Weka supports several standard data mining tasks, more specifically, data pre-
processing, clustering, classification, regression, visualization, and feature selection. All 
of Weka's techniques are predicated on the assumption that the data is available as a 

single flat file or relation, where each data point is described by a fixed number of 
attributes (20). 



Results  

Image segment selection  

Because we are interested in acquiring images of dendrites within the hippocampus it is 
first necessary to locate the hippocampus within the sample. This is best done by using 
the 20x magnification lens and by controlling the microscope manually to retain a sense 
of overview and to make fast scrolling through the sample possible.  
   
As the maximum resolution of the microscope used is close to the resolution needed to 

capture the shape and size of the spines, obtaining the highest possible quality images 
appeared vital for later image analysis. In order to achieve this it is necessary to carefully 
select the most viable dendrites in the samples. Selection criteria were a high signal 
intensity, visibility of spines, low level of background noise and a low density of 
dendrites. A low density of dendrites is desirable because later image analysis with 
NeuronStudio is hindered when dendrites are in close proximity of each other (see figure 
3).  
 
   

 
 
Figure 2: Example of an image of a dendrite with background noise and low intensity 

    
 

 
 
Figure 3: Example of an image where the dendrite is correctly classified by NS, but the 
spines are not 

 



 
 
 
 

 
 
Figure 4: In this image the noise at the left bottom and the low signal intensity distort 
the result 

 
 
 
 

 
 
 

 
 
Figure 5: In this image most of the spines are classified incorrectly due to a low signal 
intensity and background noise caused by other dendrites 

 



 
 
Figure 6: Example of an image with sufficient spine visibility. The image is successfully 
analyzed. 

Problems with background noise and low signal intensity occurred with the majority of 
acquired images, which resulted in low spine visibility (see  
figure 2, figure 4 and figure 5). Figure 6 shows an image where all search criteria are 
being met and the resulting analysis is successful. It seemed impossible to find a large 
number of dendrite segments that fully complied with these criteria, so we were forced to 
make compromises. Therefore, the predominant factor in segment selection was spine 
visibility considered as signal to background ratio. Some images with considerable 
background noise could still have good spine visibility as long as the signal intensity was 
high. Other images with low signal intensity were acceptable as long as the background 
noise was very low.  
   
After locating the hippocampus we switched to a 60x magnification lens to find suitable 
dendrites. These dendrites are then evaluated further by switching the microscope to 

software mode and taking several 2D images of the segment at different settings. We 
tried to find settings that result in a good quality image, an image with a sufficient signal 
to background ratio. Only if such settings could be found for a specific dendrite a full 3D 
image (Z-stack) was taken. In this way repeating full 3D image acquisition for different 
settings can be avoided which saves time and helps to prevent bleaching of the sample. 
Bleaching is the deterioration of the sample by extensive exposure.  

   

Acquisition settings  

The main acquisition settings of the Nikon EZ-C1 software are the pixel dwell, pixel size, 
laser power, laser gain and pinhole size. It proved to be beneficial to adjust the settings 
per sample because with the same settings some samples would for example lack 

intensity as some samples would show too much background noise. We found that 
varying the laser gain and the pinhole size was sufficient to handle these differences 
between images. Laser power, pixel size and pixel dwell were kept constant for all 
images.  
   
We used a voxel size of 75 by 75 by 100 nm which involves taking images with a pixel 
size of 75 by 75 nm at 100 nm intervals. It is important to take a small voxel size 
because the spine structures are very small and we want to get as much detail in the 
image as possible. Setting the voxel size even smaller was not useful as it would not 
actually add any detail to the image, because the maximum resolution of the microscope 
is reached. To prevent bleaching, we kept the laser power set at 35% of the maximum 
for all samples. The pixel dwell was always set at 3.0 microseconds. A larger pixel dwell 
time creates slightly better images but it is time consuming and it can cause bleaching.  
   



The two pinhole sizes that we used where 30 nm and 50 nm, which are the smallest two 
pinhole sizes available to us. The smallest pinhole gives a sharper but weaker image, 
where the bigger pinhole gives a slightly more blurry image but captures more of the 
signal. We found it is best to use the small pinhole in most cases, but in some cases 

where the signal strength was low we used the bigger pinhole.  
   
When setting the laser gain we tried to find a balance between good visibility of the 
spines and a low level of background noise. We first tried to find a laser gain that works 
using the small pinhole. If that did not result in a good quality image we tried to find a 
laser gain that works with the bigger pinhole. In cases where the laser gain could not be 

set so that a good quality image is taken, we did not take a full 3D image and moved on 
to another segment.  
   
We have also made good use of the averaging function of the microscope, which takes 
multiple images of the same slice and then calculates an average over these images. In 
most cases using two or three averaging rounds removed a lot of background noise and 
made the image sharper. Increasing the number of averaging rounds above three did not 

have much effect on image quality, and we want to avoid doing too many rounds 
because of time-consumption and bleaching.  
   

Deconvolution  

The following microscopic parameters were used:  
   

Microscope type:  confocal  

Numerical aperture:  1.40  

Lens immersion refr. index:  1.5150  

Medium refractive index:  1.5150  

X sample size (nm):  75  

Y sample size (nm):  75  

Z sample size (nm):  100  

 
Table 1: Used microscope parameters 

To set the right deconvolution parameters, we first compared the three methods for 
background level estimation by comparing background levels found with the Twin Slicer 
tool with the levels found by a certain estimation mode. For each different method, the 
area radius was tuned to get a result as close as possible to the value manually found 
with the Twin Slicer tool. In all test cases the object estimation mode with the default 
area radius of 0.5 micron performed best.  
   

The signal to noise ratio was estimated at 20 by comparing its granularity to the images 
provided in the manual of HE and by checking the quality of the initial results of the 
deconvolution process. A total amount of 20 iterations with a quality threshold of 0.1 was 
enough to fulfil quality requirements for usage with NeuronStudio.  
   
The optimised iteration mode algorithm detects if it hits upon a sub optimal result. If so, 

it switches back to the Classical mode to search for the optimum. That is why always 
starting with the optimised mode is highly recommended (18). To reduce system memory 
usage, the image was automatically split into bricks while deconvolving.  
   
Because we avoided bleaching of the samples during acquisition we did not use the 
bleaching correction function in the deconvolution software.  
Final list of the deconvolution parameters:  



Background estimation mode:  object (area radius 0.5 micron)  

Relative background:  0  

Maximum iterations:  20  

Signal to noise ratio:  20  

Quality threshold:  0.1  

Iteration mode:  optimized/fast  

Bleaching correction:  off  

Brick layout:  auto  

 
Table 2: Used deconvolution parameters 

 
Figure 7 shows an image with good spine visibility, but with a considerable amount of 
background noise. 

 
Figure 8 shows the result after using deconvolution.  
   

 
 
Figure 7: Original image 

 
 
Figure 8: Deconvolved image and analyzed using NeuronStudio 



NeuronStudio  

   
The sequence of analysis with NeuronStudio starts with the user setting a seed 
somewhere within a dendrite. The software can then trace the dendrite starting from this 
point. If there are other dendrites visible in the segment, the seed can be moved and the 
tracing can be restarted. After tracing the dendrites in the image the software can detect 
spines that are located on these dendrites. Aside from setting the seed, the user can set 
the ROI (Region Of Interest), which forces the software to stay within a certain region of 
the image. We have used this in cases where only parts of the image were of good 
quality.  

   
NS comes with pre-set analysis parameters that can be adjusted by the user. The most 
important parameters are concerned with shape requirements of the dendrites and 
spines and in particular classification requirements of different types of spines. When 
using the standard parameters of the software some spine detection and classification 
errors appear, meaning spine detection or classification is different than it would be if 

done manually. Manual analysis is done by studying the image using the 3D-viewer 
provided by NS where the user can, albeit rather arbitrarily, decide whether some shape 
is a spine and whether it is shaped as a mushroom, a stubby or a thin.  
   
We found that the error rate can be reduced by adjusting the settings per sample. 
However, adjusting the settings to work well for one sample appeared to cause an 
increase in errors when used on other samples. Because our goal was to automate as 

much of the analysis procedure as possible, we chose to use the same settings for all 
images in order to avoid possible user bias, since manual analysis of the error rate is 
highly arbitrary.  
   
After trying out different combinations of settings on a number of samples, the standard 
settings of NeuronStudio seemed to work best for our collection of samples. Below is a 
list of the settings that we used.  

 

Dendrite detection   

Attach ratio:  1.5  

Minimum length:  3.0 µm  

Neurite tracing threshold:  Dynamic  

  

Spine detection and classification   

Minimum height:  0.5 µm  

Maximum height:  3.0 µm  

Maximum width:  3.0 µm  

Minimum stubby size:  10 voxels  

Minimum non-stubby size:  5 voxels  

Minimum head / neck ratio:  1.1  

Minimum Thin ratio:  2.5  

Minimum Mushroom size:  0.35 µm  

 
Table 3: NeuronStudio settings 

   



Final images  

   
Using the image acquisition methods we described, we have gathered a total of 40 
images each containing one or more segments of dendrites. Acquiring and analysing 
images using the described methods takes around 20 minutes per image. The majority of 
this time consists of image acquisition.  
   
After deconvolving all of these 40 images we tried to analyse them with NS. For 30 
images it was possible to get good results, meaning the analysis resulted in spine 
classifications that are correct for a large majority of the spines when checked manually.  

   
Analysis of the other 10 images with NS created problems. In some of these cases NS 
was unable to trace the dendrite in the image, as it detected dendrites in segments of 
the image that contained only background noise (see  
figure 2). In many cases the dendrite was properly traced, but a large fraction of the 
spines were not detected or INCORRECTLY classified by NS (see figure 3, figure 4 and 

figure 5). These 10 images were discarded from further data analysis.  
   
The 30 remaining images contained dendrites from the 3 different classes in the following 
amounts:  
 

Control (C1):  10  

Treatment (T):  12  

5-week old control (C2):  8  

   
These 30 dendrites have an average length of 145 µm each and contain on average 183 
spines.  
   
From the textfiles exported by Neuronstudio a number of attributes were derived for each 

dendrite. These attributes were used for further data analysis with Statistical Package for 
the Social Sciences (SPSS) and Weka. A list of attributes is given below.  
   
Spine densities: (spines of a certain type per µm of dendrite)  

        total spines per µm  
        mushroom spines per µm  

        stubby spines per µm  
        thin spines per µm  

   
Spine ratios: (spine counts of a certain type in relation to total spine counts)  

        mushroom spine count / total spine count  
        stubby spine count / total spine count  
        thin spine count / total spine count  

   
Spine shapes: (average shape measurements per spine type)  

        average mushroom spine head diameter  
        average mushroom spine neck diameter  
        average mushroom spine spine length  
        average mushroom spine head diameter / neck diameter  

        average mushroom spine head diameter / spine length  
        average thin spine head diameter  
        average thin spine neck diameter  
        average thin spine head diameter / neck diameter  
        average thin spine spine length  
        average thin spine head diameter / spine length  
        average stubby spine diameter  



        average stubby spine spine length  
        average stubby spine head diameter / spine length  

   
Dendrite measurements:  

        dendrite thickness (the diameter of the dendrite)  
   

Statistical analysis using SPSS  

In the following figures the type refers to the three research groups: two control groups 
(c, c2) and one treatment group (t). The error bar above each bar indicates the standard 
error of the mean (SEM).  

Spine type ratios  

As figure 9 and figure 10 show, the treatment and second control group have a much 
higher mushroom/spine ratio and a much lower stubby/spine ratio than the first control 
group. This suggests that the spines of the treatment and second control group are in a 

more developed state (21).  
 
 
   

 
Figure 9: Ratio of mushrooms/total spine count per type 

   

 
Figure 10: Ratio of stubbys/total spine count per type 

   



 
Figure 11: Ratio of thins/total spine count per type 

Because thin spines can develop into mushroom spines (21), the high thin/spine ratio of 
the treatment group (see figure 11) indicates that the spines of this group are generally 
in a more active state of development compared to the control group. These thin spines 
can shorten and thicken, forming mushrooms, or elongate and finally drop off  (2). The high 
stubby/spine ratio of the first control group suggests that these spines are generally in 
an earlier state of development than the other groups. Both a low stubby/spine and 
thin/spine ratio for the second control group shows that this group generally consists of 
more matured spines than the other groups.  

Spine densities  

Figure 12 shows that the spine density is not significantly different between each 
research group (sig. 0,724).  
   

 
Figure 12: Mean spine density per type 

Mushroom head/neck  

   
Mushrooms with larger heads and thinner necks have been identified as being more 

mature (22). As figure 13 and figure 14 show, the mushroom head/neck ratio is 
significantly lower (sig. 0,01) within the first control group due to an increased neck 
diameter. These results suggest that the mushrooms of the treatment and second control 
group are in a more mature state than those of the first control group, which has 
mushrooms with thicker necks.  
   



Regarding the neck and head diameters of the mushroom spines, no significant 
differences exist between the treatment and second control group (sig. 0,713 and 
0,125).  
   

 
Figure 13: Mushroom head/neck diameter per type 

 
 

 
Figure 14: Mushroom neck diameter per type 

 
    
Control vs treatment  t  df  Sig. (2-

tailed)  
Mean 

difference  
Std. error 
difference  

Mushroom ratio  -3,545  18,903  0,002  -0,11416  0,03221  

Stubby ratio  4,205  14,765  0,001  0,22685  0,05395  

Thin ratio  -2,764  19,465  0,012  -0,11269  0,04077  

Spine density  -0,359  16,327  0,724  -0,10592  0,29476  

Mushroom head/neck  -2,563  19,894  0,019  -0,67946  0,26506  

Mushroom neck  2,890  15,022  0,011  0,04696  0,01625  

 
Table 4: Independent T-test results of control group vs. treatment group 

  



 
Control2 vs treatment  t  df  Sig. (2-

tailed)  
Mean 

difference  
Std. error 
difference  

Thin ratio  1,898  16,767  0,075  0,07138  0,03761  

Mushroom head/neck  0,374  17,993  0,713  0,9010  0,24120  

Mushroom neck  1,612  17,594  0,125  0,01836  0,1139  

 
Table 5: Independent T-test results of second control group vs. treatment group 

   

Datamining with Weka  

   
We did data analysis with Weka for the 2 class problem, consisting of only the control 
and treatment groups dendrites, and the 3 class problem which also includes the 5 week 
old control group. We describe the results of a number of different methods of analysis 
that the Weka package offers.  
   

Attribute selection by Information Gain  

In general terms, the expected information gain is the change in information entropy, a 
measure of the uncertainty associated with a random variable, from a prior state to a 

state that takes some information (23). This information gain can be used as a measure 
of attributes functioning as a class predictor. For both the 2 class and the 3 class 
problems the same four attributes appear to have a high information gain. This suggests 
that each of these four attributes can be used alone as class predictors.   
 
   
Attribute  Information gain  

Stubby/spine ratio  0.618  
Mushroom head/neck ratio  0.502  
Mushroom/spine ratio  0.445  
Mushroom average neck diameter  0.432  
 
Table 6: Information gain per attribute for the 2 class problem 

   
Attribute  Information gain  
Stubby/spine ratio  0.496  
Mushroom average neck diameter  0.418  
Mushroom head/neck ratio  0.398  
Mushroom/spine ratio  0.365  
 
Table 7: Information gain per attribute for the 3 class problem 

Subset analysis  

A subset analysis algorithm is used to find the combination of attributes that together 
have a high information gain. The best subset for both the 2 class and the 3 class 
problem as found by the algorithm consist of exactly the same four attributes as 

described above. This suggests that there is not enough correlation between any of the 
predictors to be able to discard one of the predictors, which means that all four 
predictors are useful in further analysis.  

 
 



Visualization 
 
The attributes as found by WEKA can be visualized in a scatter diagram in which two 
attributes are combined. These scatter diagrams can be used to get a general overview 

of the results. The different research groups are depicted as follows:  

 

 

Research group  Color  

Control (C)  Blue  
Treatment (T)  Red  
Second control (C2)  Green  
   

 

 

 

   

 
Figure 15: Mushroom/spine ratio (x) vs. mushroom average neck diameter (y) 

  
 
 
 
 
 

 
 
 
 
 
 
 



 
 
 

 
Figure 16: Mushroom/spine ratio (x) vs. mushroom head/neck ratio (y) 

 
 
 
 

   

 
Figure 17: Mushroom/spine ratio (x) vs. stubby/spine ratio (y) 

  



 
 
 

 
Figure 18: Stubby/spine ratio (x) vs. mushroom average neck diameter (y) 

 
 
 
 

  

 
Figure 19: Stubby/spine ratio (x) vs. mushroom head/neck ratio (y) 

   



 
Figure 20: Mushroom average neck diameter (x) vs. mushroom head/neck ratio (y) 

 

Cluster analysis  

   
To do clustering analysis we have used a simple k-Means algorithm. The clustering 
algorithm defines clusters of dendrites by their attributes without using any information 

on the class of the dendrites. We used it to divide the instances of the 2 class problems 
into two clusters and the instances of the 3 class problem into three clusters. The classes 
are then mapped on to the clusters in the best way possible. We performed the clustering 
both using all attributes and using only the four top predictors, because removing 
attributes that are not good class predictors could have a positive effect on the success 
rate.  

   
The results for the 2 class problem suggest a clear divide between the control group and 
the treatment group.  
The results for the 3 class problem show that there are no differences found between the 
treatment and the five week old control group. Clusters that contain a high amount of 
treatment samples also contain a high amount of five week old control samples and vice 
versa. We also see that the control group and the five week old control group are mostly 

separated. Again we see a clear divide between the control and the treatment group.  

2-class  

   
class/cluster  0  1  
C  6  4  

T  1  11  
   
Cluster 0 ← c  
Cluster 1 ← t  
Incorrectly clustered instances: 5/22 (23%)  
   



2-class with only 4 top predictors  

   
class/cluster  0  1  
C  8  2  
T  3  9  
   
Cluster 0 ← c  
Cluster 1 ← t  
Incorrectly clustered instances: 5/22 (23%)  
   

3-class  

   
class/cluster  0  1  2  
C  1  6  3  
T  4  1  7  
c2  2  1  5  
   
Cluster 0 ← t  
Cluster 1 ← c  
Cluster 2 ← c2  
Incorrectly clustered instances: 15/30 (50%)  
   

3-class with only 4 top predictors  

   
class/cluster  0  1  2  
C  5  3  2  
T  0  1  11  
c2  1  0  7  
   
Cluster 0 ← c  
Cluster 1 ← No class  
Cluster 2 ← t  
Incorrectly clustered instances: 14/30 (47%)  

Classifier with experimenter  

We have run several different classification algorithms and compared their results to find 
which algorithm performs best. The four algorithms that we used are:  

 ZeroR, which classifies everything as part of the majority class, without using any 
of the attributes.  

 J48, which creates a decision tree.  
 Naive Bayes, based on probability models and decision rules.  
 IB1, also known as the nearest neighbor algorithm.  

We included the ZeroR algorithm for comparison reasons, if the performance of a 
classifier is close to the performance of the ZeroR classifier then its performance is 
considered poor.  

We did both a 10-fold cross validation and a 66% training, 33% test set division. Both 
are repeated a 100 times and results are averaged. The results show that all three 
algorithms are able to build a working classifier for the 2 class problem, as they perform 
significantly better than the ZeroR classifier. However, they are imperfect, with a succes 
rate around 70%. The performance of the classifiers for the three class problem are 
lower. The best algorithm here is IB1, with a succes rate around 56%, where the ZeroR 
has a succes rate around 40%.  



   
10-fold training, 
100 repetitions  

ZeroR  J48  NaiveBayes  IB1  

2-class  53.33  72.43  75.62  68.33  

3-class  40.00  37.20  47.27  57.40  
   
   
66% training set, 
100 repetitions  

ZeroR  J48  NaiveBayes  IB1  

2-class  53.72  72.43  69.16  69.34  

3-class  38.83  45.58  48.98  55.91  
 

Table 8: Success rates per problem and algorithm 

   
 

Workflow overview  

 

Figure 21: Workflow overview 

 #  condition  true  false  

1  sufficient signal strength  go to 'make Z-stack'  go to 'try large pinhole'  

2  sufficient signal strength  go to 'make Z-stack'  go back to 'search dendrite'  

3  successful deconvolution  go to 'NS'  discard  

4  successful NS analysis  export data  discard  

 
Table 9: Decisions in the workflow overview 



 
Starting with an input sample, the first step is finding the hippocampus by controlling the 
microscope manually using the 20x lens. Then a suitable dendrite must be found using 
the 60x lens with oil immersion. The small pinhole will be tried first by making a test slice 

of the dendrite using the software mode. If the signal strength is sufficient, the Z-stack 
can be made. If not, the large pinhole has to be tried (decision #1). If the signal strength 
is still not good enough, another dendrite has to be searched for. Otherwise, the Z-stack 
can be made (decision #2). Making the Z-stack consists of finding the enclosing 
coordinates for a suitable dendrite segment and acquiring a Z-stack (3D image) using the 
microscope software. The resulting image is deconvolved using the Huygens software 

with predetermined settings. If the resulting image is of sufficient quality, it is used as 
input image for NS using predetermined settings. If not, the image is discarded (decision 
#3). Finally, if NS is able to succesful analyse the image data, the result is be exported 
for further processing. Otherwise, the image is discarded (decision #4). 
 



Conclusion  

 
The image analysis in this research is based on NS. The main challenge in using this 

software has shown to be that it requires high quality images in order to properly analyse 
the dendrites and the spines. We have developed a method of image acquisition that is 
aimed towards acquiring high quality images. This acquisition method has proven to be 
effective, with the majority of acquired images being suitable for use in NS. This method 
of image acquisition together with the use of deconvolution software and NS has proven 
to be very efficient in creating large quantities of morphological data on dendrites and 
spines.  

 
Data analysis showed strong differences between the samples from the control and the 
treatment group. Both the amounts of different types of spines and the shapes of the 
mushroom spines differ strongly between the two groups. The differences that we found 
suggest that the samples from the treated group contain in general more developed 
spines than those from the control group.  

The five week old control group showed similar differences to the one week old control 
group. These differences can be explained by the fact that the five week old control 
group is in a more developed state because of the difference in age.  



Discussion 
 
Analysing the dendrites was done in a semi-automated fashion. Not only by using 

software for automated image analysis, but also by processing all samples the same way, 
as the process overview of the result section indicates. In this way we aimed to minimize 
possible bias. Bias may still occur in several stages, as each time a decision in the 
workflow has to be made the resulting quality is subjectively judged. Bias can also occur 
when picking input samples, finding the hippocampus and searching for possible 
dendrites. Bias is largely created by the fact that the maximum resolution of the 
microscope is close to the resolution needed to analyse the spine structures, which 

makes it difficult to get images of sufficient quality. Because the developed method for 
analysing the data depends on this fact, bias will be present. 
 
Some results in this research were significant, others were not. Spine density, for 
example, showed no significant differences between each group. Using more samples, 
one might conclude that besides the differences in spine type, also the amount of spines 

differ between each group. This may give some new insights into the maturation of 
spines of GR-knockdown dendrites. 

 

 

Figure 22: Implications of GR-knockdown 

 
GR-knockdown will lead to increased levels of cortisol because of a deficient feedback of 
cortisol and promotes neuronal cell differentation (12), (13). Increased cell differentation will 
result in morphological changes and raised levels of cortisol will result in a stress 
reaction. Clinically, the GR-knockout mice will therefore show stressful behaviour. The 

question that remains is whether or not stressful behaviour can lead to morphological 
changes. To be sure the morphological changes are only induced by the GR knockdown, 
one should also do research on the isolated stress factor. 
 
Because it is believed that abnormal formation of dendritic spines is related to learning 
disorders (2), a better understanding of the underlying morphological changes of such 
learning disorders might help us to find treatments.  
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