
Internal Report 2010–14 September 2010

Universiteit Leiden

Opleiding Informatica

Calculating and Predicting

the Game

Five or More

Oswald A. de Bruin

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Calculating and Predicting the Game

Five or More

Oswald de Bruin, #0301450

September 2, 2010

1 Introduction

For this paper we will examine a puzzle game called Five or More (a.k.a.
color lines) in the field of artificial intelligence. The target we set here is to
try to understand the way the game behaves, what the result is from certain
actions taken in the game and ultimately finding a strategy that is based on
knowledge of the game and can achieve a high total score.

The rules of the game will be explained in Section 2. We will look at
the behaviour of Five or More in Section 3 while using the Monte Carlo
algorithm and a simple strategy function on it. The Monte Carlo algorithm
has shown to give nice results with other games like, for example, Same

Game [6]. With the results from Section 3 we try to develop some more
sophisticated strategies in Section 4 and see how those work out. Finally in
Section 5 we will combine these results and strategies to develop an algorithm
that is specialised on Five or More. Section 6 concludes our research.

The research will be quite difficult for a couple of reasons:

• No previous research: As far as we know there is no scientific re-
search done on this game, so we have to come up with practically every
strategy and technique ourselves, apart from the conventional ways to
attack a game in the field of artificial intelligence.

• No available benchmarks: There are a lot of versions of the game
Five or More with different sizes of the playfield, number of colours
and ways of counting the score. None of the versions had available high-
scores from players. For target scores we have to rely on people in the

1



author’s direct environment and the scores achieved by the strategies
described in this paper.

• The random nature of the game: Five or More is a one player
game with randomly generated situations through the game, making it
unpredictable. This makes certain strategies, such as a full search tree
with all possible states, practically impossible. For more on full search
trees and other algorithms used on games, see [2] and [5].

When comparing calculation times for research like this, one should use
only one kind of machine. The main calculating machine we used was a EEE
laptop (netbook) with a 1.6GHz single core Intel processor and 1GB RAM.
However, this was not sufficient for the more complicated strategies and for
those we were committed to distribute the calculations over multiple, more
powerful desktop computers with 3.16GHz dual core processors and 2GB
RAM.

This paper is the Bachelor thesis of the author written at the Leiden
Institute of Advanced Computer Science (LIACS), part of Leiden University.
The writing of this paper is supervised by Walter Kosters and Frank Takes.

2 Five or More

In this section wel will explain the rules and hardness of the game.

2.1 Rules

Five or More is a single player game. The player has a playfield, also called
field or board, with M ×N empty places, see Figure 1. The game starts with
X randomly placed stones of a random colour. The game uses at most Y

different colours. The player can make a move by moving a stone along a
path of empty places. The stone is not allowed to jump over another stone
and also can not make a diagonal path if the diagonal is not accessible by
going horizontal and vertical. After every move, X new random stones will
be put on random empty places on the playfield. The colours of these stones
are known beforehand, but the places where they will be put are not.

If the player succeeds in making a horizontal, vertical or diagonal line of
5 or more stones of the same colour, then these stones are removed from the
field and a score is calculated for the number of stones removed, hence the

2



Figure 1: Screenshot of Five or More, courtesy of the Free Software Foun-
dation

name Five or More. That score is then added to the total score achieved
so far. After scoring a line the player also gets the opportunity of what we
will call a free-play move. In a free-play move the random stones that would
be dropped are not put in the field. The player can make another move and
the random stones will be dropped the next non-free-play move.

It is possible that the randomly dropped stones finish a line if a stone of
the right colour drops in the right line. In this case the line will be removed
and a score will be banked before the next move of the player begins, but
the next move after that will still include new randomly dropped stones.

The reader is referred to Table 1 for the scores per stones. The version of
the game we use comes from a Linux distribution and has a help-file [3], but
this help-file does not name the type of scores made, like in Tetris naming
a 4 row score Tetris [7]. (For more on Tetris, see [1].) For better readability
we will name a line of 5 and 9 a Minimal and a Maximal respectively. The
other possibilities will be called a Sixer, Sevener and Eighter for 6, 7 and 8
stones respectively.

The game ends when all places in the playfield are filled with stones and
therefore no more moves are possible. The goal of the game is to achieve the
highest total score in the end-state.

Our version of Five or More uses a field of M × N = 9 × 9 places,
Y = 7 different colours and X = 3 random stones dropped per non-free-play

3



#in line score name
5 10 Minimal

6 12 Sixer

7 18 Sevener

8 28 Eighter

9 42 Maximal

Table 1: Scores in Five or More

move. Our version can be found in every version of Linux with the Gnome
environment with difficulty setting on medium board size.

2.2 Hardness

With the rules in Section 2.1 come a set of problems for the player. The first
problem is that, because a stone needs to be moved along a path, paths can
be blocked and certain moves can become impossible in one state while they
were possible in the previous state.

The second problem is that the game does not really show winning or
losing. There is only one state which shows the player has lost: the full field.
Every move the player makes eventually just postpones the player’s loss.
There is no winning state to work to.

The third problem is an estimated average upper bound of the possible
score. Imagine making a line of stones. If a couple of stones of the same colour
are scattered around an empty field and the player wants to align those, the
player needs 4 moves to align those stones and score a Minimal. In the first 3
moves no line is formed, thus 3×3 = 9 random stones are dropped. Then the
line is formed, so 5 places in the field are cleared, making the total winnings
of empty places 5− (3× 3) = −4 or: the player loses 4 empty places to score
a Minimal. These losses will increase for longer lines. If the player takes the
opportunity of 2, 3 or the unlikely event of 4 stones that are already aligned,
the winnings of empty places are −1, +2 and +5 respectively. A state with
3 already aligned stones is very rare, so we have to be aware of a loss per
Minimal, Sixer or more of 1 empty place. Since the field has 81 places, a
first estimate of the maximum score is 81 × 10 = 810 points or less. We
can calculate the losses and scores for other situations, but as we will see in
Section 3.3 these calculations do not add much to this research.

4



Theoretically it is possible that only stones of one colour will drop down,
making aligning and scoring always possible. This way we could say that the
estimated average upper bound can be broken and that an infinitely long
played game could also be possible. This is highly unlikely and therefore we
try to break the estimated average upper bound by using better strategies
and not by manipulating the game. The infinitely played game will not be
discussed in this paper.

3 Analysing the game

In this section we approach the game by first applying the Monte Carlo
algorithm to it, then trying to enhance the algorithm a little and study how
the game behaves.

3.1 The Monte Carlo algorithm

The Monte Carlo algorithm plays a game by calculating a number Z of
random simulations in memory for all possible moves in one state. From these
simulations a rating is calculated and the move for which the best rating
was calculated from the simulations is the move that will be done in the
played game. Which rating is best (like highest maximum score, calculation
on eventual structures, etc.) is decided by the designer of the implementation.
The played game comes in a new state after a chosen move and the algorithm
repeats itself until a desired state is reached [4, 5].

3.1.1 Implementation

To gain full control of the game, we coded the environment and rules of the
game in C++. The first step after that was trying the Monte Carlo algorithm
on the game. Our implementation did every possible move in memory and for
every different state created by those moves the algorithm simulated Z = 100
random games which were played until they reached an end-state, a full field.
From these simulated moves the move with the highest average score was
chosen and done in the game. These steps were repeated until the played
game also reached the end-state of a full field. Depending on the game the
calculations for a whole game took roughly 45 minutes to an hour on the
laptop.

5



Figure 2: (left) The algorithm lines up a set of stones blocking a path and
(right) accidentally frees it up again.

3.1.2 Results

The Monte Carlo algorithm reached an average score of 78 in 64 games, which
is quite good, since a fully random played game practically never reaches
above 22 and has an average total score of just above 0.5 points, this in
playing 1000 games. Yet, Monte Carlo is not as good compared to human
players, which average at least 150, see Table 2.

3.1.3 Discussion

The Monte Carlo algorithm aligns stones in lines, mostly horizontal and
vertical, not diagonal, but quite often fails to finish a line sometimes leaving
an unremovable wall in the field.

The algorithm usually makes poor choices. For example: In a calculated
game that is partly shown in Figure 2 it aligned a stone with stones of a
similar colour. The problem was that it also blocked the path to complete
the line at the bottom of Figure 2 (left). To give the reader an idea of strategy:
the 5 blocks the path to finishing its own line while it is also blocked by a
line of 6’s which is also blocked by a 7. To get the 5’s in a Minimal, the 7
must be (re)moved, then the 6’s should be removed and then a 5 must be
inserted. Eventually a stone of that colour fell on the empty place in the

6



line, see Figure 2 (right). One must not count on this kind of luck. The game
eventually scored 120 points, which is not that high.

Another kind of move worth noting which we did not understand was that
the algorithm sometimes placed similar stones in a “horse jump” from each
other as seen in chess, one step vertical and two steps horizontal or vice versa
from each other. The algorithm probably tried to maximize the possibilities
to score. This behaviour vanished, however, when we got to the next step of
the research.

3.2 The Simple Bias Function

Since the Monte Carlo algorithm had trouble finishing lines, the next step in
our research was to create a simple function which could finish lines. Because
the function gives the Monte Carlo algorithm a bias to score when possible
instead of calculating simulations, this function will be called the Simple

Bias function. This function could detect a line of a given length and, when
it found the first line that had this length, it could finish it with stones from
elsewhere on the field. If it could not find a line, it would do nothing. The
function is called “simple”, because it had to find and finish a line with not
too many calculations, since it was going to be used in the simulations of a
Monte-Carlo-like algorithm.

3.2.1 Implementation

The Simple Bias function rates an empty place with a score for every colour.
It looks in all 4 directions, being horizontal, vertical and the both diagonals,
then counts the adjacent aligned stones for a direction, takes the square of
that number and adds all the squares from the 4 directions. This outcome
is the rating for an empty place. When an empty place is above a desired
rating, the Simple Bias function will look for a stone to finish this line and try
to score a Minimal. Note that this function is considered “simple”, because
it takes the empty places in order of the first that is rated above the desired
rating, rather than in order of places with highest rating first. It also does
not check if a formed line is not blocked by other colours making a Minimal

or better impossible.
For example: see Figure 3. The simple rating algoritm gives every place

that is adjacent to a stone a rating of how many stones from a single color
are in a line. Next, the Simple Bias function searches the first place with a

7



Figure 3: Rating of empty places in the Simple Bias function

rating higher or equal to “3 stones in a row”, in our case 9. This will be the
4th place in the second row which the algorithm will try to find a matching
stone to which is not in that line. In this case that is impossible, because the
algorithm needs an extra blue stone which is not on this example’s board.

We have used the Simple Bias function in three different ways. In every
implementation the Simple Bias function finished lines of 3 or more. The
different implementations are:

1. For every turn the algorithm would first try the bias function and
on no result, it would try the Monte Carlo algorithm with random
simulations. In short: Biased Monte Carlo, hereafter abbreviated to
BMC.

2. For every turn the algorithm would try a move with the Monte Carlo
algorithm, without searching for a line first. The simulations in the
Monte Carlo algorithm, however, first tried the Simple Bias function
for every turn before doing a random move. In short: Monte Carlo with

Random simulation with Bias, abbreviated to MCRB.

3. The last way combined the first two, first trying to finish a line, then
trying the Monte Carlo algorithm with Biased simulations. In short:
Biased Monte Carlo with Random simulation with Bias, abbreviated
to BMCRB.

8



3.2.2 Results

In Table 2 we compare the results of our Monte Carlo based strategies against
those of human players. Note that the average of human players are estimates
of the recalled total scores of the players. As can be seen in Table 2, BMC did
not get a total score as high as a normal Monte Carlo algorithm, which was
odd, because the Simple Bias function should be an extension to the Monte
Carlo algorithm to help it with moves to align stones to a line and score. The
Simple Bias function was intended to help, but in BMC it eventually made
the Monte Carlo algorithm worse.

MCRB did it a lot better, which is less odd because the simulations gave
higher results, since in random games potential lines were made and thus
moves that led to a higher score got a higher average. The “horse jump”
behavior disappeared with the biased random games. Again, stones were
aligned, but not always finished to a Minimal.

Because the simulation now had an extra calculation, the simulations took
much longer in computing time. For 1000 games on the laptop the unguided
random games took ±1.5 seconds, the random games with bias took ±11.3
seconds.

BMCRB scored highest by far, but on average not as high as a good
human. Stones got aligned and those lines were finished. One flaw in the
Simple Bias function emerged, however. We noticed that in some cases, when
a line of 3 stones is found in the field before a line of 4 stones of the same
colour is found in the field, the Simple Bias function will take stones from
the line of 4 and use those to finish the line of 3. This is not a good move,
because if the line of 4 is finished with a stone of the line of 3, less moves are
necessary for a line to score and there is the risk that the line of 3 (by then
4) is blocked by a randomly dropped stone. Note that with a free-play move
the line of 3 (by then 2) is easier to make into a Minimal or better.

3.3 Discussion

When a strategy in a simulation is used to determine the average score in the
Monte Carlo algorithm, a similar strategy must be used around the Monte
Carlo algorithm. BMC (and actually MCRB too) failed, because the simula-
tion anticipated different moves than those that were eventually done.

In Table 3 we have listed the moves sorted by the increase of score after
that move. On the left are the number of moves made by the algorithms sorted

9



strategy max average
Monte Carlo 190 78.38

BMC 132 59.71
MCRB 334 206.15

BMCRB 750 375.03
Human 1 202 ±150
Human 2 398 ±380

Table 2: Different strategies compared to eachother and human players

Total moves Percentage of moves

Score BMCRB MCRB MC 902 BMCRB MCRB MC 902

None 3562 2386 2416 174 70.12% 74.87% 83.20% 66.16%

Minimal 1463 742 467 86 28.80% 23.28% 16.08% 32.70%

Sixer 51 47 20 2 1.00% 1.47% 0.69% 0.76%

Sevener 3 9 0 1 0.06% 0.28% 0.00% 0.38%

Eighter 1 2 1 0 0.02% 0.06% 0.03% 0.00%

Maximal 0 1 0 0 0.00% 0.03% 0.00% 0.00%

Table 3: Number of certain kinds of moves and their percentages of the total
per different strategy.

by the score that is banked with that move. On the right are the percentages
of these moves of the total number of moves per algorithm. (Ignore the 902
column for now.) This way we can see how often a score is banked and how
many stones are in a banked score. Most of the total score is made with lines
of 5 and 6 stones. It seems that greediness in an algorithm pays off for this
game. BMCRB is the greediest of the strategies Monte Carlo, MCRB and
BMCRB, since it makes the shortest lines, and gets the highest scores, see
Table 2.

Greediness is probably not the best strategy throughout the game. In the
graph in Figure 4 we have counted the states of the 3 strategies of all the
games by how many stones were in the field. These numbers are devided by
the amount of games played by a strategy creating an average amount of
states with a given amount of stones per game. Putting the amount of stones
on the horizontal axis and the average amount of states with an amount of
stones on the vertical axis resulted in the graph in Figure 4. This way we
can see the average flow of a game by how many stones are on the board.

10



Figure 4: Flow of the game per strategy. The horizontal axis denotes the
number of stones in the field per state discretised to steps of 5. The vertical
axis denotes the average number of states with a number of stones defined
on the horizontal axis

Incidentally the field under a line in the graph shows the average number of
states in a game.

BMCRB (the blue line) has its most states with around 30 to 35 stones
in the field, while Monte Carlo (the yellow line) has its maximum around
36 to 40 stones. MCRB (the red line) has more states nearing the endgame
while BMCRB has more states nearing the beginning of the game. Somehow
MCRB knows better what to do in a different state than BMCRB. Note that
it does not mean that MCRB is better with more stones in the field, but it
might be a consideration.

From the graph in Figure 4 we can deduct that an algorithm while playing
a game of Five or More is circling around a certain number of stones. It
is clear that the game has a certain flow from an empty beginning with not
enough stones to align, to an optimal number of stones where one can score
a lot, to getting near the end game where paths are blocked and the field is
filled rather quickly.

The estimated average upper bound of the score, suggested in Section 2.2,
could influence the way our algorithm is working. The score can be used as a
sensor to predict in what kind of state the game is. The results showed until

11



now do not score over 810 points, so this could be a good way to approach
the game. However, we have tried different implementations with simulations
that did less random games and/or did not play the simulation to the end-
game. These all scored slightly lower than the implementation mentioned in
the first paragraph of this section. Using more games than 100 simulations per
anticipated move resulted in a longer computing time, but not better scores.
Also we tried a Monte Carlo algorithm that chose the highest maximum
score, instead of the highest average. Choosing the move with the maximum
score led to an algorithm that could only score one or two Minimals or Sixers

in the whole game.
On average, all these attempts scored lower than the original Monte Carlo,

but one game scored 902 points in total. Its moves are listed in Table 3. The
playing of the algorithm was not optimal, but this shows that there might
not be an average upper bound to the total score as we estimated.

To tackle most of our problems and questions from Section 1 and 2.2, we
can use our results as benchmarks for new strategies and we now know that
we are not limited to a maximum possible score.

4 Second generation algorithms

Now we know more about the game, we can design our second generation
algorithms.

4.1 Dynamic BMCRB and Inverted

4.1.1 Implementation

Since BMCRB and MCRB both work best at different numbers of stones
in the field, it is logical to try a setting in which the algorithm works with
BMCRB in states with less than 45 stones on the field (Figure 4) and with
MCRB for states with more than 45 stones in the field. This strategy will
be called Dynamic BMCRB. For good measures we also want to see what
happens when we invert the two, using MCRB before 45 stones and BMCRB
after. This strategy will be called Dynamic BMCRB inverted.

12



Break on normal inverted
30 stones 313 257
40 stones 333 265
50 stones 345 229

Table 4: Average scores of the Dynamic BMCRB

4.1.2 Results

The dynamic BMCRB strategies did not perform as expected. The normal
Dynamic BMCRB with a break on 50 stones scored best, but not as high as
the original BMCRB.

4.2 Advanced and Legacy Bias Function

The simple bias function was not very complicated, but gave good results.
To acheive better results we try to enhance this function.

4.2.1 Implementation

Our new bias functions will order the empty places in rating for a certain
colour and start with the place with the highest rating, the place will be filled
with a stone that is in the shortest row of that colour, if it is in a row at all.
This will be called the Advanced Bias function.

Figure 5: Rating of empty places in the Advanced Bias function

13



Where the Simple Bias function accumulated the square of the number
of stones directly aligned to a place, the Advanced Bias function will look
in 4 directions, horizontal, vertical and both diagonals, count the number
of stones and empty places until the edge or another colour than the one
counted is found and will rate the place according to the formula

(stones left + 1)2
× (stones right + 1)2

− distance

where stones left and stones right are each the number of stones of a side in
the horizontal, vertical or diagonal direction (if it is counting vertical, left
and right become up and down etc.) and distance is the number of empty
places to the first stone of the colour that is counted. With this formula the
algorithm will first try to fill a line between two stones and then add stones
at both ends of the line. A good property of this rating is that is can also be
applied to stones which gives a rating for the importance of a stone in a line.

The Advanced Bias function also counts the amount of empty places and
will only rate a place if places + stones in line ≥ 5. The strategy will not try
to finish a line if there is not enough place to finish it. Also the strategy will
not close off a corner of the field by making a diagonal of 4 stones 3 places
from the corner.

For example: see Figure 5. There are many redundant rated places, but
the important places are the 4th place in the 3rd row with the blue rating
of 36 and two red ratings of 0 on the 5th column, 5th row and 8th column,
8th row. The red ratings of 0 show that there are not enough empty places
to create a Minimal of red stones, so the algorithm abandons that line until
enough places are freed up. To try and score a blue line, the algorithm has
3 places to put a blue stone. With the advanced formula the place in the
middle of the line gets a rating of 36 and 16 on the outside, which gives the
Advanced Bias function a preference to put stones in the middle. This is
preferable, because the middle places are mostly the places that get blocked
first. Also it will not leave 5 disjunct stones in a line this way. For example:
2 red stones, an empty place and another 3 stones in one line are 5 stones in
a line, but do not score a minimal.

For good measures we make another strategy based on the Advanced
Bias function with the rating formula of the Simple Bias function for empty
places, but still using the rating for stones of the Advanced Bias function to
find a stone to put on an empty place. This function will be called Legacy

Bias function.

14



Strategy max average no score
Advanced Bias aligning 402 135 1

Advanced Bias finish from 3 356 108 5
Legacy Bias aligning 262 62 45

Legacy Bias finish from 3 110 12 365
Simple Bias finish from 3 92 12 347

Table 5: Scores of the Bias functions after 1000 games. The column no score

shows the number of games in which the total score was 0

4.2.2 Results

We have run 1000 games with the Advanced Bias function, the Legacy Bias
function and the Simple Bias function on finishing lines of 3 stones.

The Advanced Bias Function is clearly better than the Simple Bias func-
tion when working on its own. The Advanced Bias function scores higher
than the original Monte Carlo algorithm and as a score comes near MCRB,
see Table 5 and 2.

As can be seen in Table 5 the Legacy Bias function is not very good at
aligning and when finishing from 3 it does not outperform the Simple Bias
function much.

4.3 The new bias functions and Monte Carlo

4.3.1 Implementation

With the Advanced and Legacy Bias function tested, we now implement
them in a Monte Carlo structure in the same way as BMCRB, making the
strategies Advanced Bias Monte Carlo with Advanced Biased simulations or
ABMCRAB and Legacy Bias Monte Carlo with Legacy Biased simulations
or LBMCRLB.

4.3.2 Results

While the Advanced Bias function does well on its own, somehow linking it
to the Monte Carlo algorithm does not give better scores than BMCRB, of
Table 2. Yet, when we compare LBMCRLB with BMCRB, the results are
very good. ABMCRAB had difficulties scoring the average of BMCRB, but

15



LBMCRLB got a higher average than BMCRB and it also scores higher than
estimated average upper bound in Section 2.2. The maximum game listed in
Table 6 is not a fluke, in fact 5 of the 110 played games were above the 810
score.

Strategy max average
ABMCRAB 440 197
LBMCRLB 1104 472

Table 6: Scores of the Advanced Monte Carlo functions

4.4 Discussion

The idea with the dynamic BMCRB strategies was that if the strategies
could cope with a different number of stones, switching between them would
make the game take longer, have more states and thus have more states
to score in. Apparently the endstates of BMCRB and MCRB are different.
Where MCRB will have a lot of unfinished lines, BMCRB will have a lot
of “white noise”, stones of all different colours with a slim or no chance of
aligning and removing. We achieved an average score between MCRB and
BMCRB, compare Table 4 with Table 2. From the dynamic strategies we can
conclude that it does matter how many stones one has on the field, but that
the number of stones does not correspond with a state a strategy can cope
with. The best strategy still is to keep the number of stones in the field to a
minimum, so the possible number of moves is maximal.

Because the Advanced Bias Function looks at all the possible moves and
does not take the first that has the rating it is looking for, the Advanced Bias
function can align stones from across the board and can therefore also serve
as an align function. The Simple Bias function is not capable of this action,
since for aligning the rating of 1 is asked. The Simple Bias function will then
take any place and put in a stone of the desired colour, which will result in
fields of stones of the same colour instead of lines.

What happens in BMCRB is that the Simple Bias function aligns stones
no matter if a Minimal score is possible and the nature of the Monte Carlo
algorithm makes sure that when a line of stones is blocked, it will be freed
up, so a Minimal score can be made eventually. When the Advanced Bias
function decides there are not enough places and stones to make a Minimal,

16



a line is given up on when it is blocked and will never be attempted to finish.
Note that freeing up a spot to score is a very expensive move in Five or

More, but apparently not too expensive to give up on an unfinished line.
Thus ABMCRAB scores lower than BMCRB. Since the rating formula of the
Legacy Bias function in LBMCRLB has been copied from the Simple Bias
function in BMCRB, lines are not given up on and the total score in with
LBMCRLB is higher.

The game Five or More is actually counterintuitive. Speculation is out
of the question, the player/strategy must be as greedy as possible aligning
stones next to each other with the slight exception of sometimes freeing up
a line when it has advanced to a certain length. We can distinguish at least
3 different actions in the game Five or More: Aligning (start building a
line), Scoring (finishing a line) and Freeing (remove a stone that is blocking
an almost finished line). More actions are discussed in Sections 5 and 6. A
strategy not using Monte Carlo could replace the Monte Carlo part with the
speculative actions (all actions except the scoring action).

5 Strategies without Monte Carlo

We have found that speculation is punished in Five or More but that we
need some kind of speculation to create a situation to score in. We now try
to create some speculative functions that should replace Monte Carlo.

5.1 Align-Score

First we tried combining the parts we already have: the Legacy Bias function
as a score function and the Advanced Bias function as an align function
resulting in the Align-Score strategy.

5.1.1 Implementation

We first let the program try to finish a line of v stones and if it could not
find any, it would try to align stones. If aligning also was not possible (this
is usually in the begin- or endgame) a random move would be made. This
means we first let the Legacy Bias function search for a line of v stones to
finish, if that failed, the Advanced Bias function would try to align a stone
to a line of 1 stone and, if even that failed, a random move would be done.

17



Figure 6: Rating shown of the old (left) and new (right) bias function rating

To see where the break between aligning and scoring could be set best, we
tried different values for v, see Table 7 in the “Score on” column.

We altered the align function’s rating formula from the one specified in
Section 4.2 to:

(stones left + 1)2
× (stones right + 1)2

− distance2

This was done because if the distance was taken linearly, the aptness for an
empty square on the other side of the field could be too high for a colour.
Note that the Advanced Bias rating function only returns the highest aptness.
This results in the situation that a line of 3 can make another line redundant
in certain states, see Figure 6. What happens here is that the aptness of the
blue line is drowned out by the red line. Both are equally rated, but in this
case it will be better to try to align the blue line. By altering the rating
function, the blue line becomes more important for the strategy and cases
like these are better handled. Note that near the red stones (with rating 17
and 18) it is still handy to keep the same rating, because keeping those paths
clear makes moves possible and thus scoring easier.

5.1.2 Results

Comparing Table 7 and 5 it is shown that the Align-Score strategy scores an
average of 10 to 15 points higher with v = 3 or v = 4. With the enhanced
rating formula for the Advanced Bias Function it scores even 15 to 20 points
higher. With v = 3 the maximum is higher, while with v = 4 the average is

18



Align-Score Strategy
old align function new align function

Score on max average no score max average no score
1 stone 242 60 38 286 64 40
2 stones 312 77 17 262 78 13
3 stones 548 144 2 566 150 5
4 stones 446 149 0 462 154 1
5 stones 374 132 3 412 142 1

Table 7: Scores of the Align-Score for 1000 games per try

higher. Although the unbiased Monte Carlo has been beaten by the Advanced
Bias function finishing lines of 1 stone which we used as align function, our
enhanced Align-Score strategy does not beat the slightly better strategies as
MCRB, see Table 2.

5.2 The clear-up function

When the Align-Score strategy is busy building a line and during that phase
a random stone is dropped blocking the line, it can not solve that problem
and starts aligning another line. A simple way to free a blocked line is to find
a stone with a high aptness of a different colour than itself, its un-aptness,
and then move that stone to a place where it is best suitable for its own
colour and not blocking another line of a different colour.

5.2.1 Implementation

We took the code of the Advanced Bias function as a template and rewrote
the rating of stones and empty places. For every empty place a certain aptness

was calculated for every colour and saved in one of seven descending ordered
lists corresponding with that colour. The aptness was obtained by calculating
a rating for a colour for a place with the rating formula of the Advanced Bias
function and subtract the rating for every other colour from that. In abstract:

aptness for a colour = rating for a colour − sum of rating for other colours

The higher the aptness, the better the place can be used to put a stone that
is blocking a line. If the aptness is negative, it is better not to move a stone

19



Align-Clear-Score Strategy
Clearing on # of stones in blocked line

3 stones 4 stones 5 stones
Score on max avg. no max avg. no max avg. no
3 stones 424 118 3 476 160 0 608 152 2
4 stones 202 68 11 416 130 0 428 149 1
5 stones 142 41 33 230 80 3 336 134 2

Table 8: Different configurations of Align-Clear-Score and their scores

of that colour to that place. Using this aptness rating the algorithm will not
block a line with a stone that was blocking another line.

For every stone the maximum un-aptness was calculated in the same way
as aptness, but now we calulate on a stone and only the highest rating is
remembered. The un-aptness is stored in a list in descending order if the
number of stones in that row was more than an asked number. Starting with
the most un-apt stone the Clear-up function tried to move an un-apt stone
to the most apt place for its colour.

We implemented the clear-up function in Align-Score, creating the Align-
Clear-Score strategy. There are different possible values for the Score function
and the Clear function to move a stone to a certain place. The results are
shown in Table 8.

5.2.2 Results

The Clear-up action is a very unfavourable action, because the player wastes
an extra action to make a line, but again we have made a bit of progress.
With trying to score on a line of 3 and cleaning up blocked lines of 4 the
average score is 4 points higher than the Align-Score strategy with score on
4 stones in a line.

The Align-Clear-Score strategy makes a line, tries to finish it, and when
a stone blocks it, that stone is removed and the line is finished anyway. It
goes wrong when more stones are placed on the board and paths to a line
become blocked, see Figure 7. The score function can not score, because no
stones can be moved to the line and, since the last place of the line is clearly
free, the Clear-up function can not make it possible to clear a path. The field
fills up after this situation and the score still is not very high.

20



5.3 The Shovel function

Where the previous functions generated the coordinates of a source stone
and destination place, our new function will need to find a destination place
that needs a stone to finish a Minimal, a source stone of the colour of that
Minimal line, another source stone that blocks the path of the aforementioned
source stone to the aforementioned destination and finally it needs to find a
destination place for the blocking stone to move to, hoping it will not block
the path also when moved there. The function that will find these coordinates
will be called the Shovel function.

5.3.1 Implementation

The Shovel function is called when the Score function can not align a line.
This is very important, since the Shovel function deliberately does not try
to align a stone, but moves a stone that at best can only be aligned with a
stone of its own colour.

First the function analyses the board by creating a list with blocked places
in descending order calculated with the Legacy Bias rating to move to and 7
lists for the colours containing places to move to for blocking stones calculated
with the Advanced Bias rating. For every blocked place the algorithm marks
all the stones on the edge of the closed field and puts these stones in a list
sorted ascending by aptness calculated with the Advanced Bias formula. For
every blocking stone in the list the algorithm removes the stone temporarily
from the board and looks if a path is possible from a stone with the desired
colour. If a path is possible with this blocking stone removed, the algorithm
tries to move the blocking stone to all the places defined in one of the 7
lists with empty places. The algorithm does this move in memory including
3 new random stones dropping down and if by then a path is possible in this
memory state from a desired stone to the target place, then the move of the
blocking stone to a place is made in the played game.

In short: see Figure 7. The Shovel function algorithm takes the stone with
the cross and moves it away from the red line to an empty place where it can
do no harm, so the desired stone can move along the red line. This function
is not optimal. It can not really predict random falling stones and also can
not break a “wall” thicker than 1 stone.

We implement the Shovel function in two ways: one version where it
works on its own with Align-Score, creating Align-Shovel-Score (Table 9)

21



Figure 7: Paths in different games being blocked while not possible to reach
a desired line

and one version where it works together with the Clear function, creating
Align-Shovel-Clear-Score (Table 10).

Align-Shovel-Score Strategy
Shoveling on # of stones in blocked line

3 stones 4 stones 5 stones
Score on max avg. no max avg. no max avg. no
3 stones 510 162 0 474 170 0 494 149 8
4 stones 132 28 109 462 172 0 552 160 2

Table 9: Different configurations of Align-Shovel-Score and their scores. Fin-
ishing on 5 or more is left out

5.3.2 Results

From Tables 9 and 10 it is shown that the Shovel function makes a nice
improvement and can work well together with the Clear-up function. With
Align-Shovel-Score the highest average total scores are 172 and 170 for fin-
ishing lines of 4 or more and 3 or more respectively and shoveling paths to
blocked lines of 4 stones or more. Together with the Clear-up function the
total scores increased even more to an average of 180 and 182 for shoveling
for lines of 3 and 4 stones respectively, finishing lines of 3 and clearing lines of
4. Again we have a slight improvement, but not with an average total score
as high as MCRB (206, Table 2).

22



Align-Shovel-Clear-Score Strategy
Scoring on # of stones in line
3 stones 4 stones

Clr. on Shvl. on max avg. no max avg. no

3
3 366 122 1 152 40 41
4 314 120 1 194 66 9
5 382 118 1 214 64 10

4
3 448 180 0 140 34 84
4 516 182 1 392 142 0
5 450 170 0 422 136 0

5
3 512 166 1 124 28 102
4 464 176 1 458 178 1
5 538 162 2 452 160 0

Table 10: Different configurations of Align-Shovel-Clear-Score and their
scores

5.4 The Semi-Tree strategy

One aspect of Monte Carlo we have not tried to mimic yet is the ability to
predict future states.

5.4.1 Implementation

We know from our Monte Carlo based strategies that it is best to score
a Minimal or higher first and then start thinking about speculative and
predictive moves. The strategy we are going to use now is using a kind of
search tree which decides on which strategy it will use for the next move if
it can not align stones for a score. We will call this strategy the Semi-Tree
strategy. Its structure is depicted in Figure 8.

The implementation of the Semi-Tree strategy first tries to call the Score
function. When the score function can not finish a line, the strategy tries
all three speculative functions described above: the align function (Advanced
Bias), the Clear-up function and the Shovel function. When a function can
make a move, the Semi-Tree strategy makes a simulation in memory after
that function’s move, trying to score in after each speculative move and thus
creating a tree as seen in Figure 8. The height of the tree is limited to save
calculation time and is called the peek depth. The results are presented in

23



Figure 8: Structure of the Semi-Tree search tree strategy.

Table 11.

5.4.2 Results

For these simulations we took a maximum peek depth of 4. The calculation
time per move increased exponentially, so 4 seemed a reasonable maximum.
Again we played 1000 games per configuration. Because this took a lot longer
to calculate, the tasks were separated over 10 processor cores of our desktop
PC’s. Every core calculated 100 games per configuration and it took around
1 full day to calculate all the 32 configurations. This brings the complexity of
our Semi-Tree strategy near that of our Monte Carlo based strategies where
we calculated around 20 games per core in half a day.

The best games have an attempted score on 3 stones, a clearing on 4 and
shoveling on 3 or 4 stones. As expected the results become better when the
peek depth is higher. Unfortunately the best results, 192 on peek depth 4,
still do not match MCRB.

5.5 Discussion

There are still some ways to enhance our Semi-Tree strategy, but the direction
that it is going is not the one we want. For a perfect strategy we most likely
need to take into account all possible moves, calculate those moves to the

24



Semi-tree Strategy
peek depth of tree

Variables 1 2 3 4
Scr. Clr. Shvl max avg. max avg. max avg. max avg.

3
3

3 700 178 526 170 684 180 486 180
4 532 178 560 176 524 180 564 180

4
3 588 180 472 180 572 188 566 192
4 582 178 596 184 620 190 516 192

4
3

3 560 146 426 152 354 144 356 134
4 528 158 498 162 538 158 444 154

4
3 438 144 430 148 414 144 402 140
4 524 154 506 164 480 172 436 172

Table 11: Results of the semi tree algorithm with variables on Finishing a
line (Scr.), Clearing a line (Clr.) and opening a path (Shvl.) on number of
stones in the line

end state to predict the consequence of a move and thus make multiple
simulations after each move. Unfortunately, this means going back to the
Monte Carlo structure.

Our speculative functions are not useless, however. They have shown us
that the speculative actions aligning, clearing and shoveling are all beneficial
to the flow and total score of the game.

6 Conclusions and Future Work

The game Five or More is a quite complicated game, but when researched
further might give a nice addition to the field of artificial intelligence. This
is because the game with our specifications in Section 2.1 is contradictory
in a sense that it punishes speculation, but it needs speculation in order
to score. It needs knowledge of the game for high scores, but an algorithm
based not on that knowledge has achieved the highest score by far up until
now. This algorithm is LBMCRLB, Legacy Bias Monte Carlo with Legacy
Biased simulations, which is based on Monte Carlo and therefore does not
use (much) knowledge of the game.

We can use our findings to devise a new strategy. Banking a score is

25



always favourable (Section 3.3). The number of stones in the field should not
affect the strategy for scoring (Section 4.1.2 and 4.4). The speculative moves
that do work are aligning, clearing a line and clearing a path to a line, as
suggested in Section 4.4 and shown in Section 5, yet there might be more.
There is a possibility that a new strategy can show that the game can be
played infinitely (Sections 3.3 and 4.3), as in: the game can have an infinite
amount of states in one game.

The random nature of Five or More might mean that for a high total
score the player needs to be a bit lucky. LBMCRLB might have achieved a
total score of 1104, but its average was not even half of that. To find out
if there is a real strategy possible and the game does not depend on luck,
future work on Five or More might consider focussing on the possibility of
an “infinitely” played game, a better way for rating than the Advanced and
Legacy Bias function’s formulae and/or identifying new speculative actions
apart from those specified in Section 4.4 and 5.

References

[1] R. Breukelaar, E. Demaine, S. Hohenberger, H. J. Hoogeboom,
W. Kosters, and D. L. Nowell. Tetris is hard, even to approximate. Inter-

national Journal of Computational Geometry and Applications, 14:41–68,
2004.

[2] R. A. Hearn and E. D. Demaine. Games, Puzzles, and Computation.
Peters, 2009.

[3] E. Kovács. Five or More Manual. GNOME Documentation Project,
2002.

[4] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. Mc-
Graw Hill, 3rd edition, 1991.

[5] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall, 3rd edition, 2010.

[6] F. W. Takes and W. A. Kosters. Solving Samegame and its chessboard
variant. In Proceedings of 21st Benelux Conference on Artificial Intelli-

gence, pages 249–256, 2009.

26



[7] Tetris Inc. www.tetris.com, accessed june 2010.

27


