
Internal Report 2010–05 June 2010

Universiteit Leiden

Opleiding Informatica

Data mining of sensory data streams

in

complex systems

Gratian Schiopu

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Abstract 3

2 Introduction 4

3 De Hollandse Brug 5

4 Definitions and notations 7

5 Data description 12
5.1 Introduction . 12
5.2 Weigh in motion subsystem (WIM) . 13
5.3 The flat file description . 15
5.4 Data filtering . 16
5.5 Data description . 19
5.6 Data transmission . 21
5.7 Tests . 24

6 Globus GRID 28
6.1 Introduction . 28
6.2 Globus: Java Commodity Grid kit (CoG) 33

7 Hidden Markov Models 37
7.1 Introduction . 37
7.2 Viterbi algorithm . 40

8 Future work and conclusion 42
8.1 Future work . 42
8.2 Conclusion . 43

9 Acknowledgements 44

10 Appendix A: threshold.h 46

11 Appendix B: fileio.h 48

12 Appendix C: listImplStack.h 50

13 Appendix D: sampling.h 52

14 Appendix E: fileioxml.h 54

15 Appendix F: socketxml.h 57

16 Appendix G: socketcsv.h 61

17 Appendix F: filter.cpp 64

18 Appendix G: SocketServer.cpp 65

2

1 Abstract

In data mining of data streams produced by complex systems, equipped with many sen-
sors we will look at some of the main steps of how to deal with such massive flow of data.
In trying to overcome some of the challenges when dealing with data streams, we will look
at a real-time system, a bridge called De Hollandse Brug, which at the moment produces
massive quantities of data, waiting to be analyzed.

Some of the steps presented in this thesis will cover the methods of how to filter the pro-
duced data, how to describe and to transport the data to a specific location, to analyze
the specific features of the data and the relation between the different type of sensors. We
will also propose a model based on the hidden Markov models to distinguish between the
different type of states of the bridge, based on the emmited events detected.

By specifically looking at data streams, we try to gain insight in new data mining methods
when dealing with massive and rapidly changing data.

3

2 Introduction

The number of complex systems equipped with many various types of sensors is growing
at a rapid pace in todays modern society. Such systems can vary in complexity, the num-
ber and the type of sensors depending on their scope and domain of utilization.

As an example of such a system we can think of a complex medical monitoring systems
where the sensors monitor the patients condition after a surgical procedure in an intensive
care room. In such systems the sensors attached can measure blood pressure, the cardiac
rhythm by ECG, body temperature, etc. Another example are geological systems that
use their sensors scattered over a wide surface area to monitor earthquakes or the condi-
tion of an erupting volcano. Other systems could monitor the condition of civil engineer
constructions like bridges exposed to daily traffic but also to climate and seasonal changes.

From a computer science perspective the conclusion is that all these systems produce
large quantities of data per time unit that need to be processed and analyzed. The data
can be seen as a continuous stream being produced very fast and in large quantities to be
processed by data mining algorithms. The dynamic nature of this data stream production
requires a different approach concerning processing, transportation, storage, visualization
of the data in comparison to more static data types.

In this thesis we look at such a real world complex system, a bridge, equipped with many
different sensors which produces daily considerable amounts of data. We are interested to
find practical ways in processing, transporting and storing the data. From analyzing such
a real world complex system we aim not only to find practical solutions and build tools for
the civil engineers monitoring the bridge but also to gain a greater understanding when
dealing with mining of data streams and the algorithms and techniques.

4

3 De Hollandse Brug

The bridge ”De Hollandse Brug”, with its 365 m length, is a large bridge in The Nether-
lands, a real-world complex system comprising 145 different sensors each of them produc-
ing large amounts of data around the clock, we use it as a relevant case study.

We first briefly describe the sensors on the bridge.
The monitoring network of the bridge consists of 145 different sensors, each identified by
si for a number i:

• strain-gauges embedded in the concrete and attached to the outside, measuring the
stress of the bridge in two different (X-Y) coordinates. There are 91 strain-gauge
sensors in ranges: [s100 . . . s120], [s124 . . . s145], [s148 . . . s168], [s172 . . . s198]. Total
number of stain-gauges is 21 + 22 + 21 + 27 = 91

The sensors [s124-s125, s130-s131,s140-s141, s148-s149, s158-s159, s164-s165, s191,
s193, s195, s197] are attached in the direction of the X-axis. The sensors [s100-s102,
s109-s111,s116-s118, s126, s132, s135-s137, s142, s150, s153-s155, s160, s166, s172-
s174, s185-s190, s192, s194, s196, s198] are embedded in the concrete in the direction
of the X-axis. Total 16 + 34 = 50.

The sensors [s104, s106, s108, s113, s115, s129, s145, s163, s176, s178, s180, s182,
s184] are attached in the direction of the Y-axis. The sensors [s103, s105, s107, s112,
s114, s119-s120, s127-s128, s133-s134, s138-s139, s143-s144, s151-s152, s156-s157,
s161-s162, s167-s168, s175, s177, s179, s181, s183] are embedded in the concrete in
the direction of the Y-axis. Total 13 + 28 = 41.

• ‘geo-phones’ (vibration sensors) that measure the vertical movement (Z-axis) of
the bottom of the road-deck as well as the supporting columns. The sensors [s200
. . . s209], [s216 . . . s224], [s232 . . . s246] are the 34 geo-phones. Total 10 + 9 + 15 = 34.

• thermometers embedded in the concrete and attached to the outside. These are the
16 sensors numbered: [s300 . . . s315].

Furthermore, there is a weather station and a video-camera that provides a continuous
video stream of the actual traffic on the bridge.

5

Figure 1: Picture of the bridge ”De Hollandse Brug”, which connects the province
Flevoland to the province North-Holland in The Netherlands.

6

4 Definitions and notations

In this section we provide some definitions that are used throughout the thesis:

Time series: is defined as a series of discrete values 〈v1, v2 . . . , vn〉 produced on times
[t1, t2 . . . , tn], where tn ∈ N, vn ∈ R, with: t1 7→ v1, t2 7→ v2, · · · tn 7→ vn .

A shorter notation we will also use is as a range of discrete values Y = 〈y1, y2, . . . yi〉 pro-
duced on times [t1, t2, . . . , ti] where ti ∈ N and yi ∈ R. The used indices in the discrete
values will implicitly denote that they are produced at the corresponding time.

Threshold (θ): given a time series Y = 〈y1, y2, . . . yi〉 we define a constant value called
threshold that we will use to compare the given values with.
To start with, we will compute this threshold value as the average over a set of given
discrete values: Y = 〈y1, y2, . . . yi〉

θ =

∑n
i=1 yi
n

(4.1)

For monitoring our system, the bridge, we are interested in events happening on the
bridge. Under influence of the external events on the bridge, the sensors will produce
data that will measure the intensity of these events accordingly. The informal idea of a
measured event on the bridge is as data being produced by a sensor that will exceed a
given threshold for a certain period of time.

An event can be captured by different type of sensors. By looking at the data measured
by the strain-gauges, we will give some definitions with respect to the events outputted
by these sensors.

Event (ev): given the a series Y = 〈y1, y2, . . . yi, . . . yj, . . . 〉, with: t1 7→ y1, t2 7→ y2, · · · , ti 7→
yi, · · · , tj 7→ yj. The subset Y ′ ⊂ Y, Y ′ = 〈yi, . . . yj〉 will mark an event if all the values in
the subset Y ′ are above the given threshold θ : yi ≥ θ, . . . , yj ≥ θ .

We define the start of the event at ti where the first value yi ≥ θ and the end of the event
at tj where the last value yj ≥ θ

• ti = start-event(ev)

• tj = end-event(ev)

Event length (event-length(ev)): given the time series Y = 〈y1, y2, . . . yi, . . . yj, . . . 〉. The
event length is the distance in time units for the period that the event is occuring. If for a
given event ev contained in the subset ev = 〈yi, . . . yj〉 by the condition that all its values
in the subset are above the given threshold θ : yi ≥ θ, . . . yj ≥ θ with: ti 7→ yi, · · · , tj 7→ yj.

7

If ti marks the start of the event ev and tj marks the end of ev, the length of the event
is given by: event-length(ev) = (tj − ti).

Event-gap (event-gap(ev1, ev2)): given the time series Y = 〈y1, y2, . . . yi, . . . yj, . . . , yp, . . . yq, . . . 〉
containing two events ev1 = 〈yi, . . . yj〉 and event ev2 = 〈yp, . . . yq〉:

ev1 = Y ′ ⊂ Y, Y ′ = 〈yi, . . . yj〉, with ti 7→ yi, · · · , tj 7→ yj and
ev2 = Y ′′ ⊂ Y, Y ′′ = 〈yp, . . . yq〉, with tp 7→ yp, · · · , tq 7→ yq,
where ti < tj < tp < tq, we define an event-gap: (tj, · · · , tp) the set Y ′′′ ⊂ Y, Y ′′′ =
〈yj, . . . yp〉, where the values yj < θ, . . . , yp < θ.

• ti = start-event(ev1)

• tj = end-event(ev1)

• tp = start-event(ev2)

• tq = end-event(ev2)

• event-gap(ev1, ev2) = (tp − tj), where the the values yj < θ, . . . , yp < θ

An event-gap is the time distance between the two events: (tp − tj) where the values
yj < θ, . . . , yp < θ .

Minimal gap: given the time series Y = 〈y1, y2, . . . yi, . . . yj, . . . , yk, . . . yl, . . . 〉 with two
events ev1 = 〈yi, . . . yj〉 and ev2 = 〈yk, . . . yl〉, we define the minimal gap, the distance
between the two events (tk − tj) < µ, where µ is a given constant. In case of a minimal
gap, where (tk − tj) < µ we consider ev1

⋃
ev2 = ev∪ with:

• ti = start-event(ev∪)

• tl = end-end(ev∪)

If the gap is not minimal we consider the two events as being distinct.
Cumulative gaps: given the time series with three events:
Y = 〈y1, y2, . . . yi, . . . yj, . . . , yk, . . . yl, . . . yp, . . . yq, . . . 〉 and two minimal event gaps:

• (tk − tj) < µ, between ev1 = 〈yi, . . . yj〉 and ev2 = 〈yk, . . . yl〉

• (tp − tl) < µ, between ev2 = 〈yk, . . . yl〉 and ev3 = 〈yp, . . . yq〉

The cumulative gap is the distance (tk−tj)+(tp−tl). If the distance (tk−tj)+(tp−tl) < µ
we consider the three events as being one event: ev1

⋃
ev2
⋃
ev3 = ev∪ with:

• ti = start-event(ev∪)

• tq = end-event(ev∪)

8

Figure 2: Sensor data produced by the strain-gauge sensor s100 represents a dynamic
event on the bridge.

Dynamic event (DE): is a short period of time event (lasting from a few seconds to
maybe ten seconds) with a very well defined global maximum above the threshold. In
figure 2 we see a dynamic event produced by a heavy duty truck driving over the bridge.
On the given time scale, for a threshold θ = 2.5 the event starts approximately at t1 =
2.3 sec and ends at t2 = 5.4 sec.

Static event (SE): is a gradually growing event over a longer period of time (from a
few minutes to maybe hours). In these sort of events, the forming of a plateau of values
oscillating around a high global maximum can be seen. See such an event in figure 3.

Figure 3: Sensor data produced by the strain-gauge sensor represents a static event.

Let us define when f , the function representing such an event either dynamic (DE) or
static (SE). For an event the surface under the function f can be expressed by the integral
IDE and for a static event by the integral ISE for a given θ :

IDE =

∫ t2

t1

f1(x) · dx (4.2)

ISE =

∫ t4

t3

f2(x) · dx (4.3)

9

The difference between a dynamic event and a static event using the same θ is that:

IDE << ISE (4.4)

not only because the ∆1 = (t2 − t1) << (t4 − t3) = ∆2 but also because max1 < max2
where max1 ∈ R is the global maximum on the interval [t1, . . . , t2] and max2 ∈ R is the
global maximum on the interval [t3, . . . , t4].

The simplest way to approximate the previous integrals is by multiplying the found maxi
with the ∆i. By comparing these approximations among them we can categorize the
events. The civil engineers are specially interested in dynamic events. In building a real-
time bridge monitoring system we could use such rules to filter the interesting events
from the banal events.

The data collected by the geo-phones representing a dynamic event can be seen in Figure
4

Figure 4: The sensor data produced by the geo-phone s200 represents the same dynamic
event as seen in the figure 2.

Looking at the data produced by a strain-gauge sensor as seen in figure 2, we define with
fSG(x) the function which represents such a dynamic event, captured by the strain-gauge
sensor. If we compare this function with the function fGEO(x) produced by a geo-phone
sensor in the close vicinity of the strain-gauge sensor and representing the same dynamic
event seen in figure 4, we find a relation between the two functions given by Koopman
[4]:

f ′
DE

(x) =
∂

∂t
f
SG

(x) (4.5)

f ′
DE

(x) = c1 · fGEO
(x) + c2 (4.6)

10

f
GEO

(x) = c3 ·
∂

∂t
f
SG

(x) + c4 (4.7)

where c1, c2, c3, c4 ∈ R.

The relation between the strain-gauge function and the first derivative which represents
the data measurements of the geo-phone gives us the opportunity to find the local maxima
and minima in the function f(x). Each time that the f ′(x) will change sign, it means that
on the interval where it occurs we have a local minimum or maximum.

11

5 Data description

5.1 Introduction

Each different type of sensor will produce a series of values over time, measuring the events
happening on the bridge. The strain-gauges will measure the physical deformations of the
bridge caused by the passing vehicles. The deformations will be measured in micro-strain
units in the X and Y coordinates:

• X = longitudinal, in the driving direction by the traffic on the bridge (strain-gauges).

• Y = transversal, in the (XY)-plane but perpendicular on the driving direction X
(strain-gauges).

• Z = vertical, perpendicular on the (XY)-plane (geo-phones). The geo-phones will
measure the vibrations caused by the forces produced during the motion of the
vehicles on the bridge.

The forces exerted on the bridge will cause physical deformations of the construction and
vibrations. The majority of these forces are caused by the traffic on the bridge. There
could be also other events, like hazardous factors causing unusual vibrations or deforma-
tions of the bridge: earth quakes, possible collisions by a vessel with the bridge, etc.

Based on the system requirements document defined by Struktons Civil Engineers in their
document [1], the Bridge Monitoring System can be described as is shown in Figure 5.
Next we give a global description of the bridge monitoring system. The three main com-
ponents are:

• WIM = weigh-in-motion (traffic monitoring system on the bridge).

• SIM = structural integrity monitoring.

• Environmental Data Analysis.

Figure 5: The Bridge Monitoring System

12

The first subsystem, called WIM (weigh-in-motion) is a traffic monitoring system. This
subsystem will keep track of the traffic using the bridge, which will generate events reg-
istered by the sensors placed in the deck of the bridge. After registering and storing such
major events, this subsystem will carry an in-depth analysis about such generated events.
Monitoring the frequency, load, speed and a generic typing of the vehicles generating these
events, can be viewed as its most important tasks.

The second subsystem, SIM (structural integrity monitoring) will monitor the structural
integrity of the construction as a whole. This subsystem will store and analyze information
concerning the deformations of the construction caused by the daily and seasonal fluctu-
ations in temperatures, speed response to major events by the construction analyzed over
longer periods of time, etc. Following the expertise of civil engineers in this subsystem we
could add new monitoring goals correlated to various environmental parameters.

The third subsystem, EDA (environmental data analysis) will store some of the most
correlated environmental sensory data with the monitored construction. Air temperature,
humidity, precipitations, wind speed and direction, solar energy, etc. are some of the pa-
rameters which will continuously be stored at certain hours of the day.

In this thesis, because of the complexity of the monitoring system to be build following
the specifications of the civil engineers, we will mainly focus on WIM and SIM subsystems
of the Bridge monitoring system.

5.2 Weigh in motion subsystem (WIM)

The actual WIM system (version 1.0) is functional and collecting the data from its sen-
sors. The data produced by the sensors is stored in flat files which will be described in the
next section. The assumption is that the data is available and stored in files on the local
server. As a fact that the data transmission is unavailable at this moment, the present
WIM system cannot yet be used as a real-time monitoring tool which was defined as one
of the primary intentions of its builders.

As seen in the Figure 6, the first step in building a real-time WIM system (version 2.0)
consists of the data reduction and data transmission step. Here the bridge monitoring
system will determine the start threshold. Based on this threshold the main events are
detected and filtered from the rest of the data. Using a Client/Server architecture, the
detected events are being transmitted between the server where the data is collected from
the sensors and a portal where the data is gathered for further transmission to a GRID
for data analysis.

As stated by Witten in [2], data preparation accounts for 60% of the effort when we con-
sider data mining applications. Filtering the data can be regarded as a very important
step in WIM system. The decision of drawing a line between which data is important from
what can be considered as unimportant is not only decisive for the amount of data we
will transmit but also for the quality of the data. On one side by using a high threshold
will discard some useful on the other side by using a low threshold we will add too much

13

noise to the data.

In appendices A through G we present the source code of a filter program that can be
used on the local server. The present limitations of the program are that it looks at only
the data produced by two sensors in the stored flat files and not all the sensors. Also
it does not run autonomously, unsupervised the filtering of all the produced files on the
local server. Currently, it is run manually by deciding which files to use as an input.

Figure 6: The distinct modules used by WIM and SIM in data analysis produced by the
sensory network.

14

5.3 The flat file description

In the next table we can see how the data that is being produced by the sensors is stored
in a flat file:

SensorNo 100 .. 198 200 .. 246 300 .. 319

yyyymmddhh:mm:ss µm/m .. µm/m ms .. ms degC .. degC

20081024061504560 -6,29369497 .. 8,14643097 -0,00052072 .. -0,00017566 10,28 .. 9,75

20081024061504570 -6,16951990 .. 7,99267197 -0,00048236 .. -0,00033162 10,28 .. 9,75

20081024061504580 -5,71125507 .. 5,15704346 -0,00039202 .. -0,00013967 10,28 .. 9,75

.

.

20081024061504800 -6,53908873 .. 5,79098129 0,00001544 .. 0,00027713 10,28 .. 9,75

The sensors numbered from 100 to 199 are strain-gauges, the sensors 200 to 246 are geo-
phones and the sensors numbered 300 to 319 are temperature sensors.

Each 5 minutes, a 50Mb flat data file, filled with sensory data will be produced on the
local server. On a 24hour basis we will have 288 of such data files. The files will have a
unique name based on the < yyyymmdd.xxx > notation. In this notation the yyyy is the
year, mm is the month, dd is the day when the file was created and xxx is the counter
of the file: count ∈ [000, . . . , 287], based on the 5minutes time scale; this represents the
unique production in time of a flat data file.

We can deduct the time sequence inside a data file without opening the file, from the
extension xxx counter.
The hour h in the samples is given by: h = xxx DIV 12.
The minute range trange is given by: trange = xxx MOD 12 :

trange =



0 minutes ∈ [0, . . . , 4],
1 minutes ∈ [5, . . . , 9],
2 minutes ∈ [10, . . . , 14],
3 minutes ∈ [15, . . . , 19],

. . .
11 minutes ∈ [55, . . . , 59].

(5.1)

15

Figure 7: The sensor data file: 20081024075 was produced October, the 24th 2008 at
6:15:00 AM and contains the sensor data time series between 6:15:00,000 - 6:19:59,590
AM.

5.4 Data filtering

In Figure 8 we present the block diagram of a filter program (version 2.0). The application
can be used to filter the events from a given sensor data file.

The filter application is given as source code in appendices A through G. The first module
calculates the threshold from a given sensor file. The value is stored in a threshold file in
case that we want to save the thresholds for each calculated sensor file. In this version the
application takes only into consideration the data produced by two sensors: the sensor
s100 and s101. These sensors are strain-gauges and they are placed on the bridge in each
other’s vicinity, correlating highly with respect to their local minima and maxima. By
using a low threshold θ < −10 the program will not filter anything and produce one
single event for the whole input file. In such case all the input sensory data will be used
as output in the chosen file format.

Figure 8: Data filtering program.

The first step of the filter program is to compute a start threshold. The threshold will be
calculated from a real-time flat data file that will be given as input. A flat data file pro-

16

vided by Strukton civil engineers which contains a few dynamic events was used as input
for the program to detect these events. To start with, the events have been visualized and
identified outside the filter program in an Excel spreadsheet. Because the actual version
of the program looks only at a limited number of sensors (the strain-gauge sensors S100

and S101), the filter program calculates from the given data the threshold θS100 for the
sensor S100 . We assume that this sensor is the ”leading” sensor. All the given data for
this sensor was averaged over the total number of samples.

Another more accurate method would be, to use the first threshold θ
′
S100

and then calcu-

late a second threshold value, θ
′′
S100

derived from the first one, after leaving out the events.
This method is not yet implemented in the filter program.

In the next version of the filter program we intend to build the feature which will compute
all the thresholds θ

′
S100

, . . . , θ
′
S198

for the strain-gauge sensors.

In the second phase the filtering process takes place. The filtering algorithm can be de-
scribed in short:

var F_theta: theta_file; // stored threshold from previous computations

var I : flatdatafile; // flat data file used as input

var O : outputfile; // output data file (XML or CSV)

var s : string; // used for a line from the datafile

var c : string; // use for the substring representing sensor s100

var v : float; // s100 float value

var prev :int; // counter to keep track the end of an event

var eventId: integer; // counter for the events we detect

var i: integer // counts the processed rows from the input file

var theta : float; // threshold

var gap: integer; // used to measure the gap between events

var StartSeq : boolean; // signals the start of the first event in the whole sequence of data

var StartEvent : boolean; // signals the start of an event

StartSeq = StartEvent = true; // init. StartSeq and StartEvent

eventId = 0; // init. eventID

gap = 50; // init. gap to 1/2 second

read (F_theta, theta); // read theta from file

If I exists then // if input file exists

OpenInputFile (I); // open input file

white not eof (I) do // while not the end of input file

getline (I, s); // read one line from input file

copyStr (s, c); // copy string from file to a string variable

Str2float (c, v); // conver string sensor float var.

if StartEvent then // event marker is true

eventId++ ; // increase the event counter

StartEvent = false; // set marker to false

fi

if (v >= theta) then // if the float var. is above theta

OpenOutputFile (O); // open output file

if O.open then // if output file is open

fout (v); // write sensor data to the output file

fi

prev++; // increase prev. by one

if StartSeq then // is this the first event?

prev = i; // yes: set the counters: prev and i right

StartSeq = false; // set the StartSeq false

else / No: not the first event

if ((i - prev) > gap) then // is the cumulated gap too big ?

StartEvent = true; // yes: new event marker set to true

prev = i; // begin counter of the next event is set to i

fi // (i - prev) > gap

fi // StartSeq

fi // (v >= theta)

i++ ; increase row counter

od

Close I; // close Input file

Close O; // close Output file

fi

The next module of the program uses sampling over a constant sequence of sensory data

17

values. We will use a stack as ADS to average the values on the stack. Each time a read
is performed from the input data file, we will first push those values on a stack. After
the stack is full we will pop the values from the stack and compute their average. We
can look at it as a repeated buffering, performing an average over the buffered values
each time when the buffer is full. In this case we will not compare each time series values
with the threshold but with only one computed average over a set of values. The stack is
implemented as a single linked list and it can hold 10 elements. Because the initial sensory
data is being sampled with the frequency of 100Hz, by using a stack with 10 elements
and averaging over those values to one value, we will reduce the initial sampling rate to
10Hz. This means that each 1

10
of a second we will output one sensor value.

var F_theta: theta_file; // stored threshold from previous computations

var I : flatdatafile; // flat data file used as input

var O : outputfile; // output data file (XML or CSV)

var s : string; // used for a line from the datafile

var c : string; // use for the substring representing sensor s100

var v : float; // s100 float value

var prev :int; // counter to keep track the end of an event

var eventId: integer; // counter for the events we detect

var i: integer // counts the processed rows from the input file

var theta : float; // threshold

var gap: integer; // used to measure the gap between events

var StartSeq : boolean; // signals the start of the first event in the whole sequence of data

var StartEvent : boolean; // signals the start of an event

var avegeStack: float; // keeps the avg value of the stack

var S: Stack; // a stack ADS of 10 elements

StartSeq = StartEvent = true; // init. StartSeq and StartEvent

eventId = 0; // init. eventID

gap = 50; // init. gap to 1/2 second

read (F_theta, theta); // read theta from file

If I exists then // if input file exists

OpenInputFile (I); // open input file

white not eof (I) do // while not the end of input file

getline (I, s); // read one line from input file

copyStr (s, c); // copy string from file to a string variable

Str2float (c, v); // convert string sensor float var.

if StartEvent then // event marker is true

eventId++ ; // increase the event counter

StartEvent = false; // set marker to false

fi

if (!S.stackIsFull ()) then // stack is not full

S.push (v); // push the newly read value on the stack

else // stack is full

averageStack = S.averageElem () ; // pop all elements and return their average

if (averageStack >= theta) then // if the avg is above theta

OpenOutputFile (O); // open output file

if O.open then // if output file is open

fout (averageStack); // write avg over a group of sensors to the output file

fi

prev = prev + 10; // increase prev. with the stackSize

if StartSeq then // is this the first event?

prev = i; // yes: set the counters: prev and i right

StartSeq = false; // set the StartSeq false

else // No: not the first event

if ((i - prev) > gap) then // is the cumulated gap too big ?

StartEvent = true; // yes: new event marker set to true

prev = i; // begin counter of the next event is set to i

fi // (i - prev) > gap

fi // StartSeq

fi // (average >= theta)

fi //

i++ ; // increase row counter

od

Close I; // close Input file

Close O; // close Output file

fi

18

5.5 Data description

In this section we present the file formats used as output by the filter program. The first
data file format is a XML file in which the detected events are specified with their date-
time occurrence and the values detected above the threshold.
Currently only the data from the sensors s100 and s101 is collected and processed as
output in the XML file. The processing of the data from more sensors can be added to
the XML output file.

<bridge>

bridgeID = "1"

bridgeName = "Hollandse Brug"

sensor threshold = -3

Leading sensor = 101

<event>

eventID = "1"

<sensor>

sensorID = "101"

sensorType = "LOAD"

dateTime = "2008-10-24 06:15:10,840"

value = -2.98235178

rowCounter = 630

</sensor>

<sensor>

sensorID = "102"

sensorType = "LOAD"

dateTime = "2008-10-24 06:15:10,840"

value = 1.20642102

rowCounter = 630

</sensor>

. . .

<sensor>

sensorID = "319"

sensorType = "TEMP"

dateTime = "2008-10-24 06:15:10,840"

value = 10.26341127

rowCounter = 630

</sensor>

<sensor>

sensorID = "101"

sensorType = "LOAD"

dateTime = "2008-10-24 06:15:10,850"

value = -2.62756395

rowCounter = 631

</sensor>

<sensor>

sensorID = "102"

sensorType = "LOAD"

dateTime = "2008-10-24 06:15:10,850"

value = -1.25633427

rowCounter = 631

</sensor>

. . .

<sensor>

sensorID = "319"

sensorType = "TEMP"

dateTime = "2008-10-24 06:15:10,850"

value = 10.26341127

rowCounter = 631

</sensor>

. . .

</event>

</bridge>

The next representation of the output file is in the CSV format. This format can be used
to import the detected events in different databases. The values of sensors s100 and s101
are both used as output. New data from other sensors can be added to the file.
The data represented as a csv file with nine found events:

EventId;msec;Date;Time;msec;s101;s102

1;630;2008-10-24;06:15:10;840;-2.98235;1.20642

...

1;709;2008-10-24;06:15:11;630;1.74817;4.62424

...

1;2736;2008-10-24;06:15:31;900;-2.66009;1.50504

2;2738;2008-10-24;06:15:31;920;-2.51817;1.71495

...

2;2891;2008-10-24;06:15:33;450;38.9225;32.5855

...

2;3059;2008-10-24;06:15:35;130;-2.62756;1.49025

2;19067;2008-10-24;06:18:17;730;-2.67783;0.958068

19

3;19068;2008-10-24;06:18:17;740;-2.98235;1.32173

3;19183;2008-10-24;06:18:18;890;5.04182;6.82692

...

3;20323;2008-10-24;06:18:30;290;-2.82565;0.955111

4;20324;2008-10-24;06:18:30;300;-2.31712;1.70313

...

4;20396;2008-10-24;06:18:31;020;4.20806;6.95109

...

4;20874;2008-10-24;06:18:35;800;-2.94392;1.27442

5;20880;2008-10-24;06:18:35;860;-2.58913;1.25373

...

5;20914;2008-10-24;06:18:36;200;-1.83816;1.91896

...

5;27458;2008-10-24;06:19:41;830;-2.74583;1.21529

6;27459;2008-10-24;06:19:41;840;-2.82565;1.1059

...

6;27526;2008-10-24;06:19:42;510;8.04869;9.0089

...

6;27550;2008-10-24;06:19:42;750;8.92681;10.5611

6;27551;2008-10-24;06:19:42;760;8.81446;10.4783

...

6;27552;2008-10-24;06:19:42;770;9.06873;10.4783

6;27553;2008-10-24;06:19:42;780;8.79376;10.023

6;27945;2008-10-24;06:19:46;700;-2.88479;0.996504

...

7;27947;2008-10-24;06:19:46;720;-2.73104;1.57008

...

7;27988;2008-10-24;06:19:47;130;-0.634835;3.1016

...

7;28630;2008-10-24;06:19:53;551;-2.9587;1.40451

8;28632;2008-10-24;06:19:53;571;-2.45313;1.24781

...

8;28700;2008-10-24;06:19:54;251;-0.587529;2.87985

...

8;29390;2008-10-24;06:20:01;151;-2.97644;1.13251

9;29392;2008-10-24;06:20:01;171;-2.61869;1.12364

...

9;29472;2008-10-24;06:20:01;971;2.87168;5.7448

...

9;29555;2008-10-24;06:20:02;801;-2.93505;1.47251

A short, compressed representation of the produced events can be considered in the next
data representation. In this data representation the events are encoded in the representa-
tion. The start time of the event is given with its length in time and its global maximum
value:

< starttime; timelength; maxvalue >

<060500; 30;-6.12> // NE= 30sec

<060530; 10;20.12> // DE= 10sec

<060540; 600;-6.51> // NE= 10min

<061540; 600; 4.50> // DE= 4sec

<061544; 3600;-5.67> // NE= 1800sec

<064544; 7200;30.20> // SE= 7200sec

<084544;;> // xE=

...

We can consider this data representation as a sketch of the filtered event. By decoding the
event we don’t have the exact detailed information about the event. This representation
can be used as compressed information when we want to perform a search in a video file
where the events are recorded.

20

5.6 Data transmission

In figure 9 we propose the configuration of the network. The micro controllers (MC1
through MC5) are limited in computational power and data storage. These micro con-
trollers collect the sensory data from their sensors and store it on a local server. This local
server is part of the infrastructure of the bridge and forms the first collecting and storage
point of the accumulated data. At the moment the hardware runs under a MS-Windows
server operating system. The data is collected on an external hard disk which is exchanged
manually once a week.
The first step is to connectect the bridge local server to the World Wide Web through an
ADSL high speed data link. The files produced by the local server can then be transferred
by to a portal server. The portal which is connected to a computer GRID will facilitate
the distributed parallel processing and the data storage of the transferred files. As soon as
the files arrive, the portal server will distribute them to the computer Grid. Through use
of parallelism, the calculations can be performed at the same time on different computers
attached to the GRID. The results are returned to the portal and stored there. At any
time the portal can be accessed by work stations at different locations for queries about
the results.

In the source code given in appendix G, H (clients) and appendix I (server) we use a
direct TCP/IP socket communication to transmit the filtered data to a desired server.
The filter application has a build-in TCP/IP socket client data transmission module as is
given by Tanenbaum p.494 [5].

Here follows a short description of the client and server programs:

• From inside the filter program which is running on the computer where all the flat
data files are located, the data transmission is done by TCP/IP sockets. The filter
program acts like a client. The data filtered by a certain computed θ will be transmit-
ted to a given IP-address and a given port number: IP XXX.XXX.XXX.XXX:yyyyy
(i.e. IP 192.168.100.1:55555).

• A server program is listening at the IP-address of the client with the same port.
The data is buffered by the server and can be written in a file. The file represents
the filtered XML or CSV of the original flat file.

• The prototype of the filter program is looking only at the sensors s100 and s101. By
adding more sensors to the output, more data can be transmitted. In case that we
add more sensors to the data transmission, we need to re-adjust the buffer of our
server.

• Both client and server are implemented on a MS-Windows platform. Because the
Windows sockets library ver. 2.0 is fully compatible with UNIX, the porting of the
server software to a Linux can be easily realised. In this case the client will run on a
Windows computer and the server will listen and receive the data on a UNIX server.

• By both the client and the server being placed in the same LAN the data transmis-
sion tests completed without any problem. For the data transmission to different
LANS, through firewalls, the IP-address rules with the defined ports should be added
to the firewalls’ existent rules.

21

Another communication method which we will consider is the Java Commodity Kit. This
is a Java based tookit containing packages which are plugged into the computer Grid
fabric and facilitate calls to the lower-layers of the Grid.

Figure 9: Data transmission scheme.

One possible communication sequence between a query station, a server running the filter
program and the computer Grid can be seen in Figure 10. When a query station asks the
server to compute a certain option of the filter program, the server transmits the results
either back to the query station (in case that the option is a simple query) or the server
will transmit the query to a Grid for advanced computations and after it receives the
results from the Grid, it returns those results back to the query station.

22

Figure 10: A data communication sequence between a query station, a server running the
filter program and the Grid.

23

5.7 Tests

In Figure 11 we see, after running netstat -a, the server program SocketServer.exe
listening at the local host (IP 127.0.0.1:55555):

• Protocol: TCP

• Local Address: CZC81563RX:55555

• Domain: uaf.local

• Foreign Address: CZC81563RX.uaf.local:0

• Status: LISTENING

Figure 11: Server listens to local host IP-address 127.0.0.1 port:55555.

In Figure 12 the client filter.exe (on the right) transmits its data to the server program
SocketServer.exe (on the left):

24

Figure 12: The client program communicates with the server by TCP/IP sockets.

In the Figure 13 we see a graph with the test results after running the filter program with
different thresholds.

The average threshold computed for sensor s100, for the given flat data file, was: -6.11446.
The initial input flat file size was 51.020 kb.

In the graph

• the blue line represents the threshold used as input

• the red line represents the TCP/IP socket transmission time in seconds. The server
and client program, both run on the local host, using the IP-address 127.0.0.1:55555

• the yellow line shows the found events by the filtering process.

We remark that the longest transmission time is needed when the threshold is under
the computed threshold average. In this case all the values computed by the client are
transmitted to the server. The highest number of events (168) were detected around the
average threshold. By using values above the average threshold, more data is filtered and
as a result less data needs to be transmitted. The more data we filter the less data our
filter program will transmit and the transmission time will decrease.

25

Figure 13: Transmission data time for the filter program, when it is run with different
thresholds.

In the next table we see the tests for the data being transmitted by the filter program to
the SocketServer for the sensor s100, depending of the value of the used threshold. The
size of the data is also given:

Trial number Threshold Transmission time (sec) Number of events Data size (bytes)
1 -10 120.01 1 262,193
2 -9 119.56 2 261,846
3 -8 119.22 5 259.961
4 -7 93.20 139 193.963
5 -6.11446 31.10 168 50.249
6 -6 23.24 144 41.836
7 -5 18.22 24 18.401
8 -4 15.01 9 14.217
9 -3 14.49 9 11.980
10 -2 13.56 9 9.687
11 -1 12.01 8 7.552
12 0 11.90 7 6.242
13 1 11.50 6 5.215
14 2 11.20 6 4.501
15 3 11.10 4 3.834
16 4 10.50 4 3.245
17 5 10.40 3 2.701
18 6 10.20 2 2.498
19 7 10.11 2 2.277
20 8 10.10 2 2.106
21 9 10.08 2 1.661
22 10 10.01 1 1.574

In the next table we see the tests for the data being produced by the filter program using
sampling with a fixed window size, depending of the value of the used threshold. Every
10th data values are averaged by using a stack. The average is then compared with the
threshold to detect the events. The detected number of events and the size of the data
output is also given:

26

Trial number Threshold Time (sec) Number of events Data size (bytes)
1 -10 9.62 1 122,840
2 -9 9.56 1 122,636
3 -8 9.22 3 122.103
4 -7 9.32 81 99.192
5 -6.11446 9.96 55 20.845
6 -6 9.89 43 17.695
7 -5 9.77 12 8.563
8 -4 9.80 9 6.841
9 -3 9.81 9 5.634
10 -2 9.76 8 4.722
11 -1 9.65 8 3.719
12 0 9.62 6 3.126
13 1 9.60 6 5.215
14 2 9.55 5 2.386
15 3 9.52 4 1.980
16 4 9.48 3 1.612
17 5 9.43 3 1.327
18 6 9.41 2 1.286
19 7 9.38 2 1.125
20 8 9.37 2 1.084
21 9 9.35 1 838
22 10 9.33 1 798

We remark from the test results that by using sampling we detect the same number of
events while the size of the data output can be reduced considerably. This is a positive
factor when considering the further implementation of sampling in the data transmission
modules of the filter program.

27

6 Globus GRID

In this section we introduce the Globus computer Grid. We will present its main com-
ponents and their functions presented to the grid users. The computer grids are used for
distributed parallel computations. In many application areas like the bridge monitoring
system, the extra computational power is needed to perform complex calculation with
respect to the detection of features in the events, the correlation between the sensors,
context shift detection, visualization of data, correlation between the events and video
data, etc.

6.1 Introduction

Looking at a computer Grid there are two different perspectives:

- The end-user perspective:
From the perspective of the end-user the Grid appears as a virtual self managing,
super-computer on which the user can run their applications.
For certain applications the need for extra computational capacity and data storage
is high. A computer Grid offers for those users who run complex, computational
demanding applications a simple solution: plug-in into an available computer Grid
and gain computer power instantly to run such complex algorithms for solving dif-
ficult engineering problems.

To fully take advantage of the parallel processing power of a computer Grid, the
end-user needs to understand parallelism and divide their algorithms into smaller,
independent code that can run in parallel on the computer Grid. A scalable appli-
cation that can be divided in 100 different, independent smaller subtasks will run
100 times faster if it can use 100 CPUs at the same time.

Regarding parallelism, some of the important questions someone should ask, are:

– can the used algorithm be split under different CPUs to facilitate parallelism?

– in how many distinct parts should it be parted?

– how independent are those parts among each other?

A computer grid can also provide the end-users with additional storage, other re-
sources, special equipment, software packages, licenses or services.

- The system-perspective:
From the systems forming the Grid infrastructure, the perspective can be seen as a
collection of heterogeneous computers, high-performance servers, super-computers
and other hardware devices which can share their various resources to facilitate a
higher degree of their usage.

The check list of Foster [6] gives a comprehensive, general idea about what a com-
puter grid is:

1. A set of heterogeneous, distributed resources which are coordinated by some
Grid software.

28

2. The Grid software should use open, general-purpose, standard protocols for
authentication, authorization, resource discovery and resource access.

3. The Grid software should be capable to deliver different sort of quality of ser-
vices for different users.

The next topics are of importance, when we consider any sort of computer grid architec-
ture:

• Security
Some sort of basic security must be provided, supporting the mechanisms for au-
thentication, authorization and the communication between the grid computers.
In Globus Toolkit the Grid Security Infrastructure (GSI) provides these security
components.

– authentication
is the process of verifying some claimed identity. This can be extrapolated
beyond users, to computers, services, applications or any entity that may be
required to authenticate.

– authorization
can be expressed by the assurance that a user or computer may use a service
which is allocated by certain given access rights, the usage being based only
on these access rights.

– data integrity
gives the assurance that no data can be altered or destroyed if there isn’t any
sort of authorization given for such actions.

– data privacy
is defined by the assurance that the data cannot be revealed to anyone who
hasn’t the authorization to access the data.

– key management
deals with the secure generation, distribution and storage of keys used in cryp-
tography for the authentication purposes.
Here are some general concepts about the data encryption:

∗ symmetric encryption: one key for both encryption and decryption;

∗ asymmetric encryption: two keys, one for encryption and one for decryp-
tion;

∗ SSL/TLS - secure socket layer/transport layer security are basically the
same protocols, named differently;

∗ PKI - public key infrastructure: components and protocols to facilitate the
PKI environment;

∗ mutual authentication: two parties use their PK stored in their certificates
to authenticate with one another.

29

On top of the Grid Security Infrastructure (GSI) which provides the security func-
tions, there are three main blocks:

• Resource management
In Globus Toolkit the functionality of this block is performed by GRAM (grid re-
source allocation manager) and GASS (global access to secondary storage).

– Resource allocation
allocates resources based on their availability, load balancing, etc.

– Submitting jobs
manages the running of executable files and receiving results.

– Managing job status
gives information about the status of the running files and their progress in
execution.

• Information services
Based on the LDAP (lightweight directory access protocol) query language these
services collect information from the grid concerning the available resources and
facilitate queries about the collected information.
In Globus Toolkit the MDS (monitoring and discovery service) is responsible for
this function due to its two main components:

– GRIS is the grid resource information service. Some information about the
resources is static: like computers in the grid and some is dynamic: like CPUs
or disk storage. Through an interface with GRIS, the users can add their own
resources to the grid. GRIS reports this information to a hierarchy of GIIS
servers kept on the grid.

– GIIS is the grid index information service. Using LDAP query language the
GIIS servers on the grid can be queried about the available resources on the
grid.

• Data management
The data management provides support for

– the transfer of files between the different computers available, attached to the
grid.

– the management of these data file transfers.

The data management key component is the GridFTP which is responsible for the
secure, high-performance data transfer.

The data management provided by Globus toolkit consists of a client, server and
SDK packages.

In figure 14 we describe the standard file transfer and in figure 15 a third-party file
transfer in a Grid.

30

Figure 14: Standard file transfer in a Grid.

Figure 15: Third-party file transfer in a Grid.

• Data GRID
Through collaboration, data grids can also include new concepts such as the con-
cept of a federated database: the GRID makes a heterogeneous group of databases
available which behave like a single database. This database will have:

– a single query point,

– a local data source used to store query results,

– federated DBMS, catalog, heterogeneous data sources;

– it will use ”wrappers” to access heterogeneous data sources,

– respect local and global DB policies,

– maximize the utilization of existing storage,

– reduce the complexity of data management.

In Figure 16 we see the architecture of a federated DBMS in a Grid.

31

Figure 16: Federated DBMS in a Grid.

32

6.2 Globus: Java Commodity Grid kit (CoG)

The computer science community has witnessed the development of two parallel worlds:

• on one side there is the ”commodity” world referred by a broad spectrum of dis-
tributed programming technologies represented by Java, Jini, DCOM, CORBA
mainly used on desktop computing level, focused on component composition.

• on the other side the high-performance distributed ”Grid” computing, used for sci-
entific computational demanding problems.

The Java Commodity Grid (CoG) in trying to bring these two worlds closer to each other
has defined two main goals:

–a) to give the Grid developers the opportunity to exploit some of the commodity tech-
nologies.

–b) to export Grid technologies to commodity computing.

With these goals being formulated, the birth of a new set of tools has been marked. In
the paper of Laszewski [8] we find the definition of a commodity grid toolkit:

Definition: A Commodity Grid Toolkit (CoG Kit) defines and implements a set of gen-
eral components that map Grid functionality into a commodity environment/framework.

Here are some of the advantages of why to use the Java language for building a Java
Commodity Grid Toolkit:

1. Java programming language offers some of the elements:

• object-oriented: objects, class, inheritance, encapsulation, garbage collection,

• packages: facilitating to build large-scale software projects,

• interfaces: a contract between a class and the outside world.

2. Class library there exists a wide variety of class libraries needed for the grid access:

• specific functions,

• socket communication,

• access SSL, etc.

3. Components through JavaBeans, Java offers a component based architecture and
software program development.

4. Deployment: easy deployment of newly developed software, functionality.

5. Portability: to many different platforms; the concept of ”write-once-run-anywhere”.

6. Maintenance: integrated documentation facility. JavaBeans components can easily
be integrated in different IDE’s (interface development environments) .

7. Performance: some of present Java applications come close in performance to that
of C or Fortran similar applications.

33

8. Gadgets: java has been successfully ported to many different gadgets as: PDA’s,
smart cards and other smart devices.

9. Industry: the need for longevity of a technology is required for scientific projects.
Java is a suitable candidate when considering grid applications.

10. Community: Java is well established in the academic world, forming a wide com-
munity of users.

The distinct layers of a computer grid are visible in the figure 17. On top there is the
application layer. Supporting the applications there are the application toolkits. Under
the toolkits there is the grid services layer which is supported by the grid fabric layer.

Figure 17: The computer grid distinct layers

• The Grid Fabric (the ”resources”)
This layer provides the implementations of basic Grid operations, i.e.: scheduling
system, storage system, QoS for a network router. The implementation of the basic
Grid services are resource-specific.

• The Grid Services (the ”middleware”)
The Grid fabric layer facilitates the implementation of resource-independent, application-
independent Grid services. As an example for such a grid service we can mention
the authorisation and authentication service. The information service, providing
uniform access to the grid resources and structure is another example.

• The Grid Toolkits (the ”toolkits”)
The previous two layers enable the creation of more application-specific services as
toolkits: such a toolkit facilitates the use of distributed data management for data
the specific applications or it can enable some sort of flow management capabilities
for creating collaborative work environments.

34

• The Grid applications (the ”applications”)
On top of the grid services and toolkits, facilitating their implementation, are the
applications.

In the next figure, figure 18 the distinct layered components of The Java Commodity Kit
are visible:

Figure 18: The Java Commodity Kit components

• Low-level Grid Interface components
These components map into commonly used Grid services as: services using GSI
(grid security infrastructure); MDS (globus meta-computing directory services) which
provides services through LDAP to access information about the structure and state
of Grid resources and services; GRAM service facilitates resource management ser-
vices, by supporting the allocation and management of computational and other
resources of the grid.; GASS + GSI services enables FTP; no graphical components
are available at this level.

– RSL Java package org.globus.rsl
This package provides methods for creating, manipulating and validation of
RSL-expressions in Globus.

• Low-Level Utility Components
gather some of the utility functions designed to increase the functionality beyond
those components implemented in the C programming language of the Globus
toolkit. I.e.: MDS components for the user to find all compute resources by using
XML language; RSL (GLOBUS job submission language) that locate he geograph-
ical coordinates of a compute resource or test if that resource is alive. There are no
graphical components available at this level.

35

• Common Low-Level GUI Components
some of the GUI components that can be reused by application developers. I.e.:
LDAP attribute editors, RSL editors, LDAP browsers, search components, etc.

• Application-specific GUI Components
are used to simplify the interface between the applications and the CoG Kit compo-
nents. I.e.: stock-market monitor components, graphical climate data display com-
ponent, specialized search engine for the climate data, etc.

We will look in detail at some of the mentioned components to get a view about how they
are implemented and how they work by using a Java skeleton program. In the following
Java code we see how some of the components are initialized, what parameters they take
and how the structure of a Java CoG kit is being built for connecting and transferring
data to and from the Grid, concerning a specific application:

//-------------------------- Java CoG code ----

// Step 0. Initialization

String mdsServer = "mds.globus.org";

MDS mds=new MDS(mdsServer,"389");

// JOB SUBMISSION

//Step 1. Search for an available machine

result = mds.search ("o=Grid","&((objectclass=GridComputeResource)(freenodes=64))","contact");

// Step 1.a) Select a machine

machineContact = <select the machine with minimal execution time from

the contacts that are returned in result>

// Step 2. Prepare the data for the experiment

// Step 2.a) Search for the climate data and return

// the attributes: server,port,directory,file

dn = mds.search("(objectclass=ClimateData)(year=2000)(region=midwest)","dn",MDS.SubtreeScope);

result = mds.lookup (dn, "server port directory file");

// Step 2.b) download the data to the machine

filename = result.get("filename");

sourceURL = result.get("server")+":"

+ result.get("port")+"/"

+ result.get("directory")+"/"

+ filename;

destinationURL = "gsi-ftp://"

+ "machineContact" // destination

+ "~/" // directory

+ filename; // filename

UrlCopy.copy (sourceURL, destinationURL);

// Step 3. Prepare a description for running the model

RSL rsl = new RSL("(executable=climateModel)(processors=64)"

+ "(arguments=-grads)(arguments=-

out map.grads)"

+ "(arguments=-in " + filename +")");

// Step 4. Submit the program

GramJob job = new GramJob(rsl.toString());

job.addJobListener(new GramJobListener() {

public void stateChanged(GramJob job) {

// react to job state changes

}

});

try{

job.request(machineContact);

} catch (GramException e) {

// problem submitting the job

}

//------------------------- Java CoG code ----

36

7 Hidden Markov Models

In this section we will look at algorithms and modeling tools that we can use once the
data is on the GRID. With the help of hidden Markov models we can try to differentiate
between the states in which the bridge will emit certain events with certain probabilities.
Based on the assumption that the system is in a state where the probability is very high
of emitting a certain event type we could use that information in building a real-time
system which tries to minimize the computations of what the system will predict based
on the previous observations.

7.1 Introduction

According to Huang [3], a hidden Markov model (in short HMM) M consists of the triplet
M = (Q,Σ,Θ), where:

• Q = is a set of finite states.

• Σ = is a finite alphabet of symbols, the symbols being emitted from the states.

• Θ = is a set of probabilities:

– given two states u, v ∈ Q we define the state transition probability au,v as the
probability of the model to make the transition from the state u to the state
v:

au,v = P (st = v|st−1 = u) (7.1)

– given a state u ∈ Q and a symbol k ∈ Σ we define the emission probability
eu(k) as the probability of the symbol k to be emitted in the state u. Let X
be a sequence of observed symbols X = (x1, x2, . . . , xt, . . .) produced by an
unobserved (hidden) sequence of states S = (s1, s2, . . . , st, . . .) in the HMM.
The emission probability eu(k) can be written as:

eu(k) = P (xt = k|st = u) (7.2)

The probability for the whole sequence of symbols X as being generated by the
sequence of states S can be written:

P (X,S) = as0,s1 ·
L∏
i

esi(xi) · asi,si+1
(7.3)

where the state s0 = Begin state and the state sL+1 = End state.

In the next figure, Figure 19 we see an example of a HMM with two states and three
emission symbols in each state.
Assuming that i represents our Good state and j the Bad state the state transition matrix
ai,j and the emission matrices ei(k) and ej(k) follow:

37

Figure 19: HMM representing the Good and Bad states with their emission of DE=
dynamic, DE’ = dynamic above maximum and SE= static events.

ai,j =

[
.90 .10
.95 .05

]
(7.4)

eGood(x) =

 .80
.05
.15

 (7.5)

eBad(x) =

 .70
.10
.20

 (7.6)

By adding a new state called Very Bad state we get the following hidden Markov model:

ai,j =

 .985 .10 .005
.950 .04 .010
.970 .02 .010

 (7.7)

The emission probabilities for the state Good and Bad remain the same but we have a
new emission probability for the third state, called VeryBad state:

eGood(x) =

 .80
.05
.15

 (7.8)

eBad(x) =

 .70
.10
.20

 (7.9)

eV eryBad(x) =

 .55
.20
.25

 (7.10)

The parameters for a HMM can be set in two ways:

38

Figure 20: A HMM with three hidden states.

• a HMM can be trained from initially unlabeled sequences. Training can be done by:

– Baum-Welch training algorithm

– Gibbs sampling

– simulated annealing

– genetic algorithm training methods.

• a HMM can be build from pre-labeled sequences (the state paths are assumed to be
known). The parameters for the HMM will be found by converting observed counts
of emission and state transitions into probabilities.

39

7.2 Viterbi algorithm

Given a hidden Markov model M = (Q,Σ,Θ) and a sequence of observed symbols X =
(x1, x2, . . . , xt−1, xt, . . .) , generated by a sequence of states S = (s1, s2, . . . , st−1, st, . . .)
in the given HMM we want to know the most probable path of states st that emitted the
symbol sequence xt.
We define with vk(i) the probability of the most probable path of states (s1, s2, . . . , sk)
generating the sequence of symbols (x1, x2, . . . , xi) :

vk(i) = max
{S|Si=k}

P (x1, . . . , xi, S) (7.11)

Viterbi algorithm finds the most likely path of states that have generated the sequence of
observed symbols:

1. Initialize:

vbegin(0) = 1 (7.12)

∀i > 0 vsi(0) = 0 (7.13)

2. Recursion:
For each emitted symbol i = [0, . . . ,L-1] and for each state l ∈ Q
recursively calculate:

vl(i+ 1) = el(xi+1) ·max
k∈Q
{vk(i) · akl} (7.14)

3. End step:
The value of P (X,Π∗) is:

P (X,Π∗) = max
k∈Q
{vk(L) · ak,end} (7.15)

We can reconstruct the path of most likely hidden states Π∗ which have emitted the se-
quence of symbols X by keeping back pointers during the recursive calls and by tracing
them back after the recursion.

Because we are dealing with probabilities and as a consequence with numbers on the inter-
val [0,. . . ,1] , the repeated multiplications will result in underflow. We will use logarithms
to avoid such side effect:

40

Viterbi algorithm using logarithms:

1. Initialize (Viterbi logarithmic): because of the logarithms we
initialize differently: in the begin state (with probability 1, we
initialize to 0), all other states (with probability 0, we initialize to
minInt).

vbegin(0) = 0 (7.16)

∀i > 0 vsi(0) = −∞ (7.17)

2. Recursion (Viterbi logarithmic):
For each i = [0, . . . ,L-1] and for each l ∈ Q recursively calculate:

vl(i+ 1) = log [el(xi+1)] ·max
k∈Q
{vk(i) · log (akl)} (7.18)

3. End step (Viterbi logarithmic):
The value of P (X,Π∗) is:

P (X,Π∗) = max
k∈Q
{vk(L) · log (ak,end)} (7.19)

The first-order Markovian assumption states that the probability of being in a state qt
depends only of the probability of being in the previous state qt−1:

P (qt|qt−1) (7.20)

The first-order Markovian assumption restricts the accurately modeling of time-series
data with highly varied dynamics. In this case we can increase the accuracy by using the
probability not only depending of the previous state but to a certain n-length of states:

P (qt | qt−1, · · · , qt−n) (7.21)

The emitted probability density function would be in that case also adapted to the n-
length state sequence:

P (eqt(x) | qt−1, · · · , qt−n) (7.22)

For fully connected HMMs with a constant number of state transitions per state the
complexity of the Viterbi algorithm is: O(NM) both in time and space, where N is the
length of the observed sequence of symbols and M is the number of states.

41

8 Future work and conclusion

8.1 Future work

Here we list some of the possibilities for future work for sensors:

• smoothing of the sensor curve
Work with a previous and current pointer to the value of the sensor data. Use some
sort of average between these two values in the filtering process based on some
constant weights:

vt :=
w1 · vt−1 + w2 · vt

2
(8.1)

where t ∈ N, w1, w2 ∈ R and are constant. For example we can chose as weight for
the previous sensor value w1 = .25 and for the weight of the current value w1 = .75

• sampling of the sensory data
We have used a stack of 10 elements to buffer the sensory data. For future work we
can use different stack sizes and other ADS for sampling. In place of averaging over
all the elements on the stack, we can use:

– an average over a subset or

– we can randomly pick-up a subset of values from the buffer and perform an
average only over that subset.

• wavelet transform of the sensory data
The sensory data can be transformed using a wavelet function to a new domain.
The produced output can then be analyzed for new, specific patterns.

• find the most correlated sensors when an event occurs
When an event takes place on the bridge, some of the sensors close to the event will
react in some sort of cluster. To find their specific relation with respect to the event
and try to find the most correlated sensors in that case, will mean that we have to
perform a sensor space search and identify those most correlated sensors.

• identifications of event
INPUT: Given a certain correlation function between a set of sensors
OUPUT: Identify the type of event; in case of a dynamic event identify its charac-
teristics (speed, direction, amplitude)

• features of events
INPUT: Given a dynamic event with its features
OUPUT: Identify and classify from the given event the features: the number of
relevant features; specify in detail its main features: the local minima, maxima with
their corresponding time durations (analyse in detail each feature of a given event).

42

• transient, dynamic clustering of events
The dynamic nature of events combined with the speed of their change will affect a
group of sensors greater than other groups. The forming of highly related, affected
sensor groups has a dynamic nature. Identify the groups and specify their forming
and change.
INPUT: Given a dynamic event at time ti
OUPUT: Identify for the given event the group of sensors affected. Follow the event
during its transition (from its birth till its death) by specifying the dynamic change
of groups of sensors affected by it.
Use some sort of classifier to specify groups: entropy, Mahalanobis distance, Euclid-
ian distance, etc.

Next we list some points for future work concerning the Grid:
How can we split-up the application to facilitate the Grid parallel processing?

• general benefit of parallel computing for an application

• which parts of the algorithms can be used in parallel

• specific concerns dealing with parallel, distributed programming

8.2 Conclusion

By analyzing a real-time system, the bridge called ”De Hollandse Brug” , we have tried
for the real-time system to:

• find a suited threshold for its sensory data,

• reduce the data by finding events,

• reduce the data by using sampling,

• give a new description to the data (XML),

• transport the data (by events) to a specific location,

• describe the GRID architecture for the data storage and further computation,

• introduce a model for the real-time monitoring of the bridge.

These steps represent the first attempt to deal with complex data streams in real-time
systems.

43

9 Acknowledgements

We thank Joost Kok from Liacs for the support, advice, ideas and corrections during the
project and the thesis.

We thank Bas Obladen, Carlos Bosma, Hessel Galenkamp from Strukton for their help for
the system requirements and for explaining the implemented system through the available
data and documentation.

We thank Arne Koopman, Arno Knobbe from Liacs for their advice during the project
and for their related documents.

The InfraWatch project is funded by the Dutch funding agency STW, under project num-
ber 10970.

44

References

[1] C.F. Bosma, B. Obladen, Onderzoek beperking Verkeershinder bij onderhoud door
beton overlagingen, 2009, Strukton Civiel, internal document, not available.

[2] Ian H. Witten, Eibe Frank, 2nd edition, DATA MINING Practical Machine Learning
Tools and Techniques, 2005, ISBN: 978-0-12-088407-0, 525pages.

[3] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Spoken Language Processing, A
Guide to Theory, Algorithm, and System Development, 2001, ISBN: 0-13-022616-5,
Hardcover, 980pages.

[4] Arne Koopman, Arno Knobbe, Marvin Meeng, Pattern Selection Problems in Multi-
variate Time-Series using Equation Discovery, 2010.

[5] Andrew S. Tanenbaum, fourth edition Computernetwerken, vertaling van Andrew S.
Tanenbaum, Computer networks, 2003, Prentice-Hall, ISBN 90-430-0698-X.

[6] Ian Foster, What is the Grid? A Three Point Checklist, July 20, 2002.

[7] Luis Ferreira, Viktors Berstis, Jonathan Armstrong, Mike Kendzierski, Andreas
Neukoetter, Masanobu Takagi, Richard Bing-Wo, Adeeb Amir, Ryo Murakawa, Ole-
gario Hernandez, James Magowan, Norbert Bieberstein Introduction to Grid Com-
puting with Globus, September 2003, IBM Redbooks.

[8] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, A Java Commodity Grid
Kit, November, 2000.

45

10 Appendix A: threshold.h

The source code of the filter program implemented in C++:

// ==

// name: threshold.h

// This program will compute a threshold based on sensor s100 from a flat data file

// datum 27-06-2010

// ==

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

using namespace std;

int thresholdCalc() {

SYSTEMTIME st;

string fileName, fileNameOut;

string line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

ifstream fin;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102, total=0.0;

int jaar, mnd, dag, uur, min, sec, msec;

int tmp, i, event101, eventId, sem_Event, sem_FirstEvent, prev, event_duration;

int StartEventCounter, EndEventCounter;

threshold101 = -3;

event101 = 0; // event affecting sensor 101

eventId = 0;

sem_FirstEvent = 1; // keeps track of the first event in the whole sequence

sem_Event = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

/* accum. timeDistance between events (think of the accumulated error)

* accumulated error in case that the event oscillates a greater amount of "gap"-times

*/ under the threshold.

event_duration = 50;

StartEventCounter = 0;

EndEventCounter = 0;

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

max101 = threshold101;

cout<<"Give the name of the Sensor data input file"<<’\n’;

cin>>fileName;

fileNameOut = "threshold.txt";

cout<<"Wait ... calculating the threshold for sensor101 from the file. "<<’\n’;

fin.open(fileName.c_str());

// open file

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<<fileNameOut<<’\n’;

}

// the file can be opened

if (fin.is_open()) {

i = 0;

while (!fin.eof()) {

getline (fin,line);

if (i >= 2) { // skip first 2 header lines from the file: i=0 first line, i=1 sec line

if (!line.empty()) { // if the line from input file is not empty read sensor data

cs101 = line.substr(24,11); // read sensor101 string from a specific location

cs102 = line.substr(35,11); // read sensor102 string from a specific location

} else { // if line is empty make substr data empty

cs101 = ""; //

cs102 = ""; //

46

}

// if string value of sensors is not empty -> transform its value to float

if (!cs101.empty()) { // if the substr sensor data for sensor101 is not empty

s101 = atof (cs101.c_str()); // convert substr to float value

s102 = atof (cs102.c_str()); // convert substr to float value

// check for new maxima

if (s101 > max101) // assign new values to the max for this sensor

max101 = s101;

if (s102 > max102) // assign new values to the max for this sensor

max102 = s102;

// check for new minima

if (s101 < min101) // assign new values to the min for this sensor

min101 = s101;

if (s102 > min102) // assign new values to the min for this sensor

min102 = s102;

} else { // else: string value is empty -> assign low values to sensors

s101 = -10;

s102 = -10;

}

// the start of the new event

if (sem_Event == 1) { // if we have detected a new event

eventId++;

StartEventCounter = i; // mark beginning of event

sem_Event = 0;

}

if (threshold101 < s101) { // detect an event above the threshold

prev++;

if (!line.empty()) { // line from the file cannot be empty

c_jaar = line.substr(0,4); // read year string

c_mnd = line.substr(5,2); // read month string

c_dag = line.substr(8,2); // read day string

c_uur = line.substr(11,2); // read hour string

c_min = line.substr(14,2); // read minutes string

c_sec = line.substr(17,2); // read sec. string

c_msec = line.substr(20,3); // read msec. string

} else { // line empty, initialize the strings to empty

c_jaar = ""; c_mnd = ""; c_dag = "";

c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

} // if line not empty

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (sem_FirstEvent == 1) { // signal for the first event in the sequence

prev = i;

sem_FirstEvent = 0;

} else { // prev != 0

if (event_duration < (i-prev)) { // check if event duration is long enough

sem_Event = 1;

prev = i;

} // if (i-prev) > event_duration

}

} // sensor 101

} // if i>2

i++;

total = total + s101;

} // while !eof()

if (i!=0) {

threshold101 = total / i; // calc. average for the threshold

}

cout<<’\n’;

cout <<"Rows = "<< i << " Sum = " <<total << " Threshold = " <<threshold101;

cout << " Max = " <<max101<< " min = " <<min101<< " "<<endl;

cout<<’\n’;

if (fout.is_open()) {

fout << threshold101 << endl;

}

fin.close();

fout.close();

cout<<’\n’;

cout<<"The threshold " <<threshold101 <<" was written to file threshold.txt. "<<’\n’;

cout<<’\n’;

} // if file open

else

cout << "Unable to open file";

return 0;

}

47

11 Appendix B: fileio.h

// ===

// name: fileio.h

// date: 11-03-2010

// version 1.00

// This module will read the sensor flat data file and produce a CSV file based on a threshold.

// input the file you want to read, use first the option 1 to produce a threshold in the threshold file or

// input the threshold manually.

// ===

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

using namespace std;

void makeCsvFile() {

SYSTEMTIME st;

char kol = ’;’;

char quote = ’"’;

string fileName, fileNameOut, thresholdFileName;

string line, threshold_line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

ifstream fin, thresholdFile;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102;;

int jaar, mnd, dag, uur, min, sec, msec, tmp, i, event101, eventId, StartEvent, StartSeq, prev, gap;

threshold101 = -10;

event101 = 0; // event affecting sensor 101

eventId = 0;

StartSeq = 1; // keeps track of the first event in the whole sequence

StartEvent = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

gap = 50; // max. timeDistance between events (think of the accumulated error)

// accumulated error in case that the event oscillates an greater amount of "gap"-times

// under the threshold.

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

cout<<"Input the threshold (use a value around zero) "<<’\n’;

cin>>threshold101;

cout<<"Input the name of the Sensor data input file: "<<’\n’;

cin>>fileName;

fileNameOut = fileName + ".csv";

thresholdFileName = fileName + ".trh";

fin.open(fileName.c_str());

thresholdFile.open(thresholdFileName.c_str());

// open input sensor datafile

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<< fileNameOut <<’\n’;

}

if (thresholdFile.good() == false) { //open thresholdfile

cout << "Unable to open file: "<< thresholdFileName <<’\n’;

} else {

if (thresholdFile.is_open()) {

getline (thresholdFile,threshold_line);

if (! threshold_line.empty()) {

threshold101 = atof (threshold_line.c_str());

}

}

}

// the file can be opened

if (fin.is_open()) {

i = 0;

while (! fin.eof()) {

48

getline (fin,line);

if (i >= 2) { // skip first 2 header lines from the file

if (!line.empty()) {

cs101 = line.substr(24,11); // sensor 101

cs102 = line.substr(35,11); // sensor 102

} else {

cs101 = "";

cs102 = "";

}

if (!cs101.empty()) {

s101 = atof (cs101.c_str()); //

s102 = atof (cs102.c_str()); //

} else {

s101 = -10;

s102 = -10;

}

// signal the start of the new event StartEvent = TRUE

if (StartEvent == 1) {

eventId++;

StartEvent = 0;

max101 = threshold101; // init. max for this new event

min101 = threshold101; // init. min for this new event

}

if (s101 > threshold101) { // threshold for this sensor is value = 0

prev++;

if (!line.empty()) { // line from file cannot be empty

c_jaar = line.substr(0,4); // read strings

c_mnd = line.substr(5,2);

c_dag = line.substr(8,2);

c_uur = line.substr(11,2);

c_min = line.substr(14,2);

c_sec = line.substr(17,2);

c_msec = line.substr(20,3);

} else { // line is empty -> nothing to read

c_jaar = ""; c_mnd = ""; c_dag = ""; c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

}

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (fout.is_open()) {

fout << eventId << kol;

fout << i << kol;

fout << c_jaar << "-" <<c_mnd << "-" <<c_dag << kol;

fout << c_uur << ":" << c_min <<":" << c_sec << kol;

fout << c_msec << kol;

fout << s101 << kol;

fout << s102 << endl;

} // if (s101 > threshold101)

if (StartSeq == 1) {

prev = i;

StartSeq = 0;

} else { // prev != 0

if ((i-prev) > gap) {

StartEvent = 1;

prev = i;

} // if (i-prev) > gap

}

cout << eventId << " " << i << " "<< prev <<" " << "sensor101 "<<c_jaar << "-" <<c_mnd << "-" <<c_dag << " " <<c_uur << ":" << c_min <<":" << c_sec <<"," << c_msec << " " << s101 << endl;

} // s101 > threshold101

} // if i>=2

i++;

} // while !eof()

fin.close();

fout.close();

} // if file open

else cout << "Unable to open file";

}

49

12 Appendix C: listImplStack.h

//==

//author: Gratian Schiopu

//Single linked list implementation of a stack

// this ADS (abstract data structure) will be used for sampling with a fixed window size

//==

#ifndef _LISTIMPLSTACK_

#define _LISTIMPLSTACK_

#include <iostream>

using namespace std;

const int MAX_STACK = 10;

typedef float stackItemType;

class StackClass {

public:

StackClass();

// stackClass (const stackClass & S); // copy constructor

~StackClass();

bool stackIsEmpty(); // check if the stack is empty

bool stackIsFull(); // check if the stack is full

void push (stackItemType newItem); // push one elem. on the stack

void pop(); // pop one elem from the stack

void getStackTop(stackItemType & topItem); //get the top element

void displayStackElem ();

float averageElem (); // perform the average of all the elem. on the stack

void emptyStack (); // delete all elem. from the stack

private:

// typedef node *nodePrt;

struct node {

stackItemType item;

node *next;

} *bottom, *top;

int totalElements;

};

// stack constructor

// PRE: the stack doesn’t exist.

// POST: the stack is created as an empty stack

StackClass::StackClass() {bottom = top = NULL; totalElements = 0;}

// stack destructor

// PRE: the stack exists as a simply linked list

// POST: each node from the stack is poped from the stack and the memory deallocated

StackClass::~StackClass() {

}

// PRE: the stack exists

// POST: if the stack is empty the method returns a TRUE, else a FALSE.

bool StackClass::stackIsEmpty() {return bool (top == NULL);}

// PRE: the stack exists

// POST: if the stack is empty the method returns a TRUE, else a FALSE.

bool StackClass::stackIsFull() {return bool (totalElements == (MAX_STACK-1));}

// PRE: the stack exists and the Maxsize of the stack isn’t reached

// POST: the new element is pused onto the stack

// and the top of stack points to the new added element.

void StackClass::push(stackItemType newItem) {

if (!stackIsFull()){

if (stackIsEmpty()) {

bottom = top = new node;

top->item = newItem;

top->next = NULL;

} else {

top->next = new node;

top = top->next;

top->item = newItem;

top->next = NULL;

}

totalElements++;

}

}

// PRE: the stack exists

// POST: the top element is deleted from the stack and

// top of the stack points to the previous element added to the stack.

void StackClass::pop(){

node *p;

if (bottom == top) { // only one item on the stack

bottom = NULL;

delete top;

top = NULL;

50

totalElements = 0;

} else { // more than one items on the stack

p = bottom;

while ((p->next) != top) {p = p->next; }

p->next = NULL;

delete top;

top = p;

totalElements--;

} // fi

}

// PRE: the stack isn’t empty

// POST: the element pointed to by the top is returned.

void StackClass::getStackTop(stackItemType& topItem){

if (!stackIsEmpty()){

topItem = top->item;

}

}

// display the elemnets of the stack: from bottom to the top

void StackClass::displayStackElem() {

node *p;

stackItemType item;

if (!stackIsEmpty()) {

cout << "bottom of stack stack: ";

cout << bottom->item;

cout << "\n";

cout << "top of the stack: ";

cout << top->item;

cout << "\n";

p = bottom;

while (p != top) {

item = p->item;

cout << item;

p = p->next;

}

item = p->item;

cout << item;

cout << "\n";

cout << "Total: " << totalElements << "\n";

} else { cout << "EmptyStack! \n";}

}

// average the value of the elements on the stack, return the avg value

// the stack will be empty after the average operation.

float StackClass::averageElem() {

node *p;

stackItemType item;

int counter = 0;

float total = 0;

while (!stackIsEmpty()) {

getStackTop (item);

total = total + item;

pop();

counter++;

}

if (counter != 0)

return (total / counter);

else

return 0;

}

// delete all elem. from the stack

void StackClass::emptyStack() {

while (!stackIsEmpty()) { pop(); }

}

#endif

51

13 Appendix D: sampling.h
//===

// datum 19-08-2010

// version 1.00

// sampling using a stack

// elements are pushed on the stack

// if the stack is full we average the elements on the stack.

// We do this by using each time a pop until the stack is empty.

// After each pop we sum up the elements and in the end we compute the average

//===

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

#include "listImplStack.h"

using namespace std;

void Sampling2Csv() {

stackItemType stItem;

StackClass S;

int stCounter;

SYSTEMTIME st;

char kol = ’;’;

char quote = ’"’;

string fileName, fileNameOut, thresholdFileName;

string line, threshold_line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

ifstream fin, thresholdFile;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102;;

int jaar, mnd, dag, uur, min, sec, msec, tmp, i, event101, eventId, StartEvent, StartSeq, prev, gap;

threshold101 = -10;

event101 = 0; // event affecting sensor 101

eventId = 0;

StartSeq = 1; // keeps track of the first event in the whole sequence

StartEvent = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

gap = 50; // max. timeDistance between events (think of the accumulated error)

// accumulated error in case that the event oscillates an greater amount of "gap"-times

// under the threshold.

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

cout<<"Input the threshold (use a value around zero) "<<’\n’;

cin>>threshold101;

cout<<"Input the name of the Sensor data input file: "<<’\n’;

cin>>fileName;

fileNameOut = fileName + ".csv";

thresholdFileName = fileName + ".trh";

fin.open(fileName.c_str());

thresholdFile.open(thresholdFileName.c_str());

// open input sensor datafile

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<< fileNameOut <<’\n’;

}

if (thresholdFile.good() == false) {

cout << "Unable to open file: "<< thresholdFileName <<’\n’;

} else {

if (thresholdFile.is_open()) {

getline (thresholdFile,threshold_line);

if (! threshold_line.empty()) {

threshold101 = atof (threshold_line.c_str());

}

}

}

// the file can be opened

if (fin.is_open()) {

i = 0;

52

while (! fin.eof()) {

getline (fin,line);

if (i >= 2) { // skip first 2 header lines from the file

if (!line.empty()) {

cs101 = line.substr(24,11); // sensor 101

cs102 = line.substr(35,11); // sensor 102

} else {

cs101 = "";

cs102 = "";

}

if (!cs101.empty()) {

s101 = atof (cs101.c_str()); //

s102 = atof (cs102.c_str()); //

} else {

s101 = -100;

s102 = -100;

}

// signal the start of the new event StartEvent = TRUE

if (StartEvent == 1) {

eventId++;

StartEvent = 0;

max101 = threshold101; // init. max for this new event

min101 = threshold101; // init. min for this new event

}

if (!S.stackIsFull()) { // if stack not full

S.push(s101); // push value on the stack

} else { // stack is full

stItem = S.averageElem(); // avg elem. from the stack; empty the stack

if (stItem >= threshold101) { // threshold for this sensor is value = 0

if (!line.empty()) { // line from file cannot be empty

c_jaar = line.substr(0,4); // read strings

c_mnd = line.substr(5,2);

c_dag = line.substr(8,2);

c_uur = line.substr(11,2);

c_min = line.substr(14,2);

c_sec = line.substr(17,2);

c_msec = line.substr(20,3);

} else { // line is empty -> nothing to read

c_jaar = ""; c_mnd = ""; c_dag = ""; c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

}

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (fout.is_open()) {

fout << eventId << kol;

fout << i << kol;

fout << c_jaar << "-" <<c_mnd << "-" <<c_dag << kol;

fout << c_uur << ":" << c_min <<":" << c_sec << kol;

fout << c_msec << kol;

fout << stItem << endl;

// fout << stItem << kol;

// fout << s102 << endl;

} // if output file is open

prev = prev + 10; // advance prev. with the stacksize

if (StartSeq == 1) {

prev = i;

StartSeq = 0;

} else { // prev != 0

if ((i-prev) > gap) {

StartEvent = 1;

prev = i;

} // if (i-prev) > gap

}

} // stItem >= threshold101

} // stackIsFull()

} // if i>2

i++;

} // while ! eof()

fin.close();

fout.close();

} // if file open

else cout << "Unable to open file";

}

53

14 Appendix E: fileioxml.h
//===

// name: fileioxml.h

// This program filters events from sensor a data file given a specific threshold

// datum 27-06-2010

// output file format is XML

//===

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

using namespace std;

int makeXmlFile() {

SYSTEMTIME st;

string fileName, fileNameOut;

string line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

ifstream fin;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102;

int jaar, mnd, dag, uur, min, sec, msec, tmp, i, event101, eventId, sem_Event, sem_FirstEvent, prev, event_duration;

int StartEventCounter, EndEventCounter;

threshold101 = -3;

event101 = 0; // event affecting sensor 101

eventId = 0;

sem_FirstEvent = 1; // keeps track of the first event in the whole sequence

sem_Event = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

event_duration = 50; // ax. timeDistance between events (think of the accumulated error)

// accumulated error in case that the event oscillates an greater amount of "gap"-times

// under the threshold.

StartEventCounter = 0;

EndEventCounter = 0;

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

cout<<"Input the threshold (use a value around zero) "<<’\n’;

cin>>threshold101;

max101 = threshold101;

//max102 = threshold102;

cout<<"Give the name of the Sensor data input file"<<’\n’;

cin>>fileName;

fileNameOut = fileName + ".xml";

fin.open(fileName.c_str());

// open file

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<<fileNameOut<<’\n’;

}

// the file can be opened

if (fin.is_open()) {

i = 0;

while (!fin.eof()) {

getline (fin,line);

if (i < 2) {

if (i < 1) {

if (fout.is_open()) {

fout << "<bridge>" << endl;

fout << " " <<"bridgeID = " << ’"’ << "001" << ’"’ << endl;

fout << " "<<"bridgeName = " << ’"’ << "Hollandsebrug" << ’"’ << endl;

fout << " "<<"Sensor threshold = " << ’"’ << threshold101 << ’"’ << endl;

fout << " "<<"Leading sensor = " << ’"’ << "101" << ’"’ << endl<< endl;

}

}

} else { // skip first 2 header lines from the file

if (!line.empty()) { // if the line from input file is not empty read sensor data

54

cs101 = line.substr(24,11); // read sensor101 string from a specific location

cs102 = line.substr(35,11); // read sensor102 string from a specific location

} else { // if line is empty make substr data empty

cs101 = ""; //

cs102 = ""; //

}

// if string value of sensors is not empty -> transform its value to float

if (!cs101.empty()) { // if the substr sensor data for sensor101 is not empty

s101 = atof (cs101.c_str()); // convert substr to float value

s102 = atof (cs102.c_str()); // convert substr to float value

// check for new maxima

if (s101 > max101) // assign new values to the max for this sensor

max101 = s101;

if (s102 > max102) // assign new values to the max for this sensor

max102 = s102;

// check for new minima

if (s101 < min101) // assign new values to the min for this sensor

min101 = s101;

if (s102 > min102) // assign new values to the min for this sensor

min102 = s102;

} else { // else assign low values to sensors

s101 = -10;

s102 = -10;

}

// the start of the new event

if (sem_Event == 1) { // if we have detected a new event

eventId++;

StartEventCounter = i; // mark beginning of event

max101 = threshold101; // init. max for this new event

min101 = threshold101; // init. min for this new event

sem_Event = 0;

if (fout.is_open()) {

fout << " <event>" << endl;

fout << " " <<"eventID = " << eventId << endl;

}

}

if (threshold101 < s101) { // detect an event above a certain threshold

prev++;

if (!line.empty()) { // line from the file cannot be empty

c_jaar = line.substr(0,4); // read strings

c_mnd = line.substr(5,2);

c_dag = line.substr(8,2);

c_uur = line.substr(11,2);

c_min = line.substr(14,2);

c_sec = line.substr(17,2);

c_msec = line.substr(20,3);

} else { // line is empty -> nothing to read

c_jaar = ""; c_mnd = ""; c_dag = ""; c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

}

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (fout.is_open()) {

fout << " <sensor>" << endl;

fout << " sensorID = " << ’"’ << "101" << ’"’ << endl;

fout << " sensorType = " << ’"’ << "Load" << ’"’ << endl;

fout << " dateTime = " << ’"’ << c_jaar << "-" << c_mnd << "-" << c_dag << " " << c_uur << ":" << c_min << ":" << c_sec << "," << c_msec << ’"’ << endl;

fout << " value = " << cs101 << endl;

fout << " rowCounter = " << i << endl;

fout << " prevCounter= " << prev << endl;

fout << " </sensor>" << endl<< endl;

//--

// fout << " <sensor>" << endl;

// fout << " sensorID = " << ’"’ << "102" << ’"’ << endl;

// fout << " sensorType = " << ’"’ << "Load" << ’"’ << endl;

// fout << " dateTime = " << ’"’ << c_jaar << "-" << c_mnd << "-" << c_dag << " " << c_uur << ":" << c_min << ":" << c_sec << "," << c_msec << ’"’ << endl;

// fout << " value = " << cs102 << endl;

// fout << " rowCounter = " << i << endl;

// fout << " prevCounter= " << prev << endl;

// fout << " </sensor>" << endl<< endl;

//--

} // if (s101 > threshold101)

if (sem_FirstEvent == 1) { // signal for the first event in the sequence

prev = i;

sem_FirstEvent = 0;

} else { // prev != 0

if (event_duration < (i-prev)) { // chech if event duration is long enough

fout << " MaxValue on Sensor101 for event " <<eventId <<" = " << max101 << endl;

fout << " MinValue on Sensor101 for event " <<eventId <<" = " << min101 << endl;

fout << " </event>" << endl << endl;

55

cout << "EventId = "<<eventId << " " << " min = "<< min101 << " Max = "<< max101 << endl;

sem_Event = 1;

prev = i;

} // if (i-prev) > event_duration

}

fout << i << " "<< prev <<" " << "sensor101 "<<c_jaar << "-" <<c_mnd << "-" <<c_dag << " " <<c_uur << ":" << c_min <<":" << c_sec <<"," << c_msec << " " << s101 << endl;

} // sensor 101

} // if i>2

i++;

//cout << i << " " <<jaar << " " << mnd << " " << dag << " " << uur << " " << min <<" " << sec <<" " << s101 <<endl;

//cout << i << " " <<c_jaar << " " <<c_mnd << " " <<c_dag << " " <<c_uur << " " << c_min <<" " << c_sec <<"," << c_msec << " " << s101 <<endl;

} // while !eof()

if (fout.is_open()) {

fout << " </event>" << endl;

fout << "</bridge>" << eventId <<endl;

}

fin.close();

fout.close();

} // if file open

else

cout << "Unable to open file";

return 0;

}

56

15 Appendix F: socketxml.h
//===

// name: socketxml.h

// author Gratian Schiopu

// date: 27-06-2010

// for this module we need the server.exe running at the given IP addres

// this module reads a sensory flat file it will transmit the data to a server in XML

//===

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

// #include <winsock2.h>

using namespace std;

// using namespace System;

int sockXml() {

SYSTEMTIME st;

WSADATA wsaData; // Initialize Winsock

SOCKET m_socket; // socket ADtype

string fileName, fileNameOut;

string line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

// Be careful with the array bound, provide some checking mechanism...

char cIPaddr[15]; // IPaddr for the server the client will communicate with

char sendbuf[200] = "This is a test string from client"; // send buffer

char recvbuf[200] = ""; // receive buffer

ifstream fin;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102;

int jaar, mnd, dag, uur, min, sec, msec, tmp, i, event101, eventId, sem_Event, sem_FirstEvent, prev, event_duration;

int StartEventCounter, EndEventCounter;

int portNo; // socket port number;

int bytesSent;

int bytesRecv = SOCKET_ERROR;

threshold101 = -3;

event101 = 0; // event affecting sensor 101

eventId = 0;

sem_FirstEvent = 1; // keeps track of the first event in the whole sequence

sem_Event = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

event_duration = 50; // ax. timeDistance between events (think of the accumulated error)

// accumulated error in case that the event oscillates a greater amount of "gap"-times

// under the threshold.

StartEventCounter = 0;

EndEventCounter = 0;

int iResult = WSAStartup(MAKEWORD(2,2), &wsaData); // check result of the WSAtartup

if (iResult != NO_ERROR)

printf("Client: Error at WSAStartup().\n");

else

printf("Client: WSAStartup() is OK.\n");

// Create a SOCKET for connecting to a server

m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (m_socket == INVALID_SOCKET) {

printf("Client: Error at socket(): %ld\n", WSAGetLastError());

WSACleanup();

return 0;

}

else

printf("Client: socket() is OK.\n");

cout<<"Input the IPaddres for the Server "<<’\n’;

cin>>cIPaddr;

cout<<"The Server IP Addres is "<<cIPaddr<<’\n’;

cout<<"Input the IPaddres for the port "<<’\n’;

cin>>portNo;

cout<<"The Port for the Socket communication is: "<<portNo<<’\n’;

// The sockaddr_in structure specifies the address family,

// IP address, and port of the server to be connected to.

sockaddr_in clientService;

clientService.sin_family = AF_INET;

57

// clientService.sin_addr.s_addr = inet_addr("127.0.0.1");

clientService.sin_addr.s_addr = inet_addr(cIPaddr);

clientService.sin_port = htons(portNo);

// Connect to server...

if (connect(m_socket, (SOCKADDR*)&clientService, sizeof(clientService)) == SOCKET_ERROR) {

printf("Client: Failed to connect.\n");

WSACleanup();

return 0;

} else {

printf("Client: connect() is OK.\n");

printf("Client: Can start sending and receiving data....\n");

}

// will use this later on when we read more files based on date.counter

// generated files: 2010629.000..2010629.287

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

cout<<"Input the threshold (use a value around zero) "<<’\n’;

cin>>threshold101;

max101 = threshold101;

// max102 = threshold102;

cout<<"Give the name of the Sensor data input file"<<’\n’;

cin>>fileName;

fileNameOut = fileName + ".xml";

fin.open(fileName.c_str());

// open file

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<<fileNameOut<<’\n’;

}

// the file can be opened

if (fin.is_open()) {

i = 0;

while (!fin.eof()) {

getline (fin,line);

if (i < 2) {

if (i < 1) {

if (fout.is_open()) {

fout << "<bridge>" << endl;

fout << " " <<"bridgeID = " << ’"’ << "001" << ’"’ << endl;

fout << " "<<"bridgeName = " << ’"’ << "Hollandsebrug" << ’"’ << endl;

fout << " "<<"Sensor threshold = " << ’"’ << threshold101 << ’"’ << endl;

fout << " "<<"Leading sensor = " << ’"’ << "101" << ’"’ << endl<< endl;

}

}

} else { // skip first 2 header lines from the file

if (!line.empty()) { // if the line from input file is not empty read sensor data

cs101 = line.substr(24,11); // read sensor101 string from a specific location

cs102 = line.substr(35,11); // read sensor102 string from a specific location

} else { // if line is empty make substr data empty

cs101 = ""; //

cs102 = ""; //

}

// if string value of sensors is not empty -> transform its value to float

if (!cs101.empty()) { // if the substr sensor data for sensor101 is not empty

s101 = atof (cs101.c_str()); // convert substr to float value

s102 = atof (cs102.c_str()); // convert substr to float value

// check for new maxima

if (s101 > max101) // assign new values to the max for this sensor

max101 = s101;

if (s102 > max102) // assign new values to the max for this sensor

max102 = s102;

// check for new minima

if (s101 < min101) // assign new values to the min for this sensor

min101 = s101;

if (s102 > min102) // assign new values to the min for this sensor

min102 = s102;

} else { // else assign low values to sensors

s101 = -10;

s102 = -10;

}

// the start of the new event

if (sem_Event == 1) { // if we have detected a new event

eventId++;

StartEventCounter = i; // mark beginning of event

max101 = threshold101; // init. max for this new event

58

min101 = threshold101; // init. min for this new event

sem_Event = 0;

if (fout.is_open()) {

fout << " <event>" << endl;

fout << " " <<"eventID = " << eventId << endl;

}

}

if (threshold101 < s101) { // detect an event above a certain threshold

prev++;

if (!line.empty()) { // line from the file cannot be empty

c_jaar = line.substr(0,4); // read strings

c_mnd = line.substr(5,2);

c_dag = line.substr(8,2);

c_uur = line.substr(11,2);

c_min = line.substr(14,2);

c_sec = line.substr(17,2);

c_msec = line.substr(20,3);

} else { // line is empty -> nothing to read

c_jaar = ""; c_mnd = ""; c_dag = ""; c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

}

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (fout.is_open()) {

fout << " <sensor>" << endl;

fout << " sensorID = " << ’"’ << "101" << ’"’ << endl;

fout << " sensorType = " << ’"’ << "Load" << ’"’ << endl;

fout << " dateTime = " << ’"’ << c_jaar << "-" << c_mnd << "-" << c_dag << " " << c_uur << ":" << c_min << ":" << c_sec << "," << c_msec << ’"’ << endl;

fout << " value = " << cs101 << endl;

fout << " rowCounter = " << i << endl;

fout << " prevCounter= " << prev << endl;

fout << " </sensor>" << endl<< endl;

//--

// fout << " <sensor>" << endl;

// fout << " sensorID = " << ’"’ << "102" << ’"’ << endl;

// fout << " sensorType = " << ’"’ << "Load" << ’"’ << endl;

// fout << " dateTime = " << ’"’ << c_jaar << "-" << c_mnd << "-" << c_dag << " " << c_uur << ":" << c_min << ":" << c_sec << "," << c_msec << ’"’ << endl;

// fout << " value = " << cs102 << endl;

// fout << " rowCounter = " << i << endl;

// fout << " prevCounter= " << prev << endl;

//fout << " </sensor>" << endl<< endl;

//--

// Sends data to server...

bytesSent = send (m_socket, sendbuf, strlen(sendbuf), 0);

if(bytesSent == SOCKET_ERROR)

printf("Client: send() error %ld. \n", WSAGetLastError());

else {

printf("Client: send() is OK - Bytes sent: %ld \n", bytesSent);

printf("Client: The test string sent: \"%s\" \n", sendbuf);

}

} // if (s101 > threshold101)

if (sem_FirstEvent == 1) { // signal for the first event in the sequence

prev = i;

sem_FirstEvent = 0;

} else { // prev != 0

if (event_duration < (i-prev)) { // chech if event duration is long enough

fout << " MaxValue on Sensor101 for event " <<eventId <<" = " << max101 << endl;

fout << " MinValue on Sensor101 for event " <<eventId <<" = " << min101 << endl;

fout << " </event>" << endl << endl;

cout << "EventId = "<<eventId << " " << " min = "<< min101 << " Max = "<< max101 << endl;

sem_Event = 1;

prev = i;

} // if (i-prev) > event_duration

}

cout << i << " "<< prev <<" " << "sensor101 "<<c_jaar << "-" <<c_mnd << "-" <<c_dag << " " <<c_uur << ":" << c_min <<":" << c_sec <<"," << c_msec << " " << s101 << endl;

} // sensor 101

} // if i>2

i++;

// cout << i << " " <<jaar << " " << mnd << " " << dag << " " << uur << " " << min <<" " << sec <<" " << s101 <<endl;

// cout << i << " " <<c_jaar << " " <<c_mnd << " " <<c_dag << " " <<c_uur << " " << c_min <<" " << c_sec <<"," << c_msec << " " << s101 <<endl;

} // while !eof()

if (fout.is_open()) {

fout << " </event>" << endl;

fout << "</bridge>" << eventId <<endl;

}

59

fin.close();

fout.close();

} // if file open

else

cout << "Unable to open file";

WSACleanup();

return 0;

}

60

16 Appendix G: socketcsv.h
//===

// name: socketcsv.h

// author Gratian Schiopu

// date: 27-06-2010

// for this module we need the server.exe running at the given IP addres

// this module will transmit the data filtered by a threshold to a server (in CSV format)

//===

#include <string>

#include <fstream>

#include <iostream>

#include <Windows.h>

#include <stdio.h>

using namespace std;

const int MAX_COM = 12; // max. number of

int sockCsv() {

SYSTEMTIME st;

WSADATA wsaData; // Initialize Winsock

SOCKET m_socket; // socket ADtype

char kol = ’;’;

char quote = ’"’;

string fileName, fileNameOut, thresholdFileName;

string line, threshold_line, c_jaar, c_mnd, c_dag, c_uur, c_min, c_sec, c_msec, cs101, cs102;

string subline;

// Be careful with the array bound, provide some checking mechanism...

char cIPaddr[15]; // IPaddr for the server the client will communicate with

char sendbuf[12] = "From client"; // send buffer

char recvbuf[12] = ""; // receive buffer

ifstream fin, thresholdFile;

ofstream fout;

float threshold101, s101, threshold102, s102, max101, max102, min101, min102;;

int jaar, mnd, dag, uur, min, sec, msec, tmp, i, event101, eventId, StartEvent, StartSeq, prev, gap;

int portNo; // socket port number;

int bytesSent; // bytes sent couter

int bytesRecv = SOCKET_ERROR;

threshold101 = -10;

event101 = 0; // event affecting sensor 101

eventId = 0;

StartSeq = 1; // keeps track of the first event in the whole sequence

StartEvent = 1; // keeps track of the start of one event

prev = 0; // pointer to keep track of the end of an event

gap = 50; // max. timeDistance between events (think of the accumulated error)

// accumulated error in case that the event oscillates an greater amount of "gap"-times

// under the threshold.

int iResult = WSAStartup(MAKEWORD(2,2), &wsaData); // check result of the WSAtartup

if (iResult != NO_ERROR)

printf("Client: Error at WSAStartup().\n");

else

printf("Client: WSAStartup() is OK.\n");

// Create a SOCKET for connecting to a server

m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (m_socket == INVALID_SOCKET) {

printf("Client: Error at socket(): %ld\n", WSAGetLastError());

WSACleanup();

return 0;

}

else

printf("Client: socket() is OK.\n");

cout<<"Input the IPaddres for the Server "<<’\n’;

cin>>cIPaddr;

cout<<"The Server IP Addres is "<<cIPaddr<<’\n’;

cout<<"Input the IPaddres for the port "<<’\n’;

cin>>portNo;

cout<<"The Port for the Socket communication is: "<<portNo<<’\n’;

// The sockaddr_in structure specifies the address family,

// IP address, and port of the server to be connected to.

sockaddr_in clientService;

clientService.sin_family = AF_INET;

// clientService.sin_addr.s_addr = inet_addr("127.0.0.1");

clientService.sin_addr.s_addr = inet_addr(cIPaddr);

clientService.sin_port = htons(portNo);

// Connect to server...

if (connect(m_socket, (SOCKADDR*)&clientService, sizeof(clientService)) == SOCKET_ERROR) {

printf("Client: Failed to connect.\n");

WSACleanup();

61

return 0;

} else {

printf("Client: connect() is OK.\n");

printf("Client: Can start sending and receiving data....\n");

}

// will use this later on when we read more files based on date.counter

// generated files: 2010629.000..2010629.287

GetSystemTime (&st);

cout<<st.wYear<<st.wMonth<<st.wDay<<’\n’;

cout<<"Input the threshold (use a value around zero) "<<’\n’;

cin>>threshold101;

cout<<"Input the name of the Sensor data input file: "<<’\n’;

cin>>fileName;

fileNameOut = fileName + ".csv";

thresholdFileName = fileName + ".trh";

fin.open(fileName.c_str());

thresholdFile.open(thresholdFileName.c_str());

// open input sensor datafile

while(fin.good() == false) {

cout << "Unable to open file: "<<fileName<<’\n’;

cout << "Enter a new name: ";

cin >> fileName;

fin.open(fileName.c_str());

}

fout.open(fileNameOut.c_str());

if (fout.good() == false) {

cout << "Unable to open file: "<< fileNameOut <<’\n’;

}

if (thresholdFile.good() == false) {

cout << "Unable to open file: "<< thresholdFileName <<’\n’;

} else {

if (thresholdFile.is_open()) {

getline (thresholdFile,threshold_line);

if (! threshold_line.empty()) {

threshold101 = atof (threshold_line.c_str());

}

}

}

// the file can be opened

if (fin.is_open()) {

i = 0;

while (! fin.eof()) {

getline (fin,line);

if (i >= 2) { // skip first 2 header lines from the file

if (!line.empty()) {

cs101 = line.substr(24,11); // sensor 101

cs102 = line.substr(35,11); // sensor 102

} else {

cs101 = "";

cs102 = "";

}

if (!cs101.empty()) {

s101 = atof (cs101.c_str()); //

s102 = atof (cs102.c_str()); //

} else {

s101 = -10;

s102 = -10;

}

// signal the start of the new event StartEvent = TRUE

if (StartEvent == 1) {

eventId++;

StartEvent = 0;

max101 = threshold101; // init. max for this new event

min101 = threshold101; // init. min for this new event

}

if (s101 > threshold101) { // threshold for this sensor is value = 0

prev++;

if (!line.empty()) { // line from file cannot be empty

c_jaar = line.substr(0,4); // read strings

c_mnd = line.substr(5,2);

c_dag = line.substr(8,2);

c_uur = line.substr(11,2);

c_min = line.substr(14,2);

c_sec = line.substr(17,2);

c_msec = line.substr(20,3);

} else { // line is empty -> nothing to read

c_jaar = ""; c_mnd = ""; c_dag = ""; c_uur = ""; c_min = ""; c_sec = ""; c_msec="";

}

if (!c_jaar.empty()) jaar = atoi (c_jaar.c_str()); else jaar = 0;

if (!c_mnd.empty()) mnd = atoi (c_mnd.c_str()); else mnd = 0;

if (!c_dag.empty()) dag = atoi (c_dag.c_str()); else dag = 0;

62

if (!c_uur.empty()) uur = atoi (c_uur.c_str()); else uur = 0;

if (!c_min.empty()) min = atoi (c_min.c_str()); else min = 0;

if (!c_sec.empty()) sec = atoi (c_sec.c_str()); else sec = 0;

if (!c_msec.empty()) msec = atoi (c_msec.c_str()); else msec = 0;

if (fout.is_open()) {

fout << eventId << kol;

fout << i << kol;

fout << c_jaar << "-" <<c_mnd << "-" <<c_dag << kol;

fout << c_uur << ":" << c_min <<":" << c_sec << kol;

fout << c_msec << kol;

fout << s101 << kol;

fout << s102 << endl;

} // if the outfile is open

//--

for (int index=0; index < cs101.length(); index++) {

sendbuf[index] = cs101[index];

}

// Sends data to server...

bytesSent = send (m_socket, sendbuf, strlen(sendbuf), 0);

if(bytesSent == SOCKET_ERROR)

printf("Client: send() error %ld. \n", WSAGetLastError());

else {

printf("Client: send() is OK - Bytes sent: %ld \n", bytesSent);

printf("Client: The test string sent: \"%s\" \n", sendbuf);

}

//--

if (StartSeq == 1) {

prev = i;

StartSeq = 0;

} else { // prev != 0

if ((i-prev) > gap) {

StartEvent = 1;

prev = i;

} // if (i-prev) > gap

}

cout << eventId << " " << i << " "<< prev <<" " << "sensor101 "<<c_jaar << "-" <<c_mnd << "-" <<c_dag << " " <<c_uur << ":" << c_min <<":" << c_sec <<"," << c_msec << " " << s101 << endl;

//

} // if (s101 > threshold101)

} // if i>2

i++;

} // while ! eof()

fin.close();

fout.close();

} // if file open

else

cout << "Unable to open file";

WSACleanup();

return 0;

}

63

17 Appendix F: filter.cpp

// Filter program

// author Gratian Schiopu

// datum 19-08-2010

// ver.: 2.00b

// This program filters events from sensor data file given a specific threshold

// For socket communication add to your linker the library file: ws2_32.lib

// Add this to your project:

// Project->Properties (Alt+F7) Linker->input->Additional Dependencies: ws2_32.lib

#include "stdafx.h"

#include "threshold.h"

#include "fileio.h"

#include "sampling.h"

#include "fileioxml.h"

#include "socketxml.h"

#include "socketcsv.h"

#using <mscorlib.dll>

using namespace std;

using namespace System;

int main() {

char ans=’y’;

int operation;

while (ans!=’n’){

cout<<"The input flat file will be read and the output files will contain"<<’\n’;

cout<<"the detected events based upon a threshold used on the sensor 101."<<’\n’<<’\n’;

cout<<"Make a choice of what output file do you want"<<’\n’;

cout<<"[1]=threshold "<<"[2]=csvFile "<<"[3]=Sample2Csv"<<"[4]=xmlFile "<<"[5]=sockCsv "<<"[6]=sockXML "<<’\n’;

cout<<’\n’;

cin>>operation;

switch (operation) {

case 1: {

thresholdCalc();

break;

}

case 2: {

makeCsvFile();

break;

}

case 3: {

Sampling2Csv();

break;

}

case 4: {

makeXmlFile();

break;

}

case 5: {

sockCsv();

break;

}

case 6: {

sockXml();

break;

}

default: {

cout<<"This is an incorrect operation!!"<<’\n’;

cout<<’\n’;

}

} //end-case

cout<<"Do you want to try again? [y/n] "<<’\n’;

cout<<’\n’;

cin>>ans;

cout<<’\n’;

} // enddo

cout<<"\n";

cout<<"\n";

cout<<"\n";

system("pause");

return 1;

}

64

18 Appendix G: SocketServer.cpp
// ===

// SocketServer.cpp

// Server application

// Data sent from the filter is being received by TCP/IP socket communication

// ver. 1.01

// date: 27-06-2010

// auth.: G.Schiopu

// the server can be run on another computer, client and server must share the

// same communication port.

//===

#include "stdafx.h"

#include <stdio.h>

#include <winsock2.h>

using namespace System;

int main() {

WORD wVersionRequested;

WSADATA wsaData;

int wsaerr;

int bytesSent;

int bytesRecv = SOCKET_ERROR;

char sendbuf[12] = "Ok - Server"; // data buffer used by the server to communicate

// initialize to empty data...

char recvbuf[12] = ""; // data buffer to capture data from the client

// Using MAKEWORD macro, Winsock version request 2.2

wVersionRequested = MAKEWORD(2, 2);

wsaerr = WSAStartup(wVersionRequested, &wsaData);

if (wsaerr != 0) {

/* Tell the user that we could not find a usable WinSock DLL.*/

printf("Server: The Winsock dll not found!\n");

return 0;

} else {

printf("Server: The Winsock dll found!\n");

printf("Server: The status: %s.\n", wsaData.szSystemStatus);

}

/* Confirm that the WinSock DLL supports 2.2.*/

/* Note that if the DLL supports versions greater */

/* than 2.2 in addition to 2.2, it will still return */

/* 2.2 in wVersion since that is the version we */

/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {

/* Tell the user that we could not find a usable WinSock DLL.*/

printf("Server: The dll do not support the Winsock version %u.%u!\n", LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion));

WSACleanup();

return 0;

} else {

printf("Server: The dll supports the Winsock version %u.%u!\n", LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion));

printf("Server: The highest version this dll can support: %u.%u\n", LOBYTE(wsaData.wHighVersion), HIBYTE(wsaData.wHighVersion));

}

//////////Create a socket////////////////////////

//Create a SOCKET object called m_socket.

SOCKET m_socket;

// Call the socket function and return its value to the m_socket variable.

// For this application, use the Internet address family, streaming sockets, and

// the TCP/IP protocol.

// using AF_INET family, TCP socket type and protocol of the AF_INET - IPv4

m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Check for errors to ensure that the socket is a valid socket.

if (m_socket == INVALID_SOCKET) {

printf("Server: Error at socket(): %ld\n", WSAGetLastError());

WSACleanup();

return 0;

} else {

printf("Server: socket() is OK!\n");

}

////////////////bind//////////////////////////////

// Create a sockaddr_in object and set its values.

sockaddr_in service;

// AF_INET is the Internet address family.

65

service.sin_family = AF_INET;

// "127.0.0.1" is the local IP address to which the socket will be bound.

// service.sin_addr.s_addr = inet_addr("127.0.0.1");

service.sin_addr.s_addr = inet_addr("192.168.100.177"); // service bound to server IPadr.: 192.168.100.177

// 55555 is the port number to which the socket will be bound.

service.sin_port = htons(55555);

// Call the bind function, passing the created socket and the sockaddr_in structure as parameters.

// Check for general errors.

if (bind(m_socket, (SOCKADDR*)&service, sizeof(service)) == SOCKET_ERROR) {

printf("Server: bind() failed: %ld.\n", WSAGetLastError());

closesocket(m_socket);

return 0;

} else {

printf("Server: bind() is OK!\n");

}

// Call the listen function, passing the created socket and the maximum number of allowed

// connections to accept as parameters. Check for general errors.

if (listen(m_socket, 10) == SOCKET_ERROR)

printf("Server: listen(): Error listening on socket %ld.\n", WSAGetLastError());

else {

printf("Server: listen() is OK, I’m waiting for connections...\n");

}

// Create a temporary SOCKET object called AcceptSocket for accepting connections.

SOCKET AcceptSocket;

// Create a continuous loop that checks for connections requests. If a connection

// request occurs, call the accept function to handle the request.

printf("Server: Waiting for a client to connect...\n");

printf("***Hint: Server is ready...run your client program...***\n");

// Do some verification...

while (1) {

AcceptSocket = SOCKET_ERROR;

while (AcceptSocket == SOCKET_ERROR) {

AcceptSocket = accept(m_socket, NULL, NULL);

} // while (AcceptSocket == SOCKET_ERROR)

// else, accept the connection...

// When the client connection has been accepted, transfer control from the

// temporary socket to the original socket and stop checking for new connections.

printf("Server: Client Connected!\n");

m_socket = AcceptSocket;

break;

} // while (1)

// Send some test string to client...

printf("Server: Sending some test data to client...\n");

bytesSent = send(m_socket, sendbuf, strlen(sendbuf), 0);

if (bytesSent == SOCKET_ERROR)

printf("Server: send() error %ld.\n", WSAGetLastError());

else {

printf("Server: send() is OK.\n");

printf("Server: Bytes Sent: %ld.\n", bytesSent);

}

// Receives some test string from client...and client

// must send something lol...

// bytesRecv = recv(m_socket, recvbuf, 200, 0);

// if (bytesRecv == SOCKET_ERROR)

// printf("Server: recv() error %ld.\n", WSAGetLastError());

// else {

// printf("Server: recv() is OK.\n");

// printf("Server: Received data is: \"%s\"\n", recvbuf);

// printf("Server: Bytes received: %ld.\n", bytesRecv);

// }

bytesRecv = recv(m_socket, recvbuf, 12, 0);

while (bytesRecv != SOCKET_ERROR) {

printf(recvbuf);

bytesRecv = recv(m_socket, recvbuf, 12, 0);

// sendbuf[0] = "O";

// recvbuf = "";

} // while (bytesRecv != SOCKET_ERROR)

WSACleanup();

return 0;

} // end main()

66

67

