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Abstract

Search heuristics for the in-silico discovery of drug candidates have recently
received increased attention. Most of these heuristics such as Simulated
Annealing and Evolutionary Algorithms gradually improve molecules by ex-
ploiting that the similarity in the molecular structure often relates to the
similarity in the properties of molecules such as activity against a target.
However, it often remains unproven whether such continuity assumptions
actually hold. Generally speaking, there is a need to better understand and
assess the properties of molecular search landscapes in order to design/choose
appropriate optimization methods to search these spaces.

The theory of combinatorial landscape analysis aims to provide such
analysis tools. However, many of the methods proposed in this field re-
quire the complete knowledge of the landscape and thus are inappropriate
for analysing the huge search spaces of chemical structures. If the size of the
search space forbids enumeration, statistical landscape analysis methods are
the only available tool.

Following the approach presented by V. K. Vassilev, in this thesis, we pro-
pose to estimate landscape properties from random walks using the variation
operator of the search heuristic. Once a search heuristic is built, these random
walks can be generated with little extra effort. The precision of the obtained
results scales with the number and length of the random walks available.
Given the data from random walks the following analysis methods can be
used: (1) Correlation Length Analysis which reveals the validity of the con-
tinuity assumption; (2) Information Complexity which reveals the structural
diversity of the search landscape; (3) Multimodality measures which estimate
the frequency of local optima for different neighbourhood radii, and finally
(4) Neutrality measures which account for the size distribution of plateaus in
the landscape. Each measure indicates difficulties for optimization routines
encountered when optimizing the objective function.

We apply random-walk based landscape analysis for four search spaces
in the context of de-novo drug design: Firstly, we study the properties of
three search spaces induced by the mutation operators of the “Molecule
EvoluatorTM” developed by Eric-Wubbo Lameijer, with an activity model



as an objective function. These three search spaces are of Oestrogen Re-
ceptor, Lipoxygenase Inhibitor, and Neuropeptide Y2 Receptor, respectively.
Secondly, we study the properties of a peptide design problem using the soft-
ware MOE. Here a ligand that binds tightly to a 14-3-3 isoform is searched
for.
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Chapter 1

Introduction

Optimization problems are problems of finding the best solution from all
feasible solutions. The optimality of a solution can typically be quantified
by one or more fitness functions. In many real-world optimization problems,
both fitness function and optimization algorithm need to be carefully chosen.
An ideal fitness function correlates closely with the chosen algorithm’s goal,
and is not computationally expensive; while an ideal algorithm consistently
demonstrates the ability to converge to good solutions within a reasonable
amount of time regardless of the degree of complexity. In our research, the
fitness functions have been fixed. Hence, selecting proper algorithms is our
prime concern. In order to obtain efficient optimization algorithms, we use
fitness landscapes, a concept first introduced by Wright (1932), to model
optimization problems.

A landscape is a mapping from a configuration space to the real numbers.
A simple kind of configuration space is a graph composed of a set of vertices,
and the edges connecting each vertex to its neighbours. Each vertex is consid-
ered as a configuration, and a fitness or cost function is applied to get the real
value of each vertex. In Chapter 2, we briefly introduce some basic properties
of a landscape, including ruggedness, modality, neutrality correlation, local
optima, and basins. The former four are intuitive but fundamental properties
of a fitness landscape. They help to estimate the difficulties and feasibility
of applying evolutionary or optimizing algorithms to a landscape. We use
correlation and information analysis to investigate these characteristics. In-
formation analysis is derived from the idea of Vassilev et al. (2000), who
defined three information features of a landscape. These three features are
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information content, partial information content, and information stability,
respectively. The former two notions are used in our research. Correlation,
an essential property of a fitness landscape itself, together with information
content are important indicators of ruggedness. Partial information content
is instead an information measure of modality. Density-basin and neutrality
blocks are depicting the neutrality of a landscape. Further description of
these analysing methods is given in Chapter 3.

In Chapter 4, we discuss about four molecular landscapes. A molecular
landscape is a way to represent the properties (in our research, activities)
and mutations of simple molecules and protein sequences, which are configu-
rations in the landscape. The results of the experiments carried out on these
molecular landscapes are presented in Chapter 5.

The paper ends with some conclusions and future research lines in the
last chapter.
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Chapter 2

Landscape

2.1 Definition

A landscape consists of two essential elements, a fitness function by which
each configuration is mapped to a numerical value, and a rule that defines the
neighbours to each configuration. In formal terms given by Stadler (2002),

Definition 1 (Fitness Landscape) A landscape is an abstraction of a search

space composed of

1. A set X of configurations,

2. a notion χ of neighbourhood, nearness, distance, or accessibility on X,

3. a fitness function f : X → R.

2.1.1 Travelling Salesman Problem

A typical example of a combinatorial optimisation problem is the travelling
salesman problem (TSP). In TSP, a distribution of cities and the costs of
travelling from one to any other city have been given. The salesman must
visit each city exactly once and then return to the starting point. The total
cost of such a tour is simply the sum of each cost from one city to the next
in the tour. The problem is to figure out how he could travel at the lowest
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Figure 2.1: Part of a TSP Landscape

total cost. A landscape can be used to model this problem. In this case,
all the possible tours are considered as configurations. In particular, they
are taken as the vertices of some graph, with the edges connecting them to
their neighbours. The neighbours are defined based on certain rules. One
of the possibilities to obtain a neighbour of a tour is switching two adjacent
cities in this tour; another possibility is taking two edges (A,B) and (C,D)
in a tour, and replacing them by the edges (A,D) and (C,B). There are no
specific restrictions on defining a rule.

As in Figure 2.1, assume five cities “a, b, c, d, e” and the costs from each
one to the others have been given (e.g., from a to b, it costs 2; from b to c,
it costs 5). The tour a → b → c → d → e is one of the configurations(γ1),
i.e., a vertex in the graph. The fitness value of γ1 is 18. Take the rule
ρ1 that two configurations are neighbours to each other if and only if one
tour can be obtained from the other by switching two adjacent cities in the
tour. Exempli causa, by switching the order of c and d, we can get the
configuration of a → b → d → c → e (γ2) with the value of 23, which is
one of the neighbours of γ1 in the graph determined by rule ρ1. The other
edges between vertices are obtained in the same way. It is clear to see the
two essential elements of a landscape, as in TSP, a cost function to all the
tours, and a rule deciding the neighbours of each tour. Normally, the cost
function is fixed when the configurations are specified, while the rule to define
a neighbour is not unique. Different rules may therefore result in different
landscapes.
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2.2 Information Characteristics

Ruggedness, modality, neutrality and correlation are intuitive but fundamen-
tal properties of a fitness landscape.

Ruggedness is one of the most important indicators of selecting optimiza-
tion algorithm. It reflects the relationships between each configuration and
its neighbours in the landscape. The greater and more arbitrary fitness vari-
ations between adjoining configurations are, the more rugged the landscape
will be. The ruggedness of a landscape can be controlled by the threshold
set for entropic measures, such as information content.

The modality of a landscape path is another significant feature of a land-
scape. It shows the moving tendency of the whole landscape, and the ten-
dency to produce local optima. In other words, modality helps to observe
the overall picture of the landscape instead of focusing on local details.

In contrast to ruggedness, neutrality represents a connected set of con-
figurations with equal fitness. It is an important indicator of setting the
threshold scale for analysing the ruggedness and modality.

Correlation plays an important role in landscape analysis. It indicates
the dependence between two configurations in the landscape. In a landscape
consisting of an extremely large number of configurations, correlation is a
natural approach to estimate the global structure. Correlation measures are
further discussed in section 3.1.

2.3 Local optima

In TSP, finding a tour solution that is no worse than all its neighbours is
relatively easy. In combinatorial optimisation, a general term referring to
such a solution is local optimum. The best of all these local optima are
accordingly called global optima.

Unlike a global optimum, which is concerned with the whole configuration
space X, a local optimum is only in regard to a neighbourhood in X. The
formal definition adapted from Stadler (2002) is:

Definition 2 (Local minimum) A configuration x̂ ∈ X is a local mini-

mum if there is a neighbourhood N(x̂) such that f(x̂) ≤ f(y) for all y ∈ N(x̂).
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Looking for local optima could be an effective way to approach the global
optima as every local optimum can be considered as a potential global op-
timum. While on the other hand, in many cases, for example, doing hill
climbing, when the landscape is very “rugged”, the search for global optima
will be easily trapped at local ones.

The number of local optima is an indicator for the ruggedness of a land-
scape. As Palmer (1991) suggested, a landscape X is considered rugged if
the number MX of local optima scales exponentially with some measure of
“system size” such as the number of cities in a TSP. It should be noted
though that this way of judging a landscape’s ruggedness may lead to con-
fusion sometimes. For instance, a flat landscape, whose local optima include
all its elements, will be defined as a rugged one by this means.

The exact number of local optima MX can be obtained by generating
and checking Definition 2 through the whole landscape. The operation of
comparing one configuration with all its neighbours needs to be applied to
each and every configuration existing in the landscape, i.e.,

MX =
∑

x∈X





∧

y∈N(x)

f(x) ≤ f(y)



 .

In this formula, the construct [·] is used to test the condition. If the condition
is true, it will return 1, otherwise, it will return 0. In search space X, MX

is the number of configurations x, which satisfy the criterion that the fitness
value f(y) of any y belonging to the neighbourhood N(x) of x is no smaller
than the fitness value f(x) of x.

In general cases, this can be quite expensive in terms of run time and
memory. Thus, in practise, estimating the value of MX is usually taken as
the compromise but effective way. In this way, computations will be applied
only to randomly chosen configurations of a landscape. MX can instead be
approximated by,

MX ≈
|X|

n

n
∑

i=1





∧

y∈N(xi)

f(xi) ≤ f(y)



 ,

where the xi are n uniformly randomly chosen configurations.
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2.4 Basin

Basin is an important notion associated with local optima. So far, there
is no definition of basin accepted in full generality. We take the one given
by Garnier and Kallel (2002) in our research, which is displayed as BGK

shown in Figure 2.2.

Definition 3 (Attraction Basin) The attraction basin of a local minimum

xj is the set of points y1, ..., yk of the search space X such that a steepest

descent algorithm starting from yi for (1 ≤ i ≤ k) ends at the local minimum

xj. The normalised size of the attraction basin of the local minimum xj is

then equal to k/|X|, with |X| standing for the number of elements contained

by X.

Whereas Törn and Žilinskas (1989) suggested BTZ as seen in Figure 2.2,
that the basin of x corresponding to a single connected set of the region of
attraction is the maximal level set contained in this region of attraction.

As well as the number of local optima, the distribution of basin sizes is
also a measure of a landscape’s ruggedness. The fewer basins of small sizes,
the smoother the landscape will be.
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Chapter 3

Information Measures

All the analysis methods in this discussion are based on time series obtained
by random walks on a landscape, and each landscape point is a genotype (a
string of 0s and 1s).

3.1 Correlation

Correlation indicates the linear relationship between two random variables.
This concept is often used in statistics, as well as in landscapes. Correlation
measures are by the far the most accessible indicators of ruggedness.

A variety of correlation methods have been applied to landscapes. For in-
stance, Fitness Distance Correlation (FDC) introduced by Jones and Forrest
(1995). FDC measures the correlation between the fitness values of a func-
tion under investigation and the distance to the optimal solution. Given a set
F = {f(x1), f(x2), ..., f(xn)} representing the fitness values of the configura-
tions in the search space and a set D = {d(x1), d(x2), ..., d(xn)} representing
the corresponding distance of those points from the optima solution, the
correlation coefficient, ρ is calculated as

ρ =
1
n

∑n

i=1(f(xi) − µF )(d(xi) − µD)

σF σD

,

where µF , µD, σF , σD are the means and standard deviation of F and D,
respectively.
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In our research, autocorrelation of fitness values obtained by random
walks is adopted. Different from FDC, autocorrelation is the cross-correlation
of fitness values. A walk correlation is one way to get the autocorrelation.
Two sets of variables are required in the computation of the walk correlation.
One is randomly chosen from the set of vertices of a landscape, while the
other is obtained along a random walk by starting from the former. Let Xs

denote the values of the nodes at time s, where the random walks start, and
Xt be the values of the process at time t, where t may be an integer for a
discrete-time process or a real number for a continuous-time process. The
autocorrelation coefficient is defined by time series as:

ρ(t, s) =
E[(Xt − µt)(Xs − µs)]

σtσs

where “E” is the expected value operator, µs, µt, σs, σt are the mean averages
and standard deviations at time s and t respectively.

For a considerably large landscape, the value of the walk correlation
should start from 1 at s = 0, and decline to 0 (normally sufficiently close to
0) as s approaches to infinity. The more rugged the landscape is, the faster
the descent will be.

These properties can also be applicable to a small landscape if the tran-
sition kernel is ergodic, and px,x 6= 0 for any x ∈ X (px,x is the probability of
remaining in the same x ∈ X).

Obviously, there is no meaningful definition for correlation for a flat land-
scape, since the standard deviation will be 0 in a flat landscape.

3.2 Information Analysis

Vassilev et al. (2000) proposed information analysis for studying the struc-
ture of fitness landscapes. In this idea, three information characteristics mea-
sures are defined, which are termed information content, partial information
content, information stability, all of which are threshold-based indicators.

Consider a time series {ft}
n
t=0, which contains the fitness values in real

numbers obtained by random walks on the landscape, where ft is the fit-
ness value of the genotype xt achieved at step t from the starting point xs.
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x0 x1 x2 x3 x3 x4 x5 x6 x7 x8

2.5 7.1 3.8 5.7 1.2 4.5 4.3 4.7 8.0 8.1
S(0) ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↗ ↗ ε = 0
S(0.3) ↗ ↘ ↗ ↘ ↗ → ↗ ↗ → ε = 0.3
S(3) ↗ ↘ → ↘ ↗ → → ↗ → ε = 3

Figure 3.1:

{ft}
n
t=0 represents a path in the landscape. For a given parameter ε, it can be

transformed into the string S(ε) = s1s2...sn of symbols si ∈
{

1, 1, 0
}

, where

si =







1, if fi − fi−1 < −ε
1, if fi − fi−1 > ε
0, otherwise

for ε ∈ [0, `] where ` is the maximum difference between two fitness values.

The parameter ε is a threshold that determines the accuracy of the cal-
culation of the string S(ε). How ε influences upwards/downwards behaviour
in the analysis is perspicuously drawn in Figure 3.1.

The fitness variation is considered to be moving upwards if si = 1, which
means the fitness value of the preceding genotype is smaller than its successor,
and the difference is greater than ε; if si = 1, the movement is then considered
downwards with a difference greater than ε; while otherwise the movement
is considered as level.

Therefore in Figure 3.1, when ε is set to be 3, it moves upwards from the
genotype x0 to x1 as f1 − f0 = 4.6 > 3, while it moves downwards from x1

to x2 as f2 − f1 = −3.3 < −3. And from x2 to its successor x3, it is a flat
movement, while it is considered upwards by both ε = 0 and ε = 0.3.

It is easy to see from the Figure 3.1 that, the smaller the value of ε is, the
more sensitive the movement will be to the differences between the fitness
values, and the more precisely the landscape can be depicted, while the peaks
along the path will also multiply, as well as the obstacles to approach a good
solution.
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3.2.1 Information Content

Information content is an entropic measure defined by Vassilev et al. (2000).

H(ε) = −
∑

p 6=q

P[pq] log6 P[pq].

Both p and q are elements from set
{

1, 1, 0
}

. The probabilities P[pq] =
n[pq]

n
are frequencies of the possible blocks pq, where npq is the number of

occurrences of pq in S(ε). The base of the logarithm is taken as 6 since this
is the number of all possible combinations of pq, as p, q ∈

{

1, 1, 0
}

and p 6= q.

This measure estimates the diversity of local landscape shapes along the
landscape path, in other words, it denotes the ruggedness of the landscape
path represented by S(ε). The parameter ε works as a threshold in terms of
zooming in or out from the landscape. By increasing or decreasing ε, we will
get a closer look or a more general picture.

3.2.2 Partial Information Content

Partial information content is determined by a new string S ′(ε) constructed
from S(ε) which is associated with the time series {ft}

n
t=0. In S ′(ε), all the

elements of 0 in S(ε) are removed, and all the contiguous elements with
the same value will be taken as one element. For example, the resulting
string S ′(ε) of an S(ε) = 11̄1̄11̄10110 is 11̄11̄1. Clearly, ν(ε) as the length
of S ′(ε) is the number of extrema along the landscape path, which indicates
the modality of the corresponding landscape path.

With ν(ε), we have the definition of partial information content M(ε)
given by Vassilev et al. (2000) as (3.1):

M(ε) =
ν(ε)

n
(3.1)

where n is the length of S(ε).

Thus the partial information content M(ε) is 0 if the landscape path is
flat, or monotonously increasing or decreasing, while M(ε) is approaching 1
as the modal variations grow. When the modal variations of the landscape
path reaches the maximum, M(ε) is 1.
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3.3 Neutrality measures

Two kinds of neutrality measures adopted from Leier and Banzhaf (2003) are
discussed here, density-basin information and lengths of neutrality blocks,
both of which are based on the string S(ε) described in Section 3.2.

Contrary to information content, density-basin information h(ε) repre-
sents the ratio of relatively flat and smooth areas. It is defined in Leier and
Banzhaf (2003) as

h(ε) = −
∑

p∈{1̄,0,1}

P[pp]log3P[pp]

Same as in Leier and Banzhaf (2003), the lengths of neutrality blocks
P[0], P[00], P[000] are instead taken as the neutrality measure in our research,
where P[0...0] means the frequency of blocks 0...0 in S(ε). It is a more expres-
sive and direct way than density-basin information to picture the neutrality
of a landscape path.
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Chapter 4

Molecular Landscapes

Fitness landscapes can be used to describe and investigate chemical infor-
mation. A molecular landscape, which is the visualization of chemical space,
makes it easier to comprehend the transition between chemical structures
by mutations. Two essential components of a molecular landscape are the
representation of molecules and the fitness function. Due to the large popu-
lation of molecules and unpredictable mutations of a molecule, it is normally
too expensive to apply an exhaustive search algorithm to the search space
in a molecular landscape. Based on the assertion of Brown (2009) “similar
molecules will also tend to exhibit similar properties”, which is also known
as similar-structure, similar-property principle, or simply referred to as the
similar-property principle, similar (neighbouring) configurations will have
similar performance relative to a goal in a molecular landscape. Heuristic
algorithms can therefore be good options for solving optimization problems
in molecular landscapes.

In our research, we will go through two of the main methods developed
in drug design, similarity approaches and ligand-protein docking.

4.1 Activity of Drug Like Molecules

The “similarity approach” is to search molecules with the similar activities to
the target molecule, which might replace the target molecule with much lower
costs. Lameijer et al. (2005) present the “Molecule Evoluator” as a piece
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Figure 4.1: Schematic Overview of the Different Mutations in the Molecule
EvoluatorTM

of software developed for drug design. There are 9 kinds of basic molecular
mutations in the Molecule Evoluator, as described in Figure 4.1. The activity
value of each molecule is regarded as a configuration in the landscape, while
the 9 mutations are taken as the transformations between one molecule and
its neighbours. An expert user is used as the fitness function in the landscape.

Kruisselbrink et al. (2008), on the other hand, suggest an automated de-
sign of molecules as another option. Instead of depending on the experience
and intuition of an expert, a computer programme performs an automated
selection on the basis of some preset rules. As compared to Lameijer et al.
(2005), two additional mutations are used by Kruisselbrink et al. (2008).
These are the “add group” and “delete group” operations as shown in Fig-
ure 4.2. This new approach avoids biased decisions and lessens time consump-
tion, both of which may be caused in the interaction in an expert system.
However, this design might encounter the difficulties to filter out obviously
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bad solutions, which are normally not obstacles to an expert. Moreover, it is
difficult to include all rules a chemical expert may apply to select a molecule
into an automatically evaluated criterion. This approach is thus suggested as
an alternative and supplementary method to an expert interaction system,
rather than a replacement.

For this study, three test-cases are used, which are the Oestrogen receptor,
the Lipoxygenase inhibitor, and the Neuropeptide Y2 receptor. The goal is
to find ligands for these target based on the activity models generated. The
activity of ligand molecules was measured for different molecules in the search
space, and served as the fitness function.

4.1.1 Oestrogen Receptor

The oestrogen receptor (ER) is a ligand-activated transcription factor that
mediates the effects of the steroid hormone 17β-oestradiol in both males and
females (Enmark and Gustafsson 1999). It is thought to play a crucial role
in the regulation of many life processes, including development, reproduction
an normal physiology (Korach et al. 1996).

4.1.2 Lipoxygenase (LOX) Inhibitor

Lipoxygenases (LOX) belong to a heterogeneous family of lipidperoxidizing
enzymes and are involved in the biosynthesis of mediators of inflammation.
LOX is involved in the metabolism of fatty acids (and thus simply the fats
we are eating) (Kruisselbrink et al. 2009).

4.1.3 Neuropeptide Y2 (NPY2) Receptor

Neuropeptide Y receptors are a class of G-protein coupled receptors which
are activated by the closely related peptide hormones neuropeptide Y, pep-
tide YY and pancreatic polypeptide (Michel et al. 1998). These receptors
are involved in control of a diverse set of behavioural processes including ap-
petite, circadian rhythm, and anxiety. Specifically, Neuropeptide Y2 receptor
antagonists are involved in obesity/weight control (Kruisselbrink et al. 2009).
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Figure 4.2: Schematic Overview of the Different Mutations in the Molecule
Evoluator
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4.2 Finding a ligand 14-3-3 γ Isoform Recep-

tor

Ligand-protein docking is an approach to simulate the physical processes
involved in a ligand binding to a protein binding site or the prediction of the
structure of receptor-ligand complexes (cf.Brown (2009); Brooijmans and
Kuntz (2003); Kitchen et al. (2004)).

The target of the second case study is to find a ligand to the 14-3-3
protein. This protein is responsible for cell growth in tumours, and to find a
ligand would be interesting in order to cure cancer. In the research project
with Drs. H. S. Faddiev (LIACS) and Prof. Herman Spaink (Molecular
Cell Biology Department, Leiden University), the MOE software was used in
order to find a peptide that binds only to the 14-3-3 γ isoform. The reason
we focus on peptides is that the research group of Molecular Cell Biology can
synthesize them and test them on cells.

The following description is taken from Faddiev (2008):

The 14-3-3 γ isoform 4.3 is taken from the crystal structure of
the human 14-3-3 bonded to R18 peptide. It is easily observed
that atoms and bonds located in the binding grove are highly
conserved. This mean that all iso-forms share ligand recognition
process inside binding grove and the ligand selectivity is due to
the amino acids outside the binding grove. The ligand to be de-
signed should extend from binding grove to reach active surfaces
on top and bottom of the grove. ODA (optimal docking areas)
outside the binding grove based on atomic disolvetion [sic] param-
eters were identified in the work of Yang et al [7]. To reach two
surfaces located below and above the binding groove a 23-amino
acids peptide is placed through the binding grove close to ODA
surfaces, as shown on Figure 4.4.

Instead of 23, we have only 5 amino acids in our experiments.

A peptide is encoded as a string of length 5 from the alphabet of amino
acids out of the set {ALA, ARG, ASN, ASP, CYS, GLU, GLN, GLY, HID,
HIE, HIP, HIS, HYP, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP,
TYR, VAL}. The search space is the space of all possible peptides of a
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Figure 4.3: Crystal structure of human γ isoform
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Figure 4.4: The 23 aminoacid peptide is located in near extended conforma-
tion inside the binding grove of the 14-3-3 γ isoform
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prescribed length. A mutation is to change one amino-acid in the string,
e.g.:

HIE HIP ILE LEU SER → HIE PRO ILE LEU SER.

In silico, one docking experiment takes circa 1min.
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Chapter 5

Experiments and Results

In Chapter 3, we discussed about several information measures, including
correlation, information content, partial information content and neutrality
measures. In this chapter, these four measures are applied to the four molec-
ular landscapes mentioned in Chapter 4.

Following the approach of Vassilev et al. (2000), we propose to estimate
landscape properties from random walks using the variation operator of the
search heuristic. Starting from a randomly chosen configuration, each ran-
dom walk traces the mutations on the landscape. Along the path of a random
walk, each configuration precedes one of its neighbours obtained by a random
operator. On Oestrogen Receptor Landscape OESTRIN, and Peptide Recep-
tor Landscape PL1433, we have 100 and 151 walks performed respectively,
each of which consists of 100 steps. For both Landscape LOX and Landscape
NPY, who represents the activities of inhibitors of Lipoxygenase and ligands
of the Neuropeptide Y2 receptor respectively, we performed 100 walks, each
of which consists of 499 steps. Figure 5.1 gives an overview of random walks
on these four landscapes. It presents the molecular activities, which are fit-
ness values in the landscapes, along the random walk path. Among the plots,
the activities on oestrogen receptor of drug like molecules are depicted in log
scale.
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Figure 5.1: Fitness Values in Molecular Landscapes
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It can be arranged in the matrix (5.1) as follows,

x0,0 x0,1 x0,2 . . . x0,t . . . x0,n

x1,0 x1,1 x1,2 . . . x1,t . . . x1,n

x2,0 x2,1 x2,2 . . . x2,t . . . x2,n

...
...

...
...

...
...

xm,0 xm,1 xm,2 . . . xm,t . . . xm,n

(5.1)

where each row represents a random walk, while each column represents
a step in the random walk, e.g, x0,1 is the configuration obtained by 1 step
from starting point x0,0; x0,2 is the configuration obtained by 2 steps from
starting point x0,0, and by 1 step from point x0,1; xm,t is the one obtained by
t steps from starting point xm,0, and by 1 step from point xm,t−1.

5.1 Correlation

Molecular landscapes are considered to be statistically isotropic. That means
in molecular landscapes the variance of statistics does not depend on the
starting points chosen but only on the distance between the populations. A
sufficiently long unbiased random walk in such a landscape can determine
the correlation. Based on this assumption, Weinberger (1990) proposed the
autocorrelation function:

ρs =
E[ftft+s] − E[ft] E[ft+s]

V[ft]
,

where E[ft] and V[ft] are the expectation and the variance, respectively, of the
time series. The autocorrelation function indicates the correlation between
points that are separated by a distance s.

Due to the large number of configurations contained in a molecular land-
scape, the quantities of time series we gained are relatively small. This may
result in time-varying volatility in time series. In other words, the mean
values and standard deviations are time varying instead of being stationary.
This can be seen in plot 5.2 and 5.3, which show the relationship of means
and of standard deviations among starting points, ending points and all con-
figurations in random walks on OESTRIN and Landscape PL1443. Same as
in the plots 5.1, we use log scale for OESTRIN.
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Figure 5.2: Mean Fitness Values
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Figure 5.3: Standard Deviations of Fitness Values
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We therefore use the function (5.2) for our analysis:

ρs =
1
n

∑n

i=1(f(xi) − µ0)(T
sf(xi) − µs)

σ0σs

, (5.2)

where f(xi) is the fitness value of xi on the landscape X, T sf(xi) is the
fitness value obtained after s steps of a random walk starting from xi, and
µ0, µs, σ0, σs are the mean averages and standard deviations at T 0 and T s,
respectively.

The mean values in our analysis are calculated by (5.3):

µ =
1

n

n
∑

i=1

f(xi), (5.3)

while the deviation is denoted by (5.4):

σ =

√

√

√

√

1

n

n
∑

i=1

(f(xi) − µ)2. (5.4)

According to (5.1), the function can be written more specifically as (5.5):

ρs =
1

n+1

∑n

i=0(xi0 − µ0)(xis − µs)

σ0σs

, (5.5)

Moreover, we have (5.6) extended from the above (5.5):

ρs =
1

n+1

∑m

i=0

∑n

j=0(xij − µ′
0)(xi(j+s) − µ′

s)

σ′
0σ

′
s

, (5.6)

The method (5.6) is not following a rigorous standard as we are actually
having different populations of samples for each different lengths of random
walk, i.e, the more steps in random walks, the more configurations to inves-
tigate.

Other than (5.6), we also adopt mean values and standard deviations
from all configurations in the search space, as in (5.7):

ρs =
1

n+1

∑m

i=0

∑n

j=0(xij − µ)(xi(j+s) − µ)

σ2
, (5.7)
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Figure 5.4: Fitness Correlations in Molecular Landscapes
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The averaged autocorrelation values of (5.5), (5.6) and (5.7) are depicted
in Figure 5.4, by C, CF, and CSF, respectively.

Clearly, in 5.4 the correlations are getting weaker along the path of ran-
dom walks. Compared to the other three landscapes, the correlation curve
drops fastest to 0 in Landscape PL1433, and subsequently remains prevailing
flat, i.e. the correlation length in Landscape PL1433 is the smallest among
these four molecular landscapes. In other words, Landscape PL1433 is the
most rugged among the four. It is also easy to see that the more configu-
rations involved in the analysis, the less noisy will it be. The curve of CSF
almost coincide with the one CF. This provides evidence for the assumption
on the statistically isotropic property of molecular landscapes, for random
walks as being stationary process in the landscapes.

An extraordinary observation is the negative correlation CSF shows up
in Landscape OESTRIN after a certain length of random walk. This means
that the random walk starts from a peak but ends at the bottom, which
should not happen in a strict random walk.

As we mentioned earlier in this section, applying the mean and standard
deviation of all configurations to relatively small local populations may lead
to high errors in estimation. (5.8) can function such a problem. It uses the
mean and standard deviation of all configurations we obtained, but apply
them only to the starting points (configurations in column 0, xi0 ) and the
points xis gained by s step random walks from xi0.

ρs =
1

n+1

∑n

i=0(xi0 − µ)(xis − µ)

σ2
. (5.8)

Figure 5.5 illustrates the outcome of (5.8). The normal self-correlation
coefficient ρ0 (the correlation at step 0) should be 1 or approximately 1.
But we can see in Figure 5.5 that, ρ0 is approximately 7, 0.33, 9 and 6 in
Landscape OESTRIN, PL1443, LOX, and NPY, respectively.

5.2 Information Analysis

As explained in section 3.2 and 3.3, both information analysis methods, in-
formation content and partial information content, apart from neutrality
measures, are ε indicators. All of them are based on discretization processes
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Figure 5.5: Fitness Correlation

30



which transfer continuous models into discrete counterparts with state space
{1, 1̄, 0}.

The scale of the values of the threshold ε in information content and
partial information content is chosen based on its performance in the analysis
of neutrality measures. This will be further discussed in section 5.3.

5.2.1 Information Content

For OESTRIN and Landscape PL1443, we have information content of five
different random walks lengths L = 20, 45, 60, 75, 100, while for Landscape
LOX and Landscape NPY, L = 20, 50, 100, 250, 400, 499. Information con-
tent H(ε) of these four landscapes is depicted in Figure 5.6.

As we can see in the Figure 5.6 that, H(ε) is an increasing function for low
values of ε, where H(ε1) < H(ε2) when ε1 < ε2. This observation confirms the
conclusion that have been previously drawn in Vassilev et al. (2000). These
landscape paths are characterized by relatively small flat landscape areas,
since each path as an ensemble consists mainly of two types of objects. It is
also declared that the flat landscape areas prevail over the ruggedness in a
time series, if H(ε) is a decreasing function.

The graphs (a), (c), (d) in 5.6 show that for large values of ε, the smaller
the length of random walks, the slower information content H(ε) is descend-
ing. We thus can say that these landscapes are relatively smooth, and better
correlated than Landscape PL1443, which is depicted in (b).

In the way of (5.6) and (5.7) for correlation analysis, we regard a config-
uration obtained along the random walk path as a starting point as well to
its succeeding configurations. We apply this method to information content
analysis as well, as in Figure 5.7.

Compared to 5.6, we can see in 5.7 that the areas where H(ε) is a de-
creasing function are significantly smaller. In other words, the search spaces
are less rugged than in 5.6.

5.2.2 Partial Information Content

As in the case of information content analysis, for OESTRIN and Landscape
PL1443, we have information content of five different random walks lengths
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Figure 5.6: Information Content
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L = 20, 45, 60, 75, 100, while for Landscape LOX and Landscape NPY, L =
20, 50, 100, 250, 400, 499. Partial Information content M(ε) is depicted in
Figure 5.8.

In 5.8, the partial information content decreases toward 0 as ε increases.
Back to 3.2.2, the function of partial information content (3.1) defined by (Vas-
silev et al. 2000) has been mentioned as:

M(ε) =
ν(ε)

n

where ν is number of the optima along the random walk path. Id est, the
steepness of M(ε) indicates the diversity of the optima when they are clas-
sified by their magnitude. Therefore we draw the conclusion from 5.8 that,
the number of optima in Landscape PL1443 tops the other three landscapes.
In other words, it will be more difficult to explore and estimate the entire
Landscape PL1443 than the others.

As well as for information analysis, we also make use of the configurations
by the means in (5.6) and (5.7), as it is plotted in Figure 5.9.

From 5.9 we can see that, with the random walk length L >= 60, the
curves of M(ε) almost coincide with each other. We thus assume that L = 60
is a sufficient length to illustrate the modality of these four landscapes.

By comparing 5.9 to 5.8, we can also find that for the same length of
random walks, the more configurations, the faster the curve of M(ε) declines.
We cannot make a definite conclusion from this observation. We can only
say that in these four landscapes, the increasing ratio of the number of local
optima is smaller than the one of the number of configurations involved.

5.3 Neutrality Measures

The changes in the neutrality of these four fitness landscapes for increasing
lengths of neutrality blocks and values of threshold ε are displayed in Fig-
ure 5.10. For both OESTRIN and Landscape PL1443, 100 steps of random
walks are performed, while for Landscape LOX and Landscape NPY, 499
steps of random walks are performed.

As in Figure 5.10, the frequency of S(ε), which is the average lengths of
neutrality blocks in our analysis, is noticeably approaching linear diagonal
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Figure 5.8: Partial Information Content
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by increasing the value of ε, so will more interesting spots be missing. Per
contra, when ε is too small, which makes S(ε) getting too close to 0, the
exploration will be stuck by too many local optima.

The values of threshold ε which perform better in the analysis of neutral
measures, will lead to a better performance as well in the analysis of both
information content and partial information content. Since it is easier and
more intuitive to obverse better solutions of ε in neutrality measures, the scale
of ε applied to information analysis is set in consequence of its performance
in neutrality measures.
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Chapter 6

Conclusions and Outlook

Both the large population of molecules and the uncertainty of the transfor-
mations of a molecule contribute to the complexity and difficulty in molecular
landscape analysis. Algorithms that can adapt to such situations are hence of
crucial importance in the approach to good solutions. As a precursory step to
applying these algorithms, our research examines molecular landscape char-
acteristics to determine the difficulties search-algorithms will encounter when
applied to the landscape.

After introducing the concept of a landscape, we described four measures
for analysing landscapes: correlation analysis, information content, partial
information content, and neutrality measures. We then applied these mea-
sures to four molecular landscapes: OESTRIN, PL1433, LOX, NPY, which
represent the Landscape of Oestrogen Receptor, 14-3-3 γ Isoform Receptor,
Lipoxygenases Inhibitor, and Neuropeptide Y2 Receptor, respectively.

Correlation analysis reflects the linear interdependence of two molecular
activities along a random walk. The lower the correlations, the more rugged
the landscape. Landscape PL1433 hence turns out to be the most rugged
among the four landscapes we investigated, whose correlation decreases to 0
most swiftly. The plots CF and CSF of (5.6) and (5.7) respectively make it
clear that the more configurations are involved in the investigation, the less
noisy the correlation will be. It also provides evidence for the assumption on
the statistically isotropic property of molecular landscapes as CF and CSF
almost coincide to each other in spite of the different numbers of analysed
configurations. Nevertheless, if a relatively small subset is taken from a
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large set of configurations, then the mean and standard deviation of this
subset may be remarkably different from the global mean and deviation.
Ergo applying the global mean and deviation to this subset will result in
high errors in estimation.

Another observation revealed in correlation analysis is that in Landscape
OESTRIN, the random walk is actually not strictly defined since the starting
points are not really randomly chosen but the ones with good fitness values.

The information content, partial information content, and neutrality mea-
sures are three threshold-based indicators which depict the ruggedness, modal-
ity and neutrality of a landscape respectively. The results of information
content and partial information content confirms that the four molecular
landscapes are relatively correlated and smooth. The comparisons among
the four landscapes also correspond with the one we concluded from correla-
tion analysis that Landscape PL1443 is the most rugged.

The neutrality measure in our research does not only represent the neu-
trality of the landscapes, but is also an intuitive means that yields a good
threshold. A good threshold should not exhibit any extreme neutrality be-
haviour, i.e., it should not result in either the absence or abundance of neutral
blocks.

Our research confirms that despite the large population of configurations,
a molecular landscape properties can be estimated without full exploration
of the search space by information characteristics analysis, which can be used
to steer the further research, such as algorithm selections.

Recent research based on random walks conducted in molecular land-
scapes is normally not strictly random, for the starting points are usually
chosen from those with good fitness values. This is an intuitive way to ap-
proach a good solution, however, it may also result in the risk of missing
the interesting points which are closer to comparatively worse solutions. For
future work, we thus propose to start the random walks from the boundaries
between active “spots” in chemical space instead. There are several possible
definitions of boundaries,

1. a cluster around a given active compound “C” for a given threshold
“t” is a set of compounds with similarity to “C” greater than or equal
to “t”. A boundary is the in the intersection of two such clusters. We
need to make sure that “t” is small enough so that there will actually
be an intersection.
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2. a starting point is one which has the same similarity(distance) to 2
active compounds, and (only if) is also further from the rest of active
compounds. In this case, we do not need clusters, but only focus on
similarities.

Suppose we have 20 active compounds. Lets call the active compounds
Ci with i between 1 and 20. The border between components C1 and
C2 consists of those components x that are equally similar to C1 and
C2, i.e., s(x,C1) = s(x,C2), and more similar to C1 and C2 than to
any other active compound, i.e., s(x,C1) = s(x,C2) >= s(x,Cj) for j
between 3 and 20.

3. the intersection of the above 2 definitions.

This idea helps to eliminate the bias in molecular landscapes exploration,
and to enhance the chance of reaching good “hidden” solutions in the search
space.
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Kruisselbrink, J. W., T. Bäck, A. P. IJzerman, and E. van der Horst
(2008). Evolutionary algorithms for automated drug design towards
target molecule properties. In GECCO ’08: Proceedings of the 10th an-

nual conference on Genetic and evolutionary computation, New York,
NY, USA, pp. 1555–1562. ACM.

Lameijer, E.-W., A. IJzerman, and J. Kok (2005). The molecule evoluator:
an interactive evolutionary algorithm for designing drug molecules. In
GECCO ’05: Proceedings of the 2005 conference on Genetic and evo-

lutionary computation, New York, NY, USA, pp. 1969–1976. ACM.

Leier, A. and W. Banzhaf (2003, 8-12 December). Exploring the search
space of quantum programs. In R. Sarker, R. Reynolds, H. Abbass,
K. C. Tan, B. McKay, D. Essam, and T. Gedeon (Eds.), Proceedings of

the 2003 Congress on Evolutionary Computation CEC2003, Volume 1,
Canberra, pp. 170–177. IEEE Press.

Michel, M. C., A. Beck-Sickinger, H. Cox, H. N. Doods, H. Herzog,
D. Larhammar, R. Quirion, T. Schwartz, and T. Westfall (1998).
XVI. International Union of Pharmacology Recommendations for
the Nomenclature of Neuropeptide Y, Peptide YY, and Pancreatic
Polypeptide Receptors. Pharmacol Rev 50 (1), 143–150.

Palmer, P. (1991). Optimization on rugged landscapes. In A. S. Perel-
son and S. A. Kauffman (Eds.), Molecular Evolution on Rugged Land-

scapes: Proteins, RNA, and the Immune System: the Proceedings of

the Workshop on Applied Molecular Evolution and the Maturation of

the Immune Response, Held March, 1989 in Santa Fe, New Mexico,
pp. 3–25. Addison Wesley Publishing Company.

Stadler, P. (2002). Fitness landscapes. In Lecture Notes in Physics, Volume
585/2002, pp. 183. Springer Berlin / Heidelberg.
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