
Hashiwokakero

T. Morsink

August 31, 2009

Contents

1 Introduction 3

2 What is Hashiwokakero? 3

2.1 The rules . 3
2.2 Easy solving statements . 4

3 Building an Own Solver 4

3.1 The easy solver . 4
3.2 The better solver . 5
3.3 Single connected group . 6

4 Solving the Puzzle with the Sugar CSP-Solver 7

4.1 Getting the input file format right 7
4.2 Using Sugar . 10
4.3 Expectations Sugar vs own solver 12

5 Making a Puzzle Generator 12

6 Results 13

6.1 Experiments . 14
6.2 Results . 14

6.2.1 Time . 14
6.2.2 Own solver . 15
6.2.3 Sugar . 16
6.2.4 Generator vs own solver vs Sugar 16

7 Conclusion 19

8 Acknowledgements 19

References 19

Appendix 21

2

1 Introduction

This thesis is the result of a Bachelor Project at the University of Leiden
in the Netherlands. The project was supervised by Dr. W.A. Kosters. It
is about Hashiwokakero, a Japanese puzzle. The object of the puzzle is to
connect islands by means of bridges into a single connected group. With this
thesis we will show how efficient our own solver is in contrast to another
proven one.

2 What is Hashiwokakero?

2.1 The rules

Hashiwokakero (also known as Bridges) is an interesting Japanese puzzle from
Nikoli [1], the publisher of puzzles like Sudoku and Nonograms. The rules
are quite simple, yet within the rules one can make pretty difficult puzzles.
Hashiwokakero is played on a rectangular grid. The size of the grid doesn’t re-
ally matter. In the grid the player will find nodes, also known as “islands”(see
the left picture of Figure 1). These nodes have a value in them ranging from
1 through 8. The goal is to connect all these islands with bridges. In the end
this should be a single connected group. The player draws bridges between
the islands in a straight line. These bridges cannot cross other bridges and/or
islands, and each bridge connects exactly two islands. Every pair of islands
has a maximum of 2 bridges connecting them. In the end you will have a
single connected group with on each island the number of connected bridges
matching the value in the island (see the right picture in Figure 1).

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

1

3 6 1

3 4

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

1

3 6 1

3 4

Figure 1: Example puzzle with solution

3

2.2 Easy solving statements

To solve these puzzles there are a number of easy things to remember. If you
have, for example, an island with value 4 in the corner of your grid, you have
only one way to build bridges. Since a pair of islands cannot be connected
with more than 2 bridges, the island with value 4 will have 2 bridges to his
first neighbouring island and 2 bridges to his second neighbour. This simple
fact is easily translated into a bit more formal statement:

“If an island has value n, with n even, and precisely n/2 neighbours, you

can draw two bridges to each of n’s neighbours.”

If an island has value n − 1, with n even, with n/2 neighbours, you can-
not put two bridges to each of n’s neighbours, but you do know already
something else. If an island has value n− 1, you can draw at least one bridge

to each of its neighbours.
With these two simple statements you can solve most puzzles of easy

difficulty. However, the puzzles of hard difficulty will give you some problems.
Hard puzzles will use the fact that it needs to be a single connected group
of islands and give you the illusion there is more than one way to solve the
puzzle.

3 Building an Own Solver

3.1 The easy solver

As a first part in this research project, a program in C++ was built to solve
these puzzles, using basically the two simple rules of solving mentioned in
Section 2. This is a pretty simple program, but as soon as puzzles needed the
“single connected group rule” to get solved, it fails. Also the program had
some difficulties solving certain puzzles, for example it connected two islands
of value 1 to each other, or did not draw a bridge where there clearly should
be one due to lack of checks or the fact that it needed so many checks that
is was better to work on a new program.
This new program was designed to basically just solve the puzzles without the
“single connected group rule”. The approach was a bit different. If you have
a node of value k, calculate the maximum of bridges (after this called max)
you can attach to this node, ignoring the value of k, but not ignoring the
values of the neighbours. If after this calculation k = max, draw all bridges
to the neighbours. If k = max − 1 AND k > m, with m being the number
of neighbours of the node, you can draw one extra bridge to all neighbours

4

(except to nodes with a value left of 1, these are only drawn with the first
rule), i.e., if there is one bridge draw the second, and if there is no bridge
then draw one. From now on if the last approach is used, we will refer to it
as the easy solver.

±°
²¯
≥ 2 ±°

²¯
8 ±°

²¯
≥ 2

±°
²¯
≥ 2

±°
²¯
≥ 2

±°
²¯
≥ 2 ±°

²¯
7 ±°

²¯
≥ 2

±°
²¯
≥ 2

±°
²¯
≥ 2

Figure 2: n = 8. Left: neighbours have value ≥ 2. Right: neighbours have
value ≥ 2 and the middle node has value n − 1

Note in Figure 2 in the left picture with n being 8, that every neighbour
of that node will need at least a value of 2 or higher to let the node with
value 8 draw all of it’s bridges. If any of the neighbours would have a value of
1 or even 0, the middle node would only be able to draw, respectively, seven
or six bridges. In the right picture of Figure 2 you see what happens when
a node has a value of 7. If every neighbouring node has at least a value of
2 and you have 7 bridges to distribute, there is no indication of which pair
of nodes should only be connected with only one bridge. The only real fact
we know is that every pair of nodes should be connected with at least one
bridge, because you still need to distribute 7 bridges over four pairs of nodes.

3.2 The better solver

After seeing that the easy solver was not going to solve puzzles with the
“single connected group rule“ in them, we needed some extra solving capa-
bilities in the program. The easiest way to get some extra solving power in
the program was to let the program guess once and then use the same solv-
ing paramaters as in the Easy Solver. So the steps in the new program were
going to be:

1. Solve the puzzle as best you can with the easy solver.

5

2. Let the program draw a single bridge (a double one if there already is
one; this is referred to as an extension) and, after the one guess, solve
the puzzle again with the easy solver.

3. Check if a solution is found and if the solution is a single connected
group, if not make a note that on that spot no bridge extension can be
drawn again.

4. Repeat step 2 and 3 for every possible bridge extension.

Note that in this case, if every possible bridge leads to an unsolvable
puzzle, the program might also indicate that a solution is not possible. Note
that, contradictory to normal research behavior, if after the one guess and
solving it again the solver happens to find a solution, the program will end
saying it has found a solution to the problem. This solution is probably a
non-unique solution.

3.3 Single connected group

The check to see if the puzzle is a single connected group requires some extra
explanation. The check will start at every node and will try to reach every
other node in the puzzle. If it cannot reach a node it will check why the puzzle
still is not a single connected group. There are a two distinct cases in which
you will see the guess of the solver fail, causing it to ban all bridges between
two islands, and one case in which options are still open, and the check solver
cannot say if the puzzle is solvable, but it can say that at the moment it is
not unsolvable. These three situations are shown in Figure 3. Note that the
pictures are not complete puzzles, but small portions of a larger one. The
three situations are:

1. There is a group of islands with at least a possibility to draw a bridge
to another node completely cut off from possibilities around it. This
will cause the solver to fail; see Figure 3.1.

2. There is a group of islands connected together, with no more possibili-
ties going outward to another part of the puzzle. Just to be clear, this
is not a complete puzzle. This will cause the solver to fail; see Figure
3.2.

3. There is a group of islands connected together, with one or more possi-
bilities to draw a bridge to another part of the puzzle, connecting those
two or more groups of islands; see Figure 3.3.

6

1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

1 ≥ 2

2

±°
²¯
±°
²¯

±°
²¯
±°
²¯

2

2

2

2

3

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

1 ≥ 2

≥ 2

≥ 2

Figure 3: Examples of the options above. A part of the puzzle is depicted.

4 Solving the Puzzle with the Sugar CSP-

Solver

While looking for ways to solve these puzzels, a solver called Sugar was found,
made by Naoyuki Tamura [2]. Sugar is a SAT-based Constraint Solver. It is
based on a new SAT-encoding method called “order encoding”. We wanted to
find out how well or how fast this solver could solve the puzzles in comparison
with the solving methods from the programmed solver. Those methods use
random functions a bit more, so they could take a lot of time.

4.1 Getting the input file format right

Sugar needs to get the problem handed in a special way. First a list of all
variables with the appropriate constraints it is to be given. In our case the
variables are potential bridges with a value between 0 and 2 (being the min-
imum and maximum number of bridges between two islands). In general the
notation would be

(<variabletype> <variablename> <bottomconstraint> <topconstraint>).

So for example, (int x 0 2) would mean that the integer x would have a
value 0 ≤ x ≤ 2.And (int x 00 06 0 2) means that the integer variable
x 00 06 (the bridge between coordinates (0,0) and (0,6)) has to be between
0 and 2. After declaration of the variables you get a list of statements that
sum the variables to a certain value. In this case this value was the value of
the node and the variables summing to that value are the potential bridges
attached to that node. So, for example, (= (+ x 00 50 x 00 06) 2) means
that variable x 00 50 summed with variable x 00 06 should equal 2, meaning
that the cross section of the lines going from (0,0) to (5,0) and from (0,0) to
(0,6), so in this case the point (0,0), will need two bridges going from that
point.

7

To accomplish this format we made a parser that would take a puzzle
we created in the form we use in all our programs and write it to the form
required for Sugar, as seen in Figure 4.

;bridges

(int x_00_50 0 2)

(int x_00_06 0 2)

(int x_06_66 0 2)

(= (+ x_00_50 x_00_06) 2)

(= (+ x_06_66 x_00_06) 2)

(= (+ x_00_50) 1)

(= (+ x_06_66) 1)

±°
²¯

2

±°
²¯

1

±°
²¯

2

±°
²¯

1

0/1/2

0/1/2

0/1/2

Figure 4: Example inputfile.csp format, with corresponding puzzle. Here
0/1/2 denotes the possible values for bridges. A line that starts with ; con-
tains a comment.
No attempt is made to guarantee connectedness.

The problem with the the inputfile.csp from Figure 4 is that there
is no way to ensure that the solution is a single connected group. To that
end you need a system to build a spanning tree. Naoyuki Tamura [2] made
a script that, besides making the statements that our self built csp code
generator also does, makes such a tree. The new inpufile.csp generated
from this script is seen in Figure 5. As you can see in Figure 5 the first seven
lines are basically (if noted somewhat different) the same commands as in
Figure 4. The difference is in that the bridges have directions. The numbers
in the variable names are still the coordinates only for this example v 0 0

means the vertical bridge that is drawn from node (0,0) and h 0 0 is the
horizontal bridges drawn from node (0,0). The values −1 and −2 mean
in this case, that vertical bridges have a direction upwards and horizontal
bridges have a direction to the left. The values 1 and 2 are for directions
down and right. The sum of the absolute values of the bridges attached to
a node (the horizontal and vertical ones) are again the value of the node.
Now this is established we introduce a group of new variables, ‘z’-variables
and ‘r’-variables, corresponding to the nodes in the puzzle. The ‘z’-variables
always have a value between 1 and the number of nodes in the puzzle, while
the ‘r’-variables always have a value of either 0 or 1. Now there is a group
of iff-statements. For example, (iff (= z 0 0 1) (= r 0 0 1)) means that
the variable z 0 0 is 1 if and only if r 0 0 is 1.

The next important thing to note is the line:

8

(int v 0 0 -2 2)

(int h 0 0 -2 2)

(= (+ (abs v 0 0) (abs h 0 0)) 2)

(int v 0 6 -2 2)

(= (+ (abs v 0 6) (abs h 0 0)) 2)

(= (+ (abs v 0 0)) 1)

(= (+ (abs v 0 6)) 1)

(int z 0 0 1 4)

(int r 0 0 0 1)

(iff (= z 0 0 1) (= r 0 0 1))

(int z 0 6 1 4)

(int r 0 6 0 1)

(iff (= z 0 6 1) (= r 0 6 1))

(int z 5 0 1 4)

(int r 5 0 0 1)

(iff (= z 5 0 1) (= r 5 0 1))

(int z 6 6 1 4)

(int r 6 6 0 1)

(iff (= z 6 6 1) (= r 6 6 1))

(= (+ r 0 0 r 0 6 r 5 0 r 6 6) 1)

(=> (> v 0 0 0) (< z 0 0 z 5 0))

(=> (> h 0 0 0) (< z 0 0 z 0 6))

(=> (= r 0 0 0) (or (< v 0 0 0) (< h 0 0 0)))

(=> (> v 0 6 0) (< z 0 6 z 6 6))

(=> (< h 0 0 0) (< z 0 6 z 0 0))

(=> (= r 0 6 0) (or (< v 0 6 0) (> h 0 0 0)))

(=> (< v 0 0 0) (< z 5 0 z 0 0))

(=> (= r 5 0 0) (or (> v 0 0 0)))

(=> (< v 0 6 0) (< z 6 6 z 0 6))

(=> (= r 6 6 0) (or (> v 0 6 0)))

Figure 5: Example of a better inputfile.csp file for the puzzle in Figure 4
Here connectedness is taken into account.

(= (+ r 0 0 r 0 6 r 5 0 r 6 6) 1)

This line says that the sum of all ‘r’-variables is 1. This means that precisely
one of these variables can have the value 1. The idea behind this is, that
from all the nodes in the puzzle, one is chosen to be the root of the spanning
tree, we are trying to make. In this example we will chose r 0 0 as the root,
thus giving it a value of 1. Now because this is chosen, there are a few other
effects that will happen. First off all, because of the line

(iff (= z 0 0 1) (= r 0 0 1))

the variable z 0 0 which could have had a value between 1 and 4, will now
have value 1. Also, because all of the ‘r’-variables together can only have a
value of 1, every other ‘r’-variable except r 0 0 has a value of 0 and thus the
‘z’-variables will not have a value of 1. Now because of the lines

(=> (= r 5 0 0) (or (> v 0 0 0)))

and

9

(=> (= r 6 6 0) (or (> v 0 6 0)))

we see that v 0 0 will be larger than 0 and v 0 6 will also be larger than 0,
meaning that both these bridges have a direction downwards. Now we only
need the direction of the horizontal bridge. This is deducted from the line:

(=> (= r 0 6 0) (or (< v 0 6 0) (> h 0 0 0)))

Since r 0 6 equals 0 either v 0 6 must be smaller than 0 or h 0 0 must be
larger than 0. We just established that both vertical bridges run downwards
and have a value greater than 0, so v 0 6 is not smaller than 0, thus h 0 0

must be larger than 0 and consequently this bridge has a direction to the
right. Now we have all the directions we need and we can look at the final
part of building a tree. The lines

(=> (> v 0 0 0) (< z 0 0 z 5 0))

(=> (> h 0 0 0) (< z 0 0 z 0 6))

(=> (> v 0 6 0) (< z 0 6 z 6 6))

tell us the last pieces of information. In all the lines of the building of the tree,
we have not given any values to ‘z’-variables of the nodes, except we chose
the root to have value 1. We still need to assign numbers to the other three
‘z’-variables corresponding to the other three nodes. In the three statements
above the first part is true, all the variables are larger than 0. We can see that
z 0 0 < z 5 0, which should not be hard to do since z 0 0 equals 1, so we,
perhaps, assign a value of 2 to z 5 0. This is acceptable since the ‘z’-variables
all have values between 1 and the number of nodes, in this case 4. Other values
are also possible as long as it is a value between 1 and the number of nodes
and a path from the root of the tree to a leaf will only encounter increasing
numbers. The next two lines show us that z 0 0 < z 0 6 < z 6 6, which is
also doable within the rules. Assign a value of 2 to z 0 6 and a value of 3 to
z 6 6. Now we have a graph with directions and values increasing in value
the further away from the root they are, see Figure 6. Here we see that we
have a spanning tree to all nodes and thus we have a single connected group
within the solution.

In general, a spanning tree can be constructed (thus having a connected
group) precisely when the formulas can be satisfied.

4.2 Using Sugar

After the file is parsed, it is time to start solving the puzzle. One of the more
interesting things of using Sugar is that you also need to use a SAT-Solver. In

10

±°
²¯

1

±°
²¯

2

±°
²¯

2

±°
²¯

3

v 0 0 > 0

h 0 0 > 0

v 0 6 > 0

∨

∨

>

Figure 6: The spanning tree corresponding to the puzzle in Figure 4, with
the ‘z’-values in the nodes

our case we used MiniSat [3], a very easy to use solver with no configuration
needed. When that is set up, it is time to let Sugar encode the input file to
a file that MiniSat can use to solve your puzzle. Using the command

java -jar ./sugar.jar -encode <file.csp> <file.cnf> <file.map>

will do that for you; here sugar.jar is the current version of the java archive
from which Sugar is run. In this case Sugar is installed in the same directory
as the rest of the files. The .csp file is the input file containing the problem
you want to solve. The .cnf file is an output file from Sugar used as an input
file for MiniSat to solve the problem. The .map files used here are files used
by Sugar to store the variable data with the constraints, so called mapping
files. After encoding the files a simple command

./MiniSat <file.cnf> <file.out>

will solve the puzzle. The .out file will be used again by Sugar as an input
file. You will immediately see if the puzzle was solvable or not. Now you have
a couple of files with the solution to the puzzle, which are still not easily
readable. To make it clear and immediately understandable what the solver
did you need to decode the files again with Sugar using the command

java -jar ./sugar.jar -decode <file.out> <file.map>.

This will give you a list with the variables you declared in your file with their
value behind it.
To give you a bit of a clearer idea, here are the .cnf, .map and .out files
correspeonding to Figure 4. First the .cnf file:

p cnf 0 0

Secondly the .map file:

11

int x 00 06 1 1..1

int x 00 50 1 1..1

int x 06 66 1 1..1

Last the .out file:

SAT

0

4.3 Expectations Sugar vs own solver

Sugar will probably be able to solve most to all puzzles given, but we are
not sure at the timeframe. Inputting the three different commands does take
a bit of time, which is not really efficient. On the other hand with larger
puzzles the programmed solver will probably have to take a couple of guesses
randomly which can be completely wrong and then it will take a lot of time to
find the correct solution, so then the time you need to enter the three Sugar
commands will be faster. In the chapter Results, you will find the results of
the test to see which is faster.

5 Making a Puzzle Generator

Another part of this project was to make a puzzle generator. Copying puzzles
from internet sites is a good way to know you have uniquely solvable puzzles,
but it is time consuming. To ensure that the puzzles the generator makes are
within the rules of the puzzle the generator followed these steps:

1. Put a single random node somewhere on the board.

2. From a random node already on the board, draw a single or double
bridge (decided randomly) in a random direction. This will not happen
if the node has no more options to draw a bridge and a new node from
where to draw a bridge will randomly be chosen.

3. During this traversal, on every grid point decide whether to go on
drawing the bridge or to stop and put an island on that spot. If you
encounter a crossing bridge at the grid point, place the node on the
bridge, if possible, or otherwise place the node one step back, if possible.

12

4. Continue steps 2 through 4 until you have reached the number of nodes
you’d like to have (given in the command line when starting the gen-
erator).

5. Check at each node how many bridges are connected and give the node
the proper value.

6. Remove the bridges from the puzzle and it is complete.

What you see in Figure 7 is a puzzle with three nodes being generated
step by step. In step I a single island is put on the board. In step II the
generator will choose automatically that one node and decide to either draw
a single or double bridge. In this case a double bridge was chosen and it
will go down to when it decides to stop and put down a node. In step III
another node is chosen to draw a bridge from and this time it’s the lower of
the two. A single bridge is drawn to the right, until it stops again and a node
is placed. In step III the values of the nodes are also inserted as a final step
in making the puzzle complete. Step IV, the final step, shows the puzzle as it
will be saved. No bridges, just nodes that need solving. In this example, the
puzzle is uniquely solvable. Furthermore, the resulting solution has a single
connected group.

±°
²¯

I

±°
²¯

±°
²¯

II

±°
²¯

±°
²¯

±°
²¯

III

2

3 1

±°
²¯

±°
²¯

±°
²¯

2

3 1

IV

Figure 7: Generating a puzzle

6 Results

In this section, we will show how the self built solver (called just solver in
the next part) did against the Sugar program. We would like to show how
efficient the solver is in time and number of solved puzzles.

13

6.1 Experiments

For the experiments we needed to test the generator, the self written solver
and Sugar. This was done in two different ways. First we generated and solved
with our self built solver 7 × 7 puzzles, 10 × 10 puzzles and 15 × 15 puzzles.
The 7 × 7 puzzles were generated with a maximum number of 7 nodes, and
thus usually with 7 nodes in the puzzle. The 10× 10 puzzles were generated
with a maximum of 15 nodes, usually generating puzzles with 15 nodes. The
15 × 15 puzzles were generated with a maximum of 30 nodes, again usually
generated with 30 nodes. In generating the puzzles there is a random chance
which could cause, for example, to let the generator put nodes in all 4 corners
of the puzzle and connecting them all with one bridge between them. In this
case you have only 4 nodes and the generator will try 10,000 times to put
another bridge from a node, which will fail, thus, for example, a 15 × 15
puzzle with only 4 nodes is created. There are more scenarios in which this
can happen. That is why we say that puzzles are usually generated with the
number of nodes specified.

Secondly we solved the same puzzles with Sugar. First the 10,000 7 × 7
puzzles were generated and solved with the solver and then with sugar. After
this was done the same was done for the 10,000 10×10 puzzles and the 10,000
15 × 15 puzzles. Every run made a lot of output files, merging them into a
few at the end. We measured a few interesting key points like time taken to
do a job of 10,000 puzzles and how many were solved. Also we examined how
the generator generated the puzzle and if the solver and Sugar solved it in
the same way or that there were different solutions to a puzzle.

6.2 Results

6.2.1 Time

The average time it took the generator to generate 10,000 puzzles and the
solver to solve these puzzles and generate output, was about 25 minutes on
an AMD Turion 64 Mobile machine (791 MHz) with 512 MB of internal
memory. The fact that the 15 × 15 puzzles were much larger than the 7 × 7
did not result in any larger run time of the batch. The average time it took
the generator to generate the same 10,000 puzzles and then let Sugar solve
them took a lot longer, about 1h45m. This is mainly due to the fact that the
way Sugar solves puzzles creates a lot more files than the self built solver.
Moving, reading and copying these files took most of this time. If you look
at a single puzzle being solved by MiniSat [3], it took less than a second, as
well as the encoding and decoding by Sugar.

14

6.2.2 Own solver

To see how our own solver did, we have some statistics to review. As can be
seen in Figure 8 (left) in the 7 × 7 puzzles only 2% was undecided by the
solver, i.e., it did not solve the puzzle. As one can see in Figure 8 (right) from
all the solved puzzles 15% was solved differently than the generator intended.

Figure 8: Diagrams of (left) percentages of how much the program solved of
the 7×7 puzzles and (right) the percentages of puzzles being solved differently
than the generator intended them.

As we look at the 10 × 10 puzzles, we notice that the percentage of
undecided puzzles has grown to 10%, see Figure 9 (left). The number of
puzzles that is solved differently is almost doubled to 28%, as you can be
seen in Figure 9 (right).

Figure 9: Diagrams of (left) percentages of how much the program solved of
the 10 × 10 and (right) the percentages of puzzles being solved differently
than the generator intended them.

Finally we look at the 15 × 15 puzzles. The percentage of undecided
puzzles is now 12%, which is not that big an increase, see Figure 10 (left).

15

We assume that the number of undecided puzzles will increase still with
the larger puzzles. Also with increased size of the puzzles, the percentage
of puzzles solved differently from the generator rises to a value of 38%, see
Figure 10 (right). This will also be common the larger the puzzle gets.

Figure 10: Diagrams of (left) percentages of how much the program solved
of the 15× 15 and (right) the percentages of puzzles being solved differently
than the generator intended them.

6.2.3 Sugar

Sugar solved every single puzzle given by the generator. This did not come as
a surprise, since the generator generates only single connected group puzzles
and Sugar solves these with ease. It did however took a considerable time to
solve the puzzles.

6.2.4 Generator vs own solver vs Sugar

Last but not least we checked how many of the puzzles were solved the same
way by either the generator, solver or Sugar. This was done by comparing
the output files of the jobs they were given. Both the generator solution files
and the solver program solution files had to be rewritten in the same way as
Sugar outputs the solutions. In Figure 11 one can find table of a comparison
of the way the programs solved the puzzles. Every possibility has a label,
described in the list below. one can also find examples for each possibility, in
Sugar output form, in the appendix.

In reading the output there were eight distinct possibilities:

1. All three solutions were identical. The solver solved the puzzle without
having to guess a bridge, making the puzzle a puzzle with a unique
solution. This is labeled 1=2=3, unique in Figure 11. For an example
of a solution in Sugar output form where this is the case, see Figure 13.

16

2. All three solutions were identical. The solver guessed and so we can
not be sure that the solution is unique. This is labeled 1=2=3, guess

in Figure 11. For an example see Figure 14.

3. The generator and Sugar had the same solution, but the solver program
found a different one. This is mainly due to the guesses the solver takes.
See Figure 11, labeled 1=2, not 3. For an example see Figure 15.

4. The generator and the solver program had the same solution, but Sugar
found a different one. See Figure 11, labeled 1=3, but not 2. For an
example see Figure 16.

5. The generator had a solution, but Sugar and the solver program found
another, both the same, solution. See Figure 11, labeled 2=3, not 1.
For an example see Figure 17.

6. All three programs have a different solution to the puzzle. See Figure
11, labeled All different. For an example see Figure 18.

7. The solver program could not solve the puzzle, but the generator and
Sugar had the same solution. See Figure 11, labeled 3 fail, 1=2. For
an example see Figure 19.

8. The solver program could not solve the puzzle, and the generator and
Sugar had a different solution. See Figure 11, labeled 3 fail, 1 not

2. For an example see Figure 20.

As can be seen in Figure 11, the part where all three programs have the
same solution and the solver does not guess, shrinks as the puzzles get bigger.
This is because in larger puzzles the chances of a puzzle with cycles, which
are solvable in multiple ways, become higher. For an example of such a cycle
see Figure 12. The number of puzzles that are solved the same way but with
some guesses from the solver, does increase with the puzzle size. In the rest
of the cases, where the solver program doesn’t fail, we can speak of puzzles
with more than one solution. In the case that the solver program fails to
give a solution there are, as mentioned in the list above, two possibilities.
The generator and Sugar agree on the solution or disagree. In both cases,
assuming that the solver program can solve all puzzles with a unique solution,
we can speak of puzzles with more than one solution. If the generator and
Sugar still give the same solution, this might be just a coincidence.

When comparing the solutions of the eight examples shown in the ap-
pendix, we notice that a certain situation occurs rather frequently. In a cycle
of four nodes it happens that one program solves it a certain way, and the

17

Situation 7 × 7 10 × 10 15 × 15
1=2=3, unique 7267 5181 4000
1=2=3, guess 562 851 902
1=2, not 3 718 1371 1635
1=3, not 2 528 566 570
2=3, not 1 587 587 641
All different 126 554 1010
3 fail, 1=2 114 419 447
3 fail, 1 not 2 98 471 795
Total 10000 10000 10000

Figure 11: Table with data comparisons of the eight possibilities mentioned
in the list above. Here 1 is the generator, 2 is Sugar and 3 is the solver.

other program solves it with 2 bridges “turned” 90◦. So one bridges turns 90◦

counterclockwise and the opposite bridge in the cycle turns 90◦ clockwise.

1

±°
²¯

±°
²¯

±°
²¯

±°
²¯

1

2 2

2

±°
²¯

±°
²¯

±°
²¯

±°
²¯

2

1 1

1

Figure 12: An example of how in a cycle the bridges can “flip” to create a
different solution. Values along bridges are the number of bridges.

As can be seen in Figure 12 there are two different solutions. In Figure
12.1 there are two sets of nodes connected with vertical double bridges and
a set of nodes with a horizontal single bridge. In this case the two vertical
bridges “flip” into a single bridge, for example, the left clockwise and the
right one counterclockwise. This creates Figure 12.2, and thus a different
solution while still all nodes having the same amount of bridges attached to
them. This is a noticably common situation between two different solutions
of the same puzzle.

18

7 Conclusion

As we can see in Section 6 our own solver was really a bit quicker in solving
the puzzles. The only problem is that it did not solve all puzzles, someting
that the program Sugar did.

As can be seen in Figure 11 the generator does generate a fair number
of puzzles with a unique solution. Due to the random factor in generating
these puzzles, we see that the larger the puzzles get the more difficult it is
to generate such a puzzle. We also see that the larger puzzles have a larger
chance that all programs find a different solution. This is because the chance
of getting cycles that can be “flipped” is larger. From the perspective of a
person who wants to solve the puzzle, having a puzzle with more than one
solution can create a more difficult, or even an easier puzzle, depending on
what choices have to be made.

The own solver proved to be quite a good solver. Having the numbers of
puzzles it could not solve increased when the puzzle size increased is unfor-
tunate, but it did not grow into a really large percentage (with 15×15 it was
only 12%). The larger the puzzles get, the better it is to use Sugar to solve
them instead of the own solver. It does take more time, but the results are a
lot better.

As further research, we mention a further investigation into the relation
between the quantities in Figure 11.

8 Acknowledgements

I’d like to thank Naoyuki Tamura for his help and quick email replies, con-
taining useful scripts and example data. Without that the project would have
been a lot harder (if not impossible).

Also I’d like to thank my supervisor Dr. Walter Kosters, who made it
seem he had all the time in the world to help me, while juggling his own
busy schedule. Without his constantly giving hints and ideas I’d still be at
Section 1.

Last but not least I’d like to thank Sandra, my girlfriend, for giving me
hope, energy and hugs to continue on this project.

References

[1] Website Nikoli, http://www.nikoli.co.jp/en/ [retrieved August 18,
2009]

19

[2] Website Sugar, http://bach.istc.kobe-u.ac.jp/sugar/ [retrieved
August 12, 2009]

[3] Website MiniSat, http://minisat.se/ [retrieved August 12, 2009]

20

Appendix

In this appendix we give examples of the eight possibilities obtainable by
comparing the generator, Sugar and solver solutions. With this output it
is sometimes not possible to obtain the positions of all nodes, but for our
purposes the examples seem sufficient.

generator:

c Decoding puzzle0.out

s

a h 1 0 1

a v 1 2 1

a h 1 2 1

a v 1 4 1

a h 1 4 2

a v 3 4 1

Sugar:

c Decoding puzzle0.out

s SATISFIABLE

a h 1 0 1

a v 1 2 1

a h 1 2 1

a v 1 4 1

a h 1 4 2

a v 3 4 1

solver:

c Decoding puzzle0.out

s

a h 1 0 1

a v 1 2 1

a h 1 2 1

a v 1 4 1

a h 1 4 2

a v 3 4 1

Figure 13: Example of a 7 × 7 puzzle, with generator (top), Sugar (middle)
and solver (bottom) having the same solution. Also, the solver did not guess,
so this is a puzzle with a unique solution

21

generator:

c Decoding puzzle55.out

s

a h 0 1 1

a h 0 3 1

a v 0 6 1

a h 2 3 1

a v 2 6 2

a h 6 4 1

Sugar:

c Decoding puzzle55.out

s SATISFIABLE

a h 0 1 1

a h 0 3 1

a v 0 6 1

a h 2 3 1

a v 2 6 2

a h 6 4 1

solver:

c Decoding puzzle55.out

s

a h 0 1 1

a h 0 3 1

a v 0 6 1

a h 2 3 1

a v 2 6 2

a h 6 4 1

Figure 14: Example of a 7 × 7 puzzle, with generator (top), Sugar (middle)
and solver (bottom) having the same solution. Also, the solver did guess, so
this is a puzzle with more than one solution.

22

generator:

c Decoding puzzle8.out

s

a v 0 0 1

a h 0 0 2

a v 0 3 1

a h 0 3 1

a h 3 0 1

a v 3 3 2

a h 5 0 1

Sugar:

c Decoding puzzle8.out

s SATISFIABLE

a v 0 0 1

a h 0 0 2

a v 0 3 1

a h 0 3 1

a h 3 0 1

a v 3 3 2

a h 5 0 1

solver:

c Decoding puzzle8.out

s

a v 0 0 2

a h 0 0 1

a v 0 3 2

a h 0 3 1

a v 3 3 2

a h 5 0 1

Figure 15: Example of a 7 × 7 puzzle, with generator (top) having same
solution as Sugar (middle), but not with solver (bottom).

23

generator:

c Decoding puzzle21.out

s

a v 0 0 2

a h 0 0 1

a v 0 3 1

a v 3 0 1

a h 3 0 1

a v 3 3 1

a h 3 3 2

Sugar:

c Decoding puzzle21.out

s SATISFIABLE

a v 0 0 1

a h 0 0 2

a v 3 0 1

a h 3 0 2

a v 3 3 1

a h 3 3 2

solver:

c Decoding puzzle21.out

s

a v 0 0 2

a h 0 0 1

a v 0 3 1

a v 3 0 1

a h 3 0 1

a v 3 3 1

a h 3 3 2

Figure 16: Example of a 7 × 7 puzzle, with generator (top) having same
solution as solver (bottom), but not with Sugar (middle).

24

generator:

c Decoding puzzle26.out

s

a h 1 0 2

a h 1 3 1

a v 1 5 1

a h 3 1 2

a v 3 3 1

a h 3 3 2

Sugar:

c Decoding puzzle26.out

s SATISFIABLE

a h 1 0 2

a v 1 3 1

a v 1 5 2

a h 3 1 2

a v 3 3 1

a h 3 3 1

solver:

c Decoding puzzle26.out

s

a h 1 0 2

a v 1 3 1

a v 1 5 2

a h 3 1 2

a v 3 3 1

a h 3 3 1

Figure 17: Example of a 7 × 7 puzzle, with Sugar (middle) having same
solution as solver (bottom), but not with generator (top).

25

generator:

c Decoding puzzle22.out

s

a v 0 0 2

a h 0 0 1

a v 0 6 1

a v 3 0 1

a h 3 0 2

a v 3 6 1

a h 6 0 2

Sugar:

c Decoding puzzle22.out

s SATISFIABLE

a v 0 0 1

a h 0 0 2

a v 3 0 2

a h 3 0 2

a v 3 6 2

a h 6 0 1

solver:

c Decoding puzzle22.out

s

a v 0 0 2

a h 0 0 1

a v 0 6 1

a v 3 0 2

a h 3 0 1

a v 3 6 2

a h 6 0 1

Figure 18: Example of a 7 × 7 puzzle, with every program having different
solution.

26

generator:

c Decoding puzzle53.out

s

a v 0 0 1

a h 0 0 1

a v 0 2 1

a h 0 2 2

a h 2 0 1

a v 2 2 2

a h 2 2 1

Sugar:

c Decoding puzzle53.out

s SATISFIABLE

a v 0 0 1

a h 0 0 1

a v 0 2 1

a h 0 2 2

a h 2 0 1

a v 2 2 2

a h 2 2 1

solver FAILS:

c Decoding puzzle53.out

s

a h 0 2 2

a h 2 0 1

a v 2 2 2

a h 2 2 1

Figure 19: Example of a 7 × 7 puzzle, with the solver (bottom) failing and
generator (top) and Sugar (middle) having the same solution.

27

generator:

c Decoding puzzle253.out

s

a h 0 0 2

a v 0 2 2

a v 0 5 2

a h 2 2 1

a v 2 5 1

a h 5 2 1

Sugar:

c Decoding puzzle253.out

s SATISFIABLE

a h 0 0 2

a v 0 2 1

a h 0 2 1

a v 0 5 1

a v 2 2 1

a h 2 2 1

a v 2 5 2

solver FAILS:

c Decoding puzzle253.out

s

a h 0 0 2

a v 0 2 1

a h 2 2 1

a v 2 5 1

a h 5 2 1

Figure 20: Example of a 7 × 7 puzzle, with the solver (bottom) failing and
generator (top) and Sugar (middle) having a different solution.

28

