SMEPP: a novel System Modeling Environment
for Performance Prediction

Master hesisby Maarten Vijfhuize (mvijfhuize@voogd.com)

Leiden Institute of Advanced Computer ScienceEdkl. Bakker (erwin@liacs.nl)
Voogd & Voogd DiensteBV: ir. J.F. Spiegelsgspiegels@voogd.com)

Abstract

SMEPPIs anovel System Modeling Environment for Performance Prediclibe
environment consists of methods for modelimg entire context of a system, from
hardware and softwarcomponents ttheworkload posed on therAdditionally, it
includes a application tsimulatethesemodek. SMEPP enables one to quickly and
accurately assess the performance of a (proposed) system based on a minimal amount of
input information Also, the conequences aipdateswithin the hardwae andsoftware
componentandtheevolution ofworkloadcan be evaluad.Examples include
increasingesourcecapacity decreamg a components execution tinecreasing the
number ofrequests ando on.Particularly because of its wide context, SMEPP is
applicable irreal life situations. This will béllustrated by various caseBhe first part of
the experimentis aimed at the validation &VEPP with respect tooncretescenarios.
The remaining experiments are focused on prediction of the resoisréabstract
situations It will be shown that SMEPP & valid, scalable and general approach to
system modeling and performance prediction.

Acknowledgements

This article was written in the period from September 2008ap 2009. First of all}
would like to thank dr. Erwin Bakkefor hisindispensablsuppot, advice andime

during this period. Thankalso go to the people at Voogd & &gd Diensten, for
providingmewith the chance tapply and verify the results of my researclsigmificant
real life casesSpecial thanks gmm everyongherewho has contributed in any given way.
In particular | would like to thanijaak Spiegels for allowing me ¢édoose my own path
in this projectandto fully concentrate on this worldlso, ournumerous discussigwere

a great source of inspiration.

Contents

R | 1 o T 3o 1o o WSS 6
F S (=1 110 01T = 1 [TP 9
2% R U 11V | o [=T | =T o USRS 9
2.2 Continuous probability distributions............coooiiiiiiiiicce e 9
22 T € To Lo o [1= TS1 S o) i 1| R RSRES 9
3 SOIULION APPIOACH. 11
G 700 R [01 1o To [[£ o S 11
3.2 Model COMPONENTS.....coiiiiiiiiiiii e eeeea e e e e e e e eeas 11
4 WOrKIoad @nalySIS.........ccooiiiiiiiiiiiiimmee et e e e e e anana 13
7 I [011 Yo [Tox 1o] o S 13
N T] 11 1o o S 13
4.3 Distribution Of reqUESTES.........ooiiiiie e 15
4.4 Workload MOEL........ccoooeiiiiiiieeee e 17
I O] (=T o 1 15T 17
5 Hardware analySiS.........cccoiiiiiiiiiiiiiieee et e e ananas 20
o 00 R [011 o To [T £ o P 20
5.2 BenNChMaArKS.......ooo oot 20
5.3 Hardware Model........ccooooi i 20
6 SOFWAIE @NAIYSIS.......uiiiiiiiiiiiiiiii e 21
G0 I 11 o o 11 o 1o o ISP 21
6.2 Optimal UtilizatioN/tiMe...........oooiiiiiiiie e 21
6.3 Individual effiCienCY..........uuuuiiiiiiii e 21
6.4 Multi tasking effiCIENCYccooiiiiiiiiii e 22
6.5 Software MOdel........ccccooiiiiiiiiiieee 22
7 Hardware/software MOdel............ueiiiiiiiii e 23
4% R [11 o o 11 o 1o o PP 23
7.2 REIAONS.....ccoiiiiii e e ———— 23
7.3 CONSIAINTS. .. euttiiiiie e eeeet e e ettt eeae e e e e e e e e e e aeaaaa e ammmrnnes 23
T4 EXAMPIE et e e e e e e e e e s 25
8 SIMUIALOL ———————— 26
S 70 R [0 (o To [1 ox 1o] o WU 26
8.2 SIMUIAtOr INPUL.....ooiiiiiie e e e e e e e e e e e e eaaan 26
8.3 RuUNNINg the SIMUIALOL...........cooiiiiii e 27
S 7 S 1N 0111 o R PRSPPI 28
8.5 EfICIENCY...utiiiiiiiiiiiiiie e 29
S 21 G © 1 U1 o | PRSP 29
9 EXperimental SEUPD......couii it 30
LS 20 R [0o To [[ox 1 o] o USRS 30
9.2 INPUL COMPONENLES......ciiiiiiiiiiiiniiiiimme et eeea e e e e e e e e eeees 30
9.3 Practical validation............ccoooiiiiiiiiiieceiiee e 30
9.4 Theoretical validation...............uuuuiuieiiireeeeieiir e eeenre e 31
LS 2R T o 1Yo [o 1o o U 31
10 EXPEIIMENTS. ...ttt 32
10.1 About VOOgd & VOOGU.......ccouviiiiiiiiiiiii e e e 32

10.2 ApPPlICAtIONS 8N SEIVEIS........uuiiiiiiiiiiiiii ettt e e e e e e e e e 32

10.3 Workloadanalysis eXample...............uuuiiiiiiicemieieiie e eree 33
10.4 Hardware/software analysisS eXample.........cccccoriiiiiiiicci s 38
10.5 PBE @ Marktplaats simulatian...............cccooeiiiiieeeiiie e 39
10.6 PBE Critical SECHON CASE.......cuuiiiiiiieiiiiiceeee et ee e e vmmre e e b eees 43
10.7 PBP worst case workload SCENALIQ.............eeeviviiiiieemiiiie e 45
11 (OF0] o [od [1] o] o £\ 52
12 FULUNE WK ... e ettt erree st e e s e b e e e et e e s s bmmmran e eees 54
13 R LE] (=] (=1 (ST 55
Appendix A: XMISIm Class diagram............ccooiiiiiiecceeeiiiisiee e evieeen e 58
Apperdix B: continuous probability distributions and their cumulative distribution
L0 L o3 1] 0 59

1 Introduction

The term Software Performance Engineering (SPE) is somewhat misleading in that it
seems to describe the process ofgyenance analysis of software exclusively. SPE
however represents a much broader field of reseassoftwareperformance is affected

by many other system aspects, for examptekloads and hardwareapacity Instead,

the name refers to the ideal siioatin which performance engineering is completely
integrated withirthe softwareengineeringprocessasdescribed by Smith and Williams

[1]. Their approach is moddélased, which means that performance models are cigated
the early stages afoftware development and the results are used to improve the
architecture in the process. There is @soeasurerantbased approach of SPE, for
example described by Barde; 16|, thataddresseperformance late in the development
processwhen the system is already functiondkally, one shouldry to combine the
O0best of ibsudhhwaythat thelnsedsurement results assist in improving the
models However, the readshould keep in mind that both SPE approaches, as described
in literature, are highly theoretical. faality, true integration of performance engineering
within software engineering seldom. The reason for thistlee gap between futional
requirementgthe usual concern of a software engineer) andfanctional requirements,
such as performangceeliability and security13]. Often, the development process
focuses on functional correctness only. When that goal is accoethligte application is
fine-tuned for performancereasoishi s i s referred to as the o6f
However, the impact of thes&te modifications is small compared to architectural
changes thanight be applied wheperformance engineeringd®ne earlier in the
development proce$4]. In some casesonfunctional properties are not addressed at all
and performancevaluation is done when the system is alrgayingin a production
environmentThis limits the pssibility to make structural changes in order to optimize
the performance when the results are unsatisfactory.

As said beforeperformances not limited to the application itself. Instead, it addresses
the complete environment in which software is ragnfrom hardware resources to user
behaviourThus, to create an appropriate performance model, one has to find a way of
modding all system aspectblodeling methods, such &fse Case Map@JCM) [3] and
even the nowadays wilyeadopted Unified Modeling LanguageML) [4] aresoftware
orientedand lack features teffectivelydescribenonfunctional requirements a wider
context.In the case of UML, various profiles have been developed to impheve

usability of the language in an SPE proc@s$ese includein order of appearancine

UML Profile for Schedulability, Performance and Tig&PT)[5], the UML Profile for
Modeling QoS and Fault Tolerance CharacteristickMachanism$6] and the planned
UML Profile for Modeling and Analysis of Redlime and Embedded systems (MARTE)
[7]. See P] for a comparisomf the SPT and QoS profgeFrom the systems engineering
perspective, another interesting development is the Systems Modeling Language
(SysML) [8], a subset of UML 2 with extensiof@r systems engineering that can be used
to model hardware, softwar@formation, personnel, procedures and facilitttsamples

of its application aréescribedn [31;32,33]. Note that allUML extensions mentioned

here are specified e Object Management Group (OMG), the organizadien
responsible for the official UML specificatioRrom the architectural point of view, the

ArchiMate[19] languaggalso UML basedis worth mentioning. It started in 2003 a
research project bgjoint effort of severaDutch companies (Ordina, ABN AMROQ)
institutes(CWI, TI) and universitiegLeiden, Nijmegenand was adopted ke
standardization organization The Open Group in 28@&iMate allows for integrated
moceling ofthearchitecture on three different levels (business, application and
technology) which supports the decision making process across organizat@ss.
successfully applied in various cas&8;29;30] at Dutch organizations, for example
UWV, Belastingdienst and SVR.anguages as SysML and ArchiMate eegtainly
promising. However they are notwaalely usedas their parent language UMTLhis
means that thereenot as manguccessfuimplementation&knownand that support and
confidenceor such an approaahay be too lowEarlier attempts, for example thevL
SPT profile, havéeen the basis for many projef3$;37] by now, but are significantly
less powerful thafior exampleSysML. This dilemma is probabblso preventing
definitive breakthrough o a certain direction. As a result, new standards keep being
proposed and the original goal of a pofugruniversal modeling language foomplete
systemss farther away than ev§t 3.

Design models, both UML (possibly with an extension mentioned above) afdiibn

are usually translated into performance models to enalalatifjcation of performance
issues. The results atteenused to improve the original design. A wide range of
performance model formats exist, including stochastic Petri{Meiseguef11], King

and Pooley10)), stochastic process algebfd§], layeredqueuing model§l] and

simulation models47]. An even wider range of translations from diéiet design models

into different performance models existhis issue watackled by Woodside,

Merseguer and othevath the PUMA (Performance by Unified Model AnalysigpP]
architectureAs part of PUMA, a intermediate fanat called Core Scenario Model

(CSM)is proposed that can be used to easily translate various design models into various
performance models within a single architecture. For capturing performance information,
CSM depends on the UML SPT profile, whistoriginally developed for UML 1.4.

Another drawback is that CSM is not the only intermediate format kneamexample

SysML depend on the XML Metadata Interchange (XMI1$] standard for exchanging
informationbetweendifferentenvironmentsothers use the Performance Model
Interchange Format (PMIFL{l] and so onUnfortunately thesessues have prevented

either of them from becoming tis¢éandard in software performano®deling

The neasuremenbasd SPE approacf;16] is a vital method to either confirm or

correct the resultsf the modelbased methods. However, this approalsio has its
shortcomingsOn of the main drawbacks is thatliterature pftena significant araunt

of input data, for example server log fistdescribea representativeorkload is
assumedo be available. In practice, this assumption is far from realistic, because in most
cases this information is either misgior incompletel6]. Several excellertechniques

for performance prediction and capacity planrengst [L6;17]. However the absence of
accuratenput data makes thesults of even the best methods highly question&vien

if test results are reliable, there is a lack of theoretical justification for improvements
based on therfi.8]. For example, if a certain bottleneck is solved by irgirgalocal
capacity, it could easily introduce a bottleneck somewhere else in the system. One still

depends on an expert to analyze the results in each specific case before any changes can
be implemented. This process is time consuming and hard to automate

Summarizing, one caiglentify thesemain problemsri the systenperformance field:

1. Modeling languages and performance evaluation methods suffeaffack of
standardizationvhich prevents their successful use on a larger scale

2. These languages and thedsare ofterrestrictedo a certan context (software,
hardware), which is too small to model and evalgataplete systems. This
prevents their application (and justification)lamger,real life cases.

3. Usually there igoo little accuratenputinformationto effectively evaluate a
systembefore it is deployed in a production environment

4. There is a historical gap between evaluation of functional (does it work?) and
nonfunctional (does it perform?) requirements which prevdres successful
integration

5. There is a lack of knowledge about the general consequences of modifications
within hardware and software systems.

SMEPP idocusedon the first threg@roblems Existing techniquegl) are appliedo

create anodeling environmerfor the entire cotext of a system (2based om minimal
amount of input informatio(3). The goal is to enable quick and accurate assessment of
system performance. Additionally, the approahbuld be applicable for a large part of
thecurrently existingsystemsThese mcludeweb-based applications;@mmerce,
multimediaservices, enterprise managemsygtemsand so on45].

Section2 provides backgroundnformation abousome otthe techniques that are applied
The general approach SMEPPIs described in Sectia® In Sectiors 4 to 7 an analysis

of the componentwithin the system contexs given.The most important propees and
relations within each componeate determined, as well as how to model them
Section8 an application tsimulat thesemodek is proposedSectiom describes the
experimental setupsed to validatsSMEPP with respect to real litendto determinets
predictionaccuracyUsing this setup, extensive experimeats done, aimed at both
validation and prediction. The results are describegertion10. Finally, Sectios 11
and12 containconclusionsand future work, respectively

2 Preliminaries

2.1 UML diagrams

A UML deploymentliiagram[4] gives a static view dhe runtime cofiguration of a

system. In other words: it shows the hardware within a system, the software running on
that hardware and the connections betwibese component®hysicalhardware)
component$n a deployment diagramare labeled with the stereotypevice, while non
physical (software) components are labeled Witiifact. The software components use

the same notation as in a UMbmponentiagram

2.2 Continuous probability distributions

An exponential distributions often used to model the time untilléae of a device, or
the time between consecutive events meanorylesprocesgi.e. the time elapsed
already has absolutely no meaning with respect to the remaining time until the next
event).lt is related to th&ayleigh distributionn that both arespecial cases of the more
generaWeibull distribution whose reverse is also referred tdyge Ill extreme value
distribution Another type of generalized extreme value distribuioare specifically,
type) is theGumbel distributionThe normalor Gaussiandistributionis used to model
variables with a symmetric structure. In practice many natural phenomena can, to a
certain degree, be approximated by a normal distribution due tetitial limit theorem
[42]. A relateddistribution is thdog-normal distribution where not the variable itself,
but its natural logarithm is normally distributéithe logistic distributionresembleshe
normal digribution but has heavier tail& uniform distributionis the best modef only

a variables extremes are known and all values in between are more or less equally likely.
If a distinctivemode (most likely value) is discovered, it is better to usmagular
distribution Theu-quadraticdistributionis a useful model for symmetrdata with two
different modesHowever, he Betadistributionallows more flexibility with respect to
nonsymmetric datandnonquadraticshaps of theprobabilitydensityfunction The
Gammadistributionis frequently used as a model for waiting timEse Chi-square
distributionis a special case of tli&amma distributionFurther details for these
distributions are given ifM1][43][44].

In addition to the probaliiy density function (PDF),ledistributions mentioned above
have acumulative distribution functioCDF) which describes the probability of a value
lower than or equal to accurring, according to the distriboki concerned. An overview
of thesecumulatve distribution functions is given in Appends

2.3 Goodness of fit

A goodness of fit testssesses how well a given data set fits a certain probability
distribution. Many goodness of fit tests are known, some general and some specific for
certain distrilntions. ThekolmogorovSmirnov tesf44] finds the maximum distance
between thempirical CDF of a data set and thibeoretical CDR- of the distribution

being tested. That is, for each valjén the ordered set, it comparthe probability of a
value lower than or equal ¥ in the sewith its theoretical probability according ko
and determines the maximum differemetween them

: i-1i 0
D = maxg (Y,) - —,—- F(Y)3
1¢i¢n g n n =
If the data set corresponds to the distribution being teiStedlll converge to 0 almost
surely.The AndersonrDarling test[38] assesses whether there is evidence that the data
set does not correspond to the distribution concerned by meatheidgtance between
them as

A2 =-n- %a (2i - DINF(Y) +In(L- F(Y....)

i=1

wheren is the number of values inthe data 3efpri= 1én are the values
low to high andF is theCDF of the distribution beingesed The value ofA? should be

slightly adjusted for lown values and compared to the critical \&afor the distribution

being tested. The specifics of the test for differentibistions have been published in

different papers by Stephens, e3f)][

A correlation coefficient is a measure of correlation between twoblasi®One speaks

of correlation when a certain linear relationship exists between the variables. The Pearson
productmoment correlation coefficiefd0] is the most widely used correlation

coefficient.It is equivalent to the covariance of variableandY divided by the product

of their standard deviations:

_ cov(X,Y)

N = S x)s)

The value of may vary betweerl and 1. A value ofl or 1 means that there is a perfect
(inverse) linear relationship between X and Y. A value of 0 means that therangano |
relationship at all. There may however be another type of relation.

1C

3 Solution approach

3.1 Introduction

With respect to the standardization problemntioned in Sectioh, it seems obvious to
selectthe mostwidely adoptednethods rather than creating new ones, because that
would only make the situation worse. For a modeling language the initial chI&4L,
while as an intermediate format the XMI standard seerbg sufficientTheresulting
formalism should allow on® modelall system aspects that migh¢ involved inits
performancein orderto bridge the gap between the software laadiwareperspectives.
SMEPP will be used tpredict the consequences of changes in any of these aspects for
the system as a whole, lealson knowledge gathered and refined in the process. For
example, if a certain application request can be handled twice as fast, what is the result
for the complete system? Ortlife number of requesis dowled, what happens?

SMEPP maylsobe used t@ddress the performance within a different environment,
which is us@ul for example whempredicing the result in a production environment based
on measurements in a test environment. Finallygf this should be possible even with a
minimal amount ofnformationavailable, to allow for quick experiments.

3.2 Model components
Within thesystem contexdlescribed, the following components are identified:

1 workload(Sectiord)
1 hardwargSectionb)
1 softwae (Section6)

SMEPPwiIll quantifythe system performandéevel based on these three components.
Therefore each of them needs to be modeled, as shdvigurel. The performance
level might for example be defined as the distiidouof execution timessiven a
(satisfactory) target performance leveMEPPmay alsdbe used t@nswer capacity and
scalability related questions by determining for example:

1 the minimum hardware required
1 the maximum workload allowed
1 the minimumsoftware dficiency needed

For ths purposethe environment should include simulation possibiliti8sveral
simulators for UML models exis2p;27;28;34;35], howeverthey areusuallyapplied
within arestrictedcontext. For example, they simulate a UML description of an
application by running physicarocesses on a system. Within SMHEREh the
application and theystem (and finally thevorkload)can be simulatedhereby making
the result independent of the system the simulation is ruBemskigurel. This adds
somelayersof abstraction, which is why a nov@mulation enginés introducedin this
article Naturally, there should be a trad# between model simplicitgnd simulation

11

accuracy Software characteristics for example, can initially be abstracted by considering

an application as a O0bl ac«kreptesentadionwanbeh onl y b a
made more concreteneeded Additionally, an initial model might be limited tosingle

system running a single plgcation, after which it isterativelyextendedo covermore of

theenvironment

Figurel shows a schematic overview of the SMEPP approach. The red square represents
the focus of this article: modeling methods and a simulation engine.

ﬁ _
Pt

Hardware/software
model

Hardware

SMEPP

Software

Figure 1. SMEPP context and approach

12

4 Workload analysis

4.1 Introduction

In thissection,a workloadwill be definecand characterizeby its most important
properties. Théndings will resultin a representation for tiveorkloadcomponent within
SMEPP An example analysis is given in Sectib®.3

4.2 Definition

In this article workload is referred to as the amount, type and distribution of requests
posed on a system within a certain period of time. Thus, workload does not say anything
about the system itself or its performan&evorkload is tyically captired by a log file,

on either system or application ley#hat describes what, when and how many requests
are posed on the system or application concerned.

One way to describe a workload is tsdebetherequest ratever a period of timelhe
periodthat isbest used to deribe sucla workload dependsn the situation. Certain
workloads may be deribedbest over a period of 24 hours (for example, web site traffic)
while for others such a workloadstiptionis not representativior examplea web

site that has more visitors during weekdays than in the wegkend

Another way tadefinea wakload is to focus on theequesitnterval, the time between

the start otonsecutive calls to a system or application. The redutesval becomes
moremeaningfli as theresolutionincreasesFor example, an average request interval of
10 seconds over 24 houssuseles# the average was 5 seconds during the day and 15
seconds during the nightlowever,if the average request interval would be measured
every hou, the result would be far more meaningful (and accurRenember that
increasing the resolution actually means decreasing the measurement interval.

While both the request rate and the request interval seem to be sensible metrics for
describing a worlkdad, there are some pitfalls. When a request rate is visualized in a
graph, it seems logical to scale the values linearly along the axis. In fact the metric should
be interpreted netinearly. For example, the impact of increasing the rate from 1 to 2
requests per minute is far greater than the impact of increasing the rate from 20 to 21
requests per minute. The first scenario means decreasing the interval from 60 to 30
seconds while the second corresponds to decreasing the interval from 3 to 2.86 seconds.
One has to keep in mind that both metrics are not linearly rekigalré?2).

Both request rates and request intervals have advantages and disadvantages. In general
one could argue that the request rate is best used to vismalzdload Consider a

graph that relates the request rate tdithe. The surface beneath the graph represents

the total number of requests in the depicted peBodh a representation is easy to

interpret. Contrary fithe request intervas consideedin relation to the time, the surface
meaning is less obviouslowever the intervaimore realistically represents the impact of

13

a changing wikload for the system concerneédall the exampl&om Figure2). This
makes theequest intervalor its distribution) more valuable as input for analysis and
simulation. Thus, theequest ratsvill be used for visualization purposes, witite
request intervalill be usedas input fothe experiments later on.

il
o
RN

0 LI O S S B O B B S S S O B N S S B S B O B O S B S O B B B

0 5 10 15 20 25 30 35 40 45 50 55 60
Request rate (p/r

I
o
[

Request interval (<
N
o

[

Figure 2: relation between request ratgper minute) and request interval (in seconds)

For both request rate and request interval there ehnei8esto be madeOptimal settings
for each of them strongly depend on the specifics of the situation.

Source window (SW): the period over which the source data runs
Target window (TW): the period used to describe a workload
Resolution (R): the number of measurements within the target window

= =4 =4

4.2.1 Source window

Increasing the source window will improve the chanteat extremes are included in the
representation. However, a too large source window may result in an unrealistic workload
with respect to the situatiadghat need$o be modekd

4.2.2 Target window

Decreasing the target wdow is useful for visualizationpf example to show a part of

the window in more detaiHowever,it does not improve the accuracy of the workload
representation. Increasing the target window may improve the accuracy, because a small
target window might not show the evolution of valuethimi a larger windar. Example:

a target window of onday when all weekdays are differewwhen the target window is
smaller than the source windotlieremaybemultiple values for each data point in the

14

target windowIn those cases, aggregate functisnsh as minimum, maximum and
averageshould be usetb represent the values.

4.2.3 Resolution

Increasing the resolution (to a certain extent) will result in a more realistic view and more
correct interpetation of extremesn general one could argue thaisitvorth increasing

the resolution if the results at the current resolution are generally larger than the number
of smaller time units within the current resoluti®@emember that for a request rate, it

does not make sense to use a resolution other thamthused to define the rate.

Example: it does not make sense to measure the number of requests per hour every
minute, or just once a day. Hence, a traffeshould be made between resolution and
accuracy.

4.3 Distribution of requests

Until now, a workloadvas considereds a concrete log file. To model a workload,
more abstract notatiae neededThis can be achieved by determining probability
distributiors that approaclhevalues in a log fileAs said beforethe focuswill be on
requesintervalsfor simulation input, which means thaintinuousprobability
distributionsare requiredExamples and their occurrences are given in Setdn
Recall, in the case ohodelingrequest ratesliscreteprobability distributionsvould be
needed

4.3.1 Dynamic optimal resolution

Beforedeterminng the probability distributions that approach the values in the laggfile
correct resolutiomas to be selecteBemember thavhenusing a low resolutiorthe
resulting model is simple, howesthe specific distributions of certain parts within the
window may missUsing a high resolution leadoa very accurate representation,
howevergoes beyond the idea of a madetus,the optimal resolution is a traabdf
between accuracy of the repretion and simplicity of the modéh addition to that,
the optimalresolution may be different throughout the windéience, a method of
determining alynamicoptimalresolutionis neededThis can be done by using a binary
algorithm that takes a setiotervals splits the set in 2 subsets, determines if the
characteristicef the subsetfor example: mean and variance) are subsiliyntlifferent
from the original seand if so, recursively continues withe subsets. Using variable
lower bounds ornhe set size and the deviation of subse&mforiginal sets, enables one
to make the right tradeff mentioned earlieiSee the next page for a pseudo code
example.

4.3.2 Best matchingprobability distribution
Once the characteristic parts of the scenaaiebeen determineeach part can be

representedvith the probability distributiothat best matches the valueshin that part
This can be done by using statistical methods like the Kolmog®naivnov test (KS)

1t

and the AndersoeDarling test (AD). Both ae described in Sectidh3. TheK-Stestis
typically used to determine if a given data set correspondsddaindistribution by
measuring the maximum distance between the empirical and theoreticamdDF
comparing thisd a certain critical valueHence, this is Booleantest However, the data
should be compared a set of differentlistributions in order tselectthe best
approximation. In that case, the maximum distance is less indicdtikie
correspondence antwould be better to sum the distances, like the fest does.
However, the AD test is only valid for a few specific distributions, ilelthe K-S test
may be usedbr any continuous probability distribution for which the CDF is defirienl
overcome thesissues, thbest of both worldss combined In fact,for each value the
distance between the empirical and tietical CDFis measuredike the K-S test) and
thesedistanceare summedlike the AD test)

n

D'=3

i=1

LR
n

Dais determinedor a setof different distributiongan overview is given in AppendB)

and the distributioior which Dois minimal, is selected dke bestapproximationThis
procedure is repeated for each characteristic part in the log file, according to the dynamic
optimal resolution algorithm:

dynres (INPUT, MIN_SIZE, MAX_DEVIATION)
OUTPUT = empty;
if length(INPUT) >= 2 * MIN_SIZE
{

LEFT = first half of INPUT;
RIGHT = second half of INPUT;

if absolute(mean(LEFT) - mean(INPUT)) /mean(INPUT) > MAX_DEVIATION

add to OUTPUT: dynres(LEFT, MIN_SIZE, MAX_DEVIATION);
}

else

add to OUTPUT: LEFT;
}

if absolute(mean(RIGHT) - mean(INPUT))/ mean(INPUT) > MA X_DEVIATION

add to OUTPUT: dynres(RIGHT, MIN_SIZE, MAX_DEVIATION);
}

else

add to OUTPUT: RIGHT;

}
}

else

add to OUTPUT: INPUT;
}

return OUTPUT,;
}
Pseudo coddor dynamic optimal resolution algorithm

1€

4.4 Workload model

The procedure described in the previsastionresulsin a list of parameterized
distributions and their lengths, whiétoks like this:

| ength ; distribution (p arameter 1,p arameter 2)
length ;distrib ution(parameterl,parameter2,parameter3)
length;d istribution(parameterl)

wherelength , distribution {Normal, LogNormal,Logistic, Beta, Gamma,
ChiSquareGumbel Exponential Rayleigh,Uniform, Triangular,UQuadratic Constant}

Using a workloadnodel instead of a concrete log file has several advantages. First,
different simulations of a single model will result in comparable, however different
scenarios. This may help to discowen(st casgsituations one would not have seen if a

log file (i.e. fixed scenario) was used. Second, a workload model can be easily modified,
in order to simulate the consequences of an evolving workload. More specifically, the
parameters of the probability distributions alltaw easily increasing or decreasi(arts

of) the workload based on real life observations. It is a lot harder to realistically increase
or decrease a workload based on a fixed scenario. Finally, a workload model may easily
be specified manually as well, without being based on real life datalltwvs for fast

and dynamic experimenting.

4.5 Correctness

The described model includé®e request interval distributioasid parameter values
These are considered as input. Based on SMEPP willsimulatethe performance, in
terms ofexecution timesThese are considered as outdutis suggestdiat the intervals
partly determine the execution timédowever there may also be a backwards relation, in
the sense it execution times (output) magrtly determine the intervals (input) that will
follow. For example, a high execution time might prevent a user from issuing a new
request for a while, ordm issuing a new request at all. Hencéai an indirect

influence on thdollowing intervals The question is how significant this influence is.

When the interval distributions are based on real life datadhealog file), a possible
influence of execution times on intervals is already taken into accoune\goywhen
the distribution parametesse modifiedn order to increasor decreas(part o) the
workload, this factomight come into playConsider the case in whithe interval
distribution parametetare modifiedsuch that the mean interval will be twice as low (in
the period concerned) and as a refdtéxecution times will increadadirectly, the
intervak of anindividual usemayincreasegdue to waiting time, while the goal was to
decreaséhem

This phenomenon is illustrated kiigure3. The horizontal line represents time, while the
vertical lines eachepresent a point in time at which a request is issued. Hgnce,

17

represents the interval between requesisdx+1, e represents the execution time of
requesi anduy represents the user issuing request

O @ ® o ® © @
—> - > —— >
— > +—>

Ci €2 Cs Co

v

I 5 5 . . ; : : 1t

1 12 1s 14 1s 1s 17
Figure 3: relation between request interval and execution time

Theassunption isthate, maydepend omultiple factors:

e depends ony if e > ix
e alsodepends ol if 6> iy + i
and so on, in general

E

& depends oi.a if g > 5 i, With a0 o0

y=0

However to what extent the opposisdrue? In other wordsloesiy., also d@end org?
Whene is greate thaniy (illustrated by the red arrows)is obviously not aused bye..
Howeverone of the followingy.a (2 > 0) may depend org, provided thatequestx+a+1
is issued by the same usKte thatwhile an execution time may dependraaltiple
intervals, an interval may onblepend ora single execution timéience:

ix depends omry if e <ixanduy = Uyx+1
ix+1 depends ol if ix < e <ix+ ixianduy = Uy
and so on, in general

= =24

a-1 a ~
ixra depends oy if 3 iy <€ < a ey anduy = Ugasr WithaO 0
y=0 y=0

Naturally, e, alsodepends on any overlappiegwith x [y. Given thatus = Ug, Us = Us
andui | uxl uzl usl uy thedependencies iRigure3 are as follows

e; depends o, i4, €, andes
e, depends omls

e depends o, e; andeg

es depends o, es ande;

e; depends omlg

is depends omls

i4 depends omry

= =2 =4 _-8_-9_-9_-°

Theiy valuescorresponding to the resl arrows inFigure3 areperfectlyvalid, as long as
during execution of request subsequentequests are issued by different gsarthe
system is asynchronogsr both). However,if this is not always the casgsing a custom

18

interval distribution(i.e. not based on real life datapy lead tainrealisticscenarios. For
examplejf Figure3 corresponds ta syntironous system (i.e. the user has to wait for a
request to finish before iss1g a new one) and requests 3 and 4 are issued by the same
user, this scenario is invali@fhis needs to be taken into accoupbn simulation of the
model More specifically, when requesis started, the probability thatthin the next
intervaliy anyrequest will be finished withy Ox anduy = uy.1 needs to be determined.
Hence, therobability depends on the numbermsfiqueusers and the execution times
seen so fa-or a synchronous system the generated intenedd to be corrected
according ¢ this probability In general, increasing execution times or decreasing the
number of unique users within a scenario will result in an increased probability of
intervals depending on execution times.

19

5 Hardware analysis

5.1 Introduction

To modela hardwareomponent (more specifically: ierformancgone needs a few

metrics that together define its relative speed. An ideal method to gather these metrics is
to run a fixed set of benchmarks that generates exactly theasaoumt of workon each
componentln this section, such a set of benchmavkkbe proposedFor a computer

system, the benchmarks should assess different resources as isolated from each other as
possible. Only then it is possible to predict the consequences of a modification in a single
resource for the system as a whole. Also, the benchmarks should exploit the full power of
resourceto determingheirtheoretical performance limit. Finally, the set of benchmarks
should beasrepresentativas possiblevith respect to the software compoteof the

model (Sectiorb). An example analysis is given in Sectibd.4

5.2 Benchmarks

The SreammemorybenchmarK20] is designed to work with datetslarger than the
available cache on anywgin system, so that the resudteindicative of thememory
performancenly and that the influence from other resources is as low as po#isible
reports memory bandwidth in megabytes per secbine . DhrystoneCPUbenchmark

[21] is commonly used to test integer arithmetic. The allgorits based on the C
implementatiorwritten by Reinhold P. Wieker. The test reports in MIP@Million
Instructions Per Secohdlrhe Whetston€PUbenchmark22] is conmonly used to test
floating point arithmeticThe algorithm is based on tliamplementatiorwritten by Rich
Painter. The benchmark is designed to test the speed of commonly used floating point
CPU instrutions. The tesalsoreports in MIPSThe Compressihn benchmarkuses an
Adaptive encoding algorithmalsed on source code fronvitten, Neal andCleary[23].

The system uses a model which maintains the probability of each symbol being the next
encoded. It reports a compressioteraf 363% for English text, which is slightly better
than thestandardHuffman method. This test reports its resultsompressedilobytes

per secondThe Quicksort benchmarkf] continually sors 1000 strings of 256
charaters.The test reports the speed of the sorting in thousands of strings per second.
TheBlowfish benchmarkuses the equally namedcipheringalgorithm[25]. It is based

on the C implementationritten by Paul Kocher. Data isneiphered using a 1ityte key

in blocks of 4 KB. The test reports émcryptedkilobytesper second

5.3 Hardware model

Within SMEPR a system is represented by the benchmark results of each resource that is
used by one or more of the applicatioepresentgin the same model. These values

should be defined in MIP@Million Instructions Per SecondDepending on the resource,
MIPS might refer to CPU instructions, memory instructions and so on. Sé&ction

describes how to incorpdeathese valuesn a UML model.

2C

6 Software analysis

6.1 Introduction

This sectiorwill describea method ofmodelingsoftware components (more specifically:
their utilization ofresources) in the same terms of the benchnbhsdtsvereselected in
Section5. An example analysis is given in Sectib®.4

6.2 Optimalutilization/time

The frst step is to lookat the minimal resource utilizations for differgaitasesn an
applcations process. This donebecause these values are most representative for
optimal application performance with minimal influence from other applications o
environment factoraVhenthese testsare donen a baseline system that is completely
utilized by the application concernegtle number of instructions nged for the
application to finish its jolmay be estimatedy multiplying the theoretical benchmark
speed of each resource with the optimal executionrieasuredWhen benchmark
values cannot be determined (for examplesidernal systemshefocuswill simply be
on optimal execution times.

6.3 Individual dficiency

Next,the samexperimenshould be ruon several other systems, which may or may not
be fuly utilized by the application. In the procesiseir optimalexecdion timesshould

be recorde@nd relatd to thebase line execution timélso, the benchmarks of those
systemsshould be relatetb the base line benchmaly dividing theexecution time
speedup with the benchmark speedificiency valuesan be deteninedfor all
systemsThey represent the part of the theoretical speed that was actually used by the
application.Based orthese valuesgnindividual efficiency trendg; can be discovered:

Qo

tC

E (x.0) =2~

o X

238
oo

i

i
e sle

c

wherex is the system under testis the base line systertjs the optimal execution tien

for system andb; is its benchmark valu€&or an ideal applicatiort; should always

evaluate to 1, meaning that the theoretical speed is fully utilized and that application
speed increases lineamyth it. Theindividual efficiency expression, whether it is a

simple constant or a complex function, is an important property for representing
applications within SMEPPIn fact, it does not really matter what benchmarks are used to
represent the systenes long as ak; expression can be defingtat correctly relates the
benchmark values to the execution times on those systems. In practice howevelgsimple
expressions and thus, representative benchmarks are preferred.

21

6.4 Multi tasking efficiency

The smplest way to model multi tasking behavior is to divide the number of instructions

thata resource (for example CPU) could execute within a certain period of time by the

number of operations executedparallelby the same resource. This way, all operai

receive an equal 0sliced of eRemembetthabn t i me w
this doesnét mean that each operation proces
cycle, because operat®may have different efficienciéas described in $8on6.3),

meaning that they will only process part of the instructions they could process in theory.

By default operations may run in paralecording to this modeHowever ly limiting

the number of parallel operationsdoe, a simple segntial resource can be modeled

The time slicingmodeldescribed here is a generalization of several more distinctive
scheduling principles and thus, applicable in almost any case. However, its efficiency
largely depends on the specifimfsthe resource and the characteristics of the applications
running in parallel. For example, a dual core CPU will more efficiently run two tasks in
parallel, provided that the application exploits these featliemcorporate these
dependencies intime general time slicingnode| an efficiency factor similar to the one
described in Sectiof.3is introducedHowever, this factor does not represent the
efficiency of an individual task being executed with respect to thedtiearspeed
possible. Instead it represents the efficiency with which multiple tasks may run in
parallel. More specifically, it represents tiagio ofthe optimal execution time of
consecutive equalperations and simultaneougqualoperations:

£ (xn)="50

£, (n)
wherety (i) is the optimal execution time osimultaneous operations on system
Hence, ifEn (X,n)is greater than 1, it means tmegimultaneous operations arempleted
in less time tham individual operations on systexti.e. that parallelism is exploited)
and vice versddeally thisfactor shouldapproach the number of operations that can be
processed in parallel without loss of performance. For example, for aateaCPUE,
should approach 2n practice howevethere ae lots of other factors, both with respect to
the application and the system, that may determine why these ideal values are seldom
reached

6.5 Software model

Within SMEPR an application is represented byatgimalutilizations, either in terms of
instructions or timewith respect to differerdystenresourcegSection6.2).

Additionally, one may specifgxpressions that approach thdividual efficiencyE;
(Section6.3) and multi tasking efficiecy En, (Section6.4) for these resourcebllere,

curve fitting might be used®oth E; andE,, default to 1 Finally, it is important tdiind the

most important parameters of the application, determine the probability distréafion

their values and find out how the previous observations (e.g. resource utilizations) relate
to them Section7 describes how to incorporate afldingsin a UML model.

22

7 Hardware/software model

7.1 Introduction

In this ®ction a UMLmodelwill be describedto representhe hardware and software
components withim systenbased orthefindings from Section§ and6. This model is
based on an extended UML deployment diagram (Se2t)nThe main objects ithe
model areDevicesrepresenting hardware components) Antifacts (representing
software components). Initially, only their names have to be specified. All other
properties oflevices and artifactre defined sing several types @onstraints Finally,
there are 3 typs ofRelationsbetween objects

7.2 Relations

A Deployments a relation from an artifact to a device, meaning that the artifact is
running on that device. Because artifacts may have multiple depldg, an artifact only
has to be specified once, even if it runs on multiple deviteuultiple instances of the
same artifact should run on a single device, multiple deploynsantbe specified
between thartifact and device concerned

A Dependencys a relation from an artifact to another artifact, meaning that the former
depends on the latter. In other words: the former cannot finish before the latter is
finished. Artifacts may have multiple dependenctieg may be deployed on the same or
other deices This way,requests to other devicean be incorporated he dependent
artifacts may have their awdependencies, which enables tmereate a trebke

structure of artifacts.

A Manifestationis a relation from an artifact to another artifact, meg that theormer
is an instance of thatter. Artifacts may have multiple manifestatiofisis is usefufor
examplewhen the poperties of an artifagSection7.3) shouldhave different values in
different cases.

7.3 Constaints

Constraints typically consist of a name and a vaheartifact A or deviceD mayhave
several types of constrairssociated witht:

1 Benchmarkthe teoretical number of instructions a resoukttin D may
execute (SectioB.2). These values should be defined in MIPS. Benchmark
names ¢ o n Lliowad bydhfe resource Imame.

Example: bCPU = 308.8

9 Utilization: theminimal time (for examplejn millisecondsthatA will utilize a
resource withirD (Section6.2). The name refers to the resouccmcernednd

23

should be prefixed with O6ub.
Example: uCPU = 988

Time the range of timef¢r example, imilliseconds) thaf needs to run. This is
used when benchmarks and utilizations arenown (Sectior6.2).
Example: t = 174@261.

Efficiency an expression that representsitigividual efficiencyk; (Section6.3)
of an operation oA running on a resource withd, or the multitasking
efficiencyEn (Section6.4) of operations of typ@ running on a resource within
D. Both default to 1.

Example: eCPU = 0.0448n(x) + 0.6656

Capacity an upper bound on the number of requests that may run in paralle
within D or the number of parallel executionsffSection6.4). Both default to
infinity.

Example: ¢ = 1 (to represent a sequential resource).

Parameterthe name o& parametethatA requires. It should be prefixed with
0 pAvalue is not necessary.
Example: pProductCode

ParameterValuea possiblevalue for a parameteassociated with an instancé
AThe name refers to the parameter,
Example: vProductCode = 3

Probability: thechance thatan instance offA will be executed at runtime
Defaults to uniform probability.
Example: p =0.11

24

but

7.4 Example

Figure4 shows an example of a hardware/software model, as it can be composed in any
graphical UML environrant. Artifactl andArtifact2 are deployed oBevicel Artifact3

is deployed omevice2 Artifactl depends on botArtifact2 andArtifact3, in other

words: a request tArtifactl cannot finish before those fatifact2 andArtifact3 are
finished.Artifact3 has two manifestations. They are constrained with their probabilities
and the parameter values associateda result, whedrtifact3is called, the correct
manifestation Artifact3aor Artifact3b) is called acording to the parameter value, which

is detemined by the probabilities séthe other types of constraints described above, are
shown in the example too.

{Utilization} {Capacity}

Devicel
E Deploymentl
{Efficiency} Artifactl F----m e D
| ~Dependencyl Deployment2 =
| RN 7
Dependency2 o~ e
|
} Artifact2 {Time}
|
|
} —
|
} Device2
E Deployment3
{Parameter} Artifact3 F——————————— " >

7 N

Manifestation1 Manifestation2
; N

\

{Probability} Artifact3a Artifact3b —— {Probability} ﬁ {Benchmark} ﬁ

{ParameterValue} ﬁ {ParameterValue} ﬁ

Figure 4: example UML hardware/software model

25

8 Simulator

8.1 Introduction

This section wilintroduceXMISm, an applicatiorused to simulatthe UML
hardware/softwarenodek proposed in the previous sectiand predict the performance

of the represented system under varioskloads XMISim was written in the C#
programming languag®art ofthe process involved the development of a libthag can

be usedo generate random numbemrespondingo a wide variety of probability
distributions (see Appendix B) and to estimate their parameters based on real life data.
AppendixA contains a clasdiagram for the XMISim application.

8.2 Simulator input

A hardware/softwarenodel as described in the previaextioncan be composed within

any graphical UML environmenitlowever, to load the model into the simulator, it
should bein XMIL5 f or mat . Most UML environments pro
feature.

As described in Sectid®i2, a third component is needadsimuate the modelthe
workloadcomponentThis component is defined separatelyher by loading a log file
describinga real lifescenarig or by defining a worloadmodelbased on probability
distributiors. Log files should be in CS\MJQommaSeparated/alues) format
Confusingly, the values are actually separated by semicdlbesirst row contains the
column headers, while each consecutwe represents an individual requekie CSV
file may includea 6 i ndolamn{setif@ing the time betwearequest and the
previous onganda deploymend c¢ ol u mn tiiesanifat@nd devicehegequest
is associated with). Additionablumns may be used to specify parameter vahggs t
should bausad when simulating the request. Theaders of these columns should
correspond to parameter names as defined iharsware/softwarenodel. The actual
order of columns is irrelevant. None of tt@umns are required, becauke
distributions of intervals, deployments and parameter values may also be defined in the
application itself. An example CSV file:

interval;deployment;parameterl
6436;Artifactl @ Devicel;5
7162;Artifact2 @ Device2;6
1749;Artifactl @ Devicel;6
1595;Artifact3 @ Device2;4
4550;Artifactl @ Devicel;5
7288;Artifact2 @ Devicel;3
2752;Artifact3 @ Device2;6

When aCSVfile is loaded, XMISimdetermines thdistributiors of the values in the file

in order to generate a workload madebrthedeployment and parameter columns, the
probability distributions of their values are simply determined. For the interval column a
more advanced method is us&tie concept is explagd in Sectior.3. The results odll

26

determinations are shown in the main windeeefigure6) and can be modified by the
user before starting the simulation. This way, the user has several optismsulating
theintervals the deploymentas well aghe parameter values. One ynehoose to

exactly replay a log file;

simulatea modelof alog file in terms of probability distributions;

simulate anodified or completely customodel;

combire any ofthe above; for examplese the parameter distributithom a log
file with custom intervals, and so .on

= =4 =4 -4

All this results in great flexibility with respect to workload specification and the
possibility to compare different scenarios.

8.3 Running the simulatr

When the XMl file is loadedts structure of objects, relations and constraints is exactly
recreated. In addition to that, some runtime components are added. For example, for
every benchmark constraint associated with a deviBesaurces createdhat will
procesOperationsat the rate specified. Each device also h@soaal resource that will
process operations of which the specific resource utilizationsnknownThese include
the operations defined by time constraifigure5 showsthe example input model from
Figure4 in its runtimeconfiguration

WorkLoad

T
|
|

Reguestl F—————--—- - - "o oo Operationl

Resourcel — |

I
I
| - | Operation2
| Devicel

Deployrhentl
! Resource2
Artifactl F---—-——-—-———-————— N0 RESOUILEL
Dependencyl Deployment2 -

I
i Ry e Resource3 Operation3

Dependency2 N Rl
I
} Artifact2
i Resource4
I
! N
} Device2 Operation4
Deployment3
i Resource5 L
Artifact3 |-——-——————————— g e

7 <
Manifestation1 Manifestation2
s \

/ Resource6

/
/
/

’

\
\
\
Artifact3a Artifact3b

Request? | ——--——---m oo

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| /
|
|
|
|
|
|
|
|
|
|
|

N\

Figure 5: example model fromFigure 4 at runtime

27

After startng the simulationXMISim will createa number oRequestsvith intervals
based on the workloatkscriptionsupplied. A request is associated with a deployment
relation thus with artifacA and deviceD. When a request is started, tesource®f D
aresupplied with operations based on the utilizatod timeconstraints ofA (seeFigure
5). WhenA requires a parametets value is either taken from the log file (if supplied) or
selected from the possihteanifestationdy prdability, oruniformly if no probability
constraints are set.@Xt, the instance & associated with theelectecpbarameter value
runs. This way, it is possible to simulate different utilizations and times for different
parameter value®ased on the depdencies of, requests for those artifacts are also
created A request is finished when all of ibsvn operations and those of dependencies
are finishedMore specifically thetime needed foan operatiorD to be completely
executed by a resour&emay depend on:

the rate at whiclR processes instructions (benchmark constraint)
theinitial utilization or timeneeded fo© with respect tdr (utilization ortime
constraint)
1 the part of the theoretical speedréctuallyexploitedby O (individual
efficiency constraint)
1 the influence of operations processed in parallel by R (multi tasking efficiency
constraint)
1 themaximumnumber of operationgrocessedh parallel byR (capacity
constraint)

T
T

Except for the benchmark, all of these constraimy have dferent values
corresponding to differemhanifestations of an artifackdditionally, the occurrencef
these manifestatiomaay beinfluencedby probabilityconstraints. Albof this leads to a
dynamic simulation of a statiltardware/softwarenodel.

8.4 Timing

XMISim has a built in timing mechanism withdafaultcycle time of 1 millisecond.
However, the precision magasily be adapted if needddbon each cycle, the simulator
will enable the resources processome instructionscheck ifoperationsare fnished

and start new requessif needed according to the interval distributiGenerated intervals
are corrected if they are unrealistic with respect to the numhaigdieusers and the
execution times seen so far. See Sectidrfor details.

XMISim uses a simple time slicing principhs described in Sectig4. Each resource
has a list of active operations and a list of queued operations. The former contains
operations that are being procegsat that moment, the latter contains operationsfibrat
examplehave been started but cannot run because they have to wait for another
operation to finishUpon each cycle, the resource will check if the queued operations
may already run and if so, m@them to the actevlist. Next, the number of instructions
the resource couliheoretically proceswithin that cycle, is divided by the number of
active operations. All of therare allowed to processtas | af thestd@al number of
instructions

28

8.5 Efficiency

Remembethat an individual efficiency constraintefersto the part of the theoretical
speed that is actually used by an application. &hlife, efficiency varies during
execution of an operation. This is why peaks are typically seen whendaatkifor
example, CPU usage grapdthough theefficiencyof an operation being processed by
a resource depends on both the operation and the resatiiteSMEPR its vaue will

be fixed throughout simulatioof that operationThismears that there Wl be no peaks,
unless multife operations run in paralleHowever, the surface beneath such a graph,
corresponding to the number of instructions executed, is the same as in real life. This
generalizatioomakes it possible to simulate general resourgtdsowt specific knowledge
of the used CPU, memory and so ®he constraints described in Sectif allow for
more specificdepreserdtionandsimulaion of different types of resources.

8.6 Output

Figure6 shows a running simulation in XMISirihe left side is used to load XMI and
CSV files ando defineseveralparametersin the middle column, the devices, resources
and theircurrentutilizations are shown. The right side contains the results dii¢ise

loaded and the running simulatioMISim will report its results in the form of response
time distributions of steps in the process as well as the total process. These values are
easy to compare with real life observations (for validation purpesesgasy to interpret
(for prediction purposes).

XMISim 9(=E3

[pbe_nolock,ami] pe2i7e Active — Hueue MISim.Deployment; PBE @ baselin Scale 100 5 |Maxdev (0035 5 | Minsize |13 %
Global 0 0 MISim. Benchmark: CPU=308.8
’ *MISim Benchmark: Disk=223 3 37 Belal0,14732,7723.24,4712.82]
[lze2776_154_ncock_swagee] - e 2 2 MISim Benchmark: Memor=271.5 198 elaf312.12878, 6863 37.4380.21)
Disk [o 0 KMISim Attifact: PEE 19Betal453,13278,6514.89,4286.04)
M [—] 0 0 #ISim.Deplapment: PEE @ pc2778 37:Mormal(6365.05,3565.33)
(L) ®MISim Deployment: PBE @ vwd11 198 eta[536,1 2595 5346.05.3910.37)
[Stop | e [ime %MISim.Deployment, PBE @ testhp 19 ayleigh{7595.55)
T w——— Global 0 0 *MISim Deployment: PBE (@ p2B44 37 Bela(701,11348 5436.89, 3431 56)
= %MI5im Deployment: PBE (@ baseline 19 Beta(70,10443,4247 68,3418 07)
El I N N 0 2hISim Deplayment, PEE (& marktplaats3 9B etal197, 8987 4107 47 2573, 45
T— O — 0 MISim Dependency: PBE > FEP 37Beta(267,10491 5321 .38,3029.17)
[HEY @=L ST ®MISim Dependency: PBE - Moneyview 19:B eta[1639.9795 485368, 2550.35)
CustomSequence | Memoy [0 0 #MISim. Utiization: CPU=E176 19LogHomallg.12.0.63]
15 im Artifact: Moneyview 37 Belall 23,1 06435241 62,3280.34)
PEP. ProductCode G[‘Esb""hp ’S‘E""E E”E“E XMISim. Deploment Moneyview @ MVServer 198 e1a(205, 7582, 4085, 29 2588 22)
CustomSequencel4 86| v obal [] MISim Dependency: FBE > Moneyview 19 Nomal(3798 42,1851 71
o T e | i <MISim, Time: t=1734, 74461775371 37:Beta(30,6225,2376.43,1742.27)
Disk 0 0 2MISim Device: My Server 3%:Beta(32,6659,2800.21,1951.97)
L I— MISim. Deplayment: Moneyvisw @ MYS erver 37D etal54.5933.3184.7,1394.21)
Memowy [] 0 i 15 im Device: marktplasts3 38Beta(39.7739,3282.13,2234.13]
*MISim Deployment: PBP @ marktplaats3 37 Nomal(2548. 66,1357 52)
ot Active Queue MI5im Deployment: PBE (@ marktplaats3 191 ngisticl2481 42.1136.4)
Global [] 0 0 #MISim Benchmark: CPU=785 19 Beta[355,3829,1835.16,1111.79)
M| Sim.Benchmark: Disk=264.1
GD\ESS\“ :} E\cl\ve gueue #MISim.Benchmark: Memaory=436
T e
Disk [o 0 Nurber Interval PBE @p.. PBP@p.. FProduct. | Monewi. PEE@.. FBR@.. A
Memow ()0 0 564 3169 5 1907 2476 2814
el el Eee 565 1563 5 1907 743 3660
Gobal] 0 0
i . 566 2443 7071]] 1735
bk [o 0 567 2885 3 1735 BBE7 6786
Memoy [|0 i 560 257 6608 6452 5 2534
MVSarver fclive Qusus 569 350 5305 5143 5 3532
Global [NWNANWEWARE] 2 v 570 1538 1963 1213 5 534
marktplaats3 Active Qusue 57 1850 4 B3 3773 1631
S —
CRU :} 1 1 572 2509 3249 | [1827
bk [o 1 573 2401 4 1735 1815 1631
Memoy (|0 0 574 2600 2208 2131 5 1736
575 2744 040 2962 & 1735
576 2457 5 3068 5659 5497
577 547 12264
A

Figure 6: running simulation in XMISim

29

9 Experimental setup

9.1 Introduction

This section will describe the experimental setup used &rdate the caectness of the
hardware, softare and workload componentgthin SMEPPand the accuracy of the
simulator.

9.2 Inputcomponents

Three components are needed for simoat~or the hardware componebénchmarks
should beunon all systemsnvolved in the environmenhat needs to b&mulated. This
is described in Sectidh Similarly, for the software component, each application
involvedneeds to be observed described i®ection 6 All findings should be
incorporated in a UML model in the form afnstrants connected talevices §ystem}
andartifacts @pplication$. Finally the relations among theneed to be definedll of
this is described imore detail infSection7. When the model is finished it should be
exported to XMHKformat.

Thethird component needed for simulation is the workload description. This can be
either a concrete workload in the form of alog fleaor 6 sy nt het i ¢cé wor kl oad
based on probability distributionSee Sectiod.

9.3 Practical alidation

When a concrete workload is loadéuk simulation maynmediatelybestared The
simulator will exactly replay the real life workload in this cég comparing the
simulator results with the real life results correspogdinthe same workload, the
hardware and software model components cagmrbeically validatedThis way, itcan

be mae@ sure that a possible deviation of simulation results from real life results is not
due to theavorkload component within SMEPP

Insteal of exactly replaying the workload from the log filleere isalso the option to

replay its distributions onlyThis means that on a long simulation run, the intervals and
parameter values will approach those of the real life workload, however dmwoum 6t b e
exactly the same. Whehe simulation runs long enough, one may discover scenarios that
were not represented in the original workload. Also, by comparing the results of an exact
replay withthose ofa distribution replaythe workloadnodelwithin SMEPPcan be

practically validated

For an exact replay, the simulation resuoltisild be comparedith the real results by
simply comparing thexecutiortimes throughout the whole run. However, the results of
a distribution replagannot be directly congwedwith those of a concrete workload,
because the runs are differeintthat case theocusshould beon the distribution of
executiontimes and their extmes, in order to compare the results

3C

9.4 Theoretical validation

The experiments described earliera a pr acti cal &éproofd of
model components and how the simulator handles them. For the workload component, a
more theoretial analysisis also possibleA concrete workload is approached by

XMISim with a resolution and accurasgt by the useNaturally, when tk resolution is

high enough, every workload may be approached with uniform or even constant
distributions. However, the workloamteds to be modeledth a limited number of
distributions (.e. relativelylow resolution)without losing too much detail. Otherwigbe
concrete workloadnight just as welbe usal for simulation Whendecreasing the

resolution, itbecomesncreasingly importanthat theselectedlistributions accurately

reflect the parts of the original wddad they correspond witithus, to provide a more
theoretical proof of the correctness of the workload compooeashould show that the
selected distributions are valid in the sense that they reflect the characteristics of the
original workload withoubeing too specific or general.

9.5 Prediction

When allSMEPPcomponents are validatetie environment can be used to predict the
performance in more abstract situatioimstead of loading a log file ambing an exact
replay or distribution replayheworkload parametersnay be manually specifiedhis
enables onto predict the results in a case of whiclsoncrete workload example and
corresponding resultse not available. This thegoalof SMEPPiIn the endA

combination of both options is also gdde One could load log file, let XMISim
determine its propertieend then modifghem before starting the simulatiororF

example, the average request inteo@lld be decreased simulate the consequences of
this modification Naturally the same has for changes within the hardware and software
components of the system.

31

t

h e

10 Experiments

10.1 About Voogd & Voogd

Voogd & Voogd is an excellent example of a company dealing with most obthemon
problems described in Secti@nThe software developed at Voogd & VooV from

now on)is changing rapidly. Also, the number of users is strongly increasing. Software
functionality is tested extensively, however at this moment it is unknown whether non
functional requirements, such pearformance, will be satisfied when new software is
introduced. In some cases, these requirements are not even known. V&V is also unable to
make concrete capacity and availability predictions with respect to the future. This is a
typical example of the gabetween software engineering and system engineering
described earlier. At the moment, all effort to bridge this gap is based on previous
experience. This is a critical, however not seldom seen situation. There is a strong need
for a more structural appaoh.

10.2 Applicationsand servers

PBP (in Dutch:PremieBerekeningsProgramma) is an applicadieveloped by &V that

is usedby several other applications. Its most important task is to calculate premiums for
different products from different insurers, fotaenple to enable comparison of premiums

in a consumer specific case. With respect to calculation, PBP can be considered as the
heart of the software architecture at V&V.

PBE (in Dutch: Premie Berekening Extern) is also developed internally and csebe
as a wrapper arourRBP. A request to PBE is usually forwarded to PBP. In addition to
that, PBE also calls an external party caNdmheyviewthat essentially does the same job
as PBP, however fadifferent set of insurers. When both are finisited, Moneyview
premiums are translated to PBP fornaad the internal premiums areergedwith the
external premiumsThe result is an enriched list of options for each prodREBE is used
by several other applications. The difference mainly lies in the sofitbe request.

Klik & Sluit is an interfaceéhat enables the user to enter criteria (for example the license
plate number for a car insurance) after whichcivecept as described befdRBE, PBR
Moneyview) is used togeneratea list of premiums for tils caseThisformis used by
intermediaries, the primary customers of V&8xtermediaryrequests are handled by the
Marktplaatsservers. Intermediarienay also offer this functionality to their own
customersrfiostly consumers) throudheir website. Consmer requests to Klik & Sluit

are handled by thBienstenservers. Finally, some of the largest customers of V&V do
not send their requests through the Klik & Sinterface but use a customized SOAP
(Simple Object Access Protocahterface. These sewgs run on several other servers,
however this is beyond the scope of this article.

32

10.3 Workloadanalysisexample

In this example, thiog data of the PBP application running on 4 Marktplaats (M) and 2
Diensten (D) servers within September 2@98sed Figure7 andFigure8 showthe

request ratesn these servers in the complete month (SW: 1 month, TW: 1 month, TR: 1
hour). It is obvious that a pattern repeats itself every week, which meatisettzaige

window should be decreasédl one week. Also, it seams that all M servers and all D
servers show equal behavior, which makes sense because all requests are divided over
servers by load balancers.

10.3.1 Decreasing the target window

As said before, when ther¢get window becomes satier than the source window, there

may bemultiple values for each data point. In this case for example, the source data from
4 M servers and 4 weeks will lead to 16 values for each data pgigtegate functions
(minimum, maximumaverageill be usedo visualize theequest ratefrom now on.

Figure9 andFigure10 show therequest ratesn any M or D server in any week of
September 2008 (TW is now 1 weekigure9 shows peaks during working days and

hours, which makes sense because the M servers are used by intermediaries, not by
consumers themselvdsigure10 shows a more equal distribution, as the D servers are
used by conamers.

10.3.2 Increasing the source window

FigurellandFigurel2 showexactly the same d&gure9 andFigurel10, excepftor the

fact that # weeks and swers since January 20@8e now includedSW is now 9

months). As you can see the averages are almost equal to the previous graphs, however
the mininum and maxinum values are, respectively, lower and higher. For example,
within the September window, theaximumrequest rate for an M server was 437 per

hour, while for the Januatf$eptember window, it was 728 per hour. This means that a
source window of 1 month is not enough to capture the extremes in this case.

10.3.3 Increasing the resolution

Figurel3 andFigurel4 are the same dSgurell andFigurel2, except that the

resolution is now 1 minute and the frequencies in the graph are also defined per minut
Remember that the maximumequest rate on an M server was 728 per hour, which
corresponds to 12.1 per minube.Figure13 however, a maximum of 32 requests per

minute is shownThis casevould not have been discoveretthoutincreasing the

resolution. Increasing the resolution further to 1 second however, would not make sense
because then the average measurement result would be below 1. Recall: for a request rate
of 728 per hour, it is worth increasing the resolution to 1 meireecause 728 is larger

than 60 (minutes per hour). However, for a rate of 32 per minute, it is not worth

increasing the resolution to 1 second, because 32 is smaller than 60 (seconds per minute).

33

— Marktplaats1— Marktplaats2— Marktplaats3

Marktplaats4

500

450

400

w
a1
o

Requests/hou
N w
[o
S S

N
o
o

[En
[3)]
o

100

50

—_—— ——

i

|l

J

‘h

\

|

A

il

i

1=

— N

(V)ﬁ‘LO(DI\wCDa

- N
- -

L

1

\

I

L

U

|

A

il

L—

Lk

M < W N~
I o —

Day

o O
—

o
N

I
N

22

<
N N

o
N

Figure 7: PBP request rate @Marktplaats (SW: 1 month, TW: 1 month, R: 1 hour)

250

200

Requests/hot
N
()
=]

=
o
o

50

0

Figure 8: PBP request rate @ Diensten (SW: 1 month, TW: 1 month, R: 1 hour)

‘ — Dienstenl— Dienstenj

I

N

.mﬁ. A Al
N~

N

o]
N

[}
N

o
™

U

)

U

\—IHN(‘OQ‘LOOI\COCDS

- N
-

M < 1 ©
D I B |

Day

~
-

|

oo}
—

20

34

— Minimal — Average — Maximal

500

450

400

350

w
o
o

Requests/ho
N
a1
o

- ’m\ //“v“\ i v“\\
S S AN N (O SV

0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 9: PBP request rate @ Marktplaats (SW: 1 month, TW: 1 week, R: 1 hay

| — Minimal — Average Maximal

250

200

[Eny
al
o

Requests/ho

jWM\%

JUUUUWWW

0
0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 10: PBP request rate @ Diensten (SW: 1 month, TW: 1 week, R: 1 hour)

35

— Minimal — Average—— Maximal

800

700

600

a
o
o

Requests/ho
EaN
o
o

Ml M

ML ML a0
RRNENWALYA

0 6 12180 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 11: PBP request rate @ Marktplaats (SW: 9 months, TW: 1 week, R: 1 hour)

400

350

300

N
A
o

Requests/ho
N
o
o

150

100

50

| — Minimal — Average Maximal

K AR

PR ERYERYERC VAR,

0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 12 PBP request rate @ Diensten (SW: 9 months, TW: 1 week, R: 1 hour)

36

—— Minimal — Average —— Maximal

35

30

o |

. | | |

Requests/mint

10

5_

0
0 61218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 13: PBP request rate @ Marktplaats (SW: 9 months, TW: 1 week, R: 1 minute)

| —— Minimal — Average —— Maximal

35

30

25

20

15 ' '

Requests/mint

10 | Il

0
0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 12 18

Hour

Figure 14: PBP request rate @ Diensten (SW: 9 months, TWL week, R: 1 minute)

10.4 Hardware/software analysigample

In this exampleéhe CPU utilization of a certain request to the PBP applic&ion

analyzed As base line a relatively slow single core system with a CPU benchmark value
of 308.8 MIPSwas usedThesystem was fully utilized by the PBBquest during

execution. By running the calculation a large number of times, an optimal execution time
of 3199 millisecondsvas measured

Next, exactlythe same experimentas donen four other systems with CPU bdmoark
values ranging from 400 to 1400 MIP&Ss described in Sectiof 3, theexecution time
speedupvas relatedo the benchmark speed(ipoth with respect to the base line system)
for each of those systemEhis results irthefollowing graph Eigurel5) for the

individual efficiencyE;. As you can see the slowest system hds aalueof 0.67 while

the fastest system scores only 013Goking at the optimal execution times, the latter is
still significantly faster. However, thadividual efficiency (the part of the theoretical
speed that is actually used) decreases as the benchmark value increases. This makes sense
because the benchmark makes effective use of multiple CPU cores, while the PBP
applicdion does notRemember thaok an ideal application, this graph should be a
horizontal line at 1, meaning that the theoretical speed is fully utilized and that
application speed increases linearly with it. For this exangplean be approachdyy a
logarithmic (pink) or power (blue) function:

E,(x) © - 0.0448n(b,) + 0.665€
E, (x) © 0.666D, **°"

0,8

0,7

0,6

0,5

0,4 ¥

Efficiency

0,3

0,2

0,1

0
A %) ™ a9
ol X H* >
> A 3> N
Benchmark speed (MIP:

Figure 15: PBP individual efficiency trend

38

10.5 PBE@ Marktplaatsisnulation
10.5.1 Hardware and software components

Figurel6 shows a UML modelsadefined in Sectiofi to represent the hardware and
software components involved in the PBE case. As you cathed@BE artifacthas two
dependencies connecting it to other art§aPBP and Moneyview. PBP has four
manifesations connecting it to different instances of itself. PBE and PBP have
deployments connecting them to tarktplaatsldevice. The Moneyview artifact is
connected to theVServerdevice through a deployme®BP has 2 constraints: a

parameter calleBroductCodeand an efficiency expression with respect to CPU usage.

The instances of PBP each have 3 constraints: a probability of occurrence, a value for the
ProductCode parameter and a CPU utilization vdioethe Moneyview parthe

utilization and benchnmk valuesare unknownwhich is why onlyatime constraints

used
Marktplaats1 MVServer
{uCPU =22}
Deployment
R B 7
\
\ PBE g
Deployment
{bCPU = 915.4} Dep\'\oyme”‘ pio]
AN Dependency Dependency /
\ / \ /
\\\ /// \\\ ///
\ 4 N /
/ \
\ / N /
{pProductCode B . _ .
eCPU = -0.0448*Ln(x)+0.6656} PBP Moneyview {t = 1546-2277}

WA WABeperktCasco WACasco AlleDekkingen

{p=0.31 {p=0.19 B {p=0.39 {p=0.11 B
vProductCode = 4 vProductCode =5 vProductCode = 6 vProductCode = 3

uCPU = 507} uCPU = 680} uCPU = 945} uCPU = 2108}

Figure 16: hardware/software model as input for PBE simulation

39

10.5.2 Practical validation

Figurel7 shows theesponse times of the PBE application and its dependencies: PBP
and Moneyview within a range of 600 requests on an ordinary morning for one of the
Marktplaats (M) servers. In general the intervals are decreasing throughout the scenario.
As you can see, ¢hPBE time (blue) is determined by the PBP time (pink) in most cases.
However it may also be determined by the Moneyview time (yellow). Remember that
both dependencies have to be finished before a request to PBE can finish.

When the interval and parametalues of this real life scenarawe loadednto XMISim

and an exact repldy done Figure18is the result. The PBP graph is very similar to the
original graph, which is not surprising becaXd¢lSim hassimulated exactly theame
workload as in real life. The Moneyview graph however is somewhat different. This is
because Moneyview is an external party with other customers as well, which means that
the Moneyview times cannot be directly related to the workload generated frdm V&
only. The times are also influenced by other Moneyview customevhahno datas
available so this part of the scenario cannot be exactly repl&yedever the

distribution of the real life Moneyview timesn be usedrhis means that the times do

not exactly correspond with the real life ones, but over the complete picture, the graphs
are comparable, as shownHigure18. As a result, the Pearson correlation coefficient of
the blue graphs (0.971), though a bit lower ttheseof the pink (0.987), is very high.

When the log file is loaded into XMISim, the application tries to determine its
distributions. Example: with fixed resolution of 25, the 600 requests in the log file are
divided into 24 local parts, each with it distribution. In this case, XMISim
determinedwo normal, three uniform, one legprmal and one logistic distributgart

The others were best described witBedadistribution. For the ProductCode parameter,
the same probability distribution as iretlog filewas takenThis means that, during
simulation, the parameter values will occur with roughly the same frequencies as in the
log file, however the order ngdbe completely different. After runninghi s 6 di st r i but
r e p IFgwed9is the result. Because the intervals and parameter values used here
were only an approach of the real life orfégure19 cannot be directly comparedth

the previous graphs. Howevéris obviousthat the charactsstics of the graphs are quite
similar.

Remember that the request intervals within this scemaete modeledvith 24 individual
distributions.The real life intervals (and the distributions detected from them) are shown
in Figure20. The resulting intervals that were used for the distribution replay are shown
in Figure21. As you can see, modeling the request intervals like this, and then running a
simulation, leads to a comparable however somewhatrdift scenario. Naturally, using

a lower resolution for detecting the distributions will lead to a greater deviation from the
original scenario. A workload model like this can be easily modified and as a result, the
consequences of such a modification bareasily simulatedcigure22 shows the

intervals that would have been used if XMISim would model the workload with only
normaldistributions. As you caseethatgeneralization results in a less accurate model at
the same resolion.

4C

50000

—— PBE —— PBP Moneyview

45000

40000

35000

30000

25000

Execution time (ms

20000

15000

10000

il

5000 —+

[}

'] dcg LU Lj Id

1
Wil

3

8:

I
|
| | |
! | |
W | 'W AULLEA Y
YR "l LT PN
00 8:05 8:10 8:15 8:20

8:25

Figure 17: executiontimesin real life scenario

[— PBE — PBP Moneyview

50000

8:30 8:35

45000

40000

35000

30000

25000

Execution time (ms

20000

15000

10000

‘;ﬁ::

5000+ !
\
|) ad |, s
" ¥y L v W, L Los ¥ v

e

Figure 18 simulated executiontimesfor exactreplay

[—PBE —PBP Moneyview

50000

45000

40000

35000

30000

25000

Execution time (ms

20000

15000

10000

5000

b by ln,.l

I WA AN e

TR

A

8:30 8:35

Figure 19: simulated executiontimes for mixed distribution replay

41

— Beta(0,14219,6339.96,4684.20) —— Beta(312,14732,8043.44,4468.52) Beta(453,13278,7282.88,4347.22)

—— Beta(197,8987,4169.56,2716.36) Beta(257,10491,5124.4,3151.10) Uniform(407,9840)
Beta(412,10649,5616.28,3359.54) Beta(123,8292,4086.92,2820.04) Normal(4046.48,2046.28)
—— Beta(178,6225,3035.52,2099.99)— Beta(32,6659,3005.6,2027.63) Beta(54,5933,2747.44,2120.92)

Beta(403,13121,6173.36,3888.
—— Uniform(536,12070) —— Beta(350,12866,7220.76,3885.54)— Beta(701,11348,6583.32,3480.62)— Beta(70,11171,5208.64,3861.6.
LogNormal(8.17,0.60)
Beta(90,4997,2620.32,1348.53
Beta(369,5926,3488.32,1798.5
Normal(3466.44,2358.93) —— Uniform(86,4904) —— Logistic(2564.4,1116.92) —— Beta(283,3829,1837.32,1107.2!

16000

14000

12000

10000+

8000

Request interval (ms

6000 -

2000

I il

8:00 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45

Figure 20: requestintervalsin real life scenario(Figure 17 and Figure 18)

16000

8:50

14000

12000 I

10000 |

Request interval (ms

aooo J Ul U1 L L
|

6000 [T '!
4000 1 AI 4 |

|
| T |

8:00 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45

Figure 21: requestintervals for mixed distribution replay (Figure 19)

16000

14000

12000

10000 t \ l |

, |
l

Request interval (ms

6000 [
~ 0 I
IR |

Figure 22: request intervals for normal distribution replay

10.6 PBE critical section case

The previous experiment illustrated the general concepM#EPR how to define the
workload, hardware and softwatemponents and how to simulate the system
accordingly This case will focus on theoftware component and illustrate how it may be
exploited in a decision making process.

As described beforghe PBE application depends on both PBP and MoneyVidwle

the PBE execution times wedetermined by those of PBP in most cases, the question
arose whether it would braore efficient to execute PBRquestsvithin a secalled

critical section. In that case, for each instance of the PBE application, only one tequest
PBP would be processed at any time. Others would have to wait until PBP is available
again. As a result, the PBE execution times will be determined by PBP in less cases. In
fact, the PBP execution times will all be more or less optimal, because entgaurest is
processed atanytimd.owever, it may also introduce a 06I
on PBE while PBP is still processing previous requests. Consequently, PBE may have to
wait for PBPand the latter may still be the determining factortfier PBEexecution

times.

Figure23 shows the execution times of PBE, again within an ordinary scenario during
one hour. The blue line represents real life, while the pink line represents the result of
simulating this scenario ugrthe hardware and software models from the previous
experimentTheir correlationvalueof 0.988 is extremely high again. Next, the
consequences of introducing a critical section as described aleogesimulatedTo
represent this in the software modbke PBP artifacfseeFigurel6) was simply supplied
with a capacity constraint of valueRigure24 shows the result of simulating the
modified model with respect to the scenario before. It also shmexiecution times of a
PBE version that actuallyontains the critical section in the same scenario. As you can
see, the simulation very accurately predicted the positive consequences (i.e. decreasing
execution times) of introducing the critical sectidhe correlation value of 0.979 was
only slightly lower than in the nearitical section case.

43

—— PBE real— PBE simulatiod

30000

25000

20000

15000 | |

Execution time (ms

10000 | | |

I
oy

0

i

11:20 11:25 11:31 11:36 11:40 11:45

11:50

Figure 23: PBE execution times without critical section

11:56

‘ —— PBE real— PBE simulatiod

30000

12:.01

12:07

12:11

12:16

25000

20000

Execution time (ms

5000 I | j

M

i

}

0
11:20 11:25 11:31 11:36 11:40 11:45

Figure 24: PBE execution times with critical sectbn

11:50

11:56

12:.01

12:07

12:11

12:16

44

10.7 PBPworst casevorkloadscenario
10.7.1 Modeling theworst casescenario

The previous experimesillustratedthe conceptof SMEPPand its simulatiofn random
scenariosTo validate the workloadomponent within SMEPR morecharacteristic
scenariosthis sectionwill focus onsome extremes with respect to the workload posed on
the PBP application. For this taskeworst case scenariésr the past four years
(according to th&BPlog files) were analyzedn this respect, emonthto-month trends
hardto discoverlnsteadone should compatée intervals within clearly distinct

windows, which is why onlyhe first month®f each yeahave been analyzeBigure25
shows three examples aforst casescenariogor the PBP applidéon within Jamary and
February of 2006, 2002008and 2009The period before and aftesire also showm

the figuresto make suretht t he &6 n o r mnaddeéd inwhe wikdbwindadt, i s
each example shathe intervals within a window of 20@rq u e st s worstcas®® t he 0O
centeredNote that while the figurehows only three exampleser yeaythe

approximations made further on are based on at leagb®Q casescenarios for each

year. All of these semrios have been analyzed using SMEMBre specifically,

XMISim has determined the characteristic parts of each sceaadording to the

dynamic optimal resolution algorithdescribed in Sectio#.3. Next, itdetermined the
parameterized distributions that best chad each of these parts. This procedure is also
described in Sectio#.3. This way, a model of each scenario is automatically generated.

When comparinghe examplefigures, it is clear thaheworst casescenarios have

becone 6 w o rthsoagh the yearsdowever t appeared thahe trends discovered in
thesescenarios werall more or less similaiThis observation isupported by the models
generated for each scenario that was analygéde o6 n or ma(hobtobeor k|l oad
confused with a normalldistributedworkload) which is shown on the left and right

sides of the graghwasusuallycharacteded by lognormal distributions with

parametese close to 8 andl between 10 and1.5(see Appendix Bn how to interpret
thes@. The parts in which the intervals either substantially decrease or increase (i.e.
increasing or decreasing workload), are best represented Gathmadistribution,

which in fact is a generalization of the exponerdiatribution. This makes perfect sense
consideing that the parameters of these distributions do not restrict their values with a
certain upper boungsee Appendix B)In other words: these distributions are best used to
represent unpredictable behavibhe centerperiods in which the interals were actually
minimal, are best approached the Beta distributiorwith parameter$)approximately

0.2 andb approximately GL. Note that because the Beta distribution is only supported
between 0 and 1, these parameters correspond to that suppaodsdlhes however
rescaled by XMISim to fit the interval distribution as requifBloe occurrence of Beta
distributions in the center periods is explained as followseiMthe number of requests

in, for examplea single minute increases, the probabiity 6 ext r emeid i nter val
that minute decreases. Hence, itlterval distribution tends to uniformitilot

surprisingly, heuniform distribution isa special case of the Beta distribution.

Concluding amodelof the typicalworst casavorkload scenacifor the PBPapplication
lookslike this (seeSectiond.4for the syntax):

45

X; LogNogmal (¢

y;Gammak,d)
z;Beta(Ub)
y;Gammak,d)

x;LogNormalg,0)

By using different parameter values, therst casescenarios of different yescan be
approacheavith a single modelrigure26 shows 3 example scenarios that might occur

in each otthose yearaccording to the model above. They should be compared to the real
life scenario®n the page before. The follavg parameter values were used to fit the

model to the scenarios for the diéat years.

2006
2007
2008
2009

X
55
55
55
55

y
35

30
29
35

z
20
30
32
20

€
8.49
8.05
8.05
8.4

O

u
1.28
1.21
1.20
117

k :
0.54 2045455
1.05 8704.40
1.11 3709.76
0.90 792254

U
0.21
0.21
0.21
0.21

b
0.38
0.38
0.38
0.38

The Beta distribution parametdssindb, that déine the center (i.e. the most busy
period) were more or less constant through the y@araminor generalizationthe same
valueswere takerfor each yearThe most significant evolution is seen in the periods
described by the Gamma distributions. Bitté interval mean and standard deviation
have decreased throughout the years, whiamoistly reflected in the scale parameter
estimated by XMISimThe lognormal parameters andi show a similar, however less
significant, evolutionAnother interesting development is that the length of the center
periodz has inceased, meaning that the period in which the intervals were alinim
lasted longerHowever, the last yedhis effect, as well as the evolution of the Gamma
parameters was reversed, meaning that the center period became shorter and the
difference between the Gamma and therlognal periods became smaller. As a result,
the intervals over the whole scenario show less varianddghe characteristic symmetric
decreasingandthenincreasing shapglowly disappears.

10.7.2 Simulating thevorst casescenario

Now that a worst casscenario model with parameters for each ygarailable the

execution times of the PBP application (with respect to this scercand)e simulated
and compar@with the real life timesRemembethat thePBP execution times aomly
partly determined by the request intesv@l large part is also datained by the value

of the ProductCode parameter ($egurel16).

To

remoyve

t his

6noi seod,

timesneed to be normalizddr each different ProductCode value. As a result, a low
execution time will belose to zero and a high execution time will be close to one,
regardless of the ProductCode value.

For each of thavorst casescenarios irFigure25 andFigure26 the corresponding
(normalized)executiorntimesare also showat the top of the graph. Note that the values

46

on the vertical axis correspond to the intervals, not the execution fRReeember that
Figure25 showsreal life execution timeaccording tdhe scenariogrom 2006 to 2009,
while Figure26 showssimulated execution times according to a single workload model,
which is parameterized to fit the different years. Hendéjsfmodel is correct, the
execution times in thedmgures should bglobally comparable. However the actual order
and peak locations may be completely different. Thus, one should not directly compare
these lines. Instead, one should compare their characteristics. For example, the mean
execution time in theimulated 200%cenarioss 454 ms, while inthe real scenariasis
380ms. A more sophisticatesbmparison usee distributions of execution times in the
real lifeand simulatedigures, as demonstratedkigure27. The blue columns represt

the frequencies of execution times in ranges of 100 ms. The pink line shows the
cumulativeprobability of execution times.e. the probability that the execution time is
smaller than or equal to the value on the horizontal axis, within the sceremiesented.

Although the cumulative probabilities correlate for nearly 0188 simulated execution
times inFigure27 show less variance than the real ofldssis also characterized by the
60j umps 6 i n probabiliydinesniinésearelueyte some generalizations and
assumptions ithemodels of the PBP application and the workload posed on it. More
specifically:

1 The workload model was parameterized to evolve in a way comparable to real life
observations. However esgmlly the model was the same for all years.

1 Theapplication model includebe optimal execution times férof the
ProductCode values where they were most distinct, while at least 16 different
values occurred throughout the scenarios. As a result,stsquieh other
ProductCode values will have approximately equal execution times, provided that
only one of them is executed simultaneously.

1 The optimal execution times that were modeled are based on 2008 measurements.
Any evolution of the application itdelasnot modeled

Keeping all this in mind whiléooking at Figure27, thesimulated execution timese
actuallyvery accurate. To say the least, the simulation provides a good impression of the
execution times in real life soarios. It is quite surprising that the performance of a

heavy weight application like PBP, undeworst casaorkload, can be predicted dms
levelwith models agbstracis those useldere

10.7.3 Correctness

When comparingherequesintervals and thearmalized execution timas Figure25

andFigure26, it becomeglear that low intervals correspond to higher trexacies of

high execution times, in both the real and simulated scenbioegever,in real life this

correspondence has become less obvimasigh the yearsvhich can be explained

because at the same time, the interval scena
Naturally the dependency of execution times on intervals decreases whenaheevar

the latter decreases. The opposite relation, intervals depending on execution times, may

also play a rolef-or each interval throughout the scenaxidISim hasdetermined the

47

probability that it was depending on the execution time of any rumaogesas

described in Sectiof.5. This probability was 0.04 at most, perhaps explained by the fact
that in the 2009 scenarios the average number of requests per user was aihlys]..5.
within thiswindow of 200 requests, atost 8 (and pbably less) of the intervals have
beenpartly determined by execution times. Although in these scenarios the dependency
of intervals on execution times is small, XMISim deedse it into account upon

simulation

48

00000000

1600004
0000000
0000000

0000000

000000
000000 ﬂ
000000
MV L
11 21

Request interval (m¢

/\

ﬂ“{\M\“& W . j Mw“&ww” S

I

Al

131 14

Request interval (m¢

0000000

0000000

Request interval (me

oooooo

Figure 25: top 3 worst casescenarios in January/February 2006/2007/2008/2009

49

