
 
 
 

 

Analysis and 
visualisation of 
defects in software 
projects 
 

Student: Stefan Wink 
Supervisor: Michel Chaudron 
Special thanks to: Ariadi Nugroho 
 
October 2008 
LIACS, Leiden University 



Table of Contents 
2 
 

2 
 

4 
 

8 
 

18 
 

19 
 

20 
 

20 
 

21 

 Introduction ...........................................................................................................................  
 
Subject background ................................................................................................................ 
 
Solution approach ..................................................................................................................  
 
Results ....................................................................................................................................  
 
Issues ..................................................................................................................................... 
 
Future work ...........................................................................................................................  
 
Conclusion ............................................................................................................................  
 
References .............................................................................................................................  
 
Appendix ...............................................................................................................................  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 



A
T

visu

 
Intro
The i
teach
Lang
intern
Later
this s
UML
This 
 
Subj
UML
create
types
classe
relati
assoc
 
An as
objec
 
Unles
is dis
There
end o
assoc
 
Asso
meth
 
 
 
 
 
 
 
 
 
 
 
 

This report di
ualise defect

a

oduction 
idea for this 
her, Michel C
guage) model
net and was 
r, when the b
subject. He d
L models, sof
report is abo

ect backgro
L is a standar
e an abstract
s, including c
es (drawn as
ionships (dra
ciation or gen

ssociation de
ct instance to

ss specified 
splayed in th
e is also mul
of the associa
ciation. E.g. 

ciations are 
od” from on

iscusses the 
ts in softwar
analyse the g

results of my
re projects, w
generated im

Abstract: 
y parser. Th

which have b
mages for pat

he main aim o
been encode
tterns/notabl

of the resear
d into .xmi f
le things. 

rch was to 
files, and to 

project bega
Chaudron. W
ls [1] are act
surprised ho

bachelorproj
did have som
ftware defec

an when I ha
We had a disc

tually related
ow little I fou

out my findin

ound 
rdised visual
t model of an
class diagram
s a rectangle 
awn as a line
neralisation.

efines a relat
o cause anoth

otherwise, th
he form of an
ltiplicity. Th
ation can be 
1 (one and o

usually used
ne class to an

Figu

ects [3] start
mething inter
cts and coupl

ad an oral ex
cussion on h
d to Java [2]
und. 

xam with my
how UML (U

 code. I then

y Software E
Unified Mode
n started a se

ngineering 
elling 
earch on the 

ted, I went to
resting, whic
ling, combin

o Michel to 
ch would inv
ned leading t

ask if he had
volve program
to error visu

d anything o
mming, 
alisation. 

on 

ngs. 

l specificatio
n object-orie
ms, which w
with the cla

e) to one ano
.  

on language 
ented system

we’ll use later
ass name, att
other. A relat

for object m
m. It contains

r on. A class
tributes and o
tionship can 

modelling. It 
s a variety of
s diagram co
operations) a
be for instan

is used to 
f diagram 
onsists of 
and their 
nce an 

tionship betw
her to perfor

ween two cla
rm an action

asses of obje
n on its behal

ects which a
lf. 

allows one 

he relation is
n arrow poin
his indicates 

linked to an
one only), 0.

s bidirection
nting from on

d in the conte
nother. 

ure 1: UML Cla

how many in
n instance of
.1 (zero or o

nal. In case th
ne class to an

ext of “send

ass Diagram w

nstances of t
f the class at 
one) or 1..* (

here is a spe
nother. 

ecification, itt 

the class at t
the other en

(at least one)

this particula
nd of the 
). 

ding a messag

with an associat

ge” or “invo

tion 

oking a 

ar 

2 
 



 
The corresponding code for Figure 1 would be: 
 
public class Person { 
String Name; 
String Phone_Number; 
String Email_Address; 
void Purchase_Parking_Pass(); 
private Address personAddress[1]; 

} 
 
public class Address { 
String Street; 
... 
void Validate(); 
... 

} 
 
There is an association from class Person to class Address, which is one-way only. 
Content (let’s take  String Street as an example) from the class Address can be 
retrieved through calling personAddress.Street. 
 
 
Coupling is a phenomenon which occurs when there are interdependencies between one 
module and another. It can be used as an indication for software quality. In general, the 
more tightly coupled (high degree of interconnections) a system is, the harder it is to 
understand and modify the system, because of the interdependencies. A change in one 
module will probably lead to changes in the other module(s) (because they often share 
variables or functions). A network of interdependencies makes it hard to see at a glance 
how a certain component works. If you want to use a specific component that is coupled 
to other components, you will have to import all of the components in order for them to 
work. 
 
A loosely coupled system is preferable, since when changing a system you’d have to 
make sure that the change doesn’t affect other classes in a way you do not want them to. 
Therefore a loosely coupled system will generally contain less error-prone classes, 
leading to a better system in terms of maintaining and changing. 
To reduce coupling, you have to reduce the number of connections between modules and 
the strength of the connections. Only use coupling when it makes the modelling easier, 
which will lead to a program that is easier to maintain. 
Coupling is not necessarily a bad thing, it just has to be used in a controlled manner. 
 
Lethbridge & Laganiere [4] state several types of coupling: 
1) Content coupling: where one component repeatedly changes internal data from another 
component. 
2) Common coupling: the use of global variables in a program 
3) Control coupling: function’s parameter determines what the function does. This is also 
referred to as polymorphism. 
 

3 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Coup
 
Let’s
which
A fai
A def
the co
failur
An er
introd
devel
Impro
fewer
 
 
Solut
UML
XML 
UML
heade
with 
 
<UML

</UM
 

Figu

pling is essen

 take a look 
h was menti
lure is unacc
fect is a flaw
ode, that con
res. A defect
rror is a slip-
duction of a 
lopment proc
oved educati
r errors, and

tion approa
L diagrams c

Metadata In
L and XML, 
ers and tags.
is this: 

:Package n
<UML:Cla
</UML:Cl
<UML:Int
</UML:In
<UML:Cla
</UML:Cl

L:Package>

ure 2: Two ide

ntially a form

at some def
oned on the 
ceptable beh

w in any aspe
ntributes, or 
t is also know
-up or inapp
defect into t
cess, from re
ion and disc

d hence fewe

ach 
an be (and o
nterchange)
and has an X
 A very sma

name = “med
ass name = 
lass> 
terface nam
nterface> 
ass name = 
lass> 
> 

entical class diaagrams with a ddifferent degreee of coupling 

m of an assocciation. 

finitions on d
previous pa

haviour exhib

defects used 
age: 

in Lethbridgge & Laganiiere’s book 

ect of the sys
may potenti
wn as a fault

bited by a sy

propriate dec
the system. I
equirements

stem includi
ially contribu
t. 

ystem. 
ing the requi
ute, to the oc

irements, the
ccurrence of

e design and 
f one or moree 

iplined appr
r defects and

cision by a so
It can be ma
 to impleme

often are) sto
. It’s an integ
XML-like la
all simplified

dical” xmi
“Appointm

me = “Diar

“DiaryFor

roaches to so
d fewer failu

oftware deve
de at any sta
ntation and m

ored in a file
gration of fo

ayout but it h
d portion of t

i.id = “{F
mentForm” x

ryBusiness

rm” xmi.id 

oftware engin
ures. 

eloper that le
age of the so
maintenance
neering shou

eads to the 
oftware 
e. 
uld lead to 

 type called 
our industry 
has a few con
the project f

XMI (which
standards [5
nstraints on 
file we’ve be

h stands for 
5], including 
file index, 

een providedd 

12312}”> 
xmi.id = ““{AB41G2}”>> 

Interface””> 

= “{B12B551A}”> 

4 



The structure of the file is pretty clear. XML is a member of the mark-up language family, 
which uses tags (both opening and closing) extensively. In XML, every opening tag must 
have its own closing tag. The number of opening and closing tags in the entire file is 
therefore equal. By keeping track of how many opening and closing tags there have been 
while processing a file you can calculate the “depth” of the current tag (by subtracting the 
amount of closing tags from the amount of opening tags). 
Tabs are used so that the structure of the file becomes more comprehensible. 
In this example there are declarations of one package, two classes and one interface. The 
classes and interface are declared within the package, which means that in the UML 
model they are encapsulated in the package medical. 
 
 
To visualise these diagrams we use GraphViz [6]. This is a program which allows for fast 
graph (matrix) drawing, using its own syntax. The syntax is quite simple: 
 
graph G { 
 node A; 
 subgraph clusterBC { 
  node B; 
  node C; 
 } 
 A -- B; 
} 
 
 
This example would draw three nodes, A, B and C, of which B and C are in the same 
cluster and A and B are connected to each other through a line: 
 

 
 
 
This is really all I need to visualise the UML diagrams, since I’m focussing on packages, 
classes, interfaces and associations. Lines correspond to associations, nodes correspond 
to classes or interfaces and clusters correspond to packages. As a bonus, some tweaking 
with node shapes, colours and line thickness/styles can be applied. 
 
 

5 
 



GraphViz incorporates different rendering algorithms, of which the most notable are dot 
and neato. Dot rendering is used for directed graphs, neato is used for undirected graphs. 
Since I’m not interested in the direction of the associations, I’ll go with neato. More 
precisely: I will use FDP, which is an extension on neato, supporting clusters (to 
visualise packages).  
 
The XMI file has to be converted somehow to an input format with which FDP can 
render a nice image. Therefore, a parser had to be written. Java seemed like a good option, 
because for Java there are readily available libraries which support XML parsing, for 
instance DOM [7] or SAX [8]. It was just a matter of importing the right libraries and 
make use of the parsing functions. I started experimenting with the SAX libraries and 
they worked right away, so I continued with SAX to write the parser. 
 
SAX uses a couple of functions which are called when the parser recognises a certain part 
of the XML file (e.g. a tag, information between a tag, a closing tag). 
Such SAX functions are startDocument, endDocument, startElement(String name, 
Attributes atts), endElement(String name), characters(char[] chars, int start, int length). 
Say we have the following example: 
<UML:Class name = “MedicalDataLoader” xmi.id = “{A221-123-321}”> 
In this case, the startElement function is called and the String name will be filled with 
“Class”, and attributes is a dataset which is filled with the attributes. They can be 
extracted by using atts.getLocalName(i) and atts.getValue(i). In this case, 
atts.getLocalName(1) would return “xmi.id” and atts.getValue(1) would return “{A221-
123-321}”. 
 
By storing the data of classes and interfaces (these will become the nodes) and combining 
these with the associations (these will become the interconnects of the nodes) we can 
compose a nice image through GraphViz visualisation. 
 
GraphViz’s syntax also allows for different shapes of nodes, thickness of edges and 
nodes and the use of colours. We’ll use all of these options to try to create a clear image, 
where differences can be spotted easily. 
 
GraphViz's output (the image) can be in a number of formats, such as gif, jpg, png, svg, 
and plenty more. While jpg-like formats work fine for small inputs (say <100 nodes), 
they don't work for larger inputs. The program will keep fully utilising CPU and memory 
for a couple of minutes and then aborts. This is because GraphViz tries to render the 
image within the memory and processes it through a certain algorithm. It tries to 
minimise the number of overlaps, but at a certain point you'll receive an error message 
which tells you that the iterate number has exceeded the value of INT_MAX. 
As said, it does work for smaller inputs, but they would still return large images. A 50  
node input with a couple of associations gave a 32 megapixel (resolution of 8000x4000 
pixels) image. Since the project has 1000+ nodes, this clearly wasn't the way to go. 
Luckily, GraphViz has support for svg (Scalabe Vector Graphics). With vectors, you 
don't have the problem that an image is built up pixel by pixel. Rendering an svg is much 
faster than jpg (seconds as opposed to minutes), and the svg remains a very small file 

6 
 



(<1MB). The other great thing about svg is that you can zoom at any level without loss of 
quality.  
 
To view these svg files, you could use a regular browser with a plugin for svg, but this 
doesn't work smoothly. Therefore I recommend ZGRViewer [9], a standalone Java 
application specialised in viewing files generated by GraphViz. The great thing about it is 
that it keeps track of the names and ID's, which can be viewed by doing a mouse-over on 
them. This isn't possible with browser plug-ins. 
 
ZGRViewer needs to be linked to the GraphViz render algorithm and this has to be set 
manually. How to do this is explained in the Appendix. 
 
 
I’ve been provided with a defect database which corresponds to the original UML model. 
Essential data from the database was extracted to an XML document, of which a portion 
is shown below. 
 
 <row> 
  <field name="defectsid">PARTS00000305</field>  
  <field name="component">diary</field>  
  <field name="classname">DiaryBusinessBean.java</field>  
  <field name="classtype">business</field>  
  <field name="headline">Business rule. Appointment that end before it begins is possible. 
UC 015</field>  
  <field name="description">Changing an appointment thus, that it ends before it has 
begun is possible. Seems rather ridiculous to me... This applies also to Use cases: 006, 
007 and 016. MC, 2004-07-30: See notes.</field>  
  <field name="finding_type">Test</field>  
 </row> 

 
The information of each defect is put within the <row> tags. A defect has several 
attributes. There is a defectsid, which is used for identification of the defect. Typically, a 
defect has one to five associations (lines) to affected nodes. In the case of four affected 
nodes by a single defect, there will be four <row> declarations of a defect with the same 
defectsid while each will have a different classname.  
 
 
A defect has a defectsid (which is not necessarily unique because one defect can affect 
several classes), the affected component (cluster/group/package), classname, classtype 
(layer type), a headline which briefly explains the defect, a larger description of the 
problem and a so called finding type, where defects are classified. There are four kinds of 
finding types and each has its own level of severity of the defect. By scrolling through the 
defects file and comparing finding types with their descriptions you get a general idea of 
what’s what: 
 
Finding Type Defect example 
Acceptance Small GUI corrections / bugs 
Integration Small GUI mistakes (e.g. printing doesn’t print a date) 
Review Errors in similarity of original UML model and final program 
Test Serious error in the final program (functionality) 

7 
 



 
Acceptance and integration usually refer to small inconsistencies in the GUI, such as 
typos, text alignment or in some occasions small bugs. These are not really the kind of 
defects we’re after here. Review defects are inconsistencies between the original UML 
models and the implementation in the final program. This will not necessarily lead to 
faults in the program, but can do so. Test defects are serious errors in the program. 
                                                                                                                                                    
The main focus is to visualise defects (of the severe type), so test defects will be taken 
into account. 
It might also be interesting to look at review defects and compare these results to test 
defects. If there is a relation between these two types, it might show that deviating from 
the original UML model/specification will lead to defects in the final program. 
 
 
Results 
I've been provided with a software engineering project which we're going to analyse in 
this section. The program appears to serve some medical application, given the name of 
several classes (e.g. MedicalDossierForm, MedicalDataLoader, or Patient). There are 
two sets of data, a UML model of the program itself and a corresponding defect database, 
both in XML format. I've written a parser which uses Java SAX libraries that will take 
these two files as its input. The parser will create a graph that will be passed to 
ZGRViewer, which will render a neat image of the project, with certain enhancements 
applied. On demand, a csv file (Comma Seperated Values) will be written which contains 
all classes with information such as defect amount, parent package and base package. 
This file can be viewed in Microsoft Office Excel as a spreadsheet, with the ability of 
sorting data or creating graphs. 
 
The parser has a GUI in which a lot of options can be selected. A full documentation can 
be found in the appendix.  
 
In the rest of this section all settings will be left on their default settings, except for the 
defect settings. Note that selecting different finding types can result in very diverse 
images. 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Overview 
Figure 3 was obtained by having all parse settings at their default settings, except for the 
defects. In this case, defects of finding type test were selected. The image contains a lot 
of information. Let's first cover what's to be seen, and then we'll start looking into a 
deeper level of analysis. 
Throughout the image grey blocks are visible. These correspond to (UML) packages at 
the base level. They will be referred to as base packages from now on. 
Within the base packages, more packages are visible (block shaped, most of them are 
coloured). Most of these packages have distinct colours, so that they can easily be 
distinguished. Some colours occur frequently, like yellow, blue and purple. We'll get to 
that later. 
The small rectangular and diamond shapes with text inside packages correspond to 
respectively classes and interfaces, also referred to as nodes. Figures 4 and 5 show a 
close up of a portion of Figure 3. By comparing Figure 5 and Figure 3 it becomes clear 
that this is a large project: there are over 1000 nodes in Figure 3! 
The lines are associations, which for simplicity are all treated identical (no distinction 
between directions or multiplicity). 

9 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Top: Figure 4, a close-up of Figure 3                Bottom: Figure 5, an even closer look at Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 
 



The images show resemblance with UML class diagrams. Packages, nodes, interfaces and 
associations are quite similar to those as described in the UML standards. 
The program was designed with layering in mind. Here, a three layer approach was used, 
from top to bottom: presentation, business, persistence (data), as can be seen in Figure 6: 
 

 
Figure 6: Layering within the program 

 
Components (packages, classes, interfaces) can be placed within these "layer-packages" 
(coloured yellow, pink and blue) to improve maintainability. For instance, a patient 
database should be placed in the bottom layer, where the data resides, while the GUI 
should be placed in the top layer, which holds components with relation to presentation. 
Similar packages (in terms of name/functionality) that occur frequently are given 
identical colours, so that the structure is more clear at a glance than without this property. 
Here's a small list of packages that have been given colours: 
Every base package has a distinct grey colour (on a 256 colour grayscale each differ 5 
colours). 
The presentation package (yellow) and within this package there can exist package action 
(orange-red) and package datasource (light blue). 
The business package (pink) contains package sessionbean (dark green) and package 
delegates (brown). 
The package persistence (blue) holds packages delegates (orange) and data (light green). 
 
In Figure 5 the classes and interfaces are visible. Classes are rectangular shaped while 
interfaces are diamond shaped. By default, only the name and the amount of defects is 
shown, but more information can be viewed via a mouse-over or by enabling the option 
in the parser GUI. Classes and interfaces always reside inside packages. In this case, the 
class MedicalBusinessBean is inside the package sessionbean (coloured darkgreen), 
which is inside the package business (pink), which is inside the base package medication 
(note that the title of this package cannot be seen in Figure 5). 

11 
 



Classes and interfaces can contain defects. This is visualised by giving these nodes a 
colour, depending on the amount of defects. If there are no defect at all, the node is 
transparent (it will take the colour from its parent package). If there are defects, the node 
will be coloured somewhere between orange-red and deep purple according to this 
distribution: 
 

Defect amount Colour 
1 
2-4 
5-9 
≥10 

 
The amount of defects is also mentioned in the node (textual), but with a colour coding 
scheme like this it's easier to tell the severity of different defect nodes apart. 
 
 
 
The results I will present on the next pages have been obtained by enabling defects of 
type “Test” only. It provides an overview of how many defects are contained in the grey 
“base” packages. The values from the tables originate from the defects.csv file, generated 
by the parser by keeping track of the amount of defects during the parsing process. 
 
 
Let's find out if a class with a large amount of defects is likely to have a high number of 
associations: 
 

 

Classname Defect amount Association amount 
AppointmentForm 14 1 
UserBusinessBean 14 6 
MedicalDossierForm 11 11 
PartyForm 11 17 
DiaryBusinessBean 10 10 
InvoicingBusinessBean 10 19 

Lots of associations per node could cause defects, but the class AppointmentForm shows 
that this is not necessarily so. Let's see if there are nodes where it is the other way around: 
no associations, yet still defects. Or let's see if there are nodes without any defects and a 
lot of associations. 
 
There are four classes with 20+ associations (MedicalDataLoader, TopicsDTO, 
MedicalBusinessBean and PrintDossierDataSource, they form a diamond in the center of 
Figure 3 and are easily spotted because of the high density of associations). They don't 
exhibit huge numbers of defects (ranging from 1 to 7). This is probably because all these 
classes load data from (many) other classes. They don't modify the data, so it isn't very 
likely that coupling errors occur here. 

12 
 



The node with the most associations yet keeping a clean sheet is TestRemoveAttendencies 
with 8 associations and 0 defects. 
 
It turns out you can't draw conclusions based on only the numbers of associations and 
defects. You need to look at the nature of the classes in order to find out what function 
they serve. A class which modifies data of its associated classes is likely to have a higher 
defect amount than a class which only reads a parameter from another class. 
 
It can be interesting to look at how the defects are distributed among their finding types. 
Here these results were obtained by selecting defects of finding type Test only. 
 
 
Base Package Amount of defects Amount of nodes that 

contain defects 
Amount of total nodes 
within package 

Common 45 27 113 
Diary 97 27 76 
Financial 105 41 191 
Maintenance 37 11 80 
Medical 144 71 496 
Medication 4 3 15 
Party 117 52 106 
Psychdossier 1 1 18 
Registration 54 31 64 
Task 2 2 25 
Total 606 266 1184 
 
 
It’s interesting to look at relative (normalised) data in this case. So here goes: 
 
 
Base Package Percentage of 

affected nodes 
within package 

Average amount of 
defects over the 
affected nodes 

Average amount of 
defects over all nodes 
within package 

Common 24% 1,67 0,40 
Diary 36% 3,59 1,28 
Financial 22% 2,56 0,55 
Maintenance 14% 3,36 0,46 
Medical 14% 2,03 0,29 
Medication 20% 1,33 0,27 
Party 49% 2,25 1,10 
Psychdossier 6% 1,00 0,06 
Registration 48% 1,74 0,84 
Task 8% 1,00 0,08 
Total average 24% 2,05 0,53 
 
 

13 
 



 
Let’s take a look at the defect statistics from a layer point of view: 
 
 
Layer Defect 

amount 
Defect 
nodes 

Total 
nodes 

Percentage 
of defect 
nodes on 
total 

Average 
amount of 
defects 
per 
affected 
node 

Average 
amount 
of 
defects 
per 
node 
over all 
nodes 

Presentation 342 148 409 43% 2,31 0,83 
Business 197 78 255 31% 2,53 0,77 
Persistence 64 39 514 8% 1,64 0,12 
 
 
 
Up next we take a look at defects from a different finding type, Review. 
The following tables correspond with the defects of type Review only: 
 
 
Base Package Amount of defects Amount of nodes that 

contain defects 
Amount of total nodes 
within package 

Common 81 40 113 
Diary 42 20 76  
Financial 41 25 191 
Maintenance 71 22 80 
Medical 202 114 496 
Medication 0 0 15 
Party 88 39 106 
Psychdossier 5 4 18 
Registration 34 20 64 
Task 2 2 25 
Total 566 286 1184 
 
 
 
 
 
 
 
 
 
 
 

14 
 



 
Normmalised data of the abovee graph: 
 
Base 

Comm
Diary
Finan
Main
Medi
Medi
Party
Psych
Regis
Task 
Total

Package 

mon 
y 
ncial 
ntenance 
ical 
ication 
y 
hdossier 
stration 

l average 
 
 
 
If the
 

 
 

 

Percenta
affected 
within p
35% 
26% 
13% 
28% 
23% 
0% 
37% 
22% 
31% 
8% 
22% 

age of 
nodes 

package 

e gathered da

0

50

100

150

200

250

ata is put into

Average a
defects ov
affected n
2,03 
2,10 
1,64 
3,23 
1,77 
0,00 
2,26 
1,25 
1,70 
1,00 
1,70 

amount of 
ver the 
nodes 

o a graph the

Raw d

e similarities

Figure 7 

defect am

Averag
defects 
within p
0,72 
0,55 
0,21 
0,89 
0,41 
0,00 
0,83 
0,28 
0,53 
0,08 
0,45 

ge amount o
over all nod
package 

s start to sho

mount

ow: 

of 
des 

1

Review

Test

5 

 

w

 



1

2

3

4

5

6

 

 

0%

10%

20%

30%

40%

50%

60%

0

0.5

1

1.5

2

2.5

3

3.5

4

Avera

Percen

age defect

tage of d

t amount

Figure 8 

Figure 9 

efect nod

t per nod

des in pacckage

Review

Test

e over afffected no

 

1

Review

Test

odes

6 

 

 



 
Figur
It loo
that t
the am
 
The b
Medi
a look
wron
 
PART
PART
PART
PART
PART
PART
PART
PART
PART
 
The f
with 
case h
 
 

re 9 in partic
oks like there
there is a rela
mount of def

base package
icalBusinessB
k at the com

ng with it.  

TS00003683
TS00004353
TS00004355
TS00004402
TS00004656
TS00004837
TS00005172
TS00005305
TS00005306

first commen
care it would
here, judging

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ave

cular shows 
e is a relation
ation betwee
fects in the f

e Medical ho
Bean has 7 d

mments from 

3 Test 
3 Test 
5 Test 
2 Review 
6 Review 
7 Review 
2 Test 
5 Review 
6 Review 

nt states that
dn’t necessa
g by some o

erage def

striking sim
n between th
en deviating 
final program

olds the mos
defects of ty
the defect d

Not implem
Error is no
Function p
Over 650 v
No optimis
Code looku
Link not w
Some valu
Function lo

t the coders d
arily lead to o
of the comme

fect amou

Figure 10 

milarities. 
he two findin
from the ori

m. 

st defects of 
ype Test and 
database on t

mented acco
t thrown (try

parameters ar
violations by
stic locking
up happens m

working 
ues should be
oads incorre

deviated from
other defects
ents. 

unt per n

ng types revi
iginal UML 

the project. 
12 defects o

this particula

ording to des
y & catch) 
re literals ins
y calling fun

multiple tim

e combined
ct values 

m the origin
s, but unfort

node over

iew and test.
model while

The class 
of type Revie
ar class, to fi

ign 

stead of cons
ction from o

mes, should b

nal model. If 
unately that

r all node

1

Review

Test

. This means
e coding and

ew. Let's take
ind out what

stants 
other class 

be only once

f this is done 
’s not the 

s

7 

 

s 
d 

e 
t's 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Base package medical with Review defects (left) and Test defects (right) 
 
Figure 11 shows a side by side view of the generated images using different finding types, 
in an attempt to show similarity in the affected nodes. It turns out there is some similarity, 
but it isn’t as similar as I was hoping to see, judging from the graphs in the previous 
pages. Compared to the yellow and blue packages, the pink packages show the least 
similar behaviour. 
 
Comparing images is tough because GraphViz renders each input differently. The 
locations of packages and nodes are roughly the same, but not entirely. This is odd since 
the only thing that’s changing is the colour of the nodes, not their location. GraphViz has 
more funny phenomena, which I’ll discuss in the next section. 
 
 
 
Issues 
GraphViz has some issues/bugs. Positioning doesn’t work under FDP rendering. It only 
appears to work when associations are drawn between these nodes. Also, the syntax isn’t 
completely clear. I’ve emailed Emden Gassner [10], who is in charge of graph layout 
issues, about this on Friday June 11th, 2008. I’m awaiting response at the moment. If 
there appears to be a fix for this I still might implement this into the parser. It will be used 
to position certain sub-graphs (clusters) within other sub-graphs. E.g. inside the large 
greyed financial cluster, the action (yellow), business (purple) and persistence (greenish) 
should be aligned to show hierarchy. This should help understanding the structure of the 
program more easily. However, this is not possible at the moment. A (rather dirty) 
solution would be to connect every node with the other, but then the lines would have to 
be invisible. This would solve the positioning problem, but incorporates another: the 
“overlap = false” statement would become unusable due to the extreme number of 
interconnections in the graph.  
 

18 
 



Update: got a response from Emden (see Appendix). He says it’s possible to ‘steer’ the 
nodes into the right direction with small graphs, but when dealing with larger graphs the 
algorithm simply ignores the positioning parameters. It is possible however to manually 
override this, but then you have to do that for every single node in the graph, which isn’t 
feasible (we’re talking 1000+ nodes in the complete model). 
 
 
It would be nice if we could get a visual representation of the layering used throughout 
the program. Nearly all base-packages (coloured grey) contain the layers persistence, 
business, and presentation. These layers correspond to how the program is designed in an 
abstract way (data layer at the bottom, presentation layer at the top, business layer in 
between). This is visualised in Figure 6. 
This is only possible if we don’t group the packages into clusters, because GraphViz 
doesn’t support overlapping clusters (one node cannot be in more than one package). We 
can give up on package-clustering in favour of layer-clustering, but then the resulting 
image would be three layers high, but immensely wide. This will not improve the 
comprehensibility of the image. 
 
 
 
Future work 
In theory, the parser works for any XMI model, given that it shares the same structure of 
this project. This means that the information must be inside of the tags, rather than in 
between them. For example the parser will correctly parse <xmi.id=”1”></xmi.id> but 
fails at <xmi.id>1</xmi.id>. The reason for this is that in the first case you’ll need to 
extract the information as an attribute from the function startElement while in the latter 
case the information has to be extracted through the function characters. 
This problem could be solved by checking first with what kind of file we’re dealing with, 
thus determining which functions have to be used to extract which information. 
 
 
 
The colours have been added manually (manually triggered that is), so when a different 
project with different names is parsed, all packages will be transparent. This problem can 
be overcome by first scanning the file for names of packages that occur frequently and 
then assign colours to those names. Then parse the project using this information. That 
still doesn’t solve everything, because when there are many colours it could very well 
happen that packages coloured pink, light pink, light purple and dark pink are placed next 
to each other (decreasing distinguishability). A solution to this might be an 
implementation of a heuristic for the NP-complete graph-colouring problem [11]. 
 
 
 
 
 
 

19 
 



Conclusion 
The main aim of the project was the visualisation, which worked out pretty well. The 
images show the architecture of the project with use of colours and shapes. It would be 
nice to enforce a layout in which the layering is taken into account, but with GraphViz 
this remains impossible. ZGRViewer is a nice tool with which the svg images can be 
viewed quickly. The great thing is that you can zoom all the way in to class level without 
the loss of image quality, since the image is made out of vectors. 
 
Besides visualisation I wanted to do some analysis, mainly on defects and coupling, as 
these two subjects appealed to me. Analysis proved to be difficult since there are a lot of 
factors you must take into account. The amount of defects itself doesn’t say much, you 
really have to look in the defect database to get an insight of what’s going on. This 
database is quite large, so I was only able to look at a couple of specific classes. 
 
Along this way I started to make assumptions, of which some turned out to be true and 
some turned out to be false. Either way it was educational to take a look at a large 
software project, which, as it turns out, doesn’t come error-free. 
 
 
 
 
 
 
 
 
 
 
 
 
 
References 
[1] UML: http://www.uml.org/ 
[2] Java: http://www.sun.com/java/ 
[3] Bachelorproject at LIACS: http://www.liacs.nl/edu/bachelor.html 
[4] Lethbridge/Laganiere: Object-Oriented Software Engineering 
[5] XMI: http://en.wikipedia.org/wiki/XML_Metadata_Interchange 
[6] GraphViz: http://www.graphviz.org/ 
[7] Java DOM: http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-
summary.html 
[8] Java SAX: http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/package-
summary.html 
[9] ZGRViewer: http://zvtm.sourceforge.net/zgrviewer.html 
[10] Emden Gassner: http://www.research.att.com/viewPage.cfm?PageID=431 
[11] Graph colouring problem: http://en.wikipedia.org/wiki/Graph_coloring 
 
 

20 
 

http://www.uml.org/
http://www.sun.com/java/
http://www.liacs.nl/edu/bachelor.html
http://en.wikipedia.org/wiki/XML_Metadata_Interchange
http://www.graphviz.org/
http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/org/w3c/dom/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/package-summary.html
http://zvtm.sourceforge.net/zgrviewer.html
http://www.research.att.com/viewPage.cfm?PageID=431
http://en.wikipedia.org/wiki/Graph_coloring


Appendix 
Subject:   Re: GraphViz FDP pos rendering 
From:   "Emden R. Gansner" erg@research.att.com 
Date:   Fri, July 11, 2008 6:10 pm  
To:   "Stefan Wink" <swink@liacs.nl> 
Stefan Wink wrote: 
> Hello Emden, 
> 
> I'm having some trouble with node positioning using FDP/Neato. 
> 
> When I try: 
> graph G { 
>         a [pos="0,0"]; 
>         b [pos="0,5"]; 
>         c [pos="0,10"]; 
> } 
> 
> the nodes a, b and c will appear on the screen, but they're completely 
> ignoring the pos attributes. 
> 
> When I try: 
> graph G { 
>         a [pos="0,0"]; 
>         b [pos="0,5"]; 
>         c [pos="0,10"]; 
>         a -- b -- c; 
> } 
> 
> the nodes a, b and c do are positioned in the way I want them to. 
> 
> When I try: 
> graph G { 
>         a [pos="0,0"]; 
>         b [pos="0,5"]; 
>         c [pos="0,10"]; 
>         a -- b; 
> } 
> 
> the nodes a and b are positioned according to the pos attribute, but node 
> c is then placed somewhere else. 
> 
> 
> 
> Why does there have to be a link between nodes in order for them to be 
> positioned accordingly? Am I missing something here? 
> 
>    
Are you using neato for graph layout or rendering? If the former, the  
algorithm will start with the positions 
you give it, but it is extremely unlikely that these positions will be  
used in the final layout unless you pin 
them down. In the cases above where you say they are positioned as you  
want them, they are no longer 
where you put them originally, although they lie on a vertical line. It  
just happens that, starting with your 
initial positions, the algorithm doesn't have to change the x  
coordinate, but just needs to adjust the y 
coordinate. If you had started instead with 
 
graph G { 
    a [pos="0,0"]; 
    b [pos="0,5"]; 
    c [pos="0,10"]; 
    d [pos="10,10"]; 
    a -- b -- c -- d 
} 
 
you'd find the nodes curving up and to the right from a to d. 
 
The effect you noticed, where it appears that nodes need to be connected  

21 
 

mailto:erg@research.att.com


to get the layout you want, 
happens because neato doesn't handle unconnected graphs. It lays out  
each component separately, and 
then combines them into a single layout by packing. See 
 
   http://www.graphviz.org/doc/info/attrs.html#d:pack 
   http://www.graphviz.org/doc/info/attrs.html#d:packmode 
 
Again, it is largely just an accident that the connected component  
appears to look the way you expect it to. 
 
If you really just want to render  your graph, using exactly the  
positions you supply, use 
 
    neato -n 
 
This tells neato not to do any layout, but just use the graph positions  
as given in points. 
 
     -- Emden 

 
 
 
 
 
 
 
 
User documentation on the parser: 

 

22 
 

http://www.graphviz.org/doc/info/attrs.html#d:pack
http://www.graphviz.org/doc/info/attrs.html#d:packmode


We’ll run through the program top-down, as that the way the fields should be filled in. 
On top there are three buttons, “Select XMI”, “Select Defects” and “Select ZGRViewer 
jar”. Click on these to select the corresponding files. Select XMI should point to the 
source XMI file where the program is modelled (in packages, classes, interfaces and 
associations). Select Defects should point to a (if available, else this will be ignored) 
defects file which contains information on which classes/interfaces contain defects. Select 
ZGRViewer jar should point to the location of the ZGRViewer jar executable, which by 
default resides in the C:\Program Files\ directory (on Windows machines, that is). 
This information only has to be entered once, as it will remain stored by the parser. 
 
 
Explanation on the check boxes (classes and interfaces together will be called nodes from 
now on): 
Group Packages: check this box if you want to view the package structure of the model. 
Nodes will be placed in their parent package. If unchecked, all nodes can appear 
randomly on the screen. 
 
Add node labels: By default only the node name is displayed. By checking this more info 
on the node is shown. This leads to a more crowded image. 
 
Add association labels: Adds labels to the associations (drawn as lines). 
 
Allow overlaps: The parser tries to obtain an image without overlapping lines/nodes. 
However, in the case of very large graphs the calculation might take very long. It is then 
wiser to check this box and bypass this neatness in exchange for faster calculation. 
 
Acceptance/Integration/Review/Test: When checked, defects of these finding types will 
be shown as coloured nodes. 
 
Draw all associations/At least one end contains defect/Both ends contain defects/Don’t 
draw associations at all: Here you can decide which associations (lines between nodes) 
should be drawn. If you’re only interested in how nodes are grouped for example, your 
best bet is to draw no associations at all, since this will lead to a more neat image. 
 
Draw all nodes/Draw only defect nodes: Selects which nodes to be drawn. 
 
Draw defect node associations: Within the defects file is stated which nodes are affected 
by which defect. This option links those defects to a new node, which represents the 
defect. 
 
Hit the Parse button to show the image. 
 
 
 

23 
 



24 
 

Anomaly: If you select Draw only defect nodes and Draw all associations together, 
you’ll get a bunch of seemingly random nodes bounding the graph. This is because the 
program wants to draw associations between non-defect nodes (which will not be drawn). 
 
 
 
ZGRViewer has to be set up first in order to work correctly. It uses references to 
executable files from GraphViz, but these have to be set manually. 
Start ZGRViewer by running (%zgrviewer dir%)\target\zgrviewer-0.8.1.jar. 
In the View->Preferences->Directories window, set the GraphViz/neato executable to 
the location of FDP.exe in your GraphViz installation directory, for instance C:\Program 
Files\GraphViz\bin\fdp.exe. Also set a tmp directory, ZGRViewer will not render without 
one. Save these settings. 
 
 
 
So, in summary, you need: 
GraphViz installed. 
ZGRViewer installed with the reference to FDP.exe from the GraphViz folder. 
Set the locations of 

1) The xmi file 
2) The defects file 
3) ZGRViewer’s jar executable 

in the parser. 
 
Once this is done, you can fire up the parser anytime without ever having to do all this 
again. 


