
An empirical study on the relation

between the quality of UML models and

the quality of the implementation

Master Thesis

by

Xuan Wang

19-12-2008

Supervisors:

Dr. Michel R.V. Chaudron

Dr. Walter A. Kosters

Ariadi Nugroho, M.Sc.

Leiden University

Leiden Institute of Advanced Computer

Science



Abstract

Many researches have shown that modeling design at an early stage has a pos-
itive in�uence on software quality such as lower software maintenance cost.
However, empirical studies on illustrating this positive in�uence are still insu�-
cient. Although interviews with practitioners from the industrial world indicated
the importance of good modeling design to software development, an innovative
research approach with careful design is needed to give a sound con�rmation
using statistical analysis.

In this study, we mainly explore the relation between the level of detail in
UML models and defect density in the implementation. We focus on the Uni�ed
Modeling Language (UML) because it is now considered as the de facto modeling
language for software development. Two types of UML diagrams are discussed in
this study, class and sequence diagram. For each diagram type, designed metrics
are provided to measure the level of detail.

Our hypothesis is that higher level of detail in UML models is signi�cantly
correlated with lower defect density in the implementation. These two variables
are connected by implemented classes which are modi�ed to correct defects
found in the implementation. The level of detail values of those implemented
classes are represented by the level of detail of corresponding designed classes
in the UML models.

Three case studies from the industrial world are performed to analyze this
relation. However, the hypothesis mentioned above is only con�rmed by one
study case. After performing project comparison, other factors which are closely
related to defect density are found to have a rather big in�uence on defect density
in the other two projects. Among these factors, lacking of enough data points
and having poor design-code correspondence are the main issues. It is quite
di�cult to analyze a relation if the other confounding factors of the dependent
variable (defect density in our study) are likely to a�ect this variable. The
analysis results can be very hard to interpret too.

Therefore, we still believe that this correlation discovered in one of the case
studies is valid. Designing higher level of detail in UML models to a certain
extend will help improve the quality of the implementation. Architects should
spend more time creating UML models at a higher level of detail when UML
models are used as the basis of the software implementation.



Preface

My interest in Software Engineering started while taking a course named An in-
troduction to Software Engineering in the last year of my bachelor study. Since
my knowledge and understanding of the whole software engineering �eld were
quite shallow by then, I decided to pursue my master study in Leiden University
and expected to continue with an in-depth study on software engineering. Unfor-
tunately, quite few master courses are software engineering oriented. However, I
still keep trying to work on as many practical software projects as possible. My
�rst project study was �nished in a company which gave me the �rst chance
to work on a real industrial software project. It was a quite exciting experience
which encouraged me to work on a master project in the software engineering
�eld.

Coincidentally, a �ier o�ering master projects on investigating the quality
of software had drawn my attention while I was looking for a master thesis
topic. In a short time, I got the chance to talk with Dr. Michel Chaudron
and his PhD student Ariadi Nugrohoa, M.Sc. about the opportunity for me
to �nd a nice topic in this �eld. Finally, we agreed on a research topic which
explores the in�uence of using UML modeling on software quality. The usage
of UML models is widely believed as a good way of improving software quality
by many practitioners in the industrial world, but this is never con�rmed in a
scienti�c way. Many questions related to this topic are raised, among which the
correlation between the level of detail in UML models and defect density in the
implementation is mainly investigated in this thesis study. It would be nice if
some of the research results or recommendations from this study are helpful for
lowering defect density rates by designing UML models in a better way. This
wish is also my biggest motivation while working on this study.

It is also a good chance for me to thank those many people who helped and
supported me when I was working on this project. The �rst person I would like
to thank is Dr. Michel Chaudron who trusted me and gave me this chance to
�destroy� this project. His encouragement and wise advices were quite essential
to me whenever I encountered the di�culties. Of course, I will not forget that
he kept encouraging me to be more creative and having my own ideas during
the research. I will keep that in mind even when I join the labor market.

I would very much love to give my great thanks to Ariadi Nugrohoa, M.Sc.
I can not remember how many times he has helped me out. Also, thanks to his
great ideas and suggestions during the project process and always being generous
in sharing his knowledge. Being my mentor and seeing me almost every day must
have been a �torture� to him. However, I enjoyed the nice collaborations a lot.

Many thanks to Dr. Walter Kosters who agreed to be my second supervisor
and be part of my examination board. Also, special thanks to Drs. Jeroen F.J.
Laros who was brave enough to read my draft report and provided tons of great
suggestions on how to improve it.

Lots of thanks and love to my friends both in the Netherlands and China.
Can't write all your names here but I am always very happy and full of energy
while being with you. Finally, I would love to give my greatest thanks to my
parents whom I have not seen for one and half years already. I am always amazed
by their great kindness and tolerance to me. Hope I can be at home this year
during the chinese spring festival.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypotheses formulation . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization of this report . . . . . . . . . . . . . . . . . . . . . 4

2 Nomenclature 6
2.1 UML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Defect & Defect density . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related work 8

4 Defect taxonomy and Level of Detail measurement 11
4.1 Defect taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Metrics for measuring UML level of detail . . . . . . . . . . . . . 12

4.2.1 Class diagram based level of detail metrics . . . . . . . . . 13
4.2.2 Sequence diagram based level of detail metrics . . . . . . 13

5 Research approach 16
5.1 Project selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3.1 UML related data . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 Code related data . . . . . . . . . . . . . . . . . . . . . . 18
5.3.3 Defect related data . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Class matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Data analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5.1 Data sampling . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.2 Finding analysis . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 20

5.6 The analysis database . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Case study 1: PARTS 21
6.1 PARTS description . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.1 Project environment . . . . . . . . . . . . . . . . . . . . . 21
6.1.2 Developer experience . . . . . . . . . . . . . . . . . . . . . 22
6.1.3 Adopted development process . . . . . . . . . . . . . . . . 22
6.1.4 Working style . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 PARTS defect statistics . . . . . . . . . . . . . . . . . . . . . . . 22

i



6.2.1 Data sampling . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 23

6.3 Determining UML LoD . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 25
6.4.2 Defect density comparison between di�erent system parts 25
6.4.3 Correlation Analyses between UML LoD and Defect Density 32
6.4.4 The contribution of individual metrics to predicting defect

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.5 The correlation between UML LoD metrics and defect

density of individual defect type . . . . . . . . . . . . . . 37
6.5 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 39

7 Case study 2: RACE 42
7.1 RACE description . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1.1 Project environment . . . . . . . . . . . . . . . . . . . . . 42
7.1.2 Developer experience . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 Adopted development process . . . . . . . . . . . . . . . . 43
7.1.4 Working style . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 RACE defect statistics . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 44

7.3 Determining UML LoD . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.4.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 45
7.4.2 Defect density comparison between di�erent system parts 45
7.4.3 Correlation Analyses between UML LoD and Defect Density 47
7.4.4 The contribution of individual metrics to predicting defect

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4.5 The Correlation between UML LoD Metrics and Defect

Density of Individual Defect Type . . . . . . . . . . . . . 52
7.5 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 52

8 Case study 3: BEHEERNET 54
8.1 BEHEERNET description . . . . . . . . . . . . . . . . . . . . . . 54

8.1.1 Project environment . . . . . . . . . . . . . . . . . . . . . 55
8.1.2 Developer experience . . . . . . . . . . . . . . . . . . . . . 55
8.1.3 Adopted development process . . . . . . . . . . . . . . . . 55
8.1.4 Working style . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 BEHEERNET defect statistics . . . . . . . . . . . . . . . . . . . 55
8.2.1 Data sampling . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 56

8.3 Determining UML LoD . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.4.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . 57
8.4.2 Defect density comparison between di�erent system parts 57
8.4.3 Correlation Analyses between UML LoD and Defect Density 61
8.4.4 The contribution of individual metrics to predicting defect

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4.5 The correlation between UML LoD metrics and defect

density of individual defect type . . . . . . . . . . . . . . 68

ii



8.5 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 70

9 Projects Comparison between PARTS and BEHEERNET 72
9.1 Project characteristics comparison . . . . . . . . . . . . . . . . . 72
9.2 Defect statistics comparison . . . . . . . . . . . . . . . . . . . . . 74

9.2.1 Data sampling method . . . . . . . . . . . . . . . . . . . . 74
9.2.2 Defect type distribution comparison . . . . . . . . . . . . 75
9.2.3 Puri�ed defects statistics comparison . . . . . . . . . . . . 75

9.3 Statistical analyses comparison . . . . . . . . . . . . . . . . . . . 76
9.3.1 Descriptive statistics comparison . . . . . . . . . . . . . . 76
9.3.2 The correlation analyses between UML LoD and defect

density comparison . . . . . . . . . . . . . . . . . . . . . . 78
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10 Conclusions and evaluations 87
10.1 Answers to the research questions . . . . . . . . . . . . . . . . . . 87

10.1.1 Does the usage of UML models in�uence defect density in
software systems? . . . . . . . . . . . . . . . . . . . . . . . 87

10.1.2 How does the level of detail in UML models in�uence a
project's defect density? . . . . . . . . . . . . . . . . . . . 87

10.1.3 The contribution of individual metrics to predicting defect
density comparison . . . . . . . . . . . . . . . . . . . . . . 88

10.1.4 The correlation between UML LoD metrics and defect
density of individual defect type . . . . . . . . . . . . . . 88

10.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2.1 Internal validity . . . . . . . . . . . . . . . . . . . . . . . 89
10.2.2 External validity . . . . . . . . . . . . . . . . . . . . . . . 89
10.2.3 Construct validity . . . . . . . . . . . . . . . . . . . . . . 90
10.2.4 Conclusion validity . . . . . . . . . . . . . . . . . . . . . . 90

10.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.4 Guidelines for applying UML . . . . . . . . . . . . . . . . . . . . 91

Bibliography 92

List of Figures 96

List of Tables 98

A Database design 100

B Performed queries 103
B.1 Faulty classes modeled in di�erent ways . . . . . . . . . . . . . . 103
B.2 UML Level of detail . . . . . . . . . . . . . . . . . . . . . . . . . 104

C Statistical tests 107
C.1 Kolmogorov-Smirnov & Shapiro-Wilk tests . . . . . . . . . . . . 107
C.2 The independent t-test . . . . . . . . . . . . . . . . . . . . . . . . 107
C.3 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.4 Pearson's and Spearman's correlation coe�cient . . . . . . . . . 108

iii



iv



Chapter 1

Introduction

In this introductory chapter the motivation for performing this research study
is given. After this we present the main research questions of this study. Right
after the research questions, the hypotheses used in this study are listed. Finally,
an outline of the content of this thesis is given.

1.1 Motivation

For several decades, Software Engineering has been trying to become a true
engineering discipline with �rm and well-understood foundations. Researchers
and practitioners from both the academic institutes and industrial �elds always
work hard to develop e�ective and successful software engineering processes. In
general, a software development process consists of requirements speci�cation,
architecture design, implementation, testing, deployment and maintenance. This
software development process is also known as software life cycle. The demand
for productivity in software engineering is the main drive of changes in the ways
that software development and maintenance are being processed. Basically, over
80 % of total cost is due to software maintenance (including corrective, adap-
tive, and perfective maintenance). Several primary means contributing most to
improved productivity mentioned in [But97] are:

• Improvement of software quality is considered as a main mean to reduce
the cost of maintenance.

• Reuse of code and other software components, such as requirements and
design, is helpful for the purpose of reducing production cost and improv-
ing the quality of individual components.

• Modeling notations and tools which provide a model of the software are es-
sential to understand software, thus reducing costs of development, main-
tenance, and evolution.

In this study, with the purpose of reducing maintenance cost by improving soft-
ware quality as the main motivation, we focus on examining the in�uence of us-
ing diagrammatic models, particularly represented in UML models used during
architecture design of software development, and on software quality represented
in defect density. Defect density is chosen to represent software quality because

1



it is considered as a de facto standard measure of software quality. Meanwhile,
we are interested in UML modeling, mainly because graphical design is bet-
ter in communication and understanding concerning the software system than
other means of modeling, such as textual and mathematical models. With these
graphical notations, UML modeling is generally considered as a good practice
in almost any software development process. In most projects, UML models
are the �rst tools used for illustrating software architectures and believed to
be helpful in increasing software quality. However, empirical investigation on
validating the assumption that UML modeling is helpful in improving software
quality is neither profound nor su�cient. Some practitioners from the industrial
�elds even question whether enough payo� can be obtained by using UML mod-
els. Using three signi�cant industrial case studies, this study provides su�cient
empirical evidence that the improvement of software quality bene�ts from using
UML models.

1.2 Research questions

In this study, we would like to explore the relation between level of detail in UML
models (from now on called UML LoD in short) and defect density. By doing
three empirical case studies, we expect to �nd the signi�cant relation between
the two variables mentioned above. Further, we want to know which aspects
of UML model details in�uence this relation strongest. Later, if possible, some
recommendations on at which level of detail UML models should be developed
are given. In order to achieve these goals, the following research questions are
considered in each case study:

RQ1: Does the usage of UML models in�uence defect density in software sys-
tems?

RQ2: How does the level of detail in UML modeling in�uence a project's defect
density?

RQ3: Which metrics have more contribution to predicting defect density?

RQ4: Which metrics have a stronger correlation with a certain defect type?

RQ5: Are there any recommendations on applying UML models to software
development?

1.3 Hypotheses formulation

In this section, hypotheses of research questions used in this study are given.

RQ1: Does the usage of UML models in�uence defect density in software sys-
tems?

To explore this research question, three sub-questions are investigated.

• Is there a signi�cant di�erence of defect density between modeled
system parts using UML and system parts not modeled at all?

2



The hypothesis to this question is given based on the following ob-
servations and previous work [Fla]. First, modeled system parts are
normally well designed in a good manner (i.e., visualization in UML
models). Second, UML models enhance better communication among
developers while implementing modeled system parts. Finally, a pre-
vious case study on the PARTS project in [Fla] indicated that mod-
eled system parts had a signi�cantly lower defect density than system
parts that are not modeled at all. Therefore, the following hypothesis
is tested in order to validate the above assumptions.

H0: There is no signi�cant di�erence of defect density between sys-
tem parts that are modeled using UML and those which are not
modeled at all.

Halt: System parts that are modeled using UML have signi�cantly
lower defect density than those which are not modeled at all.

• Is defect density of system parts modeled using diverse types of UML
diagrams signi�cantly lower than that of system parts using single
UML diagram type?
This question is addressed if system parts modeled using UML are
con�rmed to have signi�cantly lower defect density than those not
modeled at all. The modeled system parts are divided into several
sub-categories based on the diagram types they were modeled in;
such as system parts that are only modeled in class diagrams, those
only modeled in sequence diagrams, those modeled in both types of
diagrams and those not modeled in neither of the diagram types. We
believe the usage of UML diagrams helps the developers have a bet-
ter understanding of the UML models and eases the communication
between architects and developers. Further, modeling using diverse
types of UML diagrams provides developers di�erent views while de-
scribing the same design. Based on the observations mentioned above,
the following hypothesis is given:

H1: There is no signi�cant di�erence of defect density between sys-
tem parts that are modeled using diverse types of UML diagrams
and those which are only used in single UML diagram type.

Halt: Modeled system parts that are presented in diverse types of
UML diagrams have signi�cantly lower defect density than sys-
tem parts which are only used in single UML diagram type.

• Is there a signi�cant di�erence of defect density between modeled
system parts presented in class diagrams and those only modeled as
design classes in UML but not referenced in any class diagram?

While doing case studies, some implemented classes were found mod-
eled as design classes in UML models but not used in any of the class
diagrams. We were curious to see whether there is a signi�cant de-
fect density di�erence between classes that are modeled only as design
classes but not used in any class diagram and design classes which
are also presented in class diagrams. The hypothesis is listed below:

H2: There is no signi�cant di�erence of defect density between mod-
eled system parts that are presented in class diagrams and those
only modeled in the UML models.

3



Halt: Modeled system parts that are presented in class diagrams have
signi�cantly lower defect density than those only modeled in the
UML models but not presented in any class diagram.

RQ2: How does the level of detail in UML models in�uence a project's defect
density?

In UML modeling, the level of detail can be measured by quantifying the
amount of information that is used to represent a modeling element. We
believe that the appropriate level of detail in UML models is important
to assure that developers can easily understand the architecture design of
the project and be able to implement the code in a clear and e�cient way.
This research question is investigated to see whether there is a signi�cant
correlation between the level of detail in UML models and defect density
in the implementation. Two types of diagrams, class diagram and sequence
diagram, are used to perform the tests. As is mentioned in previous work
(see Chapter 3), a similar analysis was performed [NFC08] and an impor-
tant conclusion was that there is a negative correlation between UML level
of detail using sequence diagram metrics and defect density. This conclu-
sion suggests that the level of detail in UML models can be considered as
a predictor of a project's defect density. However, no signi�cant correla-
tion between UML level of detail using class diagram metrics and defect
density was found. Although this correlation is not signi�cant, a negative
relationship is shown according to the statistical analysis. Therefore, in
our study, the hypothesis of the relation between UML level of detail and
defect density is:

H3: There is no signi�cant correlation between level of details of UML
classes in UML models and the defect density of the implementation
classes.

Halt: UML classes that are modeled in a higher level of detail signi�cantly
correlate with a lower defect density in the implementation classes.

1.4 Organization of this report

• In Chapter 2, some important and frequently used terms are de�ned.

• In Chapter 3, previous research related to this study will be discussed.

• Since for each case, we used the same approach in exploring the in�uence
of UML LoD on defect density, in Chapter 4, we list defect taxonomy and
metrics using di�erent diagrams that are shared by the three cases.

• In Chapter 5, we will explain the research approach in detail, each step
taken to perform this study is discussed.

• We report the three case studies in di�erent chapters. Chapter 6 �rst
shows the analysis results of the case study mentioned in [NFC08, Fla].
The two new case studies are handled in Chapter 7 and 8, respectively.
Each chapter can be read as a self contained part which consists of project
de�nitions, data gathering, data analysis and analysis results.

4



• Chapter 9 provides a comparison of the three case studies in order to give
readers a clear view of �ndings across projects.

• Chapter 10 tries to answer the research questions based on our �ndings.
At the same time, the threats to the validity of the study are mentioned.
Finally, some recommendations on future work are suggested.

5



Chapter 2

Nomenclature

In this chapter, we try to explain the meaning of several important and fre-
quently used terms. Since sometimes these terms have di�erent de�nitions in
distinct situations, we would like to give our de�nitions here.

2.1 UML models

In [Fow03], UML is de�ned as �a family of graphical notations, backed by single
meta-model, that help in describing and designing software systems, particularly
software systems built using the object-oriented (OO) style�.

In general, UML can be used in three modes: sketch, blueprint, and code
generation. The �rst two means are more on an abstract level, while the last
one is used for generating programming code. A sketch is used as a thinking tool
which helps developers communicate some aspects of a system and alternatives
about what are about to be done. The essence of sketching is selectivity. Only
some important issues which will be written as code in the future are roughed
out and visualized before the code implementation. Normally, UML models used
as sketches are pretty informal and dynamic. The tools used for sketching are
lightweight drawing tools, and the rules of using the UML models can be hardly
kept. Meanwhile, they are also useful in documents, in which case the focus
is selective communication rather than complete speci�cation. In contrast, a
blueprint is about completeness and designed in much more detail than a sketch
with the aim of reducing programming to a simple and fairly mechanical activity.
UML models used as blueprints are developed by an architect who builds a de-
tailed design for a programmer to code. A common approach of using blueprints
is for an architect to develop blueprint-level UML models as far as interfaces of
subsystems but then let developers work out the details of implementing those
details. Generally, the created blueprints should be able to show every detail
about a class in a graphical form that is easier for developers to understand.
Much more sophisticated tools are required in designing blueprints in order to
handle the details required for the task. The di�erence between UML models
used as sketches and blueprints is blurry. Sketches are deliberately incomplete
and more explorative, while blueprints intend to be comprehensive and de�ni-
tive. The third mode of UML is code generation tool. Developers draw UML
diagrams that are compiled directly to executable code and the UML models

6



become the source code. Obviously, this usage of UML demands particularly
sophisticated tools.

In this study, UML is used as a blueprint which is used for guiding the im-
plementation. The idea behind this is that sketches are more for communication
and have much less connection with the implementation, while code genera-
tion emphasizes too much on using UML as a modeling language rather than
visualization of architecture designs.

2.2 Defect & Defect density

In [Fla], the de�nition of defect was given according to [Boa]. In order to make
the results comparable, we tried to keep de�nitions as similar as possible. Here,
we used the same de�nition of defect as follows:

A defect is a �aw in a component or system that can cause the
component or system to fail to perform its required function, e.g.
an incorrect statement or data de�nition. A defect, if encountered
during execution, may cause a failure of the component or system.

Failure is de�ned as:

A failure is the deviation of a component or system from its expected
delivery, service or result.

The term defect is synonymous to the terms bug and fault according to [Boa].
Sometimes, we might use other terms to comply with common practice (e.g., a
bug tracking tool) which refers to term defect in that case.

In this study, we intend to �nd the relation between the quality of UML
models and the quality of the implementation. In particular, defect density is
used as a measurement of the quality of the implementation. The de�nition of
this term is given as follows:

Defect density is the ratio of the number of defects appearing in each
implementation class to the class' size measured in KSLoC (thousand
source lines of code).

The last de�nition we would like to give is defect-count, which refers to the
number of defects in each implementation class. This value is calculated using
the information in the bug tracking and versioning tools.

7



Chapter 3

Related work

In this chapter previous research related to this topic is presented. We start
with the early research related to this research area. Since two research studies
are closely related to this study, we focus on introducing the results indicated
in these studies. At the same time, the relationship between this study and the
previous research is explained.

Nowadays, the quality of the software process is essential for productivity
and competitiveness of a software product. Actually, it is stated in [But97] that
quality of a software product is usually only achieved through a high-quality
software development process. What's more, the increased acceptance of mod-
eling notations and tools are considered as an essential step in understanding
software, thus reducing costs of development. In the same research, design mod-
els were classi�ed into three categories, diagrammatic models, textual models
and mathematical models, with which one can have multiple views of a system.
It also mentioned that Harel [Har92] is optimistic in the sense that develop-
ers can exercise greater intellectual control over complexity by using models
throughout the development process. Further, Boehm and Bsili [BB01] empha-
sized the bene�ts of modeling at an early stage to help improve software quality.
They stated that it is usually 100 times more cost e�ective �xing software prob-
lems in the analysis or design phase than �xing them after delivery. Hence, more
e�ort is recommended to be put on requirement speci�cation, early veri�cation
and validation, upfront prototyping and design. The importance of using mod-
els is again discussed in [Sel03]. Here, it is argued that engineering models can
help reduce software maintenance cost by providing means to understand com-
plex problems and develop solutions to them before the implementation phase.
Hence, many unnecessary problems that are found in the later phases (such as
code implementation, testing, deployment and maintenance) can be prevented
well in advance to reduce �xing costs.

Talking about the Uni�ed Modeling Language (UML), the advantages of
using UML to software development have been widely discussed by researchers
and practitioners. UML is now considered as the de facto modeling language
for software development. It is designed as a visual multi-purpose language
with thirteen diagram types to serve communication between developers, pre-
diction of quality properties and test case generation. Some controlled exper-
iments have been done to analyze the relation between the presence of UML
models and some aspects of software quality, such as accuracy, speed, etc.

8



In [Hov06], it is found that UML had a generally positive impact on the quality
of the solutions to maintenance tasks of the system. This conclusion is promis-
ing, however, it is still too abstract. On the other hand, Lange did several
researches [LCM06, LC06, BLDC06] on revealing common problems with UML
models and how these problems in�uence the software quality. Meanwhile, some
techniques and practical recommendations on controlling these problems are
discussed. In [LCM06], some common problems with UML models in practice
were listed through a user survey and an industry case study. From the sur-
vey, it can be seen that around 66 % practitioners used UML models as an
architecture design tool. Completness was chosen as the most prominent crite-
rion on determining when modeling activities can end. It means that an UML
model with complete information is likely to be well designed, thus having higher
quality. Some major problems with UML models indicated by architects were
scattered information, incompleteness, disproportion and inconsistency. Among
these problems, problems with incomplete models were investigated and four
problems were encountered as a result of incomplete models, such as bad quality
of the implemented product, wrong product delivered in terms of not matching
the stated requirements, high amount of testing e�ort and miscommunication
between project members and stakeholders. Besides, some other problems with
UML models were included such as diagram quality, informal use and lacking of
modeling conventions. In [BLDC06], a controlled experiment was investigated to
explore the e�ect of modeling conventions on defect density and modeling e�ort.
The results indicated that decreased defect density in UML models is attain-
able at the cost of increased e�ort when using modeling conventions. In [LC06],
e�ects of defects in UML models were explored through an experimental inves-
tigation. In this study, di�erent defect types were de�ned based on a ranking
of detection rate and risk of misinterpretation. One conclusion showed that de-
fects in UML models are hardly detected and are potential risks that can cause
misinterpretation and, therefore, reduce software quality.

The previous research mentioned above indicates that the quality of UML
models has a positive in�uence on software quality. At the same time, the qual-
ity of UML models consists of several aspects, among which completeness is
considered as a main criterion on creating UML models with high quality.
In [NFC08, Fla], an empirical analysis was performed on �nding the relation
between level of detail in UML models and defect density found in the imple-
mentation phase. These two studies proposed a measurement for UML models
called level of detail to investigate the relation between the quality of UML
models and the quality of the implementation. We believe that level of detail
in UML models is an important criterion when making complete UML models.
A defect taxonomy (see Section 4.1) was introduced and metrics for measuring
LoD in UML models were given. More information on creating defect taxon-
omy can be found in [CBC+92, CKC91]. The notion of using design metrics as
quality indicators of fault-prone classes in the implementation phase was intro-
duced by Basili [BBM96]. The suite of Object-Oriented (OO) design metrics
introduced by [CK94] was experimentally investigated through eight medium-
sized information management systems based on identical requirements. The
results showed that several design metrics appeared to be useful to predict class
fault-proneness during the early phases of the life-cycle. Besides, they are bet-
ter predictors than �traditional� code metrics which can only be collected at
a later phase of the software development processes. In [NFC08, Fla], several

9



design metrics (see Section 4.2) were used to measure the UML LoD. The case
study performed in these two studies was based on a project named PARTS.
The main conclusion of this study case is that implemented classes modeled in
sequence diagrams with a higher level of detail are found to have a signi�cant
correlation with lower defect density in the implementation. However, whether
this conclusion can be generalized is still a question. At the same time, lacking of
enough data samples is another concern, for instance, the same conclusion was
not obtained between LoD using class diagram metrics and defect density. This
might be due to insu�cient data points. As a result, more research is needed in
the future.

In our study, we would like to analyze the relation between UML LoD and
defect density through three di�erent empirical case studies. A set of more �ne-
grained sequence diagram LoD metrics are needed in order to give a more precise
measurement of UML LoD. Later, we try to see which metrics have the strongest
in�uence on predicting defect density of implemented software systems. Finally,
we would like to combine the conclusions from all these research and give some
recommendations on at which level of detail UML models should be developed.

10



Chapter 4

Defect taxonomy and Level of

Detail measurement

In this chapter, we list the same defect taxonomy and metrics used for UML
level of detail measurement as mentioned in [NFC08, Fla]. For level of detail
metrics used in sequence diagrams, a new set of metrics are introduced in this
study which will be explained shortly.

4.1 Defect taxonomy

This defect taxonomy is a merger of two taxonomies created by Ariadi Nugroho
and Bas Flaton respectively. It is based on both the previous experiences from
Nugroho in analyzing a number of information systems and Flaton's own experi-
ence in analyzing the more technical and embedded BDMW system mentioned
in his master thesis. It is also used in [NFC08] and in the second case study
called PARTS in [Fla].

The detailed explanation of defect taxonomy is shown below:

1. (static) User interface - Any defect that only has something to do
with the way the user interface looks (window or form sizing, font choices,
positioning, missing labels or titles, textual improvement, etc.). This defect
is mainly front-ended and has little to do with the back-ended source code.

2. (navigation) User interface - Defects regarding screen transitions (wrong
destination, missing intermediate screen, etc.).

3. Logic - Defects caused by missing or wrong implementation of business or
processing rules. Normally, it is a defect regarding conditional branching.

4. Process �ow - Defect caused by missing or wrong process �ows (e.g.,
incorrect order of operation execution). Di�erent orders result in distinct
outcomes.

5. Race condition - Unforeseen output as a result of unforeseen sequence
or timing of events ( locking problem which prevents accessing data at any
time, etc.).

11



6. Data handling - Defects caused by missing or poor data handling.

(a) Data validation - Input which is not, or incorrectly validated. It has
two main aspects: input validation and exception handling caused by
invalid input. It happens on the business/application layer which is
responsible for checking the input.

(b) Data access - Defects related to retrieving, storing, inserting, up-
dating and deleting data from/to a data store (like a database). It
happens during the interaction with a database.

(c) Session issues - Defects related to session speci�c data. It happens,
for example, when information is missing while using session to keep
the data.

(d) Wrong variable used - Wrong variable used in checking for, or
assigning a value.

(e) Initialization - Uninitialized or wrongly initialized variables/objects
(or other data sources).

(f) Memory cleanup - Missing or incorrect cleanup of data sources at
the end of the process �ow.

(g) Variable typing - Incorrect type chosen or assumed for a variable
(like considering a �oat type as an integer).

(h) Inconsistent operation arguments - Wrong number or types of
arguments when calling a function.

7. User data I/O - Defects related to missing or wrong data input and out-
put from/to the user interface (a functionality/�eld is missing according
to the design, exception handling not caused by wrong input, etc.). This
type of defect is user interface related.

8. Computational - Erroneous calculation of values (like a wrong equation).

9. Undetermined - Defects that can not be classi�ed in any of the classes
mentioned above. Findings related to functional requirements changing
problems are currently considered as undetermined.

4.2 Metrics for measuring UML level of detail

In this study, we still measure UML LoD by using metrics. In order to make
the results comparable, we again use the metrics mentioned in the PARTS
project [Fla]. Only two types of diagrams used in this study, class diagrams and
sequence diagrams. As is mentioned in PARTS, the sequence diagram based
UML LoD has an entire diagram as its unit of measure. This might cause a dis-
proportion problem. In this study, a disproportion is a property that within one
diagram a certain part is modeled at a higher level of detail than another part.
The assumption that there is not much disproportion within sequence diagrams
might be a threat to the validity of the results. In that case, we added a set
of sequence diagram metrics which used UML LoD of the corresponding UML
class of an implementation class as the LoD of that implementation class. In
principle, this should re�ect the nature of UML LoD better than using metrics
based on diagram level.

12



Below, the used collections of class and sequence diagram metrics are de-
scribed in two subsections.

4.2.1 Class diagram based level of detail metrics

• NumAttrRatio (CDm1)
Measures the ratio of the total number of attributes of a class in a model
to that in the implementation.

• AttrSigRatio (CDm2)
Measures the ratio of attributes with a signature to the total number of
attributes of a class.

• NumOpsRatio (CDm3)
Measures the ratio of the total number of operations of a class in a model
to that in the implementation.

• OpsWithParamRatio (CDm4)
Measures the ratio of operations with parameters of a class in a model to
that in the implementation.

• OpsWithReturnRatio (CDm5)
Measures the ratio of operations which return values of a class in a model
to that in the implementation.

• AssocLabelRatio (CDm6)
Measures the ratio of associations with a label (e.g., association name) to
the total number of associations of a class.

• AssocRoleRatio (CDm7)
Measures the ratio of associations with a role name to the total number
of associations attached to a class.

4.2.2 Sequence diagram based level of detail metrics

Sequence diagram metrics measured at both diagram level and class-instance
level are the same. The only di�erence is the perspective of measuring the met-
rics. As mentioned before, metrics measured at diagram level consider the whole
diagram as a unit of measuring, while class-instance based metrics regard the
corresponding single design class in the diagram as a unit of measuring. We list
the de�nitions as follows:

• NonAnonymObjRatio (SDm1)

Diagram level: Measures the ratio of objects with a name to the total
number of objects in a sequence diagram.

Class-instance level: Measures the ratio of the implementation class
modeled as an object with a name to the total number of this imple-
mentation class modeled as objects in a sequence diagram.

• NonDummyObjRatio (SDm2)

13



Diagram level: Measures the ratio of non-dummy objects (objects that
correspond to classes) to the total number of objects in a sequence
diagram.

Class-instance level: Measures the ratio of the implementation class
modeled as a non-dummy object (object that corresponds to a class
in the model) with a signature to the total number of the implemen-
tation class modeled as objects in a sequence diagram.

• MsgWithLabelRatio (SDm3)

Diagram level: Measures the ratio of messages with a label (any text
attached to the messages) to the total number of messages in a se-
quence diagram.

Class-instance level: Measures the ratio of messages with a label at-
tached to an object to the total number of messages attached to this
object in a sequence diagram.

• NonDummyMsgRatio (SDm4)

Diagram level: Measures the ratio of non-dummy messages (messages
that correspond to class methods) to the total number of messages
in a sequence diagram.

Class-instance level:Measures the ratio of non-dummy messages (mes-
sages within the class under investigation which pop-up in the class
diagram) attached to an object to the total number of messages at-
tached to this object in a sequence diagram.

• ReturnMsgWithLabelRatio (SDm5)

Diagram level: Measures the ratio of return messages with a label (any
text attached to the return messages) to the total number of return
messages in a sequence diagram.

Class-instance level: Measures the ratio of return messages with a
label attached to an object to the total number of return messages
attached to this object in a sequence diagram.

• MsgWithGuardRatio (SDm6)

Diagram level: Measures the ratio of guarded messages (messages with
conditional checks) to the total number of messages in a sequence
diagram.

Class-instance level: Measures the ratio of guarded messages attached
to an object to the total number of messages attached to this object
in a sequence diagram.

• MsgWithParamRatio (SDm7)

Diagram level: Measures the ratio of messages with parameters to the
total number of messages in a sequence diagram.

Class-instance level: Measures the ratio of messages with parameters
attached to an object to the total number of messages attached to
this object in a sequence diagram.

14



We still keep the sequence diagram metrics measured at diagram level because
they are the metrics used in [NFC08]. We would like to compare the results
of using sequence diagram metrics measured at both diagram level and class-
instance level in order to see whether the conclusions drawn from [NFC08] are
still valid.

Both class and sequence diagram based metrics are calculated in ratios in-
stead of absolute numbers. The reason is the same as mentioned in [Fla]: we do
not expect the UML LoD to be in�uenced by the size of a class or a sequence
diagram.

15



Chapter 5

Research approach

In this chapter, the research approach performed in this study is explained in
detail. First, we outline the steps that are involved in this approach. Later, each
step is discussed separately.

The steps taken to perform this study can be summarized as follows: project
selection, data collection, data preprocessing, class matching, data analyses, and
reporting (see Figure 5.1).

5.1 Project selection

Two main criteria should be met while selecting software projects for case stud-
ies. First, the projects must use UML modeling to a certain extend. As men-
tioned in Chapter 2, UML models should be used as the basis of the implemen-
tation such as blueprints and modeled in machine-readable forms (e.g., utilizing
UML CASE tools). The UML CASE tools, for example, are also required to have
an .xmi export facility, which will allow us to export the models to the mea-
surement tool. Second, the projects must utilize a bug tracking system which
makes it possible to trace back source �les that are modi�ed to solve defects.
This bug tracking system must provide su�cient information to determine the
nature of the registered defects.

In this report, the three software projects chosen as case studies meet the
two criteria mentioned above very well. The UML models were designed in the
architecture design phase and were used as guidelines during the code imple-
mentation. IBM Rational XDE [Wikc] was used to create the UML models and
export .xmi �les for calculating the values of the metrics. Some other IBM Ra-
tional tools were adopted for code versioning and bug tracking, namely IBM
Rational ClearCase [Wika] and IBM Rational ClearQuest [Wikb], respectively.

5.2 Data collection

After selecting the projects to be studied, the data collection step is performed
to obtain data consisting of UML models, source code, and �ndings during
defect registration. The collected UML models and source code were extracted
from the latest version of the project data found in CVS (concurrent version
system) repository. UML models were created and stored in IBM Rational XDE

16



Figure 5.1: Visualization of The Research Approach

17



and could be used for LoD metrics calculation in the data preprocessing step.
Source code could be obtained from IBM Rational ClearCase. The defect data
being analyzed in this study refer to defects found during the development
phase. However, not all registered data can be considered as defects. Before
defect typing analysis, we refer to these data as �ndings. Findings recorded
during defect registration were obtained from IBM Rational ClearQuest. The
change sets attached to those �ndings can also be collected using this tool.

5.3 Data preprocessing

Data preprocessing is performed right after data collection. It consists of three
steps, UML metrics calculation, code metrics calculation, and faulty classes
identi�cation. We will discuss each step in detail shortly.

5.3.1 UML related data

UML related data refers to data about components/classes and LoD metrics
from UML models. To obtain this data, UML models �rst had to be exported
from IBM Rational XDE into the .xmi format. A tool called SDMetrics [dqmt]
was used to perform this task. The extracted data was stored in the analysis
database. For class diagrams, the values of the UML LoD metrics from UML
models were calculated automatically using SDMetrics which supports de�nition
of customized metrics. However, the calculation of sequence diagram metrics
could not be performed automatically because Rational XDE does not export
the sequence diagram information in the .xmi exporting process. Hence, manual
inspection of the sequence diagrams in Rational XDE was performed to calculate
the values of the sequence diagram metrics measured at both diagram level and
class-instance level.

5.3.2 Code related data

In this study, code metrics were used for calculating UML LoD using class
diagrams. An open source tool named CCCC [sou] was used to perform this
task and metrics were calculated from .java �les. Additionally, the size of the
implementation classes measured in KSLoC (Thousand Source Lines of Code)
was obtained using the same tool. The same analysis database mentioned above
was used to record this source code related information.

5.3.3 Defect related data

Data preprocessing for getting defect related data involved two steps. The �rst
step was to obtain registered �ndings from the Rational ClearQuest repository
and store them in the same analysis database. The textual information attached
to each �nding explains the nature of this �nding, which was used to help
determine whether a �nding can be regarded as a defect and if so, of which type.
Hence, this step is useful for defect typing which will be introduced shortly. The
second step was to obtain change sets (source �les modi�ed to solve defects),
which was performed automatically using a Perl script that recovers change
sets associated with every �nding. Here we only took into account the .java

18



�les (thereby mostly excluding con�guration �les like .xml and .jsp �les). The
idea behind this was that these �les could never be related to UML classes and
therefore would not be useful to our study. Java �les that were modi�ed to solve
�ndings are considered as faulty classes and were stored in the analysis database
again.

One important note is that a faulty class may be changed several times while
�xing the same defect. Hence, a faulty class was regarded as having only one
defect-count in this case.

5.4 Class matching

After performing the three steps mentioned above, the data of UML classes,
implementation classes, defect �ndings, and faulty classes can be obtained from
the analysis database. The next step is to perform matchings between UML
classes and the implementation classes, and between faulty classes and imple-
mentation classes. The two matching processes were done semi-automatically
based on class/instance name and directory structure similarities. The connec-
tion between UML classes and faulty classes was made through implementation
classes. This connection allowed us to identify which faulty classes were modeled
as design classes and if so, modeled in which type of diagram.

5.5 Data analyses

In this study, data analysis consists of three parts: data sampling, �nding analy-
sis and statistical analysis. Before the main statistical analysis, an essential task
is to perform defect typing. This is done to determine whether a �nding can
be regarded as a defect and if so, of which defect type according to the defect
taxonomy de�ned in Chapter 4 (see Section 4.1). As noted before, the term
�nding was used to refer to the defects registered prior to defect typing. In fact,
some �ndings registered during the defect registration are not defects according
to our de�nition (see Section 2.2) or could not be identi�ed. In the following
paragraphs, both the �nding analysis and statistical analysis are discussed.

5.5.1 Data sampling

Since defect typing is done manually, it is impossible to analyze all the �ndings
if the defect population is huge. Some other concerns are limited time and
resources. Hence, a sample data set is needed. The sample size di�ers from
project to project, ranging from 100 to 200 data points. The sampling method
will be explained in relevant chapter of each case study.

5.5.2 Finding analysis

In practice, a �nding is regarded as a defect if it was registered due to explicit
errors in the system or due to deviations from explicitly stated requirements.
Hence, �ndings registered to incorporate additional functionality into the system
were not regarded as a defect.

In addition to excluding non-defect �ndings, it is essential to determine the
defect type of each defect based on the de�ned defect taxonomy. Defect typing

19



is done primarily based on how it is solved by comparing the modi�ed Java
�les before and after correction. Additionally, the attached defect description is
another important criterion of judgment. However, some defects might be solved
without modifying any �les or have unclear problem descriptions. Thus, their
types might be hard to determine. In this case, they should be excluded from
the further analysis.

Once all the �ndings had been analyzed and categorized, �ndings that did
not meet the criteria of defects should be excluded. Furthermore, certain defect
types were disregarded: (static) user interface, (navigation)user interface, and
undetermined in particular. These defect types are excluded because they are not
likely to be related to the use of UML models. Having excluded those irrelevant
�ndings and defect types, we are certain that we do not overstate defect-count
of faulty classes due to the use of irrelevant �ndings or defects.

5.5.3 Statistical analysis

After �ltering the defects data, we proceeded with the statistical analysis to
help answer the research questions listed in Chapter 1. Statistical tests either
parametric or non-parametric were performed when there was a necessity. In
principle, the parametric tests were considered �rst. For all parametric tests,
two assumptions should be met: a normal data distribution; variances in the
data are roughly equal (homogeneity of variances). To adhere to the �rst as-
sumption, if the original data set is not normally distributed, a data transfor-
mation can be performed and the assumption is valid if the transformed data is
normally distributed. However, if one of these two assumptions is still violated
after performing data transformation, the correspondent non-parametric tests
should be performed instead. Detailed explanation about these tests is discussed
in relevant case studies. The statistical tool SPSS [Ana] (version 13) is used to
perform the analysis.

5.6 The analysis database

An analysis database was built to store all the information needed according
to this research approach. It is a MySQL database designed for performing
queries to all data useful for statistical analyses. A front-end based on PHP was
developed to enable entries in the database. An overview of the database schema
and some explanations on several essential parts are given in Appendix A.

20



Chapter 6

Case study 1: PARTS

In this chapter, we describe the �rst case study performed within the PARTS
project. This project was �rst analyzed in [NFC08] and some important conclu-
sions were drawn based on the answers to the research questions in that study.
In our study, this project is used again because we believe that the data sets
are helpful for answering the research questions related in this study. The data
sets used in this case study are not exactly the same as those used in [NFC08].
The values of sequence diagram metrics measured at diagram level were checked
again and some changes had been made in the data according to the de�nition
of those metrics. Besides, the values of sequence diagram metrics measured at
class-instance level were calculated and added to the analysis database for fur-
ther use. In our study, the second research question regarding analyzing how the
level of detail in UML models in�uences a project's defect density is the same as
the research question discussed in [NFC08]. Although the data sets have been
modi�ed, a comparable result of this research question mentioned in [NFC08]
is still expected in our study. On the other hand, some new �ndings related to
other research questions are also expected.

In this chapter, the description of the project itself is given �rst, immediately
followed by discussions on data collection and preprocessing processes. Once the
puri�ed data is ready, the statistical analyses are performed. Finally, the results
and conclusions are summarized and interpreted.

6.1 PARTS description

PARTS is an integrated healthcare system for psychiatrists in the Netherlands.
With this information system, psychiatrists can manage patient information,
treatments history, appointment planning, and medication prescriptions.

In the following sections, the project characteristics are discussed. Further
detailed information can be found in [Fla]. The summary of the PARTS project
is provided in Table 6.1.

6.1.1 Project environment

PARTS is a web service using java technology. The Apache Struts framework
and a model-view-controller architecture [Dea] are used. The UML models were

21



Technology Java
# sta�s 25 people
Duration (in years) 2.3
O�-shored India
Status Finished

Model size

104 use cases
266 design classes
341 seq. diagrams
34 class diagrams

SLoC 152,017

Table 6.1: PARTS Project Summary

created using IBM Rational XDE. Furthermore, IBM Rational ClearCase and
ClearQuest were adopted for code versioning and bug tracking respectively.

6.1.2 Developer experience

Not much information could be obtained on this topic. However, the system's
architects were expected to have su�cient knowledge of UML and experience
in creating design documentation with it due to the use of Rational Uni�ed
Process (RUP) [Kru]. This standardized development process also suggested
that programmers at least had the required knowledge of UML to accurately
read the designs.

6.1.3 Adopted development process

The project was developed in four major increments, each lasting several months.
This can be concluded from the defect descriptions in the bug tracking tool,
which mentions target releases and document change dates.

6.1.4 Working style

This project involved o� shoring to India. The requirements and modeling of
the system were created in the Netherlands, while approximately 60 percent of
the implementation and testing activities were accomplished in India. When big
problems emerged regarding incorrect design, a part of the system would be
sent back to the architects in the Netherlands. When this part was updated, the
original implementation path was again followed in India.

6.2 PARTS defect statistics

Defect data collection and preprocessing are mainly discussed in this section.

6.2.1 Data sampling

All �ndings registered as defects in ClearQuest were based on the latest version
of the PARTS project repository. The statistics of the �ndings of the latest

22



version are as follows:

• Test: 1546

• Review: 771

• Acceptance test: 212

• Integration test: 70

Only �ndings found during the Test phase were analyzed in this case study,
which contains 1546 �ndings. Among these �ndings, 566 �ndings had modi-
�ed source �les attached to them. Some defects did not have attached modi�ed
source �les because they were �xed by making changes to the database or ap-
plication server only. Another reason for not having attached �les is that some
defects were solved indirectly, for instance, by solving another defect. Finally,
defects were often rejected because they could not be reproduced. Since defect-
source traceability is a prerequisite for the analyses, the 566 �ndings mentioned
above were therefore chosen as the data set for further analyses. However, this
number is still too large for defect typing analysis. Therefore, a random sam-
pling was performed �rst. The sample size was initially set to 100, but was later
increased to 164.

6.2.2 Descriptive statistics

After getting the 164 sample data points, each �nding from the sample space was
inspected and a defect type was assigned to it according to the defect taxonomy
mentioned in Chapter 4. The sample's defect type distribution is shown in Figure
6.1. As shown in the �gure, a relatively large amount of the �ndings belong to
the category of UI-related defects (28 %), followed by user data I/O (17 %) and
data handling (16 %). The rest of the defect types are equal to or lower than
10 percent of the sample size. Furthermore, a considerable number of �ndings
fall into the non-defect category (27 %). Many of these non-defect �ndings are
related to change requests. Finally, �ve percent of the analyzed �ndings are
considered as undetermined.

Except for the UI-related, undetermined, and non-defect, �ndings assigned
to the rest defect types were prepared for further analyses. Finally, 83 out of
the 164 puri�ed defect data were left for statistical analyses.

6.3 Determining UML LoD

In Chapter 4 (see Section 4.2), Metrics for measuring UML LoD are listed. How-
ever, LoD aggregates for calculating LoD are needed in the statistical analyses.
Since two sets of metrics based on di�erent types of UML diagrams were created,
the functions for calculating UML LoD are introduced respectively.

Calculating the LoD of a class from class diagrams was performed by mea-
suring the class diagram metrics at class level. Therefore, the LoD value of a
class is based on information that is related to that particular class. The cor-
respondence between an implementation class and its design class in the model

23



Figure 6.1: PARTS: Defect type distribution

is always a one-to-one relationship. For LoD aggregate based on class diagram
metrics (LoDCD), we simply sum up all metrics. The equation is shown below:

For implemetation class x, corresponding design class x′:

LoDCD(x) = CDm1(x′) + CDm2(x′) + ... + CDm7(x′) (6.1)

Since an implementation class might appear as a class/instance in more than
one sequence diagrams (one-to-many relationship), The LoD value of an im-
plementation class based on sequence diagrams was calculated by taking into
account all sequence diagrams where the correspondent design class of that par-
ticular class appears. Instead of calculating the accumulative value, the average
LoD value of all sequence diagrams was used for the �nal LoD value of a given
implementation class. Both LoD functions (LoDSD) measured at diagram level
and class-instance level used the same aggregate shown below:

For implementation class x, corresponding design class x′ and n sequence
diagrams related to x′:

SequenceDiagramLoD = SDm1(x′) + SDm2(x′) + ... + SDm7(x′) (6.2)

LoDSD(x) =
1
n

n∑
i=1

SequenceDiagramLoDi(x
′) (6.3)

6.4 Statistical analyses

After getting the puri�ed data and the calculations of UML LoD, we are ready
for the statistical analyses. In this section, the statistical analyses results are

24



Defect-count # classes Percentage
1 100 76.90
2 18 13.80
3 5 3.80
4 3 2.30
5 1 0.80
6 2 1.50
7 1 0.80
187 130 100.00

Table 6.2: Distribution of defects across faulty classes in the PARTS project

given. We start with comparing defect density between di�erent modeled sys-
tems of PARTS to check whether the usage of UML models in�uences defect
density. Later, the relationship between defect density and level of details in
UML models is examined. Further, a closer look at the contribution of each
individual metric to predicting defect density is performed. After this, which
metric has a stronger correlation with a certain defect type is thoroughly dis-
cussed.

6.4.1 Descriptive statistics

Prior to the statistical analyses, a description of statistics is introduced �rst
to present a statistical overview of this project. First of all, the distribution
of defects across faulty classes is summarized in Table 6.2. As can be seen in
the table, classes that were not modeled in UML models were also taken into
account. A majority of the faulty classes only have one defect (76.90 percent),
while the highest defect-count is seven.

As discussed previously, faulty classes are java classes that were corrected to
solve defects. In total, 130 faulty classes were corrected to solve the 83 defects
discussed before. The pro�le of these faulty classes with respect to their presence
in the UML model is listed in Table 6.3. In general, faulty classes can be divided
into two groups, classes that are modeled as design classes in UML models
(modeled) and those not modeled at all (unmodeled). The modeled classes can
be further divided into more detailed categories according to the way they are
modeled in di�erent types of diagrams. All this information was easily obtained
from the analysis database.

6.4.2 Defect density comparison between di�erent system

parts

In this section, in�uence of the usage of UML models with respect to a project's
defect density is analyzed. Faulty classes used in the analyses below are based
on the information listed in Table 6.3.

First of all, defect density di�erences between system parts modeled as design
classes in UML models and those not modeled at all were analyzed. Two boxplots
that compare defect density of the modeled and unmodeled faulty classes are
shown in Figure 6.2. As can be seen from the �gure, faulty classes modeled

25



Faulty classes # classes
modeled as design classes in UML models

37
(modeled)
modeled in class diagrams

23
(modeledinCD)
modeled but not referenced in any class diagram

14
(notmodeledinCD)
modeled in sequence diagrams

30
(modeledinSD)
modeled in class diagrams only

2
(modeledinCDonly)
modeled in sequence diagrams only

9
(modeledinSDonly)
modeled in both types of diagrams

21
(modeledinBoth)
modeled but not referenced in any diagram

5
(modeledinNeither)
not modeled in UML models at all

93
(unmodeled)

Table 6.3: PARTS: The pro�le of faulty classes with respect to their presence in
UML models

in UML models have a lower defect density than the unmodeled ones. This is
illustrated by the horizontal bold lines in the grey boxes, which represent the
median value of each group. The median values of the modeled and unmodeled
classes are 4.9 and 15.15 respectively. After a careful check on the data, we were
assured that the outliers and extreme values shown in the �gure were not caused
by errors in the data (e.g., caused by a wrong data entry), therefore they could
not be excluded from the analysis.

Although a di�erence was found between defect density of modeled and
unmodeled faulty classes, further analysis should be performed to see the signif-
icance of this di�erence. As was mentioned before about performing statistical
analysis tests (see Section 5.5.3), a parametric test called the independent t-
test was considered �rst. In order to perform this test, two conditions should
be met: data is normally distributed; variances in the data are roughly equal
(homogeneity of variances). If any of these two criterion is violated, we should
then use the non-parametric test (i.e., Mann-Whitney test).

The test of normality was performed using Shapiro-Wilk for modeled
faulty classes and Kolmogorov-Smirnov for unmodeded system parts (see
Appendix C.1 for further information). However, neither defect density data of
modeled system parts nor that of unmodeled parts was normally distributed;
thus, the �rst criteria needed for an independent t-test was violated. In order
to achieve a normal data distribution, an area transformation [KK77] was per-
formed. By transforming the data, we expected to solve the data distribution
problem and to reduce the e�ects of the outliers and extreme values. A normal
data distribution was achieved after the transformation. The second criteria
of homogeneity of variances was met by performing Lavene's test (see Ap-

26



Figure 6.2: PARTS: Defect density (per KSLoC) of modeled and unmodeled
system parts

27



modeled/ Std. Std. Error
unmodeled N Mean Deviation Mean

Normalized modeled 37 -0.456 0.996 0.164
Defect Density unmodeled 93 0.182 0.945 0.098

Table 6.4: PARTS: Group statistics of defect density between the modeled and
unmodeled faulty classes

Project t df
Sig. mean
(1-tailed) Di�erence

PARTS
Equal variances assumed -3.419 128 0.001 -0.638

Table 6.5: PARTS: Independent t-test of defect density between the modeled
and unmodeled faulty classes

pendix C.2). Since the two assumptions were now met, the independent t-test
could be used. The results are shown in Table 6.5. The group statistics are given
in Table 6.4 to present the mean values of the two normalized groups.

In Table 6.5, the most important point to note is in the signi�cance column
(Sig.). The test reveals a true signi�cance when the signi�cance value p ≤ 0.05.
For PARTS, this signi�cant value is 0.001, which suggests that the mean dif-
ference of defect density between the modeled and unmodeled faulty classes is
signi�cant. Therefore, we can conclude that, on average, faulty classes that are
modeled have a signi�cantly lower defect density than those not modeled at all.
the null (H0) hypothesis mentioned before had to be rejected for this reason.
This di�erence is signi�cant at 0.01 level (p ≤ 0.01), 1-tailed.

Another analysis was performed to compare the defect density of faulty
classes based on the diagram types they were modeled in. As was shown before,
faulty classes modeled as design classes in UML models could be splitted up
into several groups: modeledinCDonly, modeledinSDonly, modeledinBoth, and
modeledinNeither. In Figure 6.3, the defect density di�erences among all these
data groups are illustrated. As can be seen from the graph, a big di�erence is
found between faulty classes modeled in both types of diagrams (modeledinBoth)
and the other three categories. Defect density is lower for modeledinBoth faulty
classes. However, the di�erences among the other three groups are not obvious.

In order to see whether this di�erence is signi�cant, the One-way inde-
pendent ANOVA test was performed to compare mean values among mul-
tiple groups. The conditions under which ANOVA is reliable are the same as
for the parametric test. The normalized data was obtained after an area trans-
formation. However, Lavene's test could not be performed due to a too small
amount of data points in the modeledinCDonly group. Since sample sizes be-
tween distinct groups were quite di�erent and the population variances were
not sure to be equal, the Games-Howell test of Post hoc procedures (see Ap-
pendix C.3) was used for exploring the data for any di�erences between means.
The descriptive statistics are given in Table 6.6 and a big di�erence of mean
values is between modeledinBoth and modeledinNeither, which are -0.395 and
0.688 respectively. Table 6.7 showed that the homogeneity of variance is met.

28



Figure 6.3: PARTS: Defect density (per KSLoC) of di�erent modeled and un-
modeled system parts

29



N Mean
modeledinBoth 21 -0.395
modeledinCDonly 2 0.603
modeledinSDonly 9 0.406
modeledinNeither 5 0.688

Table 6.6: PARTS: One-way ANOVA descriptive statistics

Levene Statistic df1 df2 Sig.
0.915 3 33 0.445

Table 6.7: Test of Homogeneity of Variances among di�erent modeled groups

The ANOVA test results can be found from Table 6.8 and there is a signi�cant
di�erence in defect density between groups (p = 0.040). However, no signi�cant
defect density di�erence is found between any pair of groups in Table 6.9. The
biggest di�erence is between modeledinBoth and modeledinNeither groups.

As can be seen from the faulty classes' pro�le listed before (see Table 6.3),
faulty classes that are modeled as design classes in UML models can be divided
into two categories based on whether these classes are actually used in class
diagrams or not. We were curious to see whether there was a defect density
di�erence between faulty classes modeled in UML models but not referenced in
any of the class diagrams (notmodeledinCD) and those which are modeled as
design classes and were also used in class diagrams (modeledinCD).

From the boxplots shown in Figure 6.4, it can be seen that defect density of
modeled faulty classes presented in class diagrams is lower than that of faulty
classes modeled only as design classes but not referenced in any class diagrams.
The median values of modeledinCD and notmodeledinCD groups are 2.996 and
10.449, respectively.

After checking the two conditions for parametric test, the data normality was
met after data normalization and homogeneity of variances was also valid. Again,
the independent t-test was performed and the results are shown in Table 6.10.
From the signi�cance value p = 0.007, we can conclude that defect density of
modeled faulty classes that are presented in class diagrams is signi�cantly lower
than those only modeled in UML models but not used in class diagrams. The
null (H2) hypothesis mentioned in Section 1.3 was rejected.

Sum of Mean
Squares df Square F Sig.

Between Groups 7.853 3 2.618 3.098 0.040
Within Groups 27.882 33 0.845

Table 6.8: One-way ANOVA test

30



Mean
Di�erence

(I)Group (J)Group (I-J) Std.Error Sig.
modeledinBoth modeledinCDonly -0.998 0.379 0.298

modeledinSDonly -0.801 0.429 0.292
modeledinNeither -1.083 0.364 0.075

Table 6.9: Post hoc test: Games-Howell procedure

Figure 6.4: PARTS: Defect density (per KSLoC) of modeled faulty classes pre-
sented in CD or not

Project t df Sig. mean
(1-tailed) Di�erence

PARTS
Equality of variances asumed -2.598 35 0.007 -0.815

Table 6.10: Independent t-test of Defect Density between Modeled Faulty
Classes presented in CD or not

31



Figure 6.5: PARTS: Boxplots of class LoD (LoDCD) and defect density

Defect Density
Class LoD 0.173
Signi�cance(2-tailed) 0.431

Table 6.11: Spearman's correlation coe�cient between class LoD (LoDCD) and
defect density

6.4.3 Correlation Analyses between UML LoD and Defect

Density

In this section, three correlation analyses are performed to investigate the rela-
tion between the level of detail in UML models of faulty classes and their defect
density. As was mentioned before, a similar analysis was performed in [NFC08]
and a signi�cant negative correlation between UML LoD using sequence diagram
metrics and defect density was found. Although no signi�cant correlation was
found in the same research, we still want to perform the correlation analysis be-
tween UML LoD using class diagram metrics and defect density. Later, LoDSD

measured at diagram level and class-instance level are examined respectively.

Using Class Diagram Metrics

This analysis tries to answer whether there is a signi�cant correlation between
LoDCD and defect density. In total, LoDCD values of 23 faulty classes were
modeled in class diagrams and the descriptive statistics of the LoDCD scores
are shown in Figure 6.5. Since several outliers appeared in the defect density
data, area transformation was performed to reduce the e�ects of the outliers
and to achieve a normal data distribution. However, a normal distribution for
the LoDCD data still could not be achieved. Therefore, a non-parametric test
was performed instead, called Spearman's correlation test (see Appendix C.4).
The result of the analysis is shown in Table 6.11.

To our surprise, the correlation coe�cient indicates a positive correlation
between Class LoD using all the class diagrams metrics and defect density.
However, this correlation is not statiscially signi�cant. Therefore, there is no
signi�cant correlation between UML LoD using class diagram metrics and defect

32



Figure 6.6: PARTS: Boxplots of class LoD (LoDSD measured at diagram level)
and defect density

Defect Density
Class LoD -0.459**
Signi�cance (1-tailed) 0.005
**indicates sigini�cance at 0.01 level (1-tailed)

Table 6.12: Pearson's correlation coe�cient of LoDSD measured at diagram
level and defect density

density.

Using Sequence Diagram Metrics

Two analyses were performed using sequence diagram metrics measured at dia-
gram level and class-instance level, respectively. In total, 30 faulty classes were
modeled in sequence diagrams. We �rst consider LoDSD measured at diagram
level and then LoDSD measured at class-instance level.

LoDSD measured at diagram level In this analysis, the level of details of
the entire sequence diagram where a faulty class is modeled is considered as the
LoD of that faulty class. The summary of the LoD scores and defect density of
these 30 faulty classes is presented in Figure 6.6.

A parametric correlation test was performed on the normalized data, namely
Pearson's correlation analysis (see Appendix C.4). Figure 6.7 illustrates the
relation between the two variables after normalization. The result of the analysis
can be found in Table 6.12.

From Table 6.12, it can be concluded that there is a negative (R = -0.459)
and signi�cant (p = 0.005) correlation between the two variables. Classes pre-
sented in sequence diagrams with a high LoDSD tend to have a lower defect
density than those used in sequence diagrams with a low LoDSD. Furthermore,
the R Square value, which measures the amount of variability of defect den-
sity that is accounted by LoDSD measured at diagram level, equals 0.208. This
means that LoDSD measured at diagram level accounts for 20.8 percent of the
variability of defect density in the implementation.

33



Figure 6.7: PARTS: Scatterplots of the relation between class LoD (LoDSD

measured at diagram level) and defect density

Figure 6.8: PARTS: Boxplots of class LoD (LoDSD measured at class-instance
level) and defect density

LoDSD measured at class-instance level In this analysis, the LoD score of
a faulty class is represented by the LoD of the correspondent design class in the
sequence diagrams where that faulty class was modeled. Again, the summary of
the LoD scores and defect density of the 30 faulty classes modeled in sequence
diagrams is presented in Figure 6.8.

The results of performing the Pearson's correlation test on the normalized
LoDSD and defect density is shown in Table 6.13. Figure 6.9 illustrates the
relation between the two variables after normalization.

Although the correlation is not as strong as that of using LoDSD measured at
diagram level, the correlation analysis again results in a negative and signi�cant
correlation between the two variables. The R Square value, which measures the
amount of variability of defect density that is accounted by LoDSD measured
at class-instance level, equals 0.138. This means that LoDSD measured at class-
instance level accounts for 13.8 percent of the variability of defect density in the

34



Figure 6.9: PARTS: Scatterplots of the relation between class LoD (LoDSD

measured at class-instance level) and defect density

implementation.

6.4.4 The contribution of individual metrics to predicting

defect density

According to the correlation analyses mentioned above, a negative and signi�-
cant correlation was found between the level of detail in sequence diagrams and
defect density. The formulates for the LoD measures were generated by adding
up all the metrics with equal weight factors. In this section, we focus on individ-
ual metrics' contribution to defect density prediction. Correlation analyses were
performed to measure the correlation between each metric and defect density.
At the same time, the R Square value, which measures the amount of variability

Defect Density
Class LoD -0.371*
Signi�cance (1-tailed) 0.022
*indicates sigini�cance at 0.05 level (1-tailed)

Table 6.13: Pearson's correlation coe�cient of LoDSD measured at class-
instance level and defect density

35



Test Method Metric Defect Density

Pearson's

MsgWithParamRatio -0.593**
Signi�cance (2-tailed) 0.001
R Square 0.352
NonDummyMsgRatio -0.334
Signi�cance (2-talied) 0.072
ReturnMsgWithLabelRatio -0.332
Signi�cance (2-talied) 0.073
MsgWithGuardRatio -0.202
Signi�cance (2-talied) 0.284

Spearman's

NonAnoymObjRatio 0.230
Signi�cance (2-talied) 0.221
NonDummyObjRatio 0.344
Signi�cance (2-talied) 0.063

**indicates sigini�cance at 0.01 level (2-tailed)

Table 6.14: Correlation analyses between individual metrics measured at dia-
gram level and defect density

of defect density that is accounted by each metric, is examined. The idea behind
this is to see which metrics are more suitable for predicting defect density. Since
only metrics used for sequence diagram are worth further analysis, we started
with analyzing sequence diagram metrics measured at diagram level, followed
by metrics measured at class-instance level.

Metrics measured at diagram level After a closer look at individual met-
rics, the values of the MsgWithLabelRatio metric were always found constant.
A couple of correlation analyses were performed between the rest of the metrics
and defect density. Pearson's test was performed on normalized metrics, while
Spearson's test was used on metrics which were not normally distributed even
after normalization. The results are listed in Table 6.14.

An interesting �nding is that the MsgWithParamRatio metric has a sig-
ni�cant and negative correlation with defect density and this relation is even
stronger than that of using LoDSD aggregate (correlation coe�cient equals -
0.459). At the same time, the R Square value of this metric is larger than that
of using LoDSD aggregate (R Square equals 0.208). This result indicates that
some metrics might have stronger predictive power for defect density than oth-
ers. Therefore, these metrics should have a larger weight than the rest when
making a LoDSD aggregate, since the information o�ered by these metrics are
more helpful in decreasing defect density.

Metrics measured at class-instance level In total, three metrics (Msg-
WithLabelRatio, NonAnomyObjRatio and NonDummyObjRatio) had constant
values. Correlation tests were only performed on the remaining four metrics.
According to the results shown in Table 6.15, NonDummyMsgRatio and Msg-
WithGuardRatio have a negative and signi�cant correlation with defect density.
Both of the relations are stronger than that of using LoDSD aggregate (the cor-
relation coe�cient equals to -0.371). At the same time, the R Square values of

36



Test Method Metric Defect Density

Pearson's
MsgWithParamRatio -0.303
Signi�cance (2-tailed) 0.103

Spearman's

NonDummyMsgRatio -0.466**
Signi�cance (2-tailed) 0.010
R Square 0.217
MsgWithGuardRatio -0.542**
Signi�cance (2-tailed) 0.002
R Square 0.294
ReturnMsgWithLabelRatio -0.303
Signi�cance (2-tailed) 0.103

**indicates sigini�cance at 0.01 level (2-tailed)

Table 6.15: Correlation analyses of individual metrics measured at class-instance
level and defect density

these two metrics are larger than that of using LoDSD aggregate (which equals
to 0.138).

6.4.5 The correlation between UML LoD metrics and de-

fect density of individual defect type

In Chapter 4, a defect taxonomy with several typical defect types is listed.
Since distinct defect types might have di�erent characteristics, it is interesting
to see which LoD metrics in UML modeling have stronger correlation with a
certain defect type. In this section, defect types with a considerable amount of
data points are analyzed. As the signi�cant and negative correlation was found
only between LoDSD and defect density, sequence diagram metrics measured at
diagram level and class-instance level are considered in the following analyses.

After checking the data points for each defect type, only defect types logic
and data handling have enough data points for performing correlation analysis.
The number of faulty classes related to these two defect types are 13 and 18,
respectively.

The correlation analysis procedure is the same as discussed in the previous
sections (see Section 6.4.3). The results are given in the following sections.

Logic Defect Type

In total, 13 faulty classes are related to logic defect type. The correlation anal-
yses results are given in Table 6.16. As can be seen from the table, for sequence
diagram metrics measured at diagram level, the two metrics MsgWithParam-
Ratio and MsgWithGuardRatio have stronger negative correlation with defect
density than the rest of the metrics. Additionally, MsgWithParamRatio even
has a signi�cant negative correlation. The four non-constant metrics measured
at class-instance level are listed in the same table. Although none of them has a
signi�cant correlation with defect density, they all show a negative relationship.

37



Modeled Test Defect
level Methods Metrics Density

Diagram

Pearson's

MsgWithParamRatio -0.840**

level

Signi�cance (2-tailed) 0.000
MsgWithGuardRatio -0.550
Signi�cance (2-tailed) 0.051
ReturnMsgWithLabelRatio -0.370
Signi�cance (2-tailed) 0.213
NonDummyMsgRatio 0.308
Signi�cance (2-tailed) 0.306

Spearman's

NonAnoymObjRatio 0.210
Signi�cance (2-tailed) 0.492
NonDummyObjRatio 0.335
Signi�cance (2-tailed) 0.263

Class-instance Pearson's

ReturnMsgWithlabelRatio -0.548

level

Signi�cance (2-tailed) 0.053
MsgWithParamRatio -0.459
Signi�cance (2-tailed) 0.115
MsgWithGuardRatio -0.430
Signi�cance (2-tailed) 0.142
NonDummyMsgRatio -0.287
Signi�cance (2-tailed) 0.342

**indicates sigini�cance at 0.01 level (2-tailed)

Table 6.16: Correlation analyses of LoDSD metrics and defect density (logic
defect type)

38



Modeled Test Defect
level Methods Metrics Density

Diagram

Pearson's

NonDummyMsgRatio -0.529*

level

Signi�cance (2-tailed) 0.024
MsgWithParamRatio -0.439
Signi�cance (2-tailed) 0.068
ReturnMsgWithLabelRatio 0.021
Signi�cance (2-tailed) 0.934
MsgWithGuardRatio 0.157
Signi�cance (2-tailed) 0.533

Spearman's

NonAnoymObjRatio -0.194
Signi�cance (2-tailed) 0.440
NonDummyObjRatio -0.023
Signi�cance (2-tailed) 0.927

Class-instance Pearson's

ReturnMsgWithlabelRatio -0.359

level

Signi�cance (2-tailed) 0.143
NonDummyMsgRatio -0.286
Signi�cance (2-tailed) 0.249
MsgWithParamRatio -0.273
Signi�cance (2-tailed) 0.273
MsgWithGuardRatio -0.215
Signi�cance (2-tailed) 0.393

*indicates sigini�cance at 0.05 level (2-tailed)

Table 6.17: Correlation coe�cient of LoDSD metrics and defect density (Data
handling defect type)

Data Handling Defect Type

There are 18 faulty classes related to the data handling defect type. Table 6.17
shows the correlation analyses results for this defect type.

As can be seen from Table 6.17, for sequence diagram metrics measured at
diagram level, metric NonDummyMsgRatio has a signi�cant negative correla-
tion with defect density. However, metrics ReturnMsgWithLabel and MsgWith-
GuardRatio based on diagram level are tested to have positive correlation with
defect density. Since this positive correlation is not signi�cant, it might be just
a random errors or coincidence. The four non-constant metrics measured at
class-instance level indicate a negative relationship, although none of them has
a signi�cant correlation with defect density.

6.5 Results and Conclusions

In this section, the main �ndings discovered in this case study are listed and
possible interpretations are given. The implications of the results are also dis-
cussed.

The �rst �nding is the in�uence of using UML models on defect density.
As noted earlier, classes modeled as design classes in UML models were con-
sidered modeled, and otherwise not modeled. The result indicated that faulty

39



classes that were modeled, on average, had a lower defect density than those
not modeled at all. This di�erence of defect density was statistically signi�-
cant. This conclusion con�rms that UML models have a positive in�uence on
reducing defect density in the implementation. Well designed UML models can
be good guidance in the implementation phase. Later, the modeled classes are
splitted up into more detailed categories based on how they are modeled. Al-
though a big defect density di�erence is found between classes modeled in both
types of diagrams (modeledinBoth) and those modeled but not used in any dia-
grams (modeledinNeither), this di�erece is not statistically signi�cant. However,
we still believe that modeling classes in diverse UML diagrams o�ers develop-
ers clearer and better understandings of the design with di�erent views. We
also made a distinction between modeled classes presented in UML diagrams
and those just modeled as design classes but not presented in any of the class
diagrams. The defect density is signi�cantly di�erent and lower for modeled
classes presented in UML diagrams. This �nding also indicates the importance
of UML diagrams in preventing defects in the implementation. Although some
implemented classes were modeled as design classes, they are more helpful if
presented in UML diagrams which actually illustrate how the classes should be
implemented and how they relate to other classes.

The second �nding is the correlation between UML LoD and defect density.
The result in this case study is consistent with the one mentioned in [NFC08].
Classes that are modeled in a higher level of detail are inclined to have lower de-
fect density. This �nding indicates that software quality probably bene�ts from
higher detailed UML modeling: more information in the UML models probably
helps decrease misinterpretations of models among developers. Therefore, they
are more instructive during the implementation. However, this conclusion was
only con�rmed by LoDSD using sequence diagram metrics (see Section 6.4.3).
The correlation is stronger between UML LoD using sequence diagram metrics
measured at diagram level and defect density. One interpretation is that in this
particular case three out of seven metrics measured at class-instance level have
constant values for all modeled faulty classes. We believe this will decrease the
predictive power of UML LoDSD.

After �nding the correlation between UML LoDSD and defect density, we
would like to know how much each LoDSD metric accounts for the variabil-
ity of defect density. Di�erent metrics were listed based on at which level they
were measured, either diagram level or class-instance level. The results indi-
cated that some metrics (i.e., MsgWithParamRatio, NonDummyMsgRatio, and
MsgWithGuardRatio) had stronger correlation with defect density and also had
more contribution to predicting defect density. It means that the information
provided by these metrics are more helpful in reducing defect density in the
implementation phase.

Later, we wanted to have a look at the correlations between individual met-
rics and defect density of a certain defect type. However, due to the lack of
enough data points, only logic and data handling defect types were considered
in the analyses. For the logic defect type, metrics MsgWithParamRatio and
MsgWithGuardRatio measured at diagram level had stronger correlation with
defect density than the other metrics. This is not hard to understand because
we believe these two metrics are important for demonstrating the logic perfor-
mance inside a class. Hence, lacking of information of these two metrics will
probably lead to logic problems. For the data handling defect type, the Non-

40



DummyMsgRatio metric was found to have a signi�cant negative correlation
with defect density. After checking the data set carefully, one data handling
related defect type, called data-access, took a relatively larger percentage of the
defects belonging to data handling defect types (38.9 percent). This defect type
is mostly related to data handling from/to a data store, normally this part of
the system is not designed into detail and dummy messages are used without
being modeled. This might explain why the NonDummyMsgRatio metric has a
signi�cant correlation with the data handling defect type.

41



Chapter 7

Case study 2: RACE

In this chapter, a new case study is performed within the RACE project. This
project is relatively much smaller than the PARTS project. However, we still
believe it worth an investigation since it is still an empirical industrial product.
The structure of this chapter is quite similar to that of the �rst case. The
description of the project is given �rst, immediately followed by data collection
and preprocessing. The statistical analyses are performed on the puri�ed data
after that. Finally, the results and conclusions are discussed.

7.1 RACE description

RACE is a risk management system developed for a �nancial organization in
the Netherlands. In the following paragraphs, the project characteristics are
discussed in detail. The summary of the RACE project can be found in Table 7.1.

7.1.1 Project environment

Race was built as a web server in Java language. The application frontend was
done by the Apache Struts framework where a model-view-controller architec-
ture was adopted. Swing was applied to build up stand alone application. The

Technology Java
# sta�s 10 people
Duration (in years) 1
O�-shored India
Status Finished

Model size

9 use cases
44 design classes
22 seq. diagrams
12 class diagrams

SLoC 125,168

Table 7.1: RACE Project Summary

42



oracle database was relatively easy and there was no coding inside the database
itself. IBM Rational XDE was used to create the UML models. Other IBM Ra-
tional tools such as IBM Rational ClearCase and ClearQuest were used for code
versioning and bug tracking.

7.1.2 Developer experience

Three architects were involved in this project and we believe that they had
enough knowledge of UML and the ability of creating design documentation
using UML. In particular, they had lots of experience using class diagram and
sequence diagram which were mainly used in this project. Most developers had
su�cient experience and knowledge in reading and understanding the UML
models. Although some junior programmers might need some extra explanation
of the details of UML models, they were able to understand the design correctly
during the implementation.

The reporting part of the system was o� sourced to India. Since no UML
models were designed for this part of the system in advance and the code quality
was horrible, we assume that developers there might have some di�culty in
creating UML design models and implementing the code.

7.1.3 Adopted development process

The requirements document was organized in a waterfall process and was devel-
oped for about 3 years and full of great detail. On the other hand, the develop-
ment process was developed iteratively using Rational Uni�ed Process (RUP).

7.1.4 Working style

The requirements and the main UML design of the system were created in the
Netherlands. At the same time, a majority of the system was implemented in
the Netherlands. Only one part of the system, the reporting part, was com-
pletely o�-sourced to India. This part was originally expected to be completed
independently by the India department, including the UML design, code imple-
mentation, code review and testing. Actually, no UML design documentation
was made for this part and code was implemented according to the related
chapters in the requirements document.

Due to the culture di�erence, negotiations between the Netherlands and
India were quite bad and few feedbacks were given to the Netherlands. Errors
in the requirements were simply implemented in India even they were quite
obvious. Lots of review and code rewriting were done back in the Netherlands.

7.2 RACE defect statistics

Defect data collection and preprocessing processes performed in this project are
mainly discussed in this section. Since RACE is a rather small project, we de-
cided to use all the �ndings registered in ClearQuest based on the latest version
of the repository. In total, 109 �ndings were found in ClearQuest repository and
59 out of them were traceable back to the modi�ed source �les. Hence, these 59
target �ndings were left for the further analysis.

43



Figure 7.1: RACE: defect type distribution

7.2.1 Descriptive statistics

Prior to statistical analysis, the same defect typing procedure was performed on
each target �nding according to the defect taxonomy mentioned in Chapter 4.
The defect type distribution is shown in Figure 7.1. As shown in the Figure, the
logic defect type accounts for nearly 29 percent of the whole dataset, followed
by the data handling (18 percent) and the user data I/O (merely 15 percent).
The rest defect types are equal to or lower than 10 percent. A few defects fall
into the non-defect and the undetermined defect type, both of which account
for 8 percent of the dataset.

After excluding the irrelative defect types, which referred to the UI-related,
undetermined, and non-defect, 40 defects were left for further analyses.

7.3 Determining UML LoD

Since the generalization of the conclusions drawn from PARTS is also an im-
portant motivation for performing this study, we currently still use the LoD
aggregates created and used in the PARTS project (see Section 6.3). The idea
behind this is to keep the other factors as similar as possible while comparing
the analysis results between the two projects.

7.4 Statistical analyses

In this section, the statistical analyses results are given. The same analysis
procedure as mentioned in the �rst case study is performed. However, some
analyses are unable to perform due to not having enough data points.

44



Defect-count # classes Percentage
1 70 87.50
2 7 8.75
3 2 2.50
5 1 1.25
95 80 100.00

Table 7.2: Distribution of defects across faulty classes in the RACE project

Faulty classes # classes
modeled as design classes in UML models

11
(modeled)
modeled in class diagrams

2
(modeledinCD)
modeled but not referenced in any class diagram

3
(notmodeledinCD)
modeled in sequence diagrams

8
(modeledinSD)
modeled in class diagrams only

1
(modeledinCDonly)
modeled in sequence diagrams only

7
(modeledinSDonly)
modeled in both types of diagrams

1
(modeledinBoth)
modeled but not referenced in any diagram

2
(modeledinNeither)
not modeled in UML models at all

69
(unmodeled)

Table 7.3: RACE: The pro�le of faulty classes with respect to their presence in
UML models

7.4.1 Descriptive statistics

A description of statistics is introduced to present a statistical overview of this
project prior to statistical analyses. The distribution of defects across the faulty
classes is shown in Table 7.2. As can be seen from the table, most faulty classes
only have one defect (87.50 percent), while the highest defect-count is �ve.

In total, 80 faulty classes were used to correct the 40 target defects discussed
before. The pro�le of these faulty classes with respect to their presence in UML
models is listed in Table 7.3.

7.4.2 Defect density comparison between di�erent system

parts

In PARTS, we found out that the usage of UML models actually in�uenced the
defect density of a project. Some important conclusions were drawn from the
analyses (see Section 6.4.2). The same analyses were intended to perform on the

45



Figure 7.2: RACE: Defect density (per KSLoC) of modeled and unmodeled
system parts

data set of this project.

The �rst conclusion drawn from the PARTS project is that faulty classes
modeled using UML have a signi�cantly lower defect density than those not
modeled at all. In this analysis, the same hypothesis is tested. Figure 7.2 shows
two boxplots that compare defect density of the modeled and unmodeled faulty
classes. It can be seen that faulty classes modeled in UML models have a lower
defect density than the unmodeled ones. The median values of the modeled and
unmodeled classes are 2.71 and 17.24 respectively. The outliers and extreme
values in the graph could not be excluded from the analysis because they are
not caused by errors in the data.

Although there is a big di�erence between defect density average values of
the two variables, the signi�cance of this di�erence is not con�rmed yet. Since
defect density data of unmodeled system parts was not normally distributed,
an area transformation was applied to both the modeled and unmodeled defect
density data sets so that their relative di�erences were maintained. The inde-
pendent t-test was performed on the normalized data and the results are shown
in Table 7.5. However, Lavene's test (Sig. = 0.041) indicates that equality of
variances could not be assumed, thus the results are given under the condition
that equal variances are not assumed. The group statistics are �rst given in
Table 7.4 to present the mean values of the two normalized groups.

As can be seen from Table 7.5, the signi�cant value is p = 0.000, which
suggests that the mean di�erence of defect density between the modeled and

46



modeled/ Std. Std. Error
unmodeled N Mean Deviation Mean

Normalized modeled 11 -1.097 0.469 0.141
Defect Density unmodeled 69 0.176 0.944 0.114

Table 7.4: RACE: Group statistics of defect density between the modeled and
unmodeled faulty classes

Project t df Sig. mean
(1-tailed) Di�erence

RACE
Equal variances not assumed -7.022 25.51 0.000 -1.274

Table 7.5: Independent t-test of defect density between the modeled and un-
modeled faulty classes

unmodeled faulty classes is signi�cant. Therefore, on average, faulty classes that
were modeled have a signi�cantly lower defect density than those not modeled at
all. The consistent result is obtained in this case study, which supports our be-
lieve in achieving higher software quality by using UML models. This di�erence
is signi�cant at 0.01 level (p ≤ 0.01), 1-tailed.

Unfortunately, the comparison of defect density of faulty classes based on
the diagram types they were modeled in could not be performed due to too
few data points (see Section 7.4.2). The same to analysis for testing defect
density di�erence between faulty classes modeled in UML models but not refer-
enced in any class diagram (notmodeledinCD) and those used in class diagrams
(modeledinCD).

7.4.3 Correlation Analyses between UML LoD and Defect

Density

In this section, we continue with the correlation analyses between the level of de-
tail in UML models of faulty classes and their defect density. As was mentioned
in the PARTS project, an important conclusion was that there is a negative
and signi�cant correlation between UML LoD using sequence diagram metrics
and defect density. The same hypothesis was used in this study case (see Sec-
tion 1.3). The correlation analysis between LoDCD and defect density could not
be performed due to a too small amount of data points. Therefore, only LoDSD

measured at diagram level and class-instance level were analyzed.

Using sequence diagram metrics

In total, 8 faulty classes were modeled in sequence diagrams. We �rst consider
LoDSD measured at diagram level and then LoDSD measured at class-instance
level.

LoDSD measured at diagram level The summary of the LoD scores mea-
sured at diagram level and defect density of these 8 faulty classes is presented
in Figure 7.3.

47



Figure 7.3: RACE: Boxplots of class LoD (LoDSD measured at diagram level)
and defect density

Figure 7.4: RACE: Scatterplots of the relation between class LoD (LoDSD mea-
sured at diagram level) and defect density

Since both LoDSD and defect density data points were normally distributed,
Pearson's correlation analysis was applied. Figure 7.4 illustrates the relation
between the two variables. The result of the analysis can be found in Table 7.6.

As can be seen from Table 7.6, there is no signi�cant correlation between
the two variables, however, a negative (R = -0.483) relation is con�rmed. Later,
Spearman's test was applied to the same data set and it revealed a signi�cant
correlation between LoDSD and defect density (see Table 7.7). This correlation
is even signi�cant at 0.05 level (p ≤ 0.05), 1-tailed. After checking the data
samples and Figure 7.4, one data point (defect density equals 3.57 and LoD
equals 2.6) is found to have a relatively lower LoD and defect density than the
rest of the samples. We did the Pearson's test without this data point and a
signi�cant correlation between LoDSD measured at diagram level and defect
density is indicated (p = 0.012). Therefore, we assume that the appearance
of this data point con�icts with the linear assumption of Pearson test which

48



Defect Density
Class LoD -0.483
Signi�cance (1-tailed) 0.112

Table 7.6: Pearson's correlation coe�cient of LoDSD measured at diagram level
and defect density

Defect Density
Class LoD -0.738*
Signi�cance (1-tailed) 0.018

Table 7.7: Spearman's correlation coe�cient of LoDSD measured at diagram
level and defect density

indicates the strength and direction of a linear relationship. At the same time,
fewer data points might make the outliers' in�uence on the result much stronger
than large amount of data samples. These two reasons can probably explain
why Pearson's test could not reveal a signi�cant correlation before. However,
we could not �nd any reason to exclude this data point.

LoDSD based on class-instance level The summary of the LoD scores
measured at class-instance level and defect density of these faulty classes is
presented in Figure 7.5.

Since both LoDSD measured at class-instance level and defect density data
sets were normally distributed, Pearson's correlation test was performed again.
The result is shown in Table 7.8. Figure 7.6 illustrates the relation between the
two variables.

Although the correlation is not statistically signi�cant, it shows a negative
correlation which is stronger than that of using LoDSD measured at diagram
level (p = 0.112). From Figure 7.6, we also suspected that the same data point
mentioned before with relatively lower level of detail and defect density might
in�uence the result of Pearson's test. After excluding that data point, a signi�-

Figure 7.5: RACE: Boxplots of class LoD (LoDSD measured at class-instance
level) and defect density

49



Figure 7.6: RACE: Scatterplots of the relation between class LoD (LoDSD mea-
sured at class-instance level) and defect density

Defect Density
Class LoD -0.568
Signi�cance (1-tailed) 0.071

Table 7.8: Pearson's correlation coe�cient of LoDSD measured at class-instance
level and defect density

50



Test Method Metric Defect Density

Pearson's

NonDummyMsgRatio -0.043
Signi�cance (2-tailed) 0.919
MsgWithParamRatio -0.134
Signi�cance (2-tailed) 0.751
NonDummyObjRatio -0.470
Signi�cance (2-tailed) 0.240

Spearman's

NonAnonymObjRatio -0.055
Signi�cance (2-tailed) 0.898
MsgWithGuardRatio -0.546
Signi�cance (2-tailed) 0.162

Table 7.9: correlation analyses between individual metrics and defect density

cant correlation between the two variables is found (p = 0.019). This observation
also indicates that we need far more data points to reduce the in�uence of the
outliers.

7.4.4 The contribution of individual metrics to predicting

defect density

Although a signi�cant correlation between level of detail in UML models using
sequence diagram metrics and defect density was not found, a negative relation-
ship was indicated. Therefore, individual metrics' contribution to defect density
prediction are worth an investigation in this section. Correlation analysis was
performed to examine the correlation between each metric and defect density.
The R Square value is calculated to measure the amount of variability of de-
fect density that is accounted by metrics which indicate a signi�cant correlation
with defect density. Since only metrics used for sequence diagram worth a fur-
ther analysis, we started with analyzing sequence diagram metrics measured at
diagram level, followed by metrics measured at class-instance level.

LoDSD metrics measured at diagram level

After having a closer look at each individual metric, metricsMsgWithLabelRatio
and ReturnMsgWithLabelRatio were found to be constant. A couple of correla-
tion analyses were performed between the remaining metrics and defect density.
The results are listed in Table 7.9.

It can be seen from Table 7.9 that none of the rest metrics shows a signi�cant
correlation, however, they all indicate a negative correlation with defect density.
MsgWithGuardRatio metric has a even stronger correlation with defect density
than LoDSD aggregate which has correlation coe�cient as -0.483.

LoDSD metrics measured at class-instance level

For LoDSD metrics measured at class-instance level, three metrics MsgWith-
LabelRatio, NonAnoymObjRatio and ReturnMsgWithLabelRatio had constant
values. The results are shown in Table 7.10 below.

51



Test Method Metric Defect Density

Pearson's

NonDummyMsgRatio -0.572
Signi�cance (2-tailed) 0.193
MsgWithParamRatio 0.464
Signi�cance (2-tailed) 0.247

SPearman's

MsgWithGuardRatio -0.577
Signi�cance (2-tailed) 0.134
NonDummyObjRatio -0.454
Signi�cance (2-tailed) 0.259

Table 7.10: Correlation analyses of individual LoDSD metrics measured at class-
instance level and defect density

According to the results shown in Table 7.10, the NonDummyMsgRatio and
MsgWithGuardRatio metrics have a stronger correlation with defect density
than LoDSD aggregate (correlation coe�cient equals -0.568). However, to our
surprise, the MsgWithParamRatio metric indicates a positive correlation with
defect density. After checking the metric values of MsgWithParamRatio, one
data point with the highest level of detail has the highest defect density. This
in�uenced the relation between the two variables dramatically. Therefore, we
believe lacking of enough data points is a big threat to the validation of the
results.

7.4.5 The Correlation between UML LoDMetrics and De-

fect Density of Individual Defect Type

Since in total only 8 faulty classes are related to sequence diagrams, data points
for each defect type are even smaller. Therefore, the correlation between UML
LoD metrics and defect density of individual defect type can not be addressed
in this case study.

7.5 Results and Conclusions

In this section, we list the �ndings discovered in this case study. However, some
conclusions drawn from PARTS project are not con�rmed in this case study,
the possible interpretations are given in the following paragraphs.

First of all, the consistent conclusion is obtained from the analysis of UML
models' in�uence on defect density. The result con�rms that faulty classes that
were modeled, on average, have a lower defect density than those not modeled
at all. This di�erence of defect density is statistically signi�cant. However, due
to too few data points, it is impossible to perform the rest of the two analyses
related to this research question.

Later, we examined the correlation between UML LoD and defect density.
The correlation analysis between LoDCD and defect density was not able to
perform due to lacking of enough data samples. For LoDSD measured at both
diagram level and class-instance level, a negative relation between LoDSD and
defect density was obtained. However, neither of the two correlations was statis-
tically signi�cant. As mentioned earlier, two reasons might explain this situation.

52



Not having enough data points could be the �rst reason since we only have 8
data points which are far less than that used in the PARTS project. Another
reason is that the result can be easily in�uenced by outliers (see Section 7.4.3).
Therefore, we are still con�dent with the conclusion drawn from PARTS � there
is a signi�cant negative correlation between higher level of details in UML mod-
els and lower defect density.

Further, if possible, we would like to know how much each LoDSD metric
accounts for the variability of defect density. The correlation between individual
metrics and defect density was analyzed. Although none of the metrics has a
signi�cant correlation with defect density, some information might still be use-
ful in the later phase. For sequence diagram metrics measured at diagram level,
the MsgWithGuardRatio metric has a stronger relation with defect density than
LoDSD using all the metrics. On the other hand, the NonDummyMsgRatio and
MsgWithGuardRatio metrics from sequence diagram metrics measured at class-
instance have a stronger correlation with defect density than LoDSD aggregate.
It is interesting to see that these two metrics, NonDummyMsgRatio and Ms-
gWithGuardRatio, were also indicated to have stronger correlation with defect
density in the PARTS project.

In conclusion, some results found in PARTS project are not able to perform
or not statistically signi�cant in this case study. We believe that lacking of
enough data points is the main threat. Furthermore, the results can be easily
in�uenced by one or two outliers could be another interpretation. Finally, the
performance of the analysis methods used in this study case was not that robust
because of the small amount of data samples. These are the reasons why a third
case study is needed.

53



Chapter 8

Case study 3: BEHEERNET

The third case study is performed in the BEHEERNET project which is also
an industrial project from the real world. The structure of this chapter is the
same as the previous case studies. The project description and characteristics
are introduced �rst, followed by data collection and preprocessing. Later, the
statistical analyses are performed when the puri�ed data set is ready. In the
end, the results and conclusions about this project are summarized.

8.1 BEHEERNET description

BEHEERNET is developed as a Web service about pension marketing for in-
surance companies. Pension Fund organization can have an overview of the
companies' and their employees' pension statuses. The employers are able to
change the pension detail of their employees and store the pension document
of their employees by using a document management system. The intention of
this project is built to be accessible by many other systems. The project itself
is pretty big and involves several development stages.

In the following paragraphs, the project characteristics are discussed into
detail. Table 8.1 provides the summary of the BEHEERNET project.

Technology Java
# sta�s 18 people
Duration (in years) 2
O�-shored India
Status Finished

Model size

20-25 use cases
137 design classes
115 seq. diagrams
28 class diagrams

SLoC 135,454

Table 8.1: BEHEERNET Project Summary

54



8.1.1 Project environment

BEHEERNET is built as a web service using Java technology. The method of
design used for the visualization of the blueprints of the system is based on
the �4+1 View Model of Architecture�, which is based on [Kru95] and standard
within the Rational Uni�ed Process. The UML models were created using IBM
Rational XDE. IBM Rational ClearCase and ClearQuest were adopted for code
versioning and bug tracking respectively.

8.1.2 Developer experience

Several architects have worked on this project. However, di�erent architects
were responsible for di�erent development stages (i.e., di�erent versions of the
project). On average, one architect was involved in the project all the time.
These architects have di�erent opinions in UML modeling and their model-
ing styles are di�erent too. The leading architect has the su�cient knowledge
in designing UML models. Developers' experience in using UML models were
quite little, especially the developers in India. They consistently had di�culties
in understanding the UML models and asked for more detailed architectural
designs.

8.1.3 Adopted development process

In this project, waterfall development approach was adopted. No iterative test-
ing but only one big release was performed at the end of the project.

8.1.4 Working style

The whole development team was divided into three groups. Two were in the
Netherlands but located in di�erent cites. Another one big group was in India.
The development and testing processes were mainly done in India. Due to the
culture di�erence, the negotiation between the Netherlands and India was not
good. Lots of time were spent on explaining the architectures by phone or online
chatting. Misunderstanding about the UML models in India was a big problem
during the development.

8.2 BEHEERNET defect statistics

Defect data collection and preprocessing processes are mainly discussed in this
section.

8.2.1 Data sampling

All the �ndings registered as defects in ClearQuest were based on the latest
version of BEHEERNET project repository. In total, 4061 �ndings were recorded
in ClearQuest, among which 1784 �ndings had modi�ed source �les traceable
back to the source code. Therefore, they were chosen as the data set for further
analyses. However, this number is still too large for defect typing analysis. We
�rst analyzed defects which have at least one modi�ed implementation class

55



Figure 8.1: BEHEERNET: Defect type distribution

modeled in UML models. Later, a random sampling was performed to enrich
the sample size to 200 data points.

8.2.2 Descriptive statistics

After getting the 200 sample data points, each �nding from the sample space
was inspected and assigned with a defect type according to the defect taxonomy
mentioned in Chapter 4. The sample's defect type distribution is shown in Fig-
ure 8.1. As shown in the Figure, two defect types, data handling (38.5 %) and
logic (30.5 %), have a relatively larger amount of the �ndings. The rest defect
types are lower than 10 percent of the sample size. Besides, a few �ndings fall
into non-defect category (6.5 %). Finally, around seven percent of the analyzed
�ndings are considered as undetermined.

Except for the UI-related, undetermined, and non-defect, �ndings assigned
to the rest defect types were prepared for further analyses. Finally, 158 out of
200 puri�ed defect data were left for statistical analyses.

8.3 Determining UML LoD

In order to generate comparable analysis results, the same LoD aggregates (see
Section 6.3) used in the previous two case studies were also adopted in this case.

8.4 Statistical analyses

After getting puri�ed data and the calculations of UML LoD, we are ready
for the statistical analyses. We start with comparing defect density between
di�erent modeled systems of BEHEERNET to check whether the usage of UML

56



Defect-count # classes Percentage
1 117 52.71
2 40 18.02
3 22 9.91
4 11 4.95
5 13 5.86
6 9 4.05
8 2 0.90
9 2 0.90
10 2 0.90
11 1 0.45
16 1 0.45
33 1 0.45
35 1 0.45
575 222 100.00

Table 8.2: Distribution of defects across faulty classes in the BEHEERNET
project

models in�uences defect density. Later, relationship between defect density and
level of details in UML modeling is examined. A closer look at the contribution
of each individual metric to predicting defect density is performed. After this,
which metric has a stronger correlation with a certain defect type is discussed.

8.4.1 Descriptive statistics

Prior to the statistical analyses, a statistical overview of this project is presented.
First of all, the distribution of defects across faulty classes is summarized in
Table 8.2.

As can be seen from Table 8.2, the number of modi�ed faulty classes which
are related to the chosen defects is 222. About half of the faulty classes only
have one defect (52.71 percent). The range of the defect-count number which
faulty classes are related to is quite wide and the highest defect-count is 35.

Table 8.3 listed the pro�le of these faulty classes with respect to their pres-
ence in UML models.

8.4.2 Defect density comparison between di�erent system

parts

In this section, whether the usage of UML models in�uences a project's defect
density is analyzed. Faulty classes used in the analyses below are based on the
information listed in Table 8.3.

We �rst analyzed defect density di�erence between system parts modeled as
design classes in UML models and those not modeled at all. Figure 8.2 shows
two boxplots which compare defect density of the modeled and unmodeled faulty
classes. However, the defect density di�erence between the two groups is hard
to illustrate due to several outliers found in unmodeled group. After a careful
check on the data, a few classes of these outliers are abstract classes which have

57



Faulty classes # classes
modeled as design classes in UML models

43
(modeled)
modeled in class diagrams

13
(modeledinCD)
modeled but not referenced in any class diagram

20
(notmodeledinCD)
modeled in sequence diagrams

33
(modeledinSD)
modeled in class diagrams only

6
(modeledinCDonly)
modeled in sequence diagrams only

26
(modeledinSDonly)
modeled in both types of diagrams

7
(modeledinBoth)
modeled but not referenced in any diagram

4
(modeledinNeither)
not modeled in UML models at all

179
(unmodeled)

Table 8.3: BEHEERNET: The pro�le of faulty classes with respect to their
presence in UML models

modeled/ Std. Std. Error
unmodeled N Mean Deviation Mean

Normalized modeled 43 -0.399 0.983 0.149
Defect Density unmodeled 179 0.096 0.982 0.073

Table 8.4: BEHEERNET: Group statistics of defect density between the mod-
eled and unmodeled faulty classes

very low KSLoC, therefore their defect density values are much higher. However,
we were assured that these outliers and extreme values shown in the �gure were
not caused by errors in the data (e.g., caused by wrong data entry), thus they
could not be excluded from the analysis. Actually, faulty classes modeled in
UML models have lower defect density than the unmodeled ones. This can be
seen from the median value of each group. In BEHEERNET, the median values
of the modeled and unmodeled classes are 12.14 and 17.34 respectively.

Later, independent t-test was performed on the normalized data set to an-
alyze the signi�cance of this di�erence and the results are shown in Table 8.5.
The group statistics are given in Table 8.4 to present the mean values of the
two normalized groups.

As shown in Table 8.5, the test reveals a true signi�cance (p = 0.003). It
suggests that the mean di�erence of defect density between the modeled and
unmodeled faulty classes is signi�cant. The consistent result mentioned in the
previous two cases is obtained in this case study. The di�erence is signi�cant at
0.01 level (p ≤ 0.01), 1-tailed.

58



Figure 8.2: BEHEERNET: Defect density (per KSLoC) of modeled and unmod-
eled system parts

Project t df Sig. mean
(1-tailed) Di�erence

BEHEERNET
Equal variances assumed -2.966 220 0.003 -0.495

Table 8.5: BEHEERNET: Independent t-test of defect density between the mod-
eled and unmodeled faulty classes

59



Figure 8.3: BEHEERNET: Defect density (per KSLoC) of di�erent modeled and
unmodeled system parts

Another analysis was performed to compare the defect density of faulty
classes based on the diagram types they were modeled in. As is shown before,
faulty classes modeled as designed classes in UML models could be splitted up
into several groups, modeledinCDonly, modeledinSDonly, modeledinBoth, and
modeledinNeither. After comparing the median values of defect density among
all these data groups shown in Figure 8.3, there is no obvious di�erence between
any pair of the groups. The biggest di�erence is between faulty classes modeled
in neither types of diagrams (modeledinNeither) and faulty classes only modeled
in class diagrams (modeledinCDonly). Defect density is lower for modeledinNei-
ther faulty classes. The median values are 7.167 and 12.917, respectively.

In order to see whether this di�erence is signi�cant, One-way indepen-
dent ANOVA test was performed on the normalized data set to compare
mean values among multiple groups. Again, the Games-Howell test of Post
hoc procedures (see Appendix C.3) was used for exploring the data for any
di�erences between means that exist. The descriptive statistics are given in
Table 8.6 and the biggest di�erence of mean values is between modeledinNei-
ther and modeledinCDonly, which are -0.477 and 0.067 respectively. Table 8.7
showed that the homogeneity of variance is met. The ANOVA test results can
be found from Table 8.8. However, no signi�cant di�erence in defect density
between groups (p = 0.798) is found. Hence, there is no signi�cant di�erence
among defect density of faulty classes based on diagram types they are modeled
in.

60



Normalized N Mean
modeledinBoth 6 0.065
modeledinCDonly 7 0.067
modeledinSDonly 26 -0.031
modeledinNeither 4 -0.477

Table 8.6: BEHEERNET: One-way ANOVA descriptive statistics

Levene Statistic df1 df2 Sig.
1.582 3 39 .209

Table 8.7: Test of Homogeneity of Variances among di�erent modeled groups

As can be seen from the faulty classes' pro�le listed before (see Table 6.3),
faulty classes that are modeled as designed classes in UML models can be di-
vided into two categories based on whether these classes are actually used in
class diagrams or not. In PARTS, a signi�cant defect density di�erence between
faulty classes modeled in the UML models but not referenced in any of the class
diagrams (notmodeledinCD) and those which are modeled as designed classes
and also used in class diagrams (modeledinCD) was found. We were curious to
see whether the consistent result found in PARTS can be obtained in this case.

As can be seen from the boxplots shown in Figure 8.4, there is not much
di�erence in defect density of the two groups. The median values are 12.012 and
11.988, respectively. Since this di�erence is quite small, we can conclude that
there is no signi�cant di�erence between the two groups .

8.4.3 Correlation Analyses between UML LoD and Defect

Density

In this section, three correlation analyses were performed to investigate the
relation between the level of detail in UML models of faulty classes and their
defect density. Although the signi�cant negative correlation between UML LoD
using sequence diagram metrics and defect density found in PARTS was not able
to be con�rmed in RACE due to too few data points, we still believe that higher
LoD in UML models has a positive in�uence on reducing defect density in the
implementation. The correlation analyses were performed �rst between UML
LoD using class diagram metrics and defect density. Later, LoDSD measured at
diagram level and class-instance level are examined respectively.

Sum of Mean
Squares df Square F Sig.

Between Groups 1.058 3 0.353 0.338 0.798
Within Groups 40.692 39 1.043

Table 8.8: One-way ANOVA test

61



Figure 8.4: BEHEERNET: Defect density (per KSLoC) of modeled faulty classes
presented in CD or not

62



Figure 8.5: BEHEERNET: Boxplots of class LoD (LoDCD) and defect density

Defect Density
Class LoD 0.009
Signi�cance (2-tailed) 0.977

Table 8.9: Pearson's correlation coe�cient between class LoD (LoDCD) and
defect density

Using Class Diagram Metrics

This analysis intends to answer whether there is a signi�cant correlation be-
tween LoDCD and defect density. In total, 13 faulty classes were modeled in
class diagrams and the descriptive statistics of the LoDCD scores are shown in
Figure 8.5. Since the original data set values of LoDCD and defect density are
normally distributed, Pearson's correlation test was performed. The result of
the analysis is shown in Table 8.9. As was found in the previous case studies,
no signi�cant correlation between Class LoD using class diagram metrics and
defect density is found in the BEHEERNET project.

Using Sequence Diagram Metrics

Two analyses were performed using sequence diagram metrics measured at dia-
gram level and class-instance level, respectively. In total, 33 faulty classes were
modeled in sequence diagrams. We �rst consider LoDSD measured at diagram
level and then LoDSD measured at class-instance level.

LoDSD measured at diagram level The summary of the LoD scores and
defect density of the 33 faulty classes is presented in Figure 8.6. Figure 8.7
illustrated the relation between the two variables.

Pearson's correlation analysis was performed on the normalized data set.
The result of the analysis can be found in Table 8.10. To our big surprise,
as can be seen from the table, there is no signi�cant correlation between the
two variables. The scattor plot of the two variables after normalization even
indicated a random distribution (see Figure 8.8). Immediately, we performed
the correlation analysis between LoDSD measured at class-instance level and

63



Figure 8.6: BEHEERNET: Boxplots of class LoD (LoDSD measured at diagram
level) and defect density

Figure 8.7: BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at diagram level) and defect density

64



Defect Density
Class LoD 0.070
Signi�cance (1-tailed) 0.349

Table 8.10: Pearson's correlation coe�cient of LoDSD measured at diagram
level and defect density

Figure 8.8: BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at diagram level) and defect density after normalization

defect density to see whether the similar result is found.

LoDSD measured at class-instance level Again, the summary of the LoD
scores and defect density of the 33 faulty classes modeled in sequence diagrams
is presented in Figure 8.9. The relation between the two variables is shown in
Figure 8.10.

After performing the Pearson's correlation test on the normalized LoDSD

and defect density, the result is shown in Table 8.11.
As can be seen from Figure 8.10, the correlation analysis result again resulted

in a non-signi�cant correlation between the two variables. After examining the
data set measured at both levels, several common outliers were found and their
characteristics are listed in Table 8.12.

As can be seen from Table 8.12, �Delegate� classes refer to faulty classes
which are designed as business delegate classes. Normally, a business delegate

65



Figure 8.9: BEHEERNET: Boxplots of class LoD (LoDSD measured at class-
instance level) and defect density

Figure 8.10: BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at class-instance level) and defect density

Defect Density
Class LoD 0.091
Signi�cance (1-tailed) 0.308

Table 8.11: Pearson's correlation coe�cient of LoDSD measured at class-
instance level and defect density

66



Outliers Characteristics Interpretations
�Delegate�classes low defect density modeled as dummy objects

low LoD with dummy messages attached to them
Salarylist high defect density low KSLoC, high defect count

high LoD only modeled in one sequence diagram
SalarylistForm low defect density modeled in eight alternative �ow

low LoD sequence diagrams
TargetGroup high defect density very low KSLoC

high LoD

Table 8.12: The outliers in the correlation analyses between LoDSD and defect
density

class acts as a client-side business abstraction which reduces the coupling be-
tween presentation-tier clients and the system's business services. In total, �ve
faulty classes are designed as �Delegate� classes, all of which have low defect
density and low LoD. One interpretation might be that these classes do not
have high complexity and it is not necessary to design them into detail. An-
other outlier named �Salarylist� is found to have very high defect density and
high LoD. Besides, it has low KSLoC (equals 0.113) but quite high defect count
(equals 8). Being modeled in only one sequence diagram might be one rea-
son, because the LoD value in this sequence diagram might not represent the
true LoD of this class. Meanwhile, the high defect count might due to the low
correctness of the class itself, since this class is only modeled in one sequence
diagram and has no interaction with other objects. It might be also necessary
to distinguish the basic �ow and alternative �ow sequence diagrams. As can be
seen from �SalarylistForm� class, it is modeled in nine sequence diagrams among
which eight diagrams are alternative �ows with very low LoD. According to the
LoDSD aggregate (see Section 6.3), the LoD of this class becomes quite low
due to these alternative �ows. However, we could not �nd any sound reason to
exclude these outliers from the data set, therefore, we still could not �nd a neg-
ative and signi�cant correlation between LoD using sequence diagram metrics
and defect density.

8.4.4 The contribution of individual metrics to predicting

defect density

Although we could not �nd any correlation between LoD using sequence diagram
metrics and defect density, individual metrics' predictive power to defect density
might be still worthy of investigation. Correlation analyses were performed to
measure the correlation between each metric and defect density. we started
with analyzing sequence diagram metrics measured at diagram level, followed
by metrics measured at class-instance level.

Metrics measured at diagram level After a closer look at individual met-
rics. MsgWithLabelRatio metric values were found always constant. A couple of
correlation analyses were performed between the rest of the metrics and defect
density. The results are listed in Table 8.13.

67



Test Method Metric Defect Density

Pearson's

NonAnonymObjRatio -0.239
Signi�cance (2-tailed) 0.180
NonDummyMsgRatio 0.067
Signi�cance (2-talied) 0.712
MsgWithGuardRatio 0.006
Signi�cance(2-talied) 0.972
MsgWithParamRatio 0.374*
Signi�cance (2-tailed) 0.032

Spearman's

NonDummyObjRatio -0.042
Signi�cance (2-talied) 0.818
ReturnMsgWithLabelRatio 0.051
Signi�cance (2-talied) 0.776

*indicates sigini�cance at 0.05 level (2-tailed)

Table 8.13: Correlation analyses between individual metrics measured at dia-
gram level and defect density

Only one metric, NonAnonymObjRatio, indicates a negative correlation with
defect density. Among the remaining metrics, MsgWithParamRatio metric has
a signi�cant positive correlation with defect density (Sig. = 0.032).

Metrics measured at class-instance level The correlation analyses results
between sequence diagram metrics measured at class-instance level and defect
density are shown in Table 8.14. Only two metrics, returnMsgWithLabelRatio
and NonAnonymObjRatio indicate negative correlations with defect density.

8.4.5 The correlation between UML LoD metrics and de-

fect density of individual defect type

As can be seen from Figure 8.1, a majority of defects belong to two defect types
- datahandling and logic. The number of faulty classes related to these two
defect types are 24 and 19, respectively. In PARTS, correlation analyses using
sequence diagram metrics were performed on these two defect types. The same
correlation analyses procedure was used in this project and the results are given
in the following passages.

Data Handling Defect Type

In total, 24 faulty classes are related to data handling defect type. Table 8.15
shows the correlation analyses results for data handling defect type.

As can be seen from Table 8.15, for sequence diagram metrics measured
at diagram level, NonAnonymObjRatio, MsgWithGuardRatio and NonDummy-
ObjRatio indicate negative correlation with defect density. However, none of
them is statistically signi�cant. For metrics measured at class-instance level, Re-
turnMsgWithLabelRatio, NonAnonymObjRatio andMsgWithGuardRatio show a
negative correlation with defect density.

68



Test Method Metric Defect Density

Spearman's

ReturnMsgWithLabelRatio -0.286
Signi�cance (2-tailed) 0.106
NonAnonymObjRatio -0.278
Signi�cance (2-tailed) 0.117
MsgWithParamRatio 0.223
Signi�cance (2-tailed) 0.212
MsgWithGuardRatio 0.216
Signi�cance (2-tailed) 0.228
NonDummyMsgRatio 0.034
Signi�cance (2-tailed) 0.850
NonDummyRatio 0.188
Signi�cance (2-tailed) 0.295

Table 8.14: Correlation analyses of individual metrics measured at class-instance
level and defect density

Modeled Test Defect
level Methods Metrics Density

Diagram

Pearson's

NonDummyMsgRatio -0.080

level

Signi�cance (2-tailed) 0.710
MsgWithParamRatio 0.282
Signi�cance (2-tailed) 0.182
NonAnonymObjRatio -0.312
Signi�cance (2-tailed) 0.137
MsgWithGuardRatio -0.254
Signi�cance (2-tailed) 0.231

Spearman's

ReturnMsgWithLabelRatio 0.047
Signi�cance (2-tailed) 0.826
NonDummyObjRatio -0.191
Signi�cance (2-tailed) 0.370

Class-instance Spearman's

ReturnMsgWithLabelRatio -0.227

level

Signi�cance (2-tailed) 0.286
NonAnonymObjRatio -0.288
Signi�cance (2-tailed) 0.172
MsgWithGuardRatio -0.082
Signi�cance (2-tailed) 0.702
NonDummyMsgRatio 0.136
Signi�cance (2-tailed) 0.527
MsgWithParamRatio 0.161
Signi�cance (2-tailed) 0.451
NonDummyObjRatio 0.116
Signi�cance (2-tailed) 0.589

Table 8.15: Correlation coe�cient of LoDSD metrics and defect density (Data
handling defect type)

69



Modeled Test Defect
level Methods Metrics Density

Diagram
Pearson's

NonAnonymObjRatio -0.344

level

Signi�cance (2-tailed) 0.149
MsgWithGuardRatio -0.043
Signi�cance (2-tailed) 0.861
NonDummyObjRatio 0.037
Signi�cance (2-tailed) 0.881
NonDummyMsgRatio 0.137
Signi�cance (2-tailed) 0.576

Spearman's
ReturnMsgWithLabelRatio 0.360
Signi�cance (2-tailed) 0.131

Class-instance Spearman

NonAnonymObjRatio -0.287

level

Signi�cance (2-tailed) 0.234
MsgWithParamRatio 0.316
Signi�cance (2-tailed) 0.187
MsgWithGuardRatio 0.201
Signi�cance (2-tailed) 0.409
NonDummyMsgRatio 0.099
Signi�cance (2-tailed) 0.687

Table 8.16: Correlation analyses of LoDSD metrics and defect density (logic
defect type)

Logic Defect Type

In total, 19 faulty classes are related to logic defect type. The correlation analy-
ses results for logic defect type are given in Table 8.16. As can be seen from Ta-
ble 8.16, for sequence diagram metrics measured at both diagram level and class-
instance level, only NonAnoymObjRatio indicates negative correlations with de-
fect density. However, neither is statistically signi�cant.

8.5 Results and Conclusions

In this section, we list the �ndings discovered in this case study. The possible
interpretations and the implications of the results are discussed.

First of all, the consistent result about the in�uence of using UML models on
defect density is con�rmed in this project. Faulty classes that were modeled, on
average, had a lower defect density than those not modeled at all. This di�erence
of defect density was statistically signi�cant. This result implicates again that
well designed UML models can be good guidance in the implementation phase.
Later, the modeled classes were splitted up into more detailed categories based
on how they are modeled. However, no signi�cant di�erence of defect density
was found. Further, we made a distinction between modeled classes presented in
the UML diagrams and those just modeled as design classes but not presented
in any of the class diagrams. There is no signi�cant di�erence between the two
variables either.

Prior to the correlation analyses between UML LoD using sequence diagram

70



metrics and defect density, the consistent results mentioned in the previous case
studies were expected to be con�rmed in this project. In the PARTS project,
classes that are modeled at a higher level of detail are inclined to having lower
defect density. This correlation is statistically signi�cant. Although this correla-
tion is not signi�cant in the RACE project, a negative correlation was indicated.
In the BEHEERNET project, to our surprise, no correlation was found between
UML LoD using sequence diagram metrics and defect density. We also per-
formed the correlation analyses between each UML LoDSD metric and defect
density, no signi�cant correlation was found either. Only one or two metrics in-
dicated negative correlations with defect density. We believe that it is necessary
to make a comparison among these three projects to �nd the reasons why we
could not get the same result in the BEHEERNET project.

Later, we wanted to have a look at the correlations between individual met-
rics and defect density of a certain defect type. logic and data handling defect
types were considered in the analyses. For both data handling and logic defect
types, none of the LoD using sequence diagram metrics had signi�cant correla-
tion with defect density. Only NonAnonymObjRatio metric indicated a relatively
stronger negative correlation with defect density measured at both diagram level
and class-instance level.

71



Chapter 9

Projects Comparison between

PARTS and BEHEERNET

In this chapter, a comparison of the two case studies (namely, PARTS and BE-
HEERNET) we have performed before is given. We did not include the RACE
project due to the too small sample size compared to the other two cases. This
can be seen from the project summary listed below. Another reason for per-
forming this comparison between PARTS and BEHEERNET is that a di�erent
conclusion about whether there is a correlation between UML LoD using se-
quence diagram metrics and defect density was found in the two projects (see
Section 6.4.3 and 8.4.3). After the comparison, some observations are discussed
to explain this di�erence.

9.1 Project characteristics comparison

In total, we performed three empirical case studies from the real world, PARTS,
RACE, and BEHEERNET. These three projects were all developed as web
service which can be divided into two parts, front�end and back�end. The front�
end part is designed as an application which is responsible for interactions with
clients, while the back-end is where the logic and services are implemented.
UML models designed in these projects were created using IBM Rational XDE.
Some other Rational tools such as IBM Rational ClearCase and ClearQuest
were adopted for code versioning and bug tracking respectively. The summaries
of the three projects are given in Table 9.1.

As can be seen from Table 9.1, the three projects use the same technology
and they all have some tasks o�shored to India. PARTS and BEHEERNET
projects are considered to be comparable in terms of the project size (i.e., #
sta�, project duration, sloc). Although PARTS and BEHEERNET are similar
in terms of project size, the UML model size is much larger for PARTS which
might indicate that UML modeling in this project is more su�cient and better
prepared. This idea is also indicated in the comparison of project characteristics
between the two projects in Table 9.2.

As shown in Table 9.2, the two projects are quite similar in project envi-
ronment and working style. However, In BEHEERNET, the developers did not
have su�cient knowlege of using UML models. Furthmore, the UML models

72



Project PARTS RACE BEHEERNET
Technology Java Java Java
# sta� 25 people 10 people 18 people
Duration 2.3 1 2
(in years) years year years
O��shored India India India
Status Finished Finished Finished

Model size

104 use cases 9 use cases 20�25 use cases
266 designed classes 44 designed classes 137 designed classes
341 seq. diagrams 22 seq. diagrams 115 Seq. diagrams
34 class diagrams 12 class diagrams 28 Class diagrams

SLoC 152,017 125,168 135,454

Table 9.1: Projects summary comparison

Project PARTS BEHEERNET

Project
web service web service

environment
MVC architecture 4+1 view model architecture
Apache struts & JSP Apache struts & JSP

Developer not su�cient not su�cient
experience ask for detailed UML models simply implement
Adopted Iterative Waterfall
Process Four major increments One big release

Working
60 % Implementation A majority part of implementation

style
and testing o�shored and testing o�shored
RD and UML models in NL RD and UML models in NL

Table 9.2: Projects characteristics comparison

73



Project PARTS BEHEERNET
Population 1546 4061
# traceable �ndins 566 1784
Sample size 164 200
Sampling Random: the �rst 100 Targeted: the �rst 135
method Targeted: the next 64 Random: the next 65

Table 9.3: Data sampling comparison

were designed at a high abstract level with the intention of giving developers
more freedom while creating the code. The gap between developers' experience
and the level of details in UML models results in a very low correspondence
between UML models and the implementation. Developers' insu�cient experi-
ence has become a big problem for BEHEERNET. Most of the time, developers
just implemented the code without fully understanding the UML models. Some-
times, they even wrote the code without looking at the UML models. Another
di�erence is the adopted development process. In BEHEERNET, waterfall ap-
proach was taken during the development and only one big release was given at
the end of the project. Many defects could have been avoided if testing can be
done iteratively during di�erent development stages and lots of bug-�xing time
can be saved.

9.2 Defect statistics comparison

In this section, we mainly compare defect related statstics of the two projects
during defect data collection and preprocessing processes.

9.2.1 Data sampling method

The sampling methods used in PARTS and BEHEERNET are quite di�erent
which can be seen in Table 9.3. The third column in the table, � # traceable �nd-
ings`', refers to the number of �ndings which have modi�ed source �les attached
to them. The defect sample is actually generated from these �ndings. Although
the number of �ndings traceable back to the source code is much higher for
BEHEERNET, there is not much di�erence in terms of sample size between
the two projects. Two sampling processes were adopted for each project. The
random sampling chooses defects randomly without any criteria. The targeted
sampling �lters �ndings which have modi�ed source �les and among which at
least one source �le is related to designed class in the UML models. The idea
of using this sampling is to ensure that we have got enough data points for the
statistical analyses, especially the correlation analysis. As can be seen from the
table, the sampling methods of the two projects are quite di�erent and the or-
der of performing sampling processes is opposite too. This di�erence in choosing
sample size might raise several problems, such as the defect type distribution
comparison which will be shown shortly.

74



Figure 9.1: Defect type distribution comparison

9.2.2 Defect type distribution comparison

After choosing the sample size, defect type distribution comparison is shown in
Figure 9.1. The listed defect types can be found in Section 4.1. Since a major-
ity of the defects in the sample data set of BEHEERNET are related to the
designed classes, many defects are closely connected to the back�end of the sys-
tem. Therefore, it is not surprising to see that ui-related defects are much fewer
than that in the PARTS project. Besides, defect types (i.e., data handling and
logic) which mostly related to defects happen in the back�end have much higher
percentages than those recorded in PARTS.

9.2.3 Puri�ed defects statistics comparison

The puri�ed data set for statistical analyses were chosen by removing defects
related to ui-related, non-defect, and undetermined defect types. Table 9.4 shows
the comparison of puri�ed defects statistics. It is surprising to see that there is
not much di�erence in the number of faulty classes modeled as design classes
between the two projects. However, the number of relevant defects and the
number of faulty classes related to those defects for BEHEERNET are almost
twice as large as those for PARTS. The ratios of modeled faulty classes to faulty
classes related to relevant defects are 28.5 % and 19.4 %, respectively. This
suggests that the correspondence between UML models and the implementation
is higher for PARTS. Although this di�erence might be again in�uenced by the
sampling method, this ratio for BEHEERNET is expected to be the same as or
even lower than the current value if the same sampling method used in PARTS
is performed in BEHEERNET. This �nding con�rms the conclusion drawn from

75



Project PARTS BEHEERNET
Sample size 164 200
Relevant defects 83 158
# Faulty classes 130 222
# Modeled faulty classes 37 43
# Unmodeled faulty classes 93 179

Table 9.4: Puri�ed defects statistics comparison

project characteristics comparison before (see Section 9.1).

9.3 Statistical analyses comparison

In this section, we mainly discuss the comparison of correlation analysis between
UML LoD using sequence diagram metrics and defect density performed in the
two projects.

9.3.1 Descriptive statistics comparison

Since the main research question in this study is about the correlation between
the level of detail in UML models and defect density in the implementation,
variables used to measure this relation are investigated in this section. In other
words, the descriptive statistics comparison of faulty classes that are modeled
in UML models and their defect density are given.

First of all, the defect counts distribution across faulty classes of the two
projects is illustrated in Figure 9.2. This distribution again might be in�uenced
by the sampling methods used in the two projects. The range of defect counts
which a faulty class is related to is much wider for BEHEERNET. Around �ve
percentage of the faulty classes are invovled in at least eight defects. On the
other hand, the percentage of faulty classes related to only one defect is much
higher for PARTS. This might indicate that the quality of the implementation
in PARTS is higher than that of BEHEERNET.

For each case study we performed in the previous chapters, a pro�le of the
faulty classes with respect to their presence in the UML models is given. A
comparison of the pro�les of the PARTS and BEHEERNET projects is listed in
Table 9.5. As shown in the table, the percentage values of modeled and unmod-
eled faulty classes are calculated using the ratio of faulty classes belonging to
these groups to the number of faulty classes related to defects in defect sample.
The other percentage values are calculated using the ratio of faulty classes be-
longing to those groups to the total number of faulty classes modeled as design
classes.

One interesting found from Table 9.5 is the modeling style di�erence. BE-
HEERNET has higher notmodeledinCD percentage which suggests that a higher
percentage of designed classes created in the UML models are used in the di-
agrams of PARTS. The modeledinCDonly, modeledinSDonly percentages are
higher for BEHEERNET, while the modeledinBoth percentage is much higher
for PARTS (56.8 percent). These observations indicate that a variety of views

76



Figure 9.2: Defect counts distribution across faulty classes comparison

Faulty classes PARTS BEHEERNET
modeled as design classes in UML models 28.5 % 19.4 %
(modeled)
modeled in class diagrams 62.2 % 30.2 %
(modeledinCD)
modeled but not referenced in any class diagram 37.8 % 46.5 %
(notmodeledinCD)
modeled in sequence diagrams 81.1 % 76.7 %
(modeledinSD)
modeled in class diagrams only 5.4 % 13.9 %
(modeledinCDonly)
modeled in sequence diagrams only 24.3 % 60.5 %
(modeledinSDonly)
modeled in both types of diagrams 56.8 % 16.3 %
(modeledinBoth)
modeled but not referenced in any diagram 13.5 % 9.3 %
(modeledinNeither)
not modeled in UML models at all 71.5 % 80.6 %
(unmodeled)

Table 9.5: The pro�le of faulty classes with respect to their presence in UML
models comparison

77



Project PARTS BEHEERNET
# Faulty classes 30 33
LoD Seq. diagram R value: -0.459 R value: 0.070
Diagram level Sig. (1-tailed): 0.005 Sig. (1-tailed):0.699
LoD Seq. diagram R value: -0.371 R value: 0.091
class-instance level Sig. (1-tailed): 0.022 Sig. (1-tailed): 0.616

Table 9.6: The correlation analyses results using LoDSD comparison

of the design classes are provided to the developers in PARTS. And, it is be-
lieved that it is easier for developers to understand the architectures of the
whole project. Therefore, we believe that PARTS has a better UML modeling
style than BEHEERNET which might make a di�erence in defect density in the
implementation.

9.3.2 The correlation analyses between UML LoD and de-

fect density comparison

The main research question in our study is about the impact of the level of de-
tail in UML models on defect density in the implementation. Two sets of UML
metrics are created to measure the UML LoD based on the diagram types (see
Section 4.2). Besides, sequence diagram based metrics have di�erent meanings
based on whether they are measured at diagram level or class-instance level (see
Section 4.2.2). In order to get the comparable correlation results, the same cal-
culation method of UML LoD mentioned in Section 6.3 is used in the three case
studies. For each case study, three correlation analyses were performed between
UML LoD and defect density. Since none of the three projects has indicated a
correlation between LoDCD using class diagram metrics and defect density, only
the comparison results of LoDSD using sequence diagram metrics are shown in
Table 9.6. The main di�erence is that LoDSD using sequence diagram metrics
has a signi�cant negative correlation with defect density in the PARTS project
but not in the BEHEERNET project. In the following paragraphs, some sta-
tistical descriptions about the two projects are compared in order to have an
insightful understanding about the di�erences between the two projects.

First of all, defect density and UML LoD of the faulty classes modeled in
sequence diagrams are compared. These two variables are used to perform the
correlation analyses. Figure 9.3 compares the defect density di�erence between
PARTS and BEHEERNET. The comparison of UML LoD is illustrated in Fig-
ure 9.4. It can be seen that BEHEERNET has higher defect density while UML
LOD values using sequence diagram metrics measured at both levels are lower
than that of PARTS (these results are proved statistically signi�cant). As is
mentioned before, the di�erence in defect density might be in�uenced by the
sampling method. However, the di�erence in level of detail in UML models indi-
cates that UML modeling in BEHEERNET was done in lower detailed and this
conclusion can be con�rmed by the project characteristics analysis discussed
before.

Since defect density is the ratio of defect count of a faulty class to KSLoC
of that faulty class, the distributions of defect count and KSLoC across faulty

78



Figure 9.3: Defect density of faulty classes modeled in sequence diagrams com-
parison

79



Figure 9.4: LoDSD of faulty classes modeled in sequence diagrams comparison

80



Figure 9.5: Defect count distribution of faulty classes modeled in sequence dia-
grams comparison

classes modeled in sequence diagrams are illustrated in Figure 9.5 and Figure 9.6,
respectively. As can be seen from the two �gures, the distribution of KSLoC of
the two projects are quite similar and it can be proved that the di�erence in
KSLoC is not statistically signi�cant. However, about 15 percent of the faulty
classes modeled in the sequence diagrams in BEHEERNET are related to at
least eight defects. This strongly indicated that the implementation quality of
BEHEERNET is lower than that of PARTS.

Meanwhile, defect density distribution of the two projects are also compared
in Figure 9.7. Half of the faulty classes from PARTS only have defect density
values between 1.0 and 5.0, while a big amount of the faulty classes from BE-
HEERNET have defect density in the range of 10.0 to 20.0.

After comparing defect density distribution, level of detail in UML models
using sequence diagram metrics distribution is examined. Figure 9.8 and Fig-
ure 9.9 compare the LoDSD distribution measured at diagram level and class-
instance level. Figure 9.8 indicates a pattern of modeling designed classes in
terms of level of detail (see Table 9.7). In general, LoDSD measured at diagram
level can be divided into four levels (from Level 1 to Level 4) and the LoDSD

values are from low to high. For Both projects, the percentages of LoDSD mea-
sured at Level 1 and Level 4 are quite low, around 10 percent and �ve percent,
respectively. A majority of the designed classes are modeled into Level 2 and
Level 3, which have LoDSD values in the middle. However, we could not tell
more about the characteristics of each level due to the too few data points for
Level 1 and Level 4. It is still interesting to investigate on it when enough data
points are available.

At last, the number of sequence diagrams where a faulty class is modeled
of the PARTS and BEHEERNET projects is compared. The comparison result
is shown in Figure 9.10. One big di�erence between the two projects is that

81



Figure 9.6: KSLoC distribution of faulty classes modeled in sequence diagrams
comparison

Figure 9.7: Defect density distribution of faulty classes modeled in sequence
diagrams comparison

82



Figure 9.8: LoDSD measured at diagram level distribution comparison

Figure 9.9: LoDSD measured at class-intance level distribution comparison

83



Project PARTS BEHEERNET
LoDSD LoDSD < 4.0 LoDSD < 3.0
Level 1 10 % 12.12 %
LoDSD 4.0 ≤ LoDSD < 5.0 3.0 ≤ LoDSD < 4.0
Level 2 40 % 30.30 %
LoDSD 5.0 ≤ LoDSD < 6.0 4.0 ≤ LoDSD < 5.0
Level 3 46.67 % 51.52 %
LoDSD LoDSD ≥ 6.0 LoDSD ≥ 5.0
Level 4 3.33 % 6.06 %

Table 9.7: LoDSD measured at diagram level pattern comparison

Figure 9.10: The number of Seq. diagrams distribution comparison

a majority of the faulty classes modeled as designed classes in BEHEERNET
are only related to one or two sequence diagrams. On the other hand, around
half of the modeled faulty classes in PARTS are related to at least 10 sequence
diagrams. According to the calculation of LoDSD (see Section 6.2), it is much
easier to have outliers if a faulty class is only modeled in a few sequence dia-
grams. The in�uence of some extreme values can be reduced if a faulty class is
modeled in more sequence diagrams. this might be another reason why there
are relatively more outliers in BEHEERNET.

9.4 Conclusions

In this chapter, we mainly compare the di�erences between two case studies,
PARTS and BEHEERNET. The biggest di�erence in terms of the research ques-
tion between the two projects is the correlation analysis between UML LoD us-
ing sequence diagram metrics and defect density. Table 9.8 shows the di�erence.

84



Project PARTS BEHEERNET
# Faulty classes 30 33
Correlation negative random
analysis signi�cant distribution
LoD using

higher LoD lower LoD
Seq. diagram metrics
Defect

lower defect density higher defect density
density

Table 9.8: correlation analysis di�erence between PARTS and BEHEERNET

It is quite interesting to see that defect density is higher while UML LoD is
lower for BEHEERNET even though no correlation is found between the two
variables. This suggests having a look at how the UML models are used in the
implementation. For BEHEERNET, a very poor design-code correspondence
(see Section 9.1) indicates that the UML models are not well used in the imple-
mentaion. It is not hard to imagine that �nding the correlation between UML
LoD and defect density can be very di�cult if the UML models do not have
enough impact on the implementation. Besides, for BEHEERNET, defect den-
sity in the implemetation is likely to be a�ected by other confounding factors,
such as developers' experience, adopted development process, and the quality
of UML models like correctness. Developers for BEHEERNET did not have
enough knowledge in understanding the UML models and many times they just
implement the code without knowing whether it is the correct way. The water-
fall approach was taken as the development process which makes it di�cult to
�nd the defects at an early stage, and some defects were introduced because of
the errors made at the very beginning. The quality of the UML models was not
good either for BEHEERNET. This can be seen from the purpose of designing
the UML models and the modeling style. The purpose of designing the UML
models was to give a general idea about some important part of the system and
developers can have more freedom during the implementation, therefore they
were designed at a very high abstract level. In BEHEERNET, not many de-
signed classes are actually used in class diagrams or sequence diagrams, which
makes it di�cult to illustrate the connection of a designed class with the others
and how a designed class should be implemented in the implementation. The
correctness and completeness of a designed class can be low too. Table 9.9 lists
all the causes of the di�erence in correlation analysis mentioned above.

As can be seen from Table 9.9, PARTS has a high design-code correspondence
which means that the UML models have been well used in the implementation.
Besides, defect density in PARTS is not a�ected by developers' experience, de-
velopment process or the correctness and completeness of the UML models that
much. Therefore, it is relatively much easier to �nd the correlation between
UML LoD and defect density if it exists. Although the same correlation is not
con�rmed by BEHEERNET, we still believe that there is a signi�cant and neg-
ative correlation between UML LoD using sequence diagram metrics and defect
density.

85



Project PARTS BEHEERNET
developer insu�cient insu�cient
experience ask for more detailed models simply implemented
adopted iteratively waterfall
process four major increments one big release
UML models much bigger model size smaller model size
quality higher quality lower quality
design-code

higher lower
correspondence

Table 9.9: summary of di�erences between PARTS and BEHEERNET

86



Chapter 10

Conclusions and evaluations

In this �nal chapter, research questions introduced in the beginning of this
report are answered and the �ndings in this study are summarized. Then, the
threats to the validation of the conclusions are covered. After that, the future
work after this study is discussed. Finally, we present some guidelines in creating
UML models.

10.1 Answers to the research questions

In this section, the answers to the research questions are given based on the
�ndings in the three case studies: PARTS, RACE and BEHEERNET. However,
some questions could not be answered in one or two case studies.

10.1.1 Does the usage of UML models in�uence defect

density in software systems?

The �rst research question is to see whether the usage of UML models in�uences
defect density in the implementation. We compared the defect density di�erence
between modeled system parts and unmodeled system parts. This analysis was
performed in all the three case studies. The consistent result that defect density
of modeled system parts is signi�cantly lower than that of unmodeled system
parts has been found. This result con�rms our believe that UML modeling at
an early stage generally helps improve software quality, the reduction of defect
density in particular.

10.1.2 How does the level of detail in UML models in�u-

ence a project's defect density?

We expected to �nd the correlation between the level of detail in UML models
and defect density in the implementation. Two types of diagrams, class and
sequence diagrams, were used in the case studies. Three correlation analyses
were performed including UML level of detail using class diagram metrics and
UML LoD using sequence diagram metrics (measured at diagram level and
class-instance level). Our hypothesis is that UML classes that are modeled in

87



a higher level of detail signi�cantly correlate with a lower defect density in the
implementation classes.

The correlation analysis between UML LoD using class diagram metrics and
defect density could not be performed in the RACE project due to having too
few data points. A positive correlation was found in PARTS and BEHEERNET.
However, none of the correlations is statistically signi�cant. Therefore, there is
no correlation found between UML LoD using class diagram metrics and defect
density.

The main �nding is that a signi�cant and negative correlation between UML
LoD using sequence diagram metrics and defect density is found in the PARTS
project. It indicates that modeling UML models into higher level of detail helps
achieve lower defect density in the implementation. However, the consistent re-
sult could not be obtained in the other two projects. An outlier in the RACE
project makes the negative correlation insigni�cant. For BEHEERNET, a ran-
dom distribution between the two variables is found. As can be seen from the
project comparison between PARTS and BEHEERNET (see Section 9.4), we
still believe that the correlation found in PARTS is signi�cant and reasonable.

10.1.3 The contribution of individual metrics to predict-

ing defect density comparison

The idea about analyzing the contribution of individual metrics to predicting
defect density is that some measuring metrics probably have stronger correla-
tion with defect density in the implementation and are more powerful in defect
density prediction. If the same metrics can be found to be more important than
the others in the three projects, more weight can be assigned to them while
calculating the level of detail in UML models. However, after comparing the in-
dividual metrics' contribution to the three projects, it is not possible to �nd the
common metrics which indicate stronger correlation with defect density or have
more predictive power in defect density. This di�erence might due to di�erent
project nature and the UML modeling styles.

Even though no common metrics can be proved to be more predictive in
defect density among all the three projects, more attention should be paid to
several metrics while designing the UML models. In the PARTS project, theMs-
gwithParamRatio sequence diagram metric measured at diagram level has sig-
ni�cant correlation with defect density. Another two sequence diagram metrics,
NonDummyMsgRatio andMsgWithGuardRatio, also have signi�cant correlation
with defect density.

10.1.4 The correlation between UML LoD metrics and de-

fect density of individual defect type

We are also interested in whether any metrics suggest stronger correlation with
defect density for individual defect type. In total, only two defect types (data
handling and logic) were examined due to having too few data points for the
rest of the defect types. After comparing the relevant correlation analyses of
the three projects, it is impossible to �nd the common metrics which have
strong correlation with defect density among the projects. However, designing
several metrics into more detail might be helpful in reducing certain defect types.
For example, the NonDummyMsgRatio sequence diagram metric measured at

88



diagram level has a signi�cant and negative correlation with defect density of
the data handling defect. For the logic defect type, the MsgWithParamRatio
and MsgwithGuardRatio indicate strong correlations with defect density while
this correlation is even signi�cant for MsgWithParamRatio. All these �ndings
are only con�rmed in the PARTS project and the generalization problem might
be a threat to the validation of the conclusion.

10.2 Threats to validity

In this section, validity threats of this study are discussed. These threats to
validity are presented in their order of importance [WRH+00]: internal validity,
external validity, construct validity, and conclusion validity.

10.2.1 Internal validity

The main threat to the internal validity of this study involves our ability to
control in�uences from other factors on the dependent variables (i.e., defect
density). Since we are analyzing empirical projects from the real world, it is
quite tricky to completely control all confounding factors that might a�ect de-
fect density like employers' experience, adopted development process, the quality
and complexity of the UML models. For example, it is impossible to get a corre-
lation between UML LoD using sequence diagram metrics and defect density in
BEHEERNET. After performing a comparison between PARTS and BEHEER-
NET, factors mentioned above are believed to have a big in�uence on the defect
density which makes it very di�cult to analyze the correlation between UML
LoD using sequence diagram metrics and defect density.

Another threat is the sampling methods performed in the three projects are
di�erent. The whole defects population have been analyzed in RACE due to hav-
ing small population of recorded defects. The main di�erence is between PARTS
and BEHEERNET. In PARTS, we �rst did random sampling and got 100 de-
fects, later the sample size increased to 164 by performing the targeted sampling
which only focuses on defects having at least one faulty class designed in the
UML models. In BEHEERNET, the targeted sampling was �rst performed and
135 defects were chosen. Another 65 defects were added using random sampling.
This sampling method di�erence makes it hard to interpret some comparison
results, such as defect type distribution, defect density comparison. The biggest
problem is that whether any of these sampling methods can really represent the
whole population of the project. If not, the conclusions we got from this study
might be violated.

10.2.2 External validity

External validity threats concern limitations to generalize the results of a study
to a broader industrial practice. Although we performed three case studies,
except the �rst research question, the other three questions were only answered
by one project: PARTS. We might need more case studies which di�er from
PARTS only in terms of modeling detail while keeping the rest as similar as
possible, such as project characteristics, the UML model size, the quality of
UML models, and design-code correspondence.

89



10.2.3 Construct validity

The threat to construct validity is that typing defects remained a subjective task.
Sometimes, it is even hard to decide which defect type a defect should belong
to. In order to reduce the uncertainty of defect typing decisions, we regularly
discussed problematic defects and randomly checked some defect types to see
the accuracy of the decisions. Since the last research question depends strongly
on the chosen defect types, the analysis result might be threatened by this
subjective defect typing process.

10.2.4 Conclusion validity

Conclusion validity is the degree to which conclusions we reach about relation-
ships in our data are reasonable. This validity threat includes statistical power,
assumption of statistical test, and reliability measures. In this study, one threat
is whether the calculation of level of detail in UML modeling actually repre-
sents the level of detail in UML modeling. Improving the ability of the UML
LoD aggregate to re�ect the nature of the level of detail in UML modeling can
be a future work.

10.3 Future work

In the future, more research can be done in the following directions:

• More case studies are needed. Although we already performed three case
studies in this study, too many di�erences in terms of project character-
istics, UML model size, the quality of the UML models, and design-code
correspondence makes it di�cult to generate comparable analysis results.
Therefore, in selecting future cases for analysis, cases which only di�er with
PARTS in terms of modeling detail are preferred. Factors which might
in�uence the dependent variable (i.e., defect density) should be kept as
similar as possible.

• Measuring LoD in a better way. This is also a threat to the validity of
the conclusion mentioned before. Two improvements can be investigated.
Research can still be done to determine what would be the best way to
combine individual LoD values to one aggregate value by assigning weight
to di�erent metrics. Although this is also a research question in our study,
no consistent results in individual metrics' in�uence on defect density can
be obtained from the three projects. This is probably caused by di�er-
ences in the nature of the three projects. Therefore, a new case study is
needed and the comparable results might be obtained to help determine
how individual metrics should be combined in creating one UML LoD ag-
gregate. Research can also be done to �nd other factors which can help
calculate the UML LoD in a better way. for instance, normally there are
two types of diagram �ow used in sequence diagrams, basic �ow and alter-
native �ow. Basic �ow is used to illustrate the whole behavioral process in
general, while alternative �ow only highlights a certain part of the basic
�ow. Sometimes, a faulty class can be designed in several sequence dia-
gram with di�erent �ow types. which �ow type represent the LoD of that

90



faulty class better and how to add this information to the LoD aggregate
calculation might be interesting questions.

• Further research can be done at which level of detail UML models should
be developed. A pattern of designing level of detail in UML models is found
while comparing PARTS and BEHEERNET (see Table 9.7). However, the
characteristics for each level were not be able to analyze due to having
too few data points. More research can be done to analyze this pattern
and distinguish the characteristics of each level. Further, at which level of
detail UML models should be developed can be very helpful to guide UML
modeling in the software development. Is it the case that the more detailed
a UML model is, the lower defect density in the implementation? Or, the
level of detail of UML models should be developed at a certain level,
otherwise the defect density in the implementation will increase again?

• Investigating on the in�uence of UML modeling style to defect density.
While comparing the PARTS and BEHEERNET projects, UML model-
ing style was indicated to have a in�uence on defect density in the imple-
mentation (see Section 9.3.1). Many research can be done to see whether
there is a correlation between UML modeling style and the quality of the
implementation. Furthermore, questions like which kind of modeling style
is better for improving the software quality can be considered.

10.4 Guidelines for applying UML

After looking at the results from our research, some guidelines for applying UML
in software development process are given:

• The usage of UML modeling has positive in�uence on improving the qual-
ity of the implementation is discussed in this study. System parts which
are modeled have lower defect density than those which are not modeled.
This suggests the developers and the architects of a project should pay
enough time in designing UML models. Therefore, software maintenance
cost can be reduced by providing means to understand complex problems
and develop solutions to them before the implementation phase. Many
unnecessary problems that are found in the later phases (such as code
implementation, testing, deployment and maintenance) can be prevented
well in advance to reduce �xing costs.

• Designing UML models into a certain level of detail which matches the
developers' experience. If UML models are used as the basis of the imple-
mentation, UML models are useless if the level of modeling detail is too
high or abstract for the developers. This is actually the case for one of the
case studies in our research. Most developers of that project do not have
su�cient knowledge in understanding the UML models created by the ar-
chitects. Mostly, they only implement the code without understanding the
models, or sometimes they even do not look at the UML models. The ben-
e�ts of using UML models could not be paid o� at the end of that project
and lots of time were spent on bug �xing. Therefore, we strongly recom-
mend that before determining the level of detail at which UML models

91



will be created, architects should have a better idea about the developers'
experience in using UML models.

• Spend considerable time on the quality of the UML models such as cor-
rectness and completeness. It is useless for improving level of detail in
UML models if the quality of the UML models is very poor. More defects
can be introduced if the UML models themselves are poorly designed or
incomplete. Besides, the UML models should allow to be updated based
on the new requirements or changed requirements during the development.
Therefore, developers do not have to follow the old UML models which
are not valid any more.

92



Bibliography

[Ana] SPSS Statistical Analysis. Tool website. available at
http://www.spss.com/spss/index.htm.

[BB01] B. Boehm and V.R. Basili. Software defect reduction top 10 list.
Computer, 34(1):135�137, 2001.

[BBM96] V.R. Basili, L. Bri, and W.L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software
Engineering, 22:751�761, 1996.

[BLDC06] B.D. Bois, C.F.J. Lange, S. Demeyer, and M.R.V. Chaudron. A
qualitative investigation of uml modeling conventions. In MoDELS
Workshops, pages 91�100, 2006.

[Boa] International Software Testing Quali�cation Board. Standard
glossary of terms used in software testing. available at
http://www.istqb.org/downloads/glossary-1.2.pdf.

[But97] G. Butler. Quality and reuse in industrial software engineering.
In In Proceedings of Asia-Paci�c Software Engineering Conference
and International Computer Science Conference, pages 3�12. IEEE
Computer Society Press, 1997.

[CBC+92] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moe-
bus, B.K. Ray, and M.Y. Wong. Orthogonal defect classi�cation-a
concept for in-process measurements, 1992.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476�493, 1994.

[CKC91] R. Chillarege, W.L. Kao, and R.G. Condit. Defect type and its
impact on the growth curve, 1991.

[Dea] J. Deacon. Model-view-controller (mvc) architecture. available at
http://www.jdl.co.uk/brie�ngs/MVC.pdf.

[dqmt] SDMetrics: The UML design quality metrics tool. Tool website.
available at http://www.sdmetrics.com.

[DW51] J. Durbin and G.S. Watson. Testing for serial correlation in least
squares regression. Biometrika, 38:159�178, 1951.

93



[Fla] B. Flaton. Exploring the e�ect of uml modeling on software quality.
Master Thesis supervised by Dr. M.R.V. Chaudron and Ir. F. Buve,
Department of Mathematics and Computer Science � Eindhoven
University of Technology, 2008.

[Fow03] M. Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman Publishing Co. Inc.,
Boston, MA, USA, 2003.

[Har92] D. Harel. Biting the silver bullet: Toward a brighter future for
system development, 1992.

[Hov06] S.E. Hove. The impact of uml documentation on software main-
tenance: An experimental evaluation. IEEE Trans. Softw. Eng.,
32(6):365�381, 2006.

[KK77] D.J. Krus and P.H. Krus. Lost: Mccall's t scores: Why? Educational
and Psychological Measurement, 37(1):257�261, 1977.

[Kru] P. Kruchten. What is the rational uni�ed process ? available at
http://www.ibm.com/developerworks/rational/library /content/Ra-
tionalEdge/jan01/WhatIstheRationalUni�edProcessJan01.pdf.

[Kru95] P. Kruchten. Architecture blueprints - the "4+1" view model of
software architecture. In TRI-Ada Tutorials, pages 540�555, 1995.

[LC06] C.F.J. Lange and M.R.V. Chaudron. E�ects of defects in uml
models: an experimental investigation. IEEE Trans. Softw. Eng.,
32(6):365�381, 2006.

[LCM06] C.F.J. Lang, M.R.V. Chaudron, and J. Muskens. In practice: Uml
software architecture and design description, 2006.

[NFC08] A. Nugroho, B. Flaton, and M.R.V. Chaudron. An empirical anal-
ysis of the relation between level of detail in uml models and defect
density. Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems (MODELS), 5301 of
LNCS:600�614, Springer-Verlag, 2008.

[Sel03] B. Selic. The pragmatics of model-driven development. IEEE softw.,
20(5):19�25, 2003.

[sou] sourceforge. c and c++ code counter. available at
http://sourceforge.net/projects/cccc.

[Wika] Wikipedia. Ibm rational clearcase. available at
http://en.wikipedia.org/wiki/Rational_ClearCase.

[Wikb] Wikipedia. Ibm rational clearquest. available at
http://en.wikipedia.org/wiki/Rational_ClearQuest.

[Wikc] Wikipedia. Ibm rational rose xde. available at
http://en.wikipedia.org/wiki/Rational_Rose_XDE.

94



[WRH+00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering: an introduc-
tion. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

95



List of Figures

5.1 Visualization of The Research Approach . . . . . . . . . . . . . . 17

6.1 PARTS: Defect type distribution . . . . . . . . . . . . . . . . . . 24
6.2 PARTS: Defect density (per KSLoC) of modeled and unmodeled

system parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 PARTS: Defect density (per KSLoC) of di�erent modeled and

unmodeled system parts . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 PARTS: Defect density (per KSLoC) of modeled faulty classes

presented in CD or not . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5 PARTS: Boxplots of class LoD (LoDCD) and defect density . . . 32
6.6 PARTS: Boxplots of class LoD (LoDSD measured at diagram

level) and defect density . . . . . . . . . . . . . . . . . . . . . . . 33
6.7 PARTS: Scatterplots of the relation between class LoD (LoDSD

measured at diagram level) and defect density . . . . . . . . . . . 34
6.8 PARTS: Boxplots of class LoD (LoDSD measured at class-instance

level) and defect density . . . . . . . . . . . . . . . . . . . . . . . 34
6.9 PARTS: Scatterplots of the relation between class LoD (LoDSD

measured at class-instance level) and defect density . . . . . . . . 35

7.1 RACE: defect type distribution . . . . . . . . . . . . . . . . . . . 44
7.2 RACE: Defect density (per KSLoC) of modeled and unmodeled

system parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 RACE: Boxplots of class LoD (LoDSD measured at diagram

level) and defect density . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 RACE: Scatterplots of the relation between class LoD (LoDSD

measured at diagram level) and defect density . . . . . . . . . . . 48
7.5 RACE: Boxplots of class LoD (LoDSD measured at class-instance

level) and defect density . . . . . . . . . . . . . . . . . . . . . . . 49
7.6 RACE: Scatterplots of the relation between class LoD (LoDSD

measured at class-instance level) and defect density . . . . . . . . 50

8.1 BEHEERNET: Defect type distribution . . . . . . . . . . . . . . 56
8.2 BEHEERNET: Defect density (per KSLoC) of modeled and un-

modeled system parts . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3 BEHEERNET: Defect density (per KSLoC) of di�erent modeled

and unmodeled system parts . . . . . . . . . . . . . . . . . . . . 60
8.4 BEHEERNET: Defect density (per KSLoC) of modeled faulty

classes presented in CD or not . . . . . . . . . . . . . . . . . . . 62
8.5 BEHEERNET: Boxplots of class LoD (LoDCD) and defect density 63

96



8.6 BEHEERNET: Boxplots of class LoD (LoDSD measured at dia-
gram level) and defect density . . . . . . . . . . . . . . . . . . . . 64

8.7 BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at diagram level) and defect density . . . . . . 64

8.8 BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at diagram level) and defect density after nor-
malization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.9 BEHEERNET: Boxplots of class LoD (LoDSD measured at class-
instance level) and defect density . . . . . . . . . . . . . . . . . . 66

8.10 BEHEERNET: Scatterplots of the relation between class LoD
(LoDSD measured at class-instance level) and defect density . . . 66

9.1 Defect type distribution comparison . . . . . . . . . . . . . . . . 75
9.2 Defect counts distribution across faulty classes comparison . . . . 77
9.3 Defect density of faulty classes modeled in sequence diagrams

comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 LoDSD of faulty classes modeled in sequence diagrams comparison 80
9.5 Defect count distribution of faulty classes modeled in sequence

diagrams comparison . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.6 KSLoC distribution of faulty classes modeled in sequence dia-

grams comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.7 Defect density distribution of faulty classes modeled in sequence

diagrams comparison . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.8 LoDSD measured at diagram level distribution comparison . . . 83
9.9 LoDSD measured at class-intance level distribution comparison . 83
9.10 The number of Seq. diagrams distribution comparison . . . . . . 84

A.1 Database schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

97



List of Tables

6.1 PARTS Project Summary . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Distribution of defects across faulty classes in the PARTS project 25
6.3 PARTS: The pro�le of faulty classes with respect to their presence

in UML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 PARTS: Group statistics of defect density between the modeled

and unmodeled faulty classes . . . . . . . . . . . . . . . . . . . . 28
6.5 PARTS: Independent t-test of defect density between the modeled

and unmodeled faulty classes . . . . . . . . . . . . . . . . . . . . 28
6.6 PARTS: One-way ANOVA descriptive statistics . . . . . . . . . . 30
6.7 Test of Homogeneity of Variances among di�erent modeled groups 30
6.8 One-way ANOVA test . . . . . . . . . . . . . . . . . . . . . . . . 30
6.9 Post hoc test: Games-Howell procedure . . . . . . . . . . . . . . 31
6.10 Independent t-test of Defect Density between Modeled Faulty

Classes presented in CD or not . . . . . . . . . . . . . . . . . . . 31
6.11 Spearman's correlation coe�cient between class LoD (LoDCD)

and defect density . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.12 Pearson's correlation coe�cient of LoDSD measured at diagram

level and defect density . . . . . . . . . . . . . . . . . . . . . . . 33
6.13 Pearson's correlation coe�cient of LoDSD measured at class-

instance level and defect density . . . . . . . . . . . . . . . . . . 35
6.14 Correlation analyses between individual metrics measured at di-

agram level and defect density . . . . . . . . . . . . . . . . . . . 36
6.15 Correlation analyses of individual metrics measured at class-instance

level and defect density . . . . . . . . . . . . . . . . . . . . . . . 37
6.16 Correlation analyses of LoDSD metrics and defect density (logic

defect type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.17 Correlation coe�cient of LoDSD metrics and defect density (Data

handling defect type) . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 RACE Project Summary . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Distribution of defects across faulty classes in the RACE project 45
7.3 RACE: The pro�le of faulty classes with respect to their presence

in UML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 RACE: Group statistics of defect density between the modeled

and unmodeled faulty classes . . . . . . . . . . . . . . . . . . . . 47
7.5 Independent t-test of defect density between the modeled and

unmodeled faulty classes . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Pearson's correlation coe�cient of LoDSD measured at diagram

level and defect density . . . . . . . . . . . . . . . . . . . . . . . 49

98



7.7 Spearman's correlation coe�cient of LoDSD measured at dia-
gram level and defect density . . . . . . . . . . . . . . . . . . . . 49

7.8 Pearson's correlation coe�cient of LoDSD measured at class-
instance level and defect density . . . . . . . . . . . . . . . . . . 50

7.9 correlation analyses between individual metrics and defect density 51
7.10 Correlation analyses of individual LoDSD metrics measured at

class-instance level and defect density . . . . . . . . . . . . . . . 52

8.1 BEHEERNET Project Summary . . . . . . . . . . . . . . . . . . 54
8.2 Distribution of defects across faulty classes in the BEHEERNET

project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 BEHEERNET: The pro�le of faulty classes with respect to their

presence in UML models . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 BEHEERNET: Group statistics of defect density between the

modeled and unmodeled faulty classes . . . . . . . . . . . . . . . 58
8.5 BEHEERNET: Independent t-test of defect density between the

modeled and unmodeled faulty classes . . . . . . . . . . . . . . . 59
8.6 BEHEERNET: One-way ANOVA descriptive statistics . . . . . . 61
8.7 Test of Homogeneity of Variances among di�erent modeled groups 61
8.8 One-way ANOVA test . . . . . . . . . . . . . . . . . . . . . . . . 61
8.9 Pearson's correlation coe�cient between class LoD (LoDCD) and

defect density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.10 Pearson's correlation coe�cient of LoDSD measured at diagram

level and defect density . . . . . . . . . . . . . . . . . . . . . . . 65
8.11 Pearson's correlation coe�cient of LoDSD measured at class-

instance level and defect density . . . . . . . . . . . . . . . . . . 66
8.12 The outliers in the correlation analyses between LoDSD and de-

fect density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.13 Correlation analyses between individual metrics measured at di-

agram level and defect density . . . . . . . . . . . . . . . . . . . 68
8.14 Correlation analyses of individual metrics measured at class-instance

level and defect density . . . . . . . . . . . . . . . . . . . . . . . 69
8.15 Correlation coe�cient of LoDSD metrics and defect density (Data

handling defect type) . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.16 Correlation analyses of LoDSD metrics and defect density (logic

defect type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.1 Projects summary comparison . . . . . . . . . . . . . . . . . . . . 73
9.2 Projects characteristics comparison . . . . . . . . . . . . . . . . . 73
9.3 Data sampling comparison . . . . . . . . . . . . . . . . . . . . . . 74
9.4 Puri�ed defects statistics comparison . . . . . . . . . . . . . . . . 76
9.5 The pro�le of faulty classes with respect to their presence in UML

models comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 The correlation analyses results using LoDSD comparison . . . . 78
9.7 LoDSD measured at diagram level pattern comparison . . . . . . 84
9.8 correlation analysis di�erence between PARTS and BEHEERNET 85
9.9 summary of di�erences between PARTS and BEHEERNET . . . 86

99



Appendix A

Database design

In this chapter, the design of the database used in this study is described.
This database is mainly used for storing all information useful for statistical
analysis. The database schema is listed in Figure A.1 and explanations on several
important tables are given.

The DBMS used in this study is MySQL. The main reason for this is due
to our familiarity with setting up databases with it and making them available
online, through a web interface. According to the schema, some important tables
used in the queries are described below:

1. c_metrics: all information regarding implementation classes in stored
in this table. 'id ' is frequently used for connecting design classes in the
UML models to faulty classes found in the implementation. Some other
attributes are used for determining the class diagram metrics' values based
on the de�nitions, such as NumAttr, NumOps, OpsWithParam and Ops-
WithReturn. Meanwhile, 'sloc' provides the source lines of code for each
implemented class especially the faulty classes.

2. faultyclasses: all classes related to defects are listed in this table. These
are the classes examined in this study for which the correlation between
UML models and defect density is analyzed. 'c_cid ' is used to set up the
connections with other tables like c_metrics, classcorrespondence,
classincd and classinsequence.

3. defects: all information about defects reported in a project is listed here.
Most of the content is �lled automatically by copying data from the
bug tracking tool's database, while the 'type', 'treated ' and 'analysis-
_dationale' �elds are �lled during the manual defect typing step (see
Section 5.5.2).

4. d_classes and d_sequences: all information needed for calculating de-
sign metrics in the UML models are stored in these two tables. d_classes
stores information of class diagrams while d_sequences stores sequence
diagrams' information. All these are useful for calculating metrics' values.
Note that the raw data is stored here rather than the ratios used in the
analysis.

100



Figure A.1: Database schema

101



5. classcorrespondence and classinsequence: these two tables are used
to link both diagram types to the implementation classes. The �rst table
is automatically �lled by performing automatic matching based on class
names stored in the c_metrics and d_classes tables. Instead, �lling in
the classinsequence table was done manually and most �elds contain
the metrics' values based on class-instance level.

6. funcmodin and strucmodin: these two tables are for relating defects
to parts of the design e�ciently. A 'correct ' �eld contains a correctness
value which indicates whether the functionality or structure related to the
defect was correctly designed or not.

102



Appendix B

Performed queries

In this appendix, several important queries are listed to illustrate how we got the
data for the statistical analysis on the analysis database listed in AppendixA.

B.1 Faulty classes modeled in di�erent ways

Several queries were used to model faulty classes in di�erent ways, such as classes
modeled as design classes in UML models, faulty classes modeled in sequence
diagrams, and classes not modeled at all. The detailed pro�le can be found in
Table 6.3 as an example. At the same time, queries listed here are based on the
PARTS project.

As can be seen from listing B.1, information such as the faulty classes' names,
KSLoC, defects count and defect density are generated. Defect types like user
interface related, non-defect and undetermined are disregarded. This query was
performed several times while only changing the last two where clauses to select
faulty classes modeled in di�erent ways.

SELECT substr ing_index ( f c . classname , ' . ' , 1 ) as ModeledFaultyClasses ,
c . s l o c /1000 as KSLoC,
count ( f c . c lassname ) as NrOfDefects ,
c o a l e s c e ( count ( f c . c lassname ) / ( c . s l o c /1000) , 0 ) as

De f e c tdens i ty
FROM c_metrics c , f a u l t y c l a s s e s f c , d e f e c t s df
WHERE c . id = f c . c_cid AND

f c . d e f e c t s i d = df . id AND
df . p r o j e c t i d = 4 AND
df . t r ea t ed = 1 AND
df . type NOT IN(

' ui−s t a t i c ' ,
' ' ,
' ui−nav ' ,
' undetermined ' ) AND

( f c . c_cid IN( SELECT cor . c_cid FROM c la s s co r r e spondenc e cor ) OR
f c . c_cid IN( SELECT d i s t i n c t c i s . c_id

FROM c l a s s i n s e qu en c e c i s , d_sequences
WHERE d_sequences . p r o j e c t i d=4 AND

c i s . s_id = d_sequences . id
)

)

103



GROUP BY f c . c_cid
ORDER BY substr ing_index ( f c . classname , ' . ' , 1 )

Listing B.1: Query for comparing defect density of di�erently modeled system
parts

B.2 UML Level of detail

In total, three queries were used to generate the UML LoD based on class
diagram and sequence diagram metrics. Instead of calculating the UML LoD
aggregate directly from the queries, we �rst obtain the values of all the metrics
since it is easier for the interpretation which might be necessary in the later
phase. The queries are listed as follows:

SELECT f c . c lassname as classesModeledinCD ,
c o a l e s c e ( dc . NumAttr/c . NumAttr , 0 ) as NumAttrRatio ,
dc . AttrS igRat io as AttrSigRatio ,
c o a l e s c e ( dc .NumOps/c .NumOps, 0 ) as NumOpsRatio ,
c o a l e s c e ( dc . OpsWithParam/c . OpsWithParam , 0 ) as OpsWithParamRatio ,
c o a l e s c e ( dc . OpsWithReturn/c . OpsWithReturn , 0 ) as OpsWithReturnRatio

,
dc . AssocLabelRatio as AssocLabelRatio ,
dc . AssocRoleRatio as AssocRoleRatio

FROM c_metrics c , f a u l t y c l a s s e s fc ,
d e f e c t s df , d_c lasses dc , c l a s s co r r e spondence cor

WHERE c . id = f c . c_cid AND
f c . d e f e c t s i d = df . id AND
df . p r o j e c t i d = 4 AND
df . t r ea t ed = 1 AND
df . type NOT IN(
' ui−s t a t i c ' ,
' ' ,
' ui−nav ' ,
' undetermined ' ) AND
f c . c_cid IN ( SELECT cor . c_cid

FROM c la s s co r r e spondence cor , c l a s s i n c d inc
WHERE cor . c_cid = inc . c_id ) AND

c . id = cor . c_cid AND
cor . d_cid = dc . id

GROUP BY f c . c_cid
ORDER BY f c . c lassname asc

Listing B.2: Query for correlation analysis between LoDCD and defect density

SELECT substr ing_index (cm. classname , ' / ' ,−1) as classesModeledinSD ,
sum( c o a l e s c e (NumNonAnonymousObj/NumObj , 0 ) ) as NumNonAnonymObj ,
sum( c o a l e s c e ( (NumObj−NumDummyObj) /NumObj , 0 ) ) as NonDummyObj,
sum( c o a l e s c e (NumMsgLabel/NumMsg, 0 ) ) as MsgWithLabel ,
sum( c o a l e s c e ( (NumMsg−NumDummyMsg) /NumMsg, 0 ) ) as NonDummyMsg,
sum( c o a l e s c e ( ds . NumMsgReturnWithLabel/ds . NumMsgReturn , 0 ) ) as

ReturnMsgWithLabel ,
sum( c o a l e s c e (NumMsgWithGuard/NumMsg, 0 ) ) as MsgWithGuard ,
sum( c o a l e s c e (NumMsgParam/NumMsg, 0 ) ) as MsgWithParam ,
count (cm. id ) as NumberofSD

FROM c l a s s i n s e qu en c e cs LEFT JOIN d_sequences ds
ON ( cs . s_id = ds . id ) LEFT JOIN c_metrics cm
ON ( cs . c_id = cm. id )

WHERE cm. id IN (

104



SELECT f c . c_cid
FROM f a u l t y c l a s s e s fc , d e f e c t s df
WHERE f c . d e f e c t s i d = df . id AND
df . p r o j e c t i d = 4 AND
df . t r ea t ed = 1 AND
df . type NOT IN(
' ui−s t a t i c ' ,
' ' ,
' ui−nav ' ,
' undetermined ' )

)
GROUP BY cm. id
ORDER BY substr ing_index (cm. classname , ' / ' ,−1) asc

Listing B.3: Query for correlation analysis between LoDSD based on diagram
level and defect density

SELECT substr ing_index (cm. classname , ' / ' ,−1) classesModeledinSD ,
sum( c o a l e s c e ( ( c i s . NumMsgInWithLabel+c i s . NumMsgInnerWithLabel+

NumMsgOutWithLabel ) /
(NumMsgIn+NumMsgInner+NumMsgOut) ,0 ) ) as SMsgWithLabelRatio ,
sum( c o a l e s c e ( ( c i s . NumMsgInWithParam+NumMsgInnerWithParam+

NumMsgOutWithParam) /
(NumMsgIn+NumMsgInner+NumMsgOut) ,0 ) ) as SMsgWithParamRatio ,
sum( c o a l e s c e ( ( c i s . NumMsgInWithGuard+c i s . NumMsgInnerWithGuard+c i s .

NumMsgOutWithGuard) /
(NumMsgIn+NumMsgInner+NumMsgOut) ,0 ) ) as SMsgWithGuardRatio ,
sum( c o a l e s c e ( c i s . NumMsgReturnWithLabel/ c i s . NumMsgReturn , 0 ) ) as

SReturnMsgWithLabelRatio ,
sum( c o a l e s c e ( c i s . NumMsgInClass /(NumMsgIn+NumMsgInner ) , 0 ) ) as

SNonDummyMsgRatio ,
sum( c o a l e s c e (1− c i s . UnamedObj , 0 ) ) as SNonAnonymObj ,
sum( c o a l e s c e (1− c i s .DummyObj, 0 ) ) as SNonDummyObj ,
count ( c i s . c_id ) as NumberofSD

FROM c_metrics cm, c l a s s i n s e qu en c e c i s
WHERE c i s . c_id = cm. id AND
cm. id in (
SELECT d i s t i n c t c_cid
FROM f a u l t y c l a s s e s a , d e f e c t s b
WHERE a . d e f e c t s i d=b . id AND
b . p r o j e c t i d=4 AND
b . type not in (
' ui−s t a t i c ' ,
' ' ,
' ui−nav ' ,
' undetermined ' ) AND

cm. p r o j e c t s i d=4
GROUP BY c i s . c_id
ORDER BY substr ing_index (cm. classname , ' / ' ,−1)

Listing B.4: Query for correlation analysis between LoDSD based on class-
instance level and defect density

In class diagrams the LoD value is calculated by directly adding up the values
of all the metrics generated from the query, since the correspondence between a
design class in UML and an implementation class is a one-to-one relationship.
However, one implementation class can appear in more than one sequence dia-
gram (one-to-many relationship). Therefore, for each faulty class, we add up the
values of all the sequence diagrams metrics related to this faulty class and the
number of sequence diagrams related to this faulty class can also be obtained.
Later, the calculation of UML LoD of this faulty class can be easily done in

105



Excel by dividing the summation of the values of all the metrics by the number
of sequence diagrams related to this faulty class.

106



Appendix C

Statistical tests

Statistical tests used in this study are listed in this chapter. all tests were per-
formed using version 13 of the SPSS tool [Ana]. Since some tests were already
explained during the analyses in the case studies discussed in the previous chap-
ters (i.e., Pearson's correlation test, Spearman's correlation test), they
are not explained in detail.

C.1 Kolmogorov-Smirnov & Shapiro-Wilk tests

These two tests are used for testing whether a distribution is normal. They
compare the scores in the sample to a normally distributed set of scores with the
same mean and standard deviation. If the test is non-signi�cant (signi�cance p ≥
0.05) it tells us that the distribution of the sample is not signi�cantly di�erent
from a normal distribution (i.e., it is probably normal). If, however, the test is
signi�cant (p ≤ 0.05) then the distribution in question is signi�cantly di�erent
from a normal distribution (i.e. it is non-normal). The di�erence between the
two tests is that K-S test is used when the number of samples is larger than
50, otherwise, Shapiro-Wilk test should be performed.

C.2 The independent t-test

The independent t-test is used in situations in which there are two experimental
conditions and di�erent participants have been used in each condition, for in-
stance, defect density di�erence between modeled and unmodeled system parts.
The test compares the two means to see whether the di�erence is signi�cant or
not. Besides, the data samples of the two groups should be independent, other
two conditions should be met. First of all, both groups should be normally dis-
tributed since it is a parametric test. The second condition is Homogeneity of
Variance which is checked by Levene's test listed in the analysis results of
the independent t-test. If the Sig. value for this test is less than .05 then the
condition has been violated and Sig. value for comparing the means of the two
groups should be checked under the condition labeled Equal variances not as-
sumed. Otherwise, the Sig. value under the condition labeled Equal variances
assumed should be checked. If the signi�cance is less than .05 then the means
of the two groups are signi�cantly di�erent.

107



C.3 One-way ANOVA

ANOVA is a parametric test used for analyzing situations in which there are
several independent variables. In these situations, ANOVA explains how these
independent variables interact with each other and what e�ects these interac-
tions have on the dependent variable. The reason why ANOVA is used instead
of performing several t-tests to compare all combinations of groups that have
been tested is explained in [Ana]. The conditions under which ANOVA is reli-
able are the same as for all parametric tests based on the normal distribution
(see Section C.2). The ANOVA test is rather complex and we will only explain
the procedures used in our study. Post hoc tests designed for comparing all
di�erent combinations of the treatment groups were performed. The choice of
the comparison procedure depends on the exact situation and several general
guidelines are provided in [Ana].

C.4 Pearson's and Spearman's correlation coe�-

cient

These two tests are used for correlation analysis. Pearson's correlation is a
parametric test which requires an accurate measure of the linear relationship be-
tween two variables. On the other hand, Spearman's correlation coe�cient
is a non-parametric statistic test and can be used when the data has violated
parametric assumptions such as non-normally distributed data. For both tests,
a signi�cant correlation is indicated when the Sig. value is less than .05.

108


