
A Framework for Heterogeneous
Desktop Parallel Computing

Tamás Faragó
Leiden Embedded Research Center

Leiden Institute of Advanced Computer Science

tfarago@liacs.nl, fafarago@gmail.com

Abstract

With industry moving to a multi-core design in search of performance
gains, developers must incorporate this paradigm shift into their designs
as well. We have so far mostly avoided the multi-threaded approach fear-
ing the associated concurrency problems. Previous research at Liacs has
created tools that automatically identify independent processes and their
data flows inside an application. In this paper, we present a framework
that uses these tools to generate not only concurrent versions of sequential
applications on normal desktop machines, but also exploits resources of
other, external devices, and truly, painlessly transforms the simple desk-
top computer into a computing powerhouse.

1 Introduction

Until a few years ago, the traditional approach to higher performance was to
simply wait for the next generation of processors. With Moore’s Law of expo-
nential growth still holding, there was no need to invest in expensive tuning and
developers enjoyed a “free lunch” of hardware improvements.

However, this era has come to an end with ever decreasing performance gains
on single-core processors. Major processor manufacturers and architectures are
running out of room with traditional approaches to boosting CPU performance,
and they have moved to multiple-core architectures. Improvements can still be
realised, but only with effort: software must be designed and implemented with
concurrency in mind. “The Free Lunch is Over” [1].

Concurrency is hard. Developers are not comfortable with the programming
paradigm, very few tools exist to assist, and the currently favoured implemen-
tation mechanism of using threads is dangerous. Any not-well written concur-
rent program is full of potential race conditions, deadlocks; and fixing these

1

is extremely hard. Another major challenge in implementing concurrency is
scalability: how does the application perform as additional cores are added?

Amdahl’s Law can give us predictions about scalability.

speedup(p) = 1
s+ (1− s) /p

It states that the overall speedup as a function of the number of processing
cores p depends on the serial portion of the code s, the critical path, and the
parallelisable portion (1− s). This function shows a diminishing return as the
number of processing cores increase, with each new unit contributing less and
less to overall speedup. Even this formula is highly optimistic as it ignores any
overheads and assumes full processor utilisation.

Only in “embarrassingly parallel” problems where little or no effort is required
to find a corresponding parallel version (s ≈ 0), can each new core contribute
fully to the speedup. This is the case of data-parallelism.

Data-parallelism is relatively easy with already lots of research dedicated to
the problem. Processor manufacturers have long supported the loop-parallelism
approach through special instruction sets like MMX, SSE and various vector
operations. Extensions for various platforms of the openMP / MPI standard
are readily available, while companies such as RapidMind [2], and AccelerEyes
[3] provide their own proprietary parallel platform API.

We are interested in task-parallelism. In this paper we propose techniques for
solving above-mentioned concurrency problems in a systematic and automated
way.

Part I

Research at Lerc group
Dr. Gilles Kahn introduced the Kahn Process Network (KPN) [4] terminol-
ogy. KPNs are a distributed Model of Computation (MoC) where a group of
autonomous processes communicate through FIFO channels. In KPN there is no
notion of a global schedule that dictates the relative order of execution.

If we can identify the data dependencies between the statements of a sequential
program, then we can create a KPN, map processes on different computing cores,
and use this deterministic parallel KPN specification to execute concurrently,
hopefully achieving higher performance than the sequential version [5, 6, 7, 8].

Specifying an application using a parallel MoC such as KPN, is a time-consuming
and error prone task which is not well understood by developers. Therefore, we

2

need tools that allow us to continue writing sequential programs and automat-
ically derive the parallel specification.

The Daedalus framework tools developed at Liacs are designed for this purpose.
Accepting a KPN network as input derived from a sequential C/C++ program
by the pn [7] tool, which facilitates migration from a sequential application
to a parallel specification, the Embedded System-level Platform Synthesis and
Application Mapping (Espam) [8] tool generates several autonomous processes
that transfers data between each process through communication channels. Our
group focuses on embedded systems, therefore for prototyping purposes Espam
currently targets the FPGA technology. However, the tools are flexible enough
to use different platforms as a backend.

Part II

Heterogeneous Desktop Parallel
Computing
The framework presented in this paper, Heterogeneous Desktop Parallel Computing
(Hdpc), uses above mentioned tools and generates code for a general purpose
computer such as the Intel or AMD x86(-64). The processes of a KPN can then
execute on a heterogeneous multitude of platforms. The framework currently
runs on the Microsoft Windows® Operating System.

Hdpc improves upon Espam by generating backend code for a desktop computer
that acts as the controlling and coordinating arbiter between the processes of
a KPN. The processes can then execute on various computing devices like the
FPGA, Graphics Processing Unit (GPU), or the Cell B.E. to take advantage of
their respective strengths.

For each process - node - in a KPN, a thread on the host CPU is created. When
the actual function(s) - computation(s) - inside the node are executed on the host
machine, the CPU (of a multi-core) system is used for the actual computation.
For external devices like the GPU, the host thread is only responsible for control
flow, transfer of data to- and from the device and starting execution of the
computation on the device; nothing more.

Figure 1 visualises our approach; a KPN running on our framework with three
interconnected processes, A, B, and C all execute their functions on a device
connected to the same machine. Communication channels and the FIFO mech-
anism are implemented in main system memory and are under Hdpc’s control.
Transfer of data happens by reading from the device’s memory associated with

3

HDD

DDR Memory

CPU1 CPU2

CPU3 CPU4

CPU1 CPU2

CPU3 CPU4

PCIe

FPGA

MEM

GPU

MEM

Cell B.E.

MEM

A

C

B

KPN on HDSC

Figure 1: The Hdpc framework

the processing node into main memory, then writing this data in due time to
the consuming node’s memory. In the case of execution on the CPU this transfer
is either simply a memory copy or a pointer change as all data is in the same
address space.

Our main purpose in designing Hdpc was to create a lightweight framework with
minimal impact on performance and ensure correct execution of the running
processes. While Espam only focuses on FPGAs as a backend, with Hdpc we can
target a wide range of platforms.

As our framework acts as a controlling and coordinating framework of a KPN, all
on a single machine, we have several additional advantages over the traditional
task-parallel approach. KPNs for example do not allow, or even consider, global
variables for communication between processes. As in Hdpc all communication
happens in the same shared-memory system, the use of global variables is per-
mitted. These can be used for example as read-only values for loop-bounds,
constants, etc. Use of globals for communicating data between processes is pos-
sible as well, but as this happens outside of our framework it is the programmer’s
responsibility to ensure data integrity.

2 Design Flow

In this section we give an overview of our system design and the steps needed
to create a working multi-processor application. Then, we explain the design

4

choices present to the programmer, their advantages and drawbacks. Finally,
we show the usage of our framework through the simple example in Section 3 of
Algorithm 1 on page 10, complete with the KPN graph in Figure 4 on page 10.
In Appendix E on page 40 we list the Application Programming Interface (API)
available, as well as the UML diagram in Figure 17 on page 48.

We must stress that currently our framework is not yet integrated into the Espam
toolchain. After integration, most of the presented steps detailed below will be
obsolete. The designer will only have to make some choices regarding imple-
mentation philosophy and not need bother setting up the concurrent processes.
To build our network we need two specifications in the XML format:

1. An Application Specification that describes an application as a KPN, e.g.
a network of concurrent processes communicating through FIFO channels.

2. An Platform Description that gives the topology of a multiprocessor plat-
form. The topology decides which nodes are mapped to which computing
units.

Once these specifications are available, we can start implementing the frame-
work. In this section we explain the different choices available. In Section 3
we present how to construct a multi-threaded application in the form of a KPN
using the Hdpc framework.

2.1 Communication Components

KPNs assume unbounded communication buffers but this is not possible in
a physical implementation due to resource limits. The problem of deciding
whether a general KPN can successfully complete with bounded memory is un-
decidable [9, 10]. However our tools only consider a subset of process networks,
derived from SANLPs [8], which can be executed given a finite amount of memory.

The communication buffers are implemented using FIFO channels arranged as
circular-buffers in memory. From an implementation point of view, a circular-
buffer is not only more light-weight than a standard queue, stack or linked list,
but also prevents memory fragmentation due to its “fixed” nature, and allows
for data reference through pointers.
The only drawback is that we not only have to keep track of the read and
write locations of a circular buffer, but also keep track of some usage counter.
Otherwise when the read and write locations are the same we cannot discern
the full state of a buffer from an empty state. The channels are internal to
our framework, i.e. invisible to the developer, and created automatically of the
proper type when nodes are connected through their ports and edges.

5

At the specification level KPN assumes unbounded FIFO buffer sizes. Reading
is blocking, writing is non-blocking. At the implementation level, with limited
resources, bounds must be set for each of the FIFOs, in which case writing to a
full buffer is also a blocking action. The process can only continue when there
is enough space in the buffer to finish writing all pending data.

Our framework includes two communication types for FIFO channels:

1. Phyisical movement of data. The read method fetches an element from
the channel, and physically copies it to a local variable of the current
process. Immediately after the transfer is finished the channel’s use-count
is decremented and that memory location is available for future access.
Writing to a channel is analogous to reading. An element is physically
moved from a local variable of the process to the channel and the usage
count is incremented.

2. Pointer reference type is implemented through an acquire/release method.
A read from the channel marks the location of the first token as in use
and keeps a “lock” as long as data is needed from the channel. Similarly,
a channel write acquires a “lock” at the write position.
It is possible to acquire multiple consecutive locks for a channel as long
as data/free space is available.
All locks need to be explicitly released when a processing node is done
with it in the current iteration.

There is a fundamental difference between these two types of channel access as
we explain below.

In a shared-memory system (CPU to CPU), there is no need to copy data between
the cores, everything can be referenced through pointers. Acquiring a read-
pointer for the input and acquiring a write-pointer for the output argument(s)
of a function, directly working at those locations, and releasing them when
finished will remove this unnecessary overhead of copying data.

However, when executing processes on a heterogeneous system, this “trick” will
no longer work. A GPU or an FPGA have their own separate memory spaces
and we do need to physically move data. Even in this case it can however be
beneficiary to acquire a read on the input channel. We can then copy directly
from there to the device and release afterwards instead of first copying it some
process-local memory and from there to the device. Of course, which method to
use depends on device-transfer speeds and the control-flow dictated frequency
of access.

Figure 2 shows the throughput of our framework comparing the physical move-
ment and pointer reference method. For the second, two choices exist. The
dotted line allows for more complex operations - explained in more detail in
Appendix E.1.3 - but at the price of some additional overhead. For all tests

6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−1

10
0

10
1

10
2

channel token size in bytes

e
xe

cu
tio

n
 t
im

e
 in

 s
e

co
n

d
s

physical movement

pointer reference (complex)

pointer reference (simple)

(a) block-free reads

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

channel token size in bytes

e
x
e
c
u
t
i
o
n

t
i
m
e

i
n

s
e
c
o
n
d
s

physical movement

pointer reference (complex)

pointer reference (simple)

(b) possible blocking on read

Figure 2: throughput on 1GB of data depending on token size

1GB of data was transferred through channels of different token sizes. What
we can see is that when no blocking is possible the pointer reference method
starts to achieve a higher throughput from somewhere between 16 and 32 bytes
in the best case. This is logical since when you are working with pointers they
are 4 - or 8 - bytes in size. Copying double words twice - once from the buffer
to local memory, then to use the value - is faster than retrieving the pointer
(same double word size) and an extra lookup for every access to this variable.
It is important to keep in mind that the usefulness of pointer reference only
starts to show with bigger chunks of data moving through the queues. Possible
blocking - Figure 2b-, or complex usage increase the break-even point to about
256 bytes. The increase in time for large tokens is due to the cache sizes in the
CPU.

The performance increase of the acquire/release mechanism also greatly depends
on the channel size. The pn tool generates channels with a minimal guaranteed
deadlock-free execution. If these sizes are used, we will actually observe lower
speeds. This is because as transfers are faster, now more time is spent on
communication and Operating System (OS) idiocracies such as context switches.
Increasing the channel size when resources allow is the solution.

The minimal deadlock-free buffer sizes calculated by the pn tool only hold when
the data is actually consumed from a channel before a write-operation is at-
tempted. The pointer reference method can acquire a read lock and then a
write lock before releasing the channel, thereby deadlocking execution. There-
fore, channel sizes should always be increased at least by one token.

To summarise the communication components: physical movement of data is
faster for smaller tokens, and less error-prone as it does not require manual re-
lease of locks. Pointer referencing is faster, needs larger channels, larger tokens,
and requires additional control to release these locks.

7

2.2 Blocking Read/Write Components

When communicating tokens through a channel, its state needs to be guar-
anteed. A consuming node has to block when the channel is empty and a
producing node has to block when the channel is full. This control mechanism
is implemented in Hdpc within the channel component.
We can choose between two implementations:

1. Signaling uses semaphores provided by the Operating System. A process
blocks and enters an idle state when the semaphore is not signaled; e.g.
the channel is empty/full.

2. Spinning uses a single shared variable, accessed through atomic opera-
tions. This variable is accessed by both nodes of a connected channel to
respectively increment and decrement the buffer count. A process blocks
and enters a spin-state checking the buffer count until it has reached zero
or the buffer size, depending on a read or write operation.

There is a big difference between these implementations. Using atomic variables
is more than fifty times faster than semaphores [11]. This gives a much higher
throughput as processes are notified much faster of the availability of a channel
than when using semaphores. Figure 3 shows this difference in performance.
How much this difference is in practice depends on the number of channels (in
the graph fMRI has a lot more).

0

50

100

150

200

250

300

350

1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 in
 s

e
co

n
d

s

SIGNAL

SPIN

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(a) fMRI application

0

50

100

150

200

250

300

1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 in
 s

e
co

n
d

s

SIGNAL

SPIN

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(b) MJPEG application

Figure 3: Difference in performance of SPIN vs SIGNAL for two applications

A disadvantage of spinning is the spin itself. In case there are other threads, the
Operating System will not schedule those as frequently as it would do otherwise
due to the continuous polling of the shared variable of the spinning thread. The
method is also most certainly not power efficient. In our experiments the spin-
ning method consistently produced better results. However the programmer is
free to choose the signaling method when big amounts of data are communi-
cated, especially to/from different computing devices, whose transfer rate will
cancel the slow speed of the OS semaphores.

8

2.3 Platform Backend Components

To assist developers in easily using different computing devices besides the
shared memory CPU and disk IO operations, we have added several platform
backend libraries.

These libraries provide a general framework for communication and transfer to
and from the device. Currently, these include a GPU1, an FPGA2, in addition to
the standard CPU backend.

We allow developers to add their own backend which can then easily be used in
future libraries. The disk IO library can easily be overridden through inheritance
to support any custom file operations not just transfers of binary data.

Only read() and write() operations are exposed to the user. These transfer
tokens to and from the device and accept as argument a source and destination
pointer with at least one pointing to the address space of the device where the
data resides when reading or will reside in the case of writing.

Developers willing to implement additional backends need to define additional
functionality to (de)initialise the device as well as memory management. These
API functions are explained in the Appendix, Section E.4.

We must note that the usage of the available backends is not mandatory. Users
can choose to write their own communication, allocation, etc. code inside a
node. However, when execution of a given node is to be changed to a different
platform, large amounts of code need to be rewritten instead of simply switching
one backend for another.

2.4 Network Correctness

One of the useful features of our framework is that the generated networks are
checked for correctness, both compile-time and run-time. By using the tem-
plate framework of the C++ programming language type-correctness is always
enforced and we use the already available compiler features to show errors early
at design time.

At runtime, Hdpc performs two kinds of checks. Firstly, all connections are
verified. This includes checking whether a connection is being redefined by
accidentally connecting an already connected port again to some other node,
and verifying that all ports have a valid connection. Secondly, during runtime
type-checks are performed that make sure that tokens of the correct type are
read from a channel; e.g. tokens of type integer are read from a channel of type
integer.

1NVIDIA branded graphics card with CUDA support
2Virtex II PCI board

9

After execution of Hdpc we verify that all the produced tokens in a channel are
really consumed - that it is empty - only in which case we assume the execution
to have performed correctly. All the runtime checks can be turned off at compile
time, imposing zero overhead for execution.

3 Constructing and Implementing KPNs

Below, we show the creation of Hdpc using the example in Algorithm 1 and
Figure 4.

Algorithm 1 Example source code

int main () {
double data ;
for (int i = 0 ; i < N; i ++) {

functionA (i , &data) ;
for (int j = 0 ; j < N; j++) {

funct ionB (data) ;
}

}
return 0 ;

}

3.1 Construction

ND_0
processA

ND_1
processB

N-1

1

OG1

IG1

OG1

IG2

Figure 4: Example KPN
graph

Construction of Hdpc is based on the KPN graph
generated by pn and the mapping choices of the
nodes. We can observe two process, A and B. Pro-
cess A has a single outgoing port, where B addi-
tionally has a self-loop; in total 2 incoming ports
and one outgoing. So we create two instances of
the Process class with the appropriate number of
ports:
#include hdpc/ proce s s . h

Process A(0 , 1) ;
Process B(2 , 1) ;

Now these two separate nodes need to be con-
nected. Connections can be created using the
functions attachoutput() and attachinput().
The destination ports are retrieved through calls
to getInPort() and getOutPort() of the other
node respectively. Developers are free in their
choice to connect output or input ports, and even
use both at the same time. Hdpc will complain

10

when an already existing connection is being re-
connected due to some user error.
A. attachoutput<double>(0 , B. get InPort (1) , 1) ;
B. attachoutput<double>(0 , B. get InPort (0) , N−1);

Creating the same connections, but now through the input ports. The size of
the FIFO of the channel from A to B is one:
B. attachinput<double>(0 , B. getOutPort (0) , N−1);
B. attachinput<double>(1 , A. getOutPort (0) , 1) ;

Next, the choice must be made on what type of platform A and B will execute
their calculations. Suppose we have selected to execute node A on the GPU
and B on the host machine, the CPU. We create the two instances of these
specific platforms. The constructor for the GPU accepts an optional parameter
for which graphics card to use when there are multiple available on the system.
Each backend needs its respective implementation included.
#include hdpc/ p lat fo rms /cuda . h
#include hdpc/ p lat fo rms /cpu . h

GPU gA(0) ;
CPU cB ;

Now that everything is set up we can start our framework and the concurrent
processes. Each process needs to be started and the computing unit attached.
We will allocate memory on the GPU through our framework so we do not have
to worry about this. Additionally we have fixed execution of process B to the
third core in our multi-core setup and allowed Windows decide the best mapping
for A - dynamically moving the thread from core to core as it sees fit.
Handles h [2] ;
h [0] = A. s t a r t (0 x0 , gA , processA , true) ;
h [1] = B. s t a r t (0 x4 , cB , processB) ;
WaitForMult ipleObjects (2 , h , TRUE, INFINITE) ;

When integration of Hdpc is finished into the Espam framework everything will
be correct by design. Checking as performed in Section 2.4 on page 9 will no
longer be needed.
All there is left now is implementing the two processes including control flow.
Running Espam automatically produces code for these processing nodes.

3.2 Implementation (Process Code)

Now that the network has been constructed we construct the actual nodes
themselves. Channel communication components as well as computing back-
end transfer functionality is used here. Control flow code was generated by

11

Espam.

Each process receives as argument a reference to the Process class. All opera-
tions are performed through this reference. As discussed in Section 2.1 we can
choose between physical movement or pointer reference for the data communi-
cation mechanism between the nodes.

• Physical movement needs a port to access and a reference to a variable for
the data. readFromPort() and writeToPort() provide this functionality.

• Pointer reference works very similarly to physical movement. However,
using this approach we need to acquire both the read and write references
before executing the actual function. This is obvious since the function
operates directly at these memory locations.
We acquire a lock for the channel through getRead/WritePointer() and
subsequently release them by calling releaseRead/WritePointer().

releasePorts() releases ALL ports for which an acquire operation has
been made in the current iteration. The function can be used instead of
the explicit release functions and is usually put at the end of an itera-
tion. Using releasePorts() in this way sacrifices speed of release for less
control flow. More explanation is given in Appendix E.3.4 on page 44.

The code for processA and processB is below.

After node A executes we need to read the results from the device. Only after
this can we write the results to our internal buffer. Note that if we used the
pointer method the read function would have been hidden implicitly used. In
that case getWritePointer() returns a reference to device memory-space and
on releaseWritePointer() the result is automatically transferred.
void processA (Process &proc) {

// Output Arguments
double out_1ND_0 ;

for (int c0 = 0 ; c0 <= N−1; c0++) {
for (int c1 = 0 ; c1 <= 0 ; c1++) {

functionA (c0 , proc . getDeviceOutMem (0)) ;
proc . ge tProce s s ()−>read (proc . getDeviceOutMem (0) , &out_1ND_0 , 8)
proc . WriteToPort (0 , out_1ND_0) ;

} // f o r c1
} // f o r c0

}

B is using its self-loop to pass in_0ND_1 around. Note that real code generated
by the pn tool optimises this propagation out, the code using an actual channel
is just for example purposes.
void processB (Process &proc) {

// Input Arguments

12

double in_0ND_1 ;

for (int c0 = 0 ; c0 <= N−1; c0++) {
for (int c1 = 0 ; c1 <= N−1; c1++) {

i f (c1 == 0) proc . readFromPort (1 , in_0ND_1) ;
i f (c1 >= 0) proc . readFromPort (0 , in_0ND_1) ;

funct ionB (in_0ND_1) ;
i f (c1 >= 0) proc . writeToPort (0 , in_ND_1) ;

} // f o r c1
} // f o r c0

}

4 Future Improvements

Hdpc is a framework that allows for building multithreaded applications in the
form of KPN targeting (heterogeneous) desktop platforms. Currently, build-
ing an application is done by hand, however, the goal is to be integrated into
the Espam tool and the Daedalus[12] design flow which will lead to a highly
automated design process.

The pn tool generates improved KPN networks in the sense that channel multi-
plicity is removed by the introduction of self-loops. Currently, the latest version
of Espam ignores these self-loop hints and implements them as normal commu-
nication channels. However, self-loops have several properties that can greatly
improve performance.

Firstly, a special case of a self-loop is when the channel is only of size one,
called by pn a “sticky fifo”. These channels can completely be removed and
implemented as a single data element. Another important property of self-loops
is that the same process will do the read and write operations. Therefore, these
channels can never be empty when reading or full when writing tokens - assum-
ing the generated KPN is correct - and have no need for any blocking mechanism.
These non-blocking self-loop channels can be stripped of such overhead, further
improving performance.

As briefly discussed before in Section 2.2, communicating with external com-
puting devices, such as a GPU or FPGA, is preferably done through signaling
semantics. Currently the choice is global for all channels of a KPN. It would
be desirable to be able to choose the blocking mechanism per communication
channel, either spin or signal.

Apart from these improvements, Hdpc can be improved further by adding statis-
tics capabilities. We could keep a count of the number of reads/writes, total
data flow through a channel, watch execution time and time spent waiting for

13

tokens, etc. Further improvements are possible in the debugging functionality,
detecting deadlocks in the case of incorrect Kahn Process Networks, etc. similar
to the Yapi [13] simulation platform.

We will explore these possibilities in the future.

14

Part III

Case Studies
To show the benefits of our approach, we present three experiments and the
results we have obtained. We have implemented and executed two image pro-
cessing applications and a scientific data analysis program using our system
design flow, pn, Espam, and Hdpc synergy presented in Section 2 and 3.
These applications are a Sobel edge detection algorithm, a Motion JPEG (MJPEG)
encoder and fMRI analysis. In Appendix A on page 24, we give more technical
details about these applications as well as their KPN graphs.

All experiments were performed on an Intel® Coretm2 Quad CPU Q6600 at
2.40GHz and 4GB of system memory running the Microsoft® Windows Vistatm

Enterprise Operating System (OS). We have verified the correctness of the
results through a comparison of the MD5 sum of the sequential and parallel
outputs of the case studies. Results are an average of ten runs of the application.
In the graphs, the dark bars show execution times with physical movement of
data. The orange bars show the pointer reference method. In the (static) KPNs
we consider, buffer sizes large enough such that they do not affect performance
by blocking on a write: “unbounded”.
We have set no constraints on which cores of our multi-core host machine the
nodes could be executed; it was left to the OS to choose the best balance.

5 Sobel

Sobel is an edge detection algorithm where a 3×3 window is slid over the image
to calculate the gradient of the pixel with its neighbours. This means a very
fine-grained control flow as can be seen in Figure 10 on page 24 in the Appendix,
and therefore a substantial communication overhead on any parallel approach.
Experimental image was 3072× 2688 pixels in size3.

We did not experiment with the acquire semantics on the version of Sobel with
self-loops. As we had to manually translate Espam code for our framework,
keeping track which channel keeps data when, was too much work.
Results in Figure 5 on the following page confirm our expectations. The sequen-
tial version is consistently much much faster and the high communication ratio
kills any exploitable parallelism.
We can observe a few interesting trends for the Sobel case study:

3Maserati Quattroporte. URL: http://upload.wikimedia.org/wikipedia/commons/c/c3/
Maserati_Quattroporte_(IAA_2005).jpg

15

http://upload.wikimedia.org/wikipedia/commons/c/c3/Maserati_Quattroporte_(IAA_2005).jpg
http://upload.wikimedia.org/wikipedia/commons/c/c3/Maserati_Quattroporte_(IAA_2005).jpg

0

5

10

15

20

25

30

35

40

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(a) channel multiplicity (5 threads)

0

5

10

15

20

25

30

35

40

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 in
 s

e
co

n
d

s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(b) self-loops (5 threads)

Figure 5: Sobel edge detection performance

• Increasing the channel size improves performance. Especially when chan-
nels of a single token size are present that can otherwise block very quickly.

• Executing Sobel on all four cores is slower than only using two cores of
the CPU for unbounded buffer sizes. We believe this might be due to a
bad mapping by the Operating System. After manually mapping all 5
processes manually fixing nodes to cores, execution time decreased from
14 seconds to 7.8s. Performance was still slower than a version only using
two cores, but not by much. We believe that the very light computational
complexity of Sobel the overhead of keeping every the cache coherency of
the cores and core handshaking is too high.

• The pointer reference - release / acquire - method is slower as expected
from the throughput graphs since the Sobel algorithm only deals with
integers. Why then is actually reading for one and two cores slower? The
MJPEG case study will give us some answers.

Based on the experiments with the Sobel application we have concluded Sobel
should be executed sequentially, there is no performance gain from a parallel
implementation. The fine-grained control and minimal token sizes introduce
substantial impact and overhead for task-parallelism to be effective.

In [8] 2.2x increase in performance was shown for Sobel. This however was
achieved on an FPGA platform with truly distributed memory and computing
without any overhead or shared memory buses.

6 Motion JPEG

For the MJPEG encoder we have experimented with several versions of the ap-
plication. In here we explored process parallelism and data parallelism. We
have created four versions of the MJPEG encoder with one, two, four and,

16

eight streams mapped to two, four, six, and 10 processes respectively. Man-
ually partitioning the source code so that data-parallelism can be expressed as
task-parallelism. Espam will find these independent processes, and generate the
appropriate control flow. MJPEG, especially the 8-stream version (Figure 11b)
contained a lot more nodes than there were cores on the system. We have com-
bined several nodes together, but still used ten threads for execution.
The application was executed to encode 32 frames of size 22336× 26884.

0

50

100

150

200

250

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(a) 1 stream (2 threads)

0

50

100

150

200

250

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(b) 2 streams (4 threads)

0

50

100

150

200

250

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(c) 4 streams (6 threads)

0

50

100

150

200

250

300

350

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(d) 8 streams (10 threads)

Figure 6: MJPEG encoder performance numbers

Performance numbers are shown in Figure 6a through 6d. It can be seen that
not only task parallelism increase performance (single stream only), but a com-
bination of both as well. Best performance was achieved for two streams on
four cores.

• Larger channel sizes continue to have a benevolent impact on performance.

• Release / acquire mechanism shows a slightly better performance for
MJPEG encoding with a sufficient channel size. Token sizes are bigger,
but the impact is only slight as CPU to CPU transfer rates are very high.

4Mars Exploration Rover Mission, 2005. URL: http://apod.nasa.gov/apod/ap051114.
html

17

http://apod.nasa.gov/apod/ap051114.html
http://apod.nasa.gov/apod/ap051114.html

• In the 1-stream version of MJPEG there are only two processing nodes, so
a maximum of two threads. However if we allow the OS to use all four
cores and not restrict to two, we can observe higher execution times. This
is in line with our Sobel findings. The OS needs help in mapping the cores.

• For some executions of the 1-stream version of MJPEG (MJPEG1; Figure
6a) the same “strange” issue happens as for the Sobel edge detection
algorithm. Pointer reference channel access is slower on four cores on the
minimal deadlock-free channel sizes. As MJPEG1 only has two threads
and channels of size one (Figure 11 on page 25), blocking will happen
very often. The many context switches as a result and the OS executing
nodes on any core it wishes, even moving them from core to core at certain
times adds much additional overhead on accessing global memory instead
of just using the local copy which we believe is the reason for this strange
behaviour [14].

Exploiting data parallelism as well as task-parallelism should be used as much
as possible. Our expectation is that a desktop computer with more cores will
achieve higher performance with each new additional stream. We must however
not overload the processor with too many threads as this impacts performance.
10 threads on four cores is slower than 6 threads with less data-parallelism. For
a shared-memory system the best mapping is when the number of cores is equal
to the number of threads thereby reducing context switches.

7 Wavelet Correlation Matrices of fMRI Data

In cooperation with the Leids Universitair Medisch Centrum5 we have used the
pn tool, Espam and the presented Hdpc framework as well as manual exploration
to assist in their research, and in particular to accelerate the algorithms used.
We have researched the possibility of execution on an FPGA device as well as
our desktop machine through Hdpc. Finally, we have explored the possibility of
mapping the application on a GPU.

An exhaustive description, design choices and background information is pre-
sented in Appendix B on page 26 which is dedicated to functional magnetic
resonance imaging (fMRI).

In this section, we present results of two different implementations of the ap-
plication. The sequential source code as described in Algorithms 2 on page 27
and 3 on page 28 respectively. KPN graphs are also found in the Appendix. We
will not give numbers of the FPGA platform here as it was completely unsuitable
for this problem area taking hours to complete.

5Division of Image Processing (LKEB) Neuro-Image Processing Section

18

7.1 The Results

Performance numbers set against the sequential version are shown in Figure 7
depicting performance on the Hdpc framework. The optimised version correlated
a total of n = 8000 regions, the original version only n = 1000. Scaling up
for comparison purposes would take the original version about 65 times longer,
taking 26 minutes versus ∼ 22 seconds, each new region exponentially increasing
computational complexity.

19

20

21

22

23

24

25

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(a) application as provided n = 1000 Note:
time-scale starts at 19s!

0

20

40

60

80

100

120

140

160

sequential 1 core 2 cores 4 cores 1 core 2 cores 4 cores

e
x

e
cu

ti
o

n
 t

im
e

 i
n

 s
e

co
n

d
s

read

acquire

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

(b) sequentially optimised n = 8000

Figure 7: fMRI performance

What do these numbers show us? Firstly, profiling data highlighted that the
application has one very heavy processing node. This node accounts for about
97% percent of runtime. We cannot improve any further on this through pure
task-level parallelism. The optimised version has the same issue, but now the
critical path has shifted to another node. Where first this was the wavelet
transformation, now it is the correlation function.
Still, especially in the unoptimised version our framework performs very closely,
eventually even achieving a slight performance increase, 19.5 seconds versus 20
seconds. This means that truly our framework has very low overhead. The
optimised version of fMRI introduced many self-loops (Figure 12b on page 29)
all adding additional overhead for the critical node which will severely impact
performance.

0

10

20

30

40

50

60

70

Sequential 8600 GT 9600 GT

e
x

e
cu

ti
o

n
 t

im
e

 in
 s

e
co

n
d

s

GPU

59.2

23.8

13.3

Figure 8: GPU performance for fMRI n =
15455

Next, we have performed a lot of man-
ual optimisation, porting the appli-
cation to the GPU. There is a lot
of data-parallelism available for ex-
ploitation. Figure 8 shows the per-
formance on the GPU versus the best
we could get from any other method.
15455 regions were processed in less
than 13 seconds. Note that in this
experiment we have used a low-end

19

GPU. If a high-end graphics card
is considered such as an NVIDIA
GTX280, than the expected improve-
ment is not 4.4x but more than 20x.

7.2 Summary

fMRI analysis is not really suitable for task-level parallelisation. Its non-
streaming character and single-process heavy critical path will mean only mea-
ger performance improvements. At best, parts of the correlation calculation and
writing to disk can be done without any overhead.

Since in this particular case we were interested in getting the best performance
available, we have hand-tuned the application and executed its data-parallel
parts on the GPU.

Part IV

Conclusion
Data-parallelism is relatively easy, both in identifying appropriate parts as well
as implementing with many tools already available. There is no overhead, nor
concurrency problems present. Task-parallelism however, is another matter en-
tirely. Our tool-chain presented in this paper will find, identify, and correctly
implement a concurrent version on a desktop computer.

Buffer sizes are very important. While the pn tool guarantees deadlock-free
FIFO channel sizes, it does not take into account the number of context switches
due to blocking on read or write. The smaller these buffers are, the more context
switches happen. The more context switches, the more overhead.

The pointer-reference method of accessing channels has its advantages in push-
ing performance even further, but care must be taken to only use this method
for tokens of a big enough size. Possible blocking situations only increase this
threshold.

Mapping of processes by the OS or manually has a small performance impact.
However, it is much more important to choose a static, compile-time mapping,
that uses about as much threads as there are cores in the system to get the
maximum performance (see MJPEG example). When exceeding this soft-limit
or allowing automatic mapping of threads to cores by the OS, performance can
even degrade.

20

Minimal Buffer Sizes

“Unbounded” Buffer Sizes

0.21

1.02

0.47

2.56

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sobel fmri1 fmri2 mjpeg

sp
e
e
d
u
p

sequential

hdpc

Figure 9: Case-studies summary
speedup

Whether performance gains can be
achieved through task-parallelism is
highly dependent on the applica-
tion at hand. Figure 9 shows a
summary comparison of our case
studies. The Sobel algorithm was
known up front to be a bad candi-
date for task-parallelism on a shared
memory system. We are delighted
with the results of the fMRI case
study, which shows that given circum-
stances the maximum theoretical per-
formance gain can be achieved despite
the overhead of our framework. For
MJPEG the speedup of 2.6x is very good considering that maximum performance
of a quad-core machine over a single-core is on average 3x [15, 16].

We believe that with the future improvements of our tools as discussed, espe-
cially in the area of self-loops, the overhead of explicit communication channels
can be brought down to a minimum achieving near-sequential performances in
the worst case. Once solved, there is no reason anymore of NOT using Hdpc to
exploit any possible task-parallelism.

“Unfortunately”, it still holds true that manual optimisation, intricate knowl-
edge of the target platform, and lots of dedicated time achieve the best results...
automation can only go so far.

Acknowledgments

I would like to thank Hristo Nikolov at Lerc who was always ready to answer my
questions and actively participating throughout my research with suggestions
towards a better framework. I also want to thank Luca Ferrarini and Julien
Milles for their wonderful introduction to the medical imaging world.

21

References

[1] Sutter H. The free lunch is over. URL: http://www.gotw.ca/
publications/concurrency-ddj.htm, 2005.

[2] RapidMind. URL: http://www.rapidmind.net/.

[3] AccelerEyes. URL: http://www.accelereyes.com/.

[4] Kahn G. The semantics of a simple language for parallel programming.
ARTICLE of the IFIP Congress, 74:471:475, 1974.

[5] Kienhuis B., Rĳpkema E., and Deprettere E. Compaan: Deriving process
networks from matlab for embedded signal processing architectures. 8th
International Workshop on Hardware/Software Codesign (CODES’2000),
2000. May 3-5 2000, San Diego, CA, USA.

[6] Zissulescu C., Stefanov T., Kienhuis B., and Deprettere E. Laura: Leiden
architecture research and exploration tool. International Conference on
FPL, 2003. Sept 1-3 2003, Lisbon, Portugal.

[7] Verdoolaege S., Nikolov H., and Stefanov T. pn: A tool for improved
derivation of process networks. EURASIP journal on Embedded Systems,
2007(75947), 2007.

[8] Nikolov H., Stefanov T., and Deprettere E. Systematic and automated
multiprocessor system design, programming, and implementation. IEEE
Transaction on Computer-aided Design of Integrated Circuits and Systems,
27(3), 2008.

[9] Parks T. Bounded scheduling of process networks. Tech. Rep. UCB/ERL,
95:105, 1995.

[10] Buck J. and Lee E. Scheduling dynamic data flow graphs with bounded
memory using the token flow model. Proc. IEEE Conf. Acoust., Speech,
Signal Process, pages 429–432, 1993.

[11] Wrinn M. Is the free lunch really over? scalability in manycore systems
part 2: Using locks efficiently. Intel, URL: http://software.intel.com/
file/7354, 2008.

[12] Daedalus. URL: http://daedalus.liacs.nl/.

[13] de Kock E. A., Essink G., Smits W. J. M., van der Wolf P., Brunel J.-
Y., and Kruĳtzer W. M. Yapi: Application modeling for signal processing
systems. In ARTICLE of the 37th design automation conference (DAC’00),
pages 402–405, June 2000.

[14] Multicore is Bad News For Supercomputers. URL: http://www.spectrum.
ieee.org/nov08/6912.

22

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.rapidmind.net/
http://www.accelereyes.com/
http://software.intel.com/file/7354
http://software.intel.com/file/7354
http://daedalus.liacs.nl/
http://www.spectrum.ieee.org/nov08/6912
http://www.spectrum.ieee.org/nov08/6912

[15] Intel Measuring Application Performance Figure 3.
URL: http://software.intel.com/en-us/articles/
measuring-application-performance-on-multi-core-hardware.

[16] Multicore Parallel Computing with OpenMP. URL: http:
//www.nsu.edu.sg/comcen/svu/publications/hpc_nus/may_2007/
NAS-openmp.pdf.

[17] Compute Unified Device Architecture. URL: http://www.nvidia.com/
object/cuda_home.html.

[18] NVIDIA Cuda Programming Guide 2.0. URL: http://developer.
download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_
Programming_Guide_2.0.pdf.

[19] Achard S., Salvador R., Whitcher B., Suckling J., and Bullmore E. A
resilient, low-frequency, small-world human brain functional network with
highly connected association cortical hubs. Journal of Neuroscience, 26:63–
72, 2006.

[20] Sporns O., Chialvo DR., Kaiser M., and Hilgetag CC. Organization, devel-
opment and function of complex brain networks. Trends Cognitive Science,
8:418–425, 2004.

[21] Stationary Wavelet Transform. URL: http://en.wikipedia.org/wiki/
Stationary_wavelet_transform, and URL: http://www.mathworks.
com/access/helpdesk/help/toolbox/wavelet/ch06_ad6.html.

[22] Harris M. Optimizing parallel reduction in cuda. URL:
http://developer.download.nvidia.com/compute/cuda/sdk/
website/projects/reduction/doc/reduction.pdf, 2007.

[23] Xilinx Inc. Xilinx platform studio and the embedded develop-
ment kit. URL: http://www.xilinx.com/ise/embedded_design_prod/
platform_studio.htm.

[24] Eker J. and Janneck JW. An introduction to the caltrop actor language.
2001. Berkeley, CA 94720-1770.

23

http://software.intel.com/en-us/articles/measuring-application-performance-on-multi-core-hardware
http://software.intel.com/en-us/articles/measuring-application-performance-on-multi-core-hardware
http://www.nsu.edu.sg/comcen/svu/publications/hpc_nus/may_2007/NAS-openmp.pdf
http://www.nsu.edu.sg/comcen/svu/publications/hpc_nus/may_2007/NAS-openmp.pdf
http://www.nsu.edu.sg/comcen/svu/publications/hpc_nus/may_2007/NAS-openmp.pdf
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://en.wikipedia.org/wiki/Stationary_wavelet_transform
http://en.wikipedia.org/wiki/Stationary_wavelet_transform
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/ch06_ad6.html
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/ch06_ad6.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/reduction/doc/reduction.pdf
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

Part V

Appendixes

A Technical Data of Case Studies

A.1 Sobel

Figure 10a shows the KPN graph of the initial version of the Sobel edge detection
algorithm, and Figure 10b after applying the data reuse approach in the pn tool
- introducing self-loops. Each node has been mapped to a separate thread.

readPixel

gradient

2*N-1 N+1 3 2*N-3 N-1 1

gradient

2 1 2*N-1 2*N-2 2*N-3 3

absVal

Jx: 1 Jy: 1

writePixel

av: 1

(a) channel multiplicity

readPixel

gradient

2 N-2 1 2 2 N-2

gradient

2.0*N 3.0

2.0 2.0N-422 2 2 2 N-4.0

absVal

1

1 2*N-41 2*N-52*N-82*N-52*N-41 1

1

writePixel

1

(b) self-loops

Figure 10: Kahn Process Network graphs of the Sobel edge detection algorithm

A.2 MJPEG

Figures 11a and 11b show the KPN graphs of the Motion JPEG encoder. We
show the single stream and eight stream version. It is clearly visible that the
initArith =⇒ mainQ processes can be executed independently block by block
before passing all elements to the variable length encoder.

The eight stream MJPEG encoder groups every initArith =⇒ mainQ block
separately together with the input and output, producing a total of ten threads.
MJPEG with a single stream only has two threads combining mainV ideoIn =⇒
initArith =⇒ mainQ and initV ideoIn =⇒ mainV LE =⇒ mainV ideoOut.

24

in
it
V
id
eo
In

m
ai
nV

id
eo
O
ut

1

m
ai
nV

id
eo
In

in
tA
ri
th

1

m
ai
nQ1

m
ai
nV

L
E

1

1

1

(a
)

M
JP

E
G

us
in

g
a

si
ng

le
st

re
am

in
it
V
id
eo
In

m
ai
nV

id
eo
O
ut

1

m
ai
nV

id
eo
In

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

in
tA
ri
th

1

m
ai
nQ1

m
ai
nV

L
E

1

m
ai
nQ1

1

m
ai
nQ1

1m
ai
nQ1

1

m
ai
nQ1

1

m
ai
nQ1

1

m
ai
nQ1

1

m
ai
nQ1

1

1

1

(b
)

M
JP

E
G

us
in

g
a

8
st

re
am

s

Fi
gu

re
11
:
K
ah

n
Pr

oc
es
s
N
et
wo

rk
gr
ap

hs
of

th
e
M
ot
io
n
JP

EG
en

co
de

r

25

B Extended Technical data of the fMRI case
study

In the this section we discuss briefly the research background done at the Leids
Universitair Medisch Centrum (LUMC), their problem and the different ap-
proaches we have taken. In Appendix D on page 38, we motivate the correctness
of the obtained results.

B.1 The Small-World Human Brain Network

Research by Achard et al.[19] showed the human functional network to exhibit
“small world” properties. Small-world networks are a type of graph where most
nodes are not neighbours of each another, but most nodes can be reached from
every other by a small number of steps. These networks contain a substantial
core of highly connected hubs and long-distance connections to other regions.
Such properties are attractive models for connectivity of nervous systems be-
cause they allow for both specialised or modular processing in local neighbour-
hoods and distributed or integrated processing over the entire network [20].

Achard et al. based their research on fMRI time series images of human volun-
teers from 45 anatomical regions of interest of the cerebral hemisphere. Wavelet
transformation - more specifically Maximal Overlap Discrete Wavelet Transform
(MODWT) - was then applied to the imaging data before estimating the pair-wise
inter-regional correlation of the wavelet coefficients.

Dividing the cerebrum into 90 regions - 45 anatomical regions for both halves of
the cerebral hemisphere - only provides us with a coarse overview of connectivity.
LUMC research was to subdivide the anatomical regions to get a more detailed
picture, thereby increasing the number of voxels to 15445. The signal was
followed over 200 time-units, the so-called time-dimension.

B.2 Computational Background

The original research application at LUMC was written in Matlab®. We have
reimplemented all code including Matlab-internal functions into C++. Algo-
rithm 2 shows a simplified C/C++ version of the application to generate the
inter-correlation maps. After data acquisition, a stationary wavelet transforma-
tion swt() is applied and the correlation coefficient corrcoef(a, b) is calcu-
lated for each voxel.

The Stationary Wavelet Transform (SWT) [21] is similar to the discrete wavelet
transform except for the fact that the signal is never subsampled, instead the
filters are upsampled at each level of decomposition. The correlation coefficient
ρx,y between two random vectors X and Y of length n is:

26

Algorithm 2 Generating inter-correlation maps of N voxels

typedef struct doubled {
double data [TIME] ;

}

int main () {
doubled data [N] ;
for (int i = 0 ; i < N; i++) data [i] = readData (i) ;

for (int i = 0 ; i < N; i++) {
doubled voxe l1 = swt (data [i]) ;
for (int j = i + 1 ; j < N; j++) {

doubled voxe l2 = swt (data [j]) ;
double r = c o r r c o e f (voxel1 , voxe l2) ;
writeData (r) ;

}
}
return 0 ;

}

ρx,y = cov (X,Y)√
cov (X,X) cov (Y, Y)

where cov = 1
n− 1

n∑
i=1

(Xi − x̄) (Yi − ȳ)

(1)
It should be noted that Algorithm 2 is already a slightly optimised version of
the original code. The definition of ρx,y above shows that ρx,x = 1. More
importantly ρx,y≡ ρy,x. Therefore calculating the full correlation matrix is
highly redundant. Coefficients are mirrored across the main diagonal which
only has values of one. Equation 2 shows this for a vector of length n. α is the
correlation coefficient of voxels one and two.

〈
1 2 3 4 5

〉
⇒

1 2 3 4 5
1
2
3
4
5

1 α β γ δ
α 1 ε ε ζ
β ε 1 η θ
γ ε η 1 ϑ
δ ζ θ ϑ 1

1 α β γ δ
1 ε ε ζ

1 η θ
1 ϑ

1

(2)

Therefore, the input vector of n voxels resulting in an n×n correlation coeffient
matrix needs (n×(n−1))

2 iterations. We call this matrix the upper unitriangular
matrix.
We can see that the resulting matrix grows exponentially. While 90 regions only
result in 4005 possible pairs between voxels, 15455 regions result in ≈ 1

2154552

27

pairs - over 100 million. Not only computation time explodes exponentially but
also the resulting data set.

B.3 Platform Results

We have executed this application on a number of different platforms and pro-
gramming approaches. The goal was twofold:

1. Beat the sequential program as shown in Algorithm 2 in terms of perfor-
mance.
This is the original benchmark where an application developer uses our
toolset without any changes to the source code.

2. Beat an optimised version of the algorithm that an application developer
could perform himself with a some time spent during development. We
will call this the optimised benchmark.

Algorithm 3 Optimised generation of intercorrelation maps of N voxels

typedef struct doubled {
double data [TIME] ;

}

int main () {
doubled data [N] , swt_data [N] ;
double avg [N] ;
for (int i = 0 ; i < N; i++) {

data [i] = readData (i) ;
swt_data [i] = swt (data [i]) ;
avg [i] = average (swt_data [i]) ;

}

for (int i = 0 ; i < N; i++) {
for (int j = i + 1 ; j < N; j++) {

double r = c o r r c o e f (avg [i] , avg [j] , swt_data [i] , swt_data [j]) ;
writeData (r) ;

}
}
return 0 ;

}

The optimised benchmark’s algorithm is shown in Algorithm 3. We can see that
the wavelet transform has been taken out of the loop as there is no feedback
needed to recalculate the transformation every iteration. A pre-calculated av-
erage of a voxel is now passed to the correlation function because that is also a
constant during execution.

28

B.3.1 KPN Mapping

Figure 12 shows the generated Kahn Process Networks of the fMRI scan analysis
application for a given number of n regions. Figure 12a shows the unoptimised
version, while Figure 12b is graph of Algorithm 3.

readData

swt_i

1

swt_j

1

corrcoef

N-2

N-2

1

1

writeData

1

(a) original

readData

swt

1

average

1

corrcoef

N

N

1 1 N-21 1 N-2

writeData

1

(b) optimised

Figure 12: Kahn Process Network graphs of fMRI analysis

Previous profiling data showed that the wavelet transformation function is the
heaviest, about 60x slower per execution than the correlation function and tak-
ing 97% of runtime for Figure 12a. In any parallel program, the best possible
performance cannot improve on that of the slowest component. In Figure 12a
generated from Algorithm 2, the critical path is clearly node swt_j which is
executed in every iteration. Any performance increase that will be achieved
through pure task-parallelism will not exceed 3%.

B.3.2 FPGA Implementation

Mapping our application onto an FPGA board first meant working around some
limitations of the platform, a Virtex II PCI card. This Xilinx board only had
6MB of internal memory.

29

For streaming applications this memory limit does not have to be a problem.
However, in analysing data from the fMRI there can be no real talk of a stream-
ing application.

Equation 3 below shows a simple matrix of five different regions and the corre-
sponding correlation. Vectors of length two show which regions are correlated
at that position.

. 〈1, 2〉 〈1, 3〉 〈1, 4〉 〈1, 5〉
. . 〈2, 3〉 〈2, 4〉 〈2, 5〉
. . . 〈3, 4〉 〈3, 5〉
. . . . 〈4, 5〉
.

 (3)

Assuming that we process elements row by row, we can see that for example
region five is not only needed in the very beginning but also at the very end of
the process.

Due to memory constrains on the FPGA device not all regions will be present
in memory and thus need to be refetched from the host; possibly even multiple
times. As the FPGA device is a PCI add-on card all data has to move through the
PCI bus. Its throughput is much less than that of on-chip CPU to CPU transfer,
therefore it is very important to minimise transfer overhead.

For any given number of regions the following mathematical formula describes
the total memory requirements:

τλx+ 1
2λx (x− 1) = φ

τ experiment timeframes
λ element size (4 float ∨ 8 double)
x elements to process simultaneously
φ total required/availablememory

(4)

τλx is data in and 1
2λx (x− 1) is data out. When correlating x = 5 regions, we

will need to allocate 5τλ memory for input and 10λ memory units for output
on the device.

Taking actual values from the case study we have values: λ = 8, φ = 6MB and
τ = 200. Solving this equation results in the ability to process x = 1070 regions
simultaneously. In the case of a streaming application splitting the actual 15455
regions into fourteen blocks would be enough. But we can not do this.

Our solution was to transform Equation 4 into the pure polynomial form 2τλx+
λx2 = φ. We can solve this second degree polynomial equation easily and

30

implement the following calculation metric:
i=n∏
i=1

{
i = odd,

∏j=n−1
j=i xi × yj+1

i = even,
∏j=i
j=n−1 xi × yj+1

i, j elements of τ timeframes each

So now the calculation order will be 1, 2 ⇒ 1, 3 ⇒ 1, 4 ⇒ 1, 5 ⇒ 2, 5 ⇒ 2, 4 ⇒
2, 3⇒ 3, 4⇒ 3, 5⇒ 4, 5 using the example from Equation 3. The only difference
is now that the numbers now are no longer single regions, but blocks of x = 1070.
The reversion is done at the end of each row because otherwise two new elements
need to be transferred through the PCI bus instead of one; e.g. transferring
blocks 〈2, 3〉 where memory contains 〈1, 5〉 instead of only transferring block 2.

We will not show actual performance numbers here because the platform was
very slow. Calculating a single correlation took on average 17200 cycles on the
FPGA device. Running at 66MHz, the whole application will be busy for at
least 7 hours. In theory, and after lots of manual tuning, performance could be
improved six times by using six independent softcores (MicroBlazes) connected
to the six memory banks on the device. Even then, parallelism will need to pro-
vide the other 78x speedup to even match the simple C++ version. Given these
numbers, further research into this platform for fMRI analysis was abandoned.

Trying to implement the KPN network created above by Espam was not even
attempted. Buffer sizes need to be a full N region sizes. Given only 288KB of
on-chip memory, we would need to allocate memory from main memory, further
reducing block sizes and increasing runtime.

B.3.3 Heterogeneous Desktop Parallel Computing

We manually copied the control flow into our framework. For results, we refer
to Section 7 and Figure 7.
The wrapper code of our Hdpc framework is in Algorithm 4. It shows the input
and output disk processes, the five computing nodes and their interconnections.
Self-loops are created on line 20. We also limit execution of node 1 (ND_1) to
core 3 (0x4h is 100b which sets the third bit).

B.3.4 GPU Implementation

There is no support for data-parallelism in the Espam toolchain and that is
neither the focus of our research nor our framework, but the cooperation with
the medical faculty required the best available performance, so we have also
implemented a GPU version.
Calculating correlation coefficients of many regions is a good test-case for data-
parallelism, and therefore the GPU. We have used the Compute Unified Device

31

Algorithm 4 The fMRI application implemented in the Hdpc framework.

1 #include " hdpc/ p r o c e s s . h "
2 #include " hdpc/ plat form / di sk2 . h "
3 #include " hdpc/ plat form /cpu . h "
4
5 #define N 15455
6 int main () {
7 StorageLineT<doubled> f 1 (" input . bin " , Storage : : STREAM_IN) ;
8 StorageLineT<double> f 2 (" output . bin " , Storage : :STREAM_OUT) ;
9 CPU c1 , c2 , c3 ;

10
11 Process p_ND_0(0 , 2) ;
12 Process p_ND_1(1 , 1) ;
13 Process p_ND_2(2 , 2) ;
14 Process p_ND_3(2 , 1) ;
15 Process p_ND_4(1 , 0) ;
16
17 p_ND_0. attachoutput<doubled >(0 , p_ND_1. get InPort (0) , 1) ;
18 p_ND_0. attachoutput<doubled >(1 , p_ND_2. get InPort (0) , 1) ;
19 p_ND_1. attachoutput<doubled >(0 , p_ND_3. get InPort (0) , N − 2) ;
20 p_ND_2. attachoutput<doubled >(0 , p_ND_2. get InPort (1) , N − 2) ;
21 p_ND_2. attachoutput<doubled >(1 , p_ND_3. get InPort (1) , 1) ;
22 p_ND_3. attachoutput<double>(0 , p_ND_4. get InPort (0) , 1) ;
23
24 HANDLE h [5] ;
25 h [0] = p_ND_0. s t a r t (0 x1 , f1 , fMRI_1ND_0) ;
26 h [1] = p_ND_1. s t a r t (0 x4 , c1 , fMRI_1ND_1) ;
27 h [2] = p_ND_2. s t a r t (0 x0 , c2 , fMRI_1ND_2) ;
28 h [3] = p_ND_3. s t a r t (0 x0 , c3 , fMRI_1ND_3) ;
29 h [4] = p_ND_4. s t a r t (0 x1 , f2 , fMRI_1ND_4) ;
30
31 WaitForMult ipleObjects (l e n g t h o f (h) , h , true , INFINITE) ;
32 return 0 ;
33 }

Architecture (CUDA) framework on NVIDIA based hardware for the implemen-
tation. Hardware model, and programming on a GPU are explained in Ap-
pendix C.1 on page 34.

In programming CUDA or any other data-parallel device, it is essential to limit
the control flow which severely impacts performance. Therefore, we have padded
the input data to the next power of two and used a heavily optimised parallel
reduction [22]. A thread was created for every correlation point with only a
very lightweight control command skipping the lower-triangular part of compu-
tation. Algorithm 3 on page 28 was used as a starting point. This saved us from
implementing a difficult wavelet transform program with lots of control on the
GPU and let us focusing only on the correlation.

While there is no such harsh memory limit as on the FPGA device requiring us
to split calculation into multiple batches, there were performance issues. Again,
we refer to Equation 2 on page 27. Doing larger blocks of regions at the same
time means creating more “waste”. As the lower triangle of the matrix is not
computed, these threads do not execute anything and return after the initial
check. We can see in Figure 13 on the next page how this affects performance.

32

With larger blocks there will be more waste, and this shows up in a higher
execution time per unit.

3.05E-04

3.06E-04

3.07E-04

3.08E-04

3.09E-04

3.10E-04

3.11E-04

3.12E-04

0 200 400 600 800 1000 1200 1400 1600 1800

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

Runtime per correlation waste

Figure 13: Average runtime per correlation on the GPU

Using this knowledge, we were able to achieve substantial speedups versus the
optimised sequential version. Figure 14 shows this. C++ is the algorithm
implemented on the host machine, 8600GT and 9600GT are the runtimes on
the GPU.

0

10

20

30

40

50

60

70

8600GT 9600GT C++

data write

corrcoeff

specific

SWT

data read

Figure 14: CUDA performance in
seconds

The difference between these two cards
are the number of streaming pro-
cessors available, four versus eight.
We can see an almost linear in-
crease in performance for the 9600GT.
Unfortunately, we had no access to
more expensive professional cards - this
one costs less than EUR 100 - but
we can assume this linear increase
holds for current top-of-the-line cards
as well having 30 or more steam pro-
cessors. In that case, performance
can increase from 4.6x up to 20x or
more.

We must stress however, that we have
written manually optimised code, whose
performance might be hard to match by tools. Also, our toolchain does not
implement data-parallelism, only task-parallelism. However, we can write the
GPU kernel ourselves and plug it into the corrcoef processing node of a Hdpc
implementation achieving comparable performance.

33

C Hardware Computing Devices

C.1 Graphics Processing Unit

C.1.1 General-Purpose Computation on GPUs

The Graphics Processing Unit (GPU) is a dedicated graphics rendering device
embedded into a graphical card. These microprocessors handle the compute in-
tensive manipulation of computer graphics traditionally performed by the CPU.
The highly-parallel and compute-intensive nature of graphics rendering allow
GPU chips to devote much more transistors to data processing rather than data
caching and flow control as in a CPU.

Therefore, GPUs are well-suited to address problems which can be expressed as
data-parallel computations - the same operation is executed on many data ele-
ments in parallel - with high arithmetic intensity - the number of computations
performed on a single data element. The more computations are performed on
the same data element, the higher this ratio becomes and the better perfor-
mance will be achieved. Because the same algorithm is executed for each data
element, there is less requirement for sophisticated flow control; and because
of high arithmetic intensity, the memory access latency can be hidden with
calculations instead of big caches.

C.1.2 NVIDIA and CUDA Platform

NVIDIA, one of the biggest graphics manufacturers of today, has pushed General-
Purpose computation on GPUs (GPGPU) to a new level starting with their
Geforce8 series of products. When programmed through CUDA, algorithms
that exhibit data-parallel, compute-intensive properties can be offloaded to the
graphics device which acts as a co-processor to the main CPU. The device will
then execute this part - called the kernel - as many different threads with each
thread operating on a single data element.

Both the host and the device maintain their own memory, and data transfers be-
tween the two is achieved through calls that utilize the device’s high-performance
Direct Memory Access (DMA) engines.

C.1.3 Device Architecture

The CUDA architecture adds support for general Device Random Access Memory
(DRAM) addressing (gather and scatter - read and write to any memory location,
just like on the CPU). On-chip shared memory with very fast access times which
threads can use to share data with each other is available as well. Applications

34

(a) memory model (b) hardware model

Figure 15: CUDA architecture

can use this cache to minimize round-trips to DRAM and become less dependent
on DRAM memory bandwidth.

The batch of threads that is executed on a given kernel on the device is organised
into a block of threads that can cooperate together by efficiently sharing data
through this fast shared memory and synchronize their execution to coordinate
memory accesses. Blocks of the same size can be batched together into a grid
of blocks as shown in Figure 15a.

Organising blocks and grids in this way allows kernels to efficiently, and without
recompilation scale up with newer or more powerful devices. A low-end device
with only a few multiprocessors may run all the blocks of a grid sequentially,
whereas a high-end device with a lot of parallel capabilities (lots of multipro-
cessors) in parallel - usually a combination of both.

A device is implemented as a set of multiprocessors with a Single Instruction
Multiple Data (SIMD) architecture, see Figure 15b. Each multiprocessor consists
of 8 generalised processors that always execute the same operation in a SIMD
fashion on different data elements.

The NVIDIA CUDA Programming Guide [17, 18] on the NVIDIA website ex-
plains the CUDA architecture in much more detail.

35

It is worth noting however that NVIDIA is not the only graphics chip manufac-
turer that has a platform for GPGPU. AMD - which has recently acquired ATi
- offers a similar solution through their ATI Stream technology6.

C.1.4 The Compiler

NVIDIA supplies their own C compiler called nvcc to generate device code.
Developing for this platform will entail a control part that runs on a general
purpose computer - Windows, Linux - using one or more NVIDIA GPUs as
coprocessors to execute SIMD parallel jobs. nvcc is smart enough to pass the
host part of the compilation trajectory to the system-installed compiler - gcc
or msvc for example - thereby allowing the programmer to exploit all compiler
features and C++ intricacies in host mode.

For device mode several steps of splitting, compilation, preprocessing and merg-
ing are performed by nvcc to finally produce a binary code image embedded in
the executable containing the job to execute on the device.

Most interesting feature of nvcc is actually being able to generate an interme-
diate assembler code format called Parallel Thread Execution (ptx) that can be
compiled runtime for the proper architecture. In this way, the developer can
create an executable using a “compile once run everywhere” approach much
akin to the Java bytecode and Java Virtual Machine paradigm. However, the
developer might also choose to pre-compile finetuned versions of ptx for par-
ticular architectures and allow the CUDA runtime system to choose the proper
image.

C.2 Field-Programmable Gate Array

Traditionally, digital design was a manual process of designing circuits using
schematic tools. This bottom-up method is both time-consuming and error
prone. Application-Specific Integrated Circuits (ASICs) enable engineers to use
a top-down approach by using hardware-description languages.

However, once these Integrated Circuits (ICs) have been programmed they are
hardwired and changing the product, fixing bugs, or even prototype develop-
ment is an expensive process. The FPGA presents a solution to this problem. A
completely finished device whose programmable logic blocks and reconfigurable
interconnects allow rapid prototyping and hardware/software integration test-
ing.

Using tools such as the Xilinx Platform Studio [23] even allows developers to
specify their application in the high-level C language, targeting pre-fabricated

6http://ati.amd.com/technology/streamcomputing/

36

http://ati.amd.com/technology/streamcomputing/

softcores such as the µBlaze. This flexibility allows developers to fully exploit
the hardware capabilities.

At Liacs we use this platform for developing streaming parallel programs and
achieve performance that will even beat desktop PC computers in certain areas.

37

D Correctness of fMRI Implementation

Since the original research application at LUMC was written in Matlab® we
have reimplemented both SWT and the correlation calculations in C++. With
a sufficiently low number of voxels we were able to verify our results against the
“reference” Matlab implementation.

Testing on n = 90 regions, double-precision calculation has a maximum error
rate of 1.3E−15, single-precision is 1.8E−5. These results were obtained by
converting double-precision input to single-precision, doing the calculations in
single-precision, converting results back to double-precision and comparing the
results with the original double-precision results.

−3 −2 −1 0 1 2 3

x 10
−7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

(a) C++ (double) and CUDA n = 14000

−8 −6 −4 −2 0 2 4 6 8

x 10
−7

0

0.5

1

1.5

2

2.5
x 10

7

(b) C++ (single) and CUDA n = 14000

−6 −4 −2 0 2 4 6

x 10
−16

0

50

100

150

200

250

300

350

400

450

(c) Matlab and C++ (double) n = 90

Figure 16: Error rates

Figure 16 plots the error rates. All graphs were created with a 2nd level SWT
decomposition and the Daubechies 6 filter. We can see that not only most of the
error rates are zero, but are also clustered around that point. Figure 16c shows
the difference for n = 90 of the reference Matlab implementation and our C++

38

version run on the host machine in double-precision mode. Figures 16b and 16a
show the difference between host machine and the calculation performed on the
GPU.

These slight error rates for floating-point computations are expected. In general,
all you need to get different results for the same floating-point computation
are slightly different compiler options, let alone different compilers, different
instruction sets or different architectures.

39

E Hdpc API reference

The Heterogeneous Desktop Parallel Computing framework consists of three
parts. A Preprocessor part allows for manipulation of the framework. These
include debugging functionality, timers and the communication channel type.

The Process Network Construction phase is responsible for creating the pro-
cessing nodes, identifying them with functionality and computing devices and
connecting the whole network. Finally, Process Functionality handles the com-
munication with the channels, the control flow and token passing.

Platforms in the platform backend allow execution to be directed to external
computing devices or use the integrated and approach to IO. They are discussed
in Section E.4. An Unified Modeling Language (UML) diagram of our framework
is shown in Figure 17 (the fMRI specific read/write functions are included as the
StorageSWT class).

E.1 Preprocessor Directives

Preprocessor directives fix certain behaviour during compile time. This way
Hdpc retains the flexibility of available debugging facilities for example whilst
not compromising performance. The defines below have to be passed to the
compiler as a parameter, eg -DSIGNAL_WAIT for gcc.

E.1.1 Debugging

NAME
DEBUG_PROCESS_NETWORK - enable debug mode

DESCRIPTION
The framework is executed in debug mode. Not only will the network con-

nections be checked for correctness up front but also during runtime type infor-
mation is kept. When a process has finished all its input channels are checked
for remaining data.

Performance will obviously drop in debugging mode but it is advisable to at least
once execute the network in this mode to ensure the setup has been correctly
done.

40

E.1.2 Signal / Semaphore Wait

NAME
SIGNAL_WAIT / SPIN_WAIT - select channel polling method

DESCRIPTION
Signaling will use windows semaphores for access yielding thread execution

until such a semaphore is set. Spinning continuously tests the channel status
only yielding its current timeslice and requesting immediate thread rescheduling
using a shared (volatile) variable. Spinning usually gives higher performance but
will keep the system at full load while just waiting. Signals on the other hand
idle until reawoken by the Operating System.

E.1.3 Read / Write and Acquire / Release

NAME
USE_ACQUIRE_RELEASE_MECHANISM - use release/acquire semantics

DESCRIPTION
Hdpc allows the developer to request pointers to the channel tokens and op-

erate directly on those instead of making a local copy. Using acquire/release
semantics is still possible without this preprocessor define, however certain re-
strictions apply, for example it is not allowed to acquire a pointer from the same
channel consecutively in the same iteration without releasing the first. When
DEBUG_PROCESS_NETWORK is defined a warning is given in this case.

E.1.4 Timing

NAME
KEEP_TIMING_INFORMATION - keeps a few timing statistics

DESCRIPTION
Enables some timers that will keep count of process execution and idle (blocked)

time at some performance penalty. The timer statistics are automatically printed
to the console when DEBUG_PROCESS_NETWORK is defined.

E.2 Process Network Construction

The Process class is the visible side of the framework. Through functions of
this class the network is constructed, connected and behaviour defined.

41

E.2.1 Process

NAME
Process - main Hdpc class

SYNOPSIS
Process(size_t inPortCount, size_t outPortCount);

DESCRIPTION
Constructs an Hdpc class with the given number of in and outgoing ports.

E.2.2 Port Access

NAME
getInPort / getOutPort - get a pointer to a reference of a port

SYNOPSIS
ChannelBase *&getInPort(size_t port);
ChannelBase *&getOutPort(size_t port);

DESCRIPTION
Returns the pointer to a reference of the given port. Used in connecting the

network in functions attachinput(), attachoutput().

E.2.3 Connecting Processes

NAME
attachinput / attachoutput - make the connection between processes

SYNOPSIS
template <class T> bool attachinput(size_t port_in, ChannelBase
*&q, size_t queueSize);
template <class T> bool attachoutput(size_t port_out, ChannelBase
*&p, size_t queueSize);

42

DESCRIPTION
A process object attaches to the specified input/output port a channel of

a certain size. The channel is returned by the getInPort() / getOutPort()
functions of the connected process. The templatised variable will give the token
type. The channels will be queueSize token-type long. When connecting two
nodes it is sufficient to only attach the output of one to the input of the other;
both will know of the connection.

E.2.4 Starting Execution

NAME
start - start the execution of a process

SYNOPSIS
HANDLE start(DWORD_PTR cpu_mask, Platform &a, process proc, bool
allocmem = false);

DESCRIPTION
This function associates a processing backend, Platform, with some func-

tionality to the process which will execute including all the control flow. The
allocmem parameter will allocate memory of the proper channel size on the pro-
cessing backend. Use it if needed. getDeviceInMem() and getDeviceOutMem()
will retrieve the pointers.
cpu_mask is usually 0x0, unless one wishes to restrict execution of the process
on a given core of the host machine. Then it is a bitmask of enabled cores. For
example 0x5 executes on cores 1 and 3 of a quad-core machine.

E.3 Process Functions

Each node has a reference to a Process class as input argument to the function.
The functionality below can be accessed as member-functions of this class.

E.3.1 Physical Channel Communication

NAME
readFromPort / WriteToPort - transfer a token through a channel

SYNOPSIS
template <class T> bool readFromPort(size_t port, T &element)
throw(...);
template <class T> bool writeToPort(size_t port, const T
&element);

43

DESCRIPTION
Execute a blocking read or write operation on the given port. The token to be

communicated is in the second argument. Template types are automatically de-
rived from the token and are checked for consistency in DEBUG_PROCESSING_NETWORK
mode. A true return value indicates success.

E.3.2 Acquire Channel Locks

NAME
getReadPointer / getWritePointer - acquire the pointer to token

SYNOPSIS
template <class T> const T &getReadPointer(size_t port)
throw(...);
template <class T> T &getWritePointer(size_t port);

DESCRIPTION
Returns a reference to the first available token in the given channel. Specifying

the channel type in the template is mandatory. A wrong type will give an error
in debugging mode.

E.3.3 Release Channel Locks

NAME
releaseReadPointer / releaseWritePointer - release the pointer to token

SYNOPSIS
template <class T> void releaseReadPointer(size_t port);
template <class T> void releaseWritePointer(size_t port);

DESCRIPTION
Releases the pointer for the channel, indicating that processing on that token

is finished and is ready for other nodes to access. Release must be done in the
same order observing the same control flow as acquire, otherwise problems can
occur. releasePorts() can help in complicated situations.

E.3.4 Release All Channel Locks

NAME
releasePorts - release all acquired read and write tokens

44

SYNOPSIS
void releasePorts();

DESCRIPTION
Releases all acquired read and write tokens of the current process in the

current control iteration. Adding this to the end of the control iteration is
sufficient to ensure proper release operation.
Using the normal release functions, which only release one port at a time the
whole control flow of acquire has to be copied for release mode. E.g. if only
iteration two and three acquire a read lock for port zero, then only iterations
two and three can release that lock. By using this function any acquired port
in the current iteration is automatically released.
Of course this means locks are possibly released much later if used at the end
of the current control iteration, so could come at some performance penalty.
However a lot of additional control flow is avoided, so it is up to the designer to
find the best solution.

E.3.5 Accessing the Computing Backend Memory

NAME
getDeviceInMem / getDeviceOutMem - return pointers of computing device

SYNOPSIS
void *getDeviceInMem(size_t port);
void *getDeviceOutMem(size_t port);

DESCRIPTION
Get pointers to the address space of the computing device that was allocated

previously in the start() function. These pointers can be passed to the actual
executing function already pointing to valid memory locations. Through this
mechanism the framework can automatically transfer memory to and from the
device.

E.3.6 Accessing the Computing Backend Platform

NAME
getProcess - return a reference to the computing backend

SYNOPSIS
Platform &getProcess();

45

DESCRIPTION
Returns a reference to the computing backend through with which its specific

read and write operations can be performed.

E.4 Platform functions

The Platform class is the computing backend of our framework. This class
is responsible for device-specific communication. To define a new computing
library the following functions have to be declared and implemented.

NAME
init / deinit - (de)initialise the backend

SYNOPSIS
bool init();
bool deinit();

DESCRIPTION
Initialise the device, set up required resources, communication in such a way

that subsequent calls to this backend’s read() / write() functions will succeed.
Deinitialisation should restore the device to a state as it was before initialisation
was performed.

NAME
write / read - transfer data to and from the backend

SYNOPSIS
bool read(const void *src, void *element, size_t size);
bool write(void *dst, const void *element, size_t size);

DESCRIPTION
Writes, respectively reads to/from the memory location at dst / src the token

of a given size. This is usually sizeof(element). The return value indicates
success or failure. The target and source memory address can be retrieved by a
call to getDeviceInMem() and getDeviceOutMem(). Functionality of transfer
is device-specific.

NAME
name - return name

46

SYNOPSIS
char *name();

DESCRIPTION
Used for debugging purposes and should be set to a string describing the

backend, eg. “NVIDIA 8600GT” for the GPU. Can be left empty “” if no name
is desired.

NAME
allocmem / freemem - (de)allocate memory on computing backend

SYNOPSIS
bool allocmem(size_t size, void *&buf);
bool freemem(void *&buf);

DESCRIPTION
Allocate memory of a given size on the device which Hdpc can use for the

read() / write() operations. buf is a pointer to a reference and will contain
a pointer to the memory space of the device.

Deallocation frees any allocated memory on the device previously allocated.
The parameter is a pointer returned by allocmem().

47

+
al

lo
cM

em
T

o
P

ro
ce

ss
()

+
at

ta
ch

In
p

u
t<

T
>

()
+

at
ta

ch
O

u
tp

u
t<

T
>

()
-f

in
is

h
()

+
fr

ee
M

em
F

ro
m

P
ro

ce
ss

()
+

ge
tR

ea
d

P
o

in
te

r<
T

>
()

+
ge

tW
ri

te
P

o
in

te
r<

T
>

()
+

re
ad

F
ro

m
P

o
rt

<
T

>
()

+
w

ri
te

T
o

P
o

rt
<

>
()

+
re

le
as

eR
ea

d
P

o
in

te
r<

T
>

()
+

re
le

as
eW

ri
te

P
o

in
te

r<
T

>
()

+
st

ar
t(

)

-c
al

lb
ac

k
 :

P
la

tf
o

rm
-P

o
rt

s
-M

em
o

ry

P
ro
ce
ss

cl
as

s
T

+
ge

tS
iz

e(
)

: i
n

t
+

fi
n

is
h

()

#
ch

an
n

el
L

en
gt

h

B
a
se

+
fi

n
is

h
()

#
w

ai
t_

w
ri

te
()

#
w

ai
t_

re
ad

()
#

re
le

as
e_

w
ri

te
()

#
re

le
as

e_
re

ad
()

-e
m

p
ty

 :
H

A
N

D
L

E
-f

u
ll

 :
H

A
N

D
L

E

S
p
in
W
a
it

+
fi

n
is

h
()

#
w

ai
t_

w
ri

te
()

#
w

ai
t_

re
ad

()
#

re
le

as
e_

w
ri

te
()

#
re

le
as

e_
re

ad
()

-i
sF

u
ll

()
 :

b
o

o
l

-i
sE

m
p

ty
()

 :
b

o
o

l

-b
u

fC
o

u
n

t
: i

n
t

S
ig
n
a
lW
a
it

+
ac

q
u

ir
e_

re
ad

_p
tr

()
+

ac
q

u
ir

e_
w

ri
te

_p
tr

()
+

re
le

as
e_

re
ad

_p
tr

()
+

re
le

as
e_

w
ri

te
_p

tr
()

+
re

ad
()

+
w

ri
te

()

-b
u

ff
er

 :
v

o
id

-r
ea

d
In

d
ex

 :
in

t
-w

ri
te

In
d

ex
 :

in
t

C
h
a
n
n
e
l

cl
as

s
T

+
al

lo
cm

em
()

+
fr

ee
m

em
()

+
in

it
()

+
d

ei
n

it
()

+
n

am
e(

)
+

re
ad

()
+

w
ri

te
()

+
ex

ec
u

te
P

la
tf

o
rm

P
la
tf
o
rm

-c
al

lb
ac

k1

1

-P
o

rt
s

*
*

+
C

U
D

A
()

+
fr

ee
m

em
()

-d
ev

ic
e_

id
 :

in
t

C
U
D
A

+
fr

ee
m

em
()

C
P
U

+
F

p
ga

()
+

~
F

p
ga

()
+

fr
ee

m
em

()
+

si
ze

In
B

lo
ck

s(
)

-a
ll

o
cd

m
em

-f
p

ga

F
P
G
A

+
St

o
ra

ge
()

+
~

St
o

ra
ge

()

-f
il

e
-f

p
-m

o
d

eS
to
ra
g
e

+
St

o
ra

ge
SW

T
()

+
in

it
()

+
re

ad
()

+
w

ri
te

()

S
to
ra
g
e
S
W
T

Fi
gu

re
17
:
U
ni
fie
d
M
od

el
in
g
La

ng
ua

ge
(U

M
L)

di
ag
ra
m

of
H

dp
c
fra

m
ew

or
k

48

F List of Acronyms

API Application Programming Interface. .5
ASIC Application-Specific Integrated Circuit . 36
CPU Central Processing Unit
CUDA Compute Unified Device Architecture . 31
DMA Direct Memory Access . 34
DRAM Device Random Access Memory . 34
Espam Embedded System-level Platform Synthesis and Application

Mapping . 3
FIFO First-In-First-Out
fMRI functional magnetic resonance imaging . 18
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit . 3
GPGPU General-Purpose computation on GPUs . 34
Hdpc Heterogeneous Desktop Parallel Computing . 3
IC Integrated Circuit . 36
KPN Kahn Process Network . 2
Lerc Leiden Embedded Research Center
Liacs Leiden Institute of Advanced Computer Science
LUMC Leids Universitair Medisch Centrum. .26
MD5 Message-Digest Algorithm 5. URL:

http://tools.ietf.org/html/rfc1321
MJPEG Motion JPEG. 15
MoC Model of Computation . 2
MODWT Maximal Overlap Discrete Wavelet Transform 26
OS Operating System . 7
PCI Peripheral Component Interconnect
ptx Parallel Thread Execution . 36
SANLP static affine nested loop program
SIMD Single Instruction Multiple Data . 35
SWT Stationary Wavelet Transform. .26
UML Unified Modeling Language . 40
XML eXtendible Markup Language
Yapi Y-chart Application Programmer’s Interface. URL:

http://y-api.sourceforge.net/

49

	Introduction
	I Research at Lerc group
	II Heterogeneous Desktop Parallel Computing
	Design Flow
	Communication Components
	Blocking Read/Write Components
	Platform Backend Components
	Network Correctness

	Constructing and Implementing KPNs
	Construction
	Implementation (Process Code)

	Future Improvements

	III Case Studies
	Sobel
	Motion JPEG
	Wavelet Correlation Matrices of fMRI Data
	The Results
	Summary

	IV Conclusion
	V Appendixes
	Technical Data of Case Studies
	Sobel
	MJPEG

	Extended Technical data of the fMRI case study
	The Small-World Human Brain Network
	Computational Background
	Platform Results
	KPN Mapping
	FPGA Implementation
	Heterogeneous Desktop Parallel Computing
	GPU Implementation

	Hardware Computing Devices
	Graphics Processing Unit
	General-Purpose Computation on GPUs
	NVIDIA and CUDA Platform
	Device Architecture
	The Compiler

	Field-Programmable Gate Array

	Correctness of fMRI Implementation
	Hdpc API reference
	Preprocessor Directives
	Debugging
	Signal / Semaphore Wait
	Read / Write and Acquire / Release
	Timing

	Process Network Construction
	Process
	Port Access
	Connecting Processes
	Starting Execution

	Process Functions
	Physical Channel Communication
	Acquire Channel Locks
	Release Channel Locks
	Release All Channel Locks
	Accessing the Computing Backend Memory
	Accessing the Computing Backend Platform

	Platform functions

	List of Acronyms

