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ABSTRACT 
Mixed-integer optimization problems arise in various application fields, such as optical 
filtering, chemical engineering and medical image processing. The variables to 
optimize are not always independent to each other. This work aims to find good 
solution methods for this category of problems. Stochastic optimization algorithms can 
be used as solution methods for solving these problems approximately. Especially for 
real-world problems they often prove to be powerful due to their flexibility and 
robustness. Recently a well-tuned mixed integer optimization algorithm, Mixed-Integer 
Evolutionary Strategy (MIES) has been developed and applied to chemical plant 
engineering as well as medical image processing. But it has the limitation of not being 
able to learn variable dependences. We thus consider estimation of distribution 
algorithms (EDAs) which use probabilistic models to replace the population in classical 
EAs. Being one of the earliest EDAs, population based incremental learning (PBIL) 
works under the assumption of variable independency and therefore is incapable of 
grasping the relation between variables. In comparison, Bayesian Optimization 
Algorithms (BOA) can explore variable dependences. It makes progress by repeatedly 
learning a Bayesian network from the 'good' individuals and then sampling the resulting 
model. A-priori information on variable dependences can be easily coupled. In this 
work, both the two algorithms are extended to deal with variables of mixed type. As a 
proof of concept study, we apply them, together with MIES, to ADG-based 
mixed-integer NK Landscapes. The statistical results obtained are very encouraging. 

KEYWORDS  
Mixed-Integer Optimization; Population-based Incremental Learning; ADG-based NK 
Landscapes; Medical Image Processing; Bayesian networks; Bayesian Optimization 
Algorithm 
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Chapter 1  Introduction  
We study solution methods for difficult optimization problems where decision variables are of 
different type and not independent to each other. In particular we look at problems where the 
decision vector consists of continuous, ordinal and nominal discrete variables. This work is 
triggered by many real-world problems like the optical filtering, chemistry plant engineering 
[12] and medical image processing[20], etc. The optimization of the IVUS (intravascular 
ultrasound) lumen detection pipeline (Figure 1) is an example in medical image processing 
field. 

IVUS images show the inside of coronary arteries and are acquired with an ultrasound catheter 
positioned inside the vessel. Effective detection of structures is desired for clinical diagnosis. 
Considering the huge work and inaccuracy of manual segmentation, an multi-agent automatic 
system (Figure 1) is developed, consisting of multiple agents among which is the lumen agent. 
Lumen agent holds many feature detectors (Figure 2) therefore a large number of parameters 
(Table 1) to optimize for the image at hand. However these parameters are hard to optimize 
manually and may differ for different interpretations. In addition, these parameters are of 
different type (nominal discrete, continuous or integer) and since some relationship has been 
built up between them by construction of the processing pipeline they are not independent to 
each other. In this sense the setting of the parameters of the pipeline is essentially a 
mixed-integer multivariate optimization problem. Works have been done to optimize these 
parameters using evolutionary strategies (EAs). Among them, MIES[20]proves to be 
significantly more effective than others. 

However, as a member of classical EAs the searching mechanics of MIES is fixed and 
problem-independent which means the structure of problem on the fly is ignored. On the other 
hand, the structure of the IVUS optimization problem is quite obvious, defined by the pipeline. 
Therefore we think MIES is not the best choice in this case and try to find alternatives in 
another class of EAs, the estimation of distribution algorithms (EDAs) which try to model the 
distributions of solutions in search space.  

 

 
Figure 1: coronary vessel image processing multi-agent system. 
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Figure 2: IVUS lumen detection pipeline. 

 
Table 1: parameters for the lumen feature detector. 
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Population-Based Incremental Learning (PBIL) is a well-known EDA which “removes the 
genetics from the genetic algorithm”[23]. Unlike classical EAs working on low-level 
representations, trying to create better individuals by directly recombinating and mutating the 
individuals, PBIL employs a probabilistic model, which is the only persistent part of the search 
process [2, 3],  as the high-level abstraction of the search space and guides the search by 
updating the model. Probabilistic model is built on the statistical information contained in 
selected individuals and can be considered as the estimation of the structure of them. 
Originally PBIL is designed for binary search spaces, but has been extended to continuous 
spaces by utilizing different methods and models like the interval approach[7], the Gaussian 
distribution model [14] and the histogram-based model[1]. In this work, we will extend it to 
mixed-integer case.  

However in PBIL, to estimate of the structure of good individuals we assume a distribution for 
each gene separately and no mutual information between genes considered which can be 
addressed given joint distribution of genes estimated instead. Actually, in continuous domain, 
algorithms like UMDA fall into the same category. They all assume solution variables are 
independent to each other and construct the model with univariate distributions. In comparison, 
MIMIC, LFDA, ECGA and BOA take the variable dependences into consideration by defining 
a joint probability distribution and are expected to be better options for problems with obvious 
variable dependency [16]BOA especially excites our interest as it can be extended to deal with 
different types of variables and can easily couple a-priori information of problem structure. In 
[13], binary BOA has been studied and proved to possess good properties: it identifies, 
reproduces, and mixes building blocks to a specified order and is independent of dimension of 
the problem. We extend it to mixed-integer case and test its performance in this domain. 

To test the abovementioned three algorithms, MIES, PBIL and BOA, artificial landscapes with 
scalable ruggedness designed specially for study of gene interactions, namely NK 
Landscapes[10] are used. NK Landscapes were proposed by Kauffman[22]. Studies have been 
done of different aspects: property of itself, computation complexity of optimization and also 
the behavior of classical EAs on it. Recently it has been extended to mixed-integer case[19]. In 
our work we further introduce dependences between genes defined by an Acyclic Directed 
Graph (ADG) into the construction of it and get so-called ADG-based mixed-integer NKL for 
our use. 

The paper is organized as follows. In Chapter 2, all three algorithms, MIES, PBIL and BOA 
are reviewed and the latter two are extended to integer case. Chapter 3 reviews basic concepts 
of NKL, its extension to mixed-integer case, and then introduces the construction of 
ADG-based mixed-integer NKL (MI-NKL). Chapter 4 reports on experimental results. The 
paper ends with a summary of our work and a brief outlook of future work. 

 

 

 

 

 

 

 

 



Chapter 2  Algorithms 
Three algorithms are to be discussed: PBIL, Mixed-Integer Evolutionary Strategy (MIES) and 
Bayesian Optimization Strategy (BOA). In this chapter we will first give a brief review on 
binary PBIL and then extend it to Mixed-Integer PBIL (MIPBIL). As an outstanding algorithm 
for mixed-integer optimization, MIES will be reviewed in the next second section and we put 
the stress on its mutation procedure. At last, we extend BOA to MIBOA, giving details of the 
concepts and implementation.    

2.1 Population-based Incremental Learning 

2.1.1 Binary PBIL 
Population-based incremental learning (PBIL) is a method combining Genetic Algorithm (GA) 
and competitive learning for function optimization. Unlike general GAs, a model representing 
the distribution of the population is the only consistent part through the searching process. 
Initially, this model is often randomly generated. In each generation, a population of 
individuals is produced by sampling from this model and in turn some ’good’ individuals are 
chosen to update the old model according to specific rule. 

For binary PBIL, the model representing the distribution is the probability vector which 
represents the probability of each gene taking 1 and it is updated in generation  based on 
the following rule.       

G

                   
1
*(1.0 ) *

G G
p p meanα α

−
= − +                          (1)

where  is the mean vector of the selected mean λ  best individuals and α  is the learning 
rate. Note that if 1λ = , the probability vector updates toward the single best individual, which 
ignores all the work and exploration already done by the algorithm. Figure 3 depicts the basic 
implementation.  

Though generating a population from the probability vector helps to maintain diversity, PBIL 
still suffers from premature convergence as standard GA does. In the early stage of searching, 
it explores large regions of the solution space in a parallelized manner. However, as the search 
progresses the values in the probability vector move away from 0.5, towards either 0.0 or 1.0. 
As the probabilities become very close to either 0.0 or 1.0, the similarity in the individuals 
generated increases. In GA, this corresponds to the respective bit positions in the majority of 
the solution strings having the same value. As the population of the GA tends to converge 
around a good solution vector in the function space, the progression of search in PBIL 
converges around a single point from which the optimal solution possibly could not be 
generated. In this case, mutation can be introduced and usually it is directly applied to the 
probability vector instead of individuals. Besides, PBIL offers an advantage of explicit control 
of the converge speed. Larger α  will lead to faster convergence and is thus computationally 
effective whereas smaller α  will slow down the convergence but potentially explore parts of 
the solution space inaccessible otherwise. Therefore its value should be carefully selected. 

2.1.2 Continuous PBIL 
PBIL has been first extended to continuous spaces using an interval approach to deal with the 
telephone Network Traffic optimization problem[7]. Later in 2003 another continuous PBIL 
approach based on the Gaussian distribution model, which we name as PBIL2-1 after the 
updating rule, was proposed[14]. Ways of defining and adjusting the variance were also 
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investigated and the best option appeared to be learning the variance in the same way as the 
center of the distribution. The results presented in [14] pointed out the limitation of PBIL2-1 
and improved it with a new updating rule which takes all the individuals into account and a 
self-adaptive learning rate. Furthermore, it proposed to replace the Gaussian model with a 
histogram-based probabilistic model which depicts the distribution of ‘good’ solutions in a 
more accurate way but inevitably introduces more complexity. Thus it is excluded from our 
consideration. 

   
p ← initialize probability vector (each position = 0.5) 

Loop # GENERATIONS 

#Generate population of sizeµ  

i ← loop #INDIVIDUALS 

Generate(individual ); i

Evaluate(population ); i

#find best individuals and calculate their mean 

sePop←Select(bestλ individuals); 

m←mean(sePop); 

#update probability vector 

j ← loop #LENGTH 

*(1.0 ) *j j jp p mα α← − +  

#mutate probability vector 

j ← loop #LENGTH 

*(1.0 ) ({0,1})*j jp p MUT U MUT← − +  

Generate(individual ) i

j ← loop #LENGTH 

if (U(0,1)< jp ) locus = 1; j

Otherwise locus = 0; j

USER DEFINED CONSTANTS: 

GENERATIONS: number of iterations to allow learning 

INDIVIDUALS: the population size, number of samples to produce per generation 

LENGTH: length of encoded solution (dimension) 

MUT: amount for mutation to affect the probability vector 

α : learning rate 

VARIABLES: 
p : Probability vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The basic PBIL.Note means uniformly randomly selecting an element out of{0 . ({0,1})U ,1}
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2.1.3 Extension to Mixed-Integer PBIL  

To extend PBIL to Mixed-integer case, the key is to find efficient measurements (module) for 
different type of genes. For a nominal discrete gene, the frequency of taking each value 
describes the distribution therefore a probability vector should be introduced for each locus: 

, where  represents the probability that locus  takes the  value. i ij p =(p ),  j=1 LL ijp i 'j th
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Figure 5: The PBIL representation of population.  

As for continuous variable, we assume it follows a normal distribution. Then two parameters 
need to be considered and updated in each generation, that is, mean  and standard 
deviation

m
σ . 

Things become more complex for integer genes. One option is to take it as a special case of 
continuous variable and assume normal distribution. However, a more reasonable assumption 
for integer variables is geometric distribution which has properties similar to normal 
distribution: unimodal, with a peak at zero and infinite support in Z. The only parameter p , 
representing the probability of succeed in one Bernoulli trial, indirectly controls the standard 
deviation. Moreover, as pointed out in [6], multivariate geometric distribution is characterized 
by a rotational symmetry with regard to the norm and belongs to a family of maximal 
entropy distributions. All these characteristics make the geometric distribution well suited for 
integer programming. As we will see, MIES uses it well. However, in PBIL, there exists 
difficulty updating the only parameter

1L

p directly from ‘good’ solution. Thus we take a way in 
between: update and m σ  for integer variables just like in continuous case but generate 
geometrical distributed instantiations(Figure 3). This can be done as follows.  

     1 2G = m + * (G ( 3-1)- G  ( 3-1)σ ）                        (2) 
Where , are geometrically distributed random numbers that can be generated from two 
uniformly distributed random variables 

1G 2G

1 2: (0,1); : (0,1u U u U )= =  via 

               1 2
ln(1 ), ,
ln(1 )

i
i

uG G G G i
p

1, 2−
= − = =

−
                     (3) 

2.2 Mixed-Integer Evolutionary Strategy 

Mixed-Integer Evolution Strategy (MIES) was first proposed by Emmerich et al. for chemical 
engineering plant optimization with process simulators from industry [12] and was adapted by  

Equivalent PBIL representation 
Probability distribution stores information about 
frequency of values at each allele. 
Alleles Number:     1  2  3  4  5  6  7  

A= 0.2 0.2 0.6 0.4 0.8 0.4 0.6
B=0.2 0.6 0.4 0.6 0.0 0.6 0.2
C=0.6 0.0 0.0 0.0 0.2 0.0 0.2

⎧
⎪
⎨
⎪
⎩

 

 

GA representation 
Alleles number:1 2 3 4 5 6 7

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

G
A

 population 

A B A B A B A
C B A A A B A
B A B A A B B
C B B A C A A
C A A B A A C

Value 
Frequenc



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

Initialize module; 
Loop # GENERATIONS  

#Generate population from the module: 
loop #INDIVIDUALS  
i ← loop #LENGTH 

Switch.type 
Case discrete 

ix  = generate discrete value based on   i,j(p ),  j = 1, , L ;L

Case continuous 
ix  

G,iG,i= Gauss(mean , std );  
Case integer 

ix  
G,iG,i= geometric(mean , std );  

#Evaluation, selection and related calculations; 
Evaluate all individuals; 
SePop = {Selected better individuals}  

i ← loop #LENGTH 
Switch.type 

Case discrete 

Calculate probability vector proportional to each possible value on locus 
i: ; i i,jp =(p ),  j=1, ,LL

Case continuous or integer 

i imean  = mean(SePop );  

i istd  = std(SePop );  

#Update module： 
i ← loop #LENGTH 

Switch.type 
Case discrete 

G,i G,i ip = (1-LR) * p + LR *p ;  (then normalize p ) G,i

Case continuous or integer 

G,i G,i imean = (1-LR) * mean  + LR * mean ;  
G,i G,i istd  = (1-LR) * std  + LR * std ;  

#Mutate module if necessary; 
 
CONSTANTS 
GENERATIONS: number of iterations 
INDIVIDUALS: the population size 
LENGTH: length of encoded solution  
LR: learning rate 
L: number of possible values each discrete variable can take 
igure 6: The basic of Mixed-Integer PBIL. 
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Figure 7: Mutation procedure in MIES. Courtesy of Li et al[20]. 

Li. et al[20]. It can deal with continuous, integer and nominal discrete variables 
simultaneously. In MIES, individuals are represented as tuples   1 1 1( , ,

r zn nr r z z d dL L L ,
dn

)n1 1 1, ,
pn n p p

σ ζ
σ σ ζ ζL L L taken from the search space S. While  

are object parameters,  
1 1 1( , ,

r zn nr r z z d dL L L )
dn

)n1 1 1( , ,
pn n p p

σ ζ
σ σ ζ ζL L L  are called strategy parameters and their 

explicit explanations are that 1 , nσ
σ σL  are standard deviation of the step-sizes for the 

continuous variables, 1 , nζ
ζ ζL are mean step-sizes for the geometrical distribution for the 

ordinal discrete variables, and 1 ,
pnp pL are mutation probabilities for the nominal discrete 

variables. The generational loop of the MI-ES reads as follows: After random initialization and 
evaluation of µ  individuals, λ offspring individuals are generated through a recombination 
and a mutation operator. Then the fitness function is used to evaluate theseλ offspring. Next, 
the selection operator chooses the µ best individuals among thoseλ offspring individuals and 
µ  parental individuals that do not exceed the maximal life-span (age). Usually, life-span or 
age is expressed using , and  corresponds to ak k = 1 ( , )µ λ -selection and  to a k = ∞ ( + )µ λ  
selection. As long as the termination criterion is not fulfilled, the µ selected individuals form 
the parental generation for the next iteration loop. To allow for an automatic step-size 
adaptation it is recommended to set / 7µ λ ≥  and use a comma-strategy. 

In MIES, operators work on both the object variables and step sizes. The recombination 
operator used is similar to the standard recombination in ES: uniform crossover (deterministic 
recombination) for the object variables and intermediate recombination for the step-size 
variables. However the mutation procedure differs by taking into account the type of objective 
variables as detailed in Figure 6.  The recommended setting for the local and global step-size 

learning rates lτ  and gτ  are 1 2l rnτ = and 1 2l rnτ = . If 0lτ = , then all variables take 
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the same step size and it is a single step-size strategy. As the algorithm progresses, the step 
sizes are automatically adapted and tend to decrease gradually. Remark that treating the integer 
variables simply as truncation of continuous variables is risky as the step sizes might decrease 
to small values after a number of iterations, too small to generate any alternation of the search 
point. That is one of the reasons integer variables are mutated by geometric numbers in MIES. 
And the geometrically distributed random number is generated the way in (3) where  is 
defined by

p

iζ . 

2 1/ 21
(1 ( ) ) 1

i d

i d

np
n

ζ
ζ

= −
+ +

 

Here iζ represents the mean step size for integer variables and in implementation it is forced 
to be no smaller than 1 in order to avoid stagnation. In [20], MIES was applied to both artificial 
problem and IVUS pipeline optimization and it is proved to be significantly more effective 
than standard ES. More details of the algorithm and its implementation can be found in [12] 
and [20]. 

2.3  Bayesian Optimization Algorithm 

A Bayesian network is a graphical representation of a probabilistic problem, formally defined 
as a pair , where  is the joint probability distribution on the set of random 
variables and G is an  Acyclic Directed Graph (ADG) representing the dependence and 
independence relations among this set of random variables, where each graphically 
represented marginal and conditional independence also has to be valid in the joint probability 
distribution[8]. Denote 

B = (G, P) P

1( , )NX X X= L  the set of random variables. Then based on the 
independence relations in the graph , a Bayesian network encodes a joint probability 
distribution, which can be factorized as  

G

1

( ) ( ( ))
N

i
i

P x p x parent x
=

=∏ i                                 (4)  

where ( )iparent X  is the graphically represented set of parents of iX . It implies that a joint 
probability distribution can be defined in terms of local distributions, resulting in significant 
computational savings. 

The key of the popularity of Bayesian networks is their ease of representation of independence 
relations, and their support for reasoning with uncertainty. For reasoning in Bayesian networks 
there are several exact methods proposed that make use of local computations [18]. However, 
the correctness of the inference method depends on the type of the parents of a variable and on 
the choice of the local probability distribution. For example, the method introduced by 
Lauritzen [24], using exact inference that is based on a conditional Gaussian distribution but it 
has the restriction that discrete random variables are not allowed to have continuous parents 
when hybrid Bayesian networks[1] are concerned. To overcome this problem, Koller proposed 
a method which defines the distribution of these discrete nodes by a mixture of exponentials. 
However, for the inference it uses Monte Carlo methods[3]. Another solution to this problem 
is to discretise continuous variables, but this introduces errors as approximation methods are 
used.  

Bayesian optimization algorithm (BOA)[13] is an estimation of distribution algorithm 
modeling distribution with Bayesian networks. It achieves progress by repeatedly learning a 
new net from better solutions and then sampling it to generate new promising solutions, which 
is counterpart of recombination and mutation in classical EAs. Note that BOA can learn both 
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structures of network and conditional probability tables. But in our work, we assume a-priori 
information of the structure therefore merely the parameters need to learn. Hence step 2) in 
Figure 7 can be skipped. As many other evolutionary algorithms work on the assumption of 
independency, BOA manages to capture the relationship between variables. As proved, it 
outperforms simple GA in problems with loose building blocks, even on decomposable 
functions with tight building blocks as the problem size grows [13].  

Several points we would like to mention here. The first is about the generation of Bayesian 
network structure or ADG. There is method available for generating uniformly distributed 
graph in N-dimension graph space with constraints on complexity measurements like induced 
treewidth[9]. Given no constraints, we can easily generate an ADG by filling upper triangle of 
an N-by-N matrix randomly with zero or one and then testing the connectivity.  Besides, in 
hybrid Bayesian network, different distributions can be assigned to nodes, for example, 
tabular node for discrete and Gaussian node for continuous node. Unfortunately, geometric 
distribution is not supported currently so we assume Gaussian distribution for integer variables 
as well. Furthermore, considering the aforementioned limitations of inference, we will avoid 
continuous-to-discrete dependency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 Artificial Test Problems 
The NK model is a stochastic method for generating fitness functions, introduced by S. 
Kauffman [22] to study gene interactions. Frequently, it is used as test problem generator for 
Genetic Algorithms. It has two advantages. One is the easy control of the ruggedness by tuning 
the number of genes N and the number of epistatic links of each gene to other genes K. Besides, 
given fixed values of N and K, a large number of NK landscapes can be created at random. The 
disadvantage of NKL is that the optimum of a NKL instance can generally not be computed, 
except through complete enumeration. 

3.1 NK Landscapes 

A binary NK Landscape defines function :{0,1}NF +ℜa on binary strings  where 
the genotype  consists of  loci, with two possible alleles at each locus[22]. The gene 
interaction structure of NK model is created as follows. The genotype’s fitness is the average 
of  fitness components  where  is the contribution of locus  determined 
by not only the value of itself 

{0,1}Nx∈
x N

N , 1 ,iF i N= L iF i

ix  but the alleles at its epistatic loci. Thus, the fitness function 
is: 

1
1

1( ) ( ; ... )
k

N

i i i i
i

F x F x x
N =

= ∑ x

N

                             (5) 

where . These  loci are called adjacent neighbors if they are 
the nearest to  and random neighbors otherwise.  

1{ ,..., } {1,..., 1, 1,... }ki i i i N⊂ − + k
i

And epistasis is implemented in this way: whenever an allele is changed at one locus, all of the 
fitness components with which the locus interacts are changed, without any correlation to their 
previous values. In the simulation, a fitness matrix is generated consisting N rows. 
Row consists of  numbers representing possible values of  corresponding 
to different combinations of alleles. These numbers are independently sampled from a uniform 
distribution on[0 . Note that for 

{1,..., }i∈ 12k+
iF

,1) 0k =  the fitness function becomes the classical additive 
multi-locus model and for  the fitness function is equivalent to the random 
assignment of fitness over the genotype space. 

1k N= −

Weinberger[5] and Thompson and Wright [21] have studied the computational complexity of 
finding the optimum genotype in an NK landscape and proved a series of results. The NK 
optimization problem with adjacent neighborhoods is solvable in steps, and is thus 
inΡ . However assuming random neighborhood it is NP complete for K>=2.  For K=1, the 
optimization problem with random neighborhood is solvable in polynomial time if 
self-interaction is assumed otherwise it is NP complete. 

(2 )k NΟ

3.2  Extension to Mixed-Integer Case (MI-NKL)  

Consider continuous variables in R, integer variables in , and nominal 
discrete values from a finite set of L values. In contrast to the ordinal domain (continuous and 
integer variables), for the nominal domain no natural order is given.  

min max[z , z ]  Z⊂

The fitness matrix for a nominal landscape is of size , row  representing possible 
values of  corresponding to different combinations of alleles.  Fitness is computed the 

K+1N-by-L i

iF
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same way as for binary NKL. 

In order to define a continuous landscape, we extend binary NKL to an N-dimensional 
hypercube . All continuous variables are normalized between . Whenever 
continuous variables take values at corners of the hypercube, the value of the corresponding 
binary NKL is returned. For values located in the interior of the hypercube or its delimiting 
hyperplanes, multilinear interpolation is done. For each of the N fitness components 

N[0, 1] [0, 1]

K+1
iF  : [0, 1]   [0, 1)→ , 

               
1

1

k+1
k

k

K2
i [1 AND j] [ 2  AND j ] 2

i j i i
j=0 k

F (x) = a x  x
−

=
∑ ∏

k

1

                          (6)  

where the coefficients ’s can be calculated by i
ja

1
1, 1, , 2

j
i i i K
0 i j i l

l=0
a  =  F [0], a  = F [j] - [ a I( l = (l  AND  j))] j

−
+= −∑ L             (7) 

That is to say, we have to start with and then increase the value of  to get all 
coefficients. Hence, the number of additions we need for computing all coefficients is 
proportional to . Figure 8 gives an example with . 

j = 0 j

K+1 K+1 2(K+1)-1(2 -1)(2 )/2 = 2  - 2K K=2

 

Figure 8: Example hypercube with K=2 and the computation of . Figures courtesy of Li Et al[19]. i
ja

Once the coefficients are calculated, we can use Equation (6) to compute the model. Note that 
the domain of the continuous variables has to be replaced by  in that equation. As proved 
in[19], at least one global optimum of the function F will always be located in one of the 
corners of the N dimensional hypercube. Thus the problem of finding the global optimal value 
for a continuous NKL is NP-complete for K ≥ 2. 

[0,1]

NKL on integer variables can be considered as a special case of continuous NKL. Variables are 
normalized as follows: min max min( ) /( )x z z z z= − − . In this way, we get the corresponding 
continuous parameter in[0,1] , which can then be used in the continuous version of  to 
compute the NKL. Note that the properties discussed above also hold for integer NKL. 

F

It is straightforward to combine these three types of variables into a single NKL with epistatic 
links between variables of different types. Assume there are D nominal discrete variables 
interacting with a continuous variable, and then the values of these discrete variables 
determine the values at the edges of the K−D dimensional hypercube that is used for the 
interpolation according to the remaining continuous and integer variables. Figure 9 gives an 
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example. The individual has three parameters of different types and each variable interacts 
with both of the other two. For each variable, a hypercube is created. Assume  

. The fitness value of this individual is calculated as follows. 
dX  = 0, 

iX  = 0.4, rX  = 0.8, L = 3

 

 
Figure 9: Sample computation of MI-NKL. The bottom left table is the epistasis matrix and table on the 
right the fitness matrix. Figures courtesy of Li Et al.[19]. 

3.3  ADG-based Mixed Integer Landscapes  

A natural test problem for BOA would be a problem which can model one-way dependences 
between variables. Traditional mixed integer NK landscapes can deal with undirected 
interaction between variables and will be modified next to incorporate one-way interaction. In 
practice one-way dependency is more frequently encountered than the bilateral interaction as 
defined in classical NKL. We thus introduce ADG-based NKL. Let 1( , )NX X X= L  denote a 
set of decision variables and assume the interaction structure of them is described by some 
ADG, where the nodes represent parameters to be optimized and for each node a set of parent 
nodes are assigned. Then the ADG-based NKL can be written as a function of component 
functions as equation (8). Note that this expression has similar structure with the logarithm 
expression of  in equation (4).  

iF  
( )P X

1
( ) ( , ( ))

N

i i i
i

F x F x parents x
=

= ∑                            (8) 

The construction of ADG-based NKL corresponds to that of classical NKL with merely one 
exception. Note that K can vary with the index of the decision variable in question, depending 
on how many parents it has. Thus the K in the expression ’ ADG-based NKL’ is not referring to 
the number of epistatic genes anymore, however we kept it as it makes it easier to match the 
corresponding well known NK-landscapes with the ADG-based NK landscapes. Take binary 
case as an example, the size of the fitness matrix for a classical NKL with interaction level K 
is while for ADG-based NKL, the fitness vector for each node can be of different 
size. A node with  parents has the fitness vector of  elements. The way to calculate 
fitness is the same as for general NKL. Figure 10 gives an example of an ADG-based MI-NK 
Landscape. Note that though we use ADG to define dependences, the formalism is actually 
meant to represent independences, which means all the independences that hold according to 

K+1N-by-2
k k+12
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the network should also hold for the probability distribution P while the other way around does 
not stand. But in our construction of ADG-based NKL, we assume two nodes have parent-son 
dependency once an arc exists between them. It can be considered that we take an extreme 
interpretation of ADG here.  

 
Figure 10: Example for an ADG-base landscape. The function values at the edge of the search space 
are set randomly between 0 and 1. As non-discrete nodes are involved, values in between are 
interpolated. Courtesy of Li. 
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Chapter 4  Experiments and Results 
We use Matlab7.1 for the programming and Kevin Murphy’s Bayesian Network Toolbox for 
MatLab: http://bnt.sourceforge.net/  for implementing Bayesian networks. The objective is to 
minimize. 

4.1  PBIL on Standard Binary NK Landscapes 

PBIL inherits the advantage of GA as well as incremental learning. As there are many 
parameters involved, we focus on the learning rateα which, as stated above, explicitly controls 
the speed of convergence of the algorithm. Furthermore, to get deeper understanding of the 
complexity introduced by interaction level K, we will apply PBIL on NKL over different K. To 
make the notation simple, we denote the epistasis matrix as E and use the seed number to 
represent the according binary fitness landscape.  

Figure 11 plots the differences between the best fitness achieved and the global optimum 
versus the number of evaluations for a sample case of K = 3 and D = 15, with E = [8 13 2; 3 4 
14; 14 12 15; 1 11 13; 10 13 8; 12 14 2; 6 3 11; 15 3 2; 12 15 1; 15 11 9; 4 10 9; 5 11 10; 7 3 12; 
9 10 13; 5 9 1] and seed = 1000. Results are averaged over 20 runs. The population size is 28 
and in each generation the probability vector is updated from the single best individual. In the 
figure, the blue curve decays fast within about 600 evaluations and after slightly going down 
further it stays flat while the red decreases gradually all through until it achieves more progress 
than the other around 2200 evaluations. This can be explained by the memorizing mechanics 
introduced by the updating rule. Larger α  means less memory of the past. By always guiding 
the algorithm towards the best individual in current generation it speeds up the convergence 
surely but meanwhile it keeps losing promising solutions and as a result the searching always 
end in local optima. On the contrary, with smallerα  PBIL searches from one to another 
nearby neighborhood and less likely to miss promising part of the solution space where the 
global optimum may exist. Therefore, α should be carefully tuned to achieve advantage of 
both the two as well as based on the problem in hand. However, in practice smaller α  are 
always favored. This is out of the consideration of reliability. As can be seen from the error bar 
plot, the standard deviation of results from 20 runs for 0.02α = are generally smaller, 
especially after 2300 evaluations which means the solution we find is reliable instead of just 
being hit by chance. This is quite essential when dealing with practical problems. In available 
publications on PBIL, α  is always set to 0.02 or smaller. We thus fix it as 0.02 hereafter.  

 
Figure 11: The effect of learning rate on PBIL’s performance. The right figure plots the average 
differences between the best fitness achieved and the global optimum versus the number of 
evaluations and the left is the errorbar. Red curve is for learning rate of 0.02 and blue for 0.1. 
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Figure 12: Generation needed to converge for different K. The general trend is observed: the larger K, 
the more generation needed. 

 
Figure 13: Vector field of p[s/p] for K=1 and D=2. Seed for generating landscapes are 63719 and 
22079, respectively. In the first case the algorithm converges to global optimum regardless of the 
initialization of probability vector. For the second, it is different for different fitness matrices and 
initialization of probability vector decides where to converge. For p0= [0.5 0.5], all converge to global 
optimum. 

 
Figure 14: left: PBIL converges to global optima [0 1 1] for seed 118399. The diamond marks the 
initialized probability vector and red circle the global optimum. The curve is the trajectory of the 
conditional mean of best individual in next generation. Right: For seed 100693, PBIL converges to 
local optima [0 0 1] instead of [1 1 0], the global optimum. 

We then study how K affects the performance of PBIL. The searching is terminated until the 
difference between global fitness maximum and the best fitness found is smaller than1e-6 or 
the total evaluation of 5000 times has been done. Figure 12 shows the counterpart evaluation 
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needed to find the global optimum for K from 1 to 8. For each K, the evaluation is needed is 
averaged over 10 epistasis matrices and for every fixed epistasis matrix 10 randomly fitness 
matrices. Due to the limited trails carried out, it is may be not precise and we can still see the 
general trend of increasing as K gets larger. This matches the idea that larger K introduces 
more complexity. 

Next we will study the theoretical aspects of the convergence behavior of PBIL. As proved 
in[11], the simple dynamics of PBIL’s update rule ensure convergence with probability 1 to the 
global optimum in the case of linear pseudo Boolean functions. As for nonlinear problems, the 
behavior of PBIL becomes more complex. It can be attracted by local solutions as well. 

The updating rule of PBIL is: [11] 
( )( 1)
,

1

1 tt
k

K
p

λ

y µλ
+

=

= ∑                                             (8)            

( )( 1) ( )
,

1

1(1 )
tt t

k
k

p p
λ

y µα α
λ

+

=

= − + ∑                            (9) 

Where (0) {0.5}Dp = . Whereas rule (8) is associated with gene pool combination and selection, 
rule (9) is especially associated with PBIL. Note that both rules lead to stochastic algorithm 
that can be modeled via Markov chain. With update rule (8), ( )tp  can be absorbed with 
nonzero probability to any vector ( ) Dp ∞ ∈Β , that is, the algorithm may converge to any 
accessible solution. In contrast, with update rule (9), since  holds for all  
provided that

( ) (0,1)tp ∈ D 0t ≥
(0) (0,1)Dp ∈ , the process can not be trapped in points represented by DΒ . 

However, it is still possible that the process converge to a corner of the hypercube. In the best 
case the global solution is the only point to which the process will stochastically converge. 
Even if the local solutions were candidates of such events, PBIL would be preferable to the EA 
associated with update rule (8). 

In the following, we will investigate the convergence properties of PBIL via the limitation of 
the mean of the stochastic probability vector sequences, that is, . As common 

practice, only the special case with

( )lim [ ]t

t
E p

→∞

1λ =  is considered. In this case, the probability vector 
moves toward the best individual, which leads to  

 ( 1) ( ) ( )(1 )t t tp p sα α+ = − +                                      (10) 
where is the best individual. Since  is bounded, the mean and limit can be 
exchanged. 

( )ts ( )[ tE p ]

t

]t

)]t

)

                                                                 (11) ( ) ( )lim [ ] [lim ]t

t t
E p E p

→∞ →∞
=

To get , the conditional probability of (10) needs to be considered. ( )[lim ]t

t
E p

→∞

                                     (12) ( 1) ( ) ( ) ( ) ( )[ / ] (1 ) [ /t t t tE p p p E s pα α+ = − +
Since , we get ( 1) ( ) ( 1)[ [ / ]] [ ]t t tE E p p E p+ +=

( 1) ( ) ( )[ ] (1 ) [ ] [ (t tE p E p E F pµα α+ = − +                        (13) 

where , which is easy to be computed as:  ( ) ( ) ( )[ / ] (t t tE s p F pµ=

1 1
0

[ / ] { }

{ } { ( ) ( )} { ( ) ( )}k k
k

E s p x p s x

x p b x p f b f x p f b f xµ λ− − −
=

= ⋅ =

= ⋅ = > ⋅ ≥

∑

∑ ∑
   (14)    

Note that the representation has been abbreviated and provided 1...( ) (0,1)D
i i Dp p == = , then 
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To illustrate how the idea works, we consider the simplest case of 1, 2, 2K D µ= = = . Figure 
13 plots sample vector fields of E[s/p] for different fitness matrices (seed). For some seeds 
(left), E[s/p] converges to the global optima [1 1]. Thus it is reasonable to conclude that PBIL 
converges to the global optima [1 1] despite of the lack of theoretical verification. In some 
other case (right), the convergence behavior depends on the initial value of probability vector 
P0. It will converge to [0 1] or get trapped into local optima [1 0] with certain probability 
separately. However, since in the practice, P is initialized as [0.5 0.5], the algorithm will 
converge to the global optimum [0 1] too. And this convergence behavior is common in all the 
trails we tried. 

We then consider K=2 and D=3. Things get more complicated. For some seed, p[s/p] 
converges to global optimum (Figure 14 left). While for some other seeds like seed 100693, it 
converges to local optimum instead (Figure 14 right). That is to say, for NKL, the mechanics of 
PBIL can not ensure convergence to global optima. To tackle the problem, mutation can be 
introduced, expected to help escape the local optima. But unlike classical EAs, the mutation is 
carried out directly on the probability vector instead of individuals. 

4.2  PBIL, MIES and BOA on ADG-Based NK Landscapes 

In this section, we managed to compare the three algorithms that can deal with mixed-integer 
optimization: PBIL, MIES and BOA. Based on[20], the setting of MIES will be as 
follows: ( , / 7)µ µ selection strategy for the population and offspring size and  

. This means an individual step size for each variable instead of a single 
step-size. We choose individual step size mode because the target landscape NKL can be 
highly rugged in which case each variable should be carefully tuned to approach the optima 
and a common step size in all direction may be too coarse so that the optima can be easily 
missed. Assume  is the number of possible values for discrete variables,  and 

 the bound of continuous and integer variables, respectively. In the experiment 
step sizes for continuous and integer are initialized to 0.2 of the length of corresponding range 
and for discrete variables strategy parameters are initialized to 0.1. 

r{ (n = n , σ

zn  = n , ζ p dn  = n )}

L c[min , max ]c

ii[min , max ]

The PBIL is now extended to mixed-integer case. In our experiment, we will consider the basic 
strategy given no specific indication, namely updating the module merely based on the best 
individual. In this case, the standard deviation σ  will keep constant. To initialize the module, 
the probabilities of a discrete variable taking each value are set to the same constant value. For 
continuous or integer variables, is set to the median of the corresponding boundary and m
σ the half of the length of the boundary so that theoretically the population can cover the 
whole solution space. Meanwhile, we fix the learning rate at 0.02.   

The implementation of BOA is quite straightforward. We use a ( , / 2)µ µ selection strategy.  
As for the internal parameters for Bayesian network like the threshold for terminating the 
learning process, this is the default value and we made no adaptation. 
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Five typical structures were chosen to carry out the experiments: chain, cascade1, cascade2, 
bin_tree, tri_tree and inv_tree (Figure 15). The boundary for continuous and integer is [0 1] 
and discrete variable takes value of 0 or 1. Difference between the best fitness achieved and the 
global optimum is denoted as f∆  and is plotted versus the number of evaluations 
(generations) to depict the progress of searching. 

  

   
Figure 15: Network structures involved in our experiments: chain (ul1), cascade1 (ul2), cascade2 (ul3), 
bin_tree (ur), tri_tree (bl) and inv_tree (br). Round circle represents node and arrow denotes 
conditional dependency from parent to son. Note that cascade2 is generated by adding six more arcs 
to cascade1(clolors has no specific meaning and it just for clearance). 

4.2.1  Binary case 

We start with a simple binary ADG-based landscape. To compare the algorithms, the 
landscape is always fixed. is averaged over 20 runs and plotted versus the number of 
evaluations. We also want to find out how these algorithms perform on different structures. 
Figure 16-18 are graphs for chain, cascade1 and cascade2, respectively. The population size is 
28. We notice PBIL outperforms in the long run for all three structures while BOA decays fast 
in the early stage (within about 300 evaluations) for chain and cascade1. MIES’s performance 
lies in between. Analysis has been done enough for PBIL’s performance. It is due to its 
updating rule: slow learning from the best individual while keeping large memory of the past. 
As for BOA, it catches quickly the relationship between genes therefore it can achieve great 
progress soon after the searching begins. But as the probability table is updated merely based 
on the selected good individuals, a good solution will be less likely to be explored later if it is 
missed at the very beginning. Furthermore, once a solution contributes most of the better 
individuals, BOA will converge to this solution and then no further progress will be made. 
Therefore its -evaluation curve will fall rapidly and then stays almost flat, unlike that of 
PBIL decreasing gradually and continuously. Meanwhile this property of BOA poses 

f∆

f∆
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challenge on how to cover more promising solutions at most at the beginning. The answer is to 
increase the population size. Small population size is the reason for the poor performance of 
BOA for the third structure. Large samples are needed to learn complex structures. As 
cascade2 is complex structure (e.g. Node 13 has four parents), population size of 28 is 
obviously too small.  

  
Figure 16: PBIL on a sample ADG_based NKL with chain structure. The right figure plots the average 
differences versus evaluations and the left is the errorbar. Cyan, blue and red stand for MIES28, 
BOA28, PBIL28, respectively. 

  
Figure 17: PBIL on a sample ADG_based NKL with cascade1 structure. The right figure plots the 
average differences versus evaluations and the left is the errorbar. Cyan, blue and red stand for 
MIES28, BOA28, PBIL28, respectively. 

  
Figure 18: PBIL on a sample ADG_based NKL with cascade2 structure. The right figure plots the 
average differences versus evaluations and the left is the errorbar. Cyan, blue and red stand for 
MIES28, BOA28, PBIL28, respectively. 

20  



  
Figure 19: The population size of BOA. Blue, cyan and red indicate BOA28, BOA80, BOA100, 
respectively.  

  
Figure 20: PBIL on a sample ADG_based NKL with chain structure. The right figure plots the average 
differences versus evaluations and the left is the errorbar. Cyan, blue and red stand for MIES100, 
BOA100, PBIL100, respectively. 

  
Figure 21: PBIL on a sample ADG_based NKL with cascade1 structure. The right figure plots the 
average differences versus evaluations and the left is the errorbar. Cyan, blue and red stand for 
MIES100, BOA100, PBIL100, respectively. 
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Figure 22: PBIL on a sample ADG_based NKL with cascade2 structure. The right figure plots the 
average differences versus evaluations and the left is the error bar. Cyan, blue and red stand for 
MIES100, BOA100, PBIL100, respectively. 

  
Figure 23: Complexity of structures: chain, bin_tree, tri_tree, inv_tree. For each structure, BOA28 is 
applied to 10 different landscapes and for each landscape, 20 runs are repeated. The results are 
averaged. On the right is the log10 plot. No big difference exists between the former three. And 
inv_tree is the most difficult to learn. 

  
Figure 24: Left figure plots the averaged differences versus evaluation for PBILbest with different σ  
from 0.1 to 0.5 with step size of 0.1. Error bar are plotted for two comparable settings ofσ , 0.2 and 0.3 
on right. 
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Figure 25: Comparison of algorithms on a sample ADG_based NKL with chain structure. The right 
figure plots the average differences versus evaluation and the left is the error bar. Cyan, blue and red 
stand for MIES28, BOA28 and PBIL28, respectively. 

We thus try larger population sizes. As Figure 19 shows, larger population results in slower 
decrease of  in the early stage but smaller f∆ f∆  in the long run. For size of 100, BOA 
reaches the global optima after about 600 evaluations. This effect of population size introduces 
more flexibility into BOA application. Based on the practical problem at hand, we can choose 
smaller population for fast convergence but large population whenever final performance is 
more crucial and more evaluations are permitted. Generally, to find the balance of the two is 
important and too small population should be avoided noticing the change of standard 
deviation in the left error bar graph. The population is similar to the effect of the learning rate 
in PBIL.  

Three algorithms with population size of 100 are then applied to the same landscapes used 
above. Figure 20-22 plot the results. BOA outperforms PBIL through most of the searching 
process. And it always finds the global optima. In the long run PBIL is comparable to BOA. 
MIES is also featured by fast convergence and we notice the convergence speed is less affected 
by the population size. 

One doubt concerning the complexity of the network structure is aroused in our experiments. 
We get the visual impression that the complexity increased from chain to bin_tree and tri_tree. 
But experiments results indicate differently. For this comparison, 10 different landscapes are 
tried for each structure and for each landscape, 20 runs are repeated. Figure 23 plots the 
averaged  from BOA and its log plot. The plot shows similar performances of BOA over 
the three structures. The results also show that the inv_tree2 is the most difficult to learn. This 
is partly contributed by the independency introduced by nodes on the first level. But 
considering the four structures all together, it is reasonable to conclude that the complexity of 
network structure is essentially decided by the parent-to-son dependency instead of others.  
There are comparable conditional dependences existing in chain and tree structures. And in 
inv_tree, some nodes are conditional dependent to two parents, which surely increase the 
complexity of the network. 

f∆

4.2.2 Continuous case 

We first study how the value of the constant variance affects the performance of PBIL. The 
landscape is fixed, generated from the chain structure. As mentioned, σ is initialized as 0.5 for 
all variables and then kept constant of different values from 0.1 to 0.5 with step size 0.1. The 
results are plotted in Figure 24. It shows the larger the constant variance, the faster it converges. 
Larger standard deviation performs better in the very early stage though margin is decreasing 
as σ  increases to 0.3 and higher. However in the long run, PBIL with smaller variance can 
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get closer to the global optima within evaluations permitted. This is not surprising and can be 
explained in this way: with largeσ , PBIL always explores a larger neighborhood thus it can 
soon locate where promising solutions locate in the whole solution space but as the newly 
generated populations are always sparsely scattered, the search of best solution is coarse and 
not well manipulated or guided, generally the optima is not likely to be found. On the contrary, 
smaller σ  tune the search deliberately. It enables PBIL to exploit the neighborhood of the 
current center (mean) carefully and once a more promising solution is found, PBIL moves to 
exploit the small neighborhood centered at it. In this way, better solutions are always less 
likely to be missed. However this does not mean the smaller thestd , the better the algorithm is 
because PBIL with smaller σ  takes larger risk of getting trapped in local optima. Given 
above-all consideration, it is important to choose σ  that can balance the converge speed of 
the algorithm and its long-term performance. We will exclude 0.1 because practically the 
number of evaluations permitted is always much smaller than 20000 and too slow progress is 
unacceptable. Furthermore, it is reasonable to consider that the latter three strategies are not 
competent compared with 0.3σ =  because the convergence do not speed up much while long 
term performance worsen obviously. As for 0.2 and 0.3, they appear to be comparable and 
exactly which one to choose depends on practical problem at hand. For example, if the 
maximum evaluation is limited to 4000 to 5000, then 0.3 is favorable while for larger 
evaluation 0.2 is expected to find more promising solutions. In later experiments, the variance 
of continuous variables in PBIL is set to 0.2. 

Figure 25 plots the averaged difference versus evaluations for three algorithms with 
population size 28.  Compared to binary case, it seems more difficult to achieve progress. 
And BOA is obviously better than the other two, either in term of the fast convergence in the 
early stage or the performance in the long run. Due to the huge computational complexity 
introduced by interpolation, we did not carry out further experiments with larger population 
size or more complex structures.  But we can image that even for BOA100, it is not likely to 
find the exact global optima which lies in the corner of hypercubes.  

Another point we would like to mention is that there are some variants of PBIL available for 
continuous case (so is for discrete case). They all try to improve the algorithm by employing 
different selection strategy or introducing new or well-polished updating rule. PBIL2-1 is 
among them. It introduces an updating rule formulated as: 

          (15) mean = (1- LR) * mean + LR * (best_1+ best_2- worst)
Where best_1, best_2, worst represent the best two and the worst individuals in current 
generation, respectively. So the updating rule means the center of the contribution is updated 
from the two best and the worst individuals in current generation. Figure 26 plots the 
performance of three algorithms on chain structure. The population sizes are 28 for all. It 
shows PBIL2-1 outperforms PBILbest all through the search.  Its superiority over PBILbest is 
fully expected because it employs more advanced updating rule which takes three individuals 
instead of one, namely more information available, to guide the searching. Furthermore, it 
incorporates not only positive but also negative learning by pushing the searching toward the 
best two individuals and away from the worst. Another factor contributing to the performance 
of it isσ . Actually we compute σ  as the standard deviation of the selected three individuals, 
the two best the worst, thus it is always large until the algorithm converges. Maybe that is why 
it outperforms BOA in the long run. It is effective dealing with continuous optimization. 
However, considering the difficulty of its implementation in mixed-integer case we will not 
exploit it further since our ultimate objective is mixed-integer optimization.  
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Figure 26: Comparison of PBIL2-1, BOA and PBILbest on a sample ADG_based NKL. The population 
size is 28. Black, blue and red indicates PBIL2-1, BOA and PBILbest, respectively. PBIL2-1 
outperforms BOA in the long run. 

4.2.3  Mixed integer case 

We then managed to apply algorithms on MI-NKL. Still 15 variables are considered, 5 for each 
type. The implementation of algorithms has been described in Chapter 2. Parameter settings 
are the same as in previous experiments.  

Figure 27-32 are results for six sample landscapes, each with a different structure. Two 
different population sizes, 28 and 100, are tried. The first impression is PBIL is less 
competitive than it is in binary case. It proves that best setting for uni-type case is not 
necessarily favorable for mixed-integer problem because variables are not independent to each 
other. The finding of optimal solution is more than optimizing each gene or even each type of 
genes independently. Moreover, the PBIL strategy employed is far from being complete. 
Actually PBILbest we use is the very original PBIL. Many updated selection strategies and 
advanced learning rules have been proposed ever since but we do not take them into our 
experiments. This is partly due to the consideration of difficulty of implementation. What’s 
more, our objective is not demolishing the algorithms but to compare the basic ideas and 
essential mechanisms of them.  

Increasing population size has different effects on three algorithms. As MIES and BOA both 
are featured by fast convergence, with larger population size BOA makes much more progress 
in the long run but the performance of MIES does not definitely improve. Of course 
convergence slows down a little for BOA100. BOA100 also witness dramatic decrease of 
standard deviation in the error bar plot which indicates higher reliability of solution found in 
one trail. Note that BOA28 fails for structure cascade2. Remember more complex structure 
requires larger amount of individuals to learn. Actually we expect to witness better 
performance if increasing the population size further and better, more reliable solution can be 
found. 

We also did some statistics on different structures. For each structure, algorithms with different 
sizes are applied to 20 landscapes. With each fixed landscape we do ranking on the six 
strategies according to after certain numbers of evaluations and the ranking are then 
averaged over 20 landscapes. Table 2 lists the average ranks and Table  sums up the ranks for 
all structures. 

f∆

From Table , we observe the absolute superiority of BOA and incompetence of PBIL. Two 
BOA strategies generally rank the top two and PBILs appear to be the bottom two, mostly 
ranking as the ‘5’ or ‘6’. MIESs are in between. 
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Figure 27: Comparison of algorithms on a sample ADG_based MI-NKL with chain structure. The upper 
row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.   

  

  
Figure 28: Comparison of algorithms on a sample ADG_based MI-NKL with bin_tree structure. The 
upper row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.  
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Figure 29: Comparison of algorithms on a sample ADG_based MI-NKL with tri_tree structure. The 
upper row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.  

  

  
Figure 30: Comparison of algorithms on a sample ADG_based MI-NKL with inv_tree structure. The 
upper row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.  
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Figure 31: Comparison of algorithms on a sample ADG_based MI-NKL with cascade1 structure. The 
upper row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.  

  

  
Figure 32: Comparison of algorithms on a sample ADG_based MI-NKL with cascade2 structure. The 
upper row plots the average differences versus evaluations and errorbar (left) for three algorithms with 
population size 28. Figures on the second row are for population size of 100.  
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Table 3: Ranks and sum of ranks from Table 2. 

1000 eval. 2000 eval. 5000 eval. 10000eval. 20000eval. Algorithm 

Ranks  ∑  Ranks  ∑ Ranks  ∑ Ranks  ∑  Ranks  ∑ 

PBIL28 555565 31 555555 30 555555 30 353545 25 354655 28 

PBIL100 666656 35 666666 36 666666 36 666666 36 666546 33 

MIES28 222222 12 313333 16 433334 20 434334 21 223323 15 

MIES100 444444 24 444444 24 344441 20 545452 25 545462 26 

BOA28 111111 6 231111 9 221223 12 222223 13 432234 18 

BOA100 333333 18 122222 11 112112 8 111111 6 111111 6 

 

And the difference resulted from population size is notable. For PBIL, the increase of 
population size does not make improvement. Actually PBIL100 ranks the lowest all through the 
process. As for MIES, it turns out that MIES28 performs better than MIES100. This matches the 
observation in [20]. BOA28 ranked the first after 1000 evaluations and still on top of others for 
most of the structures after 2000 evaluations. This is due to the fast learning and convergence 
property of BOA. Then BOA100 gradually takes the first position. And after 10000 evaluations, 
it outperforms all others until the end of the searching. With enough sufficient samples, BOA 
managed to capture the conditional decency between genes of promising solutions instead of 
searching the whole space blindly like the other two so that it finds good solution in the end. 
But large population size inevitably slows down the convergence therefore BOA100 at the early 
stage ranks lower than BOA28. This trade-off between convergence speed and performance in 
the long run has been studied in previous sections. 

Despite of the prominence of BOA, MIES28 can not be neglected. Based on the ranking tables, 
its performance is sort of between BOA28 and BOA100. It also features by fast convergence. At 
1000 evaluations, it ranked merely after BOA28, even over BOA100. All through the later 
searching, it is comparable to BOA28 and even ranks slightly higher than BOA28 in the end. 
Imagine for additive problem or problems without obvious conditional dependency, it is 
doubtable which one is a better choice. 
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Chapter 5 Summary and Outlook 
We work on utilizing Estimation of Distribution Algorithms to do mixed integer optimization 
with known structure of gene dependences. MI-PBIL and MI-BOA, together with MIES, have 
been applied to artificial test problem: ADG-based MI-NKL, mixed-integer NK Landscapes 
with gene dependences structured as ADGs. MIES and PBIL work under the assumption of 
gene independency so they are incapable of grasping the dependences between variables. 
Experiments shows BOA can capture the dependency between genes soon after the searching 
begins. However the population size is crucial. By manipulating it, trade-off can be made 
between the convergence speed and performance in the long run. Generally for more complex 
structures, more individuals BOA requires to learn the dependency. Furthermore, larger 
population size increases the reliability of the solution found thus is favored in practice. 
Altogether BOA is promising for practical problems which feature ADG-structured 
dependences between multi-type variables. 

However there is still much to do in the future. In terms of algorithm development, PBIL has 
been extended to mixed-integer case but is still far from being complete. Actually experiments 
show it is much less competitive even than the well-polished MIES for mixed-integer 
optimization. Though theoretically it is incapable of dealing with gene interaction, just like 
MIES, it can be well developed for optimization problems with tight building blocks or 
elsewhere BOA can not work. Improvement can be made with respect to selection strategy, 
updating rule and parameter settings. Furthermore, we can assume different model for the 
continuous variables like the histogram-based model in [1]. Besides, the treatment of integer 
variables is still under discussion. 

As of BOA, more statistics can be done on its parameter setting, especially the population size. 
It is meaningful to find out the ideal population size for different problem size and the 
relationship between the two. There are other factors affecting the complexity of the problem 
such as the number of possible values taken by discrete variables. To find out whether and how 
it affects the ideal population size and to compare it to other competitive algorithms are 
important for its practical use. Moreover, insight into its running time behavior is important 
for algorithm evaluation too. Besides, remember Bayesian learning can be done in terms of 
both parameters and structures. As we did not learn the structure in this work, its 
performance on problem without known structure is up to further study.   

As BOA turns out to be effective and robust, it has limitations of itself. It is incapable of 
learning the dependency of discrete mode on its continuous parent(s). Therefore we have to 
use discretising techniques for the continuous variable, which not only results in larger 
conditional probability tables and slow-down of the learning process but inevitably introduces 
error. Meanwhile, using Gaussian distribution as an approximation of symmetrical geometric 
distribution for integer variables leads to bias too. If these problems can be addressed in a 
better way, BOA will be functional solving real-world optimization, either uni-objective or 
multi-objectives. 

 

 

 

 

 

 



Abbreviations and symbols 

Table 2: Abbreviations and symbols 

Abbreviation Full name 

ADG acyclic directed graph 

ADG-based NKL ADG-based mixed integer NK landscapes 

BOA Bayesian optimization algorithms 

EDA estimation of distribution algorithm 

GA evolutionary algorithms 

MI-NKL mixed integer NK landscapes 

MIES mixed integer evolutionary algorithm 

MI-BOA mixed integer BOA 

MI-PBIL mixed integer PBIL 

NKL NK landscapes 

Symbol Variable name 

α  learning rate (LR) of PBIL  

L  the number of possible values for discrete variables 

m  Mean of Gaussian distribution 

σ  Standard deviation of Gaussian distribution 

µ  population size 

λ  number of individuals selected  

f∆  difference between best fitness found and the global minimum 

K Interaction level in NKL 

N Problem dimension 

F(x)  Fitness of genotype  over NKL x

iF (x) Fitness contribution of gene  i

c c[min , max ]  Boundary of continuous variables 

rn , z n , dn  Number of continuous, integer and discrete variables, respectively 

nσ ,
nζ , pn

 
Number of strategy parameters for continuous, integer and discrete 
variables while rn nσ = means single step-size for continuous variables. 
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