
How Rules Determine the Operator
Analysis of Water Height Prediction

Alexander Nezhinsky

October 31, 2007

Abstract

The project concerns water height prediction by the Rijkswaterstaat employ-
ees. The employees predict the water height based on some rules. We want
to find out by which rules an employee can be identified. We use a validation
set corresponding to some unknown employee. We find out how we can use
the association rules to retrieve which operator the validation set represents.
In our main approach we use association rule properties such as confidence
and lift to calculate the chance that a given validation set corresponds with
a given operator. Over 70% of the tested sets could be successfully retrieved
with this approach.

Chapter 1

Introduction

This research was done for Rijkswaterstaat (RWS), the Dutch government or-
ganization for water management. The project that was proposed concerned
water height prediction by the RWS employees. Different kinds of data are
available, from which the operators predict the waterheight. Can we recognize
the operator (employee) by looking at his/her prediction of the waterheight?
We try to solve the problem by the use of data mining approaches. As a
general reference for datamining we refer to [7].
First we look at the creation of association rules from these data for each op-
erator. This is done by the use of an Apriori [1] like algoritm. The database
used is provided by Rijkswaterstaat. We will try to retrieve only those rules,
that actually matter for operators decision.
Then, after a list of rules is created for each operator-place combination, we
want to test the usability of these rules. To do this we try to retrieve the
operator (and perhaps the location) that belongs to some dataset by looking
at its association rules.
The research was done as a master thesis for Computer Science at Leiden
University. This thesis is supervised by dr. Jeannette de Graaf and dr. Walter
Kosters.

1

Chapter 2

Definitions

In this section we will give all necessary definitions. For a given database of
events (records), we will define association rules. Then we will explain the
meaning of the terms support, confidence, expected confidence and lift.

2.1 Items and itemset

Items are units. In our case items are variable values such as ”waterheight is
low”. Multiple units build up an itemset.

2.2 Association rule

An association rule is an implication consisting of two parts, the rule body
and the rule head. The rule body consists of items which together implicate
the rule head. The rule head is also called antecedent, the rule body is called
consequent. For example, consider the following association rule: {ab} implies
{c}, for brevity {ab} → {c} (with elements a, b and c) or even ab → c. In
this case the items a and b together form the rule body. The item c is the
rule head.

2.3 Support

The support s of an association rule indicates how often a certain rule is en-
countered, considering all the records from a dataset. The support of a rule

2

is in fact the support of the underlying itemset, containing the rule body and
the rule head. This value is usually expressed as a percentage. The support
value is calculated in the following way: the number of records containing
the itemset divided by the total number of records. For example consider the
following data set:

abc
dc
de
dc

The support of the rule ab → c equals the support of the itemset {a, b, c},
and is then

s({ab} → {c}) = 1/4

2.4 Confidence

The confidence of an association rule is a value that indicates how likely it is
that the rule body implies the rule head if we consider all the records which
contain the same rule bodies. For the calculation of the confidence conf for
a rule r we must divide the support of r by the support of its rule body. For
example, consider the following dataset:

abc
dc
de
dc

The confidence of d→ c is

conf ({d} → {c}) = s({d} → {c})/s({d}) = (2/4)/(3/4) = 2/3

This means there is a chance of 2/3 that if a record contains d it also contains
c.

3

2.5 Expected Confidence

The expected confidence exp of a rule is the confidence value that a rule
would have if the rule head and the rule body were in fact independent. It
can be calculated by multiplying the support of the rule head with the sup-
port of the rule body and after that dividing by the support of the rule body:
exp(rule) = s(head) ∗ s(body)/s(body). Since s(body) can be removed from
the formula, the expected confidence can be calculated by simply looking at
the support head s(head). Again, consider the example:

abc
dc
de
dc

The expected confidence of the rule d→ c is

exp({d} → {c}) = s({c}) = 3/4

2.6 Lift

Another important measurement is the lift. Lift indicates the amount of
statistic independency of the rule body and rule head. If the rule is completely
random then the lift will be 1, since then the combination of rule body and
rule head is found as often as expected. If the lift is lower then 1, this means
that rule body and rule head appear less often together than expected. If the
lift is larger than 1, this means that rule body and rule head appear more
often together than expected. The lift can vary between 0 and infinity. The
lift is calculated as follows:

lift(rule) = conf (rule)/exp(rule) =

= conf (rule)/s(head)

In our case the rule head is always one of the five values, while the rule body
can be anything, so often the lift is just slightly higher than 1 for the rule
heads, that are often encountered. The lift is often higher for the rule heads
that are not often encountered.

4

Chapter 3

Creating association rules

3.1 Place and operator

The places for which data files are available, are the places in the Netherlands
which have a collection of measurement utilities and where the water height
and other factors are measured and recorded.

The people who predict the water height values for each of the places are
called operators. Operators have several kinds of different data they can ac-
cess and use these and their knowledge of different situations for their predic-
tion. The data include, i.e., current measurements of the water height, wind
direction and speed.

The operators can also consult several water height prediction algorithms,
that are running at different places. These algorithms are Sobek, CSM8, Neu-
ral Network. Not all of these algorithms are running in all places considered.

Besides looking at the measurements and the prediction algorithms, the main
part of the operators job is to make his or her own judgement of the situation
and decide which data to use for prediction. The quality of each operator
prediction is recorded in the datafile. The better the operator’s prediction
matches the actual water height, the lower the prediction error. The two
possible errors in the prediction are overguess and underguess. We speak of
overguess when the value predicted by an operator is higher than actual wa-
ter height. We speak of underguess when the value predicted by an operator

5

is lower than actual water height.

The number of operators considered in this project equals 7. The opera-
tors are numbered 2 till 8. The records for operator number 1 did exist, but
this number was used as an alias by different operators, who were not logged
in as themselves, and thus unusable for this project.

For all the places at a certain timestamp only one operator is working. When
he or she is done with his or her shift, the shift of another operator starts.

The rules we are going to search for are always matching a certain oper-
ator at work at a certain place. An operator is unlikely to use the same rules
for all the places he has worked at, since different influences are present at
different places. We introduce the therm PlaceOperator, which represents an
operator-place pair, and can later be used to identify the connection between
a rule and such a pair. For abbreviation we will use the notation po.

3.2 Explanation of the variables

The creation of association rules will be described in this section.

The database that was initially provided by RWS consisted of raw data cor-
responding to different variables, measured on certain time intervals. The
database files that were provided by RWS are the records of the measure-
ments for 7 places. The different places and their abbrevations used within
the database are shown in the following table:

DENH Den Helder
DLFZ Delfzijl

EPL Europlatform
HA Harlingen

HARL Haarlem
HVH Hoek van Holland
YMD IJmuiden

Data files are available for all 7 locations on the time interval between Octo-
ber 2005 and November 2006. For 4 of these locations (HVH, HA, YMD,EPL)

6

also the data files are given on the interval between January 2005 and Octo-
ber 2006. For operators 2 and 4 the prediction values are not reliable for the
locations DENH, HARL and DELFZ.

For each place a datafile that consists of multiple lines is available. Each
line represents a certain timestamp and consists of values for different vari-
ables.
Each dataline consists of 20 different variable values written in sequence and
delimited with single spaces. Each variable has a different meaning. Here is
a table with a short description of the variable meanings.

Number Variable Example value
0 low water or high water 1
1 operator 4
2 time 732586.1667
3 time astro 732586.625
4 time measurement 732586.6111
5 time HMR 732586.625
6 time CSM8 732586.625
7 time Neural 732586.6181
8 water 1-height astro 93
9 water height measured 115

10 water height HMR 119
11 water height CMS8 118
12 water height Neural 123
13 time difference 0.44444
14 time difference HMR 0.013889
15 HMR 4
16 time difference CSM8 0.013889
17 CSM8 3
18 time difference NN 0.0069444
19 NN 8

The above variables are used for the construction of several properties, that
will later be used as rule elements. A new database is built up from these
properties. Properties are in this context also variables, but with (very) lim-
ited number of variable values. Properties can sometimes also be gained from

7

multiple variables. We will discuss these transitions of variables into proper-
ties in more detail.

Variable 0 stands for low or high water and can have a value of 0 or 1.
It is used for the property Water height 1 which can take the values Low
water if the water level is considered to be low and High water otherways.

Variable 1 stands for operators ID. Each operator is identified by his num-
ber. In total there are 7 operators. At each time some operator is present
to predict the water height. Sometimes the ID of the operator is unknown.
The operator ID value is not used for a property. This value is to define the
filename to which the properties are written. If, for example the operator ID
equals 6, all the properties will be written to a file Operator6.txt.

Variable 2 stands for the shift starting time. The time is formatted as MAT-
LAB time. This representation means, that the time value is seen as a float
value. Date numbers are serial days where 1 corresponds to 1 January of the
year 0000. Each whole day is represented by a 1. We can easily decode each
value into our current time. For example 732678 is decoded into 1 January
2006. The next day is then 732679. The decimals are used to denote the
time of day. For example 732678.5 is decoded into 1 January 2006 12:00. The
advantage of this representation is that time is presented as a linear value,
which is more intuitive and makes calculations easier.

Variable 3 stands for Time astro. It is the time at which the astro is mea-
sured. Astro is an automated water height prediction based on the locations
of the sun, the moon and the planets. The measured water height differs from
this astro prediction, because local influences like wind speed, wind direction,
waves, etc. are not considered by astro. We do use the prediction by astro in
variable 8 to check the difficulty of the weather, but variable 3 is not used.

Variable 4 stands for the current time — time at which the actual water
height was measured. All the predicting algorithms (CSM8, Sobek, Neural)
are started at this time. We use the current time value to set the Time of
day property to either morning, afternoon, evening or night. We also use
this variable to retrieve the shift in which the current operator was working.
There are three shifts — from 22:45 till 6:45 is the night shift, from 6:45 till
15:00 the day shift and from 15:00 till 22:45 the evening shift. We set the

8

property Shift to either Night shift, Afternoon shift or Evening shift.

Variable 5 stands for the time the water height was predicted by a HMR
operator (current operator at work). HMR stands for Hydro Meteo Centrum
Rijnmond. In the future this name will be changed into HMCN, which stands
for Hydro Meteo Centrum Noordzee. This seems to be useful, but we have no
need to use this variable, since variable 14 gives the difference between this
variable value and the actual time of measurement (variable 4).

Variable 6 stands for the time at which CSM8 made the water height predic-
tion. Variable 7 stands for the time at which Neural made the water height
prediction. The information that both variables provide seems useful, but
is redundant. To see how big the delay of both prediction algorithms is we
make use of variables 16 (difference between variable 4 and variable 6) and
18 (difference between variable 4 and variable 7). The delay is how long the
algorithms were calculating the value.

Variable 8 stands for water height astro. This variable stands for the wa-
ter height value that is predicted by the astro.

Variable 9 represents the actual water height at the time defined in vari-
able 4. This variable is used for the property Water height 2 which can take
7 different values, each representing a certain water height interval.
This variable is also used together with variable 8 (water height astro) to de-
fine a boolean property called Heavy weather. When the difference between
these two variables is high it means that the weather was difficult to predict,
and thus the operator will have more difficulties with his or her predictions.
This will be the case when there is for example a hard wind. Heavy weather
is then set to true. When the weather is quiet, the predictiong is considered
easier and Heavy weather is set to false.

Variable 10 stands for the water height HMR. Water height HMR is the
water height that is predicted by the operator. This seems to be useful, but
we have no need to use this variable, since variable 15 gives the difference
between this variable value and the actual water height.

Variable 11 stands for the water height predicted by the CSM8 algorithm.
Variable 12 stands for the water height predicted by the Neural algorithm.

9

The information that both variables provide is useful but redundant. To see
how big the error of both prediction algorithms is we make use of variables
17 and 19.

Variable 13 is the time difference. It represents the time passed since the
beginning of the shift (variable 2), until the time the measurement was made
(variable 4). Variable 13 is not used for any properties.

Variable 14 stands for time difference HMR, it is the difference in time be-
tween the time an operator made a prediction and the time (variable 4) the
water height (variable 5) was measured. It represents the delay with which an
operator made his prediction. We can see how long an operator was thinking
about the prediction. We set the property Operator time to either Operator
early, Operator on time, Operator late and Operator very late.

Variable 15 is the difference between water height predicted by the oper-
ator and the actual water height, and leads to the property Operator error.
This is the most important value, since it represents the error which an oper-
ator makes in his or her prediction. The property Operator error can be set
to 5 different values. If the operator predicts a water height lower than the
actual water height, when the error is large (for more precise definition of
large and small see [5]) the property is set to Operator large under or when
the error is small it is set to Operator small under. If the operator predicts
a water height higher than the actual water height, if the error is large the
property is set to Operator large over or if the error is small to Operator
small over. If the prediction an operator makes is very close to the real water
height value, then the property is set to Operator OK. This property has no
value, if for any reason, an operator has made no measurement at all.

Varable 16 — time difference CSM8, is the difference in time between the
time the CSM8 algorithm made a prediction (variable 6) and the time the
water height was measured (variable 4). It represents the delay with which
CSM8 made his prediction. We set the property CSM8 time to either CSM8
early, CSM8 on time, CSM8 late and CSM8 very late.

Variable 17 is the difference between the water height predicted by the CSM8
algorithm and the actual water height. This value represents the error which
the CSM8 algorithm makes. The property CSM8 error is deduced from this

10

variable. Analogous to the Operator error the property can be set to 5 dif-
ferent values CSM8 small under, CSM8 large under, CSM8 large over, CSM8
small over or CSM8 OK. This property has no value if for any reason the
CSM8 algorithm has made no measurement at all.

Varable 18 stands for time difference Neural, it is the difference in time be-
tween the time the Neural algorithm made a prediction (variable 7) and the
the time the water height was measured (variable 4). It represents the delay
with which Neural made his prediction. We set the property Neural time to
either Neural early, Neural on time, Neural late and Neural very late.

Variable 19 is the difference between the water height predicted by Neu-
ral algorithm and the actual water height. This value represents the error
which the Neural algorithm makes. The property Neural error is set by this
variable. Analogous to the Operator error the property can have 5 differ-
ent values Neural small under, Neural large under, Neural large over, Neural
small over or Neural OK. This property has no value if for any reason an
Neural algorithm has made no measurement at all.

The properties that are created from the variables that are described in this
section are presented in the following table:

Property Number of values
Water height 1 2

Time of day 4
Shift 3

Water height 2 7
Heavy weather 2
Operator time 4

Operator error 5
CSM8 time 4

CSM8 error 5
Neural time 4

Neural error 5

11

3.3 Encoding values

A Perl script decode5.pl is written, to parse these raw data files into a differ-
ent format. This is done in a few sequential steps. First the user is asked to
enter the file name and the minimal support. The file that is used for parsing
can be an original raw data file that was provided by the RWS. Later, in
Section 4 after the terms learning set and validation set are introduced, it
will be shown why it is better to use only a part of this file.

Some minimal support should be selected to prevent the program from creat-
ing too many itemsets and to save running time. Since the database is quite
large the itemsets should only be considered if the items occur together more
often than a certain threshold.

Each of the variables in a line is looked at and parsed. The new format
for each variable consists solely of 0 and 1 in the new encoding.
For example, look at variable 15 which stands for Operator error. This vari-
able stands for the difference of the operator predicted water height and the
real water height that was measured at this time. This means we can see
the error an operator introduces in making his or her prediction of the water
height. We then look at the interval of the possible error values. We then
divide this interval into some small number of intervals (in this case 5 is
enough), to make the encoding of the values easier and to limit the number
of possible property values. Sometimes a variable has no value at all. In the
datafile this is denoted as ”not a number” — NaN . This means that for some
reason no measurement was done. If the value of the variable is unknown (or
in this case — no measurements), then all the encoding bits of a property
are set to 0. For example, a property with 5 values is coded into a string
with length 5. The new encoding for the different values of the property
measurement correctness can become the following:

0 0 0 0 0 - operator no measurement

0 0 0 0 1 - operator large overguess

0 0 0 1 0 - operator small overguess

0 0 1 0 0 - operator good guess

0 1 0 0 0 - operator small underguess

1 0 0 0 0 - operator large underguess

12

Note that we cannot use standard binary encoding and we can make use of
a maximum of one occurrence of 1 for each variable value. This is due for
the next step of decoding these values. We do this step for every variable,
starting at variable 0 and ending at variable 20. For different variables the
number of bits encoding its value can be different. It depends on the number
of intervals in which the range of a variable is divided. The property (new
variable) will have that number of possible values. We use one bit for each
possible variable value. For the example (Operator error) above 5 bits are
enough. But for the low or high water variable we only need 2 bits, since
water can be either high or low.

The new representations are then appended after each other in one line.
The new representation for the example timestamp (a line) will look like
this:

1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
Each line in the representation, that now consists of 0’s and 1’s, must be
represented as a collection of numbers. Each number stands for a place in
the line where a 1 was encountered. Counting of 1’s starts at place 0.
The new format for the example line shown earlier looks like this:

0 3 11 15 18 23 27 32 36 41

This line means that a 1 was encountered at place 0, 3, 11, etc.

3.4 Decoding values

The same script calls for a program called fim all [3] that finds frequent
itemsets. The fim all program has as input the file encoded as shown above
and writes a new file in which all found frequent itemsets are presented with
the number of their occurrences in the database. An output file created by
this program looks like this:

(311)

5 (4)

5 12 (2)

5 12 14 (2)

5 12 14 21 (1)

13

5 12 14 22 (1)

5 12 14 34 (2)

...

The above example can be read as follows. The sequence of numbers in
each row that are not placed between brackets is the itemset. The number
between brackets following this sequence is the number of its occurences in
the database. The very first row always consists of only one number between
brackets and represents the total number of lines (timestamps) in the data
file. In this case there are 311 lines. Item 5 occurs 4 times in the database.
Numbers 5 and 12 together occur 2 times, etc.

The support for an itemset which occurs x times in the example database
can thus be computed as s = x/311.

A certain support threshold can be set. The itemsets which have a frequency
lower than this threshold will be omitted in the output file.

3.5 Creating association rules

The creation of association rules that are presented to the user will be dis-
cussed in this section. The files that consist of frequent itemsets are used
as input for the creation of these rules. These files exist for each po (place,
operator combination). At program start the files for the selected po’s are
read. The itemsets that will be transformed to rules are those, that have a
high support and confidence value. One of the common algorithms for re-
trieving freqent itemsets that can be transformed into rules is the Apriori
algorithm.

3.5.1 The Apriori algorithm

Apriori [1] generates frequent itemsets, which are then used for the gener-
ation of the association rules.

First the 1–itemsets are generated. To do this item occurrences are counted.
We will call this the first iteration. For each next iteration i the following
applies: for each iteration i the itemsets that were created in the (i − 1)th

14

iteration Li−1 are used to generate candidate frequent i—itemsets Li. This
generation is done by joining these itemsets. A candidate frequent i–itemset
can be discarded if it contains a subset which is not present in Li−1. If an
itemset from the frequent itemset has a support lower than some threshold
value it is also discarded.

For example consider the following collection of frequent 2–itemsets L2 (for
i = 2):

L2 = {ab, bc, dc, de, ce}

We assume that the support of all itemsets in this collection is higher than
the preset threshold. We now want to construct L3. The join step applied to
L2 gives the following candidate itemsets:

{abc, bcd, bce, cde}

The itemset abc should not be present in L3, because the subset ac is not
present in L2. For the same reason bcd and bce should be removed. The
subsets of cde are present in L2 and if its support is higher than the minimal
support this itemset should remain in L3. The candidate frequent itemset L3

(for i = 3) is:
L3 = {cde}

3.6 Rule creation

In this section we will discuss how we mine the rules. We first describe the
basic algorithm, and then discuss several options to distinguishthe interest-
ing rules. First the available frequent itemsets (that are created by Apriori)
are read into memory. Here also a check is performed whether the itemset
actually contain a so–called answer item as one of the items. If an answer
item is available this itemset is marked as a possible rule. Answer values
are special values that should be present in every rule as the rule head. In
our case we are interested in the quality of operators prediction of the water
height. The five possible answer items are: Operator large under (operator
predicts with a large underguess), Operator small under (operator predicts

15

with a small underguess), Operator OK (operator predicts almost the cor-
rect height), Operator large over (operator predicts with a large overguess)
and Operator small over (operator predicts with a small overguess). Thus
the answer items are 21, 22, 23, 24 and 25 (corresponding to the 5 values
of property Operator error). If an itemset contains one of these values, the
itemset is marked as having an answer. Note that an itemset can contain at
most 1 answer item in our case.

So, for example, consider the following encoding fragment:

(311)

5 (4)

5 12 (2)

5 12 14 (2)

5 12 14 21 (1)

5 12 14 22 (1)

5 12 14 34 (2)

...

The two itemsets {5, 12, 14, 21} and {5, 12, 14, 22} contain an answer item (21
resp. 22). The possible rules, corresponding to the itemsets are {5, 12, 14} →
{21} and {5, 12, 14} → {22}.

All itemsets are read into a list. If the same itemset occurs more than once we
do not save each occurrence, but remember the number of times an itemset
occurs. After that the list is sorted. The itemsets are ordered in such a way,
that retrieving them from the list can be done with a simple binary search.

Then the itemsets from the list are read one by one. First we retrieve the
GetBodySupport(I) and the GetMinSupport(I) for each itemset I.

The function GetBodySupport(I) retrieves the support of the itemset J which
has the same items as the itemset I, but without the answer item. So
J = I\{answeritem}. For example, if we are looking at an itemset {1, 2, 23},
which occurs 4 times (s(1, 2, 23) = 4), the GetBodySupport(I) retrieves the
support of the itemset {1, 2}. Since this itemset is a subset of {1, 2, 23} its
support in this case will be ≥ 4.

The function GetMinSupport(I) retrieves the minimal support value of all

16

itemsets which have the same items as the itemset I but is missing one item
(this item can not be the answer value). For example, consider the following
itemsets that are present in the list:

{1, 23} occurs 4 times
{2, 23} occurs 6 times
{1, 2, 23} occurs 4 times
{1, 2} occurs 5 times

Suppose we want to retrieve GetMinSupport{1, 2, 23}. The itemsets we will
consider will then be {1, 23} and {2, 23}. We take the minimum of the sup-
port values of these two itemsets:

GetMinSupport{1, 2, 23}) = min(s({1, 23}), s({2, 23})) =

= min(4, 6) = 4

The rule that will be created from the itemset I is already known here, since
I contains 1 answer item. The rule r that is created from I will then be
I\{answeritem}. We compute the confidence conf of r.

conf (r) = s(I)/s(GetBodySupport(I))

Then we compute the lift of the rule r. Remember that

lift(r) = conf (r)/exp(r)

We need to retrieve the expected confidence exp first. The function GetExpectedConfidence(r)
returns exp(r). This is s(answeritem). For the itemset {1, 2, 23} the expected
confidence is the support of the answer item 23.

3.7 Reducing the number of rules

The list of rules created in Section 3.6 can become very large. There are two
options to reduce the number of rules.

3.7.1 Check Direction

The option Check Direction is one of the approaches to lower the number
of possible rules. When this option is enabled it allows us to check if the

17

conf of a candidate rule I such as {A,B} → {C} (in which C is an answer
item) is higher than the conf of any other rule containing the same items,
but with another body-head distribution of these items. If this value (let us
call it cd(I)) is true, we can say that the answer item is indeed treated as an
answer item, so the rule reads in one direction. Thus we check whether the
rule is really {A,B} → {C} and not {A,C} → {B} or {B,C} → {A}. If
the Check Direction option is enabled but does not return a true value, the
itemset will be marked as not interesting. To check the direction we use the
values of GetMinSupport and GetBodySupport :

cd(I) =

{
true, ifGetMinSupport(I) > GetBodySupport(I)
false, otherwise

3.7.2 Highest only

The option Highest only is another approach to lower the number of possible
rules. The set of rules contains rules with a different body length. The bodies
are itemsets, and for some rules these itemsets can be supersets of other rule
bodies. For example the rule {0, 34} → {25} has a body which is a superset
of the body of rule {34} → {25}.
If the confidence of a rule r1 with a rule body which is a superset of the body
of rule r2, is lower than the confidence of r2 but has the same rule head, the
rule r1 will be removed from the rule list. This is done, because only if the
confidence is higher, a longer rule will actually be interesting. For example,
consider the following list of rules and their confidences, that were found for
some po:

{34} → {25} conf = 0.571
{0, 34} → {25} conf = 0.566
{1, 34} → {25} conf = 0.576

The rules {0, 34} → {25} and {1, 34} → {25} both contain the item 34 in
their rule body. The rule body of rule {34} → {25} consists only of item 34,
and thus the other two rule bodies are a superset of this one.The confidence of
{1, 34} → {25} is higher than the confidence of {34} → {25} (0.576 ≥ 0.571)
but the rule {0, 34} → {25} has a lower confidence (0.566 < 0.571). The rule
{0, 34} → {25} therefore will be removed from the list if the option Highest
only is enabled.

18

Bringing it all together, the computation of the confidence is shown in the
following pseudo code.

procedure ComputeConfidence

inputs: L, a list filled with itemsets

for each itemset I from list L do

if I contains an answer item then do

MS := GetMinSupport(I);

BS := GetBodySupport(I);

if BS > 0 then do

I.conf = I.s / BS;

I.lift = I.conf / GetExpectedConfidence(I);

if Check Direction option is enabled then do

if MS < BS then do

mark I as not interesting

if Highest only option is on and HighestConfBody(I) > I.conf then do

mark I as not interesting

The procedure that computes the confidence ComputeConfidence is also the
one that marks the rules in the list as not interesting.

19

Chapter 4

Retrieving the operator

In the previous section we discussed the creation of interesting association
rules. After these rules are created we would like to use them for operator
retrieving. We will explain this in more detail.

The association rules were created from a set (or multiple sets) of data for
different po’s. We will call the sets used for rule creation learning sets. One
learning set is made for exactly one po. This means, that every place–operator
combination (po) has its own set. There are, thus, 7 ∗ 7 = 49 learning sets
(there are 7 different places and 7 operators).

Now suppose that there is another database which contains the same type of
information as the learning sets and was created in a similar way. It contains
the data for some po, but it was created in a different time interval. Like a
learning set, it only contains the data for some single po. We assume that we
do not know for which po this dataset was made and thus which learning set
is the matching one. We will call this dataset a validation set. Note that the
term ”validation set” is often used in a somewhat different context.

One reason for retrieving the operator number is to check the correctness
of rules we created from the learning set. The rules which are wrong, will
not be usable for correct po retrieval. If the operator can be predicted by
looking at the rules, this means, that the operator is really using them and
is distinguished from other operators.

20

Figure 4.1: The validation set and the learning sets

The number of different learning sets is quite large (49), so it might be a
good idea to limit the scope of our investigation to only a small number of
po’s (learning sets). To do this we look at a certain set of po’s, which is a
small subset of all po’s. The new set of po’s we are considering should include
the po we are looking for.

We can use a set of all operators present at only one place. The place in
this case will be fixed.

We look at a validation set for some poia (operator oa at a fixed place pi).
Though we know what the value of a is, we try to retrieve it automatically.
To do this we calculate the chances for operator oa being operator o2, oper-
ator o3, etc (at place pi). The considered learning sets are created for all the
operators at place P (since there are 7 operators, there will be 7 learning sets
considered). In this way we have 7 different po’s with one of them equal to
oa. For example, consider the validation set that was created for po42. The
identifier 42 in this context means, that it is operator number 2 working at
place 4. We use all the learning sets corresponding to the operators from
place 4 which are po42, po43, po44, po45, po46, po47 and po48.

For our tests we use multiple learning sets and one validation set. The learn-
ing sets that are used are corresponding to the po’s which all belong to a
single place. We take a validation set which is made for a known po (for the
same place as the learning sets).

21

Figure 4.2: Creation of the validation set and the learning set for po at a
fixed place i

Creation of the validation set and the learning set corresponding to one sin-
gle place for a po–combination is shown in Figure 4.2. In this case we are
considering only one place and the place is known. The datafile for a chosen
place is parsed and split up into data files for each poij (place pi operator oj).
The datafile for poij is then split into the validation set and the learning set.

To make a known validation set, which is not a subset of a learning set
we have to split the initial database file for the po we are looking at (both
place and operator are fixed) into two pieces. Simply splitting such a file in
two pieces would not suffice, since certain events can be clustered and thus
become part of only one of the two files. We traverse the initial file line by
line and write each line with a chance p to the file learningset and with a
chance 1− p to the file validation set. In this way all the lines are randomly
distributed and learningset ∩ validation set = ∅.

For splitting the file we use the Perl script splitfile.pl. A file with the name
filename is split up into two files: a filename, which consists of 1

3
of the lines

of the original file and b filename which consists of 2
3

of the lines. The larger
file b filename is used as the learning set. The smaller file a filename is used
as the validation set. We have chosen for this distribution for the following
reason. The learning set must contain as many lines as possible for better
rule construction, while it must not intersect with the validation set. The val-
idation set can be smaller than the learning set, but it must contain enough

22

examples so that as many rules as possible can be checked.

Until now we have considered different operators in only one place. Another
interesting comparison would be to choose a set of the po’s which represent
one operator, but at different places. The operator in this case will be fixed.
By looking at such a set we can compare the behaviour of the same operator
for different places. Some operator might make use of a certain rule while
working at some place, but ignore this rule at some other place. For exam-
ple, consider again the validation set that was created for po42. We can use
the learning sets corresponding to the po’s for operator 2 at all places which
are po02, po12, po22, po32, po42, po52 and po62.

4.1 Definitions

4.1.1 Rules

To make the following calculations more clear to the user we will introduce
two terms: rules and events. A rule consists of a rule body and a rule head.
The rules are calculated by the program and presented to the user. A rule is
of the form:

{b1, b2, . . . , bn} → {h1}
The length of the rule body can differ. Its length can vary between 1 and
the maximal number of variables known. The rule head contains exactly one
answer.

4.1.2 Events

An event is a line containing data that is read from some input file. It repre-
sents a state at some time t for some operator and place, po (in total 7∗7 = 49
different input files). Such an input line looks like this:

0 3 11 15 18 23 27 32 36 41

A single input file only contains events for the same po. Within an event for
all the available variables (called properties earlier) at time t the value is
given. An event is of the form:

{b1, b2, . . . , bm}

23

The number of variables in the event is always fixed. It is always set to 10
(since that is the number of different properties). The event contains exactly
one answer item. For example, an event might look like this:

{0, 3, 11, 15, 18, 23, 27, 32, 36, 41}

4.1.3 Rule Collections

The number of different rule bodies is very large, since a lot of combinations
of different items are possible. But a single rule body can have only a limited
number of rule heads. In our case there are only 5 possible answer items, so
there are 5 different rule heads possible, for each rule body.

To improve the effectiveness of looking at the rules we would like to look
at a rule body with all possible rule heads.

We introduce a new term: Rule Collection. A Rule Collection consists of
the collection of all found rules with the same body (the answer item should
be encountered at least one time). A set consisting of all the rules considered
can thus be divided into sets we will call Rule Collections. These Rule Col-
lections consist of a number of rules with the same rule body. The number of
rules in a single Rule Collection is thus equal to the total number of possible
answer items. We assume that the number of answer items for a rule is always
5. Due to the support threshold and since we only consider the interesting
rules it can occur that certain answer items are not present in the list of the
available association rules. this rules still will be in a Rule Collection, but
their confidence will be unknown.

A Rule Collection looks like this for the rule body b and all possible an-
swer items ai. In our case Rule Collections always consist of 5 rules:

C =



b→ a1

b→ a2

b→ a3

b→ a4

b→ a5

A Rule Collection is identified by the rule body b. For example, consider
the following set of rules,. We will only consider the Rule Collections with a

24

maximal number of answer items:

{2, 10} → {21}
{10} → {21}
{10} → {22}
{2, 10} → {22}
{2, 10} → {23}
{10} → {24}
{10} → {25}
{10} → {23}
{2, 10} → {24}
{2, 10} → {25}

There are two Rule Collections within this set. The first Rule Collection
can be identified by the rule body [10] and contains {10→ 21}, {10→ 22},
{10 → 23}, {10 → 24}, {10 → 25}. The other can be identified by the rule
body {2, 10}. The advantage of looking at Rule Collections instead of simple
rules is, that we can treat these rules as a single unit. This actually is true,
since the sum of all the confidences of the rules in a collection C is always 1.
In further calculations we can make use of this property.

conf (b→ a1)+conf (b→ a2)+conf (b→ a3)+conf (b→ a4)+conf (b→ a5) = 1

4.2 Choosing Rules

The program presents the user with a list of rules (these are created from the
learning set). For a fairly large database the number of these rules can be very
large. The rules have a certain confidence and lift . We assume that at this
point only the rules with a certain minimal support and lift are presented.
Not all the rules that are presented are actually interesting rules. There are a
few ways to try and locate the interesting rules and in this way decrease the
total number of rules considered. In this section we will focus on the choice
of these.

4.2.1 Combining Rules

The first thing we can do to decrease the total number of rules is combining
multiple rules into one rule.

25

For a Rule Collection sometimes not all the confidences are known for every
o (operator). But if we want to compare different rules in a Rule Collection
to each other we need to know all of these confidences. For example, con-
sider the following table, which presents the values of a Rule Collection for
the rules with body 10 for a single place. o2 till o8 are in this example the
operators. All of them are working in the same place. The values in the table
correspond to the conf of a rule for each o combination. We consider only
one place (in the table below the place id is 0).

o2 o3 o4 o5 o6 o7 o8

{10} → {21} — — 0,147 — — 0,144 —
{10} → {22} 0,128 0,144 0,168 — — 0,156 0,191
{10} → {23} 0,353 0,394 0,462 0,381 0,400 0,311 0,397
{10} → {24} 0,250 0,256 0,147 0,170 0,191 0,150 0,214
{10} → {25} 0,179 0,119 — 0,245 0,155 0,240 0,130

One way would be to guess the unknown confidences, but this would be
imprecise and has a big chance to lead to erroneous answers.

Let us look at how these unknown confidences can occur and how they can
be retrieved. Unknown confidences are present for a rule if the rule has no
occurrences for this po or if the support (or lift) of the rule is lower than the
threshold. If the rule indeed never occurs the confidence should be 0. The
support threshold is set outside the application. It is set in the step when
the raw data is parsed into the data used by the application. Therefore, if
a confidence is not present due to support being lower than this threshold,
this can not directly be seen in the data.

The way to find out what the confidence of an empty cell is, is to look at
the other rules in the Rule Collection and their confidences for the same po.
We know that the sum of these should always be 1. This was already shown
in the definition of a Rule Collection. Therefore, for instance the following
holds:

conf ({10} → {21}) + conf ({10} → {22})+

conf ({10} → {23}) + conf ({10} → {24}) + conf ({10} → {25}) = 1

26

If only one of these values is unknown for a o, it can easily be calculated.
In the example the confidence of {10} → {25} for po04 is:

1− (0, 147 + 0, 168 + 0, 462 + 0, 147) = 0, 076

The answer is not 0, which means that the support threshold of the rule was
just too low. If more than one of the values is unknown for a o, it is more
difficult to calculate the unknown confidences. We can, however, calculate
the confidence of the occurrence of these rules together, which is the sum
of these confidences. In the example there are 2 unknown confidences for
o5: {10} → {25} and {10} → {21}. We can calculate the confidence of
{10} → {21 ∨ 25} (a rule with a body 10 and a head which contains 21 or
25). This confidence is :

1− (0, 381 + 0, 17 + 0, 245) = 0, 204

Comparing rules to each other is difficult if for some po the confidences are
not known for all of these rules. Therefore, if at least one o shares its confi-
dence with another rule, these two rules should be seen as one rule (but with
multiple answer item possibilities) for all po’s. In our example this means
that the rules {10} → {21} and {10} → {22} must be combined into one
rule {10} → {21∨22}. For the sake of simplicity all rules which have at least
one unknown confidence are combined (so in our example, also the rule with
answer 25 is combined, although in this case the missing value could have
been computed). Thus, the new Rule Collection table will look like this:

o2 o3 o4 o5 o6 o7 o8

{10} → ({21} ∨ {22} ∨ {25}) 0,397 0,350 0,392 0,449 0,409 0,539 0,389
{10} → {23} 0,353 0,394 0,462 0,381 0,400 0,311 0,397
{10} → {24} 0,250 0,256 0,147 0,170 0,191 0,150 0,214

In short the algorithm for computing rule confidence for rule r works as
follows. We find all the rules which are in the same Rule Collection as r. If
these are found, we check each of them for completeness (a complete rule has
no unknown confidences for the po interface we are considering). If the rule
is incomplete, the incomplete fields are calculated as described before by the
use of other, complete rules. A new table is created for the Rule Collection
with the combined rules. This table contains no fields with unknown confi-
dences.

27

The program has a Combine conf option, which enables combination of the
rules in the way described above.
With the Combine conf option switched on, the number of rules is reduced.
This is due to the combination of multiple rules into one.

It also becomes more clear which rules are of no use to us. If, for exam-
ple, after combination all the rules in a collection are combined into one rule
the rule will always be true (confidence of 1) and thus not interesting (for
example {10} → {21∨ 22∨ 23∨ 24∨ 25}). It is also possible, that after com-
bination rules get combined confidences, that do not differ a lot from each
other. For example if the new table consists of the following 2 rules for some
po: {10} → {21 ∨ 22 ∨ 23 ∨ 24} with confidence 0.5 and {10} → {25} with
confidence 0.5. Then the rule is perhaps also not interesting.

4.2.2 Choice based on lift value

Interestingness of a rule is mainly determined by its lift value. It is important
to look at only those rules that are actually interesting and therefore we set
a minimal lift threshold. Lift threshold can be applied for the rules which are
not combined.

4.2.3 Lift modification

The number of possible rule heads is only 5 for our database. But each
rule head is not encountered with the same frequency for each po. Some
are encountered more often than others. For example in most operator data
answer 25 is encountered with a frequency of about 0.3, while the answer
value 23 has a frequency of around 0.05. The lift values can then fluctuate.
Lift is calculated as:

lift = conf /exp

Because confidence can have a maximum value of 1, the maximum value of
lift can be:

liftmax = 1/exp

With fluctuating expected confidence the value can differ a lot for different
answer values. It makes comparing rules on lift with different expected con-
fidence values very difficult, because the lift value is not equally distributed.

28

We would like to give all the lift values the same interval, therefore we in-
troduce a new measurement function which we call λ. λ is a normalization
function of lift and will be used as a replacement for lift.
We want to give λ a maximum value of 1, and a minimum of 0; 1 means
interesting, 0 means not interesting.

We will use conf for rule confidence and exp for the expected rule confi-
dence. For conf /exp ≥ 1 we will use the following formula:

λ =
conf /exp − 1

1/exp − 1

We also need to define λ for the case where conf /exp < 1. In this case lift
is always between 0 and 1, so we only need to flip the value (we want 0 to
stand for not interesting and 1 stand for interesting):

λ = 1−mathitconf/mathitexp

Putting all the above rules together:

λ =

{
conf /exp−1

1/exp−1
, ifconf /exp ≥ 1

1− conf /exp, if0 < conf /exp < 1

We can now set a minimum λ for our algorithm. We can select to show
only those rules with a λ above a certain threshold.

4.2.4 Lift threshold for a rule

Until now we looked at the lift value of a single rule at a certain po. For
our calculation we want to filter out interesting rules by looking at their lift
(we are looking at the rules created by the learning set). The lift value can
of course differ a lot for different po’s, but in general the really interesting
rules will have a relatively high λ value for most po’s. This is important for
us, since we compare the validation set events with all the available po’s (in

29

our case all po’s at a certain place). Thus, the best way to look at lift is to
look at the average value of λ. Before the parsing process starts the user can
select a minimal λ value. If the average λ value of a rule is below this value,
this rule will be considered as non interesting. The formula for computing λ
for some rule with m po’s at place 0 is:

λ(rule) = (λpo01(rule) + λpo02(rule) + . . .+ λpom(rule))/m

4.3 Approach 1: Computing weights for each

po

In this section we will in short describe the process of operator retrieval for
a given learning set and a validation set. We will assume that the place P
for which the test is done is fixed. As a validation set we will use some event
sequence E. We want to retrieve by which operator E was created.

In the previous section we have described multiple approaches to find in-
teresting rules from a learning set. Let us assume that we now have a list of
association rules that are all considered to be interesting. We will use these
rules for further calculations. We will look at each Rule Collection in the
association rules list.

Suppose we are looking at the Rule Collection R. R has the confidence values
that are given for each of the rules inside R and each of the 7 operators that
are working at P . We use these values to assign a certain weight for each R–
E–operator combination (for each of the 7 operators). The higher the weight
value for a certain operator x is (for the R–E combination), the higher the
chance that E defines an operator x under the consideration of R.

The calculation of the weight is explained in more detail in the following
sections.

After we have calculated the weights considering R, we also calculate the
weights for other available Rule Collections. The combination of these weights
will then be used for operator prediction.

30

A Rule Collection can contain combined rules. The confidence of combined
rules is calculated as described in Section 4.2.1. A Rule Collection is con-
sidered interesting, if at least one rule of this Rule Collection is considered
interesting. For example, consider the following Rule Collection that is found
to be interesting for some po:

{10} → ({21} ∨ {22} ∨ {25}) (a combined rule)
{10} → {23}
{10} → {24}

The weight will in this case be calculated for the Rule Collection which
is identified by the body {10}. If for example rule {10} → {23} would not
be an interesting rule but the others are, the Rule Collection {10} remains
interesting (because at least one other rule with a body {10} is interesting).

When we have identified an interesting Rule Collection C for some po we
first must check if the Rule Collection is also interesting for all other po’s
that will be considered for weight computation. This is important, because
we will want to make sure all the po’s are equally depending on the rules. For
example, if we are considering only the place HVH then the Rule Collection
must be interesting for all operators (2 till 8) that are working at HVH. If
that is true we can use it to compute the weight for a sequence of events
E for each po. The weight for E – C – pox is computed by considering only
those events from E that contain the items which are also inside the body of
C, and one item which is an answer value (21,22,23,24,25).

For example, consider a seqence of events E (for an unknown po–combination
with a known place):

{0, 3, 10, 16, 19, 22, 28, 31, 36, 41}

{0, 3, 12, 15, 18, 25, 26, 32, 36, 41}

{0, 2, 10, 15, 17, 23, 27, 32, 36, 42}

{0, 3, 11, 15, 18, 21, 27, 31, 35, 41}

{1, 3, 11, 15, 18, 25, 27, 32, 36, 41}

{1, 3, 11, 15, 18, 24, 27, 32, 36, 42}

31

{1, 2, 11, 15, 18, 24, 26, 31, 35, 42}

{1, 3, 10, 15, 18, 25, 27, 32, 35, 42}

If we want to compute the weight for E for different po’s for the Rule Col-
lection which is identified by the body 10 we get the following updated event
sequence Enew (we only consider the events which contain item 10):

{0, 3, 10, 16, 19, 22, 28, 31, 36, 41}

{0, 2, 10, 15, 17, 23, 27, 32, 36, 42}

{1, 3, 10, 15, 18, 25, 27, 32, 35, 42}

We then assign a weight wpoi
to Enew for each considered poi. We calculate

the weight by comparison of Enew with the Rule Collection for each po.

4.3.1 Weight computation for one event

Let us first look at retrieving the chance of an event sequence being some
po for Rule Collection C, when the event sequence consists of exactly one
event e. We can treat this chance as a weight. From this event we will only
consider the items that are also present in C and the answer item.

For example such event e sequence might look like this:

Enew = {0, 3, 10, 16, 19, 22, 28, 31, 36, 41}

Suppose that the Rule Collection C has the body {0, 16}. Then only the
items {0, 16, 22} from e will be considered. We need to know the confidences
for all rules in the Rule Collection C.

Suppose A and X are some stochastic events. For a given rule r (body →
head) the event A means that the rule holds. P (A|X) stands for the chance
that A happens if X happens. Consider a rule A. The confidence of the rule
A for some operator X at work will be treated as the chance P (A|X). In this
section we will only consider 7 operators working at a fixed placed place. We
assume that all operators are working equally often at place p. The chance
for an operator at work at a certain time is thus the same for m po’s.

P (pop1) = P (pop2) = . . . = P (popm)

32

P (A) can be computed as the sum of all chances related to A, divided by the
total number of po’s m.

P (A) =
m∑

i=1

P (A|oi)/m

P (B) =
m∑

i=1

P (B|oi)/m

P (X|A) stands for the chance that operator X is at work when the rule
r holds. P (X|A) can now be computed with the use of the Bayes’ theorem.
The Bayes’ probability theorem looks like this:

P (X|A) =
P (A|X)P (X)

P (A)

Let us consider an example. The following table with confidences is given:

po X po Y

rule A 0.6 0.1
rule B 0.4 0.9

The different o’s are denoted here by X and Y . In this example we assume
that there are no other o’s. Two rules that are excluding each other are de-
noted by A and B. The rules A and B together form a Rule Collection that
contains only two rules.

We assume that both operators (X or Y) are working equally often (place is
fixed).

P (X) = P (Y)

P (X) + P (Y) = 1

P (X) = P (Y) = 1/2

Consider the confidences for the rules A and B for operators X and Y , that
are taken from the table:

P (A|X) = 0.6

P (A|Y) = 0.1

P (B|X) = 0.4

33

P (B|Y) = 0.9

The formula for computing P (A) and P (B) is:

P (A) = P (A|X)P (X) + P (A|Y)P (Y)

P (B) = P (B|X)P (X) + P (B|Y)P (Y)

For the example this gives:

P (A) = (0.6 + 0.1)/2 = 0.35

P (B) = (0.4 + 0.9)/2 = 0.65

Suppose we are considering a single event which contains the rule body and
the rule head of A. The chance that operator X is at work if such an event
happens is:

P (X|A) =
P (A|X)P (X)

P (A)
=

0.6 ∗ 0.5

0.35
=

6

7

and analogous for event which contains the rule head and the rule body of
Y :

P (Y |A) =
P (A|Y)P (Y)

P (A)
=

0.1 ∗ 0.5

0.35
=

1

7

Since always either Y or X is valid, also the following is true:

P (X|A) + P (Y |A) = 1

We can check it for our case:

P (X|A) + P (Y |A) =
6

7
+

1

7
= 1

In the above example we considered the operators working at a fixed place.
If we consider a fixed operator at work at different places the calculations
are done analogously.

34

4.3.2 Chance computation for event sequence

In our case test files contain not one event, but a sequence of events. We only
use itemsets from events which match the Rule Collection body and have
an answer item. Now let us look at how the chances are calculated if more
than one event happens in sequence. For example we are matching an event
set against the Rule Collection with body {8}. The event set contains the
following itemsets which are matching the rule body and contain an answer
item.

{8, 21}
{8, 21}
{8, 24}

We will denote this itemset sequence (which can also be seen as a sequence
of rules) as AAB. We assume that there are only two operators, which are
X and Y . What is the chance, it will be X? We assume that A and B are
independent, so the order in which they happen does not matter (AAB is
treated in the same way as ABA and BAA). The main step is the same as
described previously (use Bayes’ theorem):

P (X|AAB) =
P (AAB|X)P (X)

P (AAB)
=

=
P (A|X)P (A|X)P (B|X)P (X)

P (AAB)

Here we assume that A and B are independant from each other, given X:

P (AAB|X) = P (A|X)P (A|X)P (B|X)

Calculating P (AAB) is more difficult. Analogous to the calculation of P (A)
(as described before) we get:

P (AAB) = P (AAB|X) ∗ P (X) + P (AAB|Y) ∗ P (Y) =

P (A|X) ∗ P (A|X) ∗ P (B|X) ∗ P (X) + P (A|Y) ∗ P (A|Y) ∗ P (B|Y) ∗ P (Y)

The above formula is created for 2 operators and 3 rules (or itemsets). For a
large number of operators or rules this formula will be very long. However, if

35

we are comparing different operators for the same event sequence, and want
to see which one has higher chance it is enough to calculate only the numera-
tors of the fraction, and compare them to each other. The largest numerator
is equivalent to the highest chance. This can be done, because the denomina-
tor is a constant for the same event sequence. Thus, in the above example, we
only need to determine the value of P (A|X)P (A|X)P (B|X)P (X). For dif-
ferent operators we can simply normalize the retrieved nominators to retrieve
the actual chance.

4.3.3 Correcting the answer

When we have computed the weights (product of the chances) for a certain
Rule Collection over all events from the validation set we expect that the
highest weight value gives us the correct o. This will not always be the case.

One reason for this is that the rule chosen for comparison is actually still
not correct or totally valid. The incorrectness might be because there was
not enough data in the learning set or the rule was incidental. There is very
little that can be done to remove incidental rules. Rules that are created with
not enough data can be ignored by increasing the support threshold.

Another reason is that for some po’s the same rules can behave similar. This
means the following. If two or more rules from the same Rule Collection have
the same confidences for poi and poj, then they can not be distinguished for
this Rule Collection.

For example, look at Figure 4.3. It represents the graphs of confidences for
different po’s for a Rule Collection R (for a certain place p).

It can clearly be seen, that the shape of the graphs for po2 and po4 are
rather similar, while the shape is different from po3, po5, po6, po7, po8. po3,
po5, po6, po7, po8 also all have approximately the same shape, but for in-
stance po3 and po5 differ more from each other, than others. Because po2 in
the graph looks a lot like po4 we can not decide which of the two it is if po2

is guessed to be the correct po. But we can almost certainly say that if the
program guesses po2 to be the correct po, the chance for po3, po5, po6, po7,

36

Figure 4.3: Comparison of confidences for different po’s for a Rule Collection
(for a certain place)

po8 to be the correct po is very low. The term ”looks like” we use in this
context is for now rather vague and seems to be intuitive, but we will make
the definition more precise by determining the distance between operators
(po’s) in the next subsection.

4.3.4 Distance between operators

One approach to see if the po answer curve for a certain Rule Collection
looks a lot like the curves for other po’s is calculating a distance between the
different po’s for that Rule Collection.

The distance between two operators for some Rule Collection at a fixed
place (or in general different po’s) is computed in the following way: we com-
pute the square of the difference between the confidences of the rule r for
both operators. Then we sum up the computed distances from rules inside
the Rule Collection (5 rules: r1,r2,r3,r4 and r5). Since we are doing the test
for a certain place, we consider 7 po’s which are available for this place. We
compute the distance between po x and y for a certain Rule Collection with

37

the following formula:

distancep(x, y) =
5∑

i=1

(conf xp(ri)− conf yp(ri))
2

We use the square for two reasons: to make the distance always positive and
to improve the distance measurement (small differences will remain small,
bigger ones will be larger).

The computed distances between the po’s are compared to some threshold
value. A 2–dimensional array is created with all po–distances for a single Rule
Collection. If the distance between poa and pob is smaller than a user preset
threshold, then the corresponding array element is set to true. We calculate
each distance. Later on this table is used as a reference to find similar po’s.

For only three example po’s such table might look like this:

po1 po2 po3

po1 — 0.1 0.5
po2 0.1 — 0.4
po3 0.5 0.4 —

If the user has set the minimal threshold to 0.15, then the new reference table
will look like this.

po1 po2 po3

po1 false true false
po2 true false false
po3 false false false

From this table it can be seen that only po1 looks like po2 (and the other way
around). This information can be used in the following way. If the program
predicts for some events that po1 is the correct po, automatically also po2

becomes a guess. If po3 is a prediction — no other events are selected.

What we have seen in this subsection is that not all the answers (po pre-
dicted by our algorithm) can be equally trusted. The answer can give an
indication which set of po’s contains the best predictions.

38

4.3.5 Finding best match

In the previous sections we have described how to compute the weight for
one Rule Collection C and how to choose the candidate po (or multiple can-
didate po’s). In this section we will focus on how to predict candidate po’s
for multiple Rule Collections.

Predicting the po by looking at only one Rule Collection is the base of our
prediction technique. But we want to use multiple Rule Collections that are
available for the po’s, so we do not lose the available information we have.

First, we want to ensure to use only those Rule Collections (created from
the learning set) that actually are interesting. The interestingness of a Rule
Collection is already described in a previous section. If the step of removing
the non interesting Rule Collections from the total rule list is done correctly,
we should now be able to use all the remaining rules (and Rule Collections)
from this list. In general the following is true: the longer the rule, the lower
its support. We already applied a support threshold on the rules, but we can
limit it even more. In case we want to limit our search to only rules with a
certain length there is an option end at rule which can be used for this. This
option defines until which rule in the list we should go, while computing the
total weight. The rules in the list are ordered by length. We can set the end
at rule at the ID of the last rule in the rule list, to traverse the entire list.
We can set this to a lower value, in order to look at shorter rules.

Suppose we now have chosen a list of Rule Collections (from the learning
set) we would like to include into the prediction process. First we make a list
of po’s that are considered for the prediction. For example we can use all po’s
with place = 1. We assign a label to each of the list elements.

For each Rule Collection we compute the candidate po’s. We assign a counter
to each po. For these po’s we add 1 to the po counter.

{8} → {23}
{8} → {24}
{8} → {25}

The corresponding Rule Collection is identified by the rule body {8}. The

39

rules {8} → {21} and {8} → {22} are not considered interesting, since they
are not present in the rule list. Now suppose we have a validation set. The
first valid itemset from this validation set contains the item {8} and some
answer value. The program predicts that the correct po’s are po2 and po4.
This means, that 1 is added to the counter of po2 and po4. The counters for
the other po’s will not change their value.

In this way, after all the Rule Collections are checked, we can compare the
value of the po counters to each other. For example consider the following
set of rules corresponding to some po combination:

{3} → {21}
{3} → {22}
{3} → {23}
{7} → {23}
{8} → {23}
{8} → {24}
{8} → {25}
{10} → {23}
{10} → {24}

There are 4 Rule Collections in this set of rules. The Rule Collections of
these rules are identified by the rule bodies {3}, {7}, {8} and {10}.
Suppose the validation set contains the following itemsets:

{8, 23}
{7, 23}
{8, 24}
{9, 22}
{10, 24}

The itemset {9, 22} will not be considered, because there is no interesting
Rule Collection which is identified by the body {9}. The rest of the items in
the validation set do reference an interesting Rule Collection and therefore
will be considered.
Let us assume that we are looking at 7 po’s numbered from 2 till 8. Now sup-
pose the algorithm predicts the following po’s for the itemsets. For {8, 23}
po2 or po4 (has the highest weight) are predicted. For {7, 23} po2 or po3 (has

40

the highest weight) or po6 are predicted. For {8, 24} po3 (has the highest
weight) is predicted. For {10, 24} po2 or po3 or po4 (has the highest weight)
or po6 or po7 are predicted.

We do not need to take into account yet what the po with the highest weight
was for every rule. We only look at the predicted po’s. The counters for every
considered po will be updated as follows (all counters start at value 0):

po2 = 0 + 1 + 1 + 1 = 3,
po3 = 0 + 1 + 1 + 1 = 3
po4 = 0 + 1 + 1 = 2
po5 = 0
po6 = 0 + 1 + 1 = 2
po7 = 0 + 1 = 1
po8 = 0

The highest counter value is that of po2 and po3, which equals 3. These
two po’s will be assumed to be the best prediction for this validation set; po5

and po8 will be considered as worst prediction.

The po corresponding to the counter with the highest value is thus con-
sidered as the best prediction. If multiple counters have approximately the
same highest value, they are all considered as best prediction.

4.3.6 Best bonus

The above method works well if we are careful with the predictions of the
algorithm and do not trust the best prediction for each line. For example for
{8, 23} po2 or po4 are predicted. As already described in the previous section,
two or more po’s are predicted, when the distance between these po’s is very
small, and one of them is actually predicted as the best po match. The best
po match has the highest weight value.

The option Best bonus switched on allows us to give the po with the highest
weight an additional bonus value if that po is predicted, that will be added
to this po counter. The value of the bonus can be set by the user and can
be equal to any integer value. For the example described earlier, if the bonus
value is set to 2 the counters for every considered po will be updated as fol-

41

lows (all counters start at value 0):

po2 = 0 + 1 + 1 + 1 = 3,
po3 = 0 + (1 + 2) + (1 + 2) + 1 = 7
po4 = 0 + (1 + 2) + (1 + 2) = 6
po5 = 0
po6 = 0 + 1 + 1 = 2
po7 = 0 + 1 = 1
po8 = 0

The highest counter value is that of counter of po3, which equals 7. Now
po3 will be assumed as the best prediction for this validation set. Note that
po4 is now considered a better prediction than po2.

4.3.7 Only high lift

The option only high lift can be enabled or disabled. If the option only high
lift is enabled, we filter out the rules which are chosen as candidates, but have
at least one λ (see Section 4.2.3) value for some po which is lower than the
selected threshold (only those rules remain which have λ ≥ threshold for all
considered po’s). This option looks a lot like the minimal threshold that can
be set in the beginning, but is different. The minimal threshold considers an
average λ which must be higher than some threshold, while when the option
only high lift is used one λ is enough to ignore the rule. This is done because
for the correct po retrieving process we must be sure about every rule for
every po.

4.4 Approach 2: Comparing of confidences

There is a second, easier approach for retrieving the correct po. However,
the prediction proved to be less accurate than the first approach. With this
approach we compare the interesting rules to events. This is a very simple
approach which boils down to checking the confidences.

Traverse all the rules. For each rule, look at all the events in the input.
Count the number of times the rule body is a subset of the event body and
the number of times the rule head is the same as the event head. From these

42

numbers we can calculate the confidence of a rule in the validation set and
match it to the confidence of the rule in the set of rules corresponding to
a given po. The less the difference between the two is, the better match is
found. We will call the sum of these differences the weight.

weight =
∑

all−rules−r

|confFound − confRule(r)|

We consider the algorithm below used for comparing rules to events and
computing the weight. The algorithm gives a percentage as result, which
represents the matching factor of the validation to the learning set. The
closer the percentage is to 100, the better the match is.

Match = 0;

MatchNumber = 0;

for each rule R do

{

TotalLeft = 0;

TotalRight = 0;

for each event E do

{

if body(R) is subset of E

{

TotalLeft = TotalLeft + 1;

if also answer matches

{

TotalRight= TotalRight + 1;

}

}

}

if TotalLeft > 0

{

CalcConfidence = TotalRight / TotalLeft;

MatchNumber = MatchNumber+1;

Match = Match + (CalcConfidence/R.FConfidenceArray[OperatorAndPlace]);

}

}

43

if (Match / MatchNumber) > 0

{

result = 200 - (Match / MatchNumber)*100;

}

else

{

result = (Match / MatchNumber)*100;

}

44

Chapter 5

About the program

The program RWS association finder was built to be able to create asso-
ciation rules and predict the po with the use of these rules. As input data
the files are used that are created by the fim all program. The process of
this creation and the input data format are described in Section 3.4. The
input data files are made available as one file per po. The files are ordered in
folders by place. Folder names equal the matching place name. The program
is written in Delphi and can be used as a stand alone application.

5.1 User interface

The user can select the places he wishes to analyse. With this selection the
po’s which are available for this place will automatically be selected. It is not
possible to select any combination of po’s in some other way, since each place
contains exactly 7 operators, with the selection of one place we select 7 po’s.
In Figure 5.1 the place HVH is selected. As a result the rules are created for
po2 till po8 in HVH.

The parsing process can be initiated with the use of different options. The op-
tions Highest Only and Check Direction can be switched on or off by checking
the boxes next to them. these options enable or disable the variables Highest
Only and Check Direction that were described in Sections 3.7.2 and 3.7.1.
The other two options are Combine conf and Display All. The Combine conf
option is described in Sections 4.2.1. Option Display All forces the display
of all rules, even if the rules are found not to be interesting.

45

Figure 5.1: RWS association finder interface

After pressing the Read data button, the learning set files will be read and
the created association rules will be shown on the grid in the middle of the
interface.

The grid where the association rules are shown, has a vertical and a hor-
izontal bar. The po’s which are selected for the rules are shown on the hori-
zontal bar. On the vertical bar the descriptions of the rules are placed. The
rule items in the description are shown as numbers. For better readability
these numbers can be translated into words. This happens when the mouse
pointer is moved over any cell in a row on the grid. The rule is then decoded
into words. The itemset names can be custom set by the user. For each item
number a name can be used. An external file is used to store these data. This
file is stored in the same directory as the executable and is called config.txt.

46

An example of this files contents is shown below:

10 NIGHT

11 MORNING

12 DAY

13 EVENING

14 EVENING_SHIFT

15 DAY_SHIFT

16 NIGHT_SHIFT

17 OPERATOR_EARLY

18 OPERATOR_ON_TIME

19 OPERATOR_LATE

20 OPERATOR_VERY_LATE

Each rule (represented as a row) contains 7 cells. Each cell provides infor-
mation on the rule in the row for a different po. A cell contains a confidence
and a lift value of the rule for a po. The user can get more information on
a rule for a certain po, by left–clicking on a cell. A pop–up will appear with
additional information, such as rule ID, support, total number of occurrences,
confidence, lift, λ, see Figure 5.2.

Figure 5.2: More information on a selected rule

It is also possible to quickly analyse each po for answer item distribution.
Holding a mouse over a po column header in the bottom right of the inter-
face a distribution is shown of the answer items 21 till 25, see Figure 5.3.

47

Figure 5.3: Answer item distribution

After a list of rules is created for the selected place we can test the two
approaches for po retrieval. A validation set can be selected with the Browse
button. After a validation set file has been selected we can select an ap-
proach for po retrieval (App 1 (auto) for Approach 1 and App 2 (Auto) for
Approach 2). The options Best Bonus (its value can be set, see Section 4.3.6)
and Only High Lift can be switched on or off (see Section 4.3.7). We can set
the minimal distance in the Min dist box and set the number of rules that
are considered for retrieval in the End At box.

The results of the test are shown in the text field at the bottom left of
the interface. A list of the tested po’s is presented. Behind the po number its
weight is given.

48

Chapter 6

Testing

6.1 Predicting po with default values

In this subsection we will try to retrieve the correct po of a validation set.
We will use the program with all the default values and see how well the
prediction will be. The default options are:

option value notation
Place HVH p

Check Direction disabled cd
Confidence 0 c
Best bonus disabled bb

Support 0 s
Only high lift disabled ohl

Lift 0 l
minDistance 0.15 md

Combine Conf enabled cc
end at rule 5225 end
Display all disabled da

Highest Only disabled ho

To give the reader some ompression of the algorithm, we provide some de-
tailed results of experiments in Section 6.1.1 to 6.2.

49

6.1.1 Testing the approaches

First we will test both available approaches (Approach 1 and Approach 2)
for their rate of correct predictions. To do this we will use the learning set
also as the validation set. The program should always return the correct pre-
diction. We use the learning set for the place HVH. We use the validation
sets for HVH, and thus do the testing for a fixed place. The testing will first
be done with Approach 1. We will use default settings. The output that will
be presented throghout this chapter shows the weight assigned to each of the
tested po’s. The higher the weight is, the higher the chance that the po is the
correct prediction according to the algorithm we use.The po with the highest
weight is thus the best prediction.

We use the validation set for po2 (b hvh.dat.invoer2.txt).

GLOBAL po 2 ->209

GLOBAL po 3 ->97

GLOBAL po 4 ->67

GLOBAL po 5 ->41

GLOBAL po 6 ->87

GLOBAL po 7 ->45

GLOBAL po 8 ->71

The algorithm predicts po2. This is a correct prediction.

We use the validation set for po3 (b hvh.dat.invoer3.txt).

GLOBAL po 2 ->105

GLOBAL po 3 ->205

GLOBAL po 4 ->75

GLOBAL po 5 ->56

GLOBAL po 6 ->56

GLOBAL po 7 ->73

GLOBAL po 8 ->57

The algorithm predicts po3. This is a correct prediction.

We use the validation set for po4 (b hvh.dat.invoer4.txt).

GLOBAL po 2 ->110

50

GLOBAL po 3 ->94

GLOBAL po 4 ->119

GLOBAL po 5 ->45

GLOBAL po 6 ->69

GLOBAL po 7 ->42

GLOBAL po 8 ->103

The algorithm predicts po4. This is a correct prediction.

We use the validation set for po5 (b hvh.dat.invoer5.txt).

GLOBAL po 2 ->37

GLOBAL po 3 ->44

GLOBAL po 4 ->18

GLOBAL po 5 ->218

GLOBAL po 6 ->41

GLOBAL po 7 ->120

GLOBAL po 8 ->25

The algorithm predicts po5. This is a correct prediction.

We use the validation set for po6 (b hvh.dat.invoer6.txt).

GLOBAL po 2 ->81

GLOBAL po 3 ->36

GLOBAL po 4 ->43

GLOBAL po 5 ->33

GLOBAL po 6 ->218

GLOBAL po 7 ->35

GLOBAL po 8 ->77

The algorithm predicts po6. This is a correct prediction.

We use the validation set for po7 (b hvh.dat.invoer7.txt).

GLOBAL po 2 ->51

GLOBAL po 3 ->67

GLOBAL po 4 ->37

GLOBAL po 5 ->124

GLOBAL po 6 ->47

51

GLOBAL po 7 ->208

GLOBAL po 8 ->45

The algorithm predicts po7. This is a correct prediction.

We use the validation set for po8 (b hvh.dat.invoer8.txt).

GLOBAL po 2 ->74

GLOBAL po 3 ->59

GLOBAL po 4 ->101

GLOBAL po 5 ->34

GLOBAL po 6 ->92

GLOBAL po 7 ->49

GLOBAL po 8 ->204

The algorithm predicts po8. This is a correct prediction.

All the predicted aswers were correct. Approach 1 seems to retrieve cor-
rect po’s.

Now the testing will be done with Approach 2. To enable the usage of Ap-
proach 2 the Combine answer option must be disabled, the rest of the settings
remains default.

We use the validation set for po2 (b hvh.dat.invoer2.txt).

Best match found for operator 2 at place HVH (match 100%)

The algorithm predicts po2. This is a correct prediction.

We use the validation set for po3 (b hvh.dat.invoer3.txt).

Best match found for operator 3 at place HVH (match 99,94%)

The algorithm predicts po3. This is a correct prediction.

We use the validation set for po4 (b hvh.dat.invoer4.txt).

Best match found for operator 4 at place HVH (match 99,85%)

52

The algorithm predicts po4. This is a correct prediction.

We use the validation set for po5 (b hvh.dat.invoer5.txt).

Best match found for operator 5 at place HVH (match 100%)

The algorithm predicts po5. This is a correct prediction.

We use the validation set for po6 (b hvh.dat.invoer6.txt).

Best match found for operator 6 at place HVH (match 99,85%)

The algorithm predicts po6. This is a correct prediction.

We use the validation set for po7 (b hvh.dat.invoer7.txt).

Best match found for operator 7 at place HVH (match 100%)

The algorithm predicts po7. This is a correct prediction.

We use the validation set for po8 (b hvh.dat.invoer8.txt).

Best match found for operator 8 at place HVH (match 99,9%)

All the predicted aswers were correct. Approach 2 seems to retrieve correct
po’s.

6.1.2 Predicting po for HVH with Approach 1

Now we use the learning set for the place HVH. Thus, all the po’s in this
range are po2 till po8 corresponding to the 7 operators at HVH. The testing
will be done with Approach 1.

We start with the validation set for po2 (a hvh.dat.invoer2.txt).

GLOBAL po 2 ->123

GLOBAL po 3 ->93

GLOBAL po 4 ->67

GLOBAL po 5 ->63

GLOBAL po 6 ->82

GLOBAL po 7 ->75

GLOBAL po 8 ->91

53

The algorithm predicts po2. Correct prediction.

We use the validation set for po3 (a hvh.dat.invoer3.txt).

GLOBAL po 2 ->112

GLOBAL po 3 ->90

GLOBAL po 4 ->76

GLOBAL po 5 ->64

GLOBAL po 6 ->108

GLOBAL po 7 ->67

GLOBAL po 8 ->100

The algorithm predicts po6. This is an incorrect prediction.

We use the validation set for po4 (a hvh.dat.invoer4.txt).

GLOBAL po 2 ->110

GLOBAL po 3 ->94

GLOBAL po 4 ->119

GLOBAL po 5 ->45

GLOBAL po 6 ->69

GLOBAL po 7 ->42

GLOBAL po 8 ->103

The algorithm predicts po4. This is a correct prediction.

We use the validation set for po5 (a hvh.dat.invoer5.txt).

GLOBAL po 2 ->59

GLOBAL po 3 ->59

GLOBAL po 4 ->20

GLOBAL po 5 ->142

GLOBAL po 6 ->49

GLOBAL po 7 ->124

GLOBAL po 8 ->29

The algorithm predicts po5. This is a correct prediction.

We use the validation set for po6 (a hvh.dat.invoer6.txt).

54

GLOBAL po 2 ->91

GLOBAL po 3 ->42

GLOBAL po 4 ->72

GLOBAL po 5 ->49

GLOBAL po 6 ->135

GLOBAL po 7 ->66

GLOBAL po 8 ->107

The algorithm predicts po6. This is a correct prediction.

We use the validation set for po7 (a hvh.dat.invoer7.txt).

GLOBAL po 2 ->47

GLOBAL po 3 ->69

GLOBAL po 4 ->45

GLOBAL po 5 ->123

GLOBAL po 6 ->67

GLOBAL po 7 ->137

GLOBAL po 8 ->62

The algorithm predicts po7. Correct prediction.

We use the validation set for po8 (a hvh.dat.invoer8.txt).

GLOBAL po 2 ->98

GLOBAL po 3 ->123

GLOBAL po 4 ->101

GLOBAL po 5 ->42

GLOBAL po 6 ->59

GLOBAL po 7 ->71

GLOBAL po 8 ->98

The algorithm predicts po3. Wrong prediction. The correct po8 has a weight
of 98 and is not close to the highest prediction weight.

The algorithm provided 5 times a correct prediction and 2 times an incorrect
prediction.

55

6.1.3 Predicting po for HVH with Approach 2

We now will do the same test but we will use Approach 2 instead of Approach
1. To enable the usage of Approach 2 the Combine answer option must be
disabled. The rest of the settings remain default.

We use the validation set for po2 (a hvh.dat.invoer2.txt).

Best match found for operator 5 at place HVH (match 99,88%)

We use the validation set for po3 (a hvh.dat.invoer3.txt).

Best match found for operator 8 at place HVH (match 98,1%)

We use the validation set for po4 (a hvh.dat.invoer4.txt).

Best match found for operator 8 at place HVH (match 94,72%)

We use the validation set for po5 (a hvh.dat.invoer5.txt).

Best match found for operator 6 at place HVH (match 99,95%)

We use thevalidation set for po6 (a hvh.dat.invoer6.txt).

Best match found for operator 7 at place HVH (match 99,67%)

We use the validation set for po7 (a hvh.dat.invoer7.txt).

Best match found for operator 5 at place HVH (match 99,3%)

We use the validation set for po8 (a hvh.dat.invoer8.txt).

Best match found for operator 8 at place HVH (match 93,73%)

Only one of the po’s was guessed correctly. But since po8 was also predicted
for two other tests it is possible that even this one correct prediction was just
a coincidence.

56

6.1.4 Predicting po for EPL

We now will do the same test but we use the learning set for the place EPL.
Thus, all the po’s in this range are po12 till po18, corresponding to the 7 op-
erators at HVH. The testing will be done again with Approach 1.

We use the validation set for po12 (a epl.dat.invoer2.txt).

GLOBAL po 12 ->146

GLOBAL po 13 ->144

GLOBAL po 14 ->175

GLOBAL po 15 ->205

GLOBAL po 16 ->192

GLOBAL po 17 ->82

GLOBAL po 18 ->119

The algorithm predicts po15. This is an incorrect prediction.

We use the validation set for po13 (a epl.dat.invoer3.txt).

GLOBAL po 12 ->172

GLOBAL po 13 ->158

GLOBAL po 14 ->105

GLOBAL po 15 ->225

GLOBAL po 16 ->183

GLOBAL po 17 ->141

GLOBAL po 18 ->142

The algorithm predicts po15. Wrong prediction.

We use the validation set for po14 (a epl.dat.invoer4.txt).

GLOBAL po 12 ->127

GLOBAL po 13 ->182

GLOBAL po 14 ->213

GLOBAL po 15 ->135

GLOBAL po 16 ->132

GLOBAL po 17 ->89

GLOBAL po 18 ->113

57

The algorithm predicts po14. Correct prediction.

We use the validation set for po15 (a epl.dat.invoer5.txt).

GLOBAL po 12 ->102

GLOBAL po 13 ->100

GLOBAL po 14 ->47

GLOBAL po 15 ->290

GLOBAL po 16 ->130

GLOBAL po 17 ->198

GLOBAL po 18 ->100

The algorithm predicts po15. This is a correct prediction.

We use the validation set for po16 (a epl.dat.invoer6.txt).

GLOBAL po 12 ->188

GLOBAL po 13 ->112

GLOBAL po 14 ->127

GLOBAL po 15 ->239

GLOBAL po 16 ->286

GLOBAL po 17 ->65

GLOBAL po 18 ->78

The algorithm predicts po16. This is a correct prediction.

We use the validation set for po17 (a epl.dat.invoer7.txt).

GLOBAL po 12 ->91

GLOBAL po 13 ->181

GLOBAL po 14 ->112

GLOBAL po 15 ->169

GLOBAL po 16 ->102

GLOBAL po 17 ->204

GLOBAL po 18 ->143

The algorithm predicts po17. This is a correct prediction.

We use the validation set for po18 (a epl.dat.invoer8.txt).

58

GLOBAL po 12 ->233

GLOBAL po 13 ->303

GLOBAL po 14 ->239

GLOBAL po 15 ->251

GLOBAL po 16 ->246

GLOBAL po 17 ->176

GLOBAL po 18 ->379

The algorithm predicts po18. This is a correct prediction.

The results are the same as for HVH : the algorithm provided 5 times a
correct prediction and 2 times an incorrect prediction.

6.1.5 Predicting po with minimal distance disabled

Let us now try to repeat the previous tests for EPL, but look at the influence
of the change of the minimal distance. First we lower the minimal distance
to 0.

We use the validation set for po12 (a epl.dat.invoer2.txt).

GLOBAL po 12 ->64

GLOBAL po 13 ->39

GLOBAL po 14 ->97

GLOBAL po 15 ->90

GLOBAL po 16 ->47

GLOBAL po 17 ->20

GLOBAL po 18 ->37

The algorithm predicts po14. This is an incorrect prediction

We use the validation set for po13 (a epl.dat.invoer3.txt).

GLOBAL po 12 ->55

GLOBAL po 13 ->64

GLOBAL po 14 ->36

GLOBAL po 15 ->116

GLOBAL po 16 ->57

GLOBAL po 17 ->38

GLOBAL po 18 ->28

59

The algorithm predicts po15. This is an incorrect prediction

We use the validation set for po14 (a epl.dat.invoer4.txt).

GLOBAL po 12 ->45

GLOBAL po 13 ->73

GLOBAL po 14 ->136

GLOBAL po 15 ->57

GLOBAL po 16 ->43

GLOBAL po 17 ->19

GLOBAL po 18 ->21

The algorithm predicts po14. This is a correct prediction.

We use the validation set for po15 (a epl.dat.invoer5.txt).

GLOBAL po 12 ->36

GLOBAL po 13 ->9

GLOBAL po 14 ->11

GLOBAL po 15 ->139

GLOBAL po 16 ->41

GLOBAL po 17 ->145

GLOBAL po 18 ->13

The algorithm predicts po17. This is an incorrect prediction

We use the validation set for po16 (a epl.dat.invoer6.txt).

GLOBAL po 12 ->57

GLOBAL po 13 ->33

GLOBAL po 14 ->32

GLOBAL po 15 ->83

GLOBAL po 16 ->148

GLOBAL po 17 ->17

GLOBAL po 18 ->24

The algorithm predicts po16. This is a correct prediction

We use the validation set for po17 (a epl.dat.invoer7.txt).

60

GLOBAL po 12 ->34

GLOBAL po 13 ->79

GLOBAL po 14 ->30

GLOBAL po 15 ->49

GLOBAL po 16 ->41

GLOBAL po 17 ->140

GLOBAL po 18 ->21

The algorithm predicts po17. This is a correct prediction

We use the validation set for po18 (a epl.dat.invoer8.txt).

GLOBAL po 12 ->35

GLOBAL po 13 ->145

GLOBAL po 14 ->96

GLOBAL po 15 ->23

GLOBAL po 16 ->30

GLOBAL po 17 ->22

GLOBAL po 18 ->43

The algorithm predicts po13. This is an incorrect prediction The difference
with the correct po8 is very large.

The algorithm provided 3 times a correct prediction and 4 times an incorrect
prediction with sometimes a very large prediction error.

6.2 Predicting po with the value Highest Only

enabled

In this subsection we will again try to retrieve the correct po of a validation
set. We will now use the program with not all the default values, but with
the option Highest Only enabled and see how well the prediction will now
be. Enabling Highest Only option should lower the number of rules in the
rule list. We will again look at the place EPL, so we can compare the results
of this test with the test from the previous subsection.

We use the validation set for po12 (a epl.dat.invoer2.txt).

61

GLOBAL po 12 ->95

GLOBAL po 13 ->98

GLOBAL po 14 ->123

GLOBAL po 15 ->121

GLOBAL po 16 ->110

GLOBAL po 17 ->43

GLOBAL po 18 ->86

The algorithm predicts po12. This is an incorrect prediction

We use the validation set for po13 (a epl.dat.invoer3.txt).

GLOBAL po 12 ->120

GLOBAL po 13 ->106

GLOBAL po 14 ->71

GLOBAL po 15 ->135

GLOBAL po 16 ->119

GLOBAL po 17 ->80

GLOBAL po 18 ->93

The algorithm predicts po15. This is an incorrect prediction

We use the validation set for po14 (a epl.dat.invoer4.txt).

GLOBAL po 12 ->82

GLOBAL po 13 ->118

GLOBAL po 14 ->152

GLOBAL po 15 ->72

GLOBAL po 16 ->71

GLOBAL po 17 ->46

GLOBAL po 18 ->78

The algorithm predicts po14. This is a correct prediction

We use the validation set for po15 (a epl.dat.invoer5.txt).

GLOBAL po 12 ->73

GLOBAL po 13 ->62

GLOBAL po 14 ->26

GLOBAL po 15 ->179

62

GLOBAL po 16 ->70

GLOBAL po 17 ->124

GLOBAL po 18 ->62

The algorithm predicts po15. This is a correct prediction

We use the validation set for po16 (a epl.dat.invoer6.txt).

GLOBAL po 12 ->124

GLOBAL po 13 ->80

GLOBAL po 14 ->86

GLOBAL po 15 ->132

GLOBAL po 16 ->176

GLOBAL po 17 ->35

GLOBAL po 18 ->62

The algorithm predicts po16. This is a correct prediction

We use the validation set for po17 (a epl.dat.invoer7.txt).

GLOBAL po 12 ->65

GLOBAL po 13 ->118

GLOBAL po 14 ->80

GLOBAL po 15 ->108

GLOBAL po 16 ->66

GLOBAL po 17 ->127

GLOBAL po 18 ->81

The algorithm predicts po17. This is a correct prediction

We use the validation set for po18 (a epl.dat.invoer8.txt).

GLOBAL po 12 ->71

GLOBAL po 13 ->151

GLOBAL po 14 ->146

GLOBAL po 15 ->50

GLOBAL po 16 ->61

GLOBAL po 17 ->62

GLOBAL po 18 ->130

63

The algorithm predicts po13. This is an incorrect prediction

The algorithm provided 4 times a correct prediction and 3 times an incorrect
prediction.

6.3 Different configurations put together

In this chapter we will consider a table filled with test results for different
configurations. The tests that were described in detail in the previous sections
are also included in the table. Of other tests only the results are shown. Only
values other that default values are shown in the table for better readability.
The places we have investigated are HVH and EPL. This was done, because
these are the places which gave most correct results (this will be shown in
Section 6.4).
The abbrevation ap2 stands for approach 2 (by default approach 1 is en-
abled). In the last column the percentage of correct predictions is given. The
1 in the binary string between brackets stands for the operators (from 2 till 8)
which were correctly predicted (0 stands for incorrect prediction). For exam-
ple string 0011111 means that operator 2 and 3 were not predicted correctly,
but the rest of the operators was.

64

place s l cc da ho cd md end bb ohl ap2 %
EPL 71%(0011111)
EPL 1 57%(0010111)
EPL on 28%(0001010)
EPL 0 43%(0010110)
EPL 0.3 57%(0011101)
EPL on 57%(0011110)
EPL on 43%(1010100)
HVH 71%(1011110)
HVH 1 71%(1011110)
HVH on 71%(1001111)
HVH on 57%(1001110)
HVH on 14%(0000001)
HVH 0 71%(1011110)
HVH 0.3 57%(1011100)
HVH 30 71%(1011110)
HVH 30 1 71%(1011110)
HVH 30 on 0.3 43%(1000110)
HVH 30 0.3 57%(1011100)
HVH 30 on 57%(1011100)
HVH 30 off on on 29%(0001001)
HVH 30 on 14%(0000001)

6.4 Different po’s behaviour

In this chapter we will consider a table filled with test results for different
places in the default configuration. For each test we consider a certain place
and all (7) operators that are working at this place. A 1 in the table denotes
a correct prediction, while a 0 denotes an incorrect prediction. Approach 1
is used. The same validation sets (for each po) are used as in the previous
tests.

65

Place op2 op3 op4 op5 op6 op7 op8 %
HVH 1 0 1 1 1 1 0 71%
EPL 0 0 1 1 1 1 1 71%

YMD 1 0 0 1 0 0 0 28%
HA 0 0 0 0 0 1 1 28%

DLFZ 0 0 1 1 1 1 0 57%
DENH 0 0 1 0 1 1 1 57%

HAR 0 1 0 1 1 1 0 57%

The po predictions for different operators give in places HVH and EPL high
percentage of correct predictions for all operators (71%). The predictions for
the places YMD and HA were mostly incorrect (28% of correct predictions).

6.5 One operator in different places

In the previous sections we considered a certain place and the operators (po’s)
working at that place in which he works. In this section we will consider a
fixed operator and different places.

For example, if we try to predict the place for operator 2, the po’s that
are considered will be po02, po12, po22, po32, po42, po52, po62, po72.

Below is a table consisting of the predicted results for different operators.

Place HVH EPL YMD HA DLFZ DENH HAR %
op2 1 0 0 0 1 1 1 57%
op3 0 1 1 0 1 0 1 57%
op4 0 1 1 1 0 1 0 57%
op5 1 1 1 1 1 1 0 85%
op6 0 1 0 1 1 1 1 71%
op7 0 1 1 1 1 1 1 85%
op8 0 1 1 1 1 1 1 85%

The po predictions for different places (with a fixed operator) give a high
percentage of correct predictions for all operators (all 57%).

66

Chapter 7

Discussion and Conclusion

We have introduced two approaches for recognising the operators by means
of their rules.
Approach 2 only gives good results when the validation set is a subset of the
learningset. In the other cases most of its predictions were incorrect (only
14% correct).

Using the option Check Direction for Approach 1 for HVH and EPL can
be useful, since it reduces the number of rules dramatically. For HVH the
number of correctly predicted operators remains the same. For EPL the num-
ber of rules seems to be reduced so much, that there are not enough rules to
give a correct prediction.

Making a higher support threshold value makes no difference for the place
HVH. We only tested with a support threshold set to 30.

Setting the minimal distance to 0 for Approach 1 gave worse results for
EPL (see the table in Section 6.3). Less predictions were correct. However,
when the algorithm did guess correctly, the weight for the correct po stood
out. Setting the minimal distance to a higher value (0.3) than the default
value (0.15) also gave worse results. Apparently the minimal distance must
have such a value, that lookalike po’s are included in the prediction, but not
too many.

Enabling the option best bonus gave worse results for EPL. For the place
HVH the results were the same as when default options were used. This

67

means that in the weight calculation for HVH very often the highest weight
(when comparing an event sequence with a rule) is actually the correct pre-
diction. Considering lookalike po’s for this place is thus not important and
so is the minimal distance. We can also see that if we look at the case where
minimal distance was set to 0 for HVH — the results were the same as with
the default values (the default minimal distance is set to 0.3).

Using the option only high lift for Approach 1 also gave worse results (see
the table in Section 6.3). Apparently looking only at Rule Collections with
an average high lift filters out too many other interesting Rule Collections.

Using Approach 1 with the option highest only gave 57% of correct predic-
tions (for both tested places). The number of correct predictions was lower
than with this option disabled, but the number of rules that needed to be
considered was drastically lowered by the use of this option.

Approach 1 gives good results when used with the default settings. For the
tested cases 75% of the predictions were correct (see the table in Section 6.3).
The incorrect predictions often were close to the correct predictions (the cor-
rect operator had a high weight).

As we can see in the table in Section 6.4 the po prediction for different
places has a very different error rate. For the places HVH and EPL 71% of
the po’s were correctly predicted. For the places DLFZ, DENH and HAR the
error rate was higher; 57% of the po’s was correctly retrieved. For the places
YMD and HA only 28% of the po’s could be retrieved correctly. Still this
percentage is higher than the percentage of a completely random prediction.
There are 7 operators (po’s) considered per place. The chance that a correct
po is predicted if the prediction is random is 1/7 per prediction. The average
percentage of the randomly predicted po’s for all seven predictions would
thus be 1/7 ∗ 100 ≈ 14%. Thus Approach 1 gives a better prediction and in
some cases even a good prediction.

In Section 6.5 we considered a prediction table that was created for a certain
fixed operator and different places. The error rate is low. This means oper-
ators actually follow some rules for prediction at different places, but these
rules differ per place. This also means that different operators are using more
often the same rules for the predictions at a certain place, while a certain

68

operator uses various rules for different places.

Some operators follow rules more often than others. For example the be-
haviour of operator 2, operator 3 and operator 4 is more difficult to predict
(high error rate for these operators) than that of other operators.

We conclude that it is in principle possible to predict the operators by their
rules

7.1 Future Research

The research that was done in this thesis focused only on the database that
was provided by Rijkswaterstaat. The application accepts only this database
as an input. The algorithms proposed in this paper could be used for solv-
ing other similar problems. Therefore the application should be adapted for
other databases as an input.

We tried to solve the problem by the use of different data mining approaches.
In this paper two of these approaches are described. The main approach was
based on the Bayes’s theorem. In a previous document that was focusing on
the same problem and involvong the same dataset [5] we tried to solve the
problem by the use of the Decision Tree algorithm [6]. Other data mining
approaches might provide other results.

The validation sets that were used for testing were made for a fixed place
(and considering of 7 operators) or a fixed operator (and considering of 7
places). The testing should be done for more combinations. For example we
should consider all places and all operators at once. Also the testing should
be done more often for all the different options.

69

Bibliography

[1] R. Agrawal, T. Imielinski, A. Swami; Mining Association Rules Be-
tween Sets of Items in Large Databases ; 1993; 207–216.

[2] R. Agrawal, R. Srikant; Fast Algorithms for Mining Association Rules ;
VLDB; 1994; 487-499.

[3] W.A. Kosters, W. Pijls; Apriori: A Depth First Implementation;
FIMI’03, The First Workshop on Frequent Itemset Mining Implementa-
tions; 2003; Melbourne, Florida, USA (CEUR Workshop Proceedings,
http://CEUR-WS.org/Vol-90/; Bart Goethals and Mohammed J. Zaki
(eds.)).

[4] P.D. McNicholas, T.B. Murphy, M. O’Regan; Standardising the Lift of
an Association Rule; Department of Statistics, Trinity College; Dublin,
Ireland; 2007.

[5] A. Nezhinsky; Decision Tree Algorithm for Rijkswaterstaat ; LIACS,
Leiden University; 2006.

[6] S. Russell, P. Norvig; Artificial Intelligence, A Modern Approach; Sec-
ond edition; Prentice Hall; 2003.

[7] P.N. Tan, M. Steinbach, V. Kumar; Introduction to Data Mining ;
Addison-Wesley; 2006.

70

