
Tomography mapped onto the Cell Broadband
Processor

A Master’s thesis

Computer Science

Sander van der Maar
Supervisor: Dr. Ir. Bart Kienhuis

Second Reader: Drs. Sjoerd Meijer

August 9, 2007

Abstract

This document covers a project running from February to August 2007, during which we imple-
mented a tomography algorithm (SART) in a few different waysand also set up a compiler that
generated parallelized code for the IBM Cell. Here we give the background for this project and
explain the used methods and algorithms. Also the found results are discussed.

3

4

Acknowledgment

This project would not have been possible without the peoplewho helped me. I received the
most support from drs. Sjoerd Meijer. From the very first ideato the final phase, it wouldn’t have
gone as well without his help. He already started some research on the STI Cell, which made it
possible for me to have a program running during the first couple of weeks. Also his hands-on
experience with the used software (COMPAAN, KPNFormat, Panda, the Cell Simulator, etc.)
allowed me to pick this all up very rapidly.

A second person who was very important to this project is Dr. Ir. Bart Kienhuis. Managing
the resource allocation and introducing me to a number of very experienced people turned out to
be invaluable and allowed the project to get its broad scope that it eventually got. His years of
experience with writing code for parallel systems and otherfields inside Computer Science and
outside all contributed. His eye for good software development is the reason why we have been
able to set up a working back-end for COMPAAN as quickly as we did.

A large part of this project is based on previous work done by Dr. Joost Batenburg. He
was kind enough to explain the inner workings of SART to me andalso answered any other
questions I had about tomography. His extremely wide field ofinterest offered the link between
mathematics and computer science needed to implement a tomography algorithm.

The rest of the Leiden Embedded Research Center team at LIACSwas always willing to
answer questions regarding the software already availablefor solving parallel computation prob-
lems. Here Dmitry Nadezhkin and Bin Jiang not only helped with problems I ran into during the
course of the project but also offered the often required social interaction.

Ana Varbanescu [1], who is persuing a PhD at Delft University, was kind enough to answer a
number of questions I had with regard to the used hardware. This not only helped solving a few
specific problems, but also gave me feedback on the way I was working on the project in general.

Finally I want to thank my parents. Without their continued support, both mentally as finan-
cially, completing my studies would have never been possible.

5

6

Contents

1 Introduction 15

2 Tomography 17
2.1 Basic X-ray physics .. . 17
2.2 Basic tomography mathematics 18
2.3 Calculating W .20
2.4 Space considerations when storing W 21
2.5 Restoring the original from projections 23

3 Simultaneous Algebraic Reconstruction Technique (SART) 25
3.1 Inner workings of SART .. 25
3.2 Performance of SART .. 26

4 The Cell Processor 29
4.1 SART implementation on the Cell 30
4.2 Performance of manual SART implementation on the Cell 31

5 Automating parallel code generation LIACS-style: COMPAAN 37
5.1 Simple COMPAAN example: matrix multiplication 37
5.2 Kahn Process Networks (KPNs) 40
5.3 Implementation of FIFOs 43
5.4 A practical consideration: FIFO sizes 46
5.5 Our first and most simple usage of the SPEs 49
5.6 Performance of this solution 50
5.7 Implementing a more advanced way of inter-process communication 50
5.8 Flushing operations 56

6 Conclusion 61

7

8 CONTENTS

A Description of files generated by CellCC 63
A.1 types.h . 63
A.2 ppu buffers.h . 63
A.3 PPU Makefile . 64
A.4 spubuffers.h . 65
A.5 SPE Makefile . 65
A.6 main.cc . 66
A.7 SPEx.cpp . 66

B Usage of code base 67
B.1 sart/ . 67
B.2 sart/writematrix/ 68
B.3 sart/bmp2img/ .. 68
B.4 sart/componized/sanlppthreads/ . 68
B.5 sart/cell/ .. 68

List of Figures

1.1 X-ray image of male skull. All depth information is lost.. 15

1.2 More helpful dental X-ray image where the detector is placed inside the mouth.
Now teeth can be examined separately. 16

2.1 X-rays are produced at the source point and move through the object to be mea-
sured by a detector placed on larger detector plate. A part ofthe ray through the
object is labeled ‘ds’, this represents the infinitesimal small part of the ray where
the intensity is reduced because of absorption. 18

2.2 Schema of the type of projections used: image (center) is2D, the projections
consist of a finite number of rays (arrows from lower left) anddetectors (upper
right) are ordered one-dimensionally. The graph above the detectors depicts the
measured line integrals. .. . 18

2.3 Typical projection: an object (here shown as a gray blob)is placed on a raster
of n by n squares numbered from top left to lower right (x,y-information is no
longer used). Every square (labeledx) will contain a value between 0.0 (nothing
there) and 1.0 (highest density). Also shown are a number of strips drawn out by
projecting rays. All strips have the same width and every entry of ~p will contain
the total overlapping area of the object and the corresponding strip. One polygon
has been highlighted to explain the calculation of the weight matrix (see text). . . 19

2.4 A number of ways in which a square and a strip can overlap: (a) en (f) are
special cases, with an overlapping area of zero and one respectively. The rest
show intermediate possibilities (all other cases can be constructed by rotating
and/or mirroring these examples). Number of utilized vertices (see text): (a): 0;
(b): 3; (c): 4; (d): 5; (e): 6; (f): 4. 20

9

10 LIST OF FIGURES

2.5 Steps of algorithm used to calculate overlapping area ofstrip and square. Expla-
nation (see text): (a): finding of square corners inside of strip and intersections
of rays and square edges; (b): when utilized points are found(are sorted clock-
wise from top), create corresponding triangles (numbered in creation order); (c):
calculate area of triangles via basic vector arithmetic. 21

2.6 Pseudo code implementation of algorithm to calculate overlap of square and
strip. CalcArea(A, B, C) is shown in Image 2.5(c). 22

2.7 Storing sparse matrix more space-effectively. (a): allentries not given of column
11 are zero, rows are numbered. (b): matrix now contains only3 rows (maxi-
mum number of non-zero entries in columns of original matrix), yet number of
columns is doubled. Column 22 and 23 (2n and2n + 1, with n = 11) contain
original row number and stored data, respectively. 24

2.8 Algebraic operation performed when~x is projected ind directions. BothW and
~p consist ofd vertically ordered items. 24

3.1 SART algorithm (see text). 26

3.2 SART in action: starting with a completely black image~x, the original image is
restored. First row: original image (which was projected in40 directions and~x
at beginning of restoration, which is equal to~0. Second row: first cycle, after
which some outlines start to become visible. Third row:~x gets closer to original
image. Fourth row:~x at end of third, fourth and fifth cycle. 27

3.3 Average error of~x with respect to number of iterations used. The graph describes
same run as figure 3.2, where every cycle consists of 40 iterations. The average
error moves slowly to 0.07, which is acceptable in most circumstances. 28

4.1 Overview of Cell CPU. On the left the PPU is shown and its two threads. On the
right are its 8 SPUs, all connected by a bus to the other SPUs and the PPU. Note
that SPUs don’t have direct access to main memory, but do havea local storage.
Also shown are the four inboxes and one outbox of every SPU. These are used
to communicate via mail messages. 30

4.2 PPU pseudo code of implementation of SART on the Cell. Seetext for an in
depth explanation. ‘SartCellSPU’ is a pointer to the code offigure 4.3. ‘Con-
catenate(a, b)’ returns a vector consisting of all entries of a followed by all entries
of b. 32

4.3 Code executed on the SPU. We assume the variable ‘this’ stores the information
for the SPU on which this code runs. Except for the mailbox communications
with the PPU, the looped code is the same as in figure 3.1. 33

4.4 Relation between achieved speed-up of our parallel codecompared to the serial
code and image size. A polynomial trend line which fits the data is shown. 35

LIST OF FIGURES 11

4.5 Speed-up of parallel code compared to code running on regular AMD64 3800+
(2.01 GHz) processor. Maxes out at about 7. The polynomial trend line, which
can be regarded as an average, reaches 6.5. 36

5.1 MATLAB code that loads two 32 by 32 matrices, multiplies them and stores the
result. 39

5.2 Implementation of MultiplyAndAdd and LoadZero. Note that this code isn’t
used by COMPAAN, but will be written in the target language. 40

5.3 Data dependencies when calculating the upper left element of matrix C. First
row of A is needed in its entirely, first column ofB is also needed. Because
matricesA andB are read in row-major order, a large part ofB needs to be read
before the first column is read (here shown in light gray). 40

5.4 Two simple Kahn Process Networks showing structure of this type of networks. . 41
5.5 KPN produced by COMPAAN for our matrix multiplication code. Node 3 isn’t

connected to any other nodes (as expected) and the outputs ofnode 1 and 2 need
to be reordered inside node 5, this action is shown here in gray (see text). Also
note that FIFO 1 connects node 5 to itself, because the vectorproduct of a row
of A and a column of B is calculated by adding multiple values to the same entry
of C, which is therefore used as an input of node 5 and as an output. 42

5.6 Code executed by node 1. ‘LoadA’ needs to be implemented by the programmer
in the target language (in this caseC + +) and stores the return value in the last
argument, ‘write’ is a method defined by the environment thatfinds a FIFO (first
argument) and writes a value to it (second argument), blocking if the FIFO is full. 43

5.7 Code running on node 5. It is a lot more complex than node 1,because it uses
three input FIFOs, of which two are buffered. The code that reads the input
variables is given in figure 5.8. 44

5.8 Code responsible for reading input variables of node 5. 45
5.9 Initialization code of FIFO. Declares and initializes all local variables of a FIFO. 46
5.10 ‘WriteToken’. The mutex is locked, a check is performedto see if there is room

in the buffer, the token is written, some bookkeeping is performed, the mutex is
released, and when a reader is waiting, it is signaled that the buffer is no longer
empty. 47

5.11 Code called to read a token. Almost the same as the ‘WriteToken’ code, only
token is read from buffer, instead of written to it. See text for complete discussion
of both methods. 48

5.12 A simple KPN with two nodes and two FIFOs. 49
5.13 KPN of figure 5.12 put on both the PPU and on the SPEs. A’ andD’ act as

service threads that delegate all calculations to A and D, respectively, which are
located on the SPEs. A and D use their serving threads to access the FIFOs. . . . 49

12 LIST OF FIGURES

5.14 Service thread on PPU side. This thread runs while the thread on the SPE side
runs. It monitors the outbox of its designated thread. See the text for a complete
discussion. 51

5.15 Implementation of the three methods used by the code running on an SPE. All
actions are implemented by sending and receiving the required mail messages. . . 52

5.16 A producer-consumer KPN. This network is used to measure the performance
of the two protocols developed during this project. By moving the sending and
receiving nodes to different Cell units the speed of all communications can be
determined. 52

5.17 ‘/proc/cpuinfo’ for the PlayStation 3. The two hardware threads are shown as
separate processors (values given: index, description, clock speed and revision).
Important to us: the ‘timebase’ value, it gives the number ofincrements of the
‘time base’ register per second. 53

5.18 Contents of ‘cpuinfo’ for the Cell simulator. It has a smaller timebase value (to
lower the strain on the simulator), but does run on the theoretical speed of 3.2 GHz. 53

5.19 Our first, service-thread-based, solution’s performance. All connections were
tested for210 (1024), 220 (1024 · 1024), and227 (128 · 1024 · 1024) tokens and the
required execution time was used to calculate the effectivenumber of tokens per
second. 54

5.20 Usage of DMA to offer a FIFO connection between two elements of the Cell
processor. Steps 1 through 4 copy values to the buffer in element 1. Step 5
consists of sending a message to the reader to tell it the buffer is full, so it can
start the DMA operation (step 6). After this is finished, a message is sent back to
tell the buffer has been copied and can again be written to. 55

5.21 A 4-node KPN running on the PPU and two SPEs. All connection types are
featured; 1: PPU to PPU, 2: PPU to SPE, 3: SPE to SPE, 4: SPE to PPU, 5: PPU
self loop, and 6: SPE self loop. We needed to deal with all of them separately. . . 56

5.22 Performance for our second implementation, which is DMA based. The buffer
size is 1024 tokens. 57

5.23 Comparison of the two discussed methods. Method 1 is service-thread-based,
method 2 is DMA based. The third column gives the speed-up of method 2 over
method 1. Only the PPU to PPU method has comparable performance, because
this functionality is implemented the same. 57

5.24 A simple KPN terminating in a deadlock situation if no flushing is performed.
After node 1 has written a token, but doesn’t flush FIFO 2, bothnodes are blocked
in read state. 58

5.25 Effect of continuously flushing on performance of communicating227 tokens.
Comparison is made to method 1 (service-threads) and method2 (fully buffered
DMA). The used buffer size is 1024 tokens. 59

LIST OF FIGURES 13

5.26 Performance of method 2 when continuously flushing the DMA buffers com-
pared to method 1 and the original method 2. The buffer size isreduced to 4
tokens, to see what it does to the required time to communicate compared to the
1024 buffer size. 59

14 LIST OF FIGURES

Chapter 1
Introduction

Non-intrusive imagining is a very important technique witha large number of applications. A
well known example is X-ray imaging. Using this technology it is possible to diagnose a large
number of illnesses. Surgeons and dentists wouldn’t be ableto do their job as well without X-ray
technology.

Standard X-ray applications have one big problem. Just likewhen a picture is taken with
normal light, it loses depth information. This means the doctor has to place the patient between
the X-ray source and detector in such a way that the needed information is acquired. Figure 1.1
gives an example of this problem: if a dentist was interestedin the state of the patients teeth, this
picture wouldn’t be very helpful, because the teeth are projected on the same place. Figure 1.2 is
taken with the detector inside the mouth, allowing each tooth to be inspected separately.

Figure 1.1: X-ray image of male skull. All depth informationis lost.

15

16 Chapter 1. Introduction

Figure 1.2: More helpful dental X-ray image where the detector is placed inside the mouth. Now
teeth can be examined separately.

One solution to this problem will be dealt with in this report. So-called CT-imaging allows
a medical operator to restore the original 3D information. CT stands for Computed Tomography
and makes use of several images of the same object, but from different angles. As we will see,
there are algorithms to do this. We will implement one on different architectures to be able to
say something about its performance and used hardware.

Before we take a more in-depth look at the used algorithm and other details, we will have to
deal with the physics encountered when taking an X-ray image.

Chapter 2
Tomography

2.1 Basic X-ray physics

X-ray imaging works because different materials absorb therays in different amounts. Absorp-
tion coefficients give the percentage of radiation that is absorbed. Following figure 2.1, the ray
starts at the source and when it enters the object it begins tolose intensity. The detected intensity
at the receiving end is then used to calculate the total material encountered.A ray consists of
photons which, because of their very short wavelength, act as particles.

When we measure a reduced intensity of an X-ray, this means that a number of photons were
absorbed by the material. So a detector is nothing more than aphoton counter. If we now look at
a small part of the ray when it is inside the object (labeled ‘ds’ in figure 2.1) we can say a number
of things about it. If ds is homogenous (the ray goes through the same material), the intensity at
the end of ds will be:

I = I0 · e
−µ·|ds| (2.1)

With I the intensity at the end,I0 at the beginning,µ the attenuation factor and|ds| the length
of ds. Of courseµ isn’t the same for everyds, we can only assume this ifds is very small. This
happens if we use a line integral over the beam:

I = I0 · e
−

R s

0
µ(x)dx (2.2)

−ln(
I

I0
) =

∫ s

0

µ(x)dx (2.3)

We knowI0 and measureI, this allows us to calculate the line integral and use it later on
when we restore the image. This will be dealt with next.

17

18 Chapter 2. Tomography

Figure 2.1: X-rays are produced at the source point and move through the object to be measured
by a detector placed on larger detector plate. A part of the ray through the object is labeled ‘ds’,
this represents the infinitesimal small part of the ray wherethe intensity is reduced because of
absorption.

2.2 Basic tomography mathematics

Figure 2.2: Schema of the type of projections used: image (center) is 2D, the projections consist
of a finite number of rays (arrows from lower left) and detectors (upper right) are ordered one-
dimensionally. The graph above the detectors depicts the measured line integrals.

2.2. Basic tomography mathematics 19

We will now take a look at the math behind a projection (see figure 2.3). To reconstruct a slice
of the object, we have placed a grid on it. Since all considered objects are either circle shaped
or close to it (for example a human head), its height and widthdiffer very little and a square
grid is acceptable. We assume a finite number of rays whose tracks have certain width (each one
draws out a strip). A value measured on the receiving end (a detector) is equal to the area of
the object on the respective strip. Figure 2.3 shows just onedirection of rays (and only partial,
when running the algorithm the entire grid is covered by strips), we shall later on see that there
are in fact a large number of projection angles, each increasing the number of measurements and
quality of the reconstructed image.

Figure 2.3: Typical projection: an object (here shown as a gray blob) is placed on a raster ofn

by n squares numbered from top left to lower right (x,y-information is no longer used). Every
square (labeledx) will contain a value between 0.0 (nothing there) and 1.0 (highest density).
Also shown are a number of strips drawn out by projecting rays. All strips have the same width
and every entry of~p will contain the total overlapping area of the object and thecorresponding
strip. One polygon has been highlighted to explain the calculation of the weight matrix (see text).

This type of projection can be described by a matrix operation. The original image is stored
as a one dimensional vector~x. The projection matrix is calledW, and the projection will be
stored in~p. ~x containsn2 elements,~p containsj elements (one for each detector). The following
operation describes the projection:

W · ~x = ~p (2.4)

To make this a valid matrix operation,W needs to haven2 columns andj rows. An entry

20 Chapter 2. Tomography

of W, let a be its row index andb its column index, is defined as follows. The entry of~x with
indexb is multiplied withWa,b and added to entry with indexa of p. This shows that theWa,b

will resemble the ‘weight’ of squareb when calculating the value of the projection of stripa.
When a square is not covered by a strip, the respective entry will be zero. If it is covered, the
value represents the overlapped area. It will have the maximal value of 1.0 when the square is
completely inside the strip. When it is only partially covered some basic arithmetic is needed to
calculate its value.

2.3 Calculating W

A strip and a square can overlap in number of ways. One way is highlighted in figure 2.3 and
figure 2.4 shows a few more ways. We developed an algorithm which calculates the overlapping
area of a square and a strip, given some basic properties of both. We will show the method we
used by applying it on a general case and later show the pseudocode which can deal with all
cases (following figure 2.5).

Figure 2.4: A number of ways in which a square and a strip can overlap: (a) en (f) are special
cases, with an overlapping area of zero and one respectively. The rest show intermediate possi-
bilities (all other cases can be constructed by rotating and/or mirroring these examples). Number
of utilized vertices (see text): (a): 0; (b): 3; (c): 4; (d): 5; (e): 6; (f): 4.

We start by definingx0, a vertical line. It will be to the left of the square. We calculate the

2.4. Space considerations when storing W 21

intersection points of this line with the rays. Then we traceall four square corners parallel to
the rays (we use their tangent for that) and keep the ones thatare projected onx0 between the
points where the rays intersected with it. After that we add the intersections between the square
edges and the rays. In our example that produces six points (two square corners and four ray-
edge intersections), we call these ‘utilized points’. These form corners of a polygon of which we
need to calculate the area. Sub image (b) shows what happens next: all found points are sorted
clockwise and used to build triangles. One point (one closest to the top (and to the right)) will be
used in all triangles. The areas are calculated (see figure 2.5(c)) and summated.

Figure 2.5: Steps of algorithm used to calculate overlapping area of strip and square. Explanation
(see text): (a): finding of square corners inside of strip andintersections of rays and square
edges; (b): when utilized points are found (are sorted clock-wise from top), create corresponding
triangles (numbered in creation order); (c): calculate area of triangles via basic vector arithmetic.

The returned value (see figure 2.6) will be stored in the (Wstripnumber,pixelnumber).

2.4 Space considerations when storing W

All entries of a column ofW enumerate the shared areas with all strips for just one pixel. Since
only a very small number of strips touches one particular square, most entries of this column
will be zero. And because a projection matrix grows to extreme sizes very rapidly (a 256 by 256

22 Chapter 2. Tomography

tang := tangent of rays

Corners := Set containing corners of square

Edges := Set containing edges of square

UtilPoints := empty Set

P := intersection of x0 and r1

Q := intersection of x0 and r2

foreach point s in Corners do

y0 := s.y (s.x x0) * tang

if((y0 >= P.y) and (y0 < Q.y)) then

UtilPoints.add(s)

end if

end foreach

foreach line e of Edges do

inter := intersection of e and r1

if(inter ison e) then

UtilPoints.add(s)

end if

inter := intersection of e and r2

if(inter ison e) then

UtilPoints.add(s)

end if

end foreach

SortClockwise(UtilPoints)

A := UtilPoints.first

UtilPoints.RemoveFirst()

total_area := 0

for point_index := 1 to (UtilPoints.size - 1) do

total_area := total_area + CalcArea(A, UtilPoints[point_index],

UtilPoints[point_index + 1])

end for

return total_area

Figure 2.6: Pseudo code implementation of algorithm to calculate overlap of square and strip.
CalcArea(A, B, C) is shown in Image 2.5(c).

2.5. Restoring the original from projections 23

pixels image covered by 363 strips needs to be described by a matrix containing over six billion
entries) we decided to store the matrix in a way that would exploit its sparseness.

Instead of storing complete columns, we effectively doublethe number of columns where
every row pair consists of the original row number and the stored value (see figure 2.7). Storing
a matrix for a 256 by 256 image covered by 363 strips now takes only 262 thousand entries.

2.5 Restoring the original from projections

As explained in the introductory chapter, a projection is performed from multiple angles. Until
now we only reviewed one projection (from one direction), but we will now see that this process
can be easily repeated to cover projections from more than one angle. All what is needed is
extending bothW and~p. The number of rows of both~x andW are multiplied by the number
of projection directions. The newW will consist of several original projection matrices stored
above each other (see figure 2.8).

When we have calculatedW and measured p, we could solve equation 2.4 to obtain~p, but
due to the enormous size ofW this is not a realistic option. Also note that this matrix is in
general not square (n2 is in practice always larger than the number of projections multiplied
by the number of projection angles) so performing a matrix inversion ofW isn’t possible (the
solution would be a multi-dimensional solution space). A last reason why an algebraic solution
won’t work is measurement errors. As with all practical measurements, one can never ignore the
potential for errors. This will make solving~x impossible. All these problems demand an other
approach.

24 Chapter 2. Tomography

Figure 2.7: Storing sparse matrix more space-effectively.(a): all entries not given of column
11 are zero, rows are numbered. (b): matrix now contains only3 rows (maximum number of
non-zero entries in columns of original matrix), yet numberof columns is doubled. Column 22
and 23 (2n and2n + 1, with n = 11) contain original row number and stored data, respectively.

Figure 2.8: Algebraic operation performed when~x is projected ind directions. BothW and~p

consist ofd vertically ordered items.

Chapter 3
Simultaneous Algebraic Reconstruction
Technique (SART)

A number of different algorithms have been proposed to solvelarge scale tomography problems.
We use ‘SART’ and before we will show its performance, it willbe explained. ‘SART’ is an al-
gorithm that has the best result when used with images when noforeknowledge of it is available.
If there is some knowledge available about the image to be reconstructed, other algorithms are
helpful, such as discrete tomographic algorithms (used when the object consists of only a few
different material types) and TV-minimalisation (if it is known the image has large areas of one
type of material).

3.1 Inner workings of SART

SART [2] is an iterative algorithm: it performs the computation of ~x in a number of distinct steps
and will, on average, get closer to the correct answer with every step. Instead of one large matrix
W and~p, the data is stored as before: separate for each projection direction. Every direction
amounts to its own iteration, where a number of basic operations are performed to calculate~x.

A projection of~x is simulated and stored in~u. This vector’s dimensions will be the same
as~p, but its values will be different. The difference is be stored in ~err (= ~p − ~u). This gives
the error of each strip, not of separate pixels. Here SART assumes all pixels caused the pro-
jected error according to the area covered by the strip currently considered (this is stored in
Wstripindex,pixelindex). The entry of ~delta for this pixel will be increased in the following way:

~deltapixelindex = ~deltapixelindex + ~errstripindex ·
Wstripindex,pixelindex

~betastripindex

The added value needs to be divided by the total area of a strip(here stored in ~beta), because
a pixel on a larger strip contributes less to the projection error than one on a smaller strip.

After ~delta has been calculated and before it is added to~xpixelindex, it needs to be divided

25

26 Chapter 3. Simultaneous Algebraic Reconstruction Technique (SART)

foreach iteration do

foreach direction dir in Directions do

W := GetWMatrix(dir)

p := GetPVector(dir)

beta := GetBeta(dir)

gamma := GetGamma(dir)

u := W * x

err := p u

delta := 0

for i := 1 to (n*n) do

for j := 1 to strips do

delta[i] := delta[i] + err[j] * W[j][i] / beta[j]

end for

x[i] := x[i] + delta[i] / gamma[i]

end for

end foreach

end foreach

Figure 3.1: SART algorithm (see text).

by ~gammapixelindex. ~gammapixelindex stores the total coverage of each pixel for this direction.
Some implementation leave this factor out, beceause it almost always equals 1.0, but we left it
in, to be able to deal with projections that don’t cover all pixels.

See figure 3.1 for SART in pseudo code.

3.2 Performance of SART

Before considering our specific implementations of SART, wewill first give some typical results
of this algorithm. Figure 3.2 shows a number of screenshots of ~x during a run of the algorithm.
The image is 240 by 240 pixels, covered by 40 projection directions, each consisting of 340
strips. The restoration process is seen to move clockwise through the image, where at the end of
every cycle~x gets closer to the original image.

It took an AMD with a clock speed of 2 GHz 2 hours to perform the first 600 iterations, after
which the minimum error is reached (see figure 3.2). This is why it is interesting to implement it
on a faster machine so the computation time can be reduced.

3.2. Performance of SART 27

Figure 3.2: SART in action: starting with a completely blackimage~x, the original image is
restored. First row: original image (which was projected in40 directions and~x at beginning
of restoration, which is equal to~0. Second row: first cycle, after which some outlines start to
become visible. Third row:~x gets closer to original image. Fourth row:~x at end of third, fourth
and fifth cycle.

28 Chapter 3. Simultaneous Algebraic Reconstruction Technique (SART)

Figure 3.3: Average error of~x with respect to number of iterations used. The graph describes
same run as figure 3.2, where every cycle consists of 40 iterations. The average error moves
slowly to 0.07, which is acceptable in most circumstances.

Chapter 4
The Cell Processor

IBM teamed up with Sony and Toshiba to form STI, a joint venture to develop a new type of
processor, the Cell [3][4]. This processor consists of a number of distinct units (see figure 4.1):

• A regular PowerPC unit with two threads implemented in hardware.

• Eight SPEs (Synergetic Processing Elements), also called SPUs, with 256 Kb of local
storage that work like mini-CPUs. They can execute specially compiled code loaded on
them from the PPU. They don’t have direct access to the main memory, this is done via the
PPU.

This setup offers programmers a chance to write parallel programs without paying the high
price of most parallel systems. The theoretical computing power of the Cell is a terraFLOPS. A
typical desktop CPU sold at that time has about ten gigaFLOPS.

Parallel processors offer extreme computing power, but require a new way of programming.
Before we look at the way Leiden University tries to automateparallel code generation, we will
show how we manually implemented SART on the Cell.

Because the Cell is made up of different units, communication is important. We used the
following channels:

• Direct Memory Access (DMA): here an SPE accesses the main memory directly. Data
is copied from and to the main memory from the SPE’s local storage. There are some
requirements: the maximum size copied is 16 Kb and needs to bea multiple of 128 bytes
and the address needs to be quad-word aligned.

• Mailboxes: the SPEs can write a 32-bit message to their outbox. The PPU and other SPEs
can read it. Every SPE also has one inbox with four slots, which can be written to by all
other units. If a subunit tries to write to a full message box or read from an empty one,
execution halts until a slot is free or a message is available, respectively.

29

30 Chapter 4. The Cell Processor

We used the following operations:

• StartSPU(spu, program): starts SPUspu with programprogram.

• WaitUntilFinished(spu): blocks until an SPU is finished.

• WriteToMailbox(spu, data): writes a message with valuedata to the inbox of SPUspu. If
the mailboxes are full, this call blocks until a slot is free.

• ReadFromMailbox(spu, data): reads from the outbox of an SPU, blocks if no messages in
outbox. A read removes the message from the outbox.

• WriteToOutbox(data) (SPU only): storesdata in local outbox. This call will block if
outbox is full.

• ReadFromInbox(data) (SPU only): readsdata from local inbox, blocks if empty. A read
removes the message from the inbox.

• DMA read(PPU-name, SPU-name) (SPU only): copies data from PPU to SPU.

• DMA write(SPU-name, PPU-name) (SPU only): copies data from SPU to PPU.

Figure 4.1: Overview of Cell CPU. On the left the PPU is shown and its two threads. On the
right are its 8 SPUs, all connected by a bus to the other SPUs and the PPU. Note that SPUs don’t
have direct access to main memory, but do have a local storage. Also shown are the four inboxes
and one outbox of every SPU. These are used to communicate viamail messages.

4.1 SART implementation on the Cell

The main aim of this project is to find a way to implement SART onan other type of hardware,
so the restoration process will be quicker. We choose to implemented it on the Cell to find out if

4.2. Performance of manual SART implementation on the Cell 31

this was a realistic option. We needed to add some parallelization to the code, to allow it to run
on multiple SPUs.

The general idea is to split~x over the SPUs and use the PPU for managing the threads and
synchronizing the data. This means that every SPU only has tostore an eighth ofW in local
storage. Also~beta and~gamma can be stored separately over the SPUs. Because the actions of
PPU and SPUs are strongly intertwined we will deal with them at once, so please follow listing
3 and 4 carefully.

The PPU begins with preparing the data used by the SPUs and starting them. The PPU will
then try to read a message from all their outboxes, which willbe blocked until they write . They
will now read in their parts ofW, ~beta, ~gamma, and the complete~p into local storage using
DMA. Then they will calculate the error caused by their pixels by projecting their~x and subtract
it from ~p. The calculated~errs of all SPUs then need to be added, so will be DMA-ed to the PPU
memory.

The PPU is told by the SPU the error vectors are calculated by writing a dummy value into
the outbox. When all eight SPUs have done this, the PPU will add all error vectors and store it
in ~errtotal so the SPUs will be able to retrieve it.

Now the PPU will send a message to all SPUs and they will wake up, copy the total error
vector and continue the SART algorithm, which will be the same as the original sequential code.

When the SPUs are done, they copy their values of~x to main memory and the PPU copy the
values in the final~x.

We chose this approach because it limited the number of DMAs and mail messages. By
copying all required data to the SPEs at the beginning, we only need to send mail messages so the
PPU knows an SPE has finished a phase of its calculations. All SPEs are loaded symmetrically, so
none of them is waiting while the others are working. And except from the short periods during
which the SPEs are waiting for the PPU to add the~err vectors all SPEs are busy calculating.

4.2 Performance of manual SART implementation on the Cell

We will now look at how good this code is compared to the serialimplementation. The cheapest
way to obtain a working STI Cell configuration is by buying a Sony PlayStation 3 [5]. This latest
generation gaming console costs about 600 euros and only hassix SPUs available (two are used
for OS security). Because this project is part of an initial exploration of the Cell’s power and it
wasn’t known how likely it was we were to pursuit this architecture very long, we decided to use
the offered simulator instead. This simulator can be downloaded for free from IBM’s website [6]
and allows a programmer to test and debug his software even when this hardware is not available.
But as always is the case with simulators, executing code on it is much slower than on the real
thing.

The simulator offers a number of settings on how close the inner workings of the CPU needs

32 Chapter 4. The Cell Processor

foreach spu in SPUs do

W[SPU] := CalcLocalW(spu)

beta[SPU] := CalcLocalBeta(spu)

gamma[SPU] := CalcLocalGamma(spu)

StartSPU(spu, SartCellSPU)

end foreach

foreach iteration do

foreach direction dir in Directions do

foreach spu in SPUs do

ReadFromMailbox(spu, dummy)

end foreach

err_total := 0

foreach spu in SPUs do

err_total := err_total + err[spu]

end foreach

foreach spu in SPUs do

WriteToMailbox(spu, dummy)

end foreach

end foreach

end foreach

foreach spu in SPUs do

WaitUntilFinished(spu)

end foreach

x := 0

foreach spu in SPUs do

x := Concatenate(x, x_local[spu]);

end foreach

Figure 4.2: PPU pseudo code of implementation of SART on the Cell. See text for an in depth
explanation. ‘SartCellSPU’ is a pointer to the code of figure4.3. ‘Concatenate(a, b)’ returns a
vector consisting of all entries of a followed by all entriesof b.

4.2. Performance of manual SART implementation on the Cell 33

DMA_read(W[this], W)

DMA_read(p, p)

DMA_read(beta[this], beta)

DMA_read(gamma[this], gamma)

foreach iteration do

foreach dir in Direction do

q := W * x

err := q - p

DMA_write(err, err[this])

WriteToOutbox(dummy);

ReadFromInbox(dummy);

DMA_read(err_total, err);

delta := 0

for i := 1 to (n * n) do

for j := 1 to strips do

delta[i] := delta[i] + err[j] * W[j][i] / beta[j]

end for

x[i] := x[i] + delta[i] / gamma[i]

end for

end foreach

end foreach

DMA_write(x, x_local[this]);

Figure 4.3: Code executed on the SPU. We assume the variable ‘this’ stores the information for
the SPU on which this code runs. Except for the mailbox communications with the PPU, the
looped code is the same as in figure 3.1.

34 Chapter 4. The Cell Processor

to be imitated. The two we used are called ‘fast mode’ and ‘pipe mode’. They can be consid-
ered as the extremes of a spectrum: the first runs the code as fast as possible, only guarantying
the functional correctness whereas the latter completely simulates the internal workings of the
processor, which is much slower. ‘Pipe mode’ is called that way because it also simulates the
internal pipeline that will show delays caused by, for example, missed branch predictions and
cache misses. We use the fastest mode to test the code and the slowest to measure performance.

To test the performance of our code we put the simulator in pipe mode and let it run for a
number of days on ever increasing image sizes. We started at 3x3 pixels and ended at 104x104.
This gave us an idea of the cost of the added overhead. We measured the execution time of both
the serial code (PPU only) and our parallel implementation to calculate the speed-up. Image 4.4
shows the results.

We found a clear relation between the size of the image and theachieved speed-up. An im-
age of 45 by 45 pixels and larger is done faster by the parallelimplementation. The reason for a
speed-up smaller than one for smaller images (which means ittakes more time to execute it with
SPUs than with just the PPU) is because of the added synchronization code and DMA actions.
Note that the reported speed up might paint a bit too positiveimage, because the serial implemen-
tation only uses part of the Cell, whereas the parallel implementation uses it completely, so the
hardware costs for the parallel code are also higher for the SPU implementation. Since a typical
image in medical applications has a size of about 256x256 or 512x512 pixels, which we didn’t
test because of the execution time of the simulator, it is safe to assume we could also achive a
speed-up in a practical setting.

When its performance is compared to a serial implementationon a regular desktop PC, the
results are extremely satisfying. A speed-up of almost 7 is achieved, with 6.5 as a nice average.
This means that a 2003 600 euros system (PlayStation 3) out-performs a 2007 800 euros pc by
about seven to one, a very good result. There is only one hidden factor we haven’t taken into
account yet, which might skew things the other way: development time. This will be dealt with
in the next section.

4.2. Performance of manual SART implementation on the Cell 35

Figure 4.4: Relation between achieved speed-up of our parallel code compared to the serial code
and image size. A polynomial trend line which fits the data is shown.

36 Chapter 4. The Cell Processor

Figure 4.5: Speed-up of parallel code compared to code running on regular AMD64 3800+ (2.01
GHz) processor. Maxes out at about 7. The polynomial trend line, which can be regarded as an
average, reaches 6.5.

Chapter 5
Automating parallel code generation
LIACS-style: COMPAAN

Learning the Cell processor, coming up with the idea of how tobalance the loads on the SPEs,
writing the code, and debugging it took about two months. Once one is more experienced with
the Cell, this can be brought down a bit, but writing parallelcode still remains a notoriously
hard job. It clearly started to dawn during the few last decades on system developers and other
programmers that an automated process was needed. Many attempts have been made and I
will focus on what has been done in this field by LIACS, Leiden University’s computer science
department.

We focus on structures found very often in the code requiringa speed-up: nested loops.
Amdahl’s Law tells us we need to focus on often executed code if we want to reduce the execution
time of a program considerably. The body of a loop is executedvery often and the deeper it is
inside a collection of nested loops, the more we will gain by reducing its execution speed. In this
case we will try to parallelize it as much as possible, to utilize the hardware we have.

Note that this will work the best when a lot of parallelization subunits are available. This
document covers our exploration of the STI Cell, but we have been using this technique for the
last couple of years already on FPGAs and are also interestedin GPUs, which both offer more
than one hundred units, compared to the eight offered by the Cell. Yet the SPEs have much more
computing power than the elements of a typical FPGA implementation. This might be helpful
later on, when we get to the implementation of SART using COMPAAN [7].

5.1 Simple COMPAAN example: matrix multiplication

We use a simple example to illustrate the strategy used by COMPAAN to parallelize code. Fig-
ure 5.1 shows a program that loads and multiplies two matrices and stores the result. Note that
it is not given in a type of pseudo code, but in real matlab code. COMPAAN has matlab as its

37

38 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

input code, because this well-known programming language is very helpful when dealing with
multidimensional arrays. Every executing statement has been labeled by a node number, this is
useful when discussing it and also has some other uses, whichwill become more clear later on.

The first three nodes load the values of all entries of the matrices. This is typical for the
initialization code needed by all COMPAAN programs, because all values of the used input
arrays all need to be assigned. When the target code is generated, we need to edit this code so
the correct values are loaded, which is going to be done by passing the row and column variables
to the respective load functions.

In the main body the multiplication is performed. Every entry is set to zero and then the
vector product of the appropriate row ofA and column ofB is calculated. Because COMPAAN
is only interested in the order of the operations and the datadependencies (more about that
later), it doesn’t compile the calculations themselves. Those are hidden inside a function that is
implemented later on in the target programming language, C++ in our case.

When the calculation is finished, the result is stored by calling Pass, that will see all values,
which can then be used as a point where every value can be stored at a place where it can be
written to disk, or used by other calculations.

What COMPAAN will look for, when compiling this file, is data dependencies. Nodes 1
through 3 normally will be executed32 ·32 times before node 4 and 5 will be handled for the first
time, although this is not strictly necessary. Node 4, for example, overwrites the value stored by
node 3 without exception. This means node 3 doesn’t need to beexecuted, or when it is executed,
the resulting value doesn’t need to be passed to the other parts of the program, because its value
would be lost anyway.

Node 5 is more important. MultiplyAndAdd has three input values, which all need to be
available when it is executed. In fact, when the loop containing this function (with iteratorindex)
is about to be executed, the appropriate row ofA and column ofB need to be calculated. This
means that not every instance of node 1 to 3 need to have been executed, just the ones that store
at the locations of that row and column. This offers a helpfulsource of parallelization, because
at some time almost every instance of node 4 and 5 can be executed before the initialization loop
has finished.

In our case it could be done in the following way: PPU runs node1, 2, and 3, because it is
the only unit that allows file access, SPE 0 is running node 4, SPE 1 runs node 5, and the PPU
again is running node 6. Now SPE 0 and 1 can start before the PPUis done, thus reducing the
total execution time.

COMPAAN’s job is to find the data dependencies and generate code that will take care of
sorting it out. Figure 5.3 shows that the dependencies in this case are a bit too complex to just
start node 4 and 5 as soon as some data is loaded. All entries ofA andB are used multiple times
and, from the initialization’s point of view, out of order. This problem needs to be solved and
will be the next point of attention.

5.1. Simple COMPAAN example: matrix multiplication 39

for row=1:1:32,

for column=1:1:32,

%% Node 1

[A(row, column)] = LoadA();

%% Node 2

[B(row, column)] = LoadB();

%% Node 3

[C(row, column)] = LoadC();

end

end

for row=1:1:32,

for column=1:1:32,

%% Node 4

[C(row, column)] = LoadZero();

for index=1:1:32,

%% Node 5

[C(row, column)] = MultiplyAndAdd(C(row, column),

A(row, index), B(index, column));

end

end

end

for row=1:1:32,

for column=1:1:32,

%% Node 6

[SinkC(row, column)] = Pass(C(row, column));

end

end

Figure 5.1: MATLAB code that loads two 32 by 32 matrices, multiplies them and stores the
result.

40 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

function result = MultiplyAndAdd(c, a, b)

result = c + a * b;

end

function result = LoadZero()

result = 0;

end

Figure 5.2: Implementation of MultiplyAndAdd and LoadZero. Note that this code isn’t used by
COMPAAN, but will be written in the target language.

Figure 5.3: Data dependencies when calculating the upper left element of matrixC. First row of
A is needed in its entirely, first column ofB is also needed. Because matricesA andB are read
in row-major order, a large part ofB needs to be read before the first column is read (here shown
in light gray).

5.2 Kahn Process Networks (KPNs)

COMPAAN uses a subclass of Process Networks (PNs) called ‘Kahn Process Networks’ (KPNs),
named after Dr. Gilles Kahn. Figure 5.4 shows two very simpleKPNs to illustrate their general
topography. All nodes are connected via FIFOs, queues implementing First-In-First-Out passing
of items. Figure 5.4(a) shows a producer-consumer model, with node 1 being the producer. The
KPN of figure 5.4(b) shows that nodes can have multiple input and output FIFOs, a property that
will become helpful later on.

As we saw during our matrix multiplication example, COMPAANneeds to utilize the fact
that statements, which we already named after their node number, can be started out of order
compared to their serial counterpart. Node 4, for example could be started right away and node
5 when only a part of matricesA andB were loaded. COMPAAN produces a process for every
node to be run from the start.

5.2. Kahn Process Networks (KPNs) 41

Every node without an input FIFO can start right away and whenit has one or more output
FIFOs, will eventually start writing tokens to them. Nodes that do have input FIFOs will start
at the same time, but their reading operations will stall until a token is written to the FIFOs in
question. If the order of writing to the FIFOs and reading from it are known on both sides, the
nodes are able to execute in a parallel fashion. Figuring this out is COMPAAN’s job.

Figure 5.4: Two simple Kahn Process Networks showing structure of this type of networks.

Let’s now take a look at our matrix multiplication example. We let COMPAAN compile
the code of figure 5.1 and visualized the produced KPN, the result of which can be seen in
figure 5.5. We see that node 3 has no input or output ports. Thismeans it can be pruned from the
KPN, something we already deduced ourselves when we previously discussed the matlab code.
We also see that FIFO 1 connects node 5 with itself. This is becauseC(row, column) in node
5 is both used as an input and an output, so the produced value is needed during the following
iteration.

A last remark deals with something we already saw in figure 5.3. Because the order in which
the entries of matricesA andB are loaded are not the same as they are needed by node 5 and
also because they will be used multiple times, they need to bereordered. COMPAAN therefore
generates code that will read FIFO 3 and 4, but will offer the read tokens in the correct order.

Figure 5.6 shows theC++ code running on node 1. It produces 32 times 32 tokens and places
them in FIFO 3. The values of the tokens are defined by theLoadA method, to be implemented
by the programmer. The value is returned in the last argumentof the function, which is passed
by reference. The programmer had to add the row and column index manually to the method
invocation, because it wasn’t in the original code. Becauseit is still in its development stage,
code created by COMPAAN still requires some manual editing.

Figure 5.7 is a bit more interesting and shows what happens innode 5. As shown by fig-
ure 5.5, node 5 has four input FIFOs and one output FIFO. InputFIFOs 3 and 4 need a reordering
of their output and FIFO 1’s input and output are both connected to node 5. The code of node 5
has to take all that into account.

42 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

BeforeMultiplyAndAdd can be called, which is the name used for the function used in the
original matlab code, the input variables need to be collected. The entry ofC accessed by this
instance is read from FIFO 2 when it is the first one and from FIFO 1 in all other cases. The
values of the entry ofA andB are read from the local buffer, that receives all tokens and stores
them until the node 5 code reads them. Whenever node 5 is done with a part of the data (a row
or a column) that is no longer needed, it tells this to the buffer, so it can purge the used data.

When the input data is read, theMultiplyAndAdd method can be called. As before, the last
argument is passed by reference and will contain the output of the function. This function needs
to be implemented by the programmer inC + +. The output value, which is the current value of
the entry inC, then has to go into a FIFO. If the value ofindex is lower than 32, the value needs
to be written to FIFO 1, so it will be read again by node 5. Ifindex is equal to 32 (the vector
product is calculated), it has to be written to FIFO 5, so it can be handled by node 6.

Figure 5.5: KPN produced by COMPAAN for our matrix multiplication code. Node 3 isn’t
connected to any other nodes (as expected) and the outputs ofnode 1 and 2 need to be reordered
inside node 5, this action is shown here in gray (see text). Also note that FIFO 1 connects node
5 to itself, because the vector product of a row of A and a column of B is calculated by adding
multiple values to the same entry of C, which is therefore used as an input of node 5 and as an
output.

5.3. Implementation of FIFOs 43

for(row = 1; row <= 32; row++)

{

for(column = 1; column <= 32; column++)

{

LoadA(row, column, A_output_value);

write(FIFO3, A_output_value);

}

}

Figure 5.6: Code executed by node 1. ‘LoadA’ needs to be implemented by the programmer in
the target language (in this caseC + +) and stores the return value in the last argument, ‘write’
is a method defined by the environment that finds a FIFO (first argument) and writes a value to it
(second argument), blocking if the FIFO is full.

5.3 Implementation of FIFOs

COMPAAN generates the code for the nodes, but the rest of the environment (FIFOs, multi-
threading and the like) has to be created by the programmer. Anumber of implementations
already exist and COMPAAN can generate the code so it works with them. One is offered for
C + + and is named ‘YAPI’ and also one for Java called ‘Ptolemy’.

Because the code is eventually going to run on the Cell, we hadto set up a complete envi-
ronment for ourselves. We decided to use Pthreads, a librarythat offers typical multi-threading
functionality. We will now discuss our manual implementation. Figure 5.9 shows all member
variables of a FIFO and their initializations. We use a standard circular buffer plus some code to
handle multithreaded access. The main buffer consists of anarray of tokens, which will be floats
in our case, a stored write and read position, and a boolean that keeps track of the most recent
operation. We will look at the rest when we cover the multithreaded additions.

Thewrite pos, read pos, andlast action write variables are all used to store its state. A token
is stored by writing it to the write position and read from theread position. After each operation
the respective position integer is increased. If the indexes are the same, the FIFO is either empty
or full. If the last operation was a write it is full and a writehas to wait until at least one read
is performed. If the previous operation was a read (last action write is false) and the position
integers are equal, the buffer is empty and a read operation will have to wait.

The nodes on both sides of the FIFO don’t synchronize their read/write operations, so without
the proper measures, data corruption might occur. Luckily Pthreads, and virtually every other
multithreading library, offers data structures to make sure threads access data in a safe manner.
For this it uses mutexes and conditions. The former permits volatile code to only be executed
by one thread at a time and the latter allows to signal other threads when a certain condition has
been fulfilled.

44 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

for(row = 1; row <= 32; row++)

{

for(column = 1; column <= 32; column++)

{

for(index = 1; index <= 32; index++)

{

// input code goes here...

// call MultiplyAndAdd: the method to be implemented by programmer

MultiplyAndAdd(C_input_value, A_input_value, B_input_value, C_output_value);

if(index < 32)

{

// calculated C value needs to be returned to node 5 (via FIFO1)

write(FIFO1, C_output_value);

}

else

{

// write it to node 6 (via FIFO5)

write(FIFO5, C_output_value);

}

}

}

}

Figure 5.7: Code running on node 5. It is a lot more complex than node 1, because it uses
three input FIFOs, of which two are buffered. The code that reads the input variables is given in
figure 5.8.

5.3. Implementation of FIFOs 45

if(index == 1)

{

// first C-entry value needs to be read from FIFO2 (from node 4)

read(FIFO2, C_input_value);

}

else

{

// all other C-entries need to be read from FIFO1 (from node 5)

read(FIFO1, C_input_value);

}

// matrix A input value needs to be read from buffer of FIFO3 (from node 1)

A_input_value = FIFO3_Buffer->getFrom(row, column, index);

if (column == 32)

{

// during last column, a row of A is read, can be removed from FIFO3 buffer

FIFO3_Buffer->releaseMem(row, column, index);

}

// matrix B input value needs to be read from buffer of FIFO4 (from node 2)

B_input_value = FIFO4_Buffer->getFrom(row, column, index);

if (row == 32)

{

// during last row, a column of B is read, can be removed from FIFO4 buffer

FIFO4_Buffer->releaseMem(row, column, index);

}

Figure 5.8: Code responsible for reading input variables ofnode 5.

46 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

FIFO::InitFifo()

begin

Token buffer[buffer_size] = all empty;

int write_pos = 0;

int read_pos = 0;

bool last_action_write = false;

mutex buffer_mutex = new mutex;

condition is_full_condition = unset;

condition is_empty_condition = unset;

end

Figure 5.9: Initialization code of FIFO. Declares and initializes all local variables of a FIFO.

Every time the buffer has to be accessed, a lock on the mutex isrequested. If another thread
is already doing something to the data, this will make the first thread wait until this mutex will
be released. After it has been acquired, a check has to be performed to see if the action can be
done; in case of reading, the FIFO cannot be empty, in case of writing it cannot be full. If the test
fails, the operation cannot be performed and has to be delayed until the buffer is in a correct state.
A simple polling loop wouldn’t do, because this would still keep the mutex acquired, therefore
disallowing the other thread to work with the FIFO, bringingthe system in a deadlock.

This is where the conditions come in handy. When a thread findsout that the FIFO is not
in the correct state, it will set the respecting condition using ConditionWait. This method will
atomatically unlock the mutex, set the condition and put thecurrent thread to sleep. An other
thread will now be granted access to the FIFO and will change its state, so the first thread will
be able to continue. This is done after the mutex is released:after a check is performed to see if
the condition is locked (ConditionSet will return true)ConditionSignal is called to wake up the
original thread and place it in the execution queue.

The first thread was put asleep in the call toConditionWait, so it will continue at that location
in the code. Before returning control to our code, it will acquire a lock on the mutex so we
will be able touch the data in the buffer knowing that it is in the correct state. This solved our
synchronization problems.

5.4 A practical consideration: FIFO sizes

In most theoretical applications of KPNs, an infinite FIFO size is assumed. Needless to say, this
is not very helpful in our case. Especially when one tries to store the data inside the limited Local
Storage of a Cell SPE, huge buffer sizes can become fatal. Theminimum required size of a FIFO
of a general KPN is not decidable. We decided to find the minimum buffer size by running the

5.4. A practical consideration: FIFO sizes 47

FIFO::WriteToken(Token token)

begin

LockMutex(buffer_mutex);

if (write_pos == read_pos) AND last_action_write then

ConditionWait(is_full_condition);

end if

buffer[write_pos] = token;

write_pos = (write_pos + 1) mod buffer_size;

last_action_write = true;

UnlockMutex(buffer_mutex);

if ConditionSet(is_empty_condition) then

ConditionSignal(is_empty_condition);

end if

end

Figure 5.10: ‘WriteToken’. The mutex is locked, a check is performed to see if there is room in
the buffer, the token is written, some bookkeeping is performed, the mutex is released, and when
a reader is waiting, it is signaled that the buffer is no longer empty.

48 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

Token FIFO::ReadToken()

begin

LockMutex(buffer_mutex);

if (write_pos == read_pos) AND (not last_action_write) then

ConditionWait(is_empty_condition);

end if

Token output = buffer[read_pos];

read_pos = (read_pos + 1) MOD buffer_size;

last_action_write = false;

UnlockMutex(buffer_mutex);

if ConditionSet(is_full_condition) then

ConditionSignal(is_full_condition);

end if

return output;

end

Figure 5.11: Code called to read a token. Almost the same as the ‘WriteToken’ code, only token
is read from buffer, instead of written to it. See text for complete discussion of both methods.

5.5. Our first and most simple usage of the SPEs 49

KNP on the PPU only while reducing the buffer size until a deadlock occurred, or until the size
was acceptable. We focused on smaller problems where a buffer size of 1024 tokens turned out
to be more than enough, so we used that number in all our experiments.

5.5 Our first and most simple usage of the SPEs

The method that has been described so far works perfectly on simple processors like the Intel
Pentium or even on multicore-platforms where all processors communicate via shared memory
and no special DMA operations are required. All code up to this point was written and debugged
on a normal AMD processor. Adding the SPE functionality required some extra designing.

Figure 5.12 and 5.13 show the same simple KPN, where figure 5.12 runs on the same pro-
cessor (either the AMD or the PPU) and figure 5.13 shows the KPNwith nodes A and D on the
SPEs.

Figure 5.12: A simple KPN with two nodes and two FIFOs.

Figure 5.13: KPN of figure 5.12 put on both the PPU and on the SPEs. A’ and D’ act as service
threads that delegate all calculations to A and D, respectively, which are located on the SPEs. A
and D use their serving threads to access the FIFOs.

Figure 5.13 introduces two extra nodes on the PPU side: A’ andD’. They act as service
threads for their respective SPE thread. The unprimed threads in both images are the same, only
the way in which they access the FIFOs differs, this will be discussed below.

50 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

As mentioned previously, the PPU and the SPEs can communicate using mail messages,
this will be utilized in our communication scheme. Once a thread running on an SPE wants to
perform a read or a write on one of the FIFOs (which are all located in the PPU-memory), it will
write one or more outbound messages to publish this request to its serving thread on the PPU
side, which, if required, will eventually write a value to the SPE’s inbound mailbox.

Figure 5.14 shows what this looks like from the service thread on the PPU side, figure 5.15
shows the read, write, and stop operations from the SPE side.

The serving thread will check every iteration if there is a message to be read. If there isn’t
one, it will give up its control of the PPU by callingYieldThread (a functionality offered by
Pthreads) so it will check up on the SPE’s mailbox during the next scheduling round. If there is
a message waiting, it will use it to find out what action the SPEwants to have performed. If it is
a write operation, the SPE will send the FIFO number and the token (which we assume to be 32
bits, we always used floats so this requirement was met) so it can be written to the appropriate
FIFO.

When a read is required the FIFO number is also send to the PPU.The service thread will
then find the FIFO, read a token from it and send it to the SPE. And finally if a request for exit is
received, the loop is exited and the thread terminates. Thismakes sure the thread runs no longer
than absolutely necessary.

5.6 Performance of this solution

Since our main interest lays with the time required to communicate between nodes, we mea-
sure the performance of this protocol by implementing the simple KPN shown in figure 5.16; a
producer-consumer network.

We used the most basic measurement of speed available: execution time. Since the Cell
features a PowerPC unit, the most precise clocking functionality offered is the time base register.
This register is updated a large number of times per second, so to calculate the number of elapsed
second, one needs to count the number of increments and divide it by the timebase value for that
particular processor. Figure 5.17 and 5.18 show the contents of the ‘/proc/cpuinfo’ files for the
PS3 and the Cell simulator respectively.

5.7 Implementing a more advanced way of inter-process com-
munication

The previously shown method is very slow. For every token three mail messages are needed,
which is too much. We decided to solve this problem by sendingmultiple tokens at once. This
will require DMA operations that send over complete buffersand introduces extra bookkeeping.

5.7. Implementing a more advanced way of inter-process communication 51

enum OPERATIONS:

OPERATION_WRITE

OPERATION_READ

OPERATION_EXIT

end

boolean exit := false;

SPE spe := serviced SPE;

Token token := null;

while(not exit) do

if(MailMessageWaiting(spe)) then

ReadFromMailbox(spe, Operation)

switch(Operation)

case OPERATION_WRITE do

ReadFromMailbox(spe, FifoNum)

ReadFromMailbox(spe, Token)

GetFifoByNum(FifoNum).WriteToken(token)

end

case OPERATION_READ do

ReadFromMailbox(spe, FifoNum)

token := GetFifoByNum(FifoNum).ReadToken

WriteToMailbox(spe, token);

end

case OPERATION_EXIT do

exit := TRUE

end

end

else

YieldThread;

end

end

Figure 5.14: Service thread on PPU side. This thread runs while the thread on the SPE side runs.
It monitors the outbox of its designated thread. See the textfor a complete discussion.

52 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

WriteToken(Fifo fifo, Token OutToken) :

WriteToOutbox(OPERATION_WRITE);

WriteToOutbox(fifo.GetNumber);

WriteToOutbox(OutToken);

end

ReadToken(Fifo fifo, Token & InToken) :

WriteToOutbox(OPERATION_READ);

WriteToOutbox(fifo.GetNumber);

ReadFromInbox(InToken);

end

Exit() :

WriteToOutbox(OPERATION_EXIT);

end

Figure 5.15: Implementation of the three methods used by thecode running on an SPE. All
actions are implemented by sending and receiving the required mail messages.

Figure 5.16: A producer-consumer KPN. This network is used to measure the performance of
the two protocols developed during this project. By moving the sending and receiving nodes to
different Cell units the speed of all communications can be determined.

This will be dealt with below.

Figure 5.20 shows the operations performed when filling a buffer and sending it using DMA.
For now we only consider a buffer size of four tokens, but later on we will experiment with a
larger buffer. In our solution the buffer is filled by copyingtokens to a linear buffer. After then it
is copied to a memory space of the same size in the memory of theone were the reading node is
located. When the DMA is competed, a message is send to the writing node, so it can consider
the buffer to be writable again. The writing node has to wait for the DMA completion before
writing, otherwise data consistency cannot be guaranteed.

All DMA operations are initiated by the SPE-side of the FIFO,this is because, according
to the official IBM Cell manual, the performance is better andalso because it allows us in the
future to set up more concurrent DMA operations: when multiple connections need to be served,
multiple DMA tags (description IDs) could be used.

5.7. Implementing a more advanced way of inter-process communication 53

processor : 0

cpu : Cell Broadband Engine, altivec supported

clock : 3192.000000MHz

revision : 5.1 (pvr 0070 0501)

processor : 1

cpu : Cell Broadband Engine, altivec supported

clock : 3192.000000MHz

revision : 5.1 (pvr 0070 0501)

timebase : 79800000

platform : PS3

Figure 5.17: ‘/proc/cpuinfo’ for the PlayStation 3. The twohardware threads are shown as
separate processors (values given: index, description, clock speed and revision). Important to us:
the ‘timebase’ value, it gives the number of increments of the ‘time base’ register per second.

processor : 0

cpu : Cell Broadband Engine, altivec supported

clock : 3200.000000MHz

revision : 5.0 (pvr 0070 0500)

processor : 1

cpu : Cell Broadband Engine, altivec supported

clock : 3200.000000MHz

revision : 5.0 (pvr 0070 0500)

timebase : 25000000

platform : Cell

machine : CHRP IBM,CPBW-Mambo, Simulated-System

Figure 5.18: Contents of ‘cpuinfo’ for the Cell simulator. It has a smaller timebase value (to
lower the strain on the simulator), but does run on the theoretical speed of 3.2 GHz.

54 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

Number of tokens Time base incrementsTime (s) Tokens per sec
PPU to PPU 210 25567 0.00032 3.1 · 106

220 204161972 2.56 4.0 · 105

227 22226295746 278.53 4.8 · 105

SPE to PPU 210 2563002 0.032 3.2 · 104

220 2972280622 37.24 2.8 · 104

227 380493349115 4768.08 2.8 · 104

PPU to SPE 210 1635467 0.020 4.9 · 104

220 2824044831 35.39 2.9 · 104

227 364814712356 4571.61 2.9 · 104

SPE to SPE 210 2807189 0.035 2.9 · 104

220 2973432971 37.26 2.8 · 104

227 391067207313 4900.59 2.7 · 104

PPU to self 210 63639 0.00079 1.2 · 106

220 51389370 0.64 1.6 · 106

227 6471958374 81.1 1.6 · 106

SPE to self 210 6242437 0.078 1.3 · 104

220 4784318814 59.95 1.7 · 104

227 450529293916 5645.73 2.3 · 104

Figure 5.19: Our first, service-thread-based, solution’s performance. All connections were tested
for 210 (1024), 220 (1024 · 1024), and227 (128 · 1024 · 1024) tokens and the required execution
time was used to calculate the effective number of tokens persecond.

5.7. Implementing a more advanced way of inter-process communication 55

If a connection is between two SPEs, the DMA is initiated by the reading party. It is partly
a matter of definition, but also assures every SPE only accesses any other SPE’s in read-only
mode, this is in general a good strategy. It is not so much an issue when performing SPE to PPU
DMA operations, because the SPE will not be reading or writing into the PPU’s local storage
(cache), but accesses the main memory instead. The PPU’s internals will make sure to flush its
cache beforehand.

Figure 5.20: Usage of DMA to offer a FIFO connection between two elements of the Cell pro-
cessor. Steps 1 through 4 copy values to the buffer in element1. Step 5 consists of sending a
message to the reader to tell it the buffer is full, so it can start the DMA operation (step 6). After
this is finished, a message is sent back to tell the buffer has been copied and can again be written
to.

For this to work, the connection needs to be set up correctly.One obvious requirement is to
have the party that is starting the DMA to know the location ofthe buffer. Also some information
about the buffer has to be stored so it can be linked up with a FIFO number.

To make this system work, we had to give every FIFO not just a global number but also a local
number. A FIFO is accessed in a local table given the number ofthe element on its other side
(which is either a PPU thread or an SPE) and the index of the FIFO for that particular element
pair.

Figure 5.21 shows a useful KPN which uses all connection types. We will use them to explain
how their respective connection is dealt with using all shown methods:

• PPU to PPU: this is still accomplished using the FIFOs set up for multi-thread access.

56 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

Figure 5.21: A 4-node KPN running on the PPU and two SPEs. All connection types are featured;
1: PPU to PPU, 2: PPU to SPE, 3: SPE to SPE, 4: SPE to PPU, 5: PPU self loop, and 6: SPE
self loop. We needed to deal with all of them separately.

• PPU to SPE, SPE to SPE and SPE to PPU: for this the newly introduced buffered commu-
nication is used.

• PPU self loop and SPE self loop: use a simple circular buffer (comparable to the PPU to
PPU FIFOs, without the mutexes).

Figure 5.22 shows the the performance of this new method. Figure 5.23 shows what we
already expected when looking at the numbers: method 2 is much faster.

We will now explain the measured results. The fact that method 2 is just as fast on PPU to
PPU communications as method 1 is because they use the same FIFO code. The speed-up for the
SPE to PPU, PPU to SPE and SPE to SPE operations is because of the almost complete removal
of the mail messaging, only once every 1024 tokens a message needs to be sent to tell the reading
side to copy the buffer.

The self loops are faster because they are no longer implemented with a mutexed FIFO, but
via a simple looped buffer, this works because we know that its accesses will always be done by
the same thread. Especially the SPE self loops are much faster. No longer a token needs to be
send to the PPU and read back (which requires 6 mail messages for every token), it is just written
to and read from local storage.

It now becomes very apperent that the PPU to PPU communication is very slow in compari-
son to the other types and it is therefore smart to try to move all nodes to the SPEs.

5.8 Flushing operations

The comparison between the two methods might be considered abit unfair. Until now we left
one detail out of our discussion, namely the requirement forthe flushing of tokens. This is were

5.8. Flushing operations 57

Number of tokens Time base incrementsTime (s) Tokens per sec
PPU to PPU 210 158535 0.0019 5.1 · 105

220 222215460 2.78 3.7 · 105

227 27385823967 343.18 3.9 · 105

SPE to PPU 210 19512 0.00024 4.1 · 106

220 4958693 0.062 1.6 · 107

227 632744043 7.92 1.6 · 107

PPU to SPE 210 14616 0.00018 5.5 · 106

220 4621259 0.057 1.8 · 107

227 589762084 7.39 1.8 · 107

SPE to SPE 210 62098 0.00077 1.3 · 106

220 13278517 0.16 6.3 · 106

227 693700814 8.69 1.5 · 107

PPU to self 210 47008 0.00058 1.7 · 106

220 2419728 0.030 3.4 · 107

227 303528609 3.8 3.5 · 107

SPE to self 210 4778 0.000059 1.7 · 107

220 2836617 0.035 2.9 · 107

227 362437027 4.54 2.9 · 107

Figure 5.22: Performance for our second implementation, which is DMA based. The buffer size
is 1024 tokens.

Method 1 base incs.Method 2 base incs.Speed-up
PPU to PPU 22226295746 27385823967 0.81
SPE to PPU 380493349115 632744043 601
PPU to SPE 364814712356 589762084 619
SPE to SPE 391067207313 693700814 564
PPU to self 6471958374 303528609 21
SPE to self 450529293916 362437027 1243

Figure 5.23: Comparison of the two discussed methods. Method 1 is service-thread-based,
method 2 is DMA based. The third column gives the speed-up of method 2 over method 1. Only
the PPU to PPU method has comparable performance, because this functionality is implemented
the same.

58 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

a buffer is not yet full, yet needs to be read by the reading party.
Flushing operations are needed on a lot of places when writing computer programs. When

writing a program that needs to log errors to a file, one needs to perform a flush operation after
every experienced error, because a crash of the program willlose the contents of the buffered
data sent to the file. Flushing this buffer regularly (at the end of a line, for example) makes sure
all data is written to the file and a sudden crash will not causea loss of this information.

When implementing a KPN, a flush operation is sometimes needed. A hypothetical example
is shown in figure 5.24. This very simple KPN can cause a deadlock when there are no flush
operations performed. Node 2 waits until it can read a token from node 1. Node 1 does write
a token to node 2, but because the buffer is not yet full, it will not be copied to Node 2. Node
1 then waits for node 2 to write a token, which will never happen. With all nodes in a blocking
state, a deadlock has occurred.

Figure 5.24: A simple KPN terminating in a deadlock situation if no flushing is performed. After
node 1 has written a token, but doesn’t flush FIFO 2, both nodesare blocked in read state.

If the FIFOs would have been flushed after every write operation, then no deadlock would
occur. This was never a problem in the old method (where everytoken could be accessed directly
after it was written to the FIFO), but is now introduced because of our buffered DMA-based
approach.

If we perform the same measurements as we did previously for the other methods (see figure
5.25), we see that we still manage to achieve a speed-up, but we lose considerably compared
to the fully buffered DMA method. This makes sense, because every token needs a few mail
messages and every DMA operation is just as large as if the complete buffer was filled.

Figure 5.26 shows that reducing the buffer size doesn’t improve the performance of the com-
munication. This shows us that the performance of the communication is independent from the

5.8. Flushing operations 59

Base clock incs. Method 1 speed-up Method 2 slow-down
PPU to SPE 123507888768 2.95 209
SPE to PPU 127623656934 2.98 201
SPE to SPE 244037217562 1.60 351

Figure 5.25: Effect of continuously flushing on performanceof communicating227 tokens. Com-
parison is made to method 1 (service-threads) and method 2 (fully buffered DMA). The used
buffer size is 1024 tokens.

Base clock incs. Tokens per secondSpeed-up over 1024
PPU to SPE 122923777485 8.7 · 104 1.005
SPE to PPU 127362109930 8.4 · 104 1.002
SPE to SPE 246506855335 4.3 · 104 0.990

Figure 5.26: Performance of method 2 when continuously flushing the DMA buffers compared
to method 1 and the original method 2. The buffer size is reduced to 4 tokens, to see what it does
to the required time to communicate compared to the 1024 buffer size.

buffer size, most likely caused by the way the DMA is implemented: a relatively high start-up
cost, but almost no extra cost when increasing buffer size. This then shows us that we don’t have
to expect an increase in performance when we reduce the buffer size.

60 Chapter 5. Automating parallel code generation LIACS-style: COMPAAN

Chapter 6
Conclusion

We were able to achieve a speed-up of 6.5 by implementing SARTon the Cell. We also have
implemented two different communication schemes to offer the required multi-threaded environ-
ment so the code generated by COMPAAN works on the STI Cell. This offered us the possibility
to measure its performance and get a feeling of how well thesesolutions did.

Part of the project was to write a back-end for COMPAAN so the produced KPN is used
to produce the C code to communicate with the manually written Cell communication library.
This reduced the long-term development time, because we nowonly have to make some changes
in the KPN (by editing the matlab file) and regenerate the C-files, compile and measure the
performance.

This project has helped to improve the performance of SART and also to gain a better under-
standing on how to parallelize code for the STI Cell.

61

62 Chapter 6. Conclusion

Appendix A
Description of files generated by CellCC

The back-end of COMPAAN responsible for generating the C/C++ code for the Cell, CellCC,
writes to a number of files. This appendix covers the meaning of these files and the variables
declared in them.

A.1 types.h

This file contains a number of global variables, that are usedby the PPU and SPE code:

• g iSPECount: Number of SPE threads, needs to be exactly right.

• g iPPUThreadCount: Number of PPU threads, can be larger than the actual number of
threads.

• g iMaxPPUSPEBuffers: Maximum number of connections between a PPU and an SPE
thread. Can be larger than actually required.

• g iMaxSPESPEBuffers: Maximum number of connections between two different SPE
threads.

A.2 ppu buffers.h

Contains all variables used only by the PPU side. Buffers arestatically allocated. They need to
be quad word aligned (done in gcc by using the ‘attribute ((aligned (16)))’ attribute) and their
size is required to be a multiple of 16 bytes (128 bits). We have stored floats during the course
of this project, which meant the number of elements of the buffers needed to be a multiple of 4.
It is important that the SPE and the PPU consider their sharedbuffers to be of equal size, we did
this by defining their size in types.h and perform only their static allocation in ppubuffers.h.

63

64 Chapter A. Description of files generated by CellCC

• g pSPEProgramHandles: an array that contains all speprogramhandlet pointers to the
embedded binaries that need to run on the SPEs.

• g pBufferLocations: contains all void pointers to the statically allocated buffers.

• g iBufferSizes: contains the number of tokens for all buffers.

• g pBufferDescs: stores a descriptor string for every buffer. Is only used when debugging.

• g pBufferNames: stores buffer names (very short string to relate it their FIFO number).

• g iMaxPPUThreadSelfLoops: the maximum number of self loops in a PPU thread. Can be
larger than required, not smaller.

• g iSelfLoopCounts: array that stores the number of self loops for every thread,needs to be
precise.

• g iMaxPPUThreadFifos: stores the maximum number of FIFOs between two sperate threads,
can be larger than the actual value, not smaller.

• g PPUFifos: stores the FIFO start and end threads for all PPU to PPU communications.
Every entry is an array of two unsigned ints: the start threadindex and the end thread
index.

• g iPPUToSPEBlockingType: stores the blocking type used when sending messages to
SPEs. It needs to beSPE MBOX ALL BLOCKING so all messages are received correctly
by the SPEs. This value means the mail message sending call only returns when all mes-
sages could be written.

A.3 PPU Makefile

Thanks to a well designed makefile-system offered by IBM, building a executable for the Cell is
very easy. Only a few fields need to be filled out in the Makefilescreated by the programmer.

• PROGRAM ppu64: to this variable the name of the output file needs to be assigned.

• IMPORTS: needs to point to the a-files produced in the spu-directory (more about those
below) and needs to include ‘-lspe2’.

To make it work, this file also needs to include the make.footer file shipped with the SDK.

A.4. spu buffers.h 65

A.4 spu buffers.h

Just as with ‘ppubuffers.h’, this file contains the static allocation of all buffers used by the
read/write code, only now for the SPEs. All buffer allocations or all SPEs are declared, yet when
it is compiled, every SPE uses only a part of it. This is done bydefining COMPILINGSPE-
preprocessor directives. This makes sure the ‘spureadwrite.h’ file can included the file without
worrying about its SPE index.

The following variables are required:

• g iSPEIndex: every SPE has its own index, this is used when printing debugmessages to
the console. It starts at zero.

• g pBufferLocations: stores all addresses of the statically allocated buffers.

• g iBufferSizes: stores all buffer sizes.

• g pBufferNames: stores the names of all allocated buffers.

• g pBufferDescs: stores the descriptions of the buffers.

• g iInPortsToPPU: stores the number of input ports served to every PPU thread.

• g iOutPortsToPPU: stores the number of output ports to every thread.

• g iInPortsToSPE: stores the total number of input ports served from other SPEs.

• g iOutPortsToSPE: stores the total number of output ports served to other SPEs.

• g iInportSPEs: stores an array where every valuev at indexi equals the served SPEv by
input porti.

• g iOutportSPEs: the same as the previous variable, but then for outports.

• g iInportCountForSPE: array of integers storing the number of input ports for all other
SPEs.

• g iSelfLoopCount: number of self loops used by this SPE.

A.5 SPE Makefile

Just as for the PPU part, a makefile needs to be written for the SPE code. Only two variables
need to be defined:

66 Chapter A. Description of files generated by CellCC

• PROGRAMS spu: lists all SPE programs made visible to the PPU code. These will be
listed in theg pSPEProgramHandles variable in the ‘ppubuffer.h’ file.

• LIBRARY embed64: contains all a-files belonging to the program handles (in the same
order). These files will be include in the ppu-makefile.

A.6 main.cc

The entry point of the application is stored inside the ppu directory. Besides all thread functions,
the main function itself is also required. This function is used to call all initialization and final-
ization code and to start the PPU and SPE threads. The following things need to be done in the
given order:

• InitAllPPUThreadData is called, this call initializes all data stored to manage the PPU and
SPE threads;

• InitSPEThreads() is called next. It will setup and start all SPE threads;

• InitPPUBuffers() is finally called setup the PPU side buffers.

Then the PPU threads need to be started manually, followed bya call to join them. This is al
done with calls the methodspthread create andpthread join offered by Pthreads. ThenWaitFor-
SPEsFinished is called and a special line of assembly code is inserted to assure all SPE threads
are finished (the call is ‘sync’, offered by the Cell assembler). ThenJoinAllSPEThreadFunctions
is called to clean up all SPE running threads.

A.7 SPEx.cpp

The code running on the SPEs is stored in the SPEx.cpp files, with x a number between 1 and 6.
As explained in the section about spubuffers.h, every time code is compiled for an SPE it needs
to define a preprocessor directive called ‘COMPILINGSPEx’. There are two more requirements
when writing a C++ file for an SPE:

• Before anything elseInitSPEBuffers needs to be called, this call initializes the local buffers
by communicating with the PPU (via mailmessages).

• When the SPE is done,SendExitMessage should be invoked. This call tells the PPU it is
done. The PPU uses this to keep track of which SPEs are still running (this then is used to
continue the forwarding of mail messages between SPEs).

Appendix B
Usage of code base

A lot of code has been written during this project. This section explains what code is most
important and also how it is used.

B.1 sart/

This directory contains a lot of cpp files that all implement adifferent part of this project:

• ‘basicsart.cpp’: original implementation of SART done by Joost Batenburg.

• ‘projectimage.cpp’: projects an image (stored in a text file) using a matrix (matrix W).

This directory also contains a script called ‘compile.sh’.Running this file will take care of
all steps needed to generate the image file, produce the matrix file and compiling and running the
SART algorithm. The following variables can be set in this script:

• MATRIX: name of matrix file (can be any file name)

• SIMPLESPHERE: name of generated image file, most likely simplesphere.txt, an image
containing a number of opaque circles.

• PROJECTION: name of the output file to store the projection.

• OUTIMG: file name of where to store the restored image (this can laterbe used to calculate
the error).

• TOMSETTING: file name of settings file used by code that generates the matrix file.

• ITERCOUNT: number of SART iterations.

• ANGLECOUNT: number of projection directions.

67

68 Chapter B. Usage of code base

• IMAGESIZE: number of pixels at one size of the image. The actual number of pixels in
the image will actually beIMAGESIZE timesIMAGESIZE.

• PTDETAIL: level of detail when projection is performed. A value of 100means that the
width of the strips is the same width as a pixel. A smaller value will increase the width and
lower the number of strips, therefore reducing the number strips and execution time of the
algorithm.

B.2 sart/writematrix/

This directory contains the code that produces the matrix file used by the projection and SART
code. Run it without arguments to see its required usage.

B.3 sart/bmp2img/

This directory contains functionality to convert a bitmap image to an image text file used by
SART and the other way around. Run this program without arguments to see how it should be
used.

B.4 sart/componized/sanlppthreads/

This directory contains the output generated by COMPAAN of SART (for yapi) with a manual
implementation of the multi thread environment based on Pthreads. The following files are
required to make code for yapi work with Pthreads: ‘fifo.h’, ‘id.h’, ‘process.h’, ‘RTE.h’, and
‘yapi.h’.

B.5 sart/cell/

This directory contains a number of projects that were used to create the two communication
methods. The following directories are most interesting:

• ‘oldstyle commmeasure’: used to measure the speed of method 1 (service-thread-based).

• ‘comm measure’: used to measure the speed of DMA buffered communication.

• ‘comm measureflushed’: is used to measure the speed of the DMA buffered method,
when it is constantly flushed.

• ‘sanlp spu’: implementation of SART using method 1.

B.5. sart/cell/ 69

• ‘sart cell all’: manual implementation of SART, gives the speed-up of 6.5.

70 Chapter B. Usage of code base

Bibliography

[1] Ana Lucia Varbanescu, Doctoral Track within the Parallel and Distributed Group of
the TU Delft, Faculty of Engineering, Mathematics and Computer Science (EWI):
http://www.st.ewi.tudelft.nl/∼varbanescu/

[2] Avinash C. Kak and Malcolm Slaney. “Principles of Computerized Tomographic
Imaging”. Society of Industial and Applied Mathematics. Online available at:
http://cobweb.ecn.purdue.edu/∼malcolm/pct/.

[3] International Business Machines (IBM). “STI cell processor, New Disclo-
sures to Jumpstart Creation of Cell-based Applications Beyond Gaming”:
http://www-304.ibm.com/jct03004c/businesscenter/venturedevelopment/us/en/feature-
article/gcl xmlid/8649/navid/emerging.

[4] International Business Machines (IBM). “The Cell project at IBM Research”:
http://www.research.ibm.com/cell/.

[5] Sony Computer Entertainment Inc. “PlayStation Global”: http://playstation.com/.

[6] International Business Machines (IBM). “IBM Full-System Simulator for the Cell Broad-
band Engine Processor”: http://www.alphaworks.ibm.com/tech/cellsystemsim.

[7] Leiden Institute for Advanced Computer Science (LIACS). “Compilation of Matlab to Pro-
cess Networks (Compaan)”: http://www.liacs.nl/ cserc/compaan/.

71

