Tomography mapped onto the Cell Broadband
Processor

A Master’s thesis

Computer Science

Sander van der Maar
Supervisor: Dr. Ir. Bart Kienhuis
Second Reader: Drs. Sjoerd Meijer

August 9, 2007

Abstract

This document covers a project running from February to A1@®07, during which we imple-

mented a tomography algorithm (SART) in a few different wapsl also set up a compiler that
generated parallelized code for the IBM Cell. Here we giveliackground for this project and
explain the used methods and algorithms. Also the foundteeare discussed.

Acknowledgment

This project would not have been possible without the pewaie helped me. | received the
most support from drs. Sjoerd Meijer. From the very first itethe final phase, it wouldn’t have
gone as well without his help. He already started some relsemar the STI Cell, which made it
possible for me to have a program running during the first tmopweeks. Also his hands-on
experience with the used software (COMPAAN, KPNFormat,daarthe Cell Simulator, etc.)
allowed me to pick this all up very rapidly.

A second person who was very important to this project is DB&rt Kienhuis. Managing
the resource allocation and introducing me to a number of @eperienced people turned out to
be invaluable and allowed the project to get its broad scbaeit eventually got. His years of
experience with writing code for parallel systems and offedds inside Computer Science and
outside all contributed. His eye for good software develeptis the reason why we have been
able to set up a working back-end for COMPAAN as quickly as vde d

A large part of this project is based on previous work done loyJoost Batenburg. He
was kind enough to explain the inner workings of SART to me als® answered any other
guestions | had about tomography. His extremely wide fielthigrest offered the link between
mathematics and computer science needed to implement gtapity algorithm.

The rest of the Leiden Embedded Research Center team at LivgdSalways willing to
answer questions regarding the software already avaifabsolving parallel computation prob-
lems. Here Dmitry Nadezhkin and Bin Jiang not only helpedhwitoblems | ran into during the
course of the project but also offered the often requiredesaateraction.

Ana Varbanescu [1], who is persuing a PhD at Delft Universwys kind enough to answer a
number of questions | had with regard to the used hardwares. ridt only helped solving a few
specific problems, but also gave me feedback on the way | wdsgoon the project in general.

Finally | want to thank my parents. Without their continuegbgort, both mentally as finan-
cially, completing my studies would have never been possibl

Contents

1 Introduction

2 Tomography
2.1 BasicX-rayphysics e e e
2.2 Basictomography mathematics 0.
2.3 CalculatingW
2.4 Space considerations when storingW L e L
2.5 Restoring the original from projections

3 Simultaneous Algebraic Reconstruction Technique (SART)
3.1 Innerworkings of SART
3.2 Performance of SART

4 The Cell Processor
4.1 SART implementationontheCell
4.2 Performance of manual SART implementationontheCell

5 Automating parallel code generation LIACS-style: COMPAAN
5.1 Simple COMPAAN example: matrix multiplication
5.2 KahnProcess Networks (KPNs)
5.3 Implementationof FIFOs
5.4 Apractical consideration: FIFOsizes 0. ...,
5.5 Our first and most simple usage ofthe SPEs
5.6 Performance ofthissolution,
5.7 Implementing a more advanced way of inter-process camugation
5.8 Flushingoperations e

6 Conclusion

15

17
17
18
20
21
23

37
37
40
43
46
49
50
50
56

61

CONTENTS

A Description of files generated by CellCC

Al typesh.

A.2 ppubuffers.h
A.3 PPU Makefile
A.4 spubuffers.h
A.5 SPE Makefile
A.6 main.cc
A.7 SPEXx.cpp

B Usage of code base
B.1 sart/
B.2 sart/writematrix/
B.3 sart/bmp2img/
B.4 sart/componized/sanipthreads/
B.5 sart/cell/

List of Figures

11
1.2

2.1

2.2

2.3

2.4

X-ray image of male skull. All depth informationislost.. 15

More helpful dental X-ray image where the detector ie@thinside the mouth.
Now teeth can be examined separately. 16

X-rays are produced at the source point and move thrcwgbliject to be mea-
sured by a detector placed on larger detector plate. A pdlteofay through the
objectis labeled ‘ds’, this represents the infinitesimahbmart of the ray where
the intensity is reduced because of absorption. 18

Schema of the type of projections used: image (centé&Pisthe projections
consist of a finite number of rays (arrows from lower left) atetectors (upper
right) are ordered one-dimensionally. The graph above #teators depicts the
measured lineintegrals. L e 18

Typical projection: an object (here shown as a gray bisiplaced on a raster

of n by n squares numbered from top left to lower righty-information is no
longer used). Every square (labelgdwill contain a value between 0.0 (nothing
there) and 1.0 (highest density). Also shown are a numberipsgrawn out by
projecting rays. All strips have the same width and everyyeoit p will contain

the total overlapping area of the object and the correspgstrip. One polygon

has been highlighted to explain the calculation of the wienghtrix (see text). . . 19

A number of ways in which a square and a strip can overlap:ef (f) are
special cases, with an overlapping area of zero and oneatdsgg. The rest
show intermediate possibilities (all other cases can betcocted by rotating
and/or mirroring these examples). Number of utilized esi (see text): (a): O;
(b): 3;(C): 4, (d):5;(€):6; (F): 4. o o 20

10

LIST OF FIGURES

2.5

2.6

2.7

2.8

3.1
3.2

3.3

4.1

4.2

4.3

4.4

Steps of algorithm used to calculate overlapping aresripf and square. Expla-
nation (see text): (a): finding of square corners inside 1 sind intersections

of rays and square edges; (b): when utilized points are f¢arelsorted clock-

wise from top), create corresponding triangles (numbenexteation order); (c):
calculate area of triangles via basic vector arithmetic...... 21
Pseudo code implementation of algorithm to calculaterlap of square and
strip. CalcArea(A, B, C)isshowninImage 2.5(c). 22
Storing sparse matrix more space-effectively. (a)emdfies not given of column

11 are zero, rows are numbered. (b): matrix now contains 8myws (maxi-

mum number of non-zero entries in columns of original matrypet number of
columns is doubled. Column 22 and 23 (and2n + 1, with n = 11) contain
original row number and stored data, respectively. . e ... 24
Algebraic operation performed whens projected ind dlrectlons BothW and
p'consist ofd vertically ordered items. L 24

SART algorithm (seetext). e 26
SART in action: starting with a completely black imagehe original image is
restored. First row: original image (which was projectediinhdirections and:

at beginning of restoration, which is equalo Second row: first cycle, after
which some outlines start to become visible. Third raigets closer to original
image. Fourth rowZ at end of third, fourth and fifthcycle. 27
Average error of with respect to number of iterations used. The graph desgrib
same run as figure 3.2, where every cycle consists of 40itesat The average

error moves slowly to 0.07, which is acceptable in most e¢nstances. 28

Overview of Cell CPU. On the left the PPU is shown and it tlweads. On the

right are its 8 SPUs, all connected by a bus to the other SPdthaPPU. Note

that SPUs don’t have direct access to main memory, but dod&eal storage.

Also shown are the four inboxes and one outbox of every SPdsd&lare used

to communicate viamailmessages. 00w 30
PPU pseudo code of implementation of SART on the Cell. t&eefor an in

depth explanation. ‘SartCell[SPU’ is a pointer to the codégire 4.3. ‘Con-
catenate(a, b)’ returns a vector consisting of all entrfesfollowed by all entries

of b, . . 32
Code executed on the SPU. We assume the variable ‘thig'ssthe information

for the SPU on which this code runs. Except for the mailbox eamications

with the PPU, the looped code is the same asinfigure3.1. 33
Relation between achieved speed-up of our parallel codgared to the serial
code and image size. A polynomial trend line which fits thedsashown. 35

LIST OF FIGURES 11

4.5

5.1

5.2

5.3

5.4
5.5

5.6

5.7

5.8
5.9
5.10

5.11

5.12
5.13

Speed-up of parallel code compared to code running arlaegMD64 3800+
(2.01 GHz) processor. Maxes out at about 7. The polynoneabitiine, which
can be regarded as an average, reaches6.5.. 36

MATLAB code that loads two 32 by 32 matrices, multiplibem and stores the
result. 39
Implementation of MultiplyAndAdd and LoadZero. Noteattthis code isn't

used by COMPAAN, but will be written in the target language. 40
Data dependencies when calculating the upper left e1’enfematr|x C. Flrst

row of A is needed in its entirely, first column @& is also needed. Because
matricesA andB are read in row-major order, a large partl®ineeds to be read
before the first column is read (here shown in light gray). 4 10
Two simple Kahn Process Networks showing structurelsftyrpe of networks . 41
KPN produced by COMPAAN for our matrix multiplicationa®. Node 3 isn’t
connected to any other nodes (as expected) and the outputslefl and 2 need

to be reordered inside node 5, this action is shown here i @&e text). Also

note that FIFO 1 connects node 5 to itself, because the vpriduct of a row

of A and a column of B is calculated by adding multiple valuetie same entry

of C, which is therefore used as an input of node 5 and as ambutp. 42
Code executed by node 1. ‘LoadA needs to be implementdleoprogrammer

in the target language (in this caSe+ +) and stores the return value in the last
argument, ‘write’ is a method defined by the environment timats a FIFO (first
argument) and writes a value to it (second argument), biaciithe FIFO is full. 43
Code running on node 5. Itis a lot more complex than nodeedause it uses
three input FIFOs, of which two are buffered. The code thatlsethe input
variablesis giveninfigure5.8. o 0oL 44
Code responsible for reading input variables of node 5.. 45
Initialization code of FIFO. Declares and initializdéldacal variables of a FIFO. 46
‘WriteToken’. The mutex is locked, a check is perform@dee if there is room

in the buffer, the token is written, some bookkeeping is @enked, the mutex is
released, and when a reader is waiting, it is signaled tteabtiffer is no longer

Code called to read a token. Almost the same as the ‘Wgken’' code, only

token is read from buffer, instead of written to it. See textfomplete discussion

of bothmethods. 48
A simple KPN with two nodes and two FIFOs. 49
KPN of figure 5.12 put on both the PPU and on the SPEs A’Dirmbt as

service threads that delegate all calculations to A and §peetively, which are

located on the SPEs. A and D use their serving threads tosatoe&IFOs. . . . 49

LIST OF FIGURES

5.14 Service thread on PPU side. This thread runs while tteathon the SPE side
runs. It monitors the outbox of its designated thread. Seeetkt for a complete

diSCUSSION. 51
5.15 Implementation of the three methods used by the codemrgron an SPE. All
actions are implemented by sending and receiving the redurail messages. . . 52

5.16 A producer-consumer KPN. This network is used to meathe performance

of the two protocols developed during this project. By magvihe sending and

receiving nodes to different Cell units the speed of all camioations can be

determined. e 52
5.17 ‘/proc/cpuinfo’ for the PlayStation 3. The two hardedhreads are shown as

separate processors (values given: index, descriptiook@peed and revision).

Important to us: the ‘timebase’ value, it gives the numbeinafements of the

‘time base’ registerpersecond. o 53
5.18 Contents of ‘cpuinfo’ for the Cell simulator. It has aaher timebase value (to

lower the strain on the simulator), but does run on the thealespeed of 3.2 GHz. 53
5.19 Our first, service-thread-based, solution’s perfaroea All connections were

tested for2!% (1024), 2%° (1024 - 1024), and2?” (128 - 1024 - 1024) tokens and the

required execution time was used to calculate the effectinaber of tokens per

SECON. e 54
5.20 Usage of DMA to offer a FIFO connection between two elamef the Cell

processor. Steps 1 through 4 copy values to the buffer ineerh. Step 5

consists of sending a message to the reader to tell it thersffull, so it can

start the DMA operation (step 6). After this is finished, a sagge is sent back to

tell the buffer has been copied and can again be writtento.. 55
5.21 A 4-node KPN running on the PPU and two SPEs. All conaediypes are

featured; 1: PPU to PPU, 2: PPU to SPE, 3: SPE to SPE, 4: SPEXcPPPU

self loop, and 6: SPE self loop. We needed to deal with all efrtlseparately. . . 56
5.22 Performance for our second implementation, which isAObAsed. The buffer

Sizeis 1024 tokens. 75
5.23 Comparison of the two discussed methods. Method 1 vscsethread-based,

method 2 is DMA based. The third column gives the speed-upathad 2 over

method 1. Only the PPU to PPU method has comparable perfeasnaecause

this functionality is implemented the same. 57
5.24 A simple KPN terminating in a deadlock situation |f ncsﬂmg IS performed

After node 1 has written a token, but doesn’t flush FIFO 2, Inaithes are blocked

iNnreadstate. L 58
5.25 Effect of continuously flushing on performance of cominating22” tokens.

Comparison is made to method 1 (service-threads) and metiodly buffered

DMA). The used buffer size is 1024 tokens. 59

LIST OF FIGURES 13

5.26 Performance of method 2 when continuously flushing tMADbuffers com-
pared to method 1 and the original method 2. The buffer sizedsced to 4
tokens, to see what it does to the required time to commuanmanpared to the
1024 buffersize. 59

14

LIST OF FIGURES

Chapter 1

Introduction

Non-intrusive imagining is a very important technique watttarge number of applications. A
well known example is X-ray imaging. Using this technologisipossible to diagnose a large
number of illnesses. Surgeons and dentists wouldn’t betalale their job as well without X-ray
technology.

Standard X-ray applications have one big problem. Justdiken a picture is taken with
normal light, it loses depth information. This means thetdobas to place the patient between
the X-ray source and detector in such a way that the neededmation is acquired. Figure 1.1
gives an example of this problem: if a dentist was interestelde state of the patients teeth, this
picture wouldn't be very helpful, because the teeth arequtejd on the same place. Figure 1.2 is
taken with the detector inside the mouth, allowing eachitéotbe inspected separately.

Figure 1.1: X-ray image of male skull. All depth informati@lost.

15

16 Chapter 1. Introduction

Figure 1.2: More helpful dental X-ray image where the deteist placed inside the mouth. Now
teeth can be examined separately.

One solution to this problem will be dealt with in this repo&o-called CT-imaging allows
a medical operator to restore the original 3D informatiofi. sfands for Computed Tomography
and makes use of several images of the same object, but fitenedit angles. As we will see,
there are algorithms to do this. We will implement one onet#ht architectures to be able to
say something about its performance and used hardware.

Before we take a more in-depth look at the used algorithm @neraletails, we will have to
deal with the physics encountered when taking an X-ray image

Chapter 2

Tomography

2.1 Basic X-ray physics

X-ray imaging works because different materials absorlralys in different amounts. Absorp-
tion coefficients give the percentage of radiation that soalbed. Following figure 2.1, the ray
starts at the source and when it enters the object it beginséantensity. The detected intensity
at the receiving end is then used to calculate the total maatemcountered.A ray consists of
photons which, because of their very short wavelength, apbaticles.

When we measure a reduced intensity of an X-ray, this meatsthumber of photons were
absorbed by the material. So a detector is nothing more tipdnoton counter. If we now look at
a small part of the ray when it is inside the object (labelesd id figure 2.1) we can say a number
of things about it. If ds is homogenous (the ray goes throbhglsme material), the intensity at
the end of ds will be:

[=1, el (2.1)

With | the intensity at the endj, at the beginningy the attenuation factor arjds| the length
of ds. Of courseu isn’t the same for evenygs, we can only assume thisdfk is very small. This
happens if we use a line integral over the beam:

[= Io-e Jon@ds (2.2)

—ln([—IO) = /Osu(x)dx (2.3)

We know I, and measuréd, this allows us to calculate the line integral and use itrlate
when we restore the image. This will be dealt with next.

17

18 Chapter 2. Tomography

wtor

source

Figure 2.1: X-rays are produced at the source point and nfoeeigh the object to be measured
by a detector placed on larger detector plate. A part of thehmugh the object is labeled ‘ds’,
this represents the infinitesimal small part of the ray whbeeintensity is reduced because of
absorption.

2.2 Basic tomography mathematics

O\

/! 2
/!
/|

Figure 2.2: Schema of the type of projections used: imageé¢ckis 2D, the projections consist
of a finite number of rays (arrows from lower left) and detestupper right) are ordered one-
dimensionally. The graph above the detectors depicts tlasuned line integrals.

2.2. Basic tomography mathematics 19

We will now take a look at the math behind a projection (see@@u3). To reconstruct a slice
of the object, we have placed a grid on it. Since all consdiefgects are either circle shaped
or close to it (for example a human head), its height and witiffier very little and a square
grid is acceptable. We assume a finite number of rays whoslstteave certain width (each one
draws out a strip). A value measured on the receiving end f@ctte) is equal to the area of
the object on the respective strip. Figure 2.3 shows justdwsetion of rays (and only partial,
when running the algorithm the entire grid is covered bypsiyj we shall later on see that there
are in fact a large number of projection angles, each inargabe number of measurements and
guality of the reconstructed image.

X X

1 2
X“+1 _XQL

\I i1

D

Figure 2.3: Typical projection: an object (here shown asay d¢plob) is placed on a raster of
by n squares numbered from top left to lower righty-information is no longer used). Every
square (labeled) will contain a value between 0.0 (nothing there) and 1.@t{bst density).
Also shown are a number of strips drawn out by projecting ré@\kstrips have the same width
and every entry op’ will contain the total overlapping area of the object and¢baesponding
strip. One polygon has been highlighted to explain the datmn of the weight matrix (see text).

This type of projection can be described by a matrix opematithe original image is stored
as a one dimensional vector The projection matrix is calle®, and the projection will be
stored inp. & containsn? elementsp contains; elements (one for each detector). The following
operation describes the projection:

W.Z=p (2.4)

To make this a valid matrix operatioW needs to have? columns andj rows. An entry

20 Chapter 2. Tomography

of W, let a be its row index and its column index, is defined as follows. The entryioivith
indexb is multiplied with W, ;, and added to entry with indexof p. This shows that th&V,,
will resemble the ‘weight’ of squaré when calculating the value of the projection of staip
When a square is not covered by a strip, the respective enlirpavzero. If it is covered, the
value represents the overlapped area. It will have the mabwadue of 1.0 when the square is
completely inside the strip. When it is only partially cosdrsome basic arithmetic is needed to
calculate its value.

2.3 Calculating W

A strip and a square can overlap in number of ways. One waygislighted in figure 2.3 and

figure 2.4 shows a few more ways. We developed an algorithratwdalculates the overlapping
area of a square and a strip, given some basic propertiestiof e will show the method we

used by applying it on a general case and later show the pssdowhich can deal with all

cases (following figure 2.5).

77

{a) (b}

a4 4

d) (e}

Figure 2.4: A number of ways in which a square and a strip camlap: (a) en (f) are special
cases, with an overlapping area of zero and one respectiVbl/rest show intermediate possi-
bilities (all other cases can be constructed by rotating@ndirroring these examples). Number
of utilized vertices (see text): (a): 0; (b): 3; (c): 4; (d):(B): 6; (f): 4.

We start by defining:, a vertical line. It will be to the left of the square. We cdlte the

2.4. Space considerations when storing W 21

intersection points of this line with the rays. Then we tratifour square corners parallel to
the rays (we use their tangent for that) and keep the onestbgirojected on, between the
points where the rays intersected with it. After that we aulintersections between the square
edges and the rays. In our example that produces six pomtsgquare corners and four ray-
edge intersections), we call these ‘utilized points’. ThEsm corners of a polygon of which we
need to calculate the area. Sub image (b) shows what happgnsali found points are sorted
clockwise and used to build triangles. One point (one cldsethe top (and to the right)) will be
used in all triangles. The areas are calculated (see figbfe)2and summated.

F A

E

()

C

Area = %\/|AB|2|1110|2 —(AB-AC)?

{a) {c)

Figure 2.5: Steps of algorithm used to calculate overlagpphea of strip and square. Explanation
(see text): (a): finding of square corners inside of strip amdrsections of rays and square
edges; (b): when utilized points are found (are sorted cleoide from top), create corresponding
triangles (numbered in creation order); (c): calculat@aritriangles via basic vector arithmetic.

The returned value (see figure 2.6) will be stored in W&, (.ipnumber, pizeinumper)-

2.4 Space considerations when storing W

All entries of a column oW enumerate the shared areas with all strips for just one pBiate
only a very small number of strips touches one particulaasgumost entries of this column
will be zero. And because a projection matrix grows to exeesizes very rapidly (a 256 by 256

22 Chapter 2. Tomography

tang : = tangent of rays
Corners := Set containing corners of square
Edges : = Set containing edges of square

Util Points := enpty Set

P :
Q:

intersection of x0 and r1
intersection of x0 and r2

foreach point s in Corners do
yO :=s.y (s.x x0) = tang
i f((y0 >= P.y) and (y0 < Qy)) then
Util Points. add(s)
end if
end foreach

foreach line e of Edges do
inter := intersection of e and r1l
if(inter ison e) then
Util Points. add(s)
end if
inter := intersection of e and r2
if(inter ison e) then
Util Poi nts. add(s)
end if
end foreach

Sort Cl ockwi se(Util Poi nts)

A= UilPoints.first
Util Points. RenoveFirst ()

total _area := 0
for point_index := 1 to (UilPoints.size - 1) do
total _area := total _area + CalcArea(A, Util Points[point_index],
Util Poi nts[point_index + 1])
end for

return total area

Figure 2.6: Pseudo code implementation of algorithm toutate overlap of square and strip.
CalcArea(A, B, C) is shown in Image 2.5(c).

2.5. Restoring the original from projections 23

pixels image covered by 363 strips needs to be described at@xmontaining over six billion
entries) we decided to store the matrix in a way that wouldakjts sparseness.

Instead of storing complete columns, we effectively douhke number of columns where
every row pair consists of the original row number and theestovalue (see figure 2.7). Storing
a matrix for a 256 by 256 image covered by 363 strips now takés262 thousand entries.

2.5 Restoring the original from projections

As explained in the introductory chapter, a projection igf@aned from multiple angles. Until
now we only reviewed one projection (from one direction)t \we will now see that this process
can be easily repeated to cover projections from more thanamgle. All what is needed is
extending botiW andp. The number of rows of botli and W are multiplied by the number
of projection directions. The neW will consist of several original projection matrices stbre
above each other (see figure 2.8).

When we have calculate& and measured p, we could solve equation 2.4 to ohtabut
due to the enormous size 3V this is not a realistic option. Also note that this matrix s i
general not squarenf is in practice always larger than the number of projectionstiplied
by the number of projection angles) so performing a matrsersion of W isn’t possible (the
solution would be a multi-dimensional solution space). #t l@ason why an algebraic solution
won’t work is measurement errors. As with all practical measnents, one can never ignore the
potential for errors. This will make solving impossible. All these problems demand an other
approach.

24 Chapter 2. Tomography

11:

23: |00 ----
24: o002 ----
25 |eee 00 veee
1 . 1
I . I
1 . 1
450 [+ -+ 0.0 ...
46: [+---03 ...
470 -+ 00 - e
61: |----0.0 22: 23

62:|----05 e |eeea240 02 .-
53:.”“020””. 20 |- 460 03 -
: : i 3 f----620 05 ----

{a) (b}

Figure 2.7: Storing sparse matrix more space-effectivédy: all entries not given of column
11 are zero, rows are numbered. (b): matrix now contains 8mgws (maximum number of
non-zero entries in columns of original matrix), yet numbécolumns is doubled. Column 22
and 23 ¢n and2n + 1, with n = 11) contain original row number and stored data, respectively

Figure 2.8: Algebraic operation performed wheéis projected ind directions. BothW andp’
consist ofd vertically ordered items.

Chapter 3

Simultaneous Algebraic Reconstruction
Technique (SART)

A number of different algorithms have been proposed to skalrge scale tomography problems.
We use ‘SART’ and before we will show its performance, it viié explained. ‘SART’ is an al-
gorithm that has the best result when used with images whéoreknowledge of it is available.

If there is some knowledge available about the image to benstoucted, other algorithms are
helpful, such as discrete tomographic algorithms (usedwthe object consists of only a few
different material types) and TV-minimalisation (if it im&wn the image has large areas of one
type of material).

3.1 Inner workings of SART

SART [2] is an iterative algorithm: it performs the compuatof 7 in a number of distinct steps
and will, on average, get closer to the correct answer widnestep. Instead of one large matrix
W andyp, the data is stored as before: separate for each projedtiection. Every direction
amounts to its own iteration, where a number of basic opmratare performed to calculate

A projection of 7 is simulated and stored i@. This vector's dimensions will be the same
asp, but its values will be different. The difference is be stbig er'r (= p'—). This gives
the error of each strip, not of separate pixels. Here SARTrass all pixels caused the pro-
jected error according to the area covered by the strip ntlyeonsidered (this is stored in
W stripindes pizelindes)- 1 NE €NLry ofdelta for this pixel will be increased in the following way:

Wst'ripindez,pia:elindem

delt(lpmelmdex = deltapimelindew + €T stripindex * ot
beulsf,'r‘ipinde.r

The added value needs to be divided by the total area of a(b&ip stored irbe?a), because
a pixel on a larger strip contributes less to the projectivargehan one on a smaller strip.
After delta has been calculated and before it is added ./, it Needs to be divided

25

26 Chapter 3. Simultaneous Algebraic Reconstruction Techigue (SART)

foreach iteration do
foreach direction dir in D rections do
W:= GetWvatrix(dir)
p := CetPVector(dir)
beta := GetBeta(dir)
gamma : = Get Gamma(dir)

u:= Wx X
err :=p u
delta := 0
for i :=1to (n*xn) do
for j := 1 to strips do
delta[i] :=delta[i] + err[j] » Wj][i] / beta[j]
end for
x[i] :=x[i] + delta[i] / gamma[i]
end for

end foreach
end foreach

Figure 3.1: SART algorithm (see text).

DY gamima,;,ciindes- 9AMIMA,;,01m4e. StOTES the total coverage of each pixel for this direction.
Some implementation leave this factor out, beceause itslaways equals 1.0, but we left it
in, to be able to deal with projections that don’t cover algls.

See figure 3.1 for SART in pseudo code.

3.2 Performance of SART

Before considering our specific implementations of SARTwilkfirst give some typical results
of this algorithm. Figure 3.2 shows a number of screenshioisduring a run of the algorithm.
The image is 240 by 240 pixels, covered by 40 projection timaes, each consisting of 340
strips. The restoration process is seen to move clockwrsei¢fih the image, where at the end of
every cycler gets closer to the original image.

It took an AMD with a clock speed of 2 GHz 2 hours to perform thstf600 iterations, after
which the minimum error is reached (see figure 3.2). This ig wls interesting to implement it
on a faster machine so the computation time can be reduced.

3.2. Performance of SART

27

start x:

first cycle:
direction 1040

second cycle:
direction 10/40 20/40

Fourth cycle:

Figure 3.2: SART in action: starting with a completely bldokage %, the original image is
restored. First row: original image (which was projectedtihdirections and’ at beginning
of restoration, which is equal 1. Second row: first cycle, after which some outlines start to
become visible. Third rowr gets closer to original image. Fourth row:at end of third, fourth

and fifth cycle.

28 Chapter 3. Simultaneous Algebraic Reconstruction Techigue (SART)

0.4 4

0.35 4

034

0.25 4

024

Average Error

0.15 4

014

0.05 +

0

i} 40 80 120 160 200 240 280 320 360 400 440 480 520 560 GO0
Number of iterations

Figure 3.3: Average error of with respect to number of iterations used. The graph desgrib
same run as figure 3.2, where every cycle consists of 40 ibhasat The average error moves
slowly to 0.07, which is acceptable in most circumstances.

Chapter |

The Cell Processor

IBM teamed up with Sony and Toshiba to form STI, a joint veatto develop a new type of
processor, the Cell [3][4]. This processor consists of a lsenof distinct units (see figure 4.1):

e Aregular PowerPC unit with two threads implemented in hanewy

e Eight SPEs (Synergetic Processing Elements), also cadsSwith 256 Kb of local
storage that work like mini-CPUs. They can execute spgc@mpiled code loaded on
them from the PPU. They don't have direct access to the mamang this is done via the
PPU.

This setup offers programmers a chance to write paralleyqams without paying the high
price of most parallel systems. The theoretical computiogey of the Cell is a terraFLOPS. A
typical desktop CPU sold at that time has about ten gigaFLOPS

Parallel processors offer extreme computing power, butireqa new way of programming.
Before we look at the way Leiden University tries to autonyzdeallel code generation, we will
show how we manually implemented SART on the Cell.

Because the Cell is made up of different units, communioagsamportant. We used the
following channels:

e Direct Memory Access (DMA): here an SPE accesses the mainamedirectly. Data
is copied from and to the main memory from the SPE’s localagier There are some
requirements: the maximum size copied is 16 Kb and needs aonhaltiple of 128 bytes
and the address needs to be quad-word aligned.

e Mailboxes: the SPEs can write a 32-bit message to their aufloe PPU and other SPEs
can read it. Every SPE also has one inbox with four slots, wban be written to by all
other units. If a subunit tries to write to a full message boxead from an empty one,
execution halts until a slot is free or a message is availagspectively.

29

30 Chapter 4. The Cell Processor

We used the following operations:

o SartSPU(spu, program): starts SPUspu with programprogram.
o WaitUntilFinished(spu): blocks until an SPU is finished.

o WriteToMailbox(spu, data): writes a message with valulata to the inbox of SPWpu. If
the mailboxes are full, this call blocks until a slot is free.

¢ ReadFromMailbox(spu, data): reads from the outbox of an SPU, blocks if no messages in
outbox. A read removes the message from the outbox.

o WriteToOutbox(data) (SPU only): storeglata in local outbox. This call will block if
outbox is full.

¢ ReadFrominbox(data) (SPU only): readslata from local inbox, blocks if empty. A read
removes the message from the inbox.

DMA read(PPU-name, SPU-name) (SPU only): copies data from PPU to SPU.

DMA_write(SPU-name, PPU-name) (SPU only): copies data from SPU to PPU.

SPUO SPU1 SPUZ SPU3

PPU:0 LS LS LS LS
(Mol m@ m@ m@
n
H____

m\l\
ﬂﬂﬂ |] @ [@lH]

SPU4 SPUS SPU6 SPUT

Main Memory

Figure 4.1: Overview of Cell CPU. On the left the PPU is showd &s two threads. On the
right are its 8 SPUs, all connected by a bus to the other SPtharPPU. Note that SPUs don't
have direct access to main memory, but do have a local stofdge shown are the four inboxes
and one outbox of every SPU. These are used to communicateavianessages.

4.1 SART implementation on the Cell

The main aim of this project is to find a way to implement SARTaonother type of hardware,
so the restoration process will be quicker. We choose toemphted it on the Cell to find out if

4.2. Performance of manual SART implementation on the Cell B

this was a realistic option. We needed to add some paraltadiz to the code, to allow it to run
on multiple SPUs.

The general idea is to split over the SPUs and use the PPU for managing the threads and
synchronizing the data. This means that every SPU only hatote an eighth oW in local
storage. Alsdeta and gamma can be stored separately over the SPUs. Because the actions o
PPU and SPUs are strongly intertwined we will deal with thémorece, so please follow listing
3 and 4 carefully.

The PPU begins with preparing the data used by the SPUs atidgthem. The PPU will
then try to read a message from all their outboxes, whichhlblocked until they write . They
will now read in their parts oW, beta, gamma, and the completg into local storage using
DMA. Then they will calculate the error caused by their psY projecting thei and subtract
it from p. The calculatedrrs of all SPUs then need to be added, so will be DMA-ed to the PPU
memory.

The PPU is told by the SPU the error vectors are calculatedriiingga dummy value into
the outbox. When all eight SPUs have done this, the PPU willadderror vectors and store it
in errioa SO the SPUs will be able to retrieve it.

Now the PPU will send a message to all SPUs and they will wakeogpy the total error
vector and continue the SART algorithm, which will be the saam the original sequential code.

When the SPUs are done, they copy their values tf main memory and the PPU copy the
values in the finak’.

We chose this approach because it limited the number of DM#kraail messages. By
copying all required data to the SPEs at the beginning, wermegd to send mail messages so the
PPU knows an SPE has finished a phase of its calculationsPA$&re loaded symmetrically, so
none of them is waiting while the others are working. And g@tdeom the short periods during
which the SPEs are waiting for the PPU to adddhevectors all SPEs are busy calculating.

4.2 Performance of manual SART implementation on the Cell

We will now look at how good this code is compared to the semgllementation. The cheapest
way to obtain a working STI Cell configuration is by buying ang®layStation 3 [5]. This latest
generation gaming console costs about 600 euros and onbph&®Us available (two are used
for OS security). Because this project is part of an initigdleration of the Cell’'s power and it
wasn’t known how likely it was we were to pursuit this arcliigre very long, we decided to use
the offered simulator instead. This simulator can be doauéal for free from IBM’s website [6]
and allows a programmer to test and debug his software even thins hardware is not available.
But as always is the case with simulators, executing cod¢ isrmuch slower than on the real
thing.

The simulator offers a number of settings on how close therimorkings of the CPU needs

32 Chapter 4. The Cell Processor

foreach spu in SPUs do
W SPU] : = Cal cLocal W spu)
bet a[SPU] : = Cal cLocal Bet a(spu)
gamma[SPU] : = Cal cLocal Gamma(spu)

Start SPU(spu, Sart Cel | SPU)
end foreach

foreach iteration do
foreach direction dir in Drections do
foreach spu in SPUs do
ReadFr omvai | box(spu, dumry)
end foreach

err total :=0
foreach spu in SPUs do
err_total := err_total + err[spu]

end foreach

foreach spu in SPUs do
WiteToMi |l box(spu, dummy)
end foreach
end foreach
end foreach

foreach spu in SPUs do
Wai t Unti | Fi ni shed(spu)
end foreach

x :=0
foreach spu in SPUs do

X := Concatenate(x, x_local[spu]);
end foreach

Figure 4.2: PPU pseudo code of implementation of SART on #ilé Gee text for an in depth
explanation. ‘SartCell[SPU’ is a pointer to the code of figdrg. ‘Concatenate(a, b)’ returns a
vector consisting of all entries of a followed by all entrad<b.

4.2. Performance of manual SART implementation on the Cell 3

DVA read(Wthis], W

DVA read(p, p)

DVA read(beta[this], beta)
DVA read(gamma[this], ganmmma)

foreach iteration do
foreach dir in Direction do
g := W= x
err :=q- p

DVA wite(err, err[this])
Wit eToCQut box(dumy);
ReadFr om nbox(dumy) ;
DVA read(err_total, err);

delta :=0
for i :=11to (n * n) do
for j :=1to strips do
delta[i] :=delta[i] + err[j] » Wj][i] / beta[j]
end for
x[1] :=x[i] + delta[i] / gamm[i]
end for

end foreach
end foreach

DVA write(x, x_local[this]);

Figure 4.3: Code executed on the SPU. We assume the varihldestores the information for
the SPU on which this code runs. Except for the mailbox comoations with the PPU, the
looped code is the same as in figure 3.1.

34 Chapter 4. The Cell Processor

to be imitated. The two we used are called ‘fast mode’ andemippde’. They can be consid-
ered as the extremes of a spectrum: the first runs the codstaasfpossible, only guarantying
the functional correctness whereas the latter completeiylates the internal workings of the
processor, which is much slower. ‘Pipe mode’ is called thay Wwecause it also simulates the
internal pipeline that will show delays caused by, for exlanmissed branch predictions and
cache misses. We use the fastest mode to test the code ahaltbstdo measure performance.

To test the performance of our code we put the simulator i piyde and let it run for a
number of days on ever increasing image sizes. We started3gti8els and ended at 104x104.
This gave us an idea of the cost of the added overhead. We redabe execution time of both
the serial code (PPU only) and our parallel implementatioceticulate the speed-up. Image 4.4
shows the results.

We found a clear relation between the size of the image anddhieved speed-up. An im-
age of 45 by 45 pixels and larger is done faster by the panatielementation. The reason for a
speed-up smaller than one for smaller images (which meaalsds more time to execute it with
SPUs than with just the PPU) is because of the added synchatam code and DMA actions.
Note that the reported speed up might paint a bit too positnage, because the serial implemen-
tation only uses part of the Cell, whereas the parallel it@etation uses it completely, so the
hardware costs for the parallel code are also higher for iid Bhplementation. Since a typical
image in medical applications has a size of about 256x25@2x%12 pixels, which we didn’t
test because of the execution time of the simulator, it is safassume we could also achive a
speed-up in a practical setting.

When its performance is compared to a serial implementatioa regular desktop PC, the
results are extremely satisfying. A speed-up of almost Zlseved, with 6.5 as a nice average.
This means that a 2003 600 euros system (PlayStation 3)esfdrms a 2007 800 euros pc by
about seven to one, a very good result. There is only one hifit#or we haven’t taken into
account yet, which might skew things the other way: develapintime. This will be dealt with
in the next section.

4.2. Performance of manual SART implementation on the Cell

Speed-up

10512

44 6768 7392 8016 8640 9264 9388

O -. T T T T T T T T
] 528 1152 1FI6 2400 3024 3648 4272 4896 55

20 61

Number of image pixels

Figure 4.4: Relation between achieved speed-up of ourlphcalde compared to the serial code
and image size. A polynomial trend line which fits the datehisven.

36 Chapter 4. The Cell Processor

Speed-up
u
L]

o 528 1152 1776 2400 3024 3648 4272 4806 5520 6144 6YEE 7392 8016 8640 9284 988BE 10512

Number of image pixels

Figure 4.5: Speed-up of parallel code compared to code mgrom regular AMD64 3800+ (2.01
GHz) processor. Maxes out at about 7. The polynomial tremal kvhich can be regarded as an

average, reaches 6.5.

Chapter 5

Automating parallel code generation
LIACS-style: COMPAAN

Learning the Cell processor, coming up with the idea of howdtance the loads on the SPEs,
writing the code, and debugging it took about two months. éare is more experienced with
the Cell, this can be brought down a bit, but writing paratletle still remains a notoriously
hard job. It clearly started to dawn during the few last desadn system developers and other
programmers that an automated process was needed. Mamptitbave been made and |
will focus on what has been done in this field by LIACS, Leidemugrsity’s computer science
department.

We focus on structures found very often in the code requiangpeed-up: nested loops.
Amdahl’s Law tells us we need to focus on often executed dodle want to reduce the execution
time of a program considerably. The body of a loop is executsg often and the deeper it is
inside a collection of nested loops, the more we will gaindgucing its execution speed. In this
case we will try to parallelize it as much as possible, tazgithe hardware we have.

Note that this will work the best when a lot of parallelizatisubunits are available. This
document covers our exploration of the STI Cell, but we hastenbusing this technique for the
last couple of years already on FPGAs and are also inter@st@&Us, which both offer more
than one hundred units, compared to the eight offered by #tle @t the SPEs have much more
computing power than the elements of a typical FPGA impldaten. This might be helpful
later on, when we get to the implementation of SART using CAKR [7].

5.1 Simple COMPAAN example: matrix multiplication

We use a simple example to illustrate the strategy used by PAAN to parallelize code. Fig-
ure 5.1 shows a program that loads and multiplies two matéecel stores the result. Note that
it is not given in a type of pseudo code, but in real matlab cd@®MPAAN has matlab as its

37

38 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

input code, because this well-known programming languageiy helpful when dealing with
multidimensional arrays. Every executing statement has ltebeled by a node number, this is
useful when discussing it and also has some other uses, willdiecome more clear later on.

The first three nodes load the values of all entries of the ioesr This is typical for the
initialization code needed by all COMPAAN programs, beeaa$f values of the used input
arrays all need to be assigned. When the target code is gedevee need to edit this code so
the correct values are loaded, which is going to be done bsipgthe row and column variables
to the respective load functions.

In the main body the multiplication is performed. Every gns set to zero and then the
vector product of the appropriate row &f and column oB is calculated. Because COMPAAN
is only interested in the order of the operations and the detgendencies (more about that
later), it doesn’t compile the calculations themselvesosgnare hidden inside a function that is
implemented later on in the target programming language, i8-bur case.

When the calculation is finished, the result is stored byireglPass, that will see all values,
which can then be used as a point where every value can bal sitbeeplace where it can be
written to disk, or used by other calculations.

What COMPAAN will look for, when compiling this file, is dateegendencies. Nodes 1
through 3 normally will be executed® - 32 times before node 4 and 5 will be handled for the first
time, although this is not strictly necessary. Node 4, faragle, overwrites the value stored by
node 3 without exception. This means node 3 doesn’t needdmdmited, or when itis executed,
the resulting value doesn’t need to be passed to the othergiathe program, because its value
would be lost anyway.

Node 5 is more important. MultiplyAndAdd has three inputued, which all need to be
available when itis executed. In fact, when the loop comgithis function (with iteratorndex)
is about to be executed, the appropriate rowAodnd column ofB need to be calculated. This
means that not every instance of node 1 to 3 need to have beeuted, just the ones that store
at the locations of that row and column. This offers a helgtulrce of parallelization, because
at some time almost every instance of node 4 and 5 can be exioeftore the initialization loop
has finished.

In our case it could be done in the following way: PPU runs nbd®, and 3, because it is
the only unit that allows file access, SPE 0 is running nodePE $ runs node 5, and the PPU
again is running node 6. Now SPE 0 and 1 can start before thei®Bahe, thus reducing the
total execution time.

COMPAAN's job is to find the data dependencies and generale tiwat will take care of
sorting it out. Figure 5.3 shows that the dependencies sxdhse are a bit too complex to just
start node 4 and 5 as soon as some data is loaded. All entreswflB are used multiple times
and, from the initialization’s point of view, out of order.his problem needs to be solved and
will be the next point of attention.

5.1. Simple COMPAAN example: matrix multiplication 39

for row=1l: 1: 32,
for colum=1:1: 32,
%6 Node 1
[A(row, colum)] = LoadA();
%% Node 2
[B(row, colum)] = LoadB();
%% Node 3
[C(row, colum)] = LoadC()
end
end

for row=1:1: 32,
for colum=1:1: 32,
%% Node 4
[C(row, colum)]
for index=1:1: 32,
%% Node 5
[C(row, colum)] = MultiplyAndAdd(C(row, col umm),
A(row, index), B(index, columm));

LoadZero();

end
end
end

for row=1:1: 32,
for colum=1:1: 32,
%% Node 6
[SinkC(row, colum)] = Pass(C(row, colum));
end
end

Figure 5.1: MATLAB code that loads two 32 by 32 matrices, nmliks them and stores the
result.

40 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

function result = MiltiplyAndAdd(c, a, b)
result = c¢c + a * b;
end

function result = LoadZero()
result = 0;
end

Figure 5.2: Implementation of MultiplyAndAdd and LoadZefote that this code isn’t used by
COMPAAN, but will be written in the target language.

SHRPEBREIEB RSB ED
L B B R N
L B B R N
L B B B R N
L B B R N
L B B R N
L B B R N
L B B B R N
O.OO..OOOO..OO..X
L B B B R N
L B B B R N
L B B R N
L B B R N
L B B B R N
L B B B R N
L B B R N

L I L

* e e

e rrryry
|
.
.
.
.
.
.
.

LI LI I I I

A X B = (o}

Figure 5.3: Data dependencies when calculating the upfieiément of matrixC. First row of
A is needed in its entirely, first column & is also needed. Because matridesndB are read
in row-major order, a large part @ needs to be read before the first column is read (here shown

in light gray).

5.2 Kahn Process Networks (KPNSs)

COMPAAN uses a subclass of Process Networks (PNs) calleariRaocess Networks’ (KPNs),

named after Dr. Gilles Kahn. Figure 5.4 shows two very sin{fR\s to illustrate their general

topography. All nodes are connected via FIFOs, queues mmgaéing First-In-First-Out passing

of items. Figure 5.4(a) shows a producer-consumer mod#h, made 1 being the producer. The
KPN of figure 5.4(b) shows that nodes can have multiple inpdtautput FIFOs, a property that
will become helpful later on.

As we saw during our matrix multiplication example, COMPAAMeds to utilize the fact
that statements, which we already named after their nodébagmsan be started out of order
compared to their serial counterpart. Node 4, for examplédcbe started right away and node
5 when only a part of matriceA andB were loaded. COMPAAN produces a process for every
node to be run from the start.

5.2. Kahn Process Networks (KPNs) 41

Every node without an input FIFO can start right away and wih&as one or more output
FIFOs, will eventually start writing tokens to them. Nodéattdo have input FIFOs will start
at the same time, but their reading operations will stalllintoken is written to the FIFOs in
guestion. If the order of writing to the FIFOs and readingiri are known on both sides, the
nodes are able to execute in a parallel fashion. Figurirggaht is COMPAAN's job.

:am @

(b)

Figure 5.4: Two simple Kahn Process Networks showing streabf this type of networks.

Let's now take a look at our matrix multiplication example.e\Wt COMPAAN compile
the code of figure 5.1 and visualized the produced KPN, theltre$ which can be seen in
figure 5.5. We see that node 3 has no input or output ports.ribans it can be pruned from the
KPN, something we already deduced ourselves when we pigyidiscussed the matlab code.
We also see that FIFO 1 connects node 5 with itself. This isussC(row, column) in node
5 is both used as an input and an output, so the produced wheeded during the following
iteration.

A last remark deals with something we already saw in figure Be&ause the order in which
the entries of matriceA andB are loaded are not the same as they are needed by node 5 and
also because they will be used multiple times, they need tedrelered. COMPAAN therefore
generates code that will read FIFO 3 and 4, but will offer e tokens in the correct order.

Figure 5.6 shows th€'++ code running on node 1. It produces 32 times 32 tokens andplac
them in FIFO 3. The values of the tokens are defined by taelA method, to be implemented
by the programmer. The value is returned in the last arguroktite function, which is passed
by reference. The programmer had to add the row and columexinanually to the method
invocation, because it wasn't in the original code. Becaugestill in its development stage,
code created by COMPAAN still requires some manual editing.

Figure 5.7 is a bit more interesting and shows what happensde 5. As shown by fig-
ure 5.5, node 5 has four input FIFOs and one output FIFO. IRt®s 3 and 4 need a reordering
of their output and FIFO 1's input and output are both conegtd node 5. The code of node 5
has to take all that into account.

42 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

Before MultiplyAndAdd can be called, which is the name used for the function uselen t
original matlab code, the input variables need to be caticThe entry ofC accessed by this
instance is read from FIFO 2 when it is the first one and fromCFIFin all other cases. The
values of the entry oA andB are read from the local buffer, that receives all tokens aacks
them until the node 5 code reads them. Whenever node 5 is ditima part of the data (a row
or a column) that is no longer needed, it tells this to thedfo it can purge the used data.

When the input data is read, tivultiplyAndAdd method can be called. As before, the last
argument is passed by reference and will contain the oufjgiedunction. This function needs
to be implemented by the programmerGn- +. The output value, which is the current value of
the entry inC, then has to go into a FIFO. If the valueiatlex is lower than 32, the value needs
to be written to FIFO 1, so it will be read again by node 5index is equal to 32 (the vector
product is calculated), it has to be written to FIFO 5, so it ba handled by node 6.

Figure 5.5: KPN produced by COMPAAN for our matrix multigiton code. Node 3 isn't
connected to any other nodes (as expected) and the outputslefl and 2 need to be reordered
inside node 5, this action is shown here in gray (see texgo Abte that FIFO 1 connects node
5 to itself, because the vector product of a row of A and a colwiB is calculated by adding
multiple values to the same entry of C, which is thereforedus® an input of node 5 and as an
output.

5.3. Implementation of FIFOs 43

for(row = 1; row <= 32; rowtt)

{
for(colum = 1; colum <= 32; col um++)
{
LoadA(row, columm, A output_val ue);
wite(Fl FO3, A output_val ue);
}
}

Figure 5.6: Code executed by node 1. ‘LoadA needs to be impiged by the programmer in
the target language (in this caSe+ +) and stores the return value in the last argument, ‘write’
is a method defined by the environment that finds a FIFO (figstraent) and writes a value to it
(second argument), blocking if the FIFO is full.

5.3 Implementation of FIFOs

COMPAAN generates the code for the nodes, but the rest of tligomment (FIFOs, multi-
threading and the like) has to be created by the programmenurAber of implementations
already exist and COMPAAN can generate the code so it workis them. One is offered for
C + + and is named ‘YAPI’ and also one for Java called ‘Ptolemy’.

Because the code is eventually going to run on the Cell, wetthadt up a complete envi-
ronment for ourselves. We decided to use Pthreads, a liltinatyoffers typical multi-threading
functionality. We will now discuss our manual implementati Figure 5.9 shows all member
variables of a FIFO and their initializations. We use a staddircular buffer plus some code to
handle multithreaded access. The main buffer consists afray of tokens, which will be floats
in our case, a stored write and read position, and a boolesdrkéeps track of the most recent
operation. We will look at the rest when we cover the mulatded additions.

Thewrite_pos, read_pos, andlast_action_write variables are all used to store its state. A token
is stored by writing it to the write position and read from tiead position. After each operation
the respective position integer is increased. If the indexe the same, the FIFO is either empty
or full. If the last operation was a write it is full and a wrikas to wait until at least one read
is performed. If the previous operation was a rekdt(action_write is false) and the position
integers are equal, the buffer is empty and a read operatibhave to wait.

The nodes on both sides of the FIFO don’t synchronize thad/verite operations, so without
the proper measures, data corruption might occur. Luckitydads, and virtually every other
multithreading library, offers data structures to makeesihweads access data in a safe manner.
For this it uses mutexes and conditions. The former pernulatNe code to only be executed
by one thread at a time and the latter allows to signal othreatis when a certain condition has
been fulfilled.

44

Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

for(row = 1; row <= 32; rowt+)

{

for(colum = 1; colum <= 32; colum++)

{

for(index = 1; index <= 32; index++)

{

}
}
}

/'l input code goes here...

[l call MiltiplyAndAdd: the nethod to be inplenented by progranmer
Mul ti pl yAndAdd(C_i nput _val ue, A _input_val ue, B_input_val ue, C_outpu

i f(index < 32)
{
/1l calculated C value needs to be returned to node 5 (via FI FOL)
wite(Fl FOL, C output_val ue);
}
el se
{
/[l wite it to node 6 (via FIFO5)
wite(Fl FO5, C _output_val ue);
}

Figure 5.7: Code running on node 5. It is a lot more complexithade 1, because it uses
three input FIFOs, of which two are buffered. The code thatisethe input variables is given in
figure 5.8.

5.3. Implementation of FIFOs 45

i f(index == 1)

{
/'l first Centry value needs to be read fromFIFO2 (from node 4)
read(FI FO2, C_i nput _val ue);

}

el se

{
/1l all other C-entries need to be read fromFIFOL (from node 5)
read(FI FOL, C_i nput _val ue);

}

/1 matrix A input value needs to be read frombuffer of FIFG3 (from node
A input _value = FI FO3_Buf f er->get Fron(row, columm, index);
if (colum == 32)
{
/'l during last colum, a row of Ais read, can be renoved from FI FG3 bu:
FI FO3_Buf f er - >rel easeMen(row, columm, index);

}

/1 matrix B input value needs to be read frombuffer of FIFO4 (from node .
B i nput _val ue = FI FO4_Buf f er->get Fron(row, columm, index);
if (row == 32)
{
/1l during last row, a colum of B is read, can be renoved from FI FO4 buf
FI FO4_Buffer->rel easeMen(row, columm, index);

}

Figure 5.8: Code responsible for reading input variablesoafe 5.

46 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

FIFOG :InitFifo()
begin
Token buffer[buffer_size] = all enpty;
int wite_pos = 0;
int read_pos = O;
bool last_action wite = fal se;
mut ex buffer_nmutex = new nutex;
condition is _full _condition = unset;
condition is_enpty_condition = unset;
end

Figure 5.9: Initialization code of FIFO. Declares and wiies all local variables of a FIFO.

Every time the buffer has to be accessed, a lock on the mutegigested. If another thread
is already doing something to the data, this will make thé fireead wait until this mutex will
be released. After it has been acquired, a check has to berpexd to see if the action can be
done; in case of reading, the FIFO cannot be empty, in caseitrigvit cannot be full. If the test
fails, the operation cannot be performed and has to be délaytd the buffer is in a correct state.
A simple polling loop wouldn’t do, because this would stiddp the mutex acquired, therefore
disallowing the other thread to work with the FIFO, bringithg system in a deadlock.

This is where the conditions come in handy. When a thread faatishat the FIFO is not
in the correct state, it will set the respecting conditiomg<onditionWait. This method will
atomatically unlock the mutex, set the condition and putdineent thread to sleep. An other
thread will now be granted access to the FIFO and will chatgystate, so the first thread will
be able to continue. This is done after the mutex is releasiter a check is performed to see if
the condition is locked@onditionSet will return true) ConditionSgnal is called to wake up the
original thread and place it in the execution queue.

The first thread was put asleep in the calCanditionWait, so it will continue at that location
in the code. Before returning control to our code, it will aog a lock on the mutex so we
will be able touch the data in the buffer knowing that it is Ine tcorrect state. This solved our
synchronization problems.

5.4 A practical consideration: FIFO sizes

In most theoretical applications of KPNs, an infinite FIF@ess assumed. Needless to say, this
is not very helpful in our case. Especially when one trieddoesthe data inside the limited Local
Storage of a Cell SPE, huge buffer sizes can become fatalmiienum required size of a FIFO
of a general KPN is not decidable. We decided to find the mimnbuffer size by running the

5.4. A practical consideration: FIFO sizes 47

FI FO : WiteToken(Token token)
begin
LockMut ex(buf f er _nut ex) ;

if (wite_pos == read_pos) AND | ast_action_wite then
ConditionWait(is_full _condition);
end if

buffer[wite_pos] = token;
wite pos = (wite_pos + 1) nod buffer_size;
| ast _action_wite = true;

Unl ockMut ex(buf f er _mut ex) ;

if ConditionSet(is_enpty_condition) then
Condi ti onSi gnal (is_enpty_condition);
end if
end

Figure 5.10: ‘WriteToken’. The mutex is locked, a check isfpemed to see if there is room in
the buffer, the token is written, some bookkeeping is pentx, the mutex is released, and when
a reader is waiting, it is signaled that the buffer is no lareyapty.

48 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

Token FI FO : ReadToken()
begin
LockMut ex(buf f er _nut ex) ;

if (wite_pos == read_pos) AND (not last_action_wite) then
ConditionWait(is_enpty_condition);
end if

Token output = buffer[read_pos];
read_pos = (read_pos + 1) MOD buffer_size;
| ast _action_wite = fal se;

Unl ockMut ex(buf f er _mut ex) ;
if ConditionSet(is_full _condition) then
Condi tionSignal (is_full _condition);

end if

return output;
end

Figure 5.11: Code called to read a token. Almost the sameeg$\thteToken’ code, only token
is read from buffer, instead of written to it. See text for quate discussion of both methods.

5.5. Our first and most simple usage of the SPEs 49

KNP on the PPU only while reducing the buffer size until a deekioccurred, or until the size
was acceptable. We focused on smaller problems where a lsiggeof 1024 tokens turned out
to be more than enough, so we used that number in all our expets.

5.5 Our first and most simple usage of the SPEs

The method that has been described so far works perfectlyngples processors like the Intel
Pentium or even on multicore-platforms where all processommunicate via shared memory
and no special DMA operations are required. All code up te plmint was written and debugged
on a normal AMD processor. Adding the SPE functionality iesgisome extra designing.

Figure 5.12 and 5.13 show the same simple KPN, where figuraris on the same pro-
cessor (either the AMD or the PPU) and figure 5.13 shows the WRINnodes A and D on the
SPEs.

A)ﬁ@

Figure 5.13: KPN of figure 5.12 put on both the PPU and on thesSREand D’ act as service
threads that delegate all calculations to A and D, respagtiwhich are located on the SPEs. A
and D use their serving threads to access the FIFOs.

Figure 5.13 introduces two extra nodes on the PPU side: A Rnhdhey act as service
threads for their respective SPE thread. The unprimed disreaboth images are the same, only
the way in which they access the FIFOs differs, this will becdssed below.

50 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

As mentioned previously, the PPU and the SPEs can commenisattg mail messages,
this will be utilized in our communication scheme. Once a&#u running on an SPE wants to
perform a read or a write on one of the FIFOs (which are alltedan the PPU-memory), it will
write one or more outbound messages to publish this reqaets serving thread on the PPU
side, which, if required, will eventually write a value tetlSPE’s inbound mailbox.

Figure 5.14 shows what this looks like from the service ttrea the PPU side, figure 5.15
shows the read, write, and stop operations from the SPE side.

The serving thread will check every iteration if there is assage to be read. If there isn’t
one, it will give up its control of the PPU by callingeldThread (a functionality offered by
Pthreads) so it will check up on the SPE’s mailbox during teéet scheduling round. If there is
a message waiting, it will use it to find out what action the SRats to have performed. If it is
a write operation, the SPE will send the FIFO number and tkertgwhich we assume to be 32
bits, we always used floats so this requirement was met) smibe written to the appropriate
FIFO.

When a read is required the FIFO number is also send to the PR&Jservice thread will
then find the FIFO, read a token from it and send it to the SPH.fAally if a request for exit is
received, the loop is exited and the thread terminates. mhlees sure the thread runs no longer
than absolutely necessary.

5.6 Performance of this solution

Since our main interest lays with the time required to comivate between nodes, we mea-
sure the performance of this protocol by implementing tinepde KPN shown in figure 5.16; a
producer-consumer network.

We used the most basic measurement of speed available: tiexetime. Since the Cell
features a PowerPC unit, the most precise clocking funatityoffered is the time base register.
This register is updated a large number of times per secortd,calculate the number of elapsed
second, one needs to count the number of increments ancdivig the timebase value for that
particular processor. Figure 5.17 and 5.18 show the cosit#ithe ‘/proc/cpuinfo’ files for the
PS3 and the Cell simulator respectively.

5.7 Implementing a more advanced way of inter-process com-
munication
The previously shown method is very slow. For every tokeeehmail messages are needed,

which is too much. We decided to solve this problem by sencingfiple tokens at once. This
will require DMA operations that send over complete buffansl introduces extra bookkeeping.

5.7. Implementing a more advanced way of inter-process comumication 51

enum OPERATI ONS:
OPERATI ON WRI TE
OPERATI ON_READ
OPERATI ON_EXI' T

end

bool ean exit := fal se;
SPE spe : = serviced SPE;
Token token := null;

whi |l e(not exit) do
i f(Mai |l MessageWaiting(spe)) then
ReadFr omMvai | box(spe, Operation)

swi t ch(OQperati on)
case OPERATI ON_WRI TE do
ReadFr omvai | box(spe, FifoNum
ReadFr omvai | box(spe, Token)
Get Fi f oByNun{ Fi f oNum) . Wit eToken(t oken)
end
case OPERATI ON_READ do
ReadFr omvai | box(spe, FifoNum
token : = Get Fi foByNun{Fi f oNun) . ReadToken
WiteToMi | box(spe, token);
end
case OPERATION EXIT do
exit := TRUE
end
end
el se
Yi el dThr ead,
end
end

Figure 5.14: Service thread on PPU side. This thread runke\he thread on the SPE side runs.
It monitors the outbox of its designated thread. See theféext complete discussion.

52 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

WiteToken(Fifo fifo, Token QutToken)
Wit eToCQut box(OPERATI ON_WRI TE) ;
WiteToQut box(fifo.GetNunber);

Wit eToCQut box(Qut Token);
end

ReadToken(Fifo fifo, Token & | nToken)
Wit eToQut box(OPERATI ON_READ) ;
WiteToCQut box(fifo.Get Nunber);
ReadFr om nbox (I nToken);

end

Exit()
Wit eToCQut box(OPERATI ON_EXI T);
end

Figure 5.15: Implementation of the three methods used bycdlage running on an SPE. All
actions are implemented by sending and receiving the redumail messages.

)

Figure 5.16: A producer-consumer KPN. This network is usetheasure the performance of
the two protocols developed during this project. By movihg sending and receiving nodes to
different Cell units the speed of all communications can &enined.

This will be dealt with below.

Figure 5.20 shows the operations performed when filling &lbaind sending it using DMA.
For now we only consider a buffer size of four tokens, butriate we will experiment with a
larger buffer. In our solution the buffer is filled by copyitmkens to a linear buffer. After then it
is copied to a memory space of the same size in the memory oinhevere the reading node is
located. When the DMA is competed, a message is send to thaguwniode, so it can consider
the buffer to be writable again. The writing node has to wartthe DMA completion before
writing, otherwise data consistency cannot be guaranteed.

All DMA operations are initiated by the SPE-side of the FIR@Is is because, according
to the official IBM Cell manual, the performance is better @gb because it allows us in the
future to set up more concurrent DMA operations: when mldtgonnections need to be served,
multiple DMA tags (description IDs) could be used.

5.7. Implementing a more advanced way of inter-process comumication 53

processor : O

cpu : Cell Broadband Engi ne, altivec supported
clock : 3192. 000000MHz

revision : 5.1 (pvr 0070 0501)

processor : 1

cpu : Cell Broadband Engi ne, altivec supported
clock : 3192. 000000MHz

revision : 5.1 (pvr 0070 0501)

ti mebase : 79800000
platform: PS3

Figure 5.17: ‘/proc/cpuinfo’ for the PlayStation 3. The twardware threads are shown as
separate processors (values given: index, descriptiook &peed and revision). Important to us:

the ‘timebase’ value, it gives the number of increments ef'ttme base’ register per second.

processor : O

cpu : Cell Broadband Engi ne, altivec supported
cl ock : 3200. 000000MHz

revision : 5.0 (pvr 0070 0500)

processor : 1

cpu : Cell Broadband Engi ne, altivec supported
clock : 3200. 000000MHz

revision : 5.0 (pvr 0070 0500)

ti mebase : 25000000
platform: Cel
machi ne : CHRP | BM CPBW Manbo, Si nul at ed- Syst em

Figure 5.18: Contents of ‘cpuinfo’ for the Cell simulatott Has a smaller timebase value (to

lower the strain on the simulator), but does run on the thesalespeed of 3.2 GHz.

54 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

Number of tokens Time base incrementsTime (s) | Tokens per se¢
PPU to PPU| 21° 25567 0.00032] 3.1 -10°
220 204161972 2.56 4.0-10°
227 22226295746 278.53 | 4.8-10°
SPE to PPU| 210 2563002 0.032 3.2-104
220 2972280622 37.24 | 28-10*
227 380493349115 4768.08| 2.8 - 10*
PPU to SPE| 21° 1635467 0.020 4.9-10*
220 2824044831 35.39 2.9 -10%
227 364814712356 4571.61| 2.9-10*
SPE to SPE| 2%° 2807189 0.035 2.9-10%
220 2973432971 37.26 2.8 104
227 391067207313 4900.59| 2.7 - 10*
PPU to self | 219 63639 0.00079]| 1.2- 108
220 51389370 0.64 1.6 - 10°
227 6471958374 81.1 1.6 - 106
SPE to self | 21° 6242437 0.078 1.3-104
220 4784318814 59.95 1.7-104
227 450529293916 5645.73| 2.3 - 10*

Figure 5.19: Ouir first, service-thread-based, solutioai$ggmance. All connections were tested
for 210 (1024), 22° (1024 - 1024), and22” (128 - 1024 - 1024) tokens and the required execution
time was used to calculate the effective number of tokenseesnd.

5.7. Implementing a more advanced way of inter-process comumication 55

If a connection is between two SPEs, the DMA is initiated g/ tbading party. It is partly
a matter of definition, but also assures every SPE only aesemsy other SPE’s in read-only
mode, this is in general a good strategy. It is not so muchsareisrhen performing SPE to PPU
DMA operations, because the SPE will not be reading or wgititto the PPU’s local storage
(cache), but accesses the main memory instead. The PPersaig will make sure to flush its
cache beforehand.

a. | Cellelement 1 ‘ outbox —{ "'Buffer is full” I—D inbox | Cell Element 2

[ale]c]o] ale[c]o]

@

p. | Cellelement1 ‘ inbox 1—{"Buffer ccopied"l— outbox | Cell Element 2

Figure 5.20: Usage of DMA to offer a FIFO connection betwego €lements of the Cell pro-
cessor. Steps 1 through 4 copy values to the buffer in elethetep 5 consists of sending a
message to the reader to tell it the buffer is full, so it camtdhe DMA operation (step 6). After
this is finished, a message is sent back to tell the buffer éas bopied and can again be written
to.

For this to work, the connection needs to be set up corre@he obvious requirement is to
have the party that is starting the DMA to know the locatiothaf buffer. Also some information
about the buffer has to be stored so it can be linked up witiF®@Flumber.

To make this system work, we had to give every FIFO not jusbba@lnumber but also a local
number. A FIFO is accessed in a local table given the numb#reoélement on its other side
(which is either a PPU thread or an SPE) and the index of th® Rt that particular element
pair.

Figure 5.21 shows a useful KPN which uses all connectiorstypé will use them to explain
how their respective connection is dealt with using all shemethods:

e PPU to PPU: this is still accomplished using the FIFOs sebupiulti-thread access.

56 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

Figure 5.21: A4-node KPN running on the PPU and two SPEs.oXlhection types are featured;
1: PPU to PPU, 2: PPU to SPE, 3: SPE to SPE, 4: SPE to PPU, 5: PRbobpe and 6: SPE
self loop. We needed to deal with all of them separately.

e PPU to SPE, SPE to SPE and SPE to PPU: for this the newly irdeadluffered commu-
nication is used.

e PPU self loop and SPE self loop: use a simple circular buffemparable to the PPU to
PPU FIFOs, without the mutexes).

Figure 5.22 shows the the performance of this new methodur&i§.23 shows what we
already expected when looking at the numbers: method 2 ihriaster.

We will now explain the measured results. The fact that meéthas just as fast on PPU to
PPU communications as method 1 is because they use the se@edde. The speed-up for the
SPE to PPU, PPU to SPE and SPE to SPE operations is becausaabhtist complete removal
of the mail messaging, only once every 1024 tokens a messmgks mo be sent to tell the reading
side to copy the buffer.

The self loops are faster because they are no longer implkehenth a mutexed FIFO, but
via a simple looped buffer, this works because we know tlsagtesses will always be done by
the same thread. Especially the SPE self loops are much.f>donger a token needs to be
send to the PPU and read back (which requires 6 mail messagegefy token), it is just written
to and read from local storage.

It now becomes very apperent that the PPU to PPU commummciatieery slow in compatri-
son to the other types and it is therefore smart to try to mdlveoaes to the SPEs.

5.8 Flushing operations

The comparison between the two methods might be considepgduafair. Until now we left
one detail out of our discussion, namely the requirementhferflushing of tokens. This is were

5.8. Flushing operations 57

Number of tokens Time base incrementsTime (s) | Tokens per se¢
PPU to PPU 219 158535 0.0019 |5.1-10°
220 222215460 2.78 3.7-10°
227 27385823967 343.18 | 3.9-10°
SPE to PPU| 210 19512 0.00024 | 4.1-10°
220 4958693 0.062 1.6 - 107
227 632744043 7.92 1.6 -107
PPU to SPE| 21° 14616 0.00018 | 5.5-10°
220 4621259 0.057 1.8-107
227 589762084 7.39 1.8-107
SPE to SPE| 2% 62098 0.00077 | 1.3-10°
220 13278517 0.16 6.3-10°
227 693700814 8.69 1.5-107
PPU to self | 219 47008 0.00058 | 1.7-10°
220 2419728 0.030 3.4-107
227 303528609 3.8 3.5-107
SPE to self | 21° 4778 0.000059| 1.7 - 107
220 2836617 0.035 2.9-107
227 362437027 4.54 2.9-107

Figure 5.22: Performance for our second implementationcivis DMA based. The buffer size
is 1024 tokens.

Method 1 base incs. Method 2 base incs. Speed-up
PPU to PPU| 22226295746 27385823967 0.81
SPE to PPU| 380493349115 632744043 601
PPU to SPE| 364814712356 589762084 619
SPE to SPE| 391067207313 693700814 564
PPU to self | 6471958374 303528609 21
SPE to self | 450529293916 362437027 1243

Figure 5.23: Comparison of the two discussed methods. Metihcs service-thread-based,
method 2 is DMA based. The third column gives the speed-upeathad 2 over method 1. Only
the PPU to PPU method has comparable performance, becaaifaittionality is implemented

the same.

58 Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

a buffer is not yet full, yet needs to be read by the readintypar

Flushing operations are needed on a lot of places when graiimputer programs. When
writing a program that needs to log errors to a file, one neegetform a flush operation after
every experienced error, because a crash of the programosél the contents of the buffered
data sent to the file. Flushing this buffer regularly (at thd ef a line, for example) makes sure
all data is written to the file and a sudden crash will not cauless of this information.

When implementing a KPN, a flush operation is sometimes rieedla@ypothetical example
is shown in figure 5.24. This very simple KPN can cause a dek&dMhen there are no flush
operations performed. Node 2 waits until it can read a tokemfnode 1. Node 1 does write
a token to node 2, but because the buffer is not yet full, it mok be copied to Node 2. Node
1 then waits for node 2 to write a token, which will never happ®/ith all nodes in a blocking
state, a deadlock has occurred.

FIFC 1
FIEC 2
foreach iteration foreach iteration
i {
write (FIFOZ, token): read (FIFOZ, token);
read (FIFOl, token): write (FIFOLl, token);

! '

Figure 5.24: A simple KPN terminating in a deadlock situaifano flushing is performed. After
node 1 has written a token, but doesn’t flush FIFO 2, both nad=blocked in read state.

If the FIFOs would have been flushed after every write openatihnen no deadlock would
occur. This was never a problem in the old method (where eadmsn could be accessed directly
after it was written to the FIFO), but is now introduced besmwf our buffered DMA-based
approach.

If we perform the same measurements as we did previousiyhéother methods (see figure
5.25), we see that we still manage to achieve a speed-up, dibse considerably compared
to the fully buffered DMA method. This makes sense, becauseydoken needs a few mail
messages and every DMA operation is just as large as if th@ledenbuffer was filled.

Figure 5.26 shows that reducing the buffer size doesn’t av@the performance of the com-
munication. This shows us that the performance of the conicatian is independent from the

5.8. Flushing operations 59

Base clock incs| Method 1 speed-up Method 2 slow-down
PPU to SPH 123507888768 | 2.95 209
SPE to PPU 127623656934 | 2.98 201
SPE to SPE| 244037217562 | 1.60 351

Figure 5.25: Effect of continuously flushing on performanteommunicatin@?” tokens. Com-
parison is made to method 1 (service-threads) and methodllg tuffered DMA). The used
buffer size is 1024 tokens.

Base clock incs| Tokens per secondSpeed-up over 1024
PPU to SPH 122923777485 8.7 - 104 1.005
SPE to PPU 127362109930 8.4 - 10* 1.002
SPE to SPE| 246506855335 | 4.3 - 10* 0.990

Figure 5.26: Performance of method 2 when continuously iihgsthe DMA buffers compared
to method 1 and the original method 2. The buffer size is reduo 4 tokens, to see what it does
to the required time to communicate compared to the 1024bsite.

buffer size, most likely caused by the way the DMA is impleteein a relatively high start-up
cost, but almost no extra cost when increasing buffer sibés then shows us that we don’t have
to expect an increase in performance when we reduce therisifte

60

Chapter 5. Automating parallel code generation LIACS-syle: COMPAAN

Chapter 6

Conclusion

We were able to achieve a speed-up of 6.5 by implementing SéRihe Cell. We also have
implemented two different communication schemes to offerequired multi-threaded environ-
ment so the code generated by COMPAAN works on the STI Celk dffered us the possibility
to measure its performance and get a feeling of how well teekeions did.

Part of the project was to write a back-end for COMPAAN so thedpced KPN is used
to produce the C code to communicate with the manually wri@ell communication library.
This reduced the long-term development time, because weongmhave to make some changes
in the KPN (by editing the matlab file) and regenerate the €&ficompile and measure the
performance.

This project has helped to improve the performance of SARTas0 to gain a better under-
standing on how to parallelize code for the STI Cell.

61

62

Chapter 6. Conclusion

Appendix l \

Description of files generated by CellCC

The back-end of COMPAAN responsible for generating the G/Cade for the Cell, CellCC,
writes to a number of files. This appendix covers the meanfrihese files and the variables
declared in them.

A.1l types.h

This file contains a number of global variables, that are Useithe PPU and SPE code:
e g.iSPECount: Number of SPE threads, needs to be exactly right.

e g.iPPUThreadCount: Number of PPU threads, can be larger than the actual nunfber o
threads.

e g.iMaxPPUSPEBuffers. Maximum number of connections between a PPU and an SPE
thread. Can be larger than actually required.

e g.iIMaxSPESPEBuUffers Maximum number of connections between two different SPE
threads.

A.2 ppu_buffers.h

Contains all variables used only by the PPU side. Bufferstatically allocated. They need to
be quad word aligned (done in gcc by using thattribute _ ((aligned (16)))’ attribute) and their

size is required to be a multiple of 16 bytes (128 bits). Weehstored floats during the course
of this project, which meant the number of elements of thédmsiineeded to be a multiple of 4.
It is important that the SPE and the PPU consider their shau#drs to be of equal size, we did
this by defining their size in types.h and perform only théatis allocation in ppubuffers.h.

63

64 Chapter A. Description of files generated by CellCC

e g_pSPEProgramHandles: an array that contains all sggogramhandlet pointers to the
embedded binaries that need to run on the SPEs.

e g_pBufferLocations: contains all void pointers to the statically allocatedférs.

e g.iBufferSzes: contains the number of tokens for all buffers.

e g pBufferDescs: stores a descriptor string for every buffer. Is only usecgwhdebugging.
e g_pBufferNames. stores buffer names (very short string to relate it thek@Inumber).

e g.iMaxPPUThreadSelfLoops: the maximum number of self loops in a PPU thread. Can be
larger than required, not smaller.

e g.iSdfLoopCounts: array that stores the number of self loops for every threadds to be
precise.

e g.iMaxPPUThreadFifos: stores the maximum number of FIFOs between two speratadhbre
can be larger than the actual value, not smaller.

e g PPUFifos: stores the FIFO start and end threads for all PPU to PPU comnuaiions.
Every entry is an array of two unsigned ints: the start thremtéx and the end thread
index.

e g iPPUTOSPEBIlockingType: stores the blocking type used when sending messages to
SPEs. It needs to FPE_MBOX_ALL_BLOCKING so all messages are received correctly
by the SPEs. This value means the mail message sending batketurns when all mes-
sages could be written.

A.3 PPU Makefile

Thanks to a well designed makefile-system offered by IBMIdig a executable for the Cell is
very easy. Only a few fields need to be filled out in the Makefilested by the programmer.

¢ PROGRAM ppu64: to this variable the name of the output file needs to be asdign

¢ IMPORTS:. needs to point to the a-files produced in the spu-directorgré about those
below) and needs to include ‘-Ispe2’.

To make it work, this file also needs to include the make.fofiieeshipped with the SDK.

A.4. spubuffers.h 65

A.4 spubuffers.h

Just as with ‘ppubuffers.h’, this file contains the static allocation of allfters used by the
read/write code, only now for the SPEs. All buffer allocasor all SPEs are declared, yet when
it is compiled, every SPE uses only a part of it. This is donalefining COMPILINGSPE-
preprocessor directives. This makes sure the igadwrite.h’ file can included the file without
worrying about its SPE index.

The following variables are required:

e g.iSPEIndex: every SPE has its own index, this is used when printing debegsages to
the console. It starts at zero.

e g_pBufferLocations: stores all addresses of the statically allocated buffers.

e g.iBufferSzes: stores all buffer sizes.

e g_pBufferNames. stores the names of all allocated buffers.

e g_pBufferDescs: stores the descriptions of the buffers.

e g.ilnPortsToPPU: stores the number of input ports served to every PPU thread.
e ¢_iOutPortsToPPU: stores the number of output ports to every thread.

e g.ilnPortsToSPE: stores the total number of input ports served from othersSPE
e g.i0OutPortsTOSPE: stores the total number of output ports served to other SPEs

e g.ilnportSPEs:. stores an array where every valuat index: equals the served SRBEby
input porti.

e g.i0OutportSPEs: the same as the previous variable, but then for outports.

e g.ilnportCountFor SPE: array of integers storing the number of input ports for daher
SPEs.

e g.iSafLoopCount: number of self loops used by this SPE.

A.5 SPE Makefile

Just as for the PPU part, a makefile needs to be written for B#te &de. Only two variables
need to be defined:

66 Chapter A. Description of files generated by CellCC

e PROGRAMS spu: lists all SPE programs made visible to the PPU code. TheBéwvi
listed in theg_pSPEProgramHandlesvariable in the ‘ppubuffer.h’ file.

e LIBRARY embed64: contains all a-files belonging to the program handles (& same
order). These files will be include in the ppu-makefile.

A.6 main.cc

The entry point of the application is stored inside the ppactory. Besides all thread functions,
the main function itself is also required. This function g&ed to call all initialization and final-
ization code and to start the PPU and SPE threads. The foigpthings need to be done in the
given order:

¢ InitAllPPUThreadDataiscalled, this call initializes all data stored to manage the PPU and
SPE threads;

¢ |nitSPEThreads() is called next. It will setup and start all SPE threads;

¢ InitPPUBUffers() is finally called setup the PPU side buffers.

Then the PPU threads need to be started manually, followeddayl to join them. This is al
done with calls the methogghread_create andpthread_join offered by Pthreads. ThafaitFor-
SPEsFinished is called and a special line of assembly code is insertedsirasll SPE threads
are finished (the call is ‘'sync’, offered by the Cell assembl€henJoinAll SPEThreadFunctions
is called to clean up all SPE running threads.

A.7 SPEX.cpp

The code running on the SPEs is stored in the SPEXx.cpp fil#sxvei number between 1 and 6.
As explained in the section about spuffers.h, every time code is compiled for an SPE it needs
to define a preprocessor directive called ‘COMPILINBPEX’. There are two more requirements
when writing a C++ file for an SPE:

¢ Before anything elsenitSPEBuffersneeds to be called, this call initializes the local buffers
by communicating with the PPU (via mailmessages).

¢ When the SPE is don&endExitMessage should be invoked. This call tells the PPU it is
done. The PPU uses this to keep track of which SPEs are stilimg (this then is used to
continue the forwarding of mail messages between SPES).

Appendix B

Usage of code base

A lot of code has been written during this project. This sattexplains what code is most
important and also how it is used.

B.1 sart/

This directory contains a lot of cpp files that all implememlitierent part of this project:

e ‘basicsart.cpp’: original implementation of SART done lmpdt Batenburg.
e ‘projectimage.cpp’: projects an image (stored in a tex) filging a matrix (matrix W).

This directory also contains a script called ‘compile.sRunning this file will take care of
all steps needed to generate the image file, produce thexfietand compiling and running the
SART algorithm. The following variables can be set in thigggc

¢ MATRIX: name of matrix file (can be any file name)

¢ SMPLESPHERE: name of generated image file, most likely simplesphereaxtimage
containing a number of opaque circles.

e PROJECTION: name of the output file to store the projection.

e OUTIMG: file name of where to store the restored image (this cantbeteised to calculate
the error).

e TOMSETTING: file name of settings file used by code that generates thexiér
e ITERCOUNT: number of SART iterations.

e ANGLECOUNT: number of projection directions.

67

68 Chapter B. Usage of code base

e IMAGESZE: number of pixels at one size of the image. The actual numbpixels in
the image will actually béMAGES ZE timesIMAGES ZE.

e PTDETAIL: level of detail when projection is performed. A value of li®d@ans that the
width of the strips is the same width as a pixel. A smaller gaduil increase the width and
lower the number of strips, therefore reducing the numbrgysand execution time of the
algorithm.

B.2 sart/writematrix/

This directory contains the code that produces the matexuled by the projection and SART
code. Run it without arguments to see its required usage.

B.3 sart/bmp2img/

This directory contains functionality to convert a bitmapage to an image text file used by
SART and the other way around. Run this program without aeusito see how it should be
used.

B.4 sart/componized/sanlppthreads/

This directory contains the output generated by COMPAAN ARS (for yapi) with a manual
implementation of the multi thread environment based ond@iltls. The following files are
required to make code for yapi work with Pthreads: ‘fifo.hd.h’, ‘process.h’, ‘RTE.h’, and
‘yapi.h'.

B.5 sart/cell/

This directory contains a number of projects that were usecréate the two communication
methods. The following directories are most interesting:

¢ ‘oldstyle.commmeasure’: used to measure the speed of method 1 (serveadtivased).
e ‘comm.measure’: used to measure the speed of DMA buffered comrmatiomnc

e ‘comm.measuredlushed’: is used to measure the speed of the DMA buffered odeth
when it is constantly flushed.

¢ ‘sanlpspu’: implementation of SART using method 1.

B.5. sart/cell/

69

e ‘sartcellall’: manual implementation of SART, gives the speed-up.6t 6

70

Chapter B. Usage of code base

Bibliography

[1] Ana Lucia Varbanescu, Doctoral Track within the Padated Distributed Group of
the TU Delft, Faculty of Engineering, Mathematics and CotepuScience (EWI):
http://www.st.ewi.tudelft.nlevarbanescu/

[2] Avinash C. Kak and Malcolm Slaney. “Principles of Comguzed Tomographic
Imaging”. Society of Industial and Applied Mathematics. [@a available at:
http://cobweb.ecn.purdue.eduhalcolm/pct/.

[3] International Business Machines (IBM). “STI cell preser, New Disclo-
sures to Jumpstart Creation of Cell-based Applications oBdy Gaming™
http://www-304.ibm.com/jct03004c/businesscenterfusgdevelopment/us/en/feature-
article/gclxmlid/8649/navid/emerging.

[4] International Business Machines (IBM). “The Cell prcjeat IBM Research”:
http://www.research.ibm.com/cell/.

[5] Sony Computer Entertainment Inc. “PlayStation Globélttp://playstation.com/.

[6] International Business Machines (IBM). “IBM Full-Sgsh Simulator for the Cell Broad-
band Engine Processor”: http://www.alphaworks.ibm.deuoti/cellsystemsim.

[7] Leiden Institute for Advanced Computer Science (LIAC®ompilation of Matlab to Pro-
cess Networks (Compaan)”: http://www.liacs.nl/ cseroipaan/.

71

