Content Based Web Sampling
August 7th 2007
Yini Bao

LIACS, Universiteit Leiden,
Niels Bohrweg 1
 2333 CA Leiden, The Netherlands
+31 641024583

y.bao@liacs.nl

E.M.Bakker

LIACS, Universiteit Leiden,
Niels Bohrweg 1
 2333 CA Leiden, The Netherlands
+31 621827989
erwin@liacs.nl
ABSTRACT
Web characterization methods have been studied for many years. Most of these methods focus on text-based web contents. Some of them analyze the contents of a web page by analyzing its HTML code, hyper links, and/or DOM
 structure. Seldom, a web page is characterized based on its visual appearance. A good reason for also considering the visual appearance of a web page is because humans initially perceive a web page as an image, and only then will look in detail at text and further pictorial contents. Hence it is a more natural way of trying to analyze and classify the contents of the web pages. Moreover, as more and more new web technologies appear in recent years (JavaScript, FLASH
, and AJAX
); analyzing the HTML code in a web page seems to be meaningless without actually parsing and interpreting it. This offers new challenges to textual web page characterization and has an impact on the efficiency of the indexing techniques. Thus, by combining the old text classification methods with our novel (visual) content based methods we offer a more promising way to characterize the web. The main idea of the project is to take snapshot for each page and uses image classification methods to categorize them.
Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and Retrieval—Content Analysis and Indexing H.3.3 [Information Systems]: Information Storage and Retrieval—Information Search and Retrieval
General Terms
Algorithms, Experimentation
Keywords
Web characterization, Web Page Summarization, Web Page Classification, Web sampling, Web Mining, information retrieval, information extraction
1. INTRODUCTION
The Exponential growth of the World Wide Web (WWW) makes it so unpredictable that even the expert can not foresee its future. WWW gives people so much freedom and equality that we never have before. People can use the WWW to express and share their ideas in tremendous ways. A decade ago, we can only use simple HTML code to create Web pages as a notice board (no feedback, no interactive communication). People at that time were surprised by the hyper links that direct them from one page to another. A few years later, when CSS
, JSP, DHTML
 or even XHTML
 appear; Web pages are becoming more attractive and interactive. The Web began to enter people’s daily lives and companies are all trying to make business on the Internet. The Web technology at the moment can already change a website or a web application into desktop software. Better usability proves that they are no longer a bullet board any more.
Nowadays Web page may embed many other components like Windows media player, Realone player, Quicktime or Flash for audio and video functions in the page. A new technology called AJAX [1] is gaining more attention as it can only refresh part of the Web page. Some examples of Web software are: Google Spreadsheet which tries to take over Excel and eBuddy.com for you to login MSN or Yahoo in a page and start to chat with your friend on the Web.
Though this brings much convenience to normal people, they give scientists a big headache to study the ever changing Web languages and new technologies. Web characterization is trying to catch these changes in the Web and obviously parsing the source code of HTML, Javascript or Flash is not enough. The new design pattern like Model, View, Controller and Object Oriented Programming have been introduced to website project, which make the situation for traditional text-based method worse.
Therefore we need to find a new way to solve the problem, one solution is to take the overall Web pages as images and analyze them as images. It is very nature and naive to consider a page as an image because people recognize a Web page first from the whole scratch of the page, like the main color, the layout and the density. Later they will skim the text in a page and find the one they like. So no matter what kind of Web technology is been used behind the Web page, we can take a snapshot of the page and analyze their content directly without any metadata!

Similar ideas have been found in some websites like Ask.com
, del.icio.us
 and other search engine websites. These websites will provide a little snapshot of the page when you put the mouse on the URL link. Users can preview the page and decide they want to go forward or not.
The ordering of the following sections: first we will introduce the present situation of Web characterization methods. Then we will carefully bring in the whole procedure of the project including flow chart and different branch components. Thirdly, the experiment and the result will be shown. The discussion and conclusion will be the last section.
2. RELATED WORK
Web sampling is an important part of Web characterization as well as search engine study. It uses Web crawlers to gather information on the Internet both for link analysis and content analysis. Many theories and algorithms have been developed and there are plenty more innovative methods coming out, many of them are based on or improved from the following approaches.
2.1 Sampling by random walks
This approach means to sample the Web randomly [12]. The program will start from a given page and redirect to out-link randomly. This type of sampling is biased towards pages with high connectivity, as they are more likely to be reachable by a random walk. A technique for countering that bias is due to Henzinger et al. [5]. The bias induced by a random walk like this on a Web graph has also been studied by Boldi et al. [6].
2.2 Vertical sampling
This method involves delimiting previously a set of Web pages to be crawled, and then studying the obtained samples. This delimitation is typically done by considering a restriction on the domain name of the hosts crawled. This can be done either by considering only a large first-level do- main (such as brown.edu [7], nd.edu [8], etc.), or by taking the web domain of a country [9, 10, 11], this is the set of pages under a common country-code top-level domain.
2.3 Characterizing the Web Using Sampling Methods
Characterizing the Web Using Sampling Methods (CWUSM) project [2] is done by Ed O’Neill Brian Lavoie. The purpose of CWUSM is to find out the content of the Web and the evolution of it. It identifies and collect random sample of Web sites in the IP address distribution and using Polychrest Harvester to analyze URI references in HTML markup to determine object type and extent. The main element they focus on is <A>
<FRAME> <INPUT> <BODY> and so on. They use de-duping trees to find out the IP addresses and domain name mapping. These de-duping trees are also used as an Intra-Sample Duplicate Detection. In total CWUSM sampled 4,294,967 IP addresses and there are 3,649 Sampled Unique websites. The growing of the websites is one million website each year. Three types of the websites are founded: provisional website (1 million), private website (400,000) and public website (2.2 million).
2.4 Framework for Mining Web Content Outliers
The Framework for Mining Web Content Outliers (FMWCO) project [3] has four major components: resource extraction, preprocessing, web content outlier detection, and outlier analysis. In the resource extraction part, the program will analyze the pages to eliminate text that are not enclosed in the desired HTML tags <TITLE> …… </TITLE>, <META> ……</META> and <BODY> ….. </BODY>. The next preprocessing step will continuously filter the text in the HTML code.
2.5 The New Approach
One common feature in the above methods is that they all sample the HTML source code, DOM structure, resource like image in the page or hyper links as data. None of them satisfy a real person’s perspective. People can immediately tell whether a page belongs to a search engine website or a portal website even if they cannot see the text clearly. The novelty of this research is to simulate this procedure and take the whole Web page as an image.

3. PROJECT DESCRIPTION
The following will describe the main procedure of the project and some critical steps.
3.1 Whole Process

The whole process of this project can be divided into six parts. See Graph 1 below:

[image: image1.emf]Random IP

Detection

Info & PageprintGenerate Table

ClusteringAnalysisVisualization

123

5

6

4

Graph 1: whole process
1. Random IP Detection – uniform random IP address detection and record real web server IP addresses
2. Info and Pageprint – HTML source code download, Web page content extraction and takes snapshots for Web pages
3. Feature Table Generation -- feature table generation with all the html extraction features and snapshot image features
4. Clustering analysis – classify the feature table with data mining software (SPSS, WEKA, R or Matlab)

5. Analysis – general analysis methods like domains name of URLs
6. Visualization – the Google Map API in used to generate geographical visualization for feature table and clusters
3.2 Random IP Detection
The graph below shows the general steps of the Random IP Detection section.

[image: image2.emf]DURRIP

1

GenURLlist

DURRIP_1

DURRIP_2

DURRIP_X

GenIPv4

URLlist

CDT

Country256Server256

.

.

.

1.1

Graph 2: Random IP Detection
“DURRIP” stands for Uniform Random IP address detection function. It will generate N random IP addresses and detect the status of the IP address. All the DURRIP_X files in the dashed rectangle are examples that are generated by the DURRIP function. The Red, Green and Blue circle means this program can run in parallel or more at the same time. To save some time, we make 10 or more DURRIP functions to in parallel.
The basic procedures of the DURRIP function:

1. initial country information (country index, country name, country abbreviation)
2. get a random IP address

3. check if it is assigned to a country

4. if it is allocated to a country, detect it
5. continue from step 2
6. save the result to a DURRIP_X file
Before the detect function (step 4), first the IP address will be checked whether it belongs to a country or not (step 3). If it is not, then there is no country index and country name for it and the detected result will be marked “not in a country”. The process will not go to detect function but continues with the next IP address.

[image: image3.emf]1.1

Random IP

Generator

IP address

Detect

function

Not in a country

Network Error

Socket Error

Success

Graph 3: DURRIP
The crucial part in this section is the Detect function. Here is the checking step:
1. check if the network is working, if not return NETWORK ERROR
2. open a TCP socket, if error then return SOCKET ERROR
3. close the socket and create a stream connection, try to use GET method to retrieve data, if connection time out, then return GET ERROR
4. if the program get the response, parse the response and return it

The return from step 4 could be any HTML status code, like 2xx, which means successful (200 OK), 3xx means redirection (302 Found), 4xx means client error (401 Unauthorized), 5xx means server error (501 Not Implemented).
After we get the DURRIP_X files, we can use the GenURLlist function to extract all the successful IP addresses to the URLlist file. Otherwise we can use the GenIPv4 function to hash all the IP addresses that have a country index into Country Detail Table, Server256 file and Country256 file. The Country Detail Table shows how many IP addresses are web servers, normal addresses or error addresses in each country. This is useful for the visualization section. Server256 file shows the web server number in the /8 CIDR (Classless Inter-Domain Routing) distribution. Country256 shows the country number in the /8 CIDR distribution.
3.3 Info and Pageprint Process
The main process starts from the first URL list file which will be loaded together with the profile, the URL record file (including all URLs that have been processed before and the failure URL list). When the central dispatcher receives the URL list file, it will start parallel process for the Page Download & Info Extraction branch and the Pageprint branch. See Graph 3.

[image: image4.emf]Signal

N

e

w

U

R

L

L

i

s

t

Parallel

Page Download

& Info Extract

Pageprint

URL List

HTML/INFO

IMAGE/LOG

Report/Stdout

URL record

LOG/SIGNAL

R

e

a

d

U

R

L

Profile

Central

Dispatcher

A

p

p

e

n

d

2

2.1

2.2

Graph 4: Info and Pageprint Process
In the first branch (Page Download & Info Extract), the program will download the HTML codes of URLs from the input URL list file. Then the HTML code will be parsed for important HTML tags and save into an “info” file. When it reaches the end of the URL list file, a log file, a signal file and the next URL list are created for the next iteration. The user can decide to append the processed URL to the “list_all” list file (it contains all the URL that have been processed) and a failure URL list file that record all the unsuccessful URLs.

The second branch will wait for the first branch till it successfully creates the HTML and info files, or a signal file that shows the end of this round (the files in the dashed rectangle). Then it will take a snapshot of the page and save it as a jpg file. A log file is used to record the snapshot status.
These two branches are synchronized. Page Download & Info Extract branch has to run first and then the Pageprint branch runs afterwards. The second branch will wait for a certain time if the first branch is slow. However, the first branch is two or three times faster than the second one and such situation rarely happens.
The “pageID” is used to keep the consistence between the two branches. For example, page4.html and page4.info should consist with page4.jpg and they should come from the same URL.
A report file will be created at the end to record the test place and test machine, page ID start and end number, total test number, success number and failure number, start time and end time, the process time and estimated time for 1000 data.
Another file (called Stdout) will record whatever the program print to the screen. This file records every small step in the process and it is very useful for debugging and analyzing errors.

Now we will introduce these two branches in detail.

3.3.1 Page Download & Info Extract branch
Page Download & Info Extract branch includes two steps. The first step in the big dashed rectangle is an iteration that download HTML file and generate Info file. The second step is in the small dashed rectangle which can be separated into four sub-processes: Generate Next URL list, create signal file, create log file, append the present URL to URL record.
The program will first load the URL record files into global arrays. This is used for URL redundancy checking in later process. The program will also load the parameters from “Profile” file to decide whether to load URL record, whether to Generate Next URL list and so on. The first URL list is given to the program as a start point. Usually the first URL list will be checked to find any redundant URLs inside the list or in the global arrays. Redundant URLs will be removed and the first URL list will be rewritten.

[image: image5.emf]N

e

x

t

U

R

L

After

Loop

Loop

R

e

a

d

a

U

R

L

Read URL

List file

GNUL

Info

Extract

First

URL

List

Download

HTML

HTML/INFO

Generate

Log

Next URL

list

URLSink

SignalSignal/Log

Profile

Append to

URL record

Append

URL

Record

2.1

2.1.1

2.1.2

Graph 5: Info Process
3.3.1.1 Page Download & Info Extraction
In the iteration among the three yellow balls, the tasks can be list in the following:

1. First read a URL from a line from the First URL list file and put it into a buffer.

2. Verify and correct the URL by trimming and checking the scheme, path, query of the URL. If the URL is an IP address, the program will mark it and treat it in a special way.
3. A socket will be created based on the URL. If it succeeds then bind the resource to a stream. The next step is to read the content from the stream and save it to a HTML file.
4. Both at socket opening phase and stream downloading phase, a timeout function is used. The socket opening timeout function is used for detecting the delay in creating socket phase. Another timeout function is used during the streaming process.

5. The parser will explode the HTML code into different nodes with attributes. For example, “link” will be parsed and get node ‘a’ with the attribute: ‘href’, whose content is ‘http://www.example.com’.
6. The HTML code will be split into many pieces and the program picks the important tags. These tags includes page title, page meta, internal/external link number, table number, image number and attributes and so on. Besides that, URL, HTML length, loading time and the country index will also be added to the info file.
7. After the iteration, four files will be created. A log file will be generated indicating the URLs that have been downloaded, the identification of the URL and the status of the download (success or error).

8. A signal file with no contents will be created to tell the Pageprint branch to start.

9. An URLSink file will record all the URL links that are extracted from the previous crawling. These URL links are external links of the Web pages.
10. The processed URLs will be appended to the URL record files. The successful one will be appended to the URL list_all file. The error URL will be appended to URL failure file with page ID and URL.

11. Last but not least, the new URL list file will be created by the GNUL
 program. GNUL will randomly pick the same amount of URLs from the link sink as the previous URL list file. The URLs that picked require being unique.
The iteration ends when it reaches the end of the URL list file and starts again from the new URL list file.
3.3.1.2 URL redundancy reduction
One big issue here is the URL redundancy. The goal of the program is to get as much Web pages in different Websites as possible. However, internal links from a Web page are direct to the website’s other pages, not to other Websites. Recursive URL link may happen in this situation and we need to jump out of this big circle. What we want is to visit pages from one website to another, not walking around inside a website. It is not only the duty of GNUL; it also includes other parts of the program. In Graph 4, we list four main parts of the program to prevent the redundant URL.

[image: image6.emf]Check Rand

Num

Check URLG

locally

Check URLG

globally

GNUL

Check URLG with

present URL

New URL

Check URLG

locally

Save URLG to

global Array

Present URL

Load old

URLG to global

Array

Check URL list

Old URL

2.1.1

Graph 6: generate next URL list
1. In Old URL stage, the previous URL’s host name and IP address will be loaded from a URL record file. This file is used to record all the URLs and their URLG (UHL2 and UH/IP). The program will check every new URL to compare with the URLs in the URL record file. These two steps are used to prevent loading the same URL that loaded before.

2. In Present URL stage, if a new URL is read successfully with HTML code and then extracted to info file, the URL will be saved into a UHL2
 global array. Also the URL’s host will be saved into a UH/IP
 global array. These two global arrays plays an essential role in reducing redundancy procedure as they can be used remember all the URLs that have been picked.

3. During the HTML parsing step, hyperlinks are specially treated. When the parser encounters a link, it will be put into originallinkSink (an array that save original links without any modification) directly. But it needs to be checked with correctness and redundancy before putting it into another array called linkSinkforMerge.

4. Finally in the GNUL stage, three verification steps are taken. As the URLs are randomly picked up from the URL list, we need to be sure that no repetitive URLs are chosen. Then the UH/IP and UHL2 of the current selected URL should not appears in the URLs that already have been selected. Next verification is to avoid the same UH/IP and UHL2 of current selected URL with UH/IP and UHL2 global arrays.
Through out these three steps, we consider URLG (URL group) as three characters of an URL:
1. UH: URL Host name. In a website, all the pages share the same URL host name. So if we distinguish them, we can avoid find the same page within one website.
2. IP address: the reason for this is the same as UH.
3. UHL2: URL Host of Last two names/domain name. This character is more restrict than UH. Some Websites have UH like: “www.theme1.xxx.com” and “www. theme2.xxx.com”. If we do not want to surf that website again, we need to find the last two names of the URL host.
3.3.1.3 GNUL speed and boundary

As the GNUL process may require a lot time to retrieve and compare data in many arrays, the speed is an important issue. Let us first take a look at the steps in the GNUL process.

[image: image7.emf]Load URL

Sink/RQNum

Write to file

Compare

Gen RandNum

Check RedNum

Check Boundary

Check Sink

Check URL

Check UHL2

Check UH/IP

Save to Arr

A

2.1.2

B

C

Graph 7: GNUL process
Totally there are three steps. Step A will load the URL Sink Array from the Info and Pageprint Extraction branch and get the desired number of URL (Required Number) to generate. If the RQNum is bigger than the real size of the URL Sink, then the parameter will be reset to the small one.
In the step B, a new random number (RedNum) will be checked if it appears before. If it appears before then get the next random number and starts again. If it does not appear before, we need to check if all the numbers in the array have been taken (Check Boundary), if it is true, go to step C. Otherwise go on with check Sink step. Check Sink step will find whether the URL with the random number as its index in the URL Sink exists or not. When we get the URL form the Sink, we need to verify that it is a good URL.
Only a good URL is not enough, Check UHL2 and UH/IP are used to check the redundancy of the URLs. These two sub steps will make sure that the URL is not the same as any of the previous URLs.

Finally in step C we record all the successful URLs and write them into a new URL list file.
3.3.1.4 Robots Exclusion

In this section we present a web crawler, and we obey the robots exclusion standard. Two steps are taken to follow the Robots Exclusion Protocol:
1. A Checkrobot function in billy_html_DAI file to check the robots.txt file in website. This function will first try to open the robots.txt file with the URL like: www.sample.com/robots.txt. If it exists, then read the Disallow properties and match the present URL with the Disallow properties. If there is something similar between the two, then return true. Otherwise return false.
2. A checkrobots function in billy_htmlparser.inc file to check the HTML meta tags for robots. This function will match the meta tags in HTML with attribute is name and the value is robots, also the attribute is content and the value is noindex or nofollow.
3.3.2 Pageprint Process
Below is the basic Pageprint process graph. We will first describe the iteration, then the pageprint_PHP function, lastly the three subsequent functions.

[image: image8.emf]2.2

CheckPagePrint

WriteReport

KillXvfb

Check

InfoStart

Exe URL

Check

Next

URLFile

2.2.1

Graph 8: Pageprint process
3.3.2.1 The iteration
The iteration will check every possible URL pages by three steps:
1. Check InfoStart function will detect the signal file generated from Download and Info Extraction branch. The function will wait for no more than a thousand seconds.

2. Check Next URL file function is used to detect whether when to take the snapshot for a URL. See more in the appendix.
3. The Exe URL function will get the real URL from the info file and pass the URL to a function: pageprint_PHP.
3.3.2.2 Pageprint_PHP function

In pageprint_PHP function, first we will detect which Pageprint-bin is free. When it finds a free Pageprint-bin, then set the Xvfb channel and screen number with the free real Pageprint-bin program. A clear graph is shown below.

[image: image9.emf]2.2.1

Checking

Pageprint-bin

Pageprint-bin1

Pageprint-bin2

Pageprint-binN

.

.

.

Setting

Pageprint-bin X

Setting

Channel Y

Start X,Y

2.2.1.1

Graph 9: pageprint_PHP function
Real Pageprint-bin program has complicated functions inside.

[image: image10.emf]Take snapshot

Write log file

image file

Log file

Read URL

Initial GTK

enviornment

Open URL with

Mozilla

2.2.1.1

Wait for browser

response

Response

back/TIMEOUT

Graph 10: Pageprint-bin
The main structure can be seen from above and the description is the following:

1. Read the URL as input and save it to a buffer.

2. Initialize the GTK environment, X server, Mozilla browser.
3. Open the URL link in the Mozilla browser.

4. Set the timeout function to detect the loading status

5. Waiting for the call back message. If the loading takes too much time then stop loading and go to the next step.

6. Take a snapshot from the browser content and generate the JPEG file.

7. Write the whole process into a log file

Finally an image file and a log file will be generated if the process is successful.

3.3.2.3 Three subsequent functions

After the iteration, three subsequent functions will be called:

1. Check pageprint-bin status function is used to find out if there is still some Pageprint-bin are running

2. If there is no Pageprint-bin running and no download and info extraction branch running, write result to report function will write the result of the whole program like successful URL numbers, failed numbers, total number, the running time, average running time for 1000 URL to a report file.

3. Lastly, Kill the Xvfb function is used to kill all the Xvfb process that have been created at the beginning of the program.

3.3.2.4 Parallel running

Many tests have shown that parallel Pageprint program within same channel will result in overlapping in images. The image will become a combination of small fragments. However, the program can run perfectly if they are assigned to different channels. This method largely increases the speed of the processing time.
Because of this new parallel feature, we can run two programs at the same time. The only requirement for this is to set the start number of the Pageprint bin file. If the previous program’s start Pageprint bin number is 0 and the branch number is five, then we can set a new program for setting Pageprint bin 5 as start. In this way we can run two or even more programs spontaneously.
3.4 Generate Table process
Generate Table process filter the result from Info and Pageprint process and gather the data into a big feature table. When all the HTML files, info files and image files have been gathered around, there might be some error in these data. For example, the HTML file maybe empty and the info file may contain error texts. More over, the image file maybe crushed or damaged. In order to provide the correct data for the following experiment, we need to filter the data first.

[image: image11.emf]Check

INFOFile

Check

IMG File

ReadInfoFile

ReadPagePrintFile

Feature

Table

Check

HTMLFile

ReadHSV

SplitRGBBlock

3

AB

3.1

3.2

Raw data

HTML

INFO

IMG

Graph 11: generate table process
Starting from the fist pageID X, the HTML file: “pageX.html”, the info file: “pageX.info” and the “ppX.jpg” file will be checked if these three file exists and not empty, which is shown in the right dashed rectangle (step A).
3.4.1 Read Info file

In the middle dashed rectangle (step B), the first “ReadInfoFile” function reads the first line of the pageX.info file with all the feature data and puts them info the result table. The title and Meta of the page are added with double quote to identify them as texts.

[image: image12.emf]3.1

pageID

URL

IP address

Html length

load time

Title

link

Form

Applet

Table

…

Img

1

http://nl2.php.net/implode

194.109.193.119

99073

4.515274

PHP: implode –Manual

171

2

3

12

...

10

pageID

URL

IP address

Html length

load time

Title

link

Form

Applet

Table

…

Img

1

http://nl2.php.net/implode

194.109.193.119

99073

4.515274

PHP: implode –Manual

171

2

3

12

...

10

Graph 12: read info file
3.4.2 Read Pageprint file

In above, ReadInfofile function read the text feature of a Web page, now we will generate image feature in 3.4.2 and 3.4.3 section. These two sections are just a beginning of analyzing the image feature from the snapshot Web page. We believe there will be more methods to study the image in the future.

The “ReadPageprintFile” function reads the snapshoot JPEG image and uses OpenCV package to generate histogram for the image. First the function will transfer the RGB image into gray image and calculate the histogram for the gray image. Then it will put down all 256 values of the histogram. Some special value will follow like the maximum value, minimum value, mean value of the histogram and so on. Finally, histogram will be split into 8 parts evenly and the average value of each part is also added.

[image: image13.emf]3.2

Hist 0-7

Max, Index

Min, Index

Hist 0-255

Mid point

Mean

Std-dev

Graph 13: ReadPageprintFile function
Later the “ReadHSV” function uses OpenCV APIs to split the image into Hue, Saturation and Value channel. Then we calculate these three channels’ histogram. According to the histogram we can get a group of values in the histogram of each channel to the feature table.

3.4.3 Split RGB Block from a Web page
The “SplitRGBBlock” function is very interesting. It split the original image into MxN grids and analyzes them as new images. For each grid we will can ReadHistogram function to handle it.

[image: image14.emf]3.3

Graph 14: SplitRGBBlock function
ReadHistogram function is like a simple version of ReadPagePrintFile function. It will convert the RGB image into a gray image and calculate the histogram for it. From the histogram it will get the maximum value, maximum index, minimum value, minimum index, mean value, standard deviation and middle point index.
After step A and B, a correct page has 350 feature elements and it will be put as a new line in the feature table. The iteration continues until it reaches the end of the required number.
The number of the features of a page can be extended easily according to image analysis theory. For example, we can detect the texture of the page, or the skeleton of the page.
3.5 Clustering
Clustering is a way to separate a large set of data into groups. There are many algorithms to cluster a data set, for example, the most basic two methods are hierarchal and partitional. Hierarchal method mainly based on previous clusters and can be subdivided into bottom-up and top-down algorithms. Partitional method does not base on previous clusters and on the contrary it decides the clustering once. K-means method is a typical partitional method which will be used in this program.

[image: image15.emf]Feature

Table

Cluster

Program

Category Table

4

Graph 15: Clustering Process
The input is a feature table generated from section 3.4 and the output is a category table. The category table is a combination of all the features and the cluster information. The critical part is the Cluster program, there are already many matured software such as SPSS, Matlab, WEKA or R. The one that we use here is SPSS. It has hierarchal analysis; k-means analysis and it own two-step clustering analysis methods. More details about the cluster procedure can be found in experiment section.
3.6 Analysis process

The next process is the analysis process. The basic idea is shown below as below.

[image: image16.emf]Feature table

Analyze URL

5

Category table

GMap

Image

Seperation

Others

Raw data

HTML

INFO

IMG

Graph 16: Analysis process
After we have our raw data: raw data repository, feature table and category table, we can do all kinds of analysis. The feature table can create analysis based on county index, while category table can create analysis based on cluster index.
The first example is that we can analyze the Top-level domains of the URLs in each country or cluster. The result will be like there are 40 URLs with “.com” Top-level domains in the category A and only 10 URLs with “.org” domain name. The program will automatically find all the Top-level domains of the URLs in each category including generic top-level domains and country code top-level domain. This Analysis helps to find out the URL composition of each category and thus know better about the category.
Further more, we can vividly map the features in the table to Google Map with different Icons and web page contents. For instance, we can calculate the maximum, minimum, average number of loading page time within each country. Then we can make different icons with these figures and generate KML, HTML files automatically. Put these Google Map pages to a web server path and you can clearly see the geographical distribution of the loading time in each country.
Another process is to separate the image data into different folders with each category a folder. This is because sometimes we want to check the image in different category to find out the common characteristic or to see if they are consist with the expectation. If the raw image data is too much, the function allows user to pick a fixed number of image, or a percentage of all the data.

Other process is also possible. We can analyze the importance of each feature when clustering the data. Or we can do some data mining experiment like finding out the relation among them and the hidden clue inside.
3.7 Visualization
There are many ways to visualization the analysis result. Generally we can visualize the analysis result with geographical distribution (with country index) or multi dimension distribution (with cluster index).

3.7.1 The Google Map Implementation
Google Map process uses Google Map API to make geographical distribution for the Analysis Process. The Google Maps API can be used to embed Google Map widgets into Web pages.
In order to use the Google Map API, we need to have a HTML file, some icons and preferably some KML files. KML is a XML file used to display geographic data in an Earth browser, such as Google Earth, Google Maps, and Google Maps for mobile. The Icons are generated by using OpenCV libraries (open source computer vision library originally developed by Intel). GMap program can automatically create these three requirements from the source table.
3.7.2 GMap

The graph shown below demonstrates the basic procedures for GMap program. Three blue blocks on the left are the source tables: CDT: Country Detail Table; FT: Feature Table; CT: Cluster Table. In the middle, there are three functions (GIPv4, GFT, and GCT) which take the three tables on the left as input. GIPv4 means Generate Web page from Country Detail Table, GFT means Generate Web page from Feature Table and GCT means Generate Web page from Cluster Table.

[image: image17.emf]6

KML file

HTML file

ICONS

GIPv4

GFT

GCT

CDT

FT

CT

HTML Template

CNLatLng.dat

egeoxml.js

sorttable.js

6.1

6.3

6.2

IMG/TN

Graph 17: GMap Procedure
These functions also take other parameters like the yellow box on the top and bottom. HTML template files are used to generate HTML pages and CNLatLng.dat file contains country’s latitude and longitude information.
The right dashed rectangle contains all the output: HTML files, KML files and icons, which grouped into a whole.
The green boxes in the right are two important Javascript files: sorttable.js and egeoxml.js. Sorttable.js makes the country list table sort able. Egoxml.js has many features. First it is used to overcome the restriction from the Google Map API that the number of KML Placemark can not be more than 40. Egoxml.js can also create a list table from the input KML file and create listener to trigger the info window.
3.7.3 Generate Web page from Country Detail Table
The first method is to generate Web page from CDT by using GIPv4 function. See the graph below.

[image: image18.emf]6.1

generate icon

generate kml

generate html

CDT

KML file

HTML file

ICONS

Loop

outputArr

Read from

IPv4 result

file

CNLatLng.dat

HTML Template

Tag

URL

Graph 18: GIPv4 function
First iteration will read the Country Detail Table and find out the maximum value. It will load the tag name for file naming; URL for the real web server’s URL. Then generate icon part will execute the Icon-bin and generate icons for each country.

After the program loads the CNLatLng.dat file as country location array, it will generate KML file.

The final thing is to generate the HTML page. Inside the HTML template, there will be some part that needs to be replaced dynamically. The most difficult one is to create a sort able country list table on the left. The list can be clicked to show the info window for each country on the Google map.
3.7.4 Generate Web page from Feature Table
The GFT function has four sub functions in it.
1. GenfromIPTable_SingleFeature (GSF), which means generating Web page from Feature Table with only one feature.
2. GenfromIPTable_SingleFeatureBlock (GB), which means generating Web page from Feature Table and block type.
3. GenfromIPTable_SingleFeatureImgText (GIT), which means generating Web page from Feature Table and special in image and text detection.
4. GenfromIPTable_ALLFeature (GAF), which means generating Web page from Feature Table with all the features it has.

[image: image19.emf]6.2

FT

GArr

GAF

GSF

GB

GIT

IP2GMapArrB

IP2GMapArr

IP2GMapArrIT

CI Array

CNLatLng.dat

HTML Template

Tag

IPS

URL

6.2.1

6.2.2

6.2.3

6.2.4

Graph 19: GFT
Input parameters: FT means Feature Table, Tag means tag name (used for icon folder name), IPS means IP Source folder path (used for thumbnail image), and URL means real web server’s URL (used for icon style hyper reference). Also we need CNLatLng.dat file as country location array, HTML Template for generating HTML page.
Except GenfromIPTable_ALLFeature (GAF) sub function, other three sub functions all need to pass Country Info Array (CI Array) to GenfromIPTableArr_SingleFeature (GArr) function. IP2GMapArr IP2GMapB, IP2GMapIT functions are used to generate Country Info Array.

3.7.4.1 Generate Single Feature function

Generate Single Feature function (GSF) sub function use IP2GMapArr (6.2.1) function, which is shown below.

[image: image20.emf]6.2.1

search Find

CI Array

Loop from

FT

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

Loop from CI

Array

CI Array[Cind][4]

FindSample

CI Array[Cind][5]

Check Find

Check Cind

Graph 20: IP2GMapArr function
In the first line of graph 6.2.1, the IP2GMapArr will search for the Field index (Find, the feature that you want to analyze) and Country index (Cind) in the Feature Table head. An iteration will read each item from the Feature Table and check if they are real numeric.
CountrySample (CS array) will record the field value, page id and it’s URL as a small array indexing by the country id. A country may contain many CS arrays.

In the second iteration, we will first calculate the average field value of a country. The FindSample function is used to find the closest sample of the field value in a country array. For example, if the field value is 1003, and there is some items’ values are 999, 1002, 1006. Then the FindSample function will first calculate the delta value between real value and the average value, so the delta value for the example above are 4, 1, 3. By sorting these delta values, we can find which are closest to the average value. Then we pick the first four values.
3.7.4.2 Generate Block function
GB function use IP2GMapArrB function to get the CI array. As an important input to the IP2GMapArrB function, the block info is necessary to specify before. The block info means the block indexes that you want to detect whether they are white or not. The block index looks like this:
	1
	2
	3

	4
	5
	6

	7
	8
	9

[image: image50.emf]var001

var004

var007

var010

var013

var016

var019

var022

var025

var028

var031

var034

var037

var040

var043

var046

var049

var052

var055

var058

var061

var064

var067

var070

var073

var076

var079

var082

var085

var088

var091

var094

var097

var100

var103

var106

var109

var112

var115

var118

var121

var124

var127

Category

330.00

340.00

350.00

360.00

370.00

380.00

390.00

400.00

410.00

420.00

430.00

440.00

450.00

Value

var001var004var007var010var013var016var019var022var025var028var031var034var037var040var043var046var049var052var055var058var061var064var067var070var073var076var079var082var085var088var091var094var097var100var103var106var109var112var115var118var121var124var127

Category

330.00

340.00

350.00

360.00

370.00

380.00

390.00

400.00

410.00

420.00

430.00

440.00

450.00

Value

These blocks will map to a Web page and if you specify the block info like this: A(1,0,1,1,0,1,1,0,1), then the block you are going to detect is the following, the same goes for: B(0,0,0,0,0,0,1,1,1):and C(1,1,1,1,0,0,1,0,0):

In this way we can detect the style of the web page in different countries. Many blog websites use blockA layout and some company website use more blockC layout.

[image: image21.emf]6.2.2

search Find

CI Array

Loop from

FT

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

Loop from CI

Array

CI Array[Cind][4]

FindSample

CI Array[Cind][5]

Check Find

Check Cind

createFname

Graph 21: IP2GMapArrB function

The procedure is almost the same as 6.2.1 and there are three major changes. The first change is to create Field name (Fname). It means to create field name like “"block:1-0 mean” automatically according to the block info. Then in the Add CI Array [Cind] part, $countryinfo[$countryind][0] will plus one as long as the field value and country id are real numeric, but the $countryinfo[$countryind][1] till countrySample[$countryind] will only be added when all the required block value is 255 (they are all white).
	255
	X
	255

	255
	X
	255

	255
	X
	255

As the percentage of blank block page is very small, in the second iteration, the CI Array[Cind][4] will be the average value multiple by 10000.
3.7.4.3 Generate Image and Text Detection function
GIT function use IP2GMapArrIT function to get Country Info array. Compare with 6.2.1, IP2GMapArrIT function will create automatically hist8_0 till hist8_7 as feature names.

[image: image22.emf]6.2.3

search Find

CI Array

Loop from

FT

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

Loop from CI

Array

CI Array[Cind][4]

FindSample

CI Array[Cind][5]

Check Find

Check Cind

createFname

Graph 22: GIT function

 Another change is the $countryinfo[$countryind][1], the value for this is the image and text detection index, which is the sum of hist8_1 till hist8_6:
	Hist
	hist8_0
	hist8_1
	hist8_2
	hist8_3
	hist8_4
	hist8_5
	hist8_6
	hist8_7

	Value
	X
	S1
	S2
	S3
	S4
	S5
	S6
	Y

The image and text detection index is: S1+S2+S3+S4+S5+S6. See more in the Appendix.
3.7.4.4 Gen from IPTable Array function

After three functions (GSF, GB, and GIT) get the Country Info array, the next function they need to use is GenfromIPTableArr_SingleFeature (Garr). This is a very important function that generates the real Web page suite.

[image: image23.emf]6.2.4

IconGenerator

generate kml

generate html

CI Arr

KML file

HTML file

ICONS

CNLatLng.dat

HTML Template

Loop from CI

Array

output Arr

Sample Arr

Find max

set

CV

copy image

create thumbnail

Thumbnail

images

Graph 25: GenfromIPTableArr_SingleFeature function
In the graph above, the Garr function read Country Info array and save every item to output Array. All the images that have been picked up for sampling will be saved to a sample array. The maximum of the value will be used for the Icon generator. The second step is to set the Color Value (CV), which will be used to generate different style of icons and different KML files. According to the color value and maximum value, IconGenerator will create icons for each country. Copy image step is to copy all the items in the sample array from the IP test source folder. Create thumbnail will generate thumbnail images for the copy image. The last two are similar to 3.6.1.
3.7.5 Generate All Features function

The GenfromIPTable_ALLFeature function is similar to the combination of IP2GMapArr and GenfromIPTableArr. The program will first find all the features in the Feature Table head and then generate the Web page suite one by one.
3.7.6 Generate Web page from Cluster Table
Using GCT function we can generate an interface that let user to see one cluster distribution, multiple clusters distribution overlapping or all of them. See graph below.

[image: image24.emf]6.3

IPClusterTable2GMapTableArr

GenfromGMapClusterTableWithSize

CT

6.3.1

6.3.2

Graph 26: GCT function
3.7.6.1 ClusterTable to GMap Table Array
In this graph, the program will search for Cluster index (Cluind) and Country index (Cind) first. Later in the iteration that read each item from Cluster Table, data checking will check whether the value that point to Cluind and Cind are numeric and positive. If it is true, Cluster Info array will plus plus: $clusterinfo[$value][$countryind]++ as the index are the cluster id and sub index as country index. The result will be the Cluster info array for the next step.

[image: image25.emf]6.3.1

search Cluind

CluI

Array

Loop from

CT

search Cind

Add CluI

Array[Cluind][Cind]

Check Cluind

Check Cind

Graph 27: IPClusterTable2GMapTableArr
3.7.6.2 GenfromGMapClusterTableWithSize
The program will calculate the number of cluster (N) and divide the hue space evenly and assign to each cluster with a color. See Graph below.

[image: image26.emf]generate icon

generate kml

generate html

KML file

HTML file

ICONS

CNLatLng.dat

HTML Template

6.3.2

Set color array

CluI

Array

Graph 28: GenfromGMapClusterTableWithSize
In the generate icon part, there will be 2 iterations, the first iteration track the cluster number and the second iteration track the country index (M). The generate KML step has the same situation and will generate NxM KML files. The last part will create HTML file that coordinate with a Javascript code. This code can dynamically shows the country list of certain cluster when user click them.
4. RANDOMNESS EXPERIMENT
In this experiment we will analysis the mt_rand function in PHP. Mt_rand means Mersenne Twister rand function, which is also called Mersenne twister GFSR (generalized feedback shift registers). See appendix for more details.
As there is no truly random generator (if you put the same seed into the generator; it will come out the same output value). We need to test how randomize our program needs and is the mt_rand function fulfilling the needs.
We take 100 times iteration to test the randomness, in each round; we call the mt_rand function 10,000 times for a random number between 0 and 255.
4.1 Result of randomness experiment

Later we hash these numbers in to a 256 array. So the ideal number for each variable in the array should be 10,000/256 = 39.0625. In this way, we can have a curve with x-axis for 0 till 255 and y-axis for number to describe iteration. Like the one below:
[image: image27.emf]runNum0

300

320

340

360

380

400

420

440

460

480

500

15913172125293337414549535761656973778185899397101105109113117121125129133137141145149153157161165169173177181185189193197201205209213217221225229233237241245249253

runNum0

Graph 31: randomness experiment
If we combine all 100 curves for 100 iteration test together, we can make the statistic on them. The following two graphs are generated by SPSS. Totally there are 256 categories and each category have 100 data. The boxplot show the mean, maximum, minimum and the standard deviation.

[image: image28]
4.2 Conclusion

The result seems quite good, as you can see from the mean value is very close to 390 and the standard deviation is quite reasonable.

5. RANDOM IP DETECTION EXPERIMENTS
In this experiment section we will show two experiments we did with uniform random IP detection. Then we will give the conclusions.

5.1 First random IP detection Experiment

In the first experiment, we detect 1,248,200 uniform random IP addresses with 20 DURRIP functions (each detect 62,409 IP addresses) at the same time. The total time cost is 6.07 hours and on average 1000 data cost 5.84 minutes for single DURRIP function to detect. See the table below:

	DURRIP num
	IP address num
	Total number
	Time cost
	Avg 1000 time cost

	20
	62,409
	1,248,200
	6.07 h
	5.84 min

Table 1: First Random IP detection experiment - status
5.2 Results of First random IP detection Experiment

5.2.1 Country detection

Within these 1,248,200 IP addresses, there are 857,323 IP addresses that have been assigned to a country, takes around 68.7% of all. The rest 390,877 does not assigned to a country yet (31.3%).

	Total number
	IP add has a country
	percentage
	IP add no country
	percentage

	1,248,200
	857,323
	68.7%
	390,877
	31.3%

Table 2: First Random IP detection experiment – country detection
5.2.2 Country detection map to /8 blocks

According to the file ipv4-address-space3-country.dat, we can use Excel to generate the following distribution map. The x axis is the IP /8 blocks range from 0 to 255. The y axis means the number of IP addresses that have been assigned to a country. You can compare this result with the section in IP ADDRESS DISTRIBUTION. They are almost the same although the last part of the graph (from 222 till 255) has opposite results.

[image: image29.emf]0

1000

2000

3000

4000

5000

6000

115294357718599113127141155169183197211225239253

Graph 32: Country detection map to /8 blocks
5.2.3 Country distribution

If we map all the IP addresses that have been assigned to a country to their country index, we can get a comparison among those countries with the number of IP address in them. This information is kept in ipv4-address-space3-countryDetail.dat file. See the top 10 countries as the table below:

	Country
	Value
	Percentage

	United States
	526575
	61.22616

	Japan
	44701
	5.197495

	Australia
	36200
	4.209063

	China
	30500
	3.54631

	United Kingdom
	29232
	3.398876

	Germany
	26094
	3.034013

	France
	19797
	2.301846

	Canada
	18257
	2.122786

	Korea
	15848
	1.842686

	Netherlands
	11767
	1.368178

Table 3: First Random IP detection experiment - country distribution
The most obvious thing is that United States takes over 60% of all the IP addresses that have been detected. Most of the countries in the table are developed countries.
5.2.4 Server detection

According to urllist1 file, within the 857,323 IP addresses that assigned to a country, there are only 2722 IP addresses that are servers, which is only 0.22 percent of total IP address.

	Total number
	IP add has a country
	percentage
	Server num
	percentage

	1,248,200
	857,323
	68.7%
	2722
	0.22%

Table 4: First Random IP detection experiment – server detection
5.2.5 Server detection map to /8 blocks

According to the file ipv4-address-space3-server.dat, we can use Excel to generate the following distribution map. The x axis and y axis are similar to 5.1.3 and you can compare this graph with the one in the section IP ADDRESS DISTRIBUTION. They are similar although the peaks are higher than other graph.
[image: image30.emf]0

50

100

150

200

250

115294357718599113127141155169183197211225239253

Graph 33: Server detection map to /8 blocks

5.3 Second random IP detection Experiment
In the second experiment, we try 10,000,000 random IP addresses with 20 DURRIP functions (each detect 500,000 IP addresses) running at the same time. The total time is 2.05 days, 49.22 hours and on average 1000 data cost 5.91 minutes for single DURRIP function to detect. See the table below:
	DURRIP num
	IP address num
	Total number
	Time cost
	Avg 1000 time cost

	20
	500,000
	10,000,000
	49.22 h
	5.91 min

Table 5: Second Random IP detection experiment – status
5.4 Results of Second random IP detection Experiment

5.4.1 Country detection

Within these 10,000,000 IP addresses, there are 6,881,935 IP addresses that have been assigned to a country, takes around 68.8% of all. The rest 3,118,065 does not assigned to a country yet (31.2%).
	Total number
	IP add has a country
	percentage
	IP add no country
	percentage

	10,000,000
	6,881,935
	68.8%
	3,118,065
	31.2%

Table 6: Second Random IP detection experiment – server detection
5.4.2 Country detection map to /8 blocks
You can compare this result with the section in IP ADDRESS DISTRIBUTION. They are almost the same although the last part of the graph (from 222 till 255) has opposite results.
[image: image31.emf]0

5000

10000

15000

20000

25000

30000

35000

40000

45000

114274053667992105118131144157170183196209222235248

Graph 34: Country detection map to /8 blocks
5.4.3 Country distribution

See the top 10 countries as the table below:
	Country
	Value
	Percentage

	United States
	4214088
	61.23406

	Japan
	356873
	5.185649

	Australia
	290515
	4.221414

	China
	244840
	3.55772

	United Kingdom
	232897
	3.384179

	Germany
	207951
	3.021694

	France
	159722
	2.320888

	Canada
	147026
	2.136405

	Korea
	124432
	1.808096

	Netherlands
	93780
	1.362698

Table 7: Second Random IP detection experiment - country distribution
5.4.4 Server detection
According to urllist1 file, within the 6,881,935 IP addresses that assigned to a country, there are only 22,332 IP addresses that are servers, which is only 0.22 percent of total IP address.

	Total number
	IP add has a country
	percentage
	Server num
	percentage

	10,000,000
	6,881,935
	68.8%
	22,332
	0.22%

Table 8: Second Random IP detection experiment – country detect
5.4.5 Server detection map to /8 blocks

They are similar although the peaks are higher than other graph.
[image: image32.emf]0

200

400

600

800

1000

1200

1400

1600

1800

11325374961738597109121133145157169181193205217229241253

Graph 35: Server detection map to /8 blocks
5.4.6 CPU, RAM status

The CPU consumption is 0.1% for each DURRIP thread and the memory cost is less than 0.5% for each.
5.5 Conclusion of random IP detection Experiment
These two experiments have very similar results and we can summarize them into the following:
1. 68.7% of all the IP addresses have been allocated and 31.3% of them are not yet used.

2. Top 10 country list of IP address number is quite stable.

3. United States takes over 60% of all the IP addresses that have been detected.

4. Most of the countries in the table are developed countries.

5. Only 0.22% of all the IP addresses belong to HTTP host.

6. IP ADDRESS DISTRIBUTION EXPERIMENT
In the above experiment, we only dig a little bit about the IP address distribution. In this experiment, we will discover more about this topic.

6.1 IP Address Distribution Experiment
IPv4 address is a 32-bit number often expressed as 4 octets in "dotted decimal" notation (for example, 192.0.32.67). In IPv4 [10] there are in total 2 to the power of 32 numbers of different IP addresses (4294967296), or 256 number of /8 CIDR blocks (Classless Inter-Domain Routing, each /8 block contains 2 to the power of 24 (16777216) IP addresses). Until now only 70% of them are assigned or allocated and their distribution is complicated.
We use two kinds of database to detect allocated IP addresses. The first detection is based on a country folder with all the country IP blocks information in it. The second way of detection is the previous experiment.
6.2 Result of IP Address Distribution Experiment
The first filter layer is the IANA (Internet Assigned Numbers Authority) official report for IPv4 Address Space. From that space report we can find out that there are 65 /8 blocks that are reserved, 16 /8 blocks are used for multicast, 79 /8 blocks are given to RIR (regional Internet Registry), and others are for big companies and other organizations.

Secondly, within these /8 blocks that IANA allocate IP addresses to RIRs, many of them are not sub-allocate to certain country, which means there are some blocks that is not used and keep in RIRs.
The graph below shows IP address distribution from the IANA (in black line), country folder detection (in pink line), and sampling uniformed random IP addresses test2 till test4 (in yellow line, cyan line and purple line).
It is very clearly that all the country lines are within the region covered by the line of IANA. Also there are many gaps between the IANA line and the country lines, which show that many IP addresses are kept in RIR and not given to country yet. Compared country line of two detections, one can find that they have big difference in some areas. Detection method 2 finds more IP addresses than country folder method. In other regions, the two detection methods are more or less the same. The three test lines of detection method 2 appear similar in general.
[image: image33.emf]0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

17131925313743495561677379859197103109115121127133139145151157163169175181187193199205211217223229235241247253

IANAIP num from country folder

ip number that has a country number from random ip (test2)ip number that has a country number from random ip (test3)

ip number that has a country number from random ip (test4)

Graph 36: All IP address distribution
The IP addresses that given to the country may not be used all. It is common that an institute or a company only use part of the IP address block that they applied. Unfortunately, there is no way to detect the used IP addresses in a certain organization as it may interference the privacy and may lead to security problems. This is the third layer of filter.

Finally, the IP address that all have been used may not be used for web server. Many IP address are assigned for other purpose like mail server or database server. In addition, many IP addresses are given to PCs and laptops in a network or a wireless area. The way to detect web server IP address also use the sampling of 1000 uniformed random IP addresses.
The following graph shows four test results for server IP distribution. The fist one sampled 100 not uniformed random IP address within the country IP distribution. The result will be the percentages of web server multiplied with corresponding country IP numbers in that IP /8 block and it is shown in blue line. The following three test results (pink line, yellow line and cyan line) are by sampling 1000 uniform random IP addresses and picking the web server in. All of them look roughly the same there are still some places with big dissimilarity. Relatively, three test lines are more similar to each other than the not uninformed sampling.
[image: image34.emf]0

500000

1000000

1500000

2000000

Block006/8013/8020/8027/8034/8041/8048/8055/8062/8069/8076/8083/8090/8097/8104/8111/8118/8125/8132/8139/8146/8153/8160/8167/8174/8181/8188/8195/8202/8209/8216/8223/8230/8237/8244/8251/8

server num = (detect num(J)/100)* country filter (test1)server num = (detect num(L)/1000)* IANA (test2)

server num = (detect num(L)/1000)* IANA (test3)server num = (detect num(L)/1000)* IANA (test4)

Graph 37: HTTP host IP address distribution
Here is the graph that combined Graph 14 and 15 together to let users have a better overview of the IP address distribution. You can see that the server percentage is very small compared with the overall IP distribution.
[image: image35.emf]0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

16111621263136414651566166717681869196101106111116121126131136141146151156161166171176181186191196201206211216221226231236241246251256

IANAIP num from country folderserver num = (detect num(J)/100)* country filter (test1)

server num = (detect num(L)/1000)* IANA (test2)ip number that has a country number from random ip (test2)server num = (detect num(L)/1000)* IANA (test3)

ip number that has a country number from random ip (test3)server num = (detect num(L)/1000)* IANA (test4)ip number that has a country number from random ip (test4)

Graph 38: Combined IP address distribution
Here is another graph shows the relation of the filter layer discussed above.

[image: image36]
The small blue rectangle means sampled IP addresses.
7. INFO AND PAGEPRINT EXPERIMENTS
7.1 First Info and Pageprint experiment

The first experiment has five tests round. Each test round handled around 2000 Web pages. So in total we expect 10,000 Web pages to be crawled.

7.2 Results of First Info and Pageprint experiment

There are 10119 URLs that have been tried to capture. 9122 URLs has been successfully downloaded and generated images and 997 URLs are error URLs that are not reachable. Within these 9122 URLs, 6561 of them are distinguishing URLs and 2647 of them have the same URL address with others. Moreover, there are 3554 URL data share the same host name with others and 5654 URLs has distinguish URL hosts. The average time cost is 3.5 hours for handling 1,000 URLs and totally it takes almost two days to finish (there is some break between every experiment).
	Test Number
	URL Range
	URL Number
	Time (hour)

	1
	0-1999
	2000
	8

	2
	2000-4999
	3000
	13

	3
	5000-7669
	2670
	7

	4
	7670-9669
	2000
	9

	5
	9670-10119
	450
	1

	Total
	0-10119
	10120
	38

	Average
	
	1000
	3.75

Table 10: Second Info and Pageprint experiment result 2
Table 11: First Info and Pageprint experiment result 1
	TUN
	SUN
	SUP
	DUN
	IUP
	DUHN
	IUHP

	10120
	9122
	90.14%
	6561
	71.93%
	5654
	61.98%

Table 12: First Info and Pageprint experiment result 2
TUN: Test URL Number

SUN: Success URL Number

DUN: Distinguish URL Number
DUHN: Distinguish URL Host Number

SUP: Success URL Percentage (divided by TUN)

IUP: Irredundant URL Percentage (divided by SUN)

IUHP: Irredundant URL Host Percentage (divided by SUN)

Obviously the result is far from good and the reason for this is that in first experiment, we do not add a check with the URLs used in previous iterations. And as the next iteration will start with the URL list generated from the earlier iteration, recursive links phenomenon may exist. For example, in the iteration i, a URL j is the handled and one of the hyperlinks h(j) might be picked up for the next URL list. In iteration, h(j) is handled and very likely that there will be a hyperlinks that is picked up pointing to some other similar pages k. When iteration i is ended, the h(k) will be the next URL list to load. So in the next iteration i+2, the program will handle URL h(k) and there is quite a chance that h(k) will have a hyperlink pointing back to the original link j. If this situation goes for several thousand times, it is not surprised to find such redundancy in the first experiment.

7.3 Second Info and Pageprint experiment

In order to prevent such huge redundancy, we add a mechanism to load the previous URLs before managing the next iteration. The result is much better and even minimizes the redundancy to zero!
7.4 Results of Second Info and Pageprint experiment

See below for more details.
	TN
	URL Range
	URL Number
	Time(minutes)

	1
	10120-10239
	120
	23.09

	2
	10240-10879
	640
	129.43

	3
	10880-11119
	240
	42.58

	4
	11120-11159
	40
	8.22

	5
	11160-11199
	40
	6.40

	6
	11200-11239
	40
	7.84

	7
	11240-11279
	40
	6.47

	Total
	10120-11279
	1060
	224.03

	Average
	
	1000
	211.32

	TUN
	SUN
	SUP
	DUN
	IUP
	DUHN
	IUHP

	1060
	963
	90.85%
	963
	100%
	963
	100%

Table 13: Second Info and Pageprint experiment result 1
The SUP remains the same but the IUP and IUHP increased a lot. Another change in the second experiment is that we also take unsuccessful URL as a part of the information. Unsuccessful URL itself is a kind of information that needs to be recorded and compared with other normal data.
7.5 Platform
The software platform is Linux Ubuntu 6.10 with update package until 1st March, 2007. The hardware is a HP ze2000 laptop, 1.40GHz Celeron Intel CPU; 512M RAM (with 64M shared Graphic RAM, 471 real useable RAM); Realtek RTL8139/810x Family Fast Ethernet NIC network card. The network connection partly is from my dorm, and partly from Plexus Student Center.
7.6 Data Set

Each URL data includes four files: a HTML file including the HTML code; an info file including the information in the html file; an image file recording the snapshot of the page; a log file recording the log info about the process of generating the image file. Actually only the info file and the image file are the important files among these four files.
During the Generate Table Process, a table will be created from the image file and info file. The table contains 285 columns and 9122 lines. The first line is the table header and the rest is the real data that each line stands for one URL. The feature of the URL includes 16 info features: URL, IP address, html length, load time, title, meta, link num, form num, table num, applet num, embed num, img num, input num, frame num, td num, tr num. Then it is the image feature: img min value, min point, max value, max point, histogram value from 0 to 255, mean value, histogram value for 3-bit image from 0 to 7.
7.7 CPU, RAM and Network status
During the running process of the info and pageprint program as well as generate table program, I record the status of CPU, RAM and Network.
For info and pageprint program, it does not require too much CPU time and RAM, although if the program runs for 6 or 7 hours, the RAM and the SWAP will be occupied fully sometimes. The CPU sometimes goes to the peak but it is fluctuating all the time with a direct ratio with Network status. When you take a look at the command window where the detail status of the program will show up, you will find that it is the time the program generating the image that reach the peak. When the program is waiting for the browser to response, CPU takes only little percentage. See the following Graph 7 (the upper is CPU history and the lower is Network history, with the red line shows the received data flow and the green one shows the sent data flow).
[image: image37.png][image: image38.png]
Graph 7: System status for info and Pageprint program
In Graph 39, it shows the CPU history and RAM usage history for the generate table program. The upper histogram is CPU status and the lower is Network status. An improved version is shown in Graph 40, which cost much less RAM requirement.
[image: image39.png]
Graph 41: System status for generate table process
[image: image40.png]
Graph 42: System status for generate table process2

As the program frequently check the URL info file, image file and then save the data into table file, it has many I/O process with it takes RAM. From the graph we can see that the CPU suddenly jump to a high level and keeps at the high level until the end of the process. On the other hand, the memory gradually reaches the peak and keeps at the peak for a period of time. Then it suddenly drops to normal again at the end. Due to the high CPU and memory requirement for this process, we make PHP wrappers that execute the process with a break between each other. Graph 9 shows the details (the upper graph is CPU history and lower is RAM history, the purple one stands for user memory and the green one stands for SWAP history). The Graph 13 shows the improved version. In this graph, the memory keeps almost the same while CPU reaches some peaks. The reason is the same as Graph 11.
[image: image41.png]
Graph 43: System status for continually generate table process
[image: image42.png]
Graph 44: System status for continually generate table process 2

8. CLUSTER EXPERIMENT
We use SPSS 15 as the analysis tool. Three data files are clustered by SPSS:
· First Info and Pageprint experiment data (9125 URL)
· Second Info and Pageprint experiment data (1030 URL)
· First and Second Combined data (10153 URL)
There are three main types cluster methods in SPSS: Hierarchical Cluster Analysis, K-means Cluster Analysis and Two-Step Cluster Analysis. In our experiment, we use Two-Step Custer analysis as a first try and K-means Cluster Analysis as the second try.
8.1 Results of First Info and Pageprint experiment data
We tried first Info and Pageprint experiment data (9125 URLs) with Two-Step Analysis method with all variables: both info and image variables. See table below.

	
	N
	% of Combined
	% of Total

	Cluster
	1
	6613
	72.8%
	72.5%

	
	2
	1537
	16.9%
	16.8%

	
	3
	933
	10.3%
	10.2%

	Combined
	9083
	100.0%
	99.5%

	Excluded Cases
	42
	
	.5%

	Total
	9125
	
	100.0%

Table 14: Results of First Info and Pageprint experiment data

8.2 Results of Second Info and Pageprint experiment data
We tried second Info and Pageprint experiment data (1030 URLs) with Two-Step Analysis method with all variables: both info and image variables. See table below.
	
	N
	% of Combined
	% of Total

	Cluster
	1
	728
	70.7%
	70.7%

	
	2
	147
	14.3%
	14.3%

	
	3
	155
	15.0%
	15.0%

	Combined
	1030
	100.0%
	100.0%

	Total
	1030
	
	100.0%

Table 15: Results of Second Info and Pageprint experiment data
8.3 Results of First and Second Combined data with Two-Step Analysis
We tried First and Second Combined data (10153 URLs) with Two-Step Analysis method with all variables: both info and image variables. See table below.

	
	N
	% of Combined
	% of Total

	Cluster
	1
	8386
	82.6%
	82.6%

	
	2
	1767
	17.4%
	17.4%

	Combined
	10153
	100.0%
	100.0%

	Total
	10153
	
	100.0%

Table 16: Results of First and Second Combined data
8.4 Results of First and Second Combined data with K-means Analysis
Besides the Two-step clustering analysis, we also use K-means clustering to analyze the combined data with all numeric variables. We first try with 15 clusters with at most 50 iterations. It converges at 45 iterations but there are clusters with less then 0.1% of the data. So we decrease the cluster number and finally we found that 9 clusters is the suitable number and it converges at 64 iterations. The pie chart and distribution table are below:
[image: image43.emf]1

2

3

4

5

6

7

8

9

Cluster

8.17%

3.12%

27.68%

20.70%

1.59%

1.35%

29.37%

2.03%

6.00%

Number of Cases in each Cluster

1

2

3

4

5

6

7

8

9

Cluster

8.17%

3.12%

27.68%

20.70%

1.59%

1.35%

29.37%

2.03%

6.00%

Number of Cases in each Cluster

Graph 45: Cluster pie chart
	Cluster
	
	N

	
	1
	829.000

	
	2
	317.000

	
	3
	2810.000

	
	4
	2102.000

	
	5
	161.000

	
	6
	137.000

	
	7
	2982.000

	
	8
	206.000

	
	9
	609.000

	Total
	10153.00

Table 17: K-means Analysis Cluster table
One should notice that these result may change if the order of the case changes. As mentioned before, the order of initial cluster centre will affect the results in both Two-step method and K-means method. So the result here is the average result of the total experiment results.
8.5 Analysis on the first and second combined dataset with two-step method

The result of two-step method with all variables as continuous variables is only two clusters. When we look at the variable importance plot as below:

[image: image44.emf]Variable

hist114

hist8_5

hist134

hist8_3

hist115

hist162

hist161

hist175

hist80

hist25

hist8_4

hist131

hist8_7

hist99

hist30

hist173

hist12

hist23

hist128

mean

hist169

hist24

hist35

hist53

hist105

maxpoint

hist44

hist125

hist177

hist18

hist49

hist187

hist71

hist8_1

hist185

hist163

hist145

hist130

hist59

hist21

hist255

hist31

hist8_2

hist126

hist43

hist107

hist57

hist124

hist120

hist15

hist42

hist110

hist123

hist20

hist91

hist96

hist118

hist172

hist144

hist189

hist181

hist132

hist65

hist141

hist127

hist14

hist62

hist27

hist150

hist19

hist32

hist108

hist26

hist135

hist38

hist83

hist22

hist117

hist167

hist160

hist137

hist66

hist33

hist60

hist182

hist147

hist122

hist10

maxvalue

hist52

hist116

hist119

hist29

hist100

hist13

hist168

hist180

hist101

hist205

hist98

hist54

hist86

hist191

hist77

hist174

hist200

hist164

hist188

hist179

hist152

hist171

hist93

hist149

hist148

hist16

hist183

hist133

hist72

hist159

hist140

hist113

hist9

hist201

hist88

hist176

hist166

hist58

hist112

hist138

hist81

hist70

hist85

hist48

hist109

hist61

hist146

hist139

hist154

hist190

hist178

hist95

hist41

hist129

hist158

hist94

hist156

hist79

hist157

hist104

hist39

hist170

hist106

hist143

hist64

hist8

hist50

hist69

hist84

hist103

hist76

hist36

hist194

hist78

hist47

hist121

hist184

hist75

hist87

hist193

hist202

hist225

hist142

hist97

hist74

hist56

hist89

hist206

hist165

hist55

hist212

hist17

hist155

hist73

hist82

hist211

hist92

hist5

hist254

appletnum

hist215

hist186

hist199

hist153

hist111

hist4

hist8_0

hist226

hist195

hist102

hist220

hist67

hist51

hist219

htmllength

linknum

hist217

hist251

hist11

framenum

hist221

tdnum

hist218

hist198

hist249

hist45

hist236

hist253

hist0

hist241

hist242

hist238

imgnum

hist246

hist235

hist245

hist8_6

hist40

hist231

minpoint

hist204

hist230

hist248

hist233

hist243

hist7

hist3

trnum

hist224

hist227

hist214

hist239

hist247

hist213

hist250

hist252

hist228

hist229

hist223

hist28

hist203

hist240

hist68

hist207

embednum

hist90

imgminvalue

hist63

hist216

hist210

hist197

hist192

hist2

hist46

hist6

loadtime

hist34

hist222

hist209

tablenum

inputnum

hist151

hist1

formnum

hist237

hist196

hist136

hist37

hist208

hist244

hist232

hist234

Student's t

20100-10-20-30

TwoStep Cluster Number = 1

Bonferroni Adjustment Applied

Test Statistic

Critical Value

Graph 46: Variable importance plot for cluster 1
[image: image45.emf]Variable

hist218

hist255

hist8_7

mean

maxvalue

hist221

maxpoint

hist8_5

hist8_3

hist249

hist254

hist236

hist8_4

hist8_1

hist242

hist8_2

hist231

hist0

hist204

hist241

hist235

hist238

hist213

hist243

hist68

hist251

hist100

hist8_0

hist167

hist214

hist8_6

hist140

linknum

hist224

hist246

hist227

hist106

hist90

hist125

hist49

htmllength

hist203

hist233

hist245

hist12

hist175

hist11

hist174

hist99

hist126

hist31

hist131

hist134

hist107

hist130

hist127

hist135

hist248

hist16

hist52

hist124

hist162

hist114

hist63

hist43

hist39

hist30

hist96

hist28

hist173

hist53

hist207

hist129

hist42

hist57

hist132

hist20

hist26

hist9

hist205

hist111

hist188

hist184

hist101

hist169

hist123

hist95

hist60

hist98

hist18

hist41

hist181

hist59

hist23

hist84

hist19

hist161

hist13

hist115

hist66

hist160

hist163

hist122

hist187

hist177

hist44

hist183

hist32

hist155

hist118

hist164

hist33

hist27

hist83

hist58

hist158

hist81

hist70

hist24

hist15

hist185

hist128

hist109

hist108

hist113

hist91

hist103

hist6

hist145

hist104

hist80

hist133

hist75

hist144

hist157

hist192

hist67

hist21

hist61

hist170

hist22

hist54

hist36

hist139

hist86

hist182

hist142

hist62

imgnum

hist94

hist150

hist105

hist25

hist38

hist179

hist50

minpoint

hist137

hist159

hist64

hist201

hist93

hist147

hist69

hist72

hist171

hist176

hist152

hist10

hist212

hist154

hist65

hist180

hist197

hist172

hist56

hist110

hist17

hist51

hist191

hist120

hist35

hist141

hist79

hist166

hist85

framenum

hist225

hist200

hist143

hist189

hist228

hist117

hist71

hist247

hist229

hist48

hist223

hist194

hist165

hist190

hist168

hist89

hist156

hist186

hist14

hist77

hist29

hist215

hist151

hist7

hist178

hist55

hist87

hist5

hist47

hist102

hist199

hist97

hist119

hist8

hist198

hist153

hist73

hist4

hist76

hist112

hist146

hist88

hist195

hist226

hist148

hist92

hist82

hist78

hist45

hist211

hist253

hist116

hist216

tdnum

hist219

hist74

hist40

hist202

hist239

hist46

hist217

hist149

hist220

hist138

hist193

hist3

hist209

hist206

hist121

trnum

imgminvalue

hist230

hist34

hist240

hist136

loadtime

appletnum

hist222

hist37

hist196

embednum

hist250

hist208

tablenum

hist252

hist2

hist1

hist210

inputnum

hist237

formnum

hist244

hist232

hist234

Student's t

200-20-40-60-80-100

TwoStep Cluster Number = 2

Bonferroni Adjustment Applied

Test Statistic

Critical Value

Graph 47: Variable importance plot for cluster 2
We can find that there are much more critical variables in cluster 1 than in cluster 2. The pages in cluster 1 have short length, same load time, less link, less image, big max point and value, big mean value, hist8_7 is very positive, hist8_3, hist8_4, hist_5 is small and the critical negative histogram value are below 200 and not critical histogram value are above 200. Cluster 2 has almost the opposite features and both 0 and 255 are critical histogram values.
In other words, pages from cluster 1 are mainly small pages with colorful or gloomy images and few words, while cluster 2 contains pages with bigger size and more text inside.
8.6 Analysis on the combined dataset with k-means method

We summarize the analysis to a table below. The values are important comparison values that picked up from 285 variables.
	Cluster
Value
	A
	B
	C
	D
	E

	Mean
	9
	6
	8
	4
	1

	Hist
	0-6s 7bb
	0-4s 5,6m 7bb
	0-5s
6m 7bb
	0-6m 7b
	0b
1m
2-7s

	Hist0
	2
	3
	5
	6
	9

	Hist255
	9
	4
	8
	6
	2

	Length
	1
	2
	6
	9
	2

	Loadtime
	1
	3
	7
	8
	2

	ImgN
	1
	4
	6
	9
	2

	MinV
	2
	4
	6
	8
	5

	MinP
	4
	6
	2
	5
	9

	MaxV
	8
	4
	5
	1
	7

	MaxP
	9
	7
	9
	6
	3

Table 18: Variable Comparison Table 1
Notes:

All the number in the table except the one in the row of Hist are ranks among the 9 clusters.

Mean: the histogram mean value of each cluster

Hist: the 3-bit histogram status. Numbers means the point of the histogram, ‘s’ means small, ‘m’ means mediate, ‘b’ means big and ‘bb’ means very big. 0-6 means from histogram 0 to 6

Hist0/255: the histogram value of point 0/255
ImgN: image number in the page

MinV: minimum histogram value

MinP: the point of minimum histogram value

MaxV: maximum histogram value

MaxP: the point of maximum histogram value

	Cluster
Value
	F
	G
	H
	I

	Mean
	2
	5
	7
	3

	Hist
	5,6s
0-4,7m
	0-7m
	0-6ss
7bb
	0-7m

	Hist0
	4
	7
	1
	8

	Hist255
	3
	7
	1
	5

	Length
	4
	7
	8
	5

	Loadtime
	4
	6
	9
	5

	ImgN
	3
	7
	5
	8

	MinV
	3
	7
	1
	9

	MinP
	7
	3
	1
	8

	MaxV
	6
	3
	9
	2

	MaxP
	4
	8
	6
	5

Table 19: Variable Comparison Table 2
We can summarize many trends from the table above. For example, some cluster has short length and load quickly, that might show that this page is small and simple. Probably it is a search engine website. Using the image feature can also show the difference. If a page has many texts in it, the MaxP and Hist255 will be high. This page will be like a blog or a news release page. In order to test our guess, we looked at the real pages in different categories. The result is almost the same as our anticipation. Here are some details:

· Cluster A has short HTML length and small load time. Its image attribute show it contains many white space and not many text. So this might be a search engine page.
· Cluster B is little different than A as it has simple background colors besides white. The text in this cluster page contains a small part of the page with small images.

· Cluster C looks like A with white background and small images in the page, but it has a quantity of texts inside.
· Cluster D and F both have colorful layouts while D has much more words than F.

· Cluster E is special as it contains mainly black or dark background pages.

· Cluster G has many words in the pages and small images. These mainly are blogs.

· Cluster H Cluster H has the least hist0. It has long length and load slowly which shows that the pages are mainly colorful. Cluster H has many images than texts.
· Cluster I has many 3-bit mediate histograms, which show there are pure strong color as background in the page. The image number also shows that. The length and load time are normal. These may be personal websites.
9. HISTORY COMPARSION

When we use the program in section 3 to get raw HTML, info, image, Feature Table and so on at a certain time, we can rerun the program again and compare the difference between two test. In order to do this, we provide such function in I_Compare folder.

9.1 Preparation Phase

1. Combine the info_log from the old test folder

We need to use CombineInfolog function in Compare_InfoLog.php file to combine all the files with "info_log_" as part of the file name. It will generate an info_log_all file. This file is used for the next step.

2. Get info_log table and new urllist from step 1

Using GetNewURLlistfromInfoLog function in Compare_InfoLog.php file, we can get info_log table and new urllist. The info_log file will get the result of each URL from info_log_all file. There are three options: success, errorload or errorurlgroup. The program will ignore the URL if the URL’s result is "exists before". The new urllist contains the same URLs as the old test folder only without the “exists before” URLs.

9.2 Getting new data Phase

1. In this phase, we need to run. /billy_IP for the new urllist file to get raw HTML, info and image files.

2. After that, we can use GT3-bin file to generate the Feature table.

3. Getting info_log table from new folder just like step 2

9.3 Comparison Phase

9.3.1 Compare the two info_log table
The first comparison is to compare the info_log file. Using CompareInfoLogTable function in /Compare_InfoLog.php file with info_log_table1 and info_log_table2 as input, we can get the comparison on the screen, you can use ">CIL" to save it to a CIL file. In the first part of the CIL file, we can see something like these: “4905:success => errorload”, which means that in line 4095, there is a difference that the status of this URL change from “success” to “errorload”. The second part of the CIL file will record the amount and the percentage of no change URLs, change from “success” to other URLs, “errortoload” to other URLs, “errorurlgroup” to other URLs.
9.3.2 Compare a certain feature
1. As there are might be some changes in the new test, first we need to make two IPTable having the same data. So we need to call ExtractfromOldIPTable function from Compare_IPTable.php file. It will generate originalIPTable."_new" file and will get rip of some URLs that does not appears in the new test file.

2. Compare a certain feature between two IPTables. We can use CompareIPTable function in Compare_IPTable.php file. This function can specify the tolerance percentage that within this percentage of difference two figures can be considered the same. It will generate CT_".$featureName.".dat file. The file will record every different URL with pageID, values for both tables and the change percentage. At the end of the CT file, it will also record the equal URL numbers and percentage, within tolerance percentage equal URL numbers and percentage, not equal URL numbers and percentage, the average difference gap and the standard deviation. To see the result of clearly, you can copy the data in the CT file to an excel file and see the graphs

9.3.3 Compare multiple features

In order to get the general difference of two IP_Table, we need to use CompareIPTableALL function in Compare_IPTable.php file with an IPTable_feed and a tolerance percentage. The IPTable_feed file is the file to put the features that you want to analyze line by line and let the program to run automatically for you. It will generate CT_ALL file, which will show each feature with the same format in the end of the CT file. You can also put the data into a excel file for graphical output. See more in the experiment section in the following.
10. HISTORY COMPARISON EXPERIMENT
10.1 The Comparison Data
We have made a comparison experiment with the data in section 6.1, which means we test the URLs 3 month later. The old test was taken in the mid of March and the new test was taken at the end of June.
The first step is to combine the info_log from the old test folder. After that we need to get info_log table and new urllist from the info_log file.

Then to run the info and pageprint process to get raw HTML, info and image files. The test result is the following:
· test place:medialab.liacs.nl, test machine:medialab.liacs.nl

· pageID from:1 to10155 Estimate Total Num:10155

· success URL number is:5087, failed URL number is:5068,total is10155

· The whole process took 4.56 hours/273.44 minutes/16406.68 seconds to load.

· The 1000 data time cost is: 26.93 minutes/1615.63 seconds

As there is no test result for the old test. We can only say that the old test takes 38 hours and the total num IP addresses that have been tried are 10120.

The reason why this number is 10120 and the new test only have 5087 numbers is because the new test detects many redundant URLs that the old test can not find. In order to compare this two tests easily, we need to find all the URLs in the new test and create a new info_log table as well as feature table based on that.
Then we use GT3-bin file to generate the Feature table and get the info_log table for the new test, comparison begins.

10.2 Comparison Result
10.2.1 info_log file comparison

When comparing with two info_log files, the result is the table below:
	Change
	num
	%

	same:
	5087
	96.44

	suc2others
	188
	3.56

	errorload2others
	0
	0

	errorurlgroup2others
	0
	0

Table 20: info_log file comparison
In the able, suc2others means the URL result changes from successful to other results, errorload2other means a change from errorolad to 2 other results and errorurlgroup2others means a change from errorurlgroup to other results.

The table shows that there is no big change in the website status of those URLs; let’s take a look at the real contents.
10.2.2 Multiple feature comparison
The comparison is between IP_Table1_1+2_part and IP_Table_1-10155_2.dat. The total compared URL number is 5275. The tolerance percentage is 10. The CT_ALL file contains the following:
	Field part name
	E%
	TE%
	NE%
	avg_gap
	Std-dev

	html length
	15.64
	47.06
	37.3
	250.78
	463.06

	load time
	0
	16.23
	83.77
	165.72
	220.68

	link num
	30.42
	34.95
	34.64
	55.05
	80.04

	form num
	86.32
	0.04
	13.64
	50.27
	57.69

	table num
	73.41
	5.87
	20.72
	4120.4
	8142.23

	applet num
	99.76
	0
	0.24
	101.05
	2.42

	embed num
	88.64
	0
	11.36
	106.62
	30.99

	img num
	43.98
	18.43
	37.6
	58.82
	79.12

	input num
	80.44
	1.73
	17.84
	52.79
	57.03

	framenum
	99.23
	0
	0.77
	100.1
	3.74

	td num
	63.62
	14.32
	22.06
	71.79
	82.5

	tr num
	66.8
	11.28
	21.92
	64.18
	72.74

	img min value
	7.3
	13.38
	79.32
	112.45
	124.56

	min point
	11.83
	17.68
	70.49
	8103.74
	15799.6

	max value
	0
	2.02
	97.98
	49.23
	11.6

	max point
	79.91
	5.2
	14.89
	39.27
	65.72

	hist8_0
	3.65
	12.72
	83.59
	884.11
	1603.51

	hist8_1
	3.59
	16.35
	80.02
	212.54
	327.26

	hist8_2
	3.18
	20.02
	76.77
	227.55
	364.32

	hist8_3
	2.86
	22.51
	74.59
	255.84
	423.72

	hist8_4
	2.98
	23.08
	73.9
	359.7
	622.11

	hist8_5
	2.75
	21.98
	75.24
	180.77
	274.75

	hist8_6
	1.69
	20.29
	77.98
	307.31
	513.04

	hist8_7
	1.61
	3.41
	94.58
	58.46
	35.13

Table 21: Multiple feature comparison
 The “html length”, “load time”, “link number” “image number”change (37.3%, 83.77%, 34.64% and 37.6%) shows that there are quite big (around 36%) changes in the real text content of the Web pages within these three months. However, “form number”, “table number”, “applet number”, “embed number” and “frame nmber” shows that the structure of the Web page stays almost the same (around 10%).
On the other hand, when we take a look at the image feature of a Web page, there are big changes in it. On average there are around 80% of changes in the “min point”, “max value”, “hist8_0” and so on. This means that the layout (color) in the website have changed more rapid than the text content.
11. GOOGLEMAP EXPERIMENT
We also use Google Map API functions to make some experiments. The experiments use the data in ftp://medialab.liacs.nl/home/baoeni/billy_IP/T8_10000000_Detect5/B_InfoPagePrint folder. There are 17035 unit data (Web page HTML, info and image file).
11.1 Google Map Experiment Result

A list of the main results is shown below. More results are available on line and can be found at http://medialab.liacs.nl/~baoeni/2index2.html.

1. Random IP address detection visualization – showing the number of IP addresses in each country in the world map
2. Cluster experiment result visualization– showing the number of cluster members in each country for each cluster
3. Hue, Saturation, Brightness of Web page visualization – average Hue, Saturation, Brightness value of Web pages in each country
4. BlockA, BlockB and BlockC of Web page visualization – showing the percentage of Web page split into type A, B or C block in each country
5. Image number visualization -- the average image number of Web pages in each country
6. Image size visualization -- the average image size of Web pages in each country

7. Link number visualization -- the average number of hyperlink of Web pages in each country

8. External link number visualization -- the average number of external hyperlink of Web pages in each country

9. Internal link number visualization -- the average number of internal hyperlink of Web pages in each country
10. Load time visualization -- the average second of loading time of Web pages in each country
11. Mean visualization -- the average mean value (0-255) of Web pages in each country
12. Standard deviation visualization -- the average standard deviation of Web pages in each country
13. Image and Text detection visualization -- the average image and text detection value of Web pages in each country
12. CONCLUSIONS AND FUTURE WORK
12.1 Conclusions
The results are very promising. It shows that there is big difference among the images grabbed from various categories of the web pages. Some of them focus on text (blog, news, forums) and others on images (personal websites, commercial websites). Some pages tend to be very colorful and some are simple and smooth. All those image features give us some hint about the content of the page. It proofs that the image of the page is important information and we should use it just like the text in the HTML code. At some level it is even more essential to have the snapshot of an image rather that the source code of the page as the source code is not readable or needs parsing it.
12.2 Future work
This project shows that the concept of sampling the web based on its visual contents is very promising, and can be used in many ways. It can cache a representative sample of the Web or a particular part of the Web (a country or an area) within a period. In this way, people get insight into the evolution of the Web and even predict the future website’s look.
Besides the histogram and block type we used in the image process now, we can add other image feature extractions like texture or shape detection to help the image and text detection. Also we can find out the real content of multimedia data in the page rather than look at the profound source code.
The current random IP addresses detection function still need to be improved. More accurate web server IP address sampling is needed to be able to have statistically significant results.
Finally, some future work has to be done with respect to the modulization, efficiency and performance of the program. In order to maximize the performance, a new for parallel process has to be in place with the remaining future work.
13. REFERENCES
[1] Jesse James Garrett. Ajax: A New Approach to Web Applications. http://www.adaptivepath.com/. February 18, 2005
[2] Ed O’Neill, Brian Lavoie. OCLC Online Computer Library Center, Inc. Charactering the Web Using Sampling methods. WWW9 conference Amsterdam 2000

[3] Malik Agyemang,Ken Barker,Reda Alhajj. Framework for Mining Web Content Outliers. SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
[4] Luca Becchetti Carlos Castillo Debora Donato_ Adriano Fazzone. A Comparison of Sampling Techniques for Web Graph Characterization. LinkKDD’06, August 20, 2006, Philadelphia, Pennsylvania, USA.
[5] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near–uniform url sampling. In Proceedings of the Ninth Conference on World Wide Web, pages 295–308, Amsterdam, Netherlands, May 2000. Elsevier Science.
[6] P. Boldi, M. Santini, and S. Vigna. Do your worst to make the best: Paradoxical effects in pagerank incremental computations. In Proceedings of the third Workshop on Web Graphs (WAW), volume 3243 of Lecture Notes in Computer Science, pages 168–180, Rome, Italy, October 2004. Springer.
[7] G. Pandurangan, P. Raghavan, and E. Upfal. Using Pagerank to characterize Web structure. In Proceedings of the 8th Annual International Computing and Combinatorics Conference (COCOON), volume 2387 of Lecture Notes in Computer Science, pages 330–390, Singapore, August 2002. Springer.
[8] R. Albert, H. Jeong, and A. L. Barab´asi. Diameter of the world wide web. Nature, 401:130–131, 1999.
[9] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Structural properties of the African Web. In Proceedings of the eleventh international conference on World Wide Web, Honolulu, Hawaii, USA, May 2002. ACM Press.
[10] D. Gomes and M. J. Silva. Characterizing a national community Web. ACM Transactions on Internet Technology, 5(3), 2005.
[11] R. Baeza-Yates, C. Castillo, and E. Efthimiadis. Characterization of national web domains. Technical report, Universitat Pompeu Fabra, July 2005.
[12] Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. In WWW ’06: Proceedings of the 15th international conference on World Wide Web, pages 367–376, New York, NY, USA, 2006. ACM Press.
APPENDIX

1. Testing and Installation

In order to enhance the flexibility and usability of the program, I have installed and tested successfully it on three different Linux systems (Fedora, Opensuse and Ubuntu). These three typical Linux systems have been wildly used nowadays and can set up examples for many other Linux systems which are more or less the same.

13.1.1 Fedora

13.1.1.1 System Info:

	Fedora core 5

Package environment:

	PHP
	php-5.1.2-5

	Xvfb
	

	Mozilla-browser(1.7.*)
	mozilla-1.7.12-5

	GNU C library
	glibc-2.4-4

	
	

	GCC/G++
	GCC 4.1.1

	Mozilla-devel
	mozilla-devel-1.7.12-5

	GNU C library Devel Package
	gtk2-devel-2.8.15-1

13.1.1.2 Install Xvfb

First download the Xvfb rpm package from the Internet.

Unzip it and use command:

	$ /path/to/Xvfb

Fatal server error:

Server is already active for display 0

 If this server is no longer running, remove /tmp/.X0-lock

 and start again.

Command 1
If you have the result as above, then you have successfully installed the Xvfb.

There maybe some error opening security policy file or font error. But the following should not be considered as errors:

	Could not init font path element /usr/X11R6/lib/X11/fonts/misc/, removing from list!

Could not init font path element /usr/X11R6/lib/X11/fonts/TTF/, removing from list!

Command 2
See more details in appendix.
You can also install Xvfb package by the package manager.
13.1.1.3 Set the Link

set the link file so that the library can be founded.

	# ln -s /opt/mozilla/lib/libgtkembedmoz.so libgtkembedmoz.so

ln -s /opt/mozilla/lib/libxpcom.so libxpcom.so

Command 3
Now if you type $ path/to/billly_IP you can see the program is running properly.

In order to build the source code, we need to configure the following:

13.1.1.4 Building the source on Fedora5
	$ /path/to/src/make

gcc -c -o PagePrint.o PagePrint.cpp `pkg-config --cflags mozilla-gtkmozembed gtk+-2.0 ` -I gfx/

gcc -o PagePrint-bin PagePrint.o `pkg-config --libs mozilla-gtkmozembed gtk+-2.0 `

rm -rf *.o

Command 4
The above shows that the source has been compiled and linked successfully.

13.1.2 Opensuse

13.1.2.1 System Info:

	Opensuse 10.2

Package environment:

	PHP
	php5-5.2.0-10

	Xvfb
	

	Mozilla-browser
	

	GNU C library
	glibc-2.5-25

	
	

	GCC/G++
	

	Mozilla-devel
	

	GNU C library Devel Package
	

13.1.2.2 Install Xvfb on Opensuse

The steps are the same as 4.1.2 “Install Xvfb”.
13.1.2.3 Find the PHP server path

	$ php -i | grep -i "/php"
SERVER[""] => /usr/bin/php

Command 5
 “/usr/bin/php” is the PHP path. If you install the PHP yourself, the PHP server path should be the place where you install.

13.1.2.4 Install Mozilla

Install mozilla-1.7.11-9.5.i586.rpm and mozilla-nspr-devel-4.6.3-15.i586.rpm by Package Manager.

billly_IP can run properly right now but there are some errors when using make:
13.1.2.5 Building the source on Opensuse

	$ /path/to/src/make

gcc -c -o PagePrint.o PagePrint.cpp `pkg-config --cflags mozilla-gtkmozembed gtk+-2.0 ` -I gfx/

Package mozilla-gtkmozembed was not found in the pkg-config search path.

Perhaps you should add the directory containing `mozilla-gtkmozembed.pc'

to the PKG_CONFIG_PATH environment variable

No package 'mozilla-gtkmozembed' found

Package gtk+-2.0 was not found in the pkg-config search path.

Perhaps you should add the directory containing `gtk+-2.0.pc'

to the PKG_CONFIG_PATH environment variable

No package 'gtk+-2.0' found

/bin/sh: gcc: command not found

make: *** [PagePrintp] Error 127

Command 6
Build Error:

1. Package mozilla-gtkmozembed was not found in the pkg-config search path
2. Package gtk+-2.0 was not found in the pkg-config search path
3. /bin/sh: gcc: command not found

13.1.2.6 Install Mozilla-devel

Install mozilla-devel-1.7.11-9.5.i586.rpm by package manager. Try to make again:

	$ rpm –i mozilla-devel-1.7.11-9.5.i586.rpm
$make

gcc -c -o PagePrint.o PagePrint.cpp `pkg-config --cflags mozilla-gtkmozembed gtk+-2.0 ` -I gfx/

Package gtk+-2.0 was not found in the pkg-config search path.

Perhaps you should add the directory containing `gtk+-2.0.pc'

to the PKG_CONFIG_PATH environment variable

No package 'gtk+-2.0' found

/bin/sh: gcc: command not found

make: *** [PagePrintp] Error 127

Command 7
It shows that mozilla-gtkmozembed was installed.

13.1.2.7 Install Gtk2-devel

Install gtk2-devel-2.10.6-13 by Package Manager.

	$ rpm –i gtk2-devel-2.10.6-13.rpm

Command 8
13.1.2.8 Install GCC
Install gcc-gij-4.1.3-29, gcc-c++-4.1.3-29, gcc41-gij-4.1.2_20061115-7, gcc41-c++-4.1.2_20061115-5, gcc-4.1.3-29, libgcc41-4.1.2_20061115-5, gcc41-4.1.2_20061115-5.

Still a segmentation error:

	call the following for calling PagePrint-bin:

/home/baoeni/programming/billy_IP/src/pageprint_singleurl/PagePrint-bin /usr/bin/php /home/baoeni/programming/billy_IP/src/pageprint_singleurl/PagePrint "http://www.google.com" "/home/baoeni/programming/billy_IP/html_pageprint/pp5" "PagePrint45cb7abb94956" 2>&1

command started$$$$$$$$$$$

/home/baoeni/programming/billy_IP/html_pageprint/pp5

Starting PagePrint

Profile path is: /home/baoeni/.PagePrint

…

Try to Load URL: http://www.google.com

sh: line 1: 15923 Segmentation Error /home/baoeni/programming/billy_IP/src/pageprint_singleurl/PagePrint-bin /usr/bin/php /home/baoeni/programming/billy_IP/src/pageprint_singleurl/PagePrint "http://www.google.com" "/home/baoeni/programming/billy_IP/html_pageprint/pp5" "PagePrint45cb7abb94956" 2>&1

command stopped$$$$$$$$$$$

Command 9
The problem is lack of setting the link.

	$ gcc-4.0 -c -o PagePrint.o PagePrint.cpp `pkg-config --cflags mozilla-gtkmozembed gtk+-2.0` -I gfx/

Package mozilla-gtkmozembed was not found in the pkg-config search path.

Perhaps you should add the directory containing `mozilla-gtkmozembed.pc'

to the PKG_CONFIG_PATH environment variable

No package 'mozilla-gtkmozembed' found

Package gtk+-2.0 was not found in the pkg-config search path.

Perhaps you should add the directory containing `gtk+-2.0.pc'

to the PKG_CONFIG_PATH environment variable

No package 'gtk+-2.0' found

gcc-4.0: installation problem, cannot exec 'cc1plus': No such file or directory

Command 10
13.1.2.9 Set the Link

At last, setting the link file and build success.

	# ln -s /opt/mozilla/lib/libgtkembedmoz.so libgtkembedmoz.so

ln -s /opt/mozilla/lib/libxpcom.so libxpcom.so

Command 11
13.1.3 Ubuntu

13.1.3.1 System Info:

	Ubuntu 6.10

Package environment:

	PHP
	

	Xvfb
	

	Mozilla-browser
	

	GNU C library
	libc6- 2.4-1ubuntu12

	
	

	GCC/G++
	

	Mozilla-devel
	

	GNU C library Devel Package
	

13.1.3.2 Install Xvfb on Opensuse

The steps are the same as 4.1.2 “Install Xvfb”
13.1.3.3 Install PHP

Install: php5-5.1.2, php5-cli 5.1.2, php5-common 5.1.2.

13.1.3.4 Find the PHP server path

The same steps are in 4.2.3.

13.1.3.5 Install Mozilla

Install Mozilla-browser (2:1.7.12-1.1ubuntu2) by Package Manager.

13.1.3.6 Set the Link

At last, it is the problem to set the link file.

	# ln -s /opt/mozilla/lib/libgtkembedmoz.so libgtkembedmoz.so

ln -s /opt/mozilla/lib/libxpcom.so libxpcom.so

Command 12
Billy_IP can be executed without errors. Now try with the build:

	$ make

bash: make: command not found

$ gcc

bash: gcc: command not found

13.1.3.7 Install GCC/G++

Install gcc-4.0 and ; try to build the source code.

13.1.3.8 Install Mozilla-dev

Install mozilla-dev_1.7.12-1.1ubuntu2_i386.deb package.

13.1.3.9 Install libc6-dev

Install libc6-dev_2.4-1ubuntu12_i386.deb and linux-libc-dev_2.6.17.1 11.35_i386.deb package.
13.1.3.10 Install G++

Install g++-3.4 packages. At last, using the command below can build the source code successfully.

	$ gcc-3.4 -c -o PagePrint.o PagePrint.cpp `pkg-config --cflags mozilla-gtkmozembed gtk+-2.0` -I gfx/

Command 14
2. Checking Next URL file

According to the pageID, it will check if the pageID.html and pageID.info file exists or not. For example, the current pageID is #103 but we can not find page103.html. However, we can find page104.html. This means that #103 URL has some error but #104 URL is correct, so we can ignore #103 URL. If #104 URL does not exist, which means that #103 or #104 is being processing, the program will wait for 60 seconds and continue to check other numbers. An extreme situation is that there is no URLs’ html or info file available but the info log file appears. It shows that from URL number #X till # X+n they all have errors and can not get html and info files. In this situation, we then need to return empty value and skip all URL number from #X till #X+n.

3. Profile content

“Profile” is a file containing many parameters for users to modify the details of the program. For example, users can set the first identity number for the results, the loop times, test place and test machine for a test round. They can also set the PHP bin path, the browser width, height and screen bit, the path for URL list_all and URL failure file and so on. There are also many switches such as you can decide to use Pageprint function or not, you can decide to read pervious URL into global array for later URL redundancy checking, you can even decide to generate the next URL list or not. This is used for testing new functions in the program and no need to iteration.
The URL list file is a file simply organized by a list of URLs line by line. The lines in the first URL list file decide the number of URLs that generate later.

4. Country folder structure

Each file will represent a country and the IP block belongs to that country are recorded in lines. For example, if the Germany.zone file has IP block “201.2.0.0/16”, then it means from 201.2.0.0 till 201.2.255.255 are given to Germany. We accumulate these IP block number and hash them into 0 till 255 IP /8 blocks.
5. DURRIP content

In the DURRIP file, each line records one IP detection result, which includes first octet of IP address,
serial number, IP address, country index, country name and detection result.

6. Pageprint core
Someone may doubt why not make all this steps into the c code, so that there is no need to initial the GTK environment every time. The problem for this idea is that when an error URL opened by Mozilla browser accidentally, the browser will not stop loading it even if call stops loading function. No other way can stop it and the code could not continue with other URLs. This big bug happened with anther version of snapshot code that takes a URL list file as input. The whole process stuck there and can not go forward.

The snapshot technique is based on Xvfb and X server. These two thing combined together allows user to open more than one virtual screens on a computer. Although these screens may not be seen, they act just like the screen you can see. You can open a window or a program in that virtual screen and if the program provides remote control, you can give commands to operate them.

The GtkMozEmbed is another important issue here. It stands for Gtk Mozilla Embedding Widget. It is an easy-to-use widget that will allow you to embed a Mozilla browser window into your Gtk application. For example, you can use the GtkMozEmbed API functions to start a browser, open a URL. Moreover, you can set callback functions to detect the status of the browser. In this way, I can easily catch the time when the browser has finished downloading the pages and then to take a snapshot.
7. SPSS Cluster Method Analysis
The first one is appropriate for smaller samples (typically < 250), so it is not suitable for my data.
The second one is suitable for huge data and it uses Euclidean distance to compute the distances between clusters. As this method require that the researcher must specify in advance the desired number of clusters, and the fact that we are not sure about the desired number of clusters, we make it as the second choose. The consideration for this method is: the variables should be quantitative at the interval or ratio level and the order of initial cluster centre will affect the results.
The first choose goes to the third method. It analyzes groups’ cases into pre-clusters which are treated as single cases. Then standard hierarchical clustering is applied to the pre-clusters in the second step. This is the method used when one or more of the variables are categorical (not interval or dichotomous). The automatic clustering algorithm which determines the number of clusters is either the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC). And the clustering criterion is computed for each potential number of clusters. Smaller values of the BIC indicate better models, and in this situation, the "best" cluster solution has the smallest BIC. However, there are clustering problems in which the BIC will continue to decrease as the number of clusters increases, but the improvement in the cluster solution, as measured by the BIC Change, is not worth the increased complexity of the cluster model, as measured by the number of clusters. In such situations, the changes in BIC and changes in the distance measure are evaluated to determine the "best" cluster solution. A good solution will have a reasonably large Ratio of BIC Changes and a large Ratio of Distance Measures. The result may be affect by the order of the cases and the likelihood distance measure assumes that variables in the cluster model are independent. If the variables are not independent to each other, the result may be misleading.

In all, since two-step cluster analysis is a method requiring neither a proximity table like hierarchical classification nor an iterative process like K-means clustering (the first two methods), but rather is a one-pass-through-the-dataset method, it is recommended for very large datasets and suits our data.
8. Cluster experiment details
5.1 Continuous variables: html length and load time

The result comes from tw0-step analysis with only 2 continuous variables: html length and load time. The smallest BIC appears when there are 9 clusters.

Cluster Distribution Table 1
	
	N
	% of Combined
	% of Total

	Cluster
	1
	625
	60.7%
	60.7%

	
	2
	145
	14.1%
	14.1%

	
	3
	236
	22.9%
	22.9%

	
	4
	24
	2.3%
	2.3%

	Combined
	1030
	100.0%
	100.0%

	Total
	1030
	
	100.0%

5.2 Continuous variables: all info variables

The result comes from tw0-step analysis with all info variables: html length, load time, image number, link number, table number and so on. The smallest BIC appears when there are 9 clusters.

Cluster Distribution Table 2
	
	N
	% of Combined
	% of Total

	Cluster
	1
	689
	66.9%
	66.9%

	
	2
	341
	33.1%
	33.1%

	Combined
	1030
	100.0%
	100.0%

	Total
	1030
	
	100.0%

5.3 Continuous variables: image variables

The result comes from tw0-step analysis with image variables: max, min, mean, histogram value from 0 to 255, hist_0 to hist_7. The smallest BIC appears when there are 9 clusters.

Cluster Distribution Table 3
	
	N
	% of Combined
	% of Total

	Cluster
	1
	701
	68.1%
	68.1%

	
	2
	178
	17.3%
	17.3%

	
	3
	151
	14.7%
	14.7%

	Combined
	1030
	100.0%
	100.0%

	Total
	1030
	
	100.0%

5.4 Continuous variables: html length and load time

The smallest BIC appears when there are 21 clusters.

Cluster Distribution Table 5
	
	N
	% of Combined
	% of Total

	Cluster
	1
	5061
	55.5%
	55.5%

	
	2
	3838
	42.1%
	42.1%

	
	3
	226
	2.5%
	2.5%

	 Combined
	9125
	100.0%
	100.0%

	Total
	9125
	
	100.0%

5.5 Continuous variables: all info variables

The smallest BIC appears when there are 22 clusters.

Cluster Distribution Table 6
	
	N
	% of Combined
	% of Total

	Cluster
	1
	119
	1.3%
	1.3%

	
	2
	8966
	98.7%
	98.3%

	Combined
	9085
	100.0%
	99.6%

	Excluded Cases
	40
	
	.4%

	Total
	9125
	
	100.0%

5.6 Continuous variables: image variables

The smallest BIC appears when there are 31 clusters.

Cluster Distribution Table 7
	
	N
	% of Combined
	% of Total

	Cluster
	1
	7178
	79.0%
	78.7%

	
	2
	1905
	21.0%
	20.9%

	Combined
	9083
	100.0%
	99.5%

	Excluded Cases
	42
	
	.5%

	Total
	9125
	
	100.0%

5.7 Result on combined dataset

Now we try combined data (10153 URL) with two-step analysis method.

5.8 Continuous variables: html length and load time

The smallest BIC appears when there are 25 clusters.

Cluster Distribution Table 9
	
	N
	% of Combined
	% of Total

	Cluster
	1
	171
	1.7%
	1.7%

	
	2
	899
	8.9%
	8.9%

	
	3
	3518
	34.6%
	34.6%

	
	4
	5565
	54.8%
	54.8%

	Combined
	10153
	100.0%
	100.0%

	Total
	10153
	
	100.0%

5.9 Continuous variables: all info variables

The smallest BIC appears when there are 29 clusters.

Cluster Distribution Table 10
	
	N
	% of Combined
	% of Total

	Cluster
	1
	490
	4.8%
	4.8%

	
	2
	9663
	95.2%
	95.2%

	Combined
	10153
	100.0%
	100.0%

	Total
	10153
	
	100.0%

5.10 ntinuous variables: image variables

The smallest BIC appears when there are 35 clusters.

Cluster Distribution Table 11

	
	N
	% of Combined
	% of Total

	Cluster
	1
	8329
	82.0%
	82.0%

	
	2
	1824
	18.0%
	18.0%

	Combined
	10153
	100.0%
	100.0%

	Total
	10153
	
	100.0%

9. KML file

The KML file can be separated into two parts. The first part is to announce many styles with icons’ paths that just generated as hyper reference in them. The other part is to create Placemarks. Inside a Placemark, we need to give the country name as its name, the country’s value as its description, the corresponding icon path as its style number, and the country’s location as its coordinates. The name and the description of a Placemark will be the content in the info window if you click the icon.

$countryinfo (CI array):

· $countryinfo[$countryind][0] ++; // number of URL that belongs to that country
· $countryinfo[$countryind][1] += $value; //sum of field value
· $countryinfo[$countryind][2] = max;// maximum of the field value

$countryinfo[$countryind][3] = min;// minimum of the field value

10. Google Map API Key

Remember to check the Google Map API Key when you post the page to a server. Just copy those files to a www folder; one can see clearly the geographical distribution of web servers’ IP address in a map.

11. Image and Text detection

The reason to use this is because a text based page will have a white background with black words inside. Converting this page from RGB to gray color space and calculating the histogram, then map the histogram into 8 equal parts. The result will be two big hilltop on two sides and very low in the middle part. See Graph for text page histogram. However, if it is an image page, the histogram will look much different. There will be a lot value in the middle part of the histogram. The maximum value may also stay in the middle. The reason is that an image is successive in gray color space. Not like text page, whose numbers of color are quite limited, image page has much more colors and they are changing gradually other than sudden.

[image: image46.emf]
Graph 23: text page histogram

[image: image47.emf]
Graph 24: image page histogram
12. How to generate Icons

There are two main functions:

· DrawSqureChangingColorfulWithSizeWitBG function for generating icons for image and text detection. The program will draw the background first, and then iteration will draw the content. As its specialty, the content will be drawn line by line with different color. The color will be calculated by a HSV2RGB function that changes a hue number into RGB values. A blue edge will be added and then the changeAlpha function will make all the black part of the image into transparent. Finally we save the image as a PNG file

[image: image48.emf]6.4.1

CreateImage

Set cvPoint

cvLine

Draw BG

blue edge

changeAlpha

cvSaveImage

Loop from color

num

HSV2RGB

value

height

width

 max

value

File name

Graph 29: DrawSqureChangingColorfulWithSizeWitBG
· DrawSqureColorfulWithSizeWitBG function is used for all other utilities. The difference between this and the previous one is that it does not have a iteration to draw a rainbow; rather it will draw a square filled with a RGB color that you can specify as input.

[image: image49.emf]6.4.2

CreateImage

Set cvPoint

Draw BG

blue edge

changeAlpha

cvSaveImage

Draw

content

value

height

width

 max

value

File name

RedBlueGreen

Graph 30: DrawSqureColorfulWithSizeWitBG
13. How to generate thumbnail image

The thumbnail image is generated by resize.cpp file from F_GoogleMap\Resize folder. The procedure is: load the original image, create a new thumbnail image with small size, resize the original image into the thumbnail image, save the thumbnail image to file. This procedure will be called 6.2.4 for many times.
14. Tag name
As there might be many results, a tag is used to separate these results. The tag is added to the end of the HTML files, KML files and the folder name for the icon.

15. How to get country location

All country locations are gathered by querying the Google Map API, which will return a list of country’s latitude and longitude. First we will use GenCNIndex function to generate an XML file with data like this:

<Data>country short name</Data>
<Data>country name</Data>
<Data>country index</Data>
This file will be parsed in GenCNLatLng.html and the HTML page will retrieve the country location by calling geocoder.getLatLng function in Google Map API. The result is in the HTML page bellowing the Map div. We just need to save then into a file: CNLatLng.dat.
Sometimes we need to adjust the country name into simpler type as there are some country names that Google Map API doesn’t recognize. For example, the country name:” Korea, Republic of” need to be changed to “Korea”.

16. Randomness Introduction

Random function usually belongs to pseudorandom number generator (PRNG). It takes a “seed” as input parameter and generates a random number according to a certain algorithm. The set of the initial seed are also called “state” of the PRNG. They can be a number or a vector; usually they will be generated from the CPU time in computers, or some modification on the time value, or from a special hardware random number generator. The common algorithms are linear congruential generators, lagged Fibonacci generators, linear feedback shift registers and generalized feedback shift registers. The basic idea of these algorithms is to use some formula or matrix calculation to shift the initial number or vector in iteration. The judge on the algorithm is to see how many dimensions it can generate for equal distribution and the number of period length.

HTTP host

Allocated IP

Country

RIR

1�
2�
3�
�
4�
5�
6�
�
7�
8�
9�
�
B

1�
2�
3�
�
4�
5�
6�
�
7�
8�
9�
�
A

1�
2�
3�
�
4�
5�
6�
�
7�
8�
9�
�
C

IANA

�	DOM: Document Object Model

�	FLASH: Abode Flash Player

�	AJAX: Asynchronous JavaScript and XML

�	CSS: Cascading Style Sheets

�	DHTML: Dynamic HyperText Markup Language

�	XHTML: Extensible HyperText Markup Language

�	Ask.com: http://ask.com

�	del.icio.us: http://del.icio.us

�	GNUL stands for Generate Next URL List file

�	UHL2 stands for URL Host of Last Two names means domain names. e.g. : the UHL2 of “www.google.com” is “goolge.com”

�	UH/IP stands for URL Host or IP address. E.g. : the UH of “www.google.com/lang=en” is “www.google.com”

PAGE
21

_1246735235.vsd
Load URL Sink/RQNum

Check Sink

Write to file

Compare

Gen RandNum

Check RedNum

Check Boundary

Check URL

Check UHL2

Check UH/IP

Save to Arr

A

C

2.1.2

B

_1246974450.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

DURRIP

1

GenURLlist

DURRIP_1

DURRIP_2

DURRIP_X

GenIPv4

URLlist

CDT

Country256

Server256

.
.
.

1.1

_1247229543.vsd
3.1

_1247229626.vsd
3.3

_1247685643.vsd
Generate Table

1

Random IP Detection

2

Info & Pageprint

Clustering

Analysis

Visualization

3

5

6

4

_1247229593.vsd
3.2

Hist 0-7

Max, Index

Min, Index

Hist 0-255

Mid point

Mean

Std-dev

_1247228422.vsd
�

Check
INFO File

Check
IMG File

ReadInfoFile

ReadPagePrintFile

Feature
Table

Check
HTML File

ReadHSV

SplitRGBBlock

3

A

B

3.1

3.2

Raw data�

HTML
INFO
IMG

_1247228522.vsd
�

Category table

Feature table

Analyze URL

Others

Image
Seperation

GMap

5

Raw data�

HTML
INFO
IMG

_1246735284.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

Checking
Pageprint-bin

Pageprint-bin1

Pageprint-bin2

Pageprint-binN

.
.
.

Setting
Pageprint-bin X

2.2.1

Setting
Channel Y

Start X,Y

2.2.1.1

_1246974348.vsd
1.1

Random IP Generator

IP address

Detect function

Not in a country

Network Error

Socket Error

Success

_1246735296.vsd
Take snapshot

Write log file

image file

Log file

Read URL

Initial GTK enviornment

Open URL with Mozilla

2.2.1.1

Wait for browser response

Response back/TIMEOUT

_1246735254.vsd
Check
InfoStart

Exe URL

Check
Next
URLFile

2.2

CheckPagePrint

Write Report

Kill Xvfb

2.2.1

_1246647826.vsd
GFT

CDT

FT

6

KML file

HTML file

ICONS

_1246701521.vsd
6.4.1

Create Image

Loop from color num

Set cvPoint

cvLine

Draw BG

HSV2RGB

blue edge

changeAlpha

cvSaveImage

 value

height

width

 max
value

File name

_1246735199.vsd
Download HTML

Read URL List file

GNUL

Info Extract

First
URL List

Read a URL

HTML/INFO

Append to URL record

Append

Loop

Generate
Log

Next URL list

URLSink

After Loop

Next URL

Signal

Signal/Log

Profile

URL
Record

2.1

2.1.2

2.1.1

_1246735218.vsd
Check Rand Num

Check URLG locally

Check URLG globally

GNUL

Check URLG with present URL

Load old URLG to global Array

Check URL list

New URL

Old URL

Check URLG locally

Save URLG to global Array

Present URL

2.1.1

_1246735182.vsd
Signal

New URL List

Parallel

Central Dispatcher

Page Download & Info Extract

Pageprint

URL List

HTML/INFO

IMAGE/LOG

Report/Stdout

Append

URL record

LOG/SIGNAL

Read URL

Profile

2

2.1

2.2

_1246701538.vsd
6.4.2

Create Image

Set cvPoint

Red

Draw BG

blue edge

changeAlpha

cvSaveImage

Blue

Green

Draw
content

 value

height

width

 max
value

File name

_1246649156.vsd
6.3.1

search Cluind

CluI Array

Loop from CT

search Cind

Add CluI
Array[Cluind][Cind]

Check Cluind

Check Cind

_1246649950.vsd
Set color array

CluI Array

6.3.2

generate icon

generate kml

generate html

KML file

HTML file

ICONS

CNLatLng.dat

HTML Template

_1246648606.vsd
6.3.1

6.3.2

6.3

GenfromGMapClusterTableWithSize

CT

IPClusterTable2GMapTableArr

_1246614499.vsd
6.2.2

search Find

CI Array

Loop from FT

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

Loop from CI Array

CI Array[Cind][4]

FindSample

CI Array[Cind][5]

Check Find

Check Cind

create Fname

_1246647071.vsd
6.2

IP2GMapArrB

IP2GMapArr

IP2GMapArrIT

CI Array

FT

CNLatLng.dat

HTML Template

Tag

IPS

GArr

GAF

GSF

GB

GIT

URL

6.2.1

6.2.2

6.2.3

6.2.4

_1246647086.vsd
Loop from CI Array

output Arr

Sample Arr

Find max

6.2.4

IconGenerator

generate kml

set
CV

copy image

generate html

CI Arr

KML file

HTML file

ICONS

create thumbnail

CNLatLng.dat

HTML Template

Thumbnail

images

_1246643108.psd

_1246643377.psd

_1246616321.vsd
6.2.3

search Find

CI Array

Loop from FT

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

Loop from CI Array

CI Array[Cind][4]

FindSample

CI Array[Cind][5]

Check Find

Check Cind

create Fname

_1246533063.vsd
6.1

generate html

Read from
IPv4 result file

CDT

KML file

HTML file

ICONS

generate icon

generate kml

Loop

outputArr

CNLatLng.dat

HTML Template

Tag

URL

_1246610459.vsd
6.2.1

search Find

Check Find

Check Cind

CI Array

CI Array[Cind][5]

Loop from CI Array

CI Array[Cind][4]

search Cind

Add CI Array[Cind]

Add CS Array[Cind]

FindSample

Loop from FT

_1243326255.vsd
4

Feature Table

Cluster Program

Category Table

