
Artificial intelligence and data mining

applied to no-limit Texas Hold’em

Sjoerd Henstra & Robin van der Zwan

Leiden Institute of Advanced Computer Science
Universiteit Leiden, The Netherlands

shenstra@liacs.nl
rvdzwan@liacs.nl

January 30, 2007

Abstract

This project has two goals. First, to create a poker playing computer
softbot for Sit and Go tournaments. This bot will be based on statistics
and known strategies used by real players and should at least play better
than a player new to the game. Second, to data mine records of poker
hands played in the past and look for potentially interesting patterns that
might be useful in creating a poker bot. The goal here is to at least find
some interesting statistics about the way people play poker, and perhaps
to even find a way to predict a person’s cards by analysing his actions.

1 Introduction

Poker has a rich history of study in the academic field. Economists and mathe-
maticians have applied a variety of analytical techniques to poker-related prob-
lems. In early investigations in game theory, people like John von Neumann
[16] and John Nash [10], used a simplified version of poker to illustrate the
fundamental principles.

Until a few years ago, the computer science community has largely ignored
poker. The game has a number of topics that make it interesting to study. These
attributes include incomplete knowledge, risk management, opponent modelling,
multiple competing agents, deception, exploiting weaknesses by deducing play-
ing styles of opponents, and dealing with unreliable information. And this is all
combined in the game of poker [6]. Some of the work in game theory that was
already done on poker could only handle extremely simple poker games. An ex-
ample is Kuhn’s game for two players, using a three-card deck, one-card hands,
and one betting round, with at most two betting decisions [8]. This was enough

1

to demonstrate fundamental principles of game theory, but doesn’t resemble the
poker variations played today.

Recently the research on poker has exploded. Most of the work done on poker
is on limit poker. This is very different from no-limit poker. In limit poker there
is always a fixed amount you are allowed to bet but with no-limit poker you may
bet any amount at any time. No-limit poker is strategically very different from
limit poker. Because the whole stack is always in jeopardy, the risks and rewards
are much greater in no-limit poker than in limit poker. To play at the level of
the no-limit poker-pro’s it requires a greater knowledge of the opponent, better
judgement and more courage. In no-limit poker there is much more emphasis
on the “human” characteristics. This is why most research on poker is on limit
poker.

The University of Alberta Computer Poker Research Group has been re-
searching Artificial Intelligence applied to Poker since the mid-90’s. They have
created a pokerbot called Poki which is considered to be one of the best com-
puter playing pokerbots. Poki plays no limit poker. For more information visit
their website [11].

When we started this project we had great plans to create a complete bot
for playing No Limit Texas Hold’em at top level. However, during the creation
it turned out to be an enormous project, so enormous we had to cut back on
our plans. The new idea was to create a pokerbot who would win against basic
(predictable) players. More about our opponents in the experiment section.

We initially planned to use a database of games of Texas Hold’em played in
the past as training data for a neural network that classifies opponents. However,
we quickly decided not to do this, but rather to mine the database for interesting
information. Any useful information could be incorporated into the bot and
tested. Due to time constraints this implementation and testing could not fully
take place, but some of the results might be usable to create a stronger bot that
can take on, or see through, certain traits of human poker playing.

This paper will start with a short introduction into poker and the type of
poker that we are creating a soft-bot for. After that we have a chapter to discuss
what exactly it is what we are trying to make. The rest of the paper is split
up into three parts. The first part, which will be about the play of the bot and
the calculations involved, covered in Sections 2 and Section 3, was mostly the
work of Robin van der Zwan. The second part, which will be about data mining
on logs of poker games in Section 4, was done mostly by Sjoerd Henstra. The
third part will consist of experiments and results and we will finish with the
conclusions. At the end of the paper is a glossary for specific poker terms.

This bachelor project was done under supervision of Walter Kosters from
LIACS, Leiden.

2 Short introduction to Poker

There are many variants of Poker that are played. The research in this paper is
applied to a specific variation of poker called No-Limit Texas Hold’em. No-Limit

2

Texas Hold’em is the poker variation used to determine the world champion each
year at the World Series of Poker and it is one of the most popular versions of
poker played in (online) casinos. No-Limit Texas Hold’em is typically played
with two to ten players.

At the beginning of each hand of hold’em, the dealer starting at his left, and
deals around until each player has two cards face down. The deal moves to the
left after each hand. There is one round of betting on these first two cards. After
the first betting round the dealer now deals three cards face up in the middle
of the table. These cards are called the “flop.” They are community cards used
in common by every player still in the hand. There is then a second round of
betting. After that, a fourth card is dealt face up and a third round of betting
occurs. A fifth and final card is then turned up and a last round of betting takes
place. If there is more than one player left in the game at the end, the winner of
the pot is the player with the best poker hand using the best five out of seven
cards (the two in his hand and the five in the middle). In each betting round a
player can either fold (throw his hand away and lose possibility to win the pot),
call (match what the opponent has raised) or raise (increase their investment
in the pot). For a complete introduction to the rules of No Limit Hold ’em and
some basic strategy we refer to [4] or [1], or other books on (No-Limit) Texas
Hold’em.

There is no precise information on where or when Texas Hold ’em Poker was
first played. According to legend, the earliest game played was in Robstown,
Texas, in the early 1900s and it first came to Dallas, Texas in 1925. Texas
hold ’em was introduced to Las Vegas by a group of Texan gamblers and card
players, including Crandell Addington, Doyle Brunson, and Amarillo Slim. The
game was later introduced to Europe by bookmakers Terry Rogers and Liam
“The Gentleman” Flood [5].

No Limit Hold’em is not just a card game but a game of wagering based on
imperfect information that uses cards and actions of opponents to construct the
best action to take. To make a good estimate the following four factors have to
be taken into account:

1. The likelihood that the hand will improve as the cards are dealt, which is
straightforward mathematics.

2. An estimate of the hand that the opponent(s) may hold, which is based
on the history of actions for each player.

3. The likelihood that the opponent’s hand will improve, again straightfor-
ward mathematics, but complicated by the fact that the opponent’s hand
is not known for sure.

4. The money odds offered by the pot.

When a good player plays a hand, he looks at his cards, at his opponents,
considers the betting, and makes an educated guess whether to check, bet or
call, raise or fold [4]. And even if you know that you are going to bet or raise
you also have to determine the amount you want to bet or raise.

3

Another important part of No Limit Hold ’em is, like in each form of poker,
bluffing. In NL hold ’em you don’t have to have the best hand to win the pot.
When you make everyone fold their hand you win the pot without showing your
hand. The type of opponents that you are playing is a huge part of deciding
when and if you need to bluff. Bluffing will be discussed in the next section.
But this also means that people will try to bluff you, and how can you tell if
someone is bluffing you or actually has a good hand? In real life games you can
sometimes have tells (physical motions that give away their hand) on someone,
if they for example always look away when they bluff. In online poker you don’t
have any of these tells. The only thing you know about your opponents is their
betting pattern, but when you have enough data on this you can classify your
opponents and give an educated guess on whether they are bluffing or actualy
have a hand.

In poker there are different poker combinations (later discussed in Hand eval-
uations). These combinations always consist of five cards. This sometimes gives
some confusion. When for example the community cards are T♦9♥8♣6♣2♦
and each player holds a 7 in their hands their other card is unused. This will
give a split pot and each player gets half of the pot. Here are the different poker
combinations with an example (from high to low):

Royal Flush A♠K♠Q♠J♠T♠
Straight Flush 8♠7♠6♠5♠4♠
Four of a Kind 9♠9♣9♦9♥5♣
Full House A♣A♥A♠2♥2♦
Flush K♥9♥8♥4♥2♥
Straight Q♣J♥T♥9♦8♠
Three of a Kind 5♣5♥5♠K♥J♦
Two pair K♣K♥7♠7♥3♦
One pair A♣A♥8♠6♥2♦
High Card A♣Q♥9♠6♥4♦

With NL hold ’em there are cash-games and tournaments. There is a big dif-
ference in strategy. The best tournament players are usually not very successful
in cash-games and vice versa. With cash-games you have to buy-in for a certain
amount. There is usually a minimum and maximum buy-in at cash-games and
then you can play with that money. In a tournament there is a fixed buy-in
amount where the top percent of the players is paid. Usually the top 10 % is
paid. The tournament is where the big money lies because prize money for the
first place is usually almost a quarter of the total prize pool.

We will be concentrating on tournament play and especially Sit and Go’s. A
normal tournament is more than one table and the top 10% is paid. In a Sit and
Go there is a maximum of one table, it can either be 2, 6, 8 or 10 players. The
advantage of using this as a starting point is that you don’t have to consider
merging tables and so on. Another reason we took this approach is because it is
relatively easy to expand to multi-table tournaments. Eventually it could also
be extended for playing cash games.

4

3 The pokerbot

The idea of this part of the project is to create a pokerbot who can win against
basic opponents. The different type of opponents will be described in the exper-
iment section. This section contains the ideas we used to create our pokerbot.
This section has mostly been done by Robin van der Zwan. In building this
pokerbot we want to look at the following points to determine the play:

1. What is the status of the tournament?

2. How many players are at your table?

3. Who are the players at your table?

4. How does your stack compare to the blinds and ante’s?

5. How big are the other stacks at your table?

6. Were do you sit in relation to the aggressive and passive players?

7. What bets have been made before you have to act?

8. How many active players are left after you act?

9. How much are the pot odds?

10. What is your position at the table (after the flop)?

11. What are your cards?

This seems like a lot of points and it is, but NL hold ’em is not just a simple
card game. It requires quite an amount of effort to just play decent. If you are
wondering why bluffing is not a part of the list, it actually is but it is part of
the status of the tournament and part of who the other players are.

All of these points are very important and that is why we have to implement
as many of them as possible. You miss a lot of information when you don’t use
everything you have got. In the following subsections all of the above points
are discussed and we describe how we implemented them in our program. Each
point is important but some points are more important than others. Because
of the work involved with implementing each of these points, some points have
not been implemented. This does not mean they are not important.

3.1 The status of the tournament

Most tournaments pay about 5–10 percent of the players. The Sit and Go tour-
naments that we concentrate on pay the first three places. This means that
when there are ten players the first seven people out don’t win anything. The
prize pool distribution is as follows:

• 1st Place is 50%.

5

• 2nd Place is 30 %.

• 3rd Place is 20 %.

So there is a big difference between getting 1st place and the other paying
places. Usually play is normal until the paying places start to get close. Most
players play conservatively to preserve their chips to be guaranteed at least some
money. Good players become aggressive and change their play to get some easy
chips, to make sure they don’t just win some money but try to win the most,
because people will try to avoid confrontations because that endangers them
from getting in the money.

This means that our program should change its play if there are 4 or 5 people
left. We are all ready changing our play at this point because the blinds are much
higher but this is one of those parts we didn’t have enough time to implement,
mostly because these are very specific cases where for example if you have a big
stack and there are 2 short stacks your actions change a little. However you also
have to look at the history of the last few hands to get an optimized use of the
changed play. Also unchanged play will still be decent/profitable play, just not
the most profitable.

3.2 The number of players at your table

This is very simple to determine of course, but it is very important. If there are
fewer people on the table you can/have to play more starting hands because
there are fewer players in the hand. Which means that there are fewer good
hands ’out there’. Also instead of paying for the blinds once every nine or ten
hands now you have to pay them every three or four hands. This means you have
to play more hands to just stay alive. Our program checks how many players
are left in the tournament and makes different decisions if there are less people
at the table. We experimented with this (when to change your play), see the
experiment section.

3.3 How is your stack compared to the blinds

You don’t look at the absolute size of the blinds and ante’s. Their size compared
to your stack is what is important. If the blinds are small compared to your stack
you can survive many hands without playing. However, if your stack is just a
few times larger than the blinds you have to start playing more hands. You can’t
wait for the premium hands. Hands you wouldn’t even consider playing at the
beginning of a tournament have to be played to survive.

In the Sit and Go tournaments, when this stage of the game is reached,
usually half of the people are already out and you would have to change your
strategy anyway. In the multi table tournaments this is not always the case.
You might still be on a table with ten people when your stack is only a couple
of times the blinds.

You can describe the value of your stack in multiples of the blinds. If you
divide your stack by the big blind + the small blind you get a number we call M .

6

If your M drops under 5 you are in serious trouble and have to change your play
dramatically. We have also implemented this. For example if M = 5, suppose
you get dealt 9–9. When this happens at the beginning of the tournament (when
your M is still high) you would just raise 2 or 3 times the big blind. Instead you
would now have to go all-in. Our program calculates his M before each hand
and takes different actions depending on its value.

There are also advantages of having a big stack because you can bully around
the other players. They are in danger if losing their entire stack when they
want to mess with you, while you can just lose chips but still remain in the
tournament.

3.4 What are the other stack sizes at your table

In the previous subsection it became clear how important your stack size is. If
your stack is larger than the other stacks on the table you can dominate the
action. If your stack is average you can bully the small stacks but have to be
careful for the big stacks because they can eliminate you. When you have a short
stack (one of the smallest stacks on the table) you can’t steal very often and
just have to hope you win some showdowns with all your chips in the middle so
you can acquire a larger stack.

This also means that if a player who is the short stack moves all-in he doesn’t
have to have as good a hand as a player who has a larger stack. You can now
call with more hands than you usually would have called with. Our program
will look at the M of the player who moved all-in and if his M is lower then 3 we
will call where we would usually fold. There can be done a whole lot more with
adjusting play according to the stack sizes but that will require huge amounts
of code and the advantage you gain is not as important as some other aspects
we did implement.

3.5 The type of players at your table

Originally this was planned to be a big part of our program. The idea was to
use neural networks to classify each opponents aggressiveness and tightness to
get a better idea of what certain raises mean. It is a whole different story if you
are up against a player who plays every hand (loose player) than if you’re up
against a player who you know only plays good cards (tight player). If you are
at a table with a lot of aggressive players you want to play conservative and if
a table has a lot of conservative players you want to play aggressive. We were
unable to implement this because the opponent modelling turned out to be very
difficult. The problem is getting correct data to use for opponent modelling.
The best opponent modelling would remember everything the opponents have
done. It is a shame we couldn’t implement this because it is an important part
of playing No Limit Texas Hold’em. Our idea was to remember specific moves
and determine the aggressiveness and tightness of the players. A specific move
is, for example, trying to steal the blinds from the button position.

7

3.6 Where are the other players

When you are playing in a tournament you want the aggressive players to be on
your right and the tight players to be on your left. This is not something you
can just decide, but you can adjust your play if you have aggressive players to
your right. If you have an aggressive player on your left you want to play less
hands but if he is to your right you like to play more hands because you get to
act after he does.

In the previous subsection it is explained why opponent modelling was not
implemented. That means that the ideas in this subsection is also not imple-
mented because to change play according to the location of aggressive and tight
players you first have to know who is tight or aggressive.

3.7 What is the action before you act

The only absolute strong hands pre-flop is a pair of Aces. All other hands have
to be evaluated in terms of the betting that has already occurred. A pair of
jacks is good when there is no-one before you who has entered the pot. But
when there has already been a bet–raise–re-raise it is likely to be second or even
third best.

We implemented this to look whether the pot has been opened yet. When
it’s unopened raise with certain hands you would call or even fold with if the
pot had been opened.

3.8 How many players are active after you act

There are different situations where you can either close the betting round or
sometimes can’t end the betting round. If for example there has been a bet
and a raise in front of you, you can’t stop the action regardless of your action
because the player who made the first bet can still decide to raise. You have
to play more careful if you’re not sure of the action behind you. This is just
something you have to take in consideration and always remains the same, no
matter the opponent or the stage of the tournament. This is fairly standard to
program simply because it is always the case.

3.9 How much are the pot odds

This is straightforward mathematics. What are the odds of making the hand
(when you are drawing to catch a straight or a flush for example) and what
is the amount you have to pay to stay in the hand? We implemented this as
follows: First we look how many cards there are to make our hand. If we have
4 card to a flush (just need one more card to hit our flush) there are 9 cards
that will give us that flush. When this is on the flop there are 52 − 5 = 47
unknown cards. This gives a chance of 9/47 that we hit our flush. If we have
to pay less then 9/47 of the pot we will call and otherwise we will fold. This
can be changed because if we hit the flush you might get more money out of

8

your opponent (called the implied odds). See the mathematics section for more
detail on how exactly those odds are calculated.

3.10 What is your position in relation to the dealer

It is an disadvantage if you have to act first in a hand, because you have to
act with no information about what your opponent might do. It is good to act
last because you get to see what your opponent(s) did. Some players even make
moves to make sure they have good position. You might play weaker hands if
you know that you have position. We didn’t bother too much about this. It is
more for improving our program later on.

3.11 What are your cards

Last but not least, what kind of cards are you holding? They of course are
important. But all the aspects of a hand (from the previous subsections) are
important. Sometimes you will be in a situation where you will make a play
regardless of the cards that you are holding.

At the beginning of our program the hole cards that you get dealt are clas-
sified. We have 27 different classifications where 1 is the best classification and
27 the worst. Some card combinations get the same classification. If you get a
pair of threes or a pair of fours you would like to play them in the same way so
they will get the same classification. All cards you don’t want to play will get
classification 27. This does not mean you will never play those cards. There are
situations where you will play any hand even if it has classification 27. These
classifications are used to determine whether you will fold/call/raise. We can
also experiment with this and we have done that.

3.12 Mathematics involved

Creating a computer program which can play (decent) poker requires a lot of
calculations to determine what action has to be taken. In this section most of
the mathematics that is involved is discussed.

3.12.1 Starting hands

We begin with the starting hands. Each player is dealt a starting hand that con-

sists of 2 cards. Because a normal deck of cards is used there are
(52

2

)
= 1, 326

different starting hands. However the starting hand A♣K♣ can be considered to
be the same as A♦K♦, just like 5♠5♥ can be considered the same as 5♦5♣. Af-
ter removing all equal starting hands we are left with “only” 169 starting hands.
We get this number by taking all pairs (13) and each combination of cards from
the same suit (78 = 12 (A-x)+11 (K-x)+10 (Q-x)+9 (J-x)+8 (T-x)+7 (9-x)+6
(8-x)+5 (7-x)+4 (6-x)+3 (5-x)+2 (4-x)+1 (3-x)) and unsuited (78). This gives
the idea you can say that you have a 1/169 chance to get Aces as a starting
hand, which is incorrect. There are 6 ways to get dealt AA (A♣A♦, A♣A♥,

9

A♣A♠, A♦A♥, A♦A♠, A♥A♠) which gives 6/1326 6= 1/169. However we can
still use just the 169 starting hands instead of the 1,326 if we don’t care about
the chance of getting a particular starting hand. It can be useful if we try to
determine what an opponent might be holding.

The next part of the game where new cards come into play is the flop.
We already know our own two cards and they can’t be part of the flop. This

means there are
(50

3

)
= 19, 600 different flops possible. For the turn there

are
(47

1

)
= 47 possibilities and finally for the river there are

(46
1

)
= 46

possibilities. This gives a total of

1, 326× 19, 600× 47× 46 ≈ 5.6× 1010

possible outcomes of each game if we only look at our own hand and don’t take
any opponents into consideration. We could deal the cards 50 billion times and
have not once see the exact same 7 cards.

First we wanted to calculate all the odds for each possible starting hand
to win before the flop, after the flop, after the turn. And this has to be done
against one, two, three, four, . . . opponents. We decided not to brute force these
calculations for several reasons. First of all it would take to long to calculate
even though it would only have to be calculated once. With just one opponent
you would have to calculate the following amount of different possibilities:(52

2

)
×

(50
2

)
×

(48
3

)
×

(45
1

)
×

(44
1

)
≈ 5.56× 1013

And with more opponents the number gets even larger. This is however not the
only reason we decided not to calculate each of the odds precisely. It doesn’t
make much of a difference whether you know the odds are 58, 392% or 58, 4%.
Those small percentages don’t contribute to the calculations of making the
decision whether to fold/call/raise. Position is for example much more important
than to know the exact odds.

However, after some searching we found an approximation of the probability
of winning for any given hand and specific flop, against varying numbers of
opponents (1,3,6,9). They were computed by considering each of the 169 possible
hold card combinations, and the 50 × 49 × 48/6 (you divide by six because
it doesn’t matter whether the flop is AKQ or QKA) possible flops. In each
of the resulting 3,312,400 cases, we imagine dealing the turn and river cards
randomly and then computing the probability of beating N opponents who all
hold independently chosen random hands. This means that for each of the 3
million cases, for the case of one opponent, we compute:

(1/1081)×
1081∑
T=1

(1/990)
990∑

H=1

I(T,H)

where T indexes the 47× 46/2 = 1081 possibilities for the turn and river cards,
H indexes the 45 × 44/2 = 990 possible hole combinations the opponent can

10

have, and I(T,H) is 1 if we have the better hand given these choices for the
turn, river and opposing hand, 0 if we lose and 0.5 if we tie. So for each hand
you look at the possible turn and river cards, for each turn and river you look at
each possible opponent’s hand, for each opponent’s hand we see who wins. To
handle more than one opponent, we make the approximation that opponent’s
hands are independent after the board cards are dealt (which isn’t perfectly
true — if the board has 3 aces, then they can’t both hold the fourth), when the
computation for N opponents becomes:

(1/1081)×
1081∑
T=1

[(1/990)
990∑

H=1

I(T,H)]N .

However, we will use this at most against three opponents and just start
of using it against one opponent. So N is at most 3. This gives a generated
file of 3,312,400 lines for each starting hand with each possible flop, and the
probabilities to win with it.

3.12.2 Pot odds

This section is about calculations that actually take place during the game.
Because not all the cards are shown at the beginning of a hand sometimes you
have to calculate what chance you have to make a hand. The following example
will show some calculations you have to make during the game. This is the only
mathematics involved during the gameplay but it is important when you have
to decide if you are going to play a hand.

You are in late position. The blinds are $5–$10. A person who is in early
position raised three times the big blind. There are two callers from weak players.
When it is your turn to act you have the hand 7♣8♣. This is a decent hand to
play from this position with already 3 people in the hand. So you call, the small
blind folds and the big blind calls. The pot is now $30 + $30 + $30 + $30 + $5
+ $30 = $155.

The flop is 6♣T♦K♣. The Big blind bets $75 (about half the pot), the
player in EP calls and the other two players fold. Now it is your turn to act.
You have to put in $75 to win $155 + $75 + $75 = $305. This is a little more
then 4–1 odds. We assume that if either a 9 (to give you a straight) or a club
(to give you a flush) will give you the winning hand. This means there are 4 + 8
= 12 cards in the remaining 47 cards that will give you the winning hand. This
means there is a 12/47 = 25.5% chance to win. That is a little more then 1/4.
Because the odds of making your hand is higher than the pot odds, we will put
in $75. The pot now holds $380.

The turn card is 5♥. The big blind bets $100 and the person in early position
calls. We have to pay $100 to win $580. And our odds of making our hand is
even better. Now any 4 or any 9 or any club will give us the winning hand.
Those are 4 + 4 + 7 = 15 cards that help us out of the 46 cards left. That is
almost 1/3 and we only have almost 6–1 pot odds. Which makes this a call.

11

Sometimes even when you don’t have the correct odds to call you can still
make the call because you expect to make money in the next betting round if
you made your hand. Those are called the implied odds. We don’t take those in
consideration in our program. There are also situations where you would bet a
draw to either win it at that moment or if you don’t you can still win if you hit
your draw. This is called a semi-bluff and is very powerful in No Limit Texas
Hold’em.

The following table shows the number of outs for the most occurring situa-
tions and important:

Drawing Hand Drawing to Number of Outs
Pair Three of a Kind 2 outs

Two pair, inside straight Full house, Straight 4 outs
Two overcards Pair 6 outs

Open-ended straight draw Straight 8 outs
4-card Flush draw Flush 9 outs

Flush draw with inside straight draw Flush or Straight 12 outs
Flush draw with open-ended straight draw Flush or Straight 15 outs

As shown in the example above, when you have the number of outs you
can easily calculate if you should fold or call (Not taking implied odds into
consideration.).

3.12.3 Hand evaluator

There are different stages where we need to evaluate what kind of hand we
currently hold using our own cards and the community cards. At the flop we
look at the available five cards to determine if we have a pair, a flush, a straight
etc. This happens again at the turn but then we use the available six cards.
Finally at the river we use all seven cards to determine our hand and finally if
there is a showdown to determine who is the winner we evaluate all hands that
are involved in the showdown to determine the winner.

We use a very simple method to evaluate the hand we have. We simply look
at the available cards and use basic comparisons to find pairs and straights. We
also check for the flush but do that separately. Because this is such a big project
we didn’t put much time in this part.

There has been done some related work on hand evaluations by Kevin Suf-

fecool [15]. He first distinguished the poker hands to go from
(52

5

)
= 2,598,960

unique hands to 7,462 distinct hands. He realized that even though there are
nearly 2.6 million unique hands, many of those hands actually have the same
poker hand value. In other words, somebody holding an AJ942 flush in spades
has the exact same value hand as somebody with an AJ942 flush in clubs. His
results are shown in the following table. Where ‘unique’ means the actual num-
ber of hands and ‘distinct’ means the number of different kinds of hands. For
example, consider the straight flushes 3♣4♣5♣6♣7♣ and 3♥4♥5♥6♥7♥. They
are 2 unique hands, different cards are used in each hand, but they can be con-

12

sidered to be the same hand because they have an equal value.

Hand Value Unique Distinct
Straight Flush 40 10
Four of a Kind 624 156

Full House 3744 156
Flush 5108 1277

Straight 10200 10
Three of a Kind 54912 858

Two pair 123552 858
One pair 1098240 2860
High card 1302540 1277
TOTAL 2598960 7462

To complicate matters, the algorithm needed to be order independent. For
example, if the cards K♦Q♠J♣T♥9♠ are passed to his evaluator, it must gen-
erate the value 1601 (which is the value that is assigned to a King High Straight).
However, if the order of the cards is changed in any fashion, it must still return
the value of 1601. Mixing up the five cards does not change the overall value of
the hand. At first, he could always simply sort the hand first before passing it
to the evaluator; but sorting takes time, and the last thing you want to do is
waste CPU cycles. So instead he would use prime numbers. He assigned a prime
number to each card.

Two 2
Three 3
Four 5
Five 7
Six 11

Seven 13
Eight 17
Nine 19
Ten 23
Jack 29

Queen 31
King 37
Ace 41

If you multiply the prime values of the rank of each card in your hand, you get
a unique product, regardless of the order of the five cards. A King High Straight
hand will always generate a product value of 14,535,931. Since multiplication is
one of the fastest calculations a computer can make, this method is much faster
than sorting.

13

This way he got one of the fastest hand evaluators. And he made his code
open source so we can use it. Implementing this completely is something for
future work on this project.

3.13 How the bot works

In this section we give a general description on how the bot works, in the fol-
lowing section we present a more detailed description on what the bot makes
its decisions.

A tough part about this project is how and where to begin because it is
such a huge project. The first thing was to give a classification to the starting
hands. Each hand is categorized so that the correct action can be taken. The
best hands are of course aces and weak cards like 2 and 7 of different suits are
given the lowest classification. The first part where the bot has to take action
is pre-flop when only the hole cards are known. We use the classification-value,
the position and the actions of the other players to decide what to do.

The input for the bot first is the position of the button to decide what the
position of the bot is. It also gets the stack sizes of all the opponents. The cards
are dealt and the bot gets his two hole cards. It will give a value to that hand
according to how good a hand it is. The next input for the bot consists of the
actions of each player. When it is time to decide whether or not to play the
hand, he will use the input up to that point. The output will be an action like
fold, call or raise. When raising, the bot also gives an amount as part of its
output. After its action it gets input on what the remaining opponents actions
are. This repeats after the flop is dealt and again after the turn and river card,
where of course the input consists of the community card(s) instead of the hole
cards. The final input is about the player who wins the pot. Here an output can
be either to show or muck your cards.

The program can be viewed as a poker playing agent or bot. During a com-
plete hand there are several moments where the agent has to take action. His
action can either be fold, check, call or raise, where a raise also comes with an
amount. An action is based on all information that is currently available to the
agent. As mentioned before this only concerns the current hand. First of all the
agents uses a rule-based algorithm (cf. Section 3.11 and Section 3.12.3) to de-
termine the strength of his hand (i.e., the community cards and the hole cards
together). Then the actions of the other players so far are taken into account.
Again, a rule-based system (cf. Section 3.7) decides what to do, using both the
output from this and the first step. Finally, for the second step we use some
randomness to vary the play of the bot.

When playing good opponents it is important that you don’t always do the
same thing with the same cards. If you always raise a certain amount from the
first position when you have AA it will soon give away your hand. For this
reason we have included some randomization in our actions. For example with
AA in early position we use a random generator where in 25% of the time we
call and 75% of the time we raise. And we also randomize our raises. Against
the opponents that we are playing for the experiments this is not crucial but

14

when we want to expand our project it is important to have built in already.
We have a function called outs to calculate our odds to call or even raise (also
see the previous section on how we used this).

In poker you have multiple competing agents that must deal with probabilis-
tic knowledge, risk management, deception, and opponent modelling, among
other things. This seems a lot to take care of and it is. But that is what a poker
playing agent requires to become decent enough to compete with real players.

When we started with the project our idea was to create an agent who could
adapt itself to the different type of opponents. The agent would have a predefined
set of rules on how to act in different situations but it would be able to detect
what the current situation was. This so-called reflex based agent [14] observes
what the actions around him are and decides, using his own set of rules, the
appropriate actions. This agent structure seems to be the most natural choice
because the rules and possibilities in poker are known and don’t change. The
only thing that changes is the way people play certain hands. For that you’ll
need good opponent modelling. In a future project more advanced strategies
can be implemented for the bot instead of the simple reflex based agent that we
now have. Our first intentions were to use some sort of neural network for the
opponent modelling but this seemed unfeasible. However some variation can be
added to the project in the future.

4 Pokerbot Experiments

In order to see whether our pokerbot will actually win against basic opponents
we have to test it of course. We also created a couple of basic bots to test against.
In the next section we give the results against those bots. We tested our program
against the following bots. These bots are created under the assumption that
on line beginning players often play very bad, so that you will indeed encounter
these kind of opponents.

• Call bot, a bot who never bets but always calls your bets (unbluffable).
Also called a calling station. Often plays in low no-limit poker on line.

• Fold bot, a bot who folds every hand.

• Raise bot, a bot who raises every hand. Also often found in low no-limit
poker on line.

• Random bot, a bot who does random actions. Often beginners play like
Random bot would. However the bot won’t fold when it has the option of
checking.

• Simple bot, a bot who can make some simple decisions from the previous
sections to determine his play.

Simple bot is the bot that we created that can use some of the basic rules
to play winning poker. First when its cards are received it gives a classification

15

to his hand. He will then see what the action is before he is to act. Depending
on the action and the hand classification it is determined what kind of action
has to be taken. Simple bot uses a randomized function to have little variations
to its play. When determining its move pre-flop it will also take the number of
opponents that are left into consideration. It does not take chip stacks of the
opponents into consideration and also does not take the type of opponents into
deciding its action.

After the flop is dealt it will see how strong his hand is and does the action
that is expected with its hand strength. Again with a randomized function to
have little variations from time to time. The possible hands that are possible on
the flop are not taken into consideration when deciding its action. This is still
one of the flaws but requires quite a lot of work to implement.

The action after the turn and river are the same as the action after the flop.
It is also determined by the strength of the hand. The bot could be improved a
lot if it would take the possible hands into consideration. This could be done in
the future but will be a lot of work. There are also a lot of different features that
still have to be implemented, for example taking chip stacks into consideration,
taking the table image into consideration and much more.

Against each type of opponent we’ve let our bot play 100,000 games, but
also against combinations of opponents. Since a table consists of ten players we
have also experimented with 4 Random bots, 2 Raise bots and 3 Call bots for
example.

The problem is of course that these are still very basic opponents and it is
not an indication that our bot is a good player if it beats them, just that we
can defeat the basic players.

5 Results

For the first experiment we used a full table, consisting of two bots of each type
(Call, Fold, Raise, Random and Simple). Each bot starts with 200 in chips. We
start with a big blind of 2. (In most real-money on line Sit and Go tournaments
each player starts with 100 times the big blind as a stack.) We ran our program
100,000 times and the results are shown in the following table. The value of
the cells is the number of times that bot finished in that position. For example,
Simple Bot1 finished 812 times as winner, 4791 times as second and so on.

16

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Simple Bot 1 812 4791 38587 27274 5000 13886 9421 224 5 0
Simple Bot 2 804 4637 38667 27186 5090 14066 9282 229 6 0
Fold Bot 1 0 104 2478 17468 44430 30028 5492 0 0 0
Fold Bot 2 0 107 2398 20337 42333 31958 2867 0 0 0
Call Bot 1 24598 23211 4552 1890 700 1647 10043 9343 7684 16325
Call Bot 2 25132 23041 4325 1916 726 1546 9789 9693 8945 14981
Raise Bot 1 24636 22442 4546 1938 745 1863 9881 10311 10015 13527
Raise Bot 2 24006 21655 4412 1960 702 2098 10311 10775 11141 12925

Random bot 1 4 4 9 11 124 1370 16430 29328 30374 22345
Random bot 2 8 10 26 20 150 1543 16484 30027 31830 19897

There are some interesting results from the first experiment. First of all we
were disappointed in the performance of Simple Bot, we expected for it to end
higher on average. From the 100,000 games that were played it never finished
as 10th. When we were trying to find the reason why it performed worse than
expected we found the ’problem’ was at the end of the tournament. Our bot
folded to many hands, waiting for a good one, and thereby lost most of its
chips because of the higher blinds at the end of each tournament. When we
look at the results from Call Bot and Raise Bot it seems like they behave in a
somewhat similar way. This was to be expected because they both play every
hand to the end and it just comes to luck who finishes on a higher position.
Fold Bot performed better then expected by getting a 5th place on average.
The worse bot was Random Bot, we never expected it to finish high because
random actions don’t get you very far during a pokergame.

We modified the Simple Bot so that it would perform better at heads-up play
and overall better performance at the finishing stage of the tournament. This
was done by lowering its hand standards and playing more aggressive, meaning
it would raise its good hands higher than before. We redid the experiment with
the same conditions but with our modified Simple Bot and the following table
shows the results of 100,000 runs.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Simple Bot 1 34271 19910 17231 8045 1905 9474 6540 2202 398 24
Simple Bot 2 25586 20429 18824 10034 2320 12183 7834 2522 381 30
Fold Bot 1 0 412 6724 31675 44285 16643 261 0 0 0
Fold Bot 2 0 424 6082 33925 42570 16937 62 0 0 0
Call Bot 1 12884 15943 11545 3391 926 6139 8753 7059 5168 28176
Call Bot 2 12729 15755 11438 3268 904 6110 9017 7422 11419 21877
Raise Bot 1 7311 13562 14375 5072 1607 7676 9759 9178 15064 16372
Raise Bot 2 7187 13464 13669 4260 1964 8607 9911 11002 17074 12841

Random bot 1 22 61 66 135 1701 7879 23463 29397 25781 11492
Random bot 2 10 56 46 195 1818 8352 24400 31218 24715 9811

We can see from the results that the modification to Simple Bot makes a

17

big difference. The performance of the bots, except for Simple Bot, remains
the same which was to be expected because we only modified Simple Bot. Now
when a few people are out of the tournament it changes its playing style and
plays more hands and more aggressively. This is the best result so far and what
we hoped for. Our bot can now defeat the simple type of opponents. This will
probably be fine for the very low limits of on line poker, however when you
want to play on higher limits it becomes a too predictable opponent because it
is incapable to make moves which are not included in its program yet.

But what will happen when we start with a smaller or larger starting stack?
For the following experiments we first set the starting stack to 500 and then
to 50 to see whether it makes a difference. The idea is that when the starting
stack is smaller there is more luck involved and when it is bigger skill becomes
more important. The first table are the results from 100,000 tournaments with a
starting stack of 500. The second table are the results from 100,000 tournaments
with a starting stack of 50.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Simple Bot 1 38858 40387 10458 7829 82 816 1055 401 117 17
Simple Bot 2 43721 23650 14640 13114 198 1935 1979 563 184 29
Fold Bot 1 0 0 141 8054 44810 42752 4243 0 0 0
Fold Bot 2 0 0 249 8341 45726 40853 4831 0 0 0
Call Bot 1 7788 12243 15892 12639 2427 2560 16942 10997 8250 10260
Call Bot 2 7930 12264 15731 12822 2412 2538 17184 10990 8007 210092
Raise Bot 1 860 5833 21612 19397 2413 3321 16529 11321 8293 10431
Raise Bot 2 843 5623 21277 17804 1887 4163 17297 11880 8675 10550

Random bot 1 0 0 0 0 19 497 10002 26842 33204 29436
Random bot 2 0 0 0 0 26 565 9938 27006 33280 29185

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Simple Bot 1 19689 20633 8200 12456 23896 7792 1983 516 146 4689
Simple Bot 2 18439 22034 6866 15219 23390 7092 1861 487 417 4469
Fold Bot 1 0 14973 41586 33309 9710 422 0 0 0 0
Fold Bot 2 0 17034 39959 33927 8561 519 0 0 0 0
Call Bot 1 14517 5139 720 173 599 925 982 1140 7559 68246
Call Bot 2 14688 5163 626 177 666 1052 1403 6180 53029 17016
Raise Bot 1 13152 5609 748 403 1168 1766 4639 40424 29755 2346
Raise Bot 2 13128 5344 597 504 1412 3508 30179 39141 5216 971

Random bot 1 3206 2170 343 1519 9871 32982 38662 7633 1934 1680
Random bot 2 3181 2085 355 2313 20727 43942 20291 4479 1944 583

We can see a big difference in results from both experiments. When we start
with a much larger chip stack Simple Bot wins more then 80% of the time but
when the chip stacks are very small it will win less then 40% of the time. This
shows that the longer the tournament takes the more advantage Simple Bot
gets because it has enough time to wait for decent hands. The fewer amount of
starting chips the more it becomes like a game of luck instead of skill.

18

In the last experiment we only used one Simple Bot and an extra Raise Bot.
The starting stack is again 200. In the second table in this section we’ve seen
that with two Simple Bot’s in 60% of the cases a Simple Bot wins. It would
also be interesting to see if there is only one Simple Bot if it can also win 60%
of the time. The following table shows the results from 100,000 runs with one
Simple Bot replaced by a Call Bot.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Simple Bot 1 48949 17800 13931 887 2641 8064 5894 1644 210 10
Fold Bot 1 0 420 9904 45232 39702 4736 6 0 0 0
Fold Bot 2 0 440 9762 45922 40593 3271 12 0 0 0
Call Bot 1 11335 15452 12852 1567 1219 8461 8623 7911 5242 27347
Call Bot 2 10968 16188 13063 1629 1206 8392 8398 7708 11181 21273
Call Bot 3 11107 16390 13140 1575 1181 8718 8718 9061 14642 15456
Raise Bot 1 8785 16703 13612 1506 1752 8879 9477 11419 15913 11950
Raise Bot 2 8760 16196 12859 1114 2095 8926 9786 13092 15719 11446

Random bot 1 45 193 479 256 4574 19996 24115 23805 19477 7060
Random bot 2 51 218 298 312 5037 20579 24971 25360 17616 5458

The performance of the basic bots remains the same and Simple Bot would
win almost 50% of the time.

Because Fold bot did much better than expected in the experiments we de-
cided to test how well it would work in real-money games. We wanted to research
this because we figured that real-life players act different than the basic bots we
created. The tournaments that were used for this experiments were $6 buy-in
tournaments with 10 people and where the top 3 get paid. There was a standard
payout structure which means that first place gets 50%, second place gets 30%
and third place gets 20%. We tried the normal tournaments where the blinds go
up every 10 minutes and speed tournaments where they go up every 5 minutes.
The results are in the following table.

Table Number Type of tournament Finishing Place
125825 Normal 4th
126502 Normal 4th
1304468 Speed 5th
1304530 Speed 4th
126511 Normal 5th
1304686 Speed 5th
1304322 Speed 4th
125943 Normal 3th
126554 Normal 4th
1304654 Speed 5th

It is surprising to see that you can always survive more than half of the people
by just folding every hand. And even on one occasion folding got into the money.
We expected human players to notice we would fold every hand. According to

19

the results this wasn’t often the case. This strengthens our assumption that
on line poker rooms are full of bad players which can be easily defeated by a
pokerbot who follows even simple rules.

6 Data mining

In this section we will apply data mining to a database of poker games. From
[17] we quote:

Data mining is the extraction of implicit, previously unknown, and
potentially useful information from data.

In this case our data consists of a database of hands played by people on Internet
Relay Chat (IRC) over a large period of time. In the past, before on line gambling
arose, a lot of people used to play poker for free on the IRC poker server. A
program called Observer was written by Michael Maurer. This program sat in
on poker games on this server and logged every game it witnessed. From [9] we
quote:

This resulted in the collection of the more than 10 million com-
plete hands of poker (from 1995–2001) that constitute the IRC Poker
Database.

This program observed the game from a real observer’s point of view, which
means a lot of data is never recorded. For example, most of the cards dealt to
players are never revealed and as such are not included in the database. This
poses some problems which will be explained later on. The upside is that the
database does include a lot of information, be it explicit or implicit, and contains
data recorded over almost seven years.

The goal of this data mining project is to discover new information and gain
new insights in the way players play. We hope to find certain patterns in player
actions which can in turn be used to better “read” players. For example, we
may find that players who raise by less than a certain percentage of their stack
will fold the next round in most cases. This could be put to use by adding an
exception to the bot’s normal actions. Normally this raise might have lead to
our bot folding, but if we tell our bot to ignore raises that are small enough to
fit in the pattern we found our bot might instead keep playing and go on to win
the hand. There are no guarantees of course. Sometimes a cautious player with
a strong hand may make such a small raise and go on to win the hand. And
even if the player who made the raise folds another player may win. However,
in the long run the added exception may make a difference. Implementing and
testing these exceptions is a lot of work and beyond the scope of this project.

6.1 The database

As mentioned above we will use the IRC Poker Database created using Michael
Maurer’s Observer program. This database consists of a large number of files.

20

For every month there is a tarball of files containing all information recorded
during that month. This tarball contains one file named HDB, which contains
data directly related to the hands played. In this file there is a line for every
hand which provides information on the number of player, the cards on the ta-
ble and such. There is another file named HROSTER which states the names
of all players involved in every hand. Finally there is a file for every player who
played poker during the month in question. These files contain information like
the winnings, the cards and the player’s actions for every hand and are named
PDB.playername.

The following tables from the IRC Poker Database website [9] specify the
file formats.

HDB file format
column 1 timestamp (supposed to be a unique integer)
column 2 game set # (incremented when column 3 resets)
column 3 game # reported by dealer bot
column 4 number of players dealt cards
column 5 number of players who see the flop
column 6 pot size at beginning of flop
column 7 number of players who see the flop
column 8 pot size at beginning of turn
column 9 number of players who see the flop
column 10 pot size at beginning of river
column 11 number of players who see the flop
column 12 pot size at showdown
column 13+ cards on board (0, 3, 4 or 5)

HROSTER file format
column 1 timestamp
column 2 number of player dealt cards
column 3+ player nicknames

PDB file format
column 1 player nickname
column 2 timestamp of this hand (see HDB)
column 3 number of player dealt cards
column 4 position of player (starting at 1, in order of cards received)
column 5 betting action pre-flop (see below)
column 6 betting action on flop (see below)
column 7 betting action on turn (see below)
column 8 betting action on river (see below)
column 9 player’s bankroll at start of hand
column 10 total action of player during hand
column 11 amount of pot won by player
column 12+ pocket cards of player (if revealed at showdown)

21

Betting action encoding
- no action; player is no longer contesting pot
B blind bet
f fold
k check
b bet
c call
r raise
A all-in
Q quits game
K kicked from game

What follows is an example of the lines from each file for a certain hand.
The following line was found in an HDB file:

1 2 3 4 5 6 7 8 9
820483415 2885 5 6 2/75 2/135 2/235 2/435 6s 2c Js 2s Qc

The first number is the timestamp, this should be a unique value identifying the
hand. The second and third number are the game set number and this particular
game’s number within the set. The game set increases when the third column
resets. The fourth number indicates the number of players that are dealt cards,
six in this case. The fifth and sixth number represent the number of players who
see the flop and the stack size at the time of the flop respectively. Apparently
four people folded before the flop, since only two players remained at the time
of the flop. What follows are a similar pair of numbers for each following phase
(turn, river, showdown). Finally the community cards are listed, in this case a
six of spaces, a two of clubs, a jack of spades, a two of spades and a queen of clubs.

When we look up the same hand in HROSTER we find:

1 2 3 4 5 6 7 8
820483415 6 BradR Chimera bmk fatal sagerbot strider-1

The timestamp is identical which means the data applies to one and the same
hand. The second column lists the number of players. Once again we see there are
six players involved. Then the players’ names are listed. To find BradR’s actions
we need to look for a line with timestamp 820483415 in the file PDB.BradR.

When we do so for each of the players we find the following lines in their
respective files:

22

1 2 3 4 5 6 7 8 9 10 11 12
bmk 820483415 6 1 Bf - - - 490 5 0

sagerbot 820483415 6 2 Bf - - - 415 10 0
strider-1 820483415 6 3 cc b b bc 435 210 0 Ts Th
BradR 820483415 6 4 f - - - 650 0 0

Chimera 820483415 6 5 f - - - 525 0 0
fatal 820483415 6 6 r c c r 485 210 435 Ks Qs

These lines have already been ordered by the values in the fourth column, the
player’s position. Columns five through eight list each player’s action per phase.
Starting at column five we can now read how this hand was played.

bmk and sagerbot make their blinds.
strider-1 is the first to act, he calls.
BradR and Chimera both fold.
fatal raises, which leads to both bmk and sagerbot folding.
strider-1 calls again, which ends the pre-flop phase.
At this point the first three community cards hit the table, a six of spades, a
two of clubs and a jack of spades (seen in HDB).
strider-1 is first to act after the flop, he bets and fatal calls.
The fourth community card, a two of spades, hits the table.
Once again strider-1 bets and fatal calls.
The final community card, a Queen of clubs, hits the table.
Once again strider-1 bets, but this time fatal raises and strider-1 calls.
strider-1 only has a pair of tens, meaning fatal wins with a flush.

Column nine shows each player’s stack size before the hand, while column ten
shows that player’s “action” (chips placed in the pot) and column eleven shows
each player’s winnings. Columns 12 may contain the player’s private cards, but
this information is often not available. bmk started with 490 chips, he placed 5
in the pot (small blind) and won nothing, so he now has 485 chips left. fatal
on the other hand gained chips. He started with 485 chips, he placed 210 in the
pot and won 435 in the end, so he is left with 710 chips.

6.2 Data preparation

From [17] we quote:

Preparing input for a data mining investigation usually consumes
the bulk of the effort invested in he entire data mining process.

The best way to minimize the amount of work required to prepare the data is
to make sure the data recorded is usable and stored in a useful format from the
start. However, since we are working with an existing data set we don’t have
such a luxury. We will have to transform the data from its current form to a
form we can use easily. The format of the existing data is described above.

23

One of the first things to consider is what information is contained in a single
record. We want to find patterns in a player’s actions, so we need to closely
inspect every single action by itself. The existing database groups all actions for
a hand together. A player’s action only means something in a certain context,
so we also need to reconstruct as much of the game state as possible.

We wrote a Python [2] script to perform this preparation. This script uses
the MySQL for Python module [3] to insert the desired data into a relational
database. To simplify later data mining we stored every action together with
the game state at the time of the action in a single record.

The script has to read a line from both the HDB file and the HROSTER file
and make sure they refer to the exact same hand by comparing the timestamp.
The line from HROSTER contains the names of all players involved. The script
then has to open the appropriate PDB files and find the line referring to the
hand in question, once again by comparing time stamps. Once all these lines
have been found the script simulates a game of poker. Instead of dealing cards,
the cards given in the data files are assigned to players at the appropriate times
and instead of requesting player actions, the actions are read from the data
files. Right before any action is performed we store the current state of the
game combined with the action to be performed in our MySQL database. The
resulting script is roughly structured as follows:

for each line in HDB:

read line x from HROSTER

for each player in x:

read line from PDB.playername

initialize game state

for each game phase:

do:

index = 0

for each player:

store action[player][index] and the game state in out databse

update game state

index++

while more actions required

The updating of the game state involves keeping track of stack sizes, the
number of players who have folded, the number of raises etc. For any action a
player takes we want to store that action and as much relevant data as we can
find. To return to our previous example, we start by initializing the game state.
This means we set the pot to zero, we set each player’s stack size to the value
found in their file, we clear all cards and reset all variables used to track the
actions per hand. In our example, the first player to act is strider-1. We create
a new record which says strider-1 called before the flop, after 0 people had
called, 0 people had raised, 0 people had folded, that the pot size at the start
of the phase was 0, 6 players were still active, he didn’t have any knowledge of
the community cards but he had a T♠ and T♥ in hand. We update the game
state to reflect that there has been 1 call.

24

The next player to act is BradR. He folds, so the create a record which says
that BradR folded before the flop, after 1 person had called, 0 people had folded,
and all the other information stored in the previous record, except that in this
case we don’t know his private cards. We update the game state again to reflect
that there has also been 1 fold.

The next player to act is Chimera. He also folds, so the next record we create
is identical to the last one, except for the player name and the number of people
who folded before, which is 1 in this case.

This step is repeated until there are no more actions in a phase. This same
loop is then repeated for other phases. After the last phase we clear the game
state and repeat the process for the next hand. An example of a record created
this way can be found in the next section.

As mentioned before, we only have data available to outside observers, so in
most cases we do not know which cards an individual player had. If a hand comes
down to a showdown we obviously see the hands of all players involved. But if
a player folds earlier than the showdown their hands are not revealed because
this information could have serious consequences for the remaining players. If
a hand doesn’t come down to a showdown the winning player is the only one
who didn’t fold and he or she may choose to reveal his hand. Some people do
this to show off their bluff or their luck, others choose not to let other players
in on any unnecessary information. Missing this information is obviously a big
disadvantage for us, as the cards a player is dealt are one of the biggest factors
in whether or not they choose to play.

Another important piece of important information that is missing is the
current size of the pot. For every phase of the hand (pre-flop, flop, turn and
river) we know how large the pot was at the start of the phase. But after
someone bets or raises we no longer know exactly how large the pot is when
the next player gets to make a move. This information can be very important
because the pot odds can make a somewhat weak hand interesting to play. For
example, if a player estimates his chance of winning at about 20%, he has to
put 200 in the pot to play and the pot contains 1500 the player may very well
choose to play. He is most likely to loose the 200 chips, but the profit of winning
(1500:200) outweighs the chance of losing (4:1).

Other data should always be available for every hand. However, databases
often contain some unexplained errors or gaps. One example of data that might
be missing in the IRC Poker Database is player data. In some rare cases the file
containing a player’s actions may not contain information for some number of
hands. This can be due to some kind of error or deliberate removal, but the fact
remains that the information is not there. There are two ways of dealing with
this specific problem.

1. Ignore the player in question in all the hands for which his data is missing.

2. Ignore all hands in which the data for any of the players is missing.

With option 1 we keep a larger amount of hands in our database which means
we have more data to mine. However, if the actions of even a single player in a

25

given hand are missing this skews the data on the other players. We chose to just
ignore the entire hand instead. That way we do not store potentially misleading
data and with the amount of data available we need not worry about ignoring
a few incomplete hands.

At this point we have a database containing a separate record for every
action along with as much relevant information about the current state of the
game as we could gather. This includes information like the number of players,
the number of players who folded, the community cards at the moment and
hopefully the cards the player is holding.

We decided to use the Weka data mining suite [12] to do the actual data
mining. This suite provides a number of interfaces and algorithms that can
be used immediately. Weka works with the arff file format, which is a fairly
simple comma-separated file format, but can also work with certain database
management systems. We decided to use the arff file format. It is very easy to
extract specific data from an existing database and store it in arff format. We
may not always want to include all information or records, so we can generate
separate arff files containing slightly different data. For example, we can generate
an arff file which includes only actions by specific players, or actions which lead
to a person running out of chips.

We will also use DF [7], a depth first implementation of the Apriori algo-
rithm, written by Wim Pijls and Walter Kosters. The Apriori algorithm finds
frequent itemsets in a database. This means it looks for combinations of at-
tributes that occur frequently. This algorithm takes a large number of itemsets
and determines which subsets occur at least C times, where C is called the mini-
mum support. For example, if our input itemsets consist of number sets and one
of the itemsets is {1,3,7} this counts once towards each of the following subsets:
{1}, {3}, {7}, {1, 3}, {1, 7}, {3, 7} and {1, 3, 7}. If another of the itemsets is
{1,7} and the minimum support is two, than each of the following subsets are
considered frequent itemsets: {1}, {7} and {1, 7}. For more information on the
Apriori algorithm and the DF implementation, we refer to the paper [13] on this
implementation.

6.3 Information in database

In preparing the data we simply copied some data, while other data was derived
by simulating the flow of the game. What follows is a list of data we stored in
the database we used for actual data mining, explained with an example record
created from the example used before.

26

Field name Example data Explanation
id 75 Unique record id.

player strider-1 The name of the player. There is a good chance we will
not do anything with this field, but it might be possible to
find a way to identify a player based on his or her actions.

phase river The current phase of the hand. This is very important as
players act differently during the pre-flop than they do
right before the showdown. The phases are enumerated in
their chronological order (pre-flop, flop, turn, river).

potsize 235 The pot size at the start of the current phase. We are really
interested in the current pot size, but as this information
is not available we hope that pot size at the start of the
phase, combined with the number of raises, calls, etc can
somewhat replace the information we really wanted.

activeplayers 2 The number of players that are still participating in the
hand.

inactiveplayers 4 The number of players that folded.
allins 0 The number of players that have gone all-in.
raises 2 The number of times someone raised.

hand1val T The value (1–9, T, J, Q, K) of the first private card.
hand1suit s The suit (c, d, h, s) of the first private card.
hand2val T The value of the second private card.
hand2suit h The suit of the second private card.
card1val 6 The value of the first community card.
card1suit s The suit of the first community card.
card2val 2 The value of the second community card
card2suit c The suit of the second community card.
card3val J The value of the third community card
card3suit s The suit of the third community card.
card4val 2 The value of the fourth community card
card4suit s The suit of the fourth community card.
card5val Q The value of the fifth community card
card5suit c The suit of the fifth community card.

action c The action the player takes in the current situation as
described by the other attributes. Note that there can be
multiple records for any situation if that situation occurs
on separate occasions.

7 Data mining experiments

Given the database containing the information as explained above, we will use
the Weka data mining suite [12] to try to find some patterns. Given the com-
plexity of the problem we do not expect to find a pattern that tells us how

27

people act and just trying to run different algorithms with different settings on
the data could produce some results, but this doesn’t seem very likely. Instead
we will pose some questions for which we will try to find some answers using
different algorithms.

We will try to find some basic, but potentially interesting statistics, like the
percentage of folds in each phase of the game.

We will look at player’s behaviour in relation to the number of active players.
One would expect people to be more cautious and fold more often in games
with more players, but a larger number of players also means larger potential
winnings.

We will also use DF to find frequent itemsets. In order to use DF we need our
data in a different format. We have to decide on a number of attributes that can
either be true or false for a given record. These attributes are numbered starting
at 1. The first line of the input file should contain the number of records. After
that, input file should have a line for every record, containing the numbers of
the attributes that the record has. For example, the line

1 3 4 7 12

means that there is a record that has attributes 1, 3, 4, 7 and 12, but none of the
other attributes. DF will determine frequent itemsets, which are combinations
of attributes that occur together in a record at least a certain number of times.

For the actual data mining we’ve limited ourselves to the data for January
1996. The database contains information on 30,557 hands for this month. Our
script produces 275,477 records for this data. We will try to use all of this data
where possible, but in some cases we may have to use only part of the data due
to time constraints.

7.1 Basic statistics

First we’ll look for some basic statistics that may be interesting. We don’t use
the Weka data mining suite because we can get most of these statistics using
just MySQL.

On average there are roughly 5.9 players per hand. The number of players
this month varies from 2 to 23. This is quite a bit more than in regular Texas
Hold’em games, but most hands are played with a smaller number of players.
Just a little over 11% of the hands was played by over 10 people and a little over
5% of the hands was played by more than 12 players. Still, these hands with a
lot of players could have a notable effect on the amount of folds for example,
since hands with more players are harder to win and make medium strength
hands less playable.

The following tables show the frequency of actions per phase.

28

Pre-flop
Action Frequency
All-in 3 %
Bet 0 %
Call 20 %
Fold 63 %

Check 5 %
Raise 9 %

Flop
Action frequency
All-in 5 %
Bet 19 %
Call 11 %
Fold 25 %

Check 37 %
Raise 3 %

Turn
Action frequency
All-in 5 %
Bet 19 %
Call 11 %
Fold 17 %

Check 46 %
Raise 2 %

River
Action frequency
All-in 4 %
Bet 19 %
Call 9 %
Fold 16 %

Check 50 %
Raise 2 %

There aren’t really any surprises here. Before the flop there are no bets
because before the players get to act two players have to put in the blinds.
When the first player gets to act there is already something in the stack, so
players who want to play their hand can only raise the amount, call or go all-
in. The amount of checks before the flop is very low because the only chance

29

to check is for the big blind if none of the other players raised or went all-in.
The percentage of folds goes down as the hand progresses, which makes sense:
people who decide to play their hand through a number of phases apparently
have some amount of confidence in the strength of their hand.

7.2 Behaviour in relation to number of opponents

The number of opponents is an important consideration when deciding whether
or not to play a hand. A mediocre hand can be playable if most of your opponents
have already folded, while a somewhat strong hand can be a risky play against a
large number of opponents. In trying to find some relation between the number
of opponents and a player’s behaviour we only look at three columns: the number
of active opponents, the number of inactive opponents (who have folded) and
the player’s action.

With 41.5% of all cases, checking is the most common action in our data
set. This means we can predict 41.5% of all cases correctly by always predicting
a check. Using the J48 algorithm [17] we were able to consistently get slightly
better results than choosing the most common option. The average performance
of 42.1% correct predictions isn’t very exciting considering the mere 0.6 percent-
age point improvement over simply always predicting a check. However, it is a
slight improvement and in the decision trees we can see some interesting splits,
as well as some less interesting ones. We will look more closely at one of the
decision trees generated in Weka.

30

On the first node the tree splits in two on whether there are more than two
active players left. Considering that one automatically wins when there are no
opponents left, the tree effectively splits into a one-on-one part and a part for
multiple opponents. In the case of multiple opponents, when more than five
opponents have folded the most common action (making up almost two thirds
of all cases) is to fold. This may be because one of the first players to act raised
by a significant amount and all the other players are giving up because of this.
However, when five or less opponents have folded the most common action is
to check. Checking is the most common action in general, but in almost half of
these cases the player chose to check. This is more than the over-all average,
though not by much. One possible explanation is that when there are so many
players in the game it is very tempting to check just to see how the flop turns
out. If one player raises strongly this isn’t as tempting, but if nobody raises
most players will consider just checking and deciding later on whether or not to
play on.

The other part of the tree deals with one-on-one situations and for the most
part does not provide interesting information. There are two points worth men-
tioning. Firstly, if there is only one active opponent left and over five players
have folded, the most common action by far is to bet. This makes sense: the
player has a chance to steal the stack with only one player left to challenge him.
However, that this action is so popular in this situation, but far less popular with
less folded opponents is somewhat surprising. It may well be because against
such a large number of opponents one has to make the most of every chance to
win some chips. But the popularity of this move means that an observant player
who is familiar with this habit may be able to exploit it. A bet in this position
says little or nothing about the player’s hand and it is a nice opportunity to
play a somewhat strong hand. Secondly, when at most one opponent has folded
the most common action is also to bet. This is to be expected. It is safer to
bluff on hands with only two or three players at the table. When there are eight
people with the possibility of calling your bluff you need to be very careful. But
against one or two persons, even if they call your bluff you may still have a good
chance of winning.

7.3 Cards in hand

We want to look for a relation between the value of cards in hand and whether
those cards are suited.

We only have data on cards in hand for hands that players choose to play
to the end. This can be rather limiting when it comes to data mining, but we
can investigate these hands to determine what hands people generally choose to
play. We choose the following characteristics to consider:

1. First card in hand is an ace.

2. First card in hand is a king.

3. First card in hand is a queen.

31

4. First card in hand is lower than a queen.

5. Second card in hand is an ace.

6. Second card in hand is a king.

7. Second card in hand is a queen.

8. Second card in hand is lower than a queen.

9. Cards are of the same suit.

We divide the value of the cards into four groups: ace, king, queen and lower.
We do not make a distinction between lower value cards because we consider
them to be “weak”. This is a somewhat arbitrary decision, but it is important
because having fewer characteristics may lead to more understandable output.
If a player chooses to play a hand with 6♦A♦ to the showdown, that results in
the following line for our DF input:

4 5 9

This is because the first card is lower than a queen, the second card is an ace
and the cards are suited. A similar line is inserted for each pair of cards that is
included in our database. DF will read all these lines and look for combinations
of attributes that occur frequently. We only look at records with data on the
player’s hand. Our 66,311 line input produces the following output when we run
DF with a minimum support of 6000:

(66311)

7 (6961)

3 (7087)

2 (7761)

6 (8077)

5 (10259)

5 4 (6773)

1 (10304)

1 8 (6753)

9 (21562)

9 8 (13899)

9 8 4 (8147)

9 4 (13828)

8 (41013)

8 4 (26316)

4 (41158)

The first number between parentheses (66,311) indicates the number of input
lines. Each of the following lines describes a frequent itemset and its support.
We see that the itemset {7} has a support value of 6,961, meaning it is a subset
of 6,961 of the 66,311 input lines. Looking at our list of characteristics above
we see that this means that 6,961 hands had a queen as second card. We see
quite a few frequent itemsets consisting of one item. Generally speaking smaller

32

itemsets occur more often than larger ones. Each occurrence of an itemset also
counts as an occurrence of each of its subsets. For example, each itemset which
has {1, 8} as a subset also has both {1} and {8} as a subset. This is the so-
called Apriori-property on which most frequent itemsetalgorithms are based.
The itemsets consisting of a single item simply indicate how often each of our
attributes occurs. We see, for example, that 10,304 revealed hands had an ace
as their first card, and 10,259 hands had an ace as their second card. We see
that the most common cards in the revealed hands are lower than a queen. Aces
also occur very frequently in these hands. And 21,562 hands were suited.

The most common itemset with more than one item is {4, 8}, which means
both cards are lower than a queen. Over a third of the hands that were eventually
revealed were made up of two cards lower than queens. This is more than we
expected. Given that {4} occurs 41,158 times out of 66,311 and {8} occurs
41,013 times out of 66,311, the expected frequency of {4, 8} is:

41158
66311 ×

41013
66311 = 25456

66311 = 38.4%

The actual occurrence rate is 26316
66311 = 39.6%. This type of hand makes up the

majority of the hands players receive, but a hand like this is usually not very
strong. We didn’t expect this many to reach the showdown, or even win. The
expected frequency of 38.4% does not take into account that, to a poker player,
there is a huge difference between a hand with one high card and a hand with
no high cards.

Some of the low hands probably made a pair. For example, two jacks make
a fairly strong hand. But most hands with two somewhat low cards, even low
pairs, aren’t very strong. A pair of fours for example, is often not enough to
win a hand. This is especially true when there is a large number of opponents,
each of whom has a chance of beating your hand. It’s possible that players
sometimes play a weak hand to the end because they have some reason to think
their opponents have even weaker hands. Or perhaps because they have already
invested in their hand and simply want to see the showdown so their weak hand
may become stronger.

The most interesting way to make a strong hand with low cards is to draw
a flush. A flush requires five cards of the same suit, but does not require any
high cards (though high cards in a flush make it stronger against other flush
draws). Out of 26,316 low card hands 8,147 were suited. These hands had a
decent chance at a flush draw, making them stronger than similar unsuited
hands. However, the ratio between suited and unsuited hands is roughly equal
for hands with cards and hands with high cards. Apparently people are willing
to play low card hands quite often, regardless of whether or not their cards are
suited.

7.4 Pot and stack sizes

We also want to look at the effect of a player’s stack size and the size of the pot
on a player’s action. It could be that certain actions occur more frequently than
others when the pot is very large compared to the size of the player’s stack.

33

Once again we use DS to find frequent itemsets. To investigate this we chose
the following characteristics:

1. The pot is larger than or equal to the player’s stack.

2. The pot is smaller than the player’s stack.

3. The player folds.

4. The player checks or calls.

5. The player raises or bets.

6. The player goes all-in.

In this case we look at all records, not just those with data on the player’s
hand. An example input line for a player who chooses to call, while his stack
has 200 chips and there are 200 chips in the pot:

1 4

When we feed our 275,478 line input to DF with a low minimum support (973
or less) we get the following output, which lists all itemsets:

(275478)

1 (8596)

1 6 (1891)

1 5 (1806)

1 4 (3925)

1 3 (973)

6 (9899)

6 2 (8008)

5 (36260)

5 2 (34454)

4 (91300)

4 2 (87375)

3 (137999)

3 2 (137026)

2 (266881)

We find that in roughly one out of thirty-two cases the pot started out larger
than the player’s stack. We have to keep in mind that we only know the pot size
at the start of the phase. Cases in which the pot increased to a size larger than
that of a player’s stack by an earlier player’s action cannot be recognized in our
database and are grouped with cases in which the player’s stack is larger. We
also see that folding is more common than checking or calling, which in turn is
more common than raising or betting. Going all-in is the least common action.

It is not very surprising that we find very few cases in which the pot is
larger than the active player’s stack where the player chooses to fold. Apparently
players don’t often feel like passing up on such large potential winnings. Given
that {1} occurs 8,596 times out of 275,478 and {3} occurs 137,999 times out of
275,478, the expected frequency of {1, 3} is:

34

8596
275478 ×

137999
275478 = 4306

275478 = 1.56%

The actual occurrence rate is 973
275478 = 0.35%. This low rate of folds when the

potsize is larger than the player’s hand is also reflected in a higher rate of all
the other actions. Most notably all-ins are much more common. This was to be
expected. When the pot is very large a player will have to put in a lot of chips
to keep playing. When the required number of chips is equal to or larger than
the player’s stack the player must go all-in.

7.5 Frequent itemsets in broader input

Finally we will look for frequent itemsets in input that consists of a larger
number of attributes, which do not necessarily expect to be related. We chose
the following attributes:

1. The current phase is pre-flop.

2. The current phase is flop.

3. The current phase is turn.

4. The current phase is river.

5. The pot is larger than or equal to half the player’s stack.

6. The pot is larger than or equal to the player’s stack

7. There are more active players than inactive (folded) players.

8. There has been at least one all-in.

9. The player folds.

10. The player checks or calls.

11. The player bets or raises.

12. The player goes all-in.

13. The player makes a profit on this hand.

Given these attributes, one possible input line would be

2 5 12 13

which means that the flop has been revealed, there have been no all-ins and
there are more inactive than active players. The pot has fewer chips than the
current player’s stack, but at least half as many. The player decides to go all-in
and ends up making a profit this hand.

We feed our 275,478 line input to DF with a minimum support of 10,000. If
we ignore all single item itemsets we get the following output:

35

(275478)

3 10 (12579)

5 2 (12091)

5 10 (10842)

11 2 (11775)

11 13 (25926)

11 13 7 (12336)

11 13 1 (11979)

11 7 (17700)

11 7 1 (13421)

11 1 (17277)

2 13 (17017)

2 10 (26060)

2 9 (13622)

2 7 (13285)

13 10 (28475)

13 10 7 (11532)

13 10 1 (14113)

13 7 (25165)

13 7 1 (18583)

13 1 (28888)

10 7 (38013)

10 7 1 (26960)

10 1 (45175)

9 7 (94002)

9 7 1 (90507)

9 1 (118538)

7 1 (133049)

These are the frequent itemsets with the highest support, excluding trivial
itemsets which only indicate that a given attribute occurs at least 10,000 times.
We see certain attributes appear in more frequent itemsets than others. For
example, 1 and 7 are very common, while we don’t see 4 in any of the frequent
itemsets. This is because certain attributes occur more often than others, and
are thus more likely to combine with other attributes to form a frequent itemset.
The large number of actions during the pre-flop compared to other phases means
frequent itemsets are more likely to have attribute 1 than 2, 3 or 4. Attribute
13 (the player makes a profit) is rather common because, in order to make a
profit, a player has to take part throughout the entire hand, contributing more
records than players who fold quickly.

Most of the frequent itemsets we see are made up of some combination of
attributes 1, 7, 10, 11 and 13. Note that 10 and 11 never occur together because
they each specify a certain type of actions, which can’t be combined with another
type of action in a single record. If we look at itemsets with lower support we
see the same trend. Combinations of frequent attributes occur frequently, while
combinations of less frequency attributes occur less frequently.

The only interesting exception we see in the above output is that {11, 13}
(the player raises/bets and makes a profit) occurs almost as often as {10, 13}

36

(the player calls/checks and makes a profit), while calling and checking are
generally more common than raising and betting. This might be because player
with strong hands tend to raise or bet more often and also tend to win more
often, while players with mediocre hands tend to call and check more often,
even if they end up making a profit. It might also be because raising and betting
actually increases your chances of winning, by sending a message to other players
who are then more likely to fold.

8 Conclusions

In this paper we have described the pokerbot that we created for experiments on
basic poker opponents. We have underestimated the amount of work that this
takes and had to make a few cutbacks from the original plans. This led to the
simplification of the opponents. We have finished with a pokerbot who will win
against basic opponents but would be no match against a more sophisticated
opponent. It performed better than expected: in one of the experiments it could
win over 80% of the time.

Some unexpected results came from a basic bot who would never play a hand
but still would last longer than half of the opponents. And even in tournaments
with actual people this would hold up.

There is still a lot of room for improvement left. The most important item
that is not done so far is that our bot is mostly concerned about his own cards
and it should also be analysing its opponents. There is no opponent modelling
in the project yet, and opponent modelling is exactly what is needed to create a
decent poker playing bot. Unfortunately this would take a huge amount of work
and creating a pokerbot is not something that can just be done in such a small
project. When looking at other pokerbots there is often years of work and an
entire team behind it.

In the data mining part of the project the results have been somewhat dis-
appointing. It appears the data given provides rather limited possibilities for
data mining and the results are not very useful. For future work it would be
very useful to start building data from scratch and find a way to include all
data on player’s hands. This is not a simple task as this information should be
kept secret from the other players at all cost. The only way we see right now is
to write a poker server that incorporates this feature. One might think that it
is enough to keep the information secret until the hand is played, but knowing
how a player handled certain cards in the past can be extremely useful when
playing that player again. Even making the data available a few days after the
game has been played (which in itself would be difficult to achieve) would be
considered inappropriate by most poker players. The problem with writing a
poker server is that you also need to attract people who are willing to play a
considerable number of games of quality poker.

A lot of on line poker players use data mining suites specifically designed for
poker to improve their play, but these are geared towards keeping track of how
often a player plays and under what conditions he or she folds. This is the kind of

37

information that professional poker players keep track of themselves during play
and which does not really open up new possibilities for a computerized poker
player. However, it may be that this basic tracking is the limit of the extent to
which data mining will be successfully applied to poker. For pokerbots it may
be more profitable to rely mostly on statistics and to perhaps use basic machine
learning (neural nets for example) to try to classify opponents into groups like
“loose” and “solid”.

9 Glossary

All-in: A bet or raise of all the chips in front of you. If someone moves all-in
he puts all his chips in the pot.

ante’s: Money placed in the pot by all players at the beginning of a hand.
A variation of the blinds that we use, in Multi-Table-Tournaments blinds and
ante’s are often combined after a few rounds.

Big Blind: A force bet made by the player to the left of the small blind,
to generate the action.

Big stack: The player with the most chips at the table.

Blinded away: If the player with the short stack doesn’t play many pots,
he may lose all his chips when it is his turn to pay for the blinds.

Button: The player to the right of the small blind, who represents the dealer
of that hand. He gets to act last after each betting round after the flop. To be
on the button is a great advantage.

Bully: A player with a big stack who tries to push the other players around.

Flop: Three cards turned face up simultaneously in the centre of the table.
These are the community cards that each player can use. The flop is followed
by a round of betting.

Hand: Each time you get dealt two hole cards, it is the time you have a hand.
Sometimes it refers to one complete deal or game. The intended meaning of
“hand” should be clear from the context.

Hole cards: The two down cards dealt to each player at the beginning of the
hand. No other player can see these cards. These are also called your starting
hand.

Nuts: The player with the best possible hands has the nuts. Pre-flop is AA
the nuts.

38

Out: A card which will give a winning hand if it arrives. If you have 4 cards to
a heart flush you have 9 outs (9 heart cards left in the deck) to hit the flush.

Pre-flop: The action before the flop is dealt.

Premium hands: Very good starting hands like AA or KK.

River: The fifth and last community card that is put in the centre of the
table face up. Followed by the final betting round.

Short stack: The player with the fewest chips at the table.

Showdown: After the final betting round the people who are still in the hand
show their hands to determine the winner.

Small blind: A forced bet made by the player to the left of the dealer/button
to generate action.

Tightness: How tight an opponent is, a very tight player plays less then 10 %
of the hands he gets dealt. A loose opponent will play more then 50% of the
hands he gets dealt.

Turn: The fourth community card that is put in the centre of the table face
up. Also followed by a betting round.

39

References

[1] Doyle Brunson. Syper System. Cardoza Publishing, third edition, 1978.

[2] Python community. Python programming language — official website.
http://www.python.org.

[3] Andy Dustman. Sourceforge.net: MySQL for Python. Website.
http://sourceforge.net/projects/mysql-python.

[4] D. Harrington. Harrington on Hold ’em, Volume 1: Strategic Play. Two
Plus Two Publishing, second edition, 2004.

[5] Texas Hold’em. Wikipedia. Website.
http://en.wikipedia.org/wiki/Texas_hold-em.

[6] A. Davidson J. Schaeffer, D. Billings and D. Szafron. The challenge of
poker. Artificial Intelligence Journal, 134(1-2):201–240, 2002.

[7] Walter Kosters. DF. Website.
http://www.liacs.nl/home/kosters/df/.

[8] H.W. Kuhn. A simplified two-person poker. Contributions to the Theory
of Games. pages 92–103, 1950.

[9] Michael Maurer. Irc poker database. Website.
http://games.cs.ualberta.ca/poker/IRC.

[10] J.F. Nash and L.S. Shapley. A simple three-person poker game. Contribu-
tions to the Theory of Games. 1950. Princeton University Press.

[11] The University of Alberta. The University of Alberta computer poker
research group. Website.
http://games.cs.ualberta.ca/poker/.

[12] The University of Waikato. Weka 3 — Data mining with open source
machine learning software in java. Website.
http://www.cs.waikato.ac.nz/ml/weka/.

[13] Wim Pijls and Walter Kosters. Apriori: A depth first implementation.
First Workshop on Frequent Itemset Mining Algorithms. 2003. Online
proceedings
http://www.liacs.nl/~kosters/dffinal.pdf.

[14] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, second edition, 2003.

[15] Kevin Suffecool. Cactus Kev’s poker hand evaluator. Website.
http://www.suffecool.net/poker/evaluator.html.

[16] J. von Neumann and O. Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, second edition, 1947.

40

[17] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, second edition, 2005.

41

