
 

 

Description with UML for a Hotel 

Reservation System 
 

 

 

Door Janne Louw 

 

 

10-05-2006



 2 

 

Introduction 

 
Since 2001 I’ve been working for a small web-solution provider called Remotion. In 

2003 a colleague and I developed an online hotel reservation system called simply HRS. 

In 2005 the task was given to me to extend the systems functionality. The additions 

required a complete redesign of the Database Model, and the front-end code. We decided 

to completely rebuild the systems front-end, do extensive refactoring on the back-end and 

make a new database model complete with automatic database-conversion, all with future 

extendibility and easy of maintenance in mind. 

 

This project became HRSv2, and besides some drones work, I’ve completely done all 

refactoring, redesigns and programming. My Bachelor Project covers part of the HRSv2 

project, specifically the description of the front-end code. Sadly, due to some commercial 

issues, we’ve put a hold on the project. It’s about 75% done, but it will only be continued 

if we can find a buyer, or if current or new customers are willing to pay for the 

development of the new version. 

 

The software itself is a system for hotels where they can deeplink to from their own 

website to let visitors book a room in the hotel. This means the system is a very single 

minded system, and no introduction is necessary, because when a customer enters, he has 

already pressed the ‘Book now’ button on the hotel’s front page. The system will simply 

display a series of forms that will query the user about dates, rooms, additions, etc. 

 

In this project I will not go into the exact details of the interface, but I will give a 

description meant for a programmer who needs to perform maintenance on the system, to 

help him understand the software faster. 

 

So what does the system do? I’ll answer that question first in text in this introduction. 

The first half of the paper will answer it in increasing depth. The second half will cover 

more of the actual code structure, and finally I’ll give some conclusions and 

recommendations.  

 

I’ll sum up what the system does during a typical booking: 

• Query the user for date of arrival and length of stay 

• Calculate available rooms from the database 

• Display the available rooms and query user to choose one or several rooms 

• Ask user how many and what kind of guests will be staying in each room 

• After that a calculation is shown for the cost of the stay 

• In the same screen the user is presented with general and room specific options 

and extra’s to choose from, like diner and breakfast, or the possibility of renting 

bikes, etc. 

• In the next step the user is queried for his name, address etc. 



 3 

• After that the user will be asked to confirm the booking with a credit card. Hotels 

can let registered users (usually corporate customers) automatically skip this step 

• A final confirmation screen is shown, where the user is shown a complete 

overview of the booking, can give some comments and confirm the booking. 

• Emails are sent to the client and to the hotel receptionist, and the booking is added 

to the database. 

 

As briefly mentioned, there is also an option to log into the system for registered users.  

When logged in a customer can view and cancel bookings. Also, hotels may have 

discount policies for certain registered users. 

 

For the hotels the main strength of the HRS system is that it is very flexible in pricing and 

availability issues, and can handle a wide variety of special clients, special offers, and 

any regional price fluctuations, for rooms as well as options, whilst allowing each hotel to 

have its own look. Of course, a competitive price is also a nice asset. There are three 

basic types (pricing methods) of selling a room (from now on called item) and the system 

is set up in such a way, that new methods can added with a minimum of labor. Each 

pricing methods can be quite different, and they all at least slight variations in one or 

several screens. 

 

A lot of work has been put in designing this flexible pricing method system, so I hope the 

project will once be re-started, and my work will not be in vain. 

 

This document is basically a reverse-engineered description of the system. I’ve done this 

by using several different UML diagrams to describe in increasing depth a variety of 

ways to look at the system. 

 

So why is this all necessary? There’s a good chance other programmers will have to do 

maintenance on the system at some point. The system is too complex to easily understand 

it by just looking at the code and comments. This paper will allow those people to get a 

good understanding of the system before diving into the code.



 4 

 

Global structure 
 

Figure 1 is the activity diagram of the global structure of the front-end. It shows the 

relation between user and webserver. The user starts by requesting a page from the 

webserver. The server first creates a new invocation, then starts a screen. The user has to 

go through a series of screens. At the last screen the booking is finalized. Within each 

screen the user is presented with a page containing a form, which he has to fill out and 

send back. 

 

 
 

 

User
webserver

Open page

New Invocation

Screen

Show Page

Send Form

Screen

Show Page

Send Form

 
Fig 1. Frontend, global scructure 



 5 

 

Figure 2 takes a closer look at the Screen part. The Screen is 

actually an object within the webserver. It supports two main methods: writeScreen and 

handler. The first returns code for the HTML form that will be presented to the user. The 

handler processes the form data returned by the user, and creates a new Screen object for 

the next step. 

 

 

 
 

Fig 2. Screen calls 



 6 

 

 

The way different screens relate to each other is displayed in figure 3. At the final step of 

each screen a decision is made what the next screen will be. This depends on the button 

pressed, or in some cases, some database retrieved variable. 

L
o
g
in

D
a
te

G
u
e
s
ts

U
n
its

D
is
p
la
y
 p
a
g
e

P
ro
c
e
s
s
 F
o
rm

D
e
te
rm
in
e
 N
e
w
 P
a
g
e

D
is
p
la
y
 p
a
g
e

P
ro
c
e
s
s
 F
o
rm

D
e
te
rm
in
e
 N
e
w
 P
a
g
e

D
is
p
la
y
 p
a
g
e

P
ro
c
e
s
s
 F
o
rm

D
e
te
rm
in
e
 N
e
w
 P
a
g
e

D
is
p
la
y
 p
a
g
e

P
ro
c
e
s
s
 F
o
rm

D
e
te
rm
in
e
 N
e
w
 P
a
g
e

O
n
 e
rro
r

 

Fig 3: Activity in swimlanes 



 7 

 

Screen sequences 

 

As became clear from the last part, the application 

is a sequence of screens to which the user has to 

provide responses. 

There are three main choices for the next screen. 

The first is through for submission. The user 

provides all information, and is redirected through 

to the next page in the normal sequence. 

The second way is through direct navigation. In this 

way the user can go back to previous pages in the 

booking sequence, or go to the login page or to the 

login part. 

The final possibility is that the user has provided 

incorrect input. In that case the current screen is 

kept. 

 

The user can take several paths through the system, 

but there is one main path, and one side path. All 

other paths are similar to those paths. 

 

The main path is a normal booking. The user will 

go through screens Date, Units, Guests, Addition, 

Client, CreditCard and Confirm, and finally to 

Ready, where the session is cleaned. In figure 3 

these are coded in yellow. 

In between he can go back to a previous Screen, but 

never skip a subsequent screen. 

 

In a certain case the creditcard screen is 

skipped. This will only happen if the user is 

logged in, and the user has the appropriate 

paymethod  allowed by the hotel. This is seen 

in figure 5. 

 

The total flow is shown in figure 6. Also 

added is the login path. The user goes either 

directly, or at any other step, to the login page. 

Logged in users can go to any of the user 

screens, coded in blue, or they can logout, or 

they can start a booking. If a user is logged in 

and on the normal booking track, he can go to 

the BookingList page. From there he has the 

same options as when he just logged in. Information about the booking is 

retained. 

Date

Units

Guests

Additions

Client

Creditcard

Confirm

NewInvocation

Store Booking

Email Client

Email Hotel

Ready

 
Fig 4. Normal flow 

Client

Creditcard

Confirm

check paymethod

 

Fig 5.CreditCard 



 8 

 

 

 

 

 

 

 

 

Date

Units

Guests

Additions

Client

Creditcard

Confirm

Login

NewInvocation

Bookinglist

ViewBooking

Logout

CancelBooking

ClientDetails

Store Booking

Email Client

Email Hotel

Ready

 

Fig 6.Complete flow 



 9 

Code-level 
 

Most of the systems functionality is put in a single 

requestable page, “app/hrs.asp”. This page is opened 

every time a screen is submitted, and every time a new 

screen is shown all functionality is included and called 

through prototypes (objects), procedures or functions.  

 

The initial landing page is the only other requestable 

page, “root/index.asp”.This page will only retrieve the 

correct protocol from the database (http for 

development, https for live), and immediately redirect to 

the main page.  

 

Using a tool in the backend the hotel’s employees can 

create links. These links contain, besides the domain and 

path information, additional information in the query 

string part of the url. The employee can add information 

like the hotel id, type of booking, language, arrangement, etc. The hotels will put these 

links on a part of their own website. These links are the only way for a client to enter the 

reservation system. 

 

I will follow with a description of what happens at the main page upon a page request.  

 

Firstly a check is done to see if the request is a new invocation of the system. 

This is done by inspecting the query string. If so, the session persistent objects 

and globals are created and stored. After that the page is refreshed. If the data 

was incorrect, an error message is shown. 

 

If no new invocation is detected all session persistent objects and globals are retrieved, 

and several other globals are retrieved. 

 

Secondly a check is done to see if there is a POST-form submitted. A POST form is one 

of the two types of html forms. In a GET form the information that is submitted in the 

form is put into the querystring, and in a POST form the submitted information is send 

with the HTML request header. If such a form is detected the handler of the screen is 

called. The handler alters the persistent objects, and redirects the page. 

 

Finally, if the page is neither a new invocation nor a submitted form, the layout is 

constructed and then responded to the user. Submission of the form will reload the page. 

 

Retrieve protocol

/index.asp

Redirect to /app/hrs.asp

 

Fig 7. front-end 

pages 



 10 

This structure is shown in figure 8. 

Create new session / 

persistent state objects

New Invocation

Call handler

Form submission

Build and respond 

page to user

Wait for form submission

 Fig. 8 hrs.asp structure 



 11 

Object structure 
 

The system has two main persistent objects. The first is the Booking object. This object 

contains all information gathered about the current booking. It will also write this 

information to the database if the booking is confirmed, and it can fill itself from the 

database if existent information is used. This is typically a user who logs in (client 

information is filled) or for display of an existing booking. 

 

For each relevant table in the database a separate object prototype exists. All table objects 

have methods for getting and setting the fields of the corresponding database table, 

checking if a field is set, and Boolean methods indicating whether a record can be found 

matching the filled primary keys, and whether the record was actually retrieved. For each 

aggregated relation the object also has methods for adding, removing, getting and, if 

applicable, counting the contained objects.  

 

Finally the object has methods for reading the data from the database, and writing to the 

database. These methods are recursively called to all contained objects. In case of a write 

this is done bottom-up. Objects on the bottom are written, and the newly created record 

id’s are passed to, and inserted into the parent record, until finally the entire booking is 

written. Reads are done top-down. A query is done on for childs using the parent id. New 

child objects are created, and the retrieved ids are used to fill the primary key fields, after 

which read is called for that object. 

 

Code reuse is accomplished not by inheritance, but by aggregation and delegation. Each 

table object instance contains an instance of the DBTable object. This object contains the 

actual code for the database manipulation, the getting and setting of fields, etc. The actual 

table objects only contain code for delegation and aggregation functionality. This 

structure is shown in figure 10. 

 

 Fig 9.Booking object 



 12 

 

The second of the two persistent objects is the Screen 

object. For each screen there is a different Screen object prototype. All these prototypes 

have the same methods, so the objects are polymorphic. The main methods are handler(), 

which is called after form submission, and writeScreen() which is called when a screen is 

loaded. The handler will process the information sent by the user and use it to fill the 

Booking object, and it will initialize a new Screen object if the submitted information 

was correct. If an error is detected, a flag is set, which will trigger a response when the 

form is written again. The writeScreen will write the form part of the displayed page. To 

do this it will typically start by retrieving information from the database, combining this 

with information previously entered in the Booking object, and putting this information 

into a specially designed data structure. This data structure is then used to build the actual 

HTML form, and at this to the response stream. 

 

Each object has an important private member which is initialized as the object is created, 

and never changes (with one exception). This variable is a map, which contains all 

information about all buttons which link all the other Screens, like if a button is visible, 

the correct link, the style of the button, etc. The screen objects have a lot of other 

methods, which I will not discuss here. Most of them return parts of the button map, and 

other data about the display of certain items. 

1

*

1

*

1

0..1

+getField()

+setField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

-tablename[1]

-fields[1]

DBTable
+setField()

+getField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

+addPaymethod()

+deletePaymethod()

+getPaymethod()

+getGuest()

+addUnitAddition()

+deleteUnitAddition()

+getUnitAddition()

+getUnitAdditionCount()

-DBTable[1]

-Guest[1]

-UnitAdditions[0..*]

-Paymethod[0..1]

Item

+setField()

+getField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

-DBTable[1]

PayMethod

+setField()

+getField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

-DBTable[1]

Guest

1 1

1

1

1

1

+setField()

+getField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

+addUnitAdditionDate()

+deleteUnitAdditionDate()

+getUnitAdditionDate()

+getUnitAdditionDateCount()

-DBTable[1]

-UnitAdditionDates[0..*]

UnitAddition

+setField()

+getField()

+isSet()

+recRetrieved()

+recExists()

+read()

+write()

-DBTable[1]

UnitAdditionDate

1

*

11

1

1

 

Fig 10. Booking object detail 



 13 

Conclusion 
 

My goal at the start of this project was to learn to understand UML better, and get some 

insights into the designing of a software system in general, and this HRS in particular. 

I’ve made good progress to both goals. I will conclude with some of the findings I made 

on these subjects. 

 

By making this paper I’ve made it a lot easier for other programmers to understand my 

code. UML was a very important tool to achieve that. The visual tools provided by UML 

give a clear and quick understanding of some mechanisms. I wasn’t able to describe 

everything in UML though. Particularly the aggregations I was not able to completely 

visualize. There is no way to describe that all instances of a class A use a separate 

instance of a class B, and that an instance B is never shared between two instances of  A, 

but more importantly, that it is never shared with an instance of any class. 

 

Another thing I’ve missed in UML is a way to clearly visualize a decision process. 

Sometimes decisions are more complicated and cannot be captured in a single sentence. I 

don’t have any clear ideas how this can be properly implemented, but I think it could be a 

lot clearer. 

 

The hotel reservation system version two is sadly discontinued for the moment, so I 

probably cannot put my insights to very concrete use. I have made a lot of progress in the 

way I think about the system, particularly the distinction between the global workings 

and the details. In actually coding the software, this same distinction should be very clear. 

That will make the code clearer to new programmers, and really help future maintenance.  

 

Even though this is an exceptionally big project in my work, I will be trying to 

incorporate UML designing into my design process of future projects. Especially the 

advantages during maintenance by different programmers might be a good way to win 

over my employers into investing time in this design. Off course this doesn’t apply to 

every project, but I really think it will help some projects. 


