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Abstract

This document describes a study on the integration of microbial 16S rRNA gene data with targeted

metabolomics data, in the context of bacterial vaginosis (BV), to investigate microbial traits and

metabolic particularities involved with this disorder. Multiple computational methods were applied,

ranging from simple statistical tests to different applications of decision trees and most importantly

a newly devised network analysis approach that is based on the traditional PageRank algorithm,

which we named PageRank based metabolic modeling (PBMM).

The PBMM algorithm is capable of predicting metabolite profiles based on metagenomic data

and hence cannot be directly applied on amplicon data. Therefore, metagenomes were predicted

using PICRUSt software package. The predicted metagenomes were combined with KEGG data to

construct a reaction network on which the PBMM algorithm was applied. Predictions were assessed

using observed metabolite profiles.

The findings are that the newly devised method is particularly good at predicting metabolite profiles

for patients that were not diagnosed with BV, whereas the method’s performance on is reasonable

for patients positively diagnosed. This distinct difference is likely to be contributed to the increased

community complexity that comes with this disorder.
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1 Introduction

The process of unraveling the mysteries surrounding the symbiosis with our microbiomes has recently

grown in importance due to the emerging understanding of the strong influence that this symbiosis

has on the human health. For instance, the gut microbiome carries out various functions involved

with digestion of food, provision of essential nutrients and vitamins and a line of defense against

pathogenic microbiota[1]. Not surprisingly, the intestinal microbiota are occasionally considered as

an additional human organ[2], that takes care of a great variety of biochemical transformations,

more than any other human system[3].

While this collaborative relationship is crucial for both sides, it possibly comes with downsides as

well, the opposite named dysbiosis. Such balance defects as well as typical microbiome compositions

were linked to a multitude of diseases, such as inflammatory diseases[4], neurological disorders[5],

metabolic diseases[6], obesity and cardiovascular diseases[7–9] and last but not least cancer[10, 11].

A recent study on this topic performed by Raes and Bork[12] has shown the complexity of community

functions; a multitude of species is believed to lead to the difference between symbiosis and dysbiosis,

meaning a single species is not necessarily the perpetrator of a disease as the rational is all about

a global balance. A microbial ecosystem, while differing at levels of taxonomy, carries out the

various tasks as a system altogether[12]. Microbiota exchange metabolites (i.e. cross-feeding[13])

by excretion and absorption to perform intracellular biochemical transformations catalyzed with

their enzymes.

Sequencing technologies

The advent of high-throughput sequencing technologies, provides novel insights into the complex-

ities that shape host-microbe interactions. The intestine can now be profiled using various DNA

sequencing techniques. The binning of the sequence data into operational taxonomic units (OTUs)

is ideally done up to strain level, as on species level the the organisms may already exhibit very

different traits. For example, most strains of the very common Escherichia coli bacteria are non-

pathogenic, however, the O157:H7 strain has resulted in multiple epidemic outbreaks during the

past decades [14].

Microbial profiling is most commonly performed by amplification and sequencing of the 16S rRNA

gene, though this is a cost-effective and practical approach, it merely allows for an optimal taxonomic

identification on species level. In order to allow for identification on strain level, a common resort

is Whole Metagenome Shotgun (WMS) sequencing, even though this comes with a greater cost in

total as well as per nucleotide. In addition, cares must be taken to account for the contamination

of nucleic acid by the host. Despite the relatively high costs, sequencing whole metagenomes allows

for a more profound analysis of the data.
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Multi-omic data integration

To obtain a better understanding of the community functional activities, as well as a mechanistic

understanding of the links underlying the sym- and dysbiosis, the quantitative taxonomic data

is often combined with other -omic data types, such as transcriptomics[15], proteomics[16] and

metabolomics [17, 18].

While (meta)genomics only gives insight into the genetic content of the organisms, this data com-

plemented with proteome or metabolome data can give much deeper insights as not only the genetic

content is analyzed, but also the organisms’ biochemical functional activity.

The metabolome, representing the collection of all metabolites involved with both the microbiota as

well as the host, are both the end-products as well as the precursors of cellular processes. Generally,

only the extracellular metabolome is measured, meaning no precise data is available on the intracel-

lular biochemical situation, which can introduce a complexity. Mainly, because various organism’s,

while genetically different, have different influences on shared parts of the metabolome, i.e. one

metabolite may be consumed or produced by several types of organisms, introducing a dimensional

problem; the responsible for a decrease or increase of a metabolite can be difficult or even impossible

to designate.

With more advanced measurement methods the extracellular metabolome can be filtered and the

retained cells be lysed to also measure the intracellular metabolome[19]. While this enhances the

data’s depth (disregarding the biases induced by different lysis specificities), contributing the in-

crease or decrease of a certain metabolite to one or more organisms (i.e. consumers/producers

respectively) can remain challenging as all intracellular metabolites are mixed prior to the measur-

ing.

Depending on the goal of the study it might be favorable to resort to transcriptomics to obtain data

on the level of gene expression. This combined with whole metagenome sequencing can optimally

yield gene expression levels for each organism, while taking into account strain specific variation.

When comparing the metabolome with the transcriptome and proteome, the latter two are better

considered as a more intermediate measurement, meaning the data is closer to organism specific

activity, with a trade-off that the data gives less direct insight into the community-wide phenotypic

traits. To this end, a resort to (targeted) metabolomics can be a viable direction.
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Flux balance analysis

Flux balance analysis (FBA) is generally considered as the current state-of-the-art metabolic model-

ing technique. The technique has proven to be capable of efficiently computing the metabolic fluxes.

This is done using genome-scale reconstructions of metabolic models, which are formalized as a set

of variables that represent the fluxes and a set of constraints that are based on the reactants and

products in combination with the stoichiometrics of each catalyzed reaction. For some metabolites

also transport reactions are involved as constraints with at least the lower or upper limit set free (i.e.

consumption, production or both). The mathematical composite can then be evaluated using linear

programming, where the objective function to be optimized is typically based on the precursors of

biomass[20–22].

Even though FBA as technique itself is relatively simple, it has several requisites; firstly the genome-

scale model has to be very accurate and therefore experimentally validated (e.g. uptake and pro-

duction rates). This requirement makes the technique deemed to fail within the context of complex

microbial communities. Merely well defined mock communities are currently considered as feasible,

new techniques are to be developed first[23]. Very obstructively is the great number of poorly defined

community members. These members are not often classified on species level, while strain precision

is necessary. Last but not least, for many organisms genome-scale metabolic models are yet to be

constructed. Automated procedures for model construction have been proposed[24], however, the

laborious process of manual curation remains essential. A model not accurated, is likely to return

invalid results and probably even will not converge to an optimum.

FBA alternative

The analysis of high-dimensional microbial community data comes with many complexities. Regular

datamining techniques are not applied trivially and are possibly even not appropriate, due to the

curse of dimensionality aspect. Of these issues FBA can only solve some, but its requirements are

too strict to be useful within the context of complex gut or other communities.

To this end new techniques and methods should be devised and investigated, to allow for thorough

analysis of complex microbial communities, while involving the entire microbiome and metabolome

in attempt to utilize all information available. The technique’s yielded output should give at least

the opportunity of making interpretations on a community-level, and optimally on organism level

with the goal of elucidating member-member specific interactions.
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2 Literature review

The present literature reveals several papers of studies on the topic of unraveling the complex-

ities involved with gut or other microbial communities, using both quantitative taxonomic and

metabolomic data. Studies differ in the approach of withdrawing information from these two sources;

in a simplified manner by evaluating both datasets independently or more advanced by making an

attempt at effectively integrating both data types, with the goal to obtain information not de-

tectable when evaluating the datasets independently, but only when leveraging from the combined

potential.

2.1 Metabolic Signatures of Bacterial Vaginosis

Dataset’s properties

The paper by Srinivasan et al. [25] describes a study on the microbial and metabolic signatures of

bacterial vaginosis (BV). 70 patients were involved during the study of whom each a sample was

collected from the cervicovaginal lavage fluid. The samples were sequenced by targeting the V3-

V4 region of the 16S rRNA gene with broad-range PCR pyrosequencing (Roche 454 Life Sciences

titanium technology). The metabolite concentrations were measured using a LC-MS analysis (i.e.

targeted metabolomics).

All the 70 patients were tested for BV using two clinical criteria, the Amsel[26] and Nugent[27]

criterion. With the Amsel criterion, 26 patients were diagnosed negatively versus 44 patients posi-

tively. Unlike the binary outcome of the Amsel criterion, the Nugent clinical criterion is based on a

numeric score, ranging from 0-10, with class ranges as follows: negative < 4 ≤ intermediate ≤ 7 <

positive. Despite this difference between the two criteria, the two methods did gave corresponding

results (i.e. were not in conflict), the Nugent’s intermediate group was composed of 4 negative and

6 positive patients, based on the Amsel criterion.

Data preprocessing methods

After all data processing steps, 171 OTUs were found using QIIME’s[28] OTU picking pipeline.

However, the number of distinct taxonomies is only 63, as the vast majority is unclassified at the

level of species or even higher. The concentration profiles of 279 metabolites were measured, of

which only 96 were made publicly available, possibly due to missing KEGG references.

Metabolite data was normalized by median centering followed by log transforms. Missing values

were imputed using the lowest occurrence value of that metabolite. According to the paper the

OTU abundances were only log transformed and thus no measurements were taken to account for

the relativeness.
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Findings

The paper states that the metabolic signatures specific to BV were strong across multiple metabolic

pathways and in turn associated with the presence or absence of certain bacteria. In summary, 62%

of the 279 measured metabolites (of which only 78 were mapped to the KEGG database) turned out

to be significant. Lower concentrations of amino acids were associated with BV, not surprisingly

the same applied to the amino acid successors, dipeptides. In contrast, higher levels of amino acid

catabolites and polyamines were measured for the BV positive.

More specifically, certain bacteria caught the eye in particular, being more specific to BV than other

bacteria. Such as Lactobacillus, which tented to be absent in case of BV. This characteristic of BV

was observed earlier during other studies [29, 30]. This absence/presence pattern of Lactobacillus

is also reflected to the metabolome, where lower levels of lactate are specific to the control group,

not surprisingly as Lactobacillus as bacterial lineage is known to be the key contributor of this

metabolite. Contrary to lactate, succinate was measured in higher concentrations for BV positive

diagnosed patients, previously also observed during several other studies[31–34].

2.2 Model-Based Integration of Taxonomic and Metabolomic Profiles

Probably the most related study, performed by Noecker et al. [18], demonstrates an analytical

framework that can link community composition with metabolic shifts. The framework is used

to analyze four independently acquired datasets, each pairing taxonomic/metagenomic data with

metabolic profiles. One of their datasets was acquired from the study by Srinivasan et al.[25]

(previously described in section 2.1). This same dataset was also analyzed during this thesis project

(see section 4.1).

Their study was primarily focused on two datasets, the one relating to bacterial vaginosis, and the

other from mice guts, from a study that investigated Clostridium difficile susceptibility in case of

antibiotics treatment.

The study is based on the presumption that the stress applied on or present in a community is likely

to induce a variation in the data, that eases the process of statistical association. For instance, shifts

in both the microbiome and metabolome are easier to couple if prevalent than if weak. Coupling

the shifts between datasets should give insights into species specific metabolic functions. While

such data does increase the associative potential of the entities involved, it is also prone to spurious

correlations, e.g.: two very different organisms responding similarly to a condition, will therefore

also correlate to each others metabolites. Finally, the biochemical context in case of high stress

might be very different from normal situations and can hence can be very unrepresentative for the

reality.

The framework’s core principle is to predict metabolite abundances from the 16S rRNA gene abun-

dances. Predictions are then assessed by correlating to the observed metabolome. For the well
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predicted metabolites this should indicate that the species used for prediction contribute to the

production or absorption of this metabolite, which is quantified by correlating each species’ abun-

dance to the predicted metabolite concentration.

The workflow used to predict the metabolites consists of various steps, integrating multi-omic data

from various sources. See figure 1 for a schematic display of the workflow.

Figure 1: Workflow used by Noecker et al.

Following an explanatory text for each step of the workflow:

1. Using the PICRUSt [35] framework:

(a) The 16S rRNA gene abundances are normalized based on their copy-number variations,

by dividing each abundance by the known/predicted gene copy-number (see section 4.3).

(b) Next, for each OTU its genetic content is predicted using a reference database, resulting

in a table pairing each sample with KEGG orthology (KO) identifiers with corresponding

abundances (see section 4.4).

2. Predicted KO abundances are then normalized using the MUSiCC [36] package, which corrects

for several biases; sample sequencing depth, average genome size, the species richness and

average genome mappability (i.e. genome complexity due to repeats resulting in an assembly

bias [37]).

3. At this point the transition from metagenomic to metabolic data is made. The microbial

community-wide metabolic potential is predicted using an adapted version of the previously

developed method by Larsen et al. [38]. The method’s base line is making an attempt of

predicting metabolite abundances based on the on the predicted KO abundances, using path-

way specific (i.e. catalyzed by certain enzymes) reaction data obtained from the KEGG[39]

database.

Predicting the metabolic turnover is done using a stoichiometry matrix Smn, containing the

quantitative relationships between m metabolites and n genes (i.e. enzymatic products).

Thus, each cell Sij represents the turnover of metabolite i by gene j. The matrix construction

proceeds as follows:

6



• For each enzyme e coded by gene j:

– For each irreversible reaction r catalyzed by enzyme e:

∗ For each reactant i subtract its coefficient from Sij

∗ For each product i add its coefficient to Sij

Only irreversible reactions are taken into account, as the authors consider only these to con-

tribute to the metabolite predictions, i.e. true reaction direction depends on many factors and

cannot not be predicted trivially. Also the reversible reactions cannot be incorporated into

the stoichiometry matrix easily, as the addition and subtraction of the same stochiometric

coefficient makes no difference.

According to the authors, this stoichiometry matrix based approach accounts for metabolic

fluxes, as the used reactions are pathway specific in a sense that the enzymes, present in the

corresponding pathway, catalyze the reactions and hence require less reactants to allow the

reaction to occur. To this end, no bounds on the fluxes are considered, meaning reactions are

assumed to be able to occur without limits and also reaction rates are not considered.

Metabolites involved – as either reactant or product – in reactions that are catalyzed by

enzymes coded by 30 or more genes (named "currency" metabolites) are excluded from further

analysis, following the method previously demonstrated by Greenblum et al. [40] and Taxis

et al. [41]. Furthermore, the matrix is normalized compound-wise (i.e. row-wise) over a range

of [-1..1], following the study of Larsen et al. [38].

A side note to the approach of constructing this stoichiometry matrix, is that it differs from the

traditional stoichiometry matrix in a sense that the genes are normally put against reactions,

instead of metabolites in this case.

Community-wide metabolic potential (CMP) is then computed by multiplying the gene per

sample abundance matrix with the stoichiometry matrix.

4. After all the data transformations, correlations were made using Mantel tests (see section 4.6),

in order to estimate the correlation between pairs of CMP matrices. The authors state that

regular correlations are not applicable as the CMP scores represent relative predictions.

5. Well predicted metabolites do not yet give a direct indication of the contribution of involved

OTUs to that metabolite. The predicted metabolite concentration is derived from an arbitrary

set of OTUs. Backtracking the workflow can be somewhat cumbersome as many variables

and also multiple normalization techniques are involved during the process. To this end, the

authors proposed an simplified but viable approach. For each OTU involved with a metabolite

its abundances over the samples is correlated with the predicted concentration (which is based

on all OTUs involved that metabolite). The correlation coefficient is said to give an estimate

of that OTUs degree of involvement, with that well predicted metabolite.
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6. Spurious findings are ruled out by shuffling the network’s edges (i.e. null model) and re-

performing the analysis. The paper states no correlations were found worth mentioning.

An obvious caveat of this approach is that each step possibly comes with a bias due to missing data.

The paper’s authors stated they were not able to detect these events and hence the severity of the

bias remained unclear.

So called currency metabolites, that occur in reactions associated with 30 or more genes (that

code for the enzymes catalyzing these reactions), were excluded from the prediction of the relative

metabolic turnover (RMT), following the studies by [40, 41]. Understandably, of such metabo-

lites it is difficult to predict the concentration profiles accurately, since a relatively high number

of OTUs have influence on the concentration. However, exclusion using this criterion therefore

filters metabolites difficult to predict and hence can give a deceiving impression on the method’s

performance.

Metabolites transformed intracellular by microbiota can, after excretion, be absorbed by other

microbiota and consequently be further transformed; a phenomena also known as cross-feeding[42].

This aspect is currently not captured in the metabolic turnover. The method used for predicting

the relative metabolic turnover, is non-iterative, as it makes predictions using only an one-time

conversion. For instance, the excretion of one metabolite by a organism, which in turn is consumed

by another organism (i.e. cross-feeding) is not accounted for, while generally believed to be of great

influence and thus importance.

8



3 Definitions and terminology

We define a network as G = (V,E) which consists of a set of nodes V and a set of edges E. Edge

weights for node v and u are noted as W(v,u).

The samples collected from patients who were diagnosed for BV as negative, intermediate or positive,

may also be referred to as the negative/intermediate/positive samples or group.

4 Methodology

4.1 Dataset

The dataset analyzed during this study pairs 16S rRNA gene profiles together with metabolite

concentration profiles. The dataset was obtained from the study performed by Srinivasan et al.[25]

(see section 2.1). It consists of 70 samples collected from 70 women, with the purpose to investigate

metabolomic and taxonomic traits surrounding bacterial vaginosis (BV). Sample meta-data stating

the diagnosis for each patient/sample, based on both the Nugent and Amsel criterion, were provided

by the authors upon request. The raw 16S rRNA data was deposited in the NCBI Short Read

Archive under accession number SRP056030. In terms of sparsesity, the taxonomic data consists of

89.6% zeros, whereas the metabolic data has 2.9%.

4.2 Technical setup

The devised framework was implemented on a multi-node computing cluster, using the Jupyter

IPython[43] environment. This setup is very suitable for projects with a focus on data analysis.

Additionally, this setup works very well together with the IPyParallel package (official extension of

IPython) that simplifies the implementation of code that must run in parallel over multiple cores

or nodes.

The framework’s main process runs in a so called Docker[44] container. This setup is similar to

the better known virtual machines, as it also supports isolated execution in an enclosed environ-

ment, allowing for parallel installation/execution of software that could possibly conflict otherwise.

Furthermore, Docker container instances run on the same kernel, which greatly reduces the compu-

tational overhead that does come with the traditional virtual machines.

The Docker container enclosing the framework functions as the starting point of all analyses per-

formed, hence also the execution of other pipelines are initiated from here. To this end, the core

process/container is also made capable of starting new containers from in itself. Factually, these

newly initiated containers do not run from inside the parent container, instead the parent container

connects to the Docker daemon (i.e. manager of the entire Docker system) running outside all
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containers, which in turns starts a new container. In other words, while the processes are started

in a nested way, the execution proceeds in parallel.

4.3 Data preprocessing

Taxonomic data

Quantitative taxonomic data should be normalized in attempt to account for the relativeness and

uneven total abundance sums per sample. Although, several approaches were experimented with,

the most reasonable approach seemed to be the one that is provided in the QIIME package[28],

a utility capable of normalizing OTU tables using the metagenomeSeq’s CSS[45] (cumulative sum

scaling) transformation method.

The CSS method does not only re-scale abundance, in order to correct for uneven sequencing depths,

it also attempts to correct the compositionality by rarefying the abundances per sample to a count

that is constant for all samples while discarding low abundant OTUs. This is done with the goal to

correct for the bias also induced by uneven sequencing depths; a sample with a greater sequencing

depth has a greater chance to contain data on rare OTUs than a sample with a low sequencing depth.

Many downstream analyses are sensitive to incorrect absences of low abundant OTUs. Rarefaction

can give insight in to the possible error caused by this, by re-sampling with incrementing depths

and re-performing the calculations (e.g. species diversity/richness) for each iteration. The error for

each iteration potentially gives insight into the bias introduced by the uneven sequencing depths

[46].

In the approach demonstrated by Srinivasan et al. abundances are log-transformed, in attempt to

normalize the data. However, a caveat with this approach is that the data does not necessarily

conform to normality. Secondly, the data is very sparse (i.e. contains many zero’s, see section 4.1),

and thus regular log transforms are not appropriate.

To cope with these aspects another approach was employed, one based on the Box-Cox power

transformation, originally developed by Box and Cox[47], which is formalized as:

g(y, λ) =


yλ−1
λ when λ > 0

log(y) when λ = 0
(1)

Where λ is the power by which all values will be raised to optimize the distribution towards nor-

mality. If λ = 0 then the logarithm of y will be used to transform, otherwise it would always result

in 1. Finally, because the transformation requires positive non-zero data, a shifting constant c can

be used to make the values great enough prior to the transformation. For this study c was set to 1.

Metabolic data

Metabolite concentration values were normalized by dividing each value by the mean of the corre-
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sponding sample. Zero-values were set to the lowest non-zero value of that metabolite. Finally, the

data is log transformed. Regular log transform is appropriate in this case, because the zeros are not

present in the data anymore.

4.4 Metagenome prediction

Insight into the functional capabilities of the community’s organisms is essential for the process

of elucidating the different functions and interactions of the community members. The 16S rRNA

profiles merely give information into the composition. To this end, the PICRUSt [48] package was

used to predict the metagenomes. This tool uses a vast reference database to link GreenGenes and

KEGG orthology (KO) identifiers. Furthermore, the database contains data on the corresponding

copy number variations of the marker genes as well as other genes (identified using KOs), this data

is used to correct the OTU abundances and KO abundances (i.e. multiple marker genes give rise

to over-quantification).

4.5 Involving KEGG data

The PICRUSt’s predicted metagenomes are not yet coupled with biochemical data, which is essential

when investigating species specific biochemical characteristics. The metagenomes are presented by

KEGG orthology (KO) identifiers and per sample corresponding abundances. A KO identifier can

represent multiple orthologous genes, which generally have similar chemical properties and therefore

complement each other for missing data. The entire set of genes code for a variety of enzymes that

potentially catalyze different biochemical reactions. The linkage between these different entities

can be made using data obtained from the KEGG application programming interface (API). This

source does not contain information on reaction directionality. KEGG does make this data available

through their FTP interface, stored in the file called "reaction_mapformula.lst". This tab-delimited

file states the reaction identifier, pathway identifier, and the reaction itself (e.g. C00022 => C06033).

This representation of the reaction does not contain the compound coefficients, which therefore have

to be obtained using the KEGG API and coupled with the corresponding compounds that occur

in the reaction. After joining together the information from the different sources, the reactions are

hashed to filter duplicate reactions. This hash operation accounts for possible different order of the

compounds or a mirrored notation of the reaction formula, and thus only filters reactions that are

duplicate from a biochemical perspective.

Due to license issues only the 2010 version of the "reaction_mapformula.lst" file was usable. The

KEGG API, on the other hand, does not require a license for academic users.

After all data instances are connected via hash maps, connections between any entity can be made

directly or indirectly, e.g. which OTU is believed to produce/consume which metabolites as well

as vice versa. Figure 2 shows a schematic overview from the mappings made between the different
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entities.

Figure 2: schematic over simplified example of how different entities can re-

late to each other. Starting with the predicted metagenomic genetic content,

represented as KOs, and further down to the encoded enzymes and finally the

reaction and involved compounds.

4.6 Mantel test based correlation

In the paper by Noecker et al.[18] a demonstration is given of the application of a Mantel test[49]

based Pearson correlation method. Mantel tests allow for computing the correlation coefficient

between two distance matrices. This adapted approach of Pearson correlation aims at a greater

degree of robustness, in particular for relative data.

The computation of the correlation coefficient between two data vectors v and w, starts by con-

structing for each vector a distance matrix D1 and D2, in which both columns and rows represent

the samples. The cell values are established by subtraction of the two vector values that correspond

to the two samples:

Dx =


s1 − s1 s1 − s2 ... s1 − sn
s2 − s1 s2 − s2 ... s2 − sn
... ... ... ...

sn − s1 sn − s2 ... sn − sn

 (2)

The Mantel test implemented into the package developed by Carr[50] was used during this project

to compute the results.

Optionally, vectors that contain less nonzero values than a certain threshold could be discarded
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(threshold used by Noecker et al. was ≤ 5). This will however only discard vectors that would

correlate badly anyways, meaning setting such threshold might give a deceiving impression that

primarily strongly (positively or negatively) correlations were made.

The Pearson or Spearman correlation coefficient is then computed using a Mantel correlation test.

Also a p-value and z-value is calculated by permutating the matrices and testing for a similar

correlation coefficient, which is repeated 5000 times. A threshold for significance was set on <0.05

for the p-value and >1.96 for the absolute z-value. The p-values were corrected for multiple testing

using the Bonferroni method, which is done by multiplying the p-values by the number of tests.

4.7 Identifying the signatures of bacterial vaginosis

4.7.1 Singular based signatures

The degree to which two distributions – of either a metabolite or OTU – differ between two different

classes (e.g. control and experimental group) can give biological relevant insights into the data. The

paper by Srinivasan et al. shows results that were obtained using the Welch’s two sample t-test,

quantifying for the OTUs and metabolites the specificity to BV (i.e. is a metabolite or OTU

significantly absent/present with respect to the diagnosis). Only the results from the t-test results

of the metabolites were reported in detail.

While the t-test is a common approach to test the specificity, it assumes that the distributions are

normally distributed, because the method bases its calculations on the non-intersecting surfaces

between the two distributions, while taking variances (allowed to be unequal if using Welch’s t-test)

into account and using the mean as center point.

Visual inspection as well as normality tests (using SciPY[51] normaltest[52]) showed otherwise (see

section 5.3.2), the distributions are not normal in the majority of the cases, which in particular

applies to the OTUs. To this end, results were reproduced using also other metrics that are valid in

case of distributions not normal. Firstly, a Mann-Whitney U test was used, secondly Pearson and

Spearman correlations were calculated between the OTU/metabolite abundances and the Nugent

numeric score. Again the p-values were corrected for multiple testing using the Bonferroni method.

4.7.2 Multiplex signatures using decision trees

Previous section describes approaches to detect signatures of BV in a singular fashion, i.e. how

does a single OTU or metabolite relate to the condition. These approaches ignore possible relations

between a multitude of OTUs and/or metabolites, that could be of biological significance. To this

end, the following section describes approaches to investigate more complex signatures of BV.
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Estimating integration profitability

To consolidate the assumption that the microbiome and metabolome truly have a combined poten-

tial, for predicting and thus relating to the condition, an own devised method was applied on the

data. This method leverages from the power of great numbers, by randomly constructing a great

number of decision trees, each with a randomized composition of features (i.e. arbitrary OTUs and

metabolites). Each tree was then evaluated by assessing its performance in predicting the condition

per patient. Finally, the prediction scores are plotted versus the feature composition ratio, where

more or less equal proportions of OTUs and metabolites indicates an information gain, and hence

an increased combined potential. The highly iterative approach is supposed to ensure validity, since

invalid interpretations due to coincidences are very unlikely.

The iteration proceeds as follows:

1. The joint dataset is composed of more OTUs than metabolites. Therefore, random sampling

from both feature types should be corrected to prevent a bias towards OTU features. This

is done by sampling M OTUs where M is the total number of metabolites, which in turn is

joined with the metabolites to compose the joint set S where |S| = M · 2.

2. Then using the Scikit’s[53] ExtraTreeClassifier model – "An extremely randomized tree clas-

sifier" – random trees are built using the set of features S.

3. The constructed tree is trained to predict the condition and tested, using 10-fold cross-

validation (i.e. the thresholds are reset and reestablished optimally for each fold). The

prediction error is stored together with the ratio of OTUs and metabolites.

After repeating the steps numerous times, the results are plotted.

Using decision trees to detect OTU/metabolite interaction patterns

Previous section describes an approach to use decision trees to estimate the combined potential of

the two datasets. Even though, this approach does yield trees that can predict the condition very

well, these trees are not to be used for elucidating the complex interaction patterns of multiple OTUs

as well as multiple metabolites. The trees are searched for in a high frequency fashion, without any

pruning operations and hence the results are highly susceptible to overfitting. To this end, it is

necessary to take preventive measures for overfitting in attempt to increase the likelihood that the

trees generalize well on future and thus previously unseen data.

To decrease the chance on overfitting the first measure taken is imposing a size restriction on the

tree’s clades, in addition to limiting the depth of the tree, both operations prevent the tree from

becoming fragmented and hence adjusting too much to the variance and noise in the data. Last but

not least, the model is each time cross-validated using the leave-one-out fashion. The high number

of folds is chosen to keep the amount of training data high.

14



4.8 Estimating per OTU contribution of metabolites

The contribution of an OTU to the production or consumption of a metabolite was previously

investigated by Noecker et al.[18] (see section 2.2). The authors implemented a framework capable

of predicting the relative metabolic turnover (RMT), of which the well predicted metabolites are

then used to base interpretations on that relate to the contribution of an OTU with respect to that

metabolite.

In contrast to the setup used by Noecker et al., this experiment is not based on a stoichiome-

try matrix. Instead, simple mappings are made which couple OTUs with metabolites as produc-

ers/consumers or both. The mappings are then used to predict an abundance for each metabolite

for each sample, by summing and subtracting the producing and consuming OTU abundances,

respectively.

This simplified approach excludes several components of the approach that were proposed by the

authors, such as:

• Correcting for copy number variations of the genes represented by each KO.

• Exclusion of currency metabolites.

• Stoichiometric compounds coefficients.

The approach of leaving out these quantitative adjustments, could be defended with the hypothesis

that a bacterium cannot synthesize twice the amount if the copy-number or stoichiometric is 2

instead of 1. Possibly, the production or consumption rate is primarily limited by the availability

of the metabolic precursors, i.e. high concentrations of a required reactant of a reaction increases

its rate.

4.9 An adapted PageRank algorithm

This section describes how the PageRank algorithm can be applied within the context of metabolic

modeling, by adapting it only slightly. The traditional PageRank algorithm was used to compute a

score of importance for web pages, to sort the results of Google’s first search engine[54]. The algo-

rithm is typically applied on a directed network where nodes represent websites that are connected

with edges if one website links to another via at least one hyperlink. More important websites are

more often linked than less important websites. Also, the importance of the source website is used

to determine the target website’s importance; a website is more important if linked by an important

website than unimportant. Therefore, this is a circular problem, which is solved using an iterative

approach, more thoroughly explain in section 4.9.2.

This topic shows resemblance with the problem of predicting metabolite concentrations from OTU
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abundances; the production rate of one metabolite is dependent on another, which in turn is de-

pendent on another, and so on.

4.9.1 Reaction network

The directed network that PageRank is applied on, is constructed using the samples’ taxonomic

compositions in combination with the KEGG entity mappings. The nodes of the network represent

the chemical compounds, whereas an edge between them represents a reaction involving them both,

one as reactant and the other as product, corresponding to the edge’s source and target node,

respectively. This reaction must be catalyzed by at least one enzyme that is encoded by one of the

OTUs. The edge weights are based on the sum of abundances of the OTUs that are responsible

for that reaction. Greater edge weights result in a greater throughput of Page score. Therefore, a

greater observed OTU abundance will lead to higher predicted metabolite concentrations.

Different setups were experimented with, in which only irreversible reactions were used, but also

both reversible and non-reversible. In case of the latter, reversible reactions, meaning two nodes

would be connected by two edges in both directions possibly of different weights.

4.9.2 Traditional PageRank algorithm

This section describes the traditional PageRank algorithm as proposed by Page et al. [54]. Each

step of the algorithm is explained using over-simplified example data.

#1

Example of a reaction network, where N

nodes v ∈ G and edges (v, w) ∈ E rep-

resent metabolite and reactions/enzymes,

respectively.

#2

source target weight

a b 1

b c 2

b d 1

d b 3

Edges connecting nodes v, w with corre-

sponding edge weight vector w.
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#3
Target

So
ur
ce

a b c d

a 0 1 0 0

b 0 0 2 1

b 0 0 0 0

d 0 3 0 0

Weighted adjacency matrix MN,N

#4

s = 1÷
N∑
i=1

Mi,: = 1÷


1

3

0

3

 =


1
1
3

0
1
3


Calculate edge fraction vector s.

#7

M = M · s =

a b c d

a 0 1 0 0

b 0 0 2
3

1
3

b 0 0 0 0

d 0 1 0 0

Dot product of M with vector s makes the outgo-

ing edge weights per node proportional to one.

#8

p = d =
[

1
N

1
N ... N

]
x =

[
1
N

1
N ... N

]
Where p and d are the personalization and dan-

gling weights vector, respectively, which are set to
1
N

if not specified otherwise. Finally, vector x will

be used to store the PageRank scores.

#9

xdangling =

0 xi > 0

1 xi = 0
∀i ∈ {1, 2, ..., N}

Binary vector xdangling represents the Booleans of

a node being dangling (i.e. no outgoing edges) or

not.

#10

xprevious = x

x = α · (x ·M + d ·
∑

(x · xdangling)) + (1− α) · p

L1 =
1

N
·
∑
|x− xprevious|

•••• Vector xprevious keeps track of the previous vector

x so the change can be quantified for each iteration.

• Variable α represents the damping factor, which

is also the proportion of the total PageRank score

that is assigned to the personalized nodes accord-

ing to personalization fractions in vector p.

• Above calculations should be repeated until con-

vergence which is if L1 is lower than specified

threshold T .

The algorithm is constructed such that the sum of PageRank scores is meant to sum up to one
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exactly, for each iteration. If this check fails, the algorithm is implemented wrongly and likely to

yield incorrect results.

4.9.3 Algorithm adaptations

The original PageRank algorithm was adapted in multiple ways to make it more applicable within

the context of metabolic modeling, resulting in the own devised method named "PageRank based

metabolic modeling". Firstly, the before mentioned step #4 is replaced with:

s = 1÷
N∑
i=1

M:,i = 1÷


0

4

2

1

 =


0
1
4
1
2

1


Summing over the columns instead of the rows, gives the summed weights of outgoing edges instead

of incoming edges.

Secondly, step #5 is replaced with, where M is multiplied by s such that all resulting columns sum

up to one, and therefore introducing proportionality. In terms of graph edges, this means that for

each node the summed weight of the outgoing edges sum up to one:

M = M · s =

a b c d

a 0 1
4 0 0

b 0 0 1 1

b 0 0 0 0

d 0 3
4 0 0

From a biological perspective, this means that the flux of a metabolite is primarily restricted by the

abundance of the OTUs producing that metabolite, rather than the consuming OTU abundances.

Lastly, step #8 is replaced with:

p =
[
p̄
N

p̄
N ... N

]
d =

[
d̄
N

d̄
N ... N

]
x =

[
1
N

1
N ... N

]

Where p̄ and d̄ are constants that can be adjusted. Both the constants may be set to a value greater

than one, meaning that the sum of personalization and dangling values per node may rise above

one. This adjustments breaks the base principle of the original algorithm, that ensures all PageRank
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scores sum up to one. With this setup scores are believed to have more freedom, i.e. they are not

restricted to a [0..1] range, which is deemed to be very restrictive when applying the algorithm to

multiple samples.

4.10 Generating null-distributions

To validate the findings made using this approach two different methods will be used to generate null-

distributions. The first approach aims at randomizing while retaining network topology, using edge

shuffling. The second approach shuffles data as well, but only inside each class of the condition, with

the goal to retain the bias that comes with the class separation (e.g. two OTUs that are similarly

specific to BV are likely to correlate with each others metabolites and hence possibly falsely indicate

consumption/production of each others metabolites).

Network shuffling

Network shuffling was performed by interchanging the source of an edge pair (i.e. a reaction be-

tween two metabolites), iteratively for the whole network. This approach ensures that the degree

distribution is not affected and hence topology of the network is retained. Significant findings will

indicate that the method is prone to spurious findings. Difference between the distributions of both

the findings as well as the null distribution can be used to quantify a score relative to the null

hypothesis.

Class corrected null-distribution

In attempt to construct a null-distribution, that is corrected for class induced biases, we propose

the following algorithm that is based on the previously described (see section 4.8) method used for

quantifying the contribution per OTU of each metabolite.

The algorithm operates according to the following steps:

1. Repeat for n iterations:

(a) For each observed metabolite m:

i. Acquire the set of OTUs o that is believed to be capable of producing metabolite m

(inferred from both bi- and unidirectional reactions, see figure 2 of section 4.5).

ii. Sum the abundances of the OTUs o per sample and use as predicted concentration

for metabolite m.

iii. Permutate the per sample predicted concentrations, only inside each class, i.e. per-

mutate the values of the two classes separately.

iv. Correlate the predicted concentrations with the observed concentrations for metabo-

lite m and store the correlation coefficient, coupled with the link to metabolite m.

19



2. Take the mean of the correlation coefficients per metabolite and return the correlation coeffi-

cients for each metabolite.

The process is repeated until the calculated mean prediction scores have converged.
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5 Results

This section describes the various results obtained using the methods described in the previous

section. The results are presented primarily in a comparative manner with the studies performed

by Srinivasan et al.[25] and Noecker et al.[18]. Furthermore, it demonstrates novel approaches

for obtaining insights into the relations between the microbiome and metabolome with respect to

bacterial vaginosis. The first part focuses on characteristics of the dataset such as composition of

the microbiomes and metabolomes.

5.1 Exploring the dataset

5.1.1 Composition analysis

Figure 3 gives a first glimpse on the composition of the microbiome and metabolome. The sam-

ples were (horizontally) sorted using their mutual Bray-Curtis distance calculated between their

taxonomic profiles. Since this sorting is NP-hard, a heuristic was used which starts with the most

similar sample pair, which in turn is extended by attaching most similar samples on both sides

until all samples are processed, this for both sample classes apart. The OTUs and metabolites were

vertically sorted (per sample) based on the mean abundance/concentration over all samples (i.e.

most prevalent appear at the middle of the diagram).

Figure 3: metabolic (top) and taxonomic (bottom) composition for each sample. Samples grouped per class, BV positive

and negative, are shown left and right, respectively.
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Based on only a visual inspect it already becomes clear that there is a distinct difference between

the two classes, from both microbial and metabolic compositional perspective. Finally, the positive

class appears to exhibit more divergence, by containing fewer very prevalent species.

5.1.2 Species diversity and richness

Figure 4 shows the species ecosystem’s biodiversity and richness for all samples with respect to BV.

Results were computed using the core_diversity_script.py utility of QIIME[28].

Figure 4: Showing three different species diversity/richness measures. Where the

orange, red and blue line depict the positive, intermediate and negative group.

The Chao1 gives insight into the total richness by predicting the true number of OTUs, which is

done by extrapolating on the number of rare OTUs, to estimate the number of OTUs missed out on

due to undersampling. On the other hand, the Shannon (H ′) and Simpson’s (D) index both serve

the same goal of quantifying species diversity. However, the two measures are prone to different

biases. The Shannon index gives more weight to rare than common species. It is also stated to

favor consistency of species abundances in OTUs, whereas the Simpson’s index discriminates the

rare species, i.e. more strongly weighting the dominant/abundant. Also, a notable difference is that

the latter represents a probability whereas the Shannon index does not[55–57].

The measures are plotted using rarefaction curves, to provide insight into possible deviations that

are a consequence of too shallow sequencing. The curves do not show discrepancies between the

different sampling points and hence it can be concluded that the measurements are unlikely to be

invalid due to too shallow sequencing. Furthermore, a clear separation between the three different

classes is visible. The communities of the positive group are most divers, with the intermediate

group at the second place. This confirms the observations done previously at figure 3.
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5.1.3 Data dimensionality & reaction direction

As previously mentioned, the dimensionality (i.e. number of features) of this dataset is very high in

contrast to the number of samples. Also, the number of OTUs that operate with each metabolite

relates to this same aspect; currency metabolites are likely to be involved by many organisms,

which complicates the analysis. At the same time, reaction directionality is a complicating aspect.

Firstly, reversible reactions are possibly very difficult to involve in the analysis, as the direction

often depends on the current biochemical situation. Disregarding the reversible reactions, certain

organisms may still synthesize as well as consume certain metabolites due to non-reversible reactions

for that metabolite in both directions.

Figure 5 displays a summary of the number of OTUs involved with each metabolite, with corre-

sponding role of each OTU, i.e. consuming, producing and both.

Figure 5: For each metabolite is shown how many OTUs operate with

it, either consuming, producing or both. The left side shows this for all

reactions, whereas the right side only presents the non-reversible reactions.
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The figure shows that almost every metabolite is both consumed as well as produced, by at least

one of the observed OTUs, but in almost half of the cases it is interacted with by roughly all OTUs.

The plot shows a slight dominance for only consuming OTUs compared to only producing OTUs.

Excluding the reversible reactions decreases the number of OTUs that operate with the metabolite

in both ways, significantly. On the other hand, the total number of OTUs that interact in at least

one way is still quite high for most metabolites, from this perspective the dimensionality did not

decrease much. Finally, the plot shows a clear dominance for OTUs only consuming in comparison

to OTUs only producing.

5.2 Reproducing taxonomic classifications

The paired dataset was made available in different formats. The data was already processed to

OTU abundances, where manual inspection showed that this representation of the data is very

sparse. To ensure reasonable quality of the OTU classification, it was redone using the QIIME

metagenomics analysis package [28]. The samples were first pre-processed by trimming of adapters

and primers. The reads were then processed using the open reference OTU picking tool contained

in QIIME. The similarity threshold that determines a match between a read or a reference OTU,

was incremented iteratively and plotted against the performance measure (see figure 6). This

performance measure (described in methodology section 4.8) gives an indication of how well the

16S rRNA profiles correspond to the metabolite concentrations, allowing for an assessment of the

methods that preprocess the data.

Figure 6: OTU classification quality based on a metric (see section 4.8) that gives a score

indicating the correspondence between microbiome and metabolome data sets. Scores for the

method used by Noecker et al. are only shown for 97% similarity.
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The figure shows the best score for the OTU profiles that were self picked using the QIIME pipeline

and normalized using the QIIME’s built-in CSS normalization utility. For the same data the PI-

CRUSt normalization tool did perform almost as well. The OTUs picked by Noecker et al.[18]

turned out slightly inferior. The sole difference in setup is that Noecker et al. also rarefied the OTU

counts to the total abundance of the sample with the lowest sequencing depth, which might degrade

the succeeding normalization methods and possibly explain the slight degradation.

Comparing the CSS and PICRUSt normalization methods to the self picked OTUs without normal-

ization, shows that both normalization methods appear to correct for fluctuations with a negative

effect on the metabolite predictability. One peculiar outlier is shown at 95% similarity, where the

non-normalized score makes a relatively small drop, but is amplified greatly by both normalization

methods. No clear explanation is present for this yet. However, here it is important to note that

missing KEGG data might be of influence. Also, the sensitive nature of clustering algorithms can

lead to very different results if a tipping point is exceeded.

Finally, the null distributions (constructed as described in section 4.10) show that there is indeed a

bias involved with this performance score, but not in close range of the experiments.

5.3 Signatures of bacterial vaginosis

This section describes obtained results that relate to biological patterns specific to BV. Both the

metabolic and taxonomic characteristics were investigated using multiple methods, ranging from tra-

ditional PCA methods, to T-tests, to decision trees. Using these different approaches the signatures

of BV are investigated for both metabolites and OTUs in a one-to-one fashion as a many-to-many

fashion.

5.3.1 Principal component analysis

See figure 7 and 8 for a first insight into the separation of the BV positively and negatively diagnosed

patients using the Amsel and Nugent criteria, respectively. The spatial separation is based on the

16S rRNA profiles together with the metabolite concentrations, joined using PCA of which the two

most prevalent directions of variation define the 2D spatial separation.

The two plots clearly show two clusters for both classes, of which especially the negative cluster is

relatively dense, whereas the positive cluster is sparser by showing a greater spread. Also is the

positive class blend into the negative class and not vice versa, indicating the diseased patients are

more variant in biological terms.

The quantitative score of the Nugent criterion shows coherence with the plot as the smaller sized

nodes, and hence also the intermediates, tend to the left and blend into the negative class. Appar-

ently, these patients were not separable from the negative class based on only a two component PCA

dimension reduction. A better split might be achievable with the use of more advanced methods.
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Amsel Nugent

Figure 7: Scatter plot showing samples of BV posi-

tively (red) and negatively (green) diagnosed patients

based on the Amsel criterion. Samples (i.e. data point)

2D locations were based on the first two components

of a PCA applied on both datasets (i.e. 16S rRNA

profiles and metabolite concentrations).

Figure 8: Same setup as figure 7, except the Nugent

criterion was used instead om Amsel. Furthermore,

the blue dots depict samples with intermediate Nugent

scores. Finally, the dot sizes correspond to the numeric

Nugent score.

5.3.2 Singular based signatures

Following the research by Srinivasan et al.[25], for each metabolite and OTU has been computed

to what degree it is associated with BV. As explained in section 4.7.1, not only the Welch’s t-test

has been used, since this metric assumes normality and the tested distributions do not necessarily

conform to this.

See table 1 for the top 30 metabolites most specific and nonspecific to BV, where the rank was

based on the Mann-Whitney U test in ascending order.

See table 2 for the 30 most BV specific OTUs. In addition to this table, there were also OTUs trans-

formed into an phylogenetic tree (Newick format) and visualized using the Dendroscope package[58],

see figure 9.

Results show similar findings as done in the study done by Srinivasan et al. Also, no strong discrep-

ancies are observed between the results of the different metrics. To conclude, the fact that these

distributions rarely conform to normality, does not lead to significant problems when analyzed using

metrics that do assume normality.
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U p-val t-val p-val r p-val r p-val

C01672 Cadaverine 6.0 0.00 17.45 0.00 0.85 0.00 0.78 0.00 0.00 / 0.00 / 0.03
C00134 Putrescine 6.0 0.00 17.18 0.00 0.81 0.00 0.72 0.00 0.00 / 0.02 / 0.05
C00483 Tyramine 8.0 0.00 11.99 0.00 0.76 0.00 0.71 0.00 0.00 / 0.20 / 0.90
C00082 L-Tyrosine 15.0 0.00 -11.94 0.00 -0.82 0.00 -0.79 0.00 0.01 / 0.22 / 0.57
C00794 D-Sorbitol 12.0 0.00 -11.09 0.00 -0.80 0.00 -0.79 0.00 1.00 / 0.60 / 0.01
C00489 Glutarate 17.0 0.00 10.79 0.00 0.79 0.00 0.78 0.00 0.05 / 0.51 / 0.36
C03189 DL-Glycerol 1-phosphate 39.0 0.00 10.45 0.00 0.72 0.00 0.69 0.00 0.00 / 0.11 / 0.01
C00209 Oxalate 41.0 0.00 -10.10 0.00 -0.73 0.00 -0.70 0.00 0.01 / 0.47 / 0.33
C00388 Histamine 43.0 0.00 9.46 0.00 0.71 0.00 0.69 0.00 0.00 / 0.44 / 0.03
C00079 L-Phenylalanine 48.0 0.00 -9.11 0.00 -0.78 0.00 -0.77 0.00 0.00 / 0.00 / 0.08
C00078 L-Tryptophan 53.0 0.00 -8.98 0.00 -0.79 0.00 -0.80 0.00 0.02 / 0.14 / 0.04
C00031 D-Glucose 55.0 0.00 -8.92 0.00 -0.71 0.00 -0.70 0.00 0.00 / 0.36 / 0.26
C00577 D-Glyceraldehyde 33.0 0.00 8.87 0.00 0.73 0.00 0.74 0.00 0.66 / 0.85 / 0.63
C00270 N-Acetylneuraminate 49.0 0.00 8.68 0.00 0.67 0.00 0.65 0.00 0.00 / 0.21 / 0.57
C00042 Succinate 55.0 0.00 8.38 0.00 0.72 0.00 0.74 0.00 0.00 / 0.39 / 0.01
C00315 Spermidine 54.0 0.00 8.24 0.00 0.67 0.00 0.67 0.00 0.24 / 0.60 / 0.44
C01026 N,N-Dimethylglycine 59.0 0.00 7.97 0.00 0.66 0.00 0.66 0.00 0.01 / 0.04 / 0.01
C07599 Alloxanthine 75.0 0.00 7.84 0.00 0.69 0.00 0.67 0.00 0.07 / 0.25 / 0.19
C00065 L-Serine 63.0 0.00 -7.73 0.00 -0.70 0.00 -0.74 0.00 0.13 / 0.92 / 0.09
C03264 D-2-Hydroxyisocaproate 80.0 0.00 6.82 0.00 0.65 0.00 0.62 0.00 0.05 / 0.01 / 0.90
C00047 L-Lysine 76.0 0.00 -6.25 0.00 -0.65 0.00 -0.63 0.00 0.58 / 0.00 / 0.55
C00073 L-Methionine 100.0 0.00 -5.74 0.00 -0.63 0.00 -0.64 0.00 0.04 / 0.00 / 0.01
C00408 L-Pipecolate 88.0 0.00 -5.71 0.00 -0.62 0.00 -0.61 0.00 0.83 / 0.01 / 0.49
C00123 L-Leucine 111.0 0.00 -5.67 0.00 -0.57 0.00 -0.56 0.00 0.07 / 0.02 / 0.52
C00188 L-Threonine 116.0 0.00 -5.54 0.00 -0.58 0.00 -0.58 0.00 0.29 / 0.64 / 0.62
C01717 4-Hydroxy-2-quinolinecarboxylic acid 115.0 0.00 5.31 0.00 0.60 0.00 0.58 0.00 0.01 / 0.05 / 0.39
C00318 L-Carnitine 132.0 0.00 -5.05 0.00 -0.52 0.00 -0.55 0.00 0.71 / 0.54 / 0.27
C00380 Cytosine 128.0 0.00 5.04 0.00 0.56 0.00 0.50 0.00 0.02 / 0.27 / 0.67
C00186 (S)-Lactate 120.0 0.00 -5.03 0.00 -0.54 0.00 -0.52 0.00 0.01 / 0.00 / 0.81
C02470 Xanthurenic acid 123.0 0.00 -4.90 0.00 -0.54 0.00 -0.57 0.00 0.05 / 0.08 / 0.02

KEGG ID Normality p-value
SpearmanWelch's t-testMann–Whitney

Compound name
Pearson

Table 1: Table shows the 30 metabolites most specific to BV, sorted on the scores computed using the Mann-

Whitney U test. Normality p-values are calculated for the distributions of all, only negative and only positive

samples, respectively. See table 21 (appendix 6.2) for the whole table.

U p-val t-val p-val r p-val r p-val
f:Bifidobacteriaceae g:Gardnerella 16.0 0.00 7.26 0.00 0.73 0.00 0.49 0.00 0.00 / 0.00 / 0.00
f:Veillonellaceae g:Dialister 18.5 0.00 12.71 0.00 0.84 0.00 0.82 0.00 0.00 / 0.00 / 0.00
f:Lactobacillaceae g:Lactobacillus 24.0 0.00 -9.67 0.00 -0.77 0.00 -0.79 0.00 0.00 / 0.16 / 0.02
f:Prevotellaceae g:Prevotella 31.0 0.00 11.74 0.00 0.80 0.00 0.73 0.00 0.00 / 0.01 / 0.00
o:Coriobacteriales f:Coriobacteriaceae 33.5 0.00 13.99 0.00 0.81 0.00 0.69 0.00 0.00 / 0.00 / 0.00
f:Veillonellaceae g:Megasphaera 47.0 0.00 11.09 0.00 0.77 0.00 0.77 0.00 0.63 / 0.00 / 0.00
f:Leptotrichiaceae g:Sneathia 56.0 0.00 11.70 0.00 0.76 0.00 0.73 0.00 0.76 / 0.00 / 0.00
f:Aerococcaceae g:Aerococcus 71.0 0.00 9.60 0.00 0.61 0.00 0.40 0.00 0.00 / 0.00 / 0.00
f:[Tissierellaceae] g:Peptoniphilus 93.0 0.00 7.99 0.00 0.68 0.00 0.67 0.00 0.99 / 0.00 / 0.01
f:Gemellaceae g:Gemella 100.0 0.00 10.02 0.00 0.65 0.00 0.61 0.00 0.00 / 0.58 / 0.05
f:[Tissierellaceae] g:Parvimonas 105.5 0.00 7.08 0.00 0.64 0.00 0.69 0.00 0.00 / 0.00 / 0.09
f:Clostridiaceae g:Clostridium 110.0 0.00 9.88 0.00 0.73 0.00 0.79 0.00 0.52 / 0.58 / 0.01
f:Actinomycetaceae g:Mobiluncus 180.0 0.00 6.54 0.00 0.58 0.00 0.64 0.00 0.00 / 0.58 / 0.00
f:Porphyromonadaceae g:Porphyromonas 200.0 0.00 6.01 0.00 0.53 0.00 0.57 0.00 0.00 / 0.58 / 0.00
f:Lachnospiraceae g:Shuttleworthia 210.0 0.00 5.77 0.00 0.57 0.00 0.64 0.00 0.00 / 0.58 / 0.00
g:Lactobacillus s:iners 220.0 0.00 -1.16 18.00 -0.22 5.04 -0.49 0.00 0.00 / 0.00 / 0.00
f:Actinomycetaceae g:Actinomyces 240.0 0.00 4.99 0.00 0.39 0.00 0.35 0.00 0.00 / 0.58 / 0.00
g:Lactobacillus s:reuteri 240.0 0.00 -3.50 0.00 -0.52 0.00 -0.48 0.00 0.00 / 0.01 / 0.58
f:[Tissierellaceae] g:Anaerococcus 253.5 0.72 2.70 0.72 0.33 0.72 0.33 0.00 0.00 / 0.02 / 0.00
f:Actinomycetaceae g:Arcanobacterium 260.0 0.00 4.31 0.00 0.35 0.00 0.37 0.00 0.00 / 0.58 / 0.02
c:Bacteroidia o:Bacteroidales 260.0 0.00 4.51 0.00 0.49 0.00 0.58 0.00 0.00 / 0.58 / 0.00
c:Clostridia o:Clostridiales 260.0 0.00 4.46 0.00 0.33 0.72 0.31 0.72 0.00 / 0.58 / 0.01
o:I025 f:Rs-045 290.0 0.72 3.78 0.00 0.35 0.00 0.39 0.00 0.00 / 0.58 / 0.01
g:Lactobacillus s:coleohominis 292.0 0.00 -2.51 1.44 -0.38 0.00 -0.39 0.00 0.00 / 0.05 / 0.00
g:Peptostreptococcus s:anaerobius 294.0 1.44 2.53 0.72 0.25 2.16 0.22 5.04 0.00 / 0.00 / 0.00
o:Lactobacillales f:Streptococcaceae 300.0 0.00 -2.46 1.44 -0.36 0.00 -0.32 0.72 0.00 / 0.03 / 0.58
f:Fusobacteriaceae g:Fusobacterium 300.0 0.72 3.36 0.00 0.32 0.72 0.35 0.00 0.00 / 0.58 / 0.00
f:Mycoplasmataceae g:Mycoplasma 310.0 0.72 3.17 0.00 0.30 0.72 0.31 0.72 0.00 / 0.58 / 0.00
o:Bacteroidales f:S24-7 310.0 0.72 3.30 0.00 0.32 0.72 0.35 0.00 0.00 / 0.58 / 0.00
f:Lachnospiraceae g:Moryella 310.0 0.72 3.31 0.00 0.35 0.00 0.41 0.00 0.00 / 0.58 / 0.00

Mann–Whitney Welch's t-test
Taxonomy

Pearson
Normality p-value

Spearman

Table 2: Table shows the 30 OTUs most specific to BV, sorted on the scores computed using the Mann-Whitney

U test. Normality p-values are calculated for the distributions of all, only negative and only positive samples,

respectively. See table 22 (appendix 6.2) for the whole table.
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Figure 9: Phylogenetic tree of Pearson correlations also shown in table 2.
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5.3.3 Multiplex signatures

Previous section describes the detected signatures of bacterial vaginosis in a singular fashion, i.e.

how a single OTU or chemical compound relates to the condition. Also of interest is the way how

different entities are specific to the condition with respect to each other. For instance, how one

or more OTUs correspond to the quantified symptoms with respect to one or more metabolites.

Detected patterns of such kind possibly give a reflection of the activity of the organisms that are

involved. The patterns are searched for using decision tree classifiers. This is a flexible approach

that keeps the results very interpretable.

Prior to the analysis the data is normalized to account for the relativeness of the quantities. This

is done in the same way as in the preceding experiments, but followed up by scaling each abun-

dance/concentration between the range of 0 and 1, meaning for each entity its lowest occurrence

value is transformed to zero, whereas the highest is transformed to one. This eases the interpreta-

tion of the decision trees, but is of no further influence, since decision trees can work with fractions

evenly well.

Estimating integration profitability

Firstly, a experiment (see section 4.7.2) was performed to investigate the information gain made

by combining the taxonomic and metabolic data. This was done by generating more than 200k

random trees. For each tree the performance was determined using 10-fold cross-validation. The

tree prediction scores were then plotted versus the feature composition ratio (i.e. proportion of

metabolites and OTUs), shown in figure 10.

The figure shows that well predicted trees generally favor somewhat equal proportions of metabolite

and OTU features. It also shows that the not well generalizing trees generally have a higher

proportion of metabolites as features, which suggests that OTUs have a greater relevant information

density than metabolites. This might be a result of the metabolite specific nature of targeted

metabolomics, as it measures only a small subset of the entire collection of present metabolites.

Also does a OTU represent a greater number of metabolites by consuming/producing it, meaning

it could therefore harbor more information.

The bottom section of the plot, shows that the standard deviation of the feature ratio decreases with

an increasing tree score, indicating that a greater tree score comes with consistency in favorability for

feature composition, which in turn substantiates the observations stated in the preceding paragraph.
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Figure 10: The three subplots, from top to bottom, present: the number of

trees per bin, the bin average feature composition proportions and the feature

ratio standard deviation.
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Detecting multiplex relations using decision trees

This section describes detected biological patterns that involve a multitude of OTUs and/or metabo-

lites, obtained using decision trees as described in section 4.7.2. Due to the non-negligible chance

on overfitting, two preventive measures were taken, the trees are only allowed to grow 4 levels deep

(i.e. longest path from root node to a node). Furthermore, each leave must represent at least 4

samples. This approach prevents the tree to sprout very specific and fragmented branches. Finally,

all tree scores are determined while using leave-one-out cross-validation.

Figure 11: the first tree showing a biological pattern, relating to bacterial vaginosis,

involving multiple metabolites as well as OTUs.

Figure 11 shows a tree scoring well in predicting BV. According to the tree the genus Megasphaera

was found to have the tendency to be present in case of a positive diagnosis. Referring back to

table 2 the same interpretations can be made based on the two-sample t-tests. More specifically,

if Megasphaera genus class is relatively absent, the condition is likely to be negative, but only if

trimethylamine N-Oxide is relatively absent.

Figure 12: second tree, same setup, except a different pattern.

Figure 12 shows the second biological pattern detected, stating that a presence of the Prevotella

genus class is associated with a positive diagnosis of BV. On the other hand, when the Prevotella

class is relatively absent, it strongly associates to a negative diagnosis if tyramine is absent. If the

latter is relatively present, the pattern states that an absence of allotoin corresponds to a positive

diagnosis.

More trees were found that perform good in predicting bacterial vaginosis, but do not involve both

metabolites as well as OTUs and thus do not give insight into potential interaction patterns of

OTUs via metabolites. Due to the high dimensional nature of the data, it is likely to also find

irrelevant trees.

31



5.4 Estimating OTU contribution of metabolites

This section presents the results of the OTU/metabolite contribution approach as explained in

section 4.8. The method’s performance is assessed by comparing it with a null-distribution and also

with the method proposed by Noecker et al.

Confirming joint OTU prediction potential

The results of the following experiment were acquired to confirm that combining OTUs increases the

coupling force with metabolites, in contrast to one-to-one relations between OTUs and metabolites.

The former statement is in line with the presumption that most metabolites are interacted with by

a multitude of OTUs, whereas the latter statement represents the opposite. The difference between

the two is investigated by making correlations in two different ways:

1. For each metabolite the mean correlation between the metabolite’s concentration and the

abundances of the OTUs that operate with the metabolite.

2. For each metabolite the correlation between the metabolite’s concentration and the sum of

abundances of the OTUs that operate with the metabolite.

Figure 13: For both plots the prediction correlation coefficients are shown in green,

whereas the OTU/metabolite correlation coefficients, averaged per metabolite, are

shown in red. Left a normal mean and right a weighted mean based on the mean

OTU abundance.

The plot shows a greater spread for the predictions (green) than the individual correlations (red),

disregarding the use of mean or weighted mean, indicating that correlating sums of involved OTU

abundances with metabolites is stronger than correlating OTUs with metabolite in a one-to-one

fashion.

Adapted method for predicting relative metabolic turnover

This section section describes the results obtained with the reproduced algorithm by Noecker et al. as

well as the simplified version as explained in section 4.8. The results are each time compared between

two methods, of which one can be a null-distribution that is constructed as explained in section 4.10.

Predictions are assessed by correlating the observed and predicted metabolite concentrations using

Pearson’s correlation. The obtained coefficients are visually compared with scatter plots, where
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H(0)
Abundances

summed
H(0)

Noecker

et al.

Noecker

et al.

Abundances

summed

µ(r < 0) -0.07 -0.18 -0.05 -0.18 -0.18 -0.18

µ(r > 0) 0.09 0.20 0.10 0.18 0.18 0.23

µ r 0.03 0.10 0.05 0.02 0.02 0.13

Table 3: all scores for figures 14 and 15 respectively.

each of the two axes (i.e. x and y) represents a method. In addition, the performance scores are for

each method numerically summarized using three metrics (see table 3), the mean of: only negative

correlation coefficients, only positive coefficients and finally all the coefficients.

Figure 14 shows two scatter plots comparing the prediction results for the own devised method and

that of Noecker et al., both compared with the class-corrected null-distribution.

Figure 14: Left plot shows the Pearson correlation scores of the predicted metabolite

concentrations using the own devised method versus the null-distribution. Right plot is

set up in the same way, except the method assessed is that of Noecker et al.

For both methods the plots clearly show a vertical stretch, indicating that both methods are capable

of predicting metabolites better than random, i.e. generating patterns biologically more relevant

than the null-distribution, either negatively or positively. The own devised method also appears to

have a shift to the higher correlation coefficients, meaning less metabolites are negatively predicted

and the positive correlations are stronger. To consolidate this observation, the methods are also

compared with each other in figure 15.

The plot shows that a small majority of the metabolites – predicted positively by both methods –

were predicted better using the own devised method. It also shows that the own devised method

was more capable of positively predicting metabolites which the method by Noecker et al. predicted

negatively. Last but not least, the own devised method was capable of predicting 77 metabolites

versus 49 metabolites using the method by Noecker et al., being a consequence of technical aspects

as explained in 2.2.
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Figure 15: This plot shows the Pearson correlation coefficients of both

methods plotted against each other.

5.5 PageRank based metabolic modeling

This section describes the results that were found using the own devised PageRank based metabolic

modeling (PBMM) algorithm, as described in section 4.9.3. Predictions were again assessed by

computing Pearson correlations coefficients between the observed and predicted metabolite concen-

trations.

The first two plots (figure 16) show for both the PBMM method and the method of Noecker et al.,

the performance compared against the null-distribution.

Figure 16: performance for the PBMM method (left) and method by Noecker

et al. (right) compared with the null-distribution.

The plots for both methods show a vertical stretch, indicating predictions are better than random.

Furthermore, PBMM method has greater correlation coefficients for negatively as well as positively

predicted metabolites, whereas the method by Noecker et al. is more balanced in both directions.

These visual observations are confirmed by table 4.
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H(0) PBMM H(0)
Noecker

et al.

Noecker

et al.
PBMM

PBMM

positives

PBMM

negatives

Noecker

positives

Noecker

negatives

µ(r < 0) -0.06 -0.15 -0.06 -0.18 -0.18 -0.11 -0.13 -0.17 -0.14 -0.14

µ(r > 0) 0.09 0.41 0.10 0.18 0.18 0.45 0.27 0.48 0.23 0.20

µ r 0.03 0.27 0.05 0.02 0.02 0.34 0.16 0.38 0.05 -0.01

Table 4: all scores for figures 16, 17 and 18, respectively.

Figure 17 shows the same predictions for both methods but compared against each other.

Figure 17: performance of the PBMM algorithm plotted versus the performance

of the method proposed by Noecker et al.

The plot shows a significant greater performance for the PageRank based approach. Not only are

the positive correlations stronger, but also are the negative correlations fewer.

Figure 18: both scatter plots show the correlations coefficients for the positive class

(y-axis) plotted against those of the negative class (x-axis). Left: PBMM algorithm.

Right: method proposed by Noecker et al.
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Figure 18 shows for both methods the difference of performance when applied only on one of the two

classes separately, i.e. comparing the correlations coefficients of observed and predicted metabolite

concentrations of only positively diagnosed patients versus only negatively diagnosed patients using

the Amsel criterion. This comparison aims at determining whether the methods have a preference

– in terms of performance – for one of the two classes.

In case of the PBMM algorithm, there is a significant difference. The metabolites are predicted

more accurately for the negatively diagnosed patients. This remarkable difference is not shown by

the method of Noecker et al. This significant finding might relate to the nature of the algorithm;

converging to a balance before returning the predictions. This assumption possibly coincides with

observations done in previous sections 5.1.1 and 5.1.2, where it became clear that the positive class

is more divergent from both a microbial as well as metabolic perspective. Similarly, the PCA plots

in figure 7 (section 5.3.1) display a greater cluster density for the negative class, contrary to the

positive class which exhibits a greater variance by blending into the negative class.

Figure 19: this comparative scatter plot shows how the metabolite concentration

predictions relate to BV specificity quantified by two-sample t-tests.

To obtain a more precise insight into the class specific performance of the PBMM method, figure

19 shows a comparative scatter plot between the metabolites predicted over all samples versus

metabolite t-values, obtained as explained in section 5.3.2. The plot shows that BV aspecific

metabolites tend to be very well predicted up to r ≈ 0.8, where the prediction performance appears

to level off. Similarly, the metabolites specific for BV tend be predicted very badly, since all

predictions approximate the zero point.

To further confirm the BV class specific performance difference, figure 20 shows the metabolite

correlation coefficients plotted against the PageRank iterations, predicted on both patient classes

separately, as well as combined. The three plots confirm the previous findings. In addition, the

course of convergence per class is elucidated. The negative class initiates a stronger convergence at

iteration 11, whereas the positive class does that at iteration 14.
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Figure 20: the above plots show the correlation coefficients plotted over the PageR-

ank iterations, for each metabolite separately, tested on the negative, the positive

and all samples, in respective order. The black lines represent the means in re-

spective order of the positive, negative and all correlation coefficients.

Not negligible is the observation that the negative class does not exceeds its optimum, whereas the

positive class does decrease in performance around iteration 20.
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6 Discussion

6.1 Concluding the findings

With this study we showed that integrating the microbiome and metabolome gives opportunity

to extract more information, in addition to the opportunity to use observed metabolite profiles to

assess and validate predictions made using the microbial data.

Firstly, we showed that observed metabolite profiles can be used to assess taxonomic classifications.

This showed a discrepancy at a similarity threshold of 97%, where the OTU picking assessment

method indicated an abrupt degradation of taxonomic quality. This is most likely caused by a

significant different taxonomic classification. Possibly, also missing KEGG data plays a role, the

true cause is however yet to be pinpointed. Nonetheless, the method of assessing showed that the

normalization methods proved capable of mitigating the negative effects, in addition to improving

the performance for other similarity thresholds. Of the two normalization methods the QIIME CSS

method proved superior in comparison to the PICRUSt normalization method, for at least this

dataset as well as technical setup.

Next, we confirmed the study by Srinivasan et al. by finding similar metabolic and microbial signa-

tures of bacterial vaginosis (BV). More interestingly, the multiplex patterns detected with decision

trees, gave insights into both the data as well as the condition on another level. To confirm the po-

tential of combining the two types of data, a method was devised that scores randomly constructed

decision trees and reflects the performances back to the proportions of the feature types (i.e. taxo-

nomic or metabolic features). The results show that an information gain is to be made by combining

the two datasets. In turn, decision trees were constructed to detect patterns involving both micro-

bial and metabolic species, possibly elucidating complex interaction patterns between them. Even

though, preventive measures were taken to prevent overfitting, this approach remains prone to over-

fitting as well as accidental findings due to the high dimensions of the data in combination with the

limited number of samples.

Estimating OTU contribution of consumption/production of metabolites

The paper by Noecker et al.[18] states how predicting the relative metabolic turnover (RMT) can

be used to couple OTUs with metabolites as the responsible consumers or producers. Interpre-

tations are only stated to be justified if metabolites are predicted well. In section 5.4 we showed

that their approach to predicting the RMT can be improved by simplifying it. For instance, not

involving copy-number variations (of both 16S rRNA gene and enzyme encoding genes) and not

involving stoichiometrics (i.e. excluding compound reaction coefficients) showed that metabolites

can be predicted more accurately. Adjustments to their algorithm possibly gives opportunity to

new interpretations.
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PageRank based metabolic modeling algorithm

Finally, we showed that an algorithm invented decades ago can be revived and applied on biological

data by adapting it only slightly, with the goal to make it applicable within the context of metabolic

modeling. We named this variant the PageRank based metabolic modeling (PBMM) algorithm.

The algorithm was originally designed to aim for and convergence to a steady network state. Both

the microbiome and metabolome are generally believed to subsist also on balance, whether or not

possibly disturbed by a medical condition or other external factors. Our method showed greatest

promise (see section 5.5) on the samples obtained from patients diagnosed negatively for bacterial

vaginosis (BV), whereas it lost performance on the samples that were obtained from patients di-

agnosed positively. This prevalent and distinct difference is most likely to be contributed to the

increased community complexity (i.e. richness and diversity) that comes with BV (see section 5.1.2).

Another possibility, considered less likely, is that the algorithm cannot work well with communities

that are out of balance due to a disease, and subsequently results in an algorithmic convergence

that is not a good representative of reality. This two possible explanations can also very likely both

be true, whether or not to different degrees. Further investigation is required to give confidence on

this matter. Future studies should also be performed on a biological replicate to exclude possible

miscomprehensions due to peculiarities in this data. Our believe is that stress applied on the com-

munities do allow for strong patterns to be detected, but should be limited to not run into irrelevant

situations. For instance, the study performed by Noecker et al. also applied their algorithm on gut

communities treated with antibiotics, which in our humble opinion is a dataset that gives rise to

spurious findings.

The comparable method, flux balance analysis, requires high quality data as well as manually curated

models, to be able to return sensible results. The PBMM algorithm showed to that it can operate

on data lacking quality in multiple perspectives and hence considered robust with respect to poor

data quality. After all, the 16S rRNA amplicon data does not allow for identification on strain level,

in addition to being dependent on vast reference databases such as PICRUSt. Moreover, Roche 454

pyrosequencing data is not anymore considered as high standard due to the shallow depth of the

sequencing, which possibly explains the very sparse data. Last but not least, the KEGG data from

2010 is likely to miss out significantly, and better results are likely to be obtained when the latest

version is used.

39



6.2 Proposition for future research

As stated before, the PBMM method should be reproduced using a biological replicate and ideally

with data of higher quality (e.g. Whole metagenome sequencing paired with large-scale metabolomics).

Since relatively rare interactions between the community members can have strong influences on

successive biochemical events, it is believed that also the not so prevalent patterns are of great

interest and thus must also be made detectable. To make such achievements feasible either a

greater dataset should be obtained and/or better performing techniques be used for making the

measurements. Whole metagenome sequencing would yield better data, yielding insights into the

precise genetic content of the different community members.

In addition to the metagenome and metabolome, we believe involving and integrating also the

transcriptome is of much potential in this context. The sequences transcripts could be coupled

with specific species, whereas the metabolome gives a community-wide overview. The latter does

complicate the pinpointing of species specific biochemical activity, but does give good insights into

community-wide biochemical activity and is very close to the phenotypic traits. The combination

of all three mentioned data would therefore complement each other well. A public dataset pairing

these datasets would allow the research community to investigate this topic thoroughly.

Future studies could also aim at elucidating the distinct difference in performance of the PBMM

algorithm, when applied on samples of the control and diseased group. Even though, this odd

finding is likely related to the community’s complexity, it might also relate to some extent to the

degree of balance and efficiency of the community, which is disrupted by disorders. Future research

must shed light on this matter.

At the stage that the algorithm is thoroughly evaluated and the predictions are of even better quality,

then the research should focus at extraction of interaction patterns between the detected organisms,

that occur via the chemical compounds. Metabolic fluxes could be determined by measuring the

throughput of each edge in the reaction network. Finally, random adjustments (i.e. removal of an

edge/reaction) could be made to the network to evaluate the consequences of this.

Last but not least, we see much virtue in applying flux balance analysis methods in the context

of metabolic modeling. While there are many hurdles to be overcome we deem this a very viable

direction as various factors are accounted for and the method is capable of yielding accurate results.

On the other hand, this approach does require accurate and manually curated models or errors will

be propagated through the model during computation and lead to invalid results. To this end, we

suggest to approach the problem using an algorithm more similar to the PBMM algorithm, which

appears more robust to low-quality data.
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Appendices

Univariate tests – BV signatures

U p-val t-val p-val r p-val r p-val

C01672 Cadaverine 6.0 0.00 17.45 0.00 0.85 0.00 0.78 0.00 0.00 / 0.00 / 0.03
C00134 Putrescine 6.0 0.00 17.18 0.00 0.81 0.00 0.72 0.00 0.00 / 0.02 / 0.05
C00483 Tyramine 8.0 0.00 11.99 0.00 0.76 0.00 0.71 0.00 0.00 / 0.20 / 0.90
C00082 L-Tyrosine 15.0 0.00 -11.94 0.00 -0.82 0.00 -0.79 0.00 0.01 / 0.22 / 0.57
C00794 D-Sorbitol 12.0 0.00 -11.09 0.00 -0.80 0.00 -0.79 0.00 1.00 / 0.60 / 0.01
C00489 Glutarate 17.0 0.00 10.79 0.00 0.79 0.00 0.78 0.00 0.05 / 0.51 / 0.36
C03189 DL-Glycerol 1-phosphate 39.0 0.00 10.45 0.00 0.72 0.00 0.69 0.00 0.00 / 0.11 / 0.01
C00209 Oxalate 41.0 0.00 -10.10 0.00 -0.73 0.00 -0.70 0.00 0.01 / 0.47 / 0.33
C00388 Histamine 43.0 0.00 9.46 0.00 0.71 0.00 0.69 0.00 0.00 / 0.44 / 0.03
C00079 L-Phenylalanine 48.0 0.00 -9.11 0.00 -0.78 0.00 -0.77 0.00 0.00 / 0.00 / 0.08
C00078 L-Tryptophan 53.0 0.00 -8.98 0.00 -0.79 0.00 -0.80 0.00 0.02 / 0.14 / 0.04
C00031 D-Glucose 55.0 0.00 -8.92 0.00 -0.71 0.00 -0.70 0.00 0.00 / 0.36 / 0.26
C00577 D-Glyceraldehyde 33.0 0.00 8.87 0.00 0.73 0.00 0.74 0.00 0.66 / 0.85 / 0.63
C00270 N-Acetylneuraminate 49.0 0.00 8.68 0.00 0.67 0.00 0.65 0.00 0.00 / 0.21 / 0.57
C00042 Succinate 55.0 0.00 8.38 0.00 0.72 0.00 0.74 0.00 0.00 / 0.39 / 0.01
C00315 Spermidine 54.0 0.00 8.24 0.00 0.67 0.00 0.67 0.00 0.24 / 0.60 / 0.44
C01026 N,N-Dimethylglycine 59.0 0.00 7.97 0.00 0.66 0.00 0.66 0.00 0.01 / 0.04 / 0.01
C07599 Alloxanthine 75.0 0.00 7.84 0.00 0.69 0.00 0.67 0.00 0.07 / 0.25 / 0.19
C00065 L-Serine 63.0 0.00 -7.73 0.00 -0.70 0.00 -0.74 0.00 0.13 / 0.92 / 0.09
C03264 D-2-Hydroxyisocaproate 80.0 0.00 6.82 0.00 0.65 0.00 0.62 0.00 0.05 / 0.01 / 0.90
C00047 L-Lysine 76.0 0.00 -6.25 0.00 -0.65 0.00 -0.63 0.00 0.58 / 0.00 / 0.55
C00073 L-Methionine 100.0 0.00 -5.74 0.00 -0.63 0.00 -0.64 0.00 0.04 / 0.00 / 0.01
C00408 L-Pipecolate 88.0 0.00 -5.71 0.00 -0.62 0.00 -0.61 0.00 0.83 / 0.01 / 0.49
C00123 L-Leucine 111.0 0.00 -5.67 0.00 -0.57 0.00 -0.56 0.00 0.07 / 0.02 / 0.52
C00188 L-Threonine 116.0 0.00 -5.54 0.00 -0.58 0.00 -0.58 0.00 0.29 / 0.64 / 0.62
C01717 4-Hydroxy-2-quinolinecarboxylic acid 115.0 0.00 5.31 0.00 0.60 0.00 0.58 0.00 0.01 / 0.05 / 0.39
C00318 L-Carnitine 132.0 0.00 -5.05 0.00 -0.52 0.00 -0.55 0.00 0.71 / 0.54 / 0.27
C00380 Cytosine 128.0 0.00 5.04 0.00 0.56 0.00 0.50 0.00 0.02 / 0.27 / 0.67
C00186 (S)-Lactate 120.0 0.00 -5.03 0.00 -0.54 0.00 -0.52 0.00 0.01 / 0.00 / 0.81
C02470 Xanthurenic acid 123.0 0.00 -4.90 0.00 -0.54 0.00 -0.57 0.00 0.05 / 0.08 / 0.02
C00036 Oxaloacetate 119.0 0.00 4.88 0.00 0.56 0.00 0.54 0.00 0.08 / 0.02 / 0.94
C00077 L-Ornithine 145.0 0.00 -4.64 0.00 -0.50 0.00 -0.41 0.00 0.07 / 0.07 / 0.71
C00135 L-Histidine 155.0 0.00 -4.50 0.00 -0.56 0.00 -0.57 0.00 0.05 / 0.19 / 0.03
C00062 L-Arginine 158.0 0.00 -4.44 0.00 -0.56 0.00 -0.57 0.00 0.92 / 0.55 / 0.87
C00049 L-Aspartate 129.0 0.00 -4.33 0.00 -0.55 0.00 -0.59 0.00 0.59 / 0.00 / 0.71
C00383 Malonate 154.0 0.00 4.23 0.00 0.55 0.00 0.54 0.00 0.19 / 0.84 / 0.00
C00037 Glycine 176.0 0.00 -4.18 0.00 -0.50 0.00 -0.59 0.00 0.35 / 0.70 / 0.42
C00191 D-Glucuronate 177.0 0.00 -4.11 0.00 -0.47 0.00 -0.50 0.00 0.04 / 0.56 / 0.40
C00120 Biotin 186.0 0.00 -4.04 0.00 -0.33 0.00 -0.28 0.02 0.30 / 0.72 / 0.51
C00025 L-Glutamate 182.0 0.00 -3.98 0.00 -0.50 0.00 -0.53 0.00 0.01 / 0.31 / 0.42
C00300 Creatine 200.0 0.00 -3.65 0.00 -0.41 0.00 -0.50 0.00 0.71 / 0.11 / 0.34
C00956 L-2-Aminoadipate 195.0 0.00 3.64 0.00 0.39 0.00 0.40 0.00 0.58 / 1.00 / 0.77
C00022 Pyruvate 209.0 0.00 3.33 0.00 0.37 0.00 0.43 0.00 0.43 / 0.29 / 0.29
C00407 L-Isoleucine 214.0 0.00 -3.28 0.00 -0.34 0.00 -0.32 0.01 0.01 / 0.08 / 0.14
C00366 Urate 216.0 0.00 -3.28 0.00 -0.35 0.00 -0.37 0.00 0.80 / 0.18 / 0.96
C06104 Adipate 205.0 0.00 3.19 0.00 0.45 0.00 0.44 0.00 0.03 / 0.29 / 0.00
C00989 4-Hydroxybutanoic acid 214.0 0.00 3.17 0.00 0.44 0.00 0.45 0.00 0.16 / 0.79 / 0.00
C00245 Taurine 216.0 0.00 3.09 0.00 0.31 0.01 0.34 0.00 0.74 / 0.60 / 0.25
C00253 Nicotinate 196.0 0.00 3.04 0.00 0.43 0.00 0.46 0.00 0.20 / 0.65 / 0.01
C00117 D-Ribose 5-phosphate 226.0 0.00 2.97 0.01 0.42 0.00 0.43 0.00 0.22 / 0.55 / 0.00
C00122 Fumarate 236.0 0.01 2.96 0.01 0.41 0.00 0.37 0.00 0.24 / 0.51 / 0.01
C02226 2-Methylmaleate 228.0 0.00 2.90 0.01 0.39 0.00 0.37 0.00 0.23 / 0.60 / 0.01
C00262 Hypoxanthine 237.0 0.01 -2.85 0.01 -0.36 0.00 -0.32 0.01 0.20 / 0.19 / 0.70
C00026 2-Oxoglutarate 235.0 0.00 2.81 0.01 0.41 0.00 0.40 0.00 0.34 / 0.91 / 0.01
C00219 Arachidonate 242.0 0.01 2.77 0.01 0.39 0.00 0.41 0.00 0.12 / 0.45 / 0.00
C05582 Homovanillate 242.0 0.01 2.76 0.01 0.39 0.00 0.38 0.00 0.23 / 0.42 / 0.01
C00114 Choline 241.0 0.01 2.51 0.02 0.27 0.02 0.23 0.05 0.95 / 0.40 / 0.32
C01796 D-Erythrose 248.0 0.01 2.49 0.02 0.32 0.01 0.32 0.01 0.98 / 0.76 / 0.65
C00385 Xanthine 279.0 0.03 2.26 0.03 0.34 0.00 0.32 0.01 0.09 / 0.31 / 0.00
C00791 Creatinine 270.0 0.02 -2.22 0.03 -0.23 0.05 -0.21 0.08 0.62 / 0.77 / 0.72
C02630 2-Hydroxyglutarate 261.0 0.01 -2.04 0.05 -0.31 0.01 -0.38 0.00 0.00 / 0.10 / 0.40
C00041 L-Alanine 295.0 0.05 1.90 0.07 0.24 0.04 0.22 0.07 0.99 / 0.73 / 0.64
C00788 L-Adrenaline 300.0 0.06 1.79 0.08 0.24 0.05 0.24 0.05 0.22 / 0.67 / 0.05
C00327 L-Citrulline 299.0 0.06 1.72 0.09 0.11 0.37 0.07 0.57 1.00 / 0.81 / 0.88
C00147 Adenine 314.0 0.09 1.62 0.11 0.16 0.19 0.15 0.22 0.71 / 0.31 / 0.86
C00212 Adenosine 311.0 0.08 -1.30 0.20 -0.09 0.46 -0.06 0.61 0.54 / 0.67 / 0.75
C00493 Shikimate 325.0 0.12 -1.25 0.22 -0.18 0.15 -0.18 0.15 1.00 / 0.81 / 0.89
C00020 AMP 305.0 0.07 -1.07 0.29 -0.12 0.32 -0.12 0.31 0.79 / 0.41 / 0.26
C00148 L-Proline 330.0 0.14 -1.00 0.32 -0.11 0.35 -0.17 0.15 0.83 / 0.83 / 0.12
C01104 Trimethylamine N-oxide 344.0 0.19 -0.89 0.38 -0.07 0.54 -0.05 0.66 0.60 / 0.92 / 0.99
C00153 Nicotinamide 352.0 0.23 0.81 0.42 0.13 0.27 0.17 0.15 0.27 / 0.39 / 0.10
C00864 Pantothenate 377.0 0.36 0.60 0.55 -0.00 0.98 -0.06 0.62 0.10 / 0.61 / 0.06
C00183 L-Valine 371.0 0.33 -0.55 0.58 -0.03 0.82 0.01 0.91 0.31 / 0.54 / 0.07
C03794 N6-(1,2-Dicarboxyethyl)-AMP 374.0 0.34 -0.37 0.71 -0.08 0.49 -0.09 0.47 0.91 / 0.44 / 0.88
C01678 Cysteamine 378.0 0.37 0.36 0.72 0.03 0.78 0.02 0.90 0.93 / 1.00 / 0.96
C00258 D-Glycerate 385.0 0.41 0.19 0.85 0.01 0.97 0.02 0.89 0.36 / 0.62 / 0.57
C00064 L-Glutamine 390.0 0.44 -0.11 0.91 -0.05 0.71 -0.06 0.63 0.82 / 0.57 / 0.88
C00127 Glutathione disulfide 395.0 0.47 0.06 0.95 0.01 0.95 0.01 0.93 1.00 / 0.68 / 0.68

KEGG ID Normality p-value
SpearmanWelch's t-testMann–Whitney

Compound name
Pearson

Figure 21: Table showing several metrics of association between each metabolite and bacterial vaginosis.

See section 5.3.2 for a more complete explanation.
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U p-val t-val p-val r p-val r p-val
f:Bifidobacteriaceae g:Gardnerella 16.0 0.00 7.26 0.00 0.73 0.00 0.49 0.00 0.00 / 0.00 / 0.00
f:Veillonellaceae g:Dialister 18.5 0.00 12.71 0.00 0.84 0.00 0.82 0.00 0.00 / 0.00 / 0.00
f:Lactobacillaceae g:Lactobacillus 24.0 0.00 -9.67 0.00 -0.77 0.00 -0.79 0.00 0.00 / 0.16 / 0.02
f:Prevotellaceae g:Prevotella 31.0 0.00 11.74 0.00 0.80 0.00 0.73 0.00 0.00 / 0.01 / 0.00
o:Coriobacteriales f:Coriobacteriaceae 33.5 0.00 13.99 0.00 0.81 0.00 0.69 0.00 0.00 / 0.00 / 0.00
f:Veillonellaceae g:Megasphaera 47.0 0.00 11.09 0.00 0.77 0.00 0.77 0.00 0.63 / 0.00 / 0.00
f:Leptotrichiaceae g:Sneathia 56.0 0.00 11.70 0.00 0.76 0.00 0.73 0.00 0.76 / 0.00 / 0.00
f:Aerococcaceae g:Aerococcus 71.0 0.00 9.60 0.00 0.61 0.00 0.40 0.00 0.00 / 0.00 / 0.00
f:[Tissierellaceae] g:Peptoniphilus 93.0 0.00 7.99 0.00 0.68 0.00 0.67 0.00 0.99 / 0.00 / 0.01
f:Gemellaceae g:Gemella 100.0 0.00 10.02 0.00 0.65 0.00 0.61 0.00 0.00 / 0.58 / 0.05
f:[Tissierellaceae] g:Parvimonas 105.5 0.00 7.08 0.00 0.64 0.00 0.69 0.00 0.00 / 0.00 / 0.09
f:Clostridiaceae g:Clostridium 110.0 0.00 9.88 0.00 0.73 0.00 0.79 0.00 0.52 / 0.58 / 0.01
f:Actinomycetaceae g:Mobiluncus 180.0 0.00 6.54 0.00 0.58 0.00 0.64 0.00 0.00 / 0.58 / 0.00
f:Porphyromonadaceae g:Porphyromonas 200.0 0.00 6.01 0.00 0.53 0.00 0.57 0.00 0.00 / 0.58 / 0.00
f:Lachnospiraceae g:Shuttleworthia 210.0 0.00 5.77 0.00 0.57 0.00 0.64 0.00 0.00 / 0.58 / 0.00
g:Lactobacillus s:iners 220.0 0.00 -1.16 18.00 -0.22 5.04 -0.49 0.00 0.00 / 0.00 / 0.00
f:Actinomycetaceae g:Actinomyces 240.0 0.00 4.99 0.00 0.39 0.00 0.35 0.00 0.00 / 0.58 / 0.00
g:Lactobacillus s:reuteri 240.0 0.00 -3.50 0.00 -0.52 0.00 -0.48 0.00 0.00 / 0.01 / 0.58
f:[Tissierellaceae] g:Anaerococcus 253.5 0.72 2.70 0.72 0.33 0.72 0.33 0.00 0.00 / 0.02 / 0.00
f:Actinomycetaceae g:Arcanobacterium 260.0 0.00 4.31 0.00 0.35 0.00 0.37 0.00 0.00 / 0.58 / 0.02
c:Bacteroidia o:Bacteroidales 260.0 0.00 4.51 0.00 0.49 0.00 0.58 0.00 0.00 / 0.58 / 0.00
c:Clostridia o:Clostridiales 260.0 0.00 4.46 0.00 0.33 0.72 0.31 0.72 0.00 / 0.58 / 0.01
o:I025 f:Rs-045 290.0 0.72 3.78 0.00 0.35 0.00 0.39 0.00 0.00 / 0.58 / 0.01
g:Lactobacillus s:coleohominis 292.0 0.00 -2.51 1.44 -0.38 0.00 -0.39 0.00 0.00 / 0.05 / 0.00
g:Peptostreptococcus s:anaerobius 294.0 1.44 2.53 0.72 0.25 2.16 0.22 5.04 0.00 / 0.00 / 0.00
o:Lactobacillales f:Streptococcaceae 300.0 0.00 -2.46 1.44 -0.36 0.00 -0.32 0.72 0.00 / 0.03 / 0.58
f:Fusobacteriaceae g:Fusobacterium 300.0 0.72 3.36 0.00 0.32 0.72 0.35 0.00 0.00 / 0.58 / 0.00
f:Mycoplasmataceae g:Mycoplasma 310.0 0.72 3.17 0.00 0.30 0.72 0.31 0.72 0.00 / 0.58 / 0.00
o:Bacteroidales f:S24-7 310.0 0.72 3.30 0.00 0.32 0.72 0.35 0.00 0.00 / 0.58 / 0.00
f:Lachnospiraceae g:Moryella 310.0 0.72 3.31 0.00 0.35 0.00 0.41 0.00 0.00 / 0.58 / 0.00
f:Alcaligenaceae g:Sutterella 330.0 2.16 2.86 0.72 0.27 2.16 0.26 2.16 0.00 / 0.58 / 0.00
f:Veillonellaceae g:Veillonella 350.0 3.60 2.30 2.16 0.08 36.00 0.05 47.52 0.00 / 0.58 / 0.00
f:Streptococcaceae g:Streptococcus 353.0 7.92 -1.33 14.40 -0.19 7.92 -0.21 6.48 0.00 / 0.00 / 0.00
f:Staphylococcaceae g:Staphylococcus 359.0 6.48 -1.23 16.56 -0.15 15.84 -0.16 12.96 0.00 / 0.00 / 0.00
f:Peptococcaceae g:Peptococcus 360.0 5.76 2.06 3.60 0.17 10.80 0.14 17.28 0.00 / 0.58 / 0.00
g:Prevotella s:melaninogenica 360.0 5.76 1.98 4.32 0.21 5.76 0.24 3.60 0.00 / 0.58 / 0.00
f:Campylobacteraceae g:Campylobacter 360.0 5.76 2.07 3.60 0.25 2.16 0.31 0.72 0.00 / 0.58 / 0.00
f:Aerococcaceae g:Facklamia 360.0 1.44 -1.45 11.52 -0.21 5.76 -0.19 8.64 0.00 / 0.00 / 0.58
g:Clostridium s:perfringens 360.0 1.44 -1.45 11.52 -0.25 2.16 -0.23 4.32 0.00 / 0.00 / 0.58
f:[Tissierellaceae] g:WAL_1855D 362.0 10.80 0.89 27.36 0.14 18.00 0.23 4.32 0.00 / 0.00 / 0.00
f:Coriobacteriaceae g:Atopobium 370.0 7.92 1.70 7.20 0.14 18.00 0.14 18.72 0.00 / 0.58 / 0.00
g:Campylobacter s:ureolyticus 370.0 7.92 1.78 5.76 0.14 18.72 0.16 12.96 0.00 / 0.58 / 0.00
o:Clostridiales f:Clostridiaceae 370.0 7.92 1.78 5.76 0.16 14.40 0.14 18.72 0.00 / 0.58 / 0.00
f:Oxalobacteraceae g:Ralstonia 378.0 19.44 -0.58 41.04 -0.07 38.88 -0.06 44.64 0.00 / 0.00 / 0.00
o:Bifidobacteriales f:Bifidobacteriaceae 380.0 11.52 1.43 11.52 0.12 22.32 0.10 29.52 0.00 / 0.58 / 0.00
o:Clostridiales f:Lachnospiraceae 380.0 11.52 1.43 11.52 0.10 30.24 0.05 48.24 0.00 / 0.58 / 0.00
o:Clostridiales f:[Mogibacteriaceae] 380.0 11.52 1.42 11.52 0.10 30.24 0.05 48.24 0.00 / 0.58 / 0.00
f:Moraxellaceae g:Enhydrobacter 380.0 5.76 -1.00 23.76 -0.18 10.08 -0.16 12.96 0.00 / 0.00 / 0.58
g:Bifidobacterium s:bifidum 380.0 11.52 1.43 11.52 0.10 29.52 0.06 45.36 0.00 / 0.58 / 0.00
o:Bacillales f:Planococcaceae 380.0 5.76 -1.00 23.76 -0.12 23.76 -0.10 29.52 0.00 / 0.00 / 0.58
o:Gemellales f:Gemellaceae 380.0 5.76 -1.00 23.76 -0.12 23.76 -0.10 29.52 0.00 / 0.00 / 0.58
o:Burkholderiales f:Oxalobacteraceae 382.0 20.16 0.61 39.60 0.08 38.16 0.08 38.16 0.00 / 0.00 / 0.00
f:Alicyclobacillaceae g:Alicyclobacillus 389.5 22.32 -0.59 40.32 -0.02 64.80 0.04 51.84 0.00 / 0.00 / 0.00
g:Haemophilus s:parainfluenzae 389.5 22.32 -0.46 46.80 -0.10 28.80 -0.13 19.44 0.00 / 0.00 / 0.00
f:Pasteurellaceae g:Aggregatibacter 390.0 18.00 1.00 23.04 0.04 54.00 -0.02 60.48 0.00 / 0.58 / 0.00
c:Synergistia o:Synergistales 390.0 18.00 1.00 23.04 0.07 41.04 0.04 54.72 0.00 / 0.58 / 0.00
g:Veillonella s:dispar 390.0 18.00 1.00 23.04 0.03 58.32 0.02 61.92 0.00 / 0.58 / 0.00
f:Neisseriaceae g:Neisseria 390.0 18.00 1.00 23.04 0.10 29.52 0.10 28.08 0.00 / 0.58 / 0.00
f:Bifidobacteriaceae g:Bifidobacterium 390.0 18.00 1.00 23.04 -0.01 66.96 -0.08 38.16 0.00 / 0.58 / 0.00
g:Bacteroides s:fragilis 390.0 18.00 1.00 23.04 0.07 41.04 0.04 54.72 0.00 / 0.58 / 0.00
o:Enterobacteriales f:Enterobacteriaceae 390.0 18.00 1.00 23.04 0.04 54.00 -0.02 60.48 0.00 / 0.58 / 0.00
f:[Tissierellaceae] g:ph2 390.0 18.00 1.00 23.04 0.13 20.16 0.16 12.24 0.00 / 0.58 / 0.00
g:Bacteroides s:ovatus 390.0 18.00 1.00 23.04 0.07 41.04 0.04 54.72 0.00 / 0.58 / 0.00
f:[Paraprevotellaceae] g:[Prevotella] 390.0 18.00 1.00 23.04 0.07 41.04 0.04 54.72 0.00 / 0.58 / 0.00
f:Mycoplasmataceae g:Ureaplasma 390.0 18.00 1.00 23.04 0.10 29.52 0.10 28.08 0.00 / 0.58 / 0.00
f:[Tissierellaceae] g:1-68 390.5 26.64 0.57 41.04 0.09 32.40 0.10 29.52 0.00 / 0.00 / 0.00
g:Streptococcus s:infantis 390.5 23.04 -0.35 52.56 -0.02 61.20 -0.04 51.84 0.00 / 0.00 / 0.00
f:[Tissierellaceae] g:Finegoldia 396.0 33.84 0.16 62.64 0.04 55.44 0.02 64.08 0.00 / 0.01 / 0.00
g:Streptococcus s:anginosus 399.0 35.28 -0.17 62.64 -0.05 48.96 -0.08 38.16 0.00 / 0.00 / 0.00
f:Enterococcaceae g:Enterococcus 400.0 35.28 0.08 67.68 -0.00 71.28 -0.05 47.52 0.00 / 0.00 / 0.00
f:Corynebacteriaceae g:Corynebacterium 400.0 35.28 -0.02 70.56 -0.01 67.68 -0.01 65.52 0.00 / 0.00 / 0.00
g:Bacteroides s:uniformis NaN NaN NaN NaN -0.05 46.80 -0.07 40.32 0.00 / 0.58 / 0.58

Mann–Whitney Welch's t-test
Taxonomy

Pearson
Normality p-value

Spearman

Figure 22: Table showing several metrics of association between each OTU and bacterial vaginosis.

See section 5.3.2 for a more complete explanation.
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