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Abstract

After the defeat of the human Go champion by Artificial Intelligence (AI) methods,
Diplomacy has been named among the choices for a next-to-beat game. Diplomacy is
a deterministic boardgame, in which players attempt to take control over Europe. The
game is considered hard because it has multiple players, simultaneous play and free
communication.

Our goal is to make an AI agent for Diplomacy with a very basic strategy. We
performed a preliminary study to find out if a program using tree search methods
performs well in Diplomacy and whether or not it will be able to recognize good
patterns. We made an agent using a basic form of Monte Carlo Tree Search (MCTS)
and another using Minimax. These agents focus on the tactical decisions and ignore
communications between players. Several MCTS agents, each with a different number
of playouts, are tested against each other on small simplified boards.

It becomes immediately clear that Minimax is not feasible at all without pruning.
This is because even for a tiny board and expanding to a limited depth the branching
factor is too large. While MCTS can take considerable time to compute its moves as
well, its decisions can be made well within the time limits included in the rules. Against
random play MCTS managed to win most of the games, depending on the amount of
playouts it performed. Furthermore, some of the strategic patterns adopted by human
players were also found in the plays of the MCTS agent.

The MCTS agent should be further tested in the full game (with all possible moves
and with communications) and against other agents, however it is recommended to add
the Upper Confidence Bound heuristic to the MCTS algorithm to improve its efficiency.
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1 Introduction

Artificial Intelligence (AI) research has been around since the 1950’s. In games, one of the
challenges is to beat human players. Often it takes many years to find an appropriate strategy,
while AI methods are becoming increasingly elaborate. For this master’s thesis at Leiden
University, supervised by Walter Kosters and Ben Ruijl, the aim is to make a simple agent
for Diplomacy. Diplomacy is a social boardgame where players try to conquer 20th century
Europe.

Tree Search methods have been particularly strong in board games [1, 2]. The big draw-
back is that it takes a lot of time and memory to build a tree of the complete search space.
Therefore our method of choice is a simplified Monte Carlo Tree Search (MCTS). We can, to
some degree, decide for how long this method runs, and only the visited nodes are expanded.
Human champions of many games have been beaten by AI methods using MCTS as (part
of) their strategy. Two famous examples are the defeat of Garry Kasparov in 1997 by IBM’s
Deep Blue [1] (chess) and, in 2016, the defeat of Lee Sedol by Google’s AlphaGo [2] (Go).

We are interested to see the performance of our methods, both in terms of winrate and
computation time. Furthermore, we are interested to see whether or not MCTS is able to
recognize certain strategic patterns adopted by the players.

The paper overview is as follows. Section 2 contains the rules for Diplomacy. Section 3
contains related work. In Section 4 we describe MCTS. In Section 5 we describe minimax.
Section 6 describes our agents. In Section 7 we discuss our experiments and results. Finally,
Section 8 contains our conclusions and future work.

2 Diplomacy

Diplomacy is a strategic (almost fully) deterministic boardgame with simultaneous actions
[4]. The goal is to capture over half of the control points (Section 2.1) in order to win. Players
can work together in trying to achieve this goal, or they can betray one another, anything
is allowed (including cheating if it goes undetected!). In addition to the players, Diplomacy
requires one referee, also called the adjudicator. The referee controls the gameflow and en-
forces the rules. The only non-deterministic part of the game, assigning starting positions
(one of the empires), goes by the roll of dice.

The original game is about the politics and armed conflicts taking place in Europe during
the early twentieth century. It can be played by up to seven players, where each player takes
control of one of the great powers of that time. Figure 1 shows the standard Diplomacy
board, including starting units.

We made our own Diplomacy server (including adjudicator) in Java, and implemented the
rules (with the exception of convoys), according to Kruiswijk’s guidelines on how to build an
adjudicator [5]. However, not all testcases have been run for the adjudicator, so there might
still be some errors. In the remainder of this section we provide a brief description of the
game rules. The rules, including detailed examples, can be found at [4].
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Figure 1: The standard Diplomacy board. Source: [3].

2.1 Board

The board consists of the playing pieces, called units, and a map. The map is divided in
positions called provinces. A province has one of the following terrain types: water, coast
or land. Furthermore, a province can contain a supply center. These supply centers can be
captured by players by having a unit occupy it at the end of a year. When captured by a
player, the supply center provides a control point to the capturing player. When a player
loses a supply center, he also loses the control point it provided. At the start of a game, some
of the supply centers will already be controlled by players. These supply centers are called
home supply centers.

A player may only have one unit for each control point he or she has. There are two types
of units: armies and fleets. Fleets can occupy water and coastal provinces, while armies can
occupy coastal and inland provinces. Futhermore, each province can only be occupied by one
unit at a time.

2.2 Orders

The actions in Diplomacy are called orders. The different orders are: hold, move, support,
convoy, retreat, disband and build. Each unit can only perform one order per turn. Issuing
multiple orders to a single unit results in the last valid order being used. Figure 2 shows
which order can be issued in which phase.
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Hold Move Support Convoy Retreat Disband Build
Diplomatic 6 6 6 6 6 6 6

Order 4 4 4 4 6 6 6

Adjudication 6 6 6 6 6 6 6

Retreat 6 6 6 6 4 4 6

Adjustments 6 6 6 6 6 4 4

Figure 2: The possible orders for each phase.

Hold Hold position. Also the default order for a unit if its order was invalid or it did not
receive an order.

Move Move a unit to an adjacent province. Units can only move to provinces of which the
type matches to the unit’s type.

Support Increase the strength of another unit. The supporting unit must be able to reach
the supported unit’s destination, but does not move.

Convoy Ferry an army over bodies of water. Convoy orders can only be issued to fleets. The
destination province has to be either directly reachable by being an adjacent province,
or indirectly in a chain of convoys, where each convoying unit is in a province adjacent
to the previous/next convoying unit. The convoying unit does not move.

Retreat Move a dislodged unit to an adjacent province.

Disband Remove a unit from play if it is dislodged or if the player controls too many units.

Build Add a new unit to the game.

For the full requirements for validity of orders the reader is referred to the manual [4].

2.3 Turns

Diplomacy uses simultaneous turns, meaning that all players issue their orders at the same
time. Diplomacy uses a seasonal system with two different turns: Spring and Fall. A spring
turn and a fall turn together form a year. As shown in Figure 3, the spring turn consists
of the Diplomatic phase, the Order phase, the Adjudication phase and the Retreat; and the
fall turn has the same phases plus an additional phase, called Adjustments phase.

2.4 Adjudication

During adjudication the referee first makes sure that all orders are valid. After that, the
strength of the units is used to determine which orders fail and which pass. The assisting
orders (support, convoy1) are evaluated first:

1Convoys are not implemented in our program
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Spring Fall Description
Diplomatic 4 4 Players engage in diplomatic negotations with each other

Order 4 4 Players prepare their orders and send those to the referee
Adjudication 4 4 The referee decides the outcome of the presented orders

Retreat 4 4 Players prepare orders for their dislodged units,
referee decides outcome

Adjustments 6 4 Players give build/disband orders to match their control
points, referee decides outcome

Figure 3: The phases that each turn contains.

• If a supporting unit is dislodged, the support is cut.

• If a supporting unit is attacked by a unit from a different player, from any province
other than the province where support is given, the support is cut.

• If a convoying unit is dislodged, the convoy is disrupted.

If support is cut, the supported unit does not receive the increase in strength from the
supporting unit. If a convoy is disrupted, and no other convoy is available for the convoyed
unit, the convoyed unit’s order fails. However, note that it is impossible for a player to
dislodge his/her own units, and therefore a player cannot cut/disrupt his or her own supports
and convoys. Finally the move orders are evaluated:

• If there are no other orders with the same destination, the order will pass.

• If multiple orders have the same destination, but one order has a higher strength than
all the others, the order with the highest strength will pass, other move orders with
that destination will fail and if a unit was holding at the destination province and its
strength was not the highest, this unit will be dislodged.

• If multiple orders have the same destination and some share highest strength, there
will be a standoff.

• If the unit tries to swap provinces with another unit, there will be a head-to-head
battle.

When a standoff occurs, all the move orders with the destination of the standoff will fail.
Furthermore, the province where the standoff occurred will be inaccesible for retreat this
turn. When a head-to-head battle occurs, if both units have the same strength or are both
from the same player, both orders will fail. Otherwise, the unit with the highest strength
wins and the other unit is dislodged.

4



3 Related work

In 2002 the Diplomacy AI Development Environment (DAIDE) [6] was created, to aid in
the development and testing of agents for Diplomacy. DAIDE consists of only a communi-
cations framework, although the adjudicator and several basic agents are often considered
part of DAIDE too. In 2009, extending on the ideas of DAIDE, Fabregues and Sierra created
dipGame [7], a testbed for Diplomacy agents. In addition to the communications protocol,
dipGame also provides a gamemanager and a framework for making agents. The Diplo-
macy server can be chosen by the user, but dipGame comes with a default configuration for
Parlance.

3.1 Israeli Diplomat

One of the first agents for Diplomacy was the Israeli Diplomat [8]. Kraus et al. proposed a
multi-agent system (MAS), where each agent takes on a role, such as Prime Minister, Min-
istry of Defense, Foreign Office, Military Headquarters, Intelligence and Strategies Finder.
The Prime Minister has personality traits and keeps track of rules, alliances and the state
of the game. The Foreign Office is responsible for maintaining relationships with other play-
ers and Intelligence tries to estimate what relations other players have amongst each other.
The Ministry of Defense, Military Headquarters and Strategies Finder are responsible for
making orders, taking into account the relations between players and the Prime Minister ’s
personality and information.

3.2 Bordeaux Diplomat

Clearly, the Israeli Diplomat has been an inspiration for other agents, such as the Bordeaux
Diplomat [9], which is also a MAS. However, whereas the focus of the Israeli Diplomat is
more on communications, the focus of the Bordeaux Diplomat lies more on strategy. The
Bordeaux Diplomat is composed of a negotiator and a strategic core. The strategic core has
knowledge of the rules and game state, but not about which power is being played. It can
receive queries to evaluate the strategic importance of provinces and then uses a best-first
search algorithm to propose strategies. The negotiator is responsible for keeping track of,
and managing relations with other players. Furthermore it can query the strategic core for
a set of strategies and then choose which strategy to follow.

3.3 LA Diplomat

The LA Diplomat [10] is a self-learning agent that uses pattern-weights. Shapiro et al. de-
scribe a pattern as a representation of a previous experience during gameplay, where the
patterns represent partial positions on the board. They translated these positions to abstract
graphs, only showing what moves are possible (omitting positional data). Each pattern is
then assigned a weight, which is used as evaluation value of the actual state. With each play
these weights are then updated through a self-learning algorithm.
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3.4 DumbBot

DumbBot [11] is an agent with a simple strategy. It first calculates values for provinces and
then moves to the provinces with the highest values, with a random chance to move to a
province with a lower value. During calculation it takes into account the reachability for all
units, location and neighbourhood to supply centers and who occupies those supply centers.
DumbBot does not use negotiations, however, it has been extended in BlabBot to do so.

3.5 HaAI

HaAI [12] is another MAS, which creates an agent for all of its own units. Each agent can
evaluate its surroundings to pick a best move individually, or the agents can be given a list of
goals, allowing the agents to work together. One big drawback of this agent is that it cannot
use convoys.

3.6 DarkBlade

The makers of DarkBlade [13] tried to combine MAS, personality traits and province values
in a single strategy. Similar to HaAI, there is an agent for each of its own units, called a
General. The generals propose orders for their units. In addition to the generals, there is an
agent called President, which selects the best combination of orders based on the province
values. All agents make use of the same set of personality traits.

3.7 Albert

Albert [14] is an agent which has been in development for 8 years. While the author calls it
decent, version 4.0 (which is not the latest) achieved a winrate of 50% in a 1 human (several
expert players) versus 6 Alberts challenge in 2009. For each power, Albert calculates the best
moves and for each order iteratively calculates the probability that it will be played. Albert
is also capable of a high level of communications.

4 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [15, 16] is used in game theory on widely branching
search spaces to find a good continuation. In MCTS we build a search tree by doing random
sampling. The nodes of this tree contain the game state and counters for the amount of
games that were won and played using the node. The branches represent the moves taken to
reach the next game state. The tree is built in the following manner: first we select children
according to some policy (for pure MCTS all children are selected equally often) until we
reach a node with unvisited children; then we expand one of the unvisited children and do
a random playout using this child; finally the won and played counters for all nodes in the
selected path are updated. Usually MCTS consists of four steps:
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Selection starting from the root, select child nodes until you reach a leaf node

Expansion add a child to the selected leaf node, unless the leaf node ends the game

Simulation play a game, doing random moves and continuing from the added child

Backpropagation update the nodes contained in the path from child to root with number
of won/played games

Figure 4 shows a MCTS search tree. Here max/min to the left of the tree indicates whose turn
it is. The squares below the nodes indicate who has won and the labels on the transitions
from one node to another show which move was played. The numbers in the nodes show
wins/plays. Notice that the first playouts for each node (dashed transitions to rewards) are
not labelled with an action.

Figure 4: A Monte Carlo Tree Search in progress. Source: [19].

Brügmann’s application of Monte Carlo methods on the game Go in 1992 [18] was one
of the first times Monte Carlo methods were used on a board game, but not much was
done with his work until around 2006, when Monte Carlo methods were first combined with
Tree Search by Coulom [17]. In the same year, Kocsis and Szepesvári introduced the Upper
Confidence Bound for trees (UCT) [19]. UCT controls the exploitation (higher values for
nodes with high winrate) versus exploration (higher values for nodes with few plays) aspect
for child node selection, where the child with the highest value is selected. UCT uses the
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following expression to determine the value vi for node i:

vi =
wi

ni

+ C

√
ln t

ni

Here:

• wi is the number of wins using node i

• ni is the number of games played using node i

• C is the exploration parameter (if C = 0, the exploration aspect is ignored and the
node with the highest average win rate is selected)

• t is the total number of games played

The value vi is used in the selection step of the MCTS algorithm, where the children with
the highest values are chosen. The value for C is selected by the user and controls how
exploration-driven the MCTS algorithm will be. A low C means wi/ni has a higher relative
weight, thus increasing the affinity towards exploitation, whereas a high C increases the

relative weight of
√

ln t/ni, increasing the affinity towards exploration.

5 Minimax and maximin

Minimax and maximin [15] are decision rules, originally intended for two-player zero-sum
games, which are used to minimize the possible loss for a worst case scenario. We consider
games where the players simultaneously make their moves. Generally the player tries to
maximize his score, while his opponents try to minimize his score. Minimax yields the smallest
value that a player can be forced to receive by his opponents if they do not know the
player’s actions, whereas maximin is the largest value the player can be sure to receive
without knowing his opponents’ actions. In minimax we assume that the player knows which
moves his opponentswill take and can maximize after the minimization (player moves last),
whereas in maximin we assume that the opponents know which moves the player will take
and maximization comes before minimization (player moves first). To illustrate this consider
Table 1 with scores for player A, where a1 and a2 are the moves player A can do and b1
and b2 are the moves for player B. Figure 5a shows the minimax search tree and Figure 5b
shows the maximin search tree. Note that maximin corresponds to the paranoid situation
where the other players know which move you will make, while minimax is optimistic. The
maximin value is always smaller than or equal to the minimax value.
The minimax value vi of node i is defined as:

vi = min
a−i⊆A−i

max
ai⊆Ai

vi(ai, a−i)

and the maximin value vi of node i is defined as:

vi = max
ai⊆Ai

min
a−i⊆A−i

vi(ai, a−i)
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a1 a2
b1 1 3
b2 4 2

Table 1: Scores for player A.

(a)

3

3

1 3

4

4 2

b1

a1 a2

b2

a1 a2

(b)

2

1

1 4

2

3 2

a1

b1 b2

a2

b1 b2

Figure 5: (a) Minimax and (b) Maximin Search Tree examples.

Here:

• Ai is the set of possible valid actions for player i.

• ai is the set of actions taken by player i, for instance French army Par holds & French
fleet Bre moves to ENG in Diplomacy.

• A−i is the set of possible valid actions for the other players.

• a−i is the set of actions taken by the other players.

• vi(ai, a−i) is the value function for player i where player i takes action ai, while the
others take action a−i

6 Agents

We implemented three different strategies: semi-random, basic MCTS and minimax. For now
we ignore the diplomatic phase and agents do not support or convoy units other than their
own.

6.1 Cartesian product

Considering the units u1, u2, . . . , uk
2, we generate the sets A1, A2, . . . , Ak, where Ai is the set

of valid orders for unit ui. In these sets, instead of true support/convoy orders (for instance
A Ruh S A Mun – Bur), we have support/convoy orders which state which unit they are
supporting/convoying like so: A Ruh S A Mun. We then generate the Cartesian product

2Note that it is possible that units are renumbered inbetween game phases.
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A1 × A2 × . . . × Ak. Finally we expand the support/convoy order to true support/convoy
orders and remove any tuples with convoy/support orders that are not valid. This means
that tuples similar to A Ruh S A Mun – Bur & A Mun – Kie are not included in the final
product. However, this is not a big issue, because a support order is meaningless when the
order it supports is not given, and such a support order can be considered to be equivalent
with a hold order.

6.2 (Semi-)Random

The random agent chooses a random tuple from the Cartesian product of its own units and
delivers it to the adjudicator. The semi-random agent only differs from the random agent
during the order phase of fall turns. During those phases the semi-random agent first tries
to consolidate its positions, giving hold orders to units that are in a province that is a
supply center which is not controlled by the agent. Then it generates the Cartesian product
consisting of the hold orders and the valid orders of its other units. Finally, it chooses a
random tuple from the Cartesian product and delivers the tuple to the adjudicator.

6.3 MCTS

The MCTS agent uses an adaptation of the basic form of MCTS (see Section 4). Because
we do not know what moves the other players will do, and with the added difficulty of
simultaneous play, we only save the first tuple of moves from a playout with its associated
won and played counters. In essence, the tuple becomes the node, similar to Figure 6. We do
playouts from the root, using random agents. This means that some tuples of moves may not
be played at all when there are not enough playouts per turn. After each playout, the scores
for the first tuple of moves done by the player representing the MCTS agent are updated.
The MCTS algorithm does plays playouts, where plays can be chosen by the user. A playout
is finished when a player has won, or the turn limit has been reached. When all playouts
are finished, the tuple with the highest average win rate is delivered to the adjudicator. If
multiple tuples have the same average win rate, one of these is chosen at random.

6.4 Minimax

We have two agents for minimax: one uses the minimax value, the other uses a maxiavg
value (the maximum of the averages). For each phase of the next in-game year, these agents
generate the Cartesian product of the valid orders for all units and fill a search tree with all
the resulting tuples, where the root is the current phase, and each next phase comes on a
new level. Then the agents calculate a fitness value for each leaf node and propagate it back
to the root node. Finally, the tuple from the node on the first level with the highest fitness is
delivered to the adjudicator. If multiple nodes have the same fitness one of the corresponding
tuples is chosen at random.

The following is an example of how to calculate minimax for a three-player game with
simultaneous moves using the maximin value. Let us consider the situation where each player
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(r1, g1, b1) (r1, g1, b2) · · · (r3, g3, b2) (r3, g3, b3)

Figure 6: Example of a search tree.

(a)

b1 g1 g2 g3
r1 (6,−20,−4) (−10,−11,−12) (16, 16,−20)
r2 (14,−16,−8) (−6, 11, 8) (10,−20,−20)
r3 (−4,−18,−7) (−11, 9, 10) (−7,−13,−7)

(b)

b2 g1 g2 g3
r1 (−17,−16,−6) (−16, 0,−5) (−7, 8,−20)
r2 (−11, 9,−9) (−7,−19,−14) (−16, 9,−20)
r3 (−15, 10,−6) (−13,−18,−16) (17, 13, 1)

(c)

b3 g1 g2 g3
r1 (−17,−15, 10) (−12,−1,−17) (8, 14,−14)
r2 (−4, 15,−10) (−15,−14, 4) (−14,−7, 14)
r3 (15,−7,−13) (4, 8,−9) (7, 12,−3)

Table 2: Payoff matrix. Player b chooses move: (a) b1, (b) b2, (c) b3.

has three moves: R = {r1, r2, r3}, G = {g1, g2, g3} and B = {b1, b2, b3}. Figure 6 shows the
tree representation for a one-level deep minimax algorithm. Assume Tables 2a, 2b and 2c
form the payoff matrix (we use three tables for easier representation). For simplicity we
consider a paranoid player: the player only looks at the best value he could get if the other
players play against him and would be reading his mind. This is equivalent with turnbased
maximin. For player r we then get the minimax tree in Figure 7. Note that it does not matter
which of R’s opponents goes first, as long as both of them play against R. As we can see,
both G and B pick the move which, considering r’s possible moves, leaves R with the lowest
possible score.
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−15

−17

−17

6 −17 −17

−16

−10 −16 −12

−7

16 −7 8

−16

−11

14 −11 −4

−15

−6 −7 −15

−16

10 −16 −14

−15

−15

−4 −15 15

−13

−11 −13 4

−7

−7 −17 7

r1

g1

b1 b2 b3

g2

b1 b2 b3

g3

b1 b2 b3

r2

g1

b1 b2 b3

g2

b1 b2 b3

g3

b1 b2 b3

r3

g1

b1 b2 b3

g2

b1 b2 b3

g3

b1 b2 b3

Figure 7: Example of a maximin search tree.
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Table 3 shows the minimum score per move, that each player can be sure to receive. The
maximum score that each player can be sure to receive is the maximum of their minimum
scores, this is −15 for r (move r3), −19 for g (move g2) and −17 for b (move b3). Now, if all
players are paranoid, each player will play their move with the maximum score they can be
sure to receive (r3, g2, b3). Considering this set of moves r will score 4 points, g 8 points and
b -9 points.

min(r1) = −17 min(g1) = −20 min(b1) = −20
min(r2) = −16 min(g2) = −19 min(b2) = −20
min(r3) = −15 min(g3) = −20 min(b3) = −17

Table 3: Minimum score for each move.

7 Experiments

We experimented with the boards in Figure 8, for players Red, Green and Blue, and the
standard Diplomacy board (Figure 1). Each node in the figures represent a province, color-
filled nodes indicate supply centers (where gray is neutral and the other colors are home
supply centers for the players). To reduce complexity, all provinces are land provinces. The
home supply centers contain an army for the corresponding player. The turn limits are as
follows: The Diamond – 10 years, The Triangle – 12 years, The Hexagon – 18 years, The
Square – 32 years.

(a)

Neutral

Red

Green

Blue

(b)

B

D

A C E

(c)

B C

E

A

D F

(d)

G

HI

A B

C

DE

F

(e)

C

E F H

J L

D

G

I K

A B

M N O P

Figure 8: (a) Legend: colored nodes indicate a supply center and white nodes are provinces
without supply center. Test maps: (b) The Diamond, (c) The Triangle, (d) The Hexagon and
(e) The Square.

In our first attempts to experiment with minimax we determined that this method,
without pruning, took far to long to be feasible for Diplomacy. This can be explained by
taking a look at the branching factor: For now, lets ignore the retreat and adjustments
phases. If we take a look at The Diamond we have 3 units, each having roughly 10 distinct
orders (supports for other powers included). This means we have a branching factor 1000,
which is 1000 after the first turn, one million after the second turn (one in-game year) and
one billion after the third turn. This is already far more than we can process in reasonable
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time. Even though pruning may drastically reduce the size of the tree, and possibly give a
sensible move for this tiny map, for the standard board of Diplomacy this will still not be
enough.

7.1 Analysing the maps

At first glance we can see that The Triangle and The Hexagon are fully symmetric, while
The Diamond is symmetric for the red and blue players, and The Square does not con-
tain any symmetry at all. We can also see that The Hexagon would not be possible on a
two-dimensional board, because it is non-planar. The Square is the only map that can be
considered similar to the map of standard Diplomacy, both in terms of supply centers and
in terms of degree of the vertices.

We conducted an experiment to find the average winrates for each starting position, the
results can be found in Tables 4, 5, 6 and 7. For the column Random we played 1000 games
with three random agents. Note that some of the played games ended in a draw if the figures
in this column do not add up to 1. For the MCTS(plays) columns used one MCTS(plays)
agent and two random agents. Here plays is the number of playouts that the agent did
for each turn. We played 1000 games for each starting position of the MCTS agents. The
Rel. increase columns show the relative increase of winrates of the corresponding strategy
compared to the random strategy.

From the tables we can see that for all of our maps the win rates for the MCTS strate-
gies do not increase much after 500 playouts. This indicates that we are near the maximal
potential of MCTS.

The Diamond

From Table 4 it follows that The Diamond is symmetric for red and blue. The win rates
show that the starting position of green is worse than the starting positions of red and blue.
However, the relative increases show that MCTS does not perform significantly better from
any one position compared to the other positions. The win rates for the MCTS strategy do
not increase much after 500 playouts, indicating that, at 500 playouts, our MCTS strategy
is near its maximal potential on this map.

From the Random Win rate column we can see that roughly 3% of the played games
ended in a draw. Interestingly, when the MCTS strategy is near its maximal potential it’s
not even close to winning all of the games. This is may be caused by the map having so few
supply centers, resulting in a loss when the player fails to capture a supply center.

The Triangle

From Table 5 it follows that The Triangle is fully symmetric. For this map our MCTS
strategy also appears to be near its maximal potential at 500 playouts, because the win
rates for the MCTS strategy do not increase much after 500 playouts.
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Random MCTS(100) MCTS(500) MCTS(1000)
Power Win rate Win rate Rel. increase Win rate Rel. increase Win rate Rel. increase

R 0.32 0.55 1.72 0.70 2.19 0.72 2.25
G 0.30 0.44 1.47 0.57 1.90 0.59 1.97
B 0.35 0.54 1.54 0.69 1.97 0.72 2.06

Table 4: Win rates for The Diamond.

From the Random Win rate column we can see that random play ended in a draw for
around 47% of the played games. The MCTS strategy does come close to winning all of its
games on this map, which is surprising, considering the results for MCTS on The Diamond.

Random MCTS(100) MCTS(500) MCTS(1000)
Power Win rate Win rate Rel. increase Win rate Rel. increase Win rate Rel. increase

R 0.18 0.74 4.11 0.89 4.94 0.92 5.11
G 0.18 0.74 4.11 0.89 4.94 0.92 5.11
B 0.17 0.69 4.06 0.87 5.12 0.90 5.29

Table 5: Win rates for The Triangle.

The Hexagon

From Table 6 it follows that The Hexagon is fully symmetric too. On this map the win rates
for the MCTS strategy do not increase much after 500 playouts either, again indicating that,
at 500 playouts, our MCTS strategy is near its maximal potential on this map.

From the Random Win rate column we can see that random play ended in a draw for
around 3% of the played games. Again, the MCTS strategy near its maximal potential
is not even close to winning all of the games. The Diamond and this map are similar in
connectivity between provinces, in that from any one province, most other provinces can be
directly reached, whereas The Triangle is much different in this regard, only being able to
directly reach a few other provinces from any one province. From this and the results on The
Triangle we conclude that maps with less connectivity require more tactical play to win.

Random MCTS(100) MCTS(500) MCTS(1000)
Power Win rate Win rate Rel. increase Win rate Rel. increase Win rate Rel. increase

R 0.31 0.65 2.10 0.77 2.48 0.78 2.52
G 0.33 0.61 1.85 0.76 2.30 0.74 2.24
B 0.33 0.60 1.82 0.69 2.09 0.75 2.27

Table 6: Win rates for The Hexagon.
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The Square

From the relative increases in Table 7 it follows that The Square has no symmetry at all. The
starting position of the red player appears to be far superior to the other starting positions.
The likely cause for this is the close proximity of red to most of the other supply centers.
The starting position of the green player is slightly worse than the blue starting position. We
suspect this is caused by one of the red and green supply centers being neighbours, limiting
the safe options for green during the first turns, while blue can move around freely without
any danger. Our MCTS strategy appears to also be near its maximal potential around 500
playouts on this map. From the Random Win rate column we can see that random play
ended in a draw for around 25% of the played games. For the red player, the MCTS strategy
is close to winning all games with 500 playouts. Considering the win rates for random play,
MCTS performs really well, even on the worst starting position.

Random MCTS(100) MCTS(500) MCTS(1000)
Power Win rate Win rate Rel. increase Win rate Rel. increase Win rate Rel. increase

R 0.41 0.86 2.10 0.92 2.24 0.94 2.29
G 0.13 0.54 4.15 0.73 5.62 0.77 5.92
B 0.20 0.75 3.75 0.85 4.25 0.90 4.50

Table 7: Win rates for The Square.

7.2 Analysing MCTS

For each of our own maps we conducted an experiment where we let the random, MCTS(100)
and MCTS(plays) strategies play against each other, with plays = 25, 50, . . . , 1000. We ran
167 games of all permutations of starting positions (summing up to a total of 1002 games).
The results can be found in Figures 9a, 9b, 9c and 9d. From the graphs it follows that MCTS
works as intended on all maps, we can see the expected form of a logarithmic function of the
win rates for the MCTS strategies. We can also see that at 500 iterations, the MCTS agents
still have not reached their full potential yet. As expected, the graphs for the MCTS agents
cross at 100 iterations. Interestingly, after roughly 50 playouts, the random strategy only
has a small decline in win rate on The Diamond and The Hexagon while the win rates are
still relatively large. We assume that this is caused by how easy it is to win without tactical
play on these maps. On The Square the win rate of MCTS looks like it is declining after 950
playouts. Altough we are not entirely sure why this is, we suspect that this is caused by the
random agent having a string of luck, selecting good moves.

We also performed an experiment with the standard board of Diplomacy. Table 8 shows
the average numbers of supply centers for this experiment. Here we played 1000 games with
only random agents and 5 games with six random agents and one MCTS(play) agent for
each starting position of the MCTS agent (a total of 35 games per MCTS strategy). Playing
the 1000 games with only random agents took 3.5 to 4 minutes (using a desktop computer
with an Intel R© i7-4770K cpu), giving us a good indication of how many playouts we can
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Figure 9: Winrates on (a) The Diamond, (b) The Triangle, (c) The Hexagon and (d) The
Square.

perform to stay within the time limits specified in the game rules. From Table 8 it follows
that, atleast for some powers, there is definately an increase in performance when using
MCTS, however, for most powers MCTS needs many more playouts to win. This was not
entirely unexpected, considering the size of the complete search sapce.

We were also interested to see whether or not the MCTS agents would be able to “learn”
any strategic patterns. We did not find any proof that MCTS was able to recognize the
openings adopted by the human players [20], but this was no suprise at all because many of
the openings contain convoys, which we did not implement. However, we did find proof for
recognizing simple patterns. At lower numbers of playouts we still find many silly orders such
as trying to swap two of its own units or moving one of its units to another province where
the agent has another unit which is holding. We gradually see those silly orders disappearing
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Power Random MCTS(500) MCTS(1000)
Austria 5.4 13.0 12.2
England 3.5 0.6 2.8
France 6.5 6.8 7.0

Germany 5.3 15.8 11.6
Italy 2.7 3.2 0.4

Russia 5.9 7.0 16.4
Turkey 4.7 1.4 3.4

Table 8: Average number of supply centers on the standard Diplomacy board.

when we increase the number of playouts and furthermore, see an increase in clever moves.
The following example of a self-standoff occured on The Square:

• Army B, E – J

• Army B, G – J

• Army R, M – J

Here the blue player, a MCTS agent with only 100 playouts, uses two of its own units to
defend a third province from another player. Furthermore, it appears as though the agent
is aware of the strategic importance of a province, because we see self-standoffs mostly at
provinces which we ourselfs consider important, for instance provinces with a lot of neigh-
bours. We expected to see an increased amount of supports from MCTS agents compared
to random agents, this was not the case though. In fact the MCTS agents did less supports,
however, most of the supports that the random agents do are useless, whereas the MCTS
agents make more usefull supports such as:

• Army R, J Supports Army R, N – K

• Army G, K Holds

• Army R, N – K

During the fall turn we can also see the MCTS agents holding units located at supply centers
and trying to move to supply centers, if the agent does not control the supply center yet,
taking the home supply centers of opponents more often than normal supply centers.

8 Conclusion and future work

We tested a basic variant of the MCTS algorithm against random agents for the game
Diplomacy. The results have shown that MCTS performs well against random agents. The
MCTS algorithm is decently fast. However, the quality of the moves is directly related to the
amount of playouts, where more playouts increase the quality, but also increase the time it
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takes to compute the agent its moves. Furthermore, a bigger or more complex map will also
increase the runtime of the MCTS algorithm. Due to the size of the search spaces, even on
small maps, minimax without pruning proved infeasible, with a single turn taking well over
an hour.

8.1 Future work

MCTS should be compared with other agents, that are more clever than the random agent.
If at all possible, a good idea would be to convert the MCTS agent to DipGame format. In
addition to being able to compare the agent against other agents, this may also reduce the
time it takes to come up with a solution (due to inefficiencies in our server).

There are several areas of improvement. First and foremost MCTS would probably greatly
benefit from using abstract states of (part of) the maps. This could allow us to save a deeper
search tree, which should greatly improve the performance in terms of win rate. UCT would
then also make a great addition to the algorithm. It could also prove to be beneficial to,
in some manner, remove obviously bad orders from the list of available orders, before the
MCTS algorithm starts. Perhaps the succesful approach to Arimaa [21], where the enormous
amount of possible moves could be ordered effectively, can be minimized.

Finally, the agent should be extended to make use of communications with other players.
Negotiations are a vital part of Diplomacy and players will use it. An agent in a match with
human players will be at a distinct disadvantage if negotiations are ignored.
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