
TEMPO and SOCCA

Concepts, modelling and comparison

by Richard Willemsen

01-05-1995

Department of Computer Science

University of Leiden

Abstract

In this thesis two software process modelling formalisms, TEMPO and SOCCA, will be dis-
cussed and compared. The TEMPO formalism has been developed at the Laboratoire de Génie
Informatique, Université Joseph Fourier, Grenoble (France) and the SOCCA formalism has
been developed at the University of Leiden (The Netherlands). During the modelling of some
examples in both formalisms, several interesting aspects came into light. This has resulted into
some extensions of the SOCCA formalism. Further more several role concepts found in the
different software process modelling approaches will be presented and a proposition for the
role concept in SOCCA will be given. The last part of the thesis describes the R.A.P.P. dia-
gram. This is a diagram which can possibly be used on top of SOCCA (or other formalisms),
to describe software processes on a more global level of abstraction.

Contents

1. General Introduction ...1

2. The TEMPO Formalism ..3
2.1. Introduction into TEMPO ..3
2.2. The Concept of ECA Rules in ADELE ..3
2.3. The Concept of TECA Rules in TEMPO ...4
2.4. The Trigger Formalism ..5

2.4.1. The Execution Model of Triggers ..5
2.4.2. The Execution Order of Triggers ...6

2.5. The TEMPO Process Formalism ...6
2.6. The Work Environment ...6

2.6.1. The Decomposition of a WE ..7
2.6.2. Promoting Objects from Child WE to Parent WE ..7

2.7. The Role Concept ..7
2.7.1. The Role Definition ...8
2.7.2. The Contextual Behaviour ...9
2.7.3. Roles and Classes ..9
2.7.4. Roles and Processes ...10

2.8. The Connection ..10
2.9. The Check in - Check out Mechanism ..12
2.10. The WS Manager and WSs ..13

2.10.1. The Work Spaces ...14
2.10.2. The Work Space Manager ...14

2.11. The WS Structure: Father and Son WSs ...15
2.12. The Coordination of the WSs ...15

2.12.1. The Differences between the Coordinations ..16
2.13. The Scenario ..16

2.13.1. The Design Engineer ...17
2.13.2. The MailTool ..17
2.13.3. Sharing Documents and Communication ..17
2.13.4. Assigning Tools to Roles ...17

2.14. Examples Modelled in TEMPO ...18
2.14.1. Example 1: The Design Engineer ..18
2.14.2. Example 2: The MailTool ..19

3. The SOCCA Formalism ...23
3.1. Introduction into SOCCA ..23
3.2. The 3 Different Perspectives of SOCCA ..23

3.2.1. The Data Perspective ...23
3.2.2. The Behaviour Perspective ..23
3.2.3. The Process Perspective ..24

3.3. Introduction into PARADIGM ..24
3.4. Example 1: The Design Engineer ...25

3.4.1. The Data Perspective of Design Engineer ...26
3.4.2. The Behaviour Perspective of Design Engineer ..27

3.4.2.1. The External Behaviour of Design Engineer27

3.4.2.2. An Alternative for the External Behaviour of Design Engineer29
3.4.2.3. The Internal Behaviour of Design Engineer ..29

3.4.3. The Manager Process: Design Engineer ..38
3.4.4. An Alternative for Manager Design Engineer: Design Engineer241
3.4.5. A Second Alternative for Manager Design Engineer: Design Engineer341

3.5. Example 2: The MailTool ..43
3.5.1. The Data Perspective of MailTool ...44
3.5.2. The Behaviour Perspective of MailTool ..45

3.5.2.1. The Extensions of the External Behaviour: Several STDs45
3.5.2.2. The External Behaviour of MailTool ..46
3.5.2.3. The Internal Behaviour of MailTool ...51

3.5.3. The Manager Process of MailTool ..59
3.5.4. An Alternative for MailTool: MailTool2 ...62

4. Various Role Concepts...65
4.1. Introduction into Role Concepts ..65
4.2. MERLIN ..65
4.3. OIKOS ...65
4.4. ALF ...66
4.5. ADELE-TEMPO ...66
4.6. Several Articles ..67
4.7. SOCCA ..68

4.7.1. Using the Role Concept in SOCCA ...69

5. TEMPO versus SOCCA...73
5.1. The Similarities between TEMPO and SOCCA ...73
5.2. The Differences between TEMPO and SOCCA ..74
5.3. The Advantages and Drawbacks of TEMPO ...75
5.4. The Advantages and Drawbacks of SOCCA ..76

6. The RAPP Diagram..79
6.1. Role, Agent, Position and Process ..79
6.2. The R.A.P.P. Diagram ...80

7. Conclusions ...83

Appendix A: Mnemonics ..85

Appendix B: More TEMPO Examples ..87

References..97

E3 proposal: .

June 15, 1995 3:50 pm 1

SEED proposal II.7

June 15, 1995 3:50 pm 1TEMPO and SOCCA 1/98

C h a p t e r 1 G e n e r a l I n t r o d u c t i o n

Software processes can be regarded as a set of activities, that are concurrently carried out by
several agents. These agents are human as well as non-human agents (tools, document, etc.).
The agents have to cooperate and to communicate with each other in order to develop software
applications, deliver new releases, etc. Despite the importance of the description of the (soft-
ware) process, little attention has been paid to describe and clarify these processes. By
providing an explicit process description, weaknesses in the process can be discovered and
corrected. Such a process description is also very useful for analysing, simulating and evalu-
ating the (software) process. These descriptions of the processes are subject of research in the
Software Process Modelling field, which is a relatively new branch of the software engineering
tree. The purpose of developing software process modelling formalisms is to describe and
clarify the (software) processes. The two software process modelling approaches which will be
discussed in this thesis are: TEMPO and SOCCA.

The TEMPO formalism has been developed at the Laboratoire de Génie Informatique of the
Université Joseph Fourier in Grenoble (France). Due to the fact, that the ADELE system had
some drawbacks, TEMPO has been designed on top of the ADELE system to overcome these
weaknesses. TEMPO is high level software process programming language based on the role
concept and the connection concept. A role [3] allows to redefine dynamically the static and
behavioural properties of objects depending on where the objects play their role in the process.
The connection expresses how the different (sub) processes collaborate with each other.

The SOCCA formalism has been developed at the University of Leiden (The Netherlands).
This specification formalism for software process modelling has not only been developed for
describing the technical parts of the software process, but also for the human parts, or rather the
human team members, of the software process. The formalism should reflect all kinds of inter-
action between the various parts, including the non-human as well as the human parts.

The purposes of my stage (research) were:

1. To understand and finally to compare the two software process modelling formalisms
TEMPO and SOCCA with each other. This resulted in visiting the Laboratoire de Génie Infor-
matique in Grenoble for three months, where I studied the TEMPO formalism. The last four
months I stayed in Leiden where I studied the SOCCA formalism. During my staying in
Grenoble a scenario has been invented with the purpose to use it as a frame work for comparing
the two approaches. If one wants to compare two different formalisms, it is necessary to give
them more attention then just reading the articles. This resulted in very interesting and difficult
discussions with Jacky, Noureddine and Luuk, all having a different approach of encountering
the modelling of software processes. The scenario has been used for modelling some examples
in both formalisms, which made it easier to compare them with each other.

2. To study the role concept used in TEMPO and to try to apply a role concept in the SOCCA
formalism. But before I wanted to propose a role concept for SOCCA, I have studied the role
concepts used in some other software process modelling approaches [5, 6, 8, 14, 15, 16, 17].
This resulted into a proposition of a role concept for the SOCCA formalism. This role concept
differs from other role concepts, because it’s the only one which is able to restrict the extent of
a role.

E3 proposal: .

June 15, 1995 3:50 pm 2

SEED proposal II.7

June 15, 1995 3:50 pm 2TEMPO and SOCCA 2/98

Before presenting the structure of this thesis I want to thank some people.

Je remercie Jacky Estublier pour m’avoir admis au sein de son équipe. Mes remerciements vont
également à Noureddine Belkhatir qui m’a beaucoup aidé et souvent orienté dans la bonne
direction. Qu’il me soit permis enfin d’adresser mes sincères remerciements à toute l’equipe.

I want to thank Luuk for his enthusiasm, positive attitude and the interesting discussions we had
together. It was a really nice and stimulating experience to work with you, thanks!

Further I want to thank my family and friends who have supported me during my study.

This thesis has been organized as follows. After the general introduction in Chapter 1, Chapter
2 presents the TEMPO formalism with its concepts. This formalism is based upon the ADELE
system, the role concept and the connection concept. In this chapter some examples which have
been based upon a scenario (also presented here) and modelled in TEMPO will be given. In
Chapter 3 the concepts from which SOCCA is composed are described. These concepts are
object oriented, based on EER modelling, state transition diagrams combined with PARA-
DIGM, and object flow diagrams. The examples which have been modelled in TEMPO, have
been modelled in SOCCA too. During the modelling of these examples several extensions of
the SOCCA formalism have been made. Chapter 4 presents various role concepts found in the
different software process modelling approaches. At the end of the chapter, a role concept has
been proposed and applied to the SOCCA formalism. The comparison and evaluation of
TEMPO and SOCCA is subject of Chapter 5. In Chapter 6, the R.A.P.P. diagram is presented.
This is a diagram which can possibly be used on top of SOCCA (or other formalisms), to
describe software processes in a more global way. In Chapter 7 some conclusions and topics
for future work are listed.

E3 proposal: Introduction into TEMPO .

June 15, 1995 3:50 pm 3

SEED proposal II.7

June 15, 1995 3:50 pm 3

 Introduction into TEMPO

TEMPO and SOCCA 3/98

C h a p t e r 2 T h e T E M P O F o r m a l i s m

2.1 Introduct ion into TEMPO

The ADELE system has been in practical use for several years. However some weaknesses
have been found:

1. Concept level: There is no high level concept such as software process steps, work environ-
ments.

2. Complexity: The ECA rules are fragmented among data and relation types. A clear picture
of what will happen during execution is not easy.

To overcome these drawbacks, a higher level process language called TEMPO has been devel-
oped on top of the ADELE system. In this thesis the TEMPO syntax is used as described in
[16]. In TEMPO the concept of process and subprocess is used. A software process can be
modelled as a combination of processes and subprocesses (also called process steps). In a
process step there are one or more users and a set of objects on which the users perform there
actions. In TEMPO a user is defined as an object, so each process or subprocess consists of a
set of objects. In a process step roles are defined to describe the object contextual behaviour,
i.e. the description of the operations that can be done on the object and the rules that control
these operations. A role adds temporary properties (= local attributes and methods) to the object
playing this role. Each of these roles is a set of object instances sharing the same static and
dynamic description. In a certain process, an object instance can play a single role, and objects
of the same type can be used by different roles. TEMPO uses the TECA formalism to describe
temporal events, extending the ECA formalism of ADELE with temporal operators. The ECA
and TECA formalisms will be described in the following subparagraphs.

2.2 The Concept of ECA Rules in ADELE

To model software processes, the formalism of event-condition-action is used to describe the
dynamic aspects.

The general expression for ECA rules is: ‘ON Event WHEN Condition DO Action’. The events
are used to control the activities of the objects. The action is a set of operations activated by a
trigger when an event occurs.

The ECA formalism has two basic concepts: 1. Event-Condition and 2. Action.

1. Events and Conditions

Events arise when methods or commands are executed. The events are used to control the activ-
ities in the database and the conditions are used for some constraints. The event is a complex
expression, involving the method (or command) which caused the event, temporal conditions
and external conditions. In the next example the definition of an event will be shown and
explained.

E.g. DEFEVENT Delete_obj = (!cmd = rmobj).

The Delete_obj event is defined as being the event which raises, whenever the current
command (!cmd) is an object removal command (rmobj).

E3 proposal: The Concept of TECA Rules in TEMPO .

June 15, 1995 3:50 pm 4

SEED proposal II.7

June 15, 1995 3:50 pm 4

 The Concept of TECA Rules in TEMPO

TEMPO and SOCCA 4/98

2. Actions

An action is a program written in the ADELE language. This is an imperative language, an
instruction can be a logical expression, an ADELE command or UNIX command. The action
can call methods, and these methods will be executed as subtransactions.

2.3 The Concept of TECA Rules in TEMPO

The ECA concept doesn’t deal with time, but in TEMPO it is possible to control the activities
during time. So instead of the ‘traditional’ ECA rules, TEMPO is describing the activities with
TECA (= Temporal-Event-Condition-Action) rules. These TECA rules are used to describe the
order in which the activities are executed, and their synchronization.

A TECA rule is expressed in the following way: WHEN Event DO Method,

Event: An event is a predicate which expresses an event in the present or in the past of the
system or of the objects.

Method: A method is a program written in an imperative language.

In TEMPO the operator ‘PAST’ is added, because that operator makes it possible to express the
conditions in the past. The events and the attributes are saved in the history of an object, with
the operator PAST it is possible to check if a certain event has happened in the past.

This will be clarified by the following example. When event e4 arises Line1 is activated:

Line1: WHEN e4PAST e1DO method_x.

The history route of the object for which the event e4 is raised, is traversed. This is necessary
for the verifying of event e1 (has e1 been raised before ?(the clause PAST)). If the event e1 is
registered in the history of the object, the method_x will be executed.

e4

e3

e2

e1

Line1 is activated

e1,...,e4 : events

evolution of an
object during time.

:

history route of an
object (option PAST).

:

: WHEN e4PAST e1DO method_xLine1

E.g.

E3 proposal: The Trigger Formalism .

June 15, 1995 3:50 pm 5

SEED proposal II.7

June 15, 1995 3:50 pm 5

 The Trigger Formalism

TEMPO and SOCCA 5/98

2.4 The Tr igger Formal ism

First of all it must be clear that the trigger mechanism is used to implement the TECA concept.
A TECA line is executed, when the corresponding event is true by the trigger mechanism of
ADELE. The trigger mechanism allows actions to be executed automatically when some condi-
tions hold (e.g. preconditions and postconditions). There exists four execution modes for the
TECA lines: 1. PRE, 2. POST, 3. AFTER and 4. EXCEPTION (= ERROR mode in ADELE)

2.4.1 The Execution Model of Triggers

When a method is called, a transaction is opened by the system to execute the method. The PRE
triggers and POST triggers are executed as part of the transaction and the AFTER triggers and
ERROR triggers are executed after the transaction (see Fig. 2.1.). It must be clear, that not all
the execution modes have to be used for the same object. It depends on the situation and on the
object, which execution modes will be used.

1. PRE Triggers

The pre triggers are activated before the method execution. These pre triggers enable the system
to check the system state and the state of the objects before the method is executed, e.g. if
someone wants to modify a document, but he has no access right to the document, an ABOR-
TION will be raised.

2. POST Triggers

The post triggers are executed after the method execution. The events are checked after the
method. When the events of a post trigger is true, the post trigger is executed immediately, but
before the transaction has been commitment. These triggers allow to undo (=rollback) the
modifications performed by the operations of the method, e.g. if an attribute of an object has
been changed and it’s not allowed to change that attribute, then the operation will be aborted
and the modifications are undone.

3. AFTER Triggers

The after triggers are executed after the commitment of a transaction, e.g. they can be used for
recording historic information in the database.

4. EXCEPTION Triggers

The exception triggers are executed when the transaction has been aborted. These triggers can
be used for an alternative strategy, e.g. if someone didn’t have the permission to access an
object, this user can be given the access right to that specific object now.

PRE

POST

AFTER / EXCEPTION

Fig. 2.1. The Execution model

Method execution
Transaction

E3 proposal: The TEMPO Process Formalism .

June 15, 1995 3:50 pm 6

SEED proposal II.7

June 15, 1995 3:50 pm 6

 The TEMPO Process Formalism

TEMPO and SOCCA 6/98

2.4.2 The Execution Order of Triggers

The execution of a trigger depends on the event which is always associated to a trigger. The
trigger is only executed when the corresponding event is true. If two or more triggers which
may run are selected, there must be made a decision which trigger has the permission to run
first. In ADELE this is done in the following way. The ADELE system considers the priority
which is attached to each event. The triggers which are associated to true events and with the
highest priorities have to be executed first. When there are two events (or more) true, and they
have the same priority, the order in which they are run is not defined.

2.5 The TEMPO Process Formal ism

TEMPO is a software process programming language based on the role concept. Different soft-
ware processes can share simultaneously the same objects. In each process the objects play a
different role, so the object behaviour is context dependent.

TEMPO defines a process model, based on two concepts: 1. role and 2. connection.

1. Role: A role enables to change the static (=attributes) and behavioural (= methods) properties
of objects according to the role they play in a process (= contextual behaviour).

2. Connection: A connection describes how the different processes collaborate with each other.
A connection is a relationship between two roles.

A software process model is described as a combination of software process types. To identify
and describe a set of activities aprocess type is used. A process type can be refined and special-
ized. It is possible to modify and overload the attributes, methods and constraints of an object
type when used in a process type. A software process instance is carried out by one or more
users in a Work Environment (= WE). The WE will be described in paragraph 2.6. Because of
the fact, that software processes are activities executing asynchronously and concurrently,
TEMPO describes the communication and synchronization protocol by temporal-event-condi-
tion-action rules. The collaboration protocol is described by a connection.

2.6 The Work Environment

TEMPO associates a work environment (= WE) to each process. A Work Environment is
defined by the following tuple:

WE = (WS, PM, Tools, User),

WS: Work Space, the work space is the ‘private’ space, where users can perform software proc-
esses. The user in a WS is isolated from other WSs, in the WS he can do some activities
like, e.g. designing, compiling, editing, etc.

PM: Process Model, the process model specifies what the process can do in the work space.

Tools: These tools are used in the work environment to manipulate the work space objects.

User: The user(s) who are allowed to work in this work environment.

To adapt the behaviour of objects to the corresponding work environment context, the role
concept is used. A role of an object can redefine the original attributes and methods or define
new ones, in order to satisfy the need of the work environment, to let the object behave
according to the context in which it is used. A user is allowed to work in different WEs at the
same time and the WEs may be used by different users simultaneously.

E3 proposal: The Role Concept .

June 15, 1995 3:50 pm 7

SEED proposal II.7

June 15, 1995 3:50 pm 7

 The Role Concept

TEMPO and SOCCA 7/98

2.6.1 The Decomposition of a WE

A work environment can be decomposed into several sub (= child) work environments. Each
child work environment is not allowed to manipulate the objects in their corresponding parent
work environment and each child work environment corresponds with a fragment instance
defined in a process type. In Fig. 2.2. an example of the work environment Monitor, which is
decomposed into two sub work environments (= Designing1 and Reviewing1) is shown. The
WE-Designing1 is an instance of the type Designing. The WE-Designing1 is a child of the WE-
Monitor. This means that, Designing1 corresponds with the fragment Design appearing in WE-
Monitor. The WE-Reviewing1 is an instance of the type Reviewing. This work environment
corresponds with the fragment review in his parent work environment Monitor. When the sub
work environments are created, each child gets a copy of the document doc, which is an object
in the parent work environment. So doc-01 in WE-Designing1 and doc-02 in WE-Reviewing1
inherit the attributes and content of the object doc in the parent work environment. Each docu-
ment in the child work environments, behaves according to the role under which it has to
operate. So document doc-01 in sub work environment Designing1 has the underdesign role
and the document doc-02 in sub work environment Reviewing1 has the role underreview. The
roles underdesign and underreview, describe how the documents (doc-01 and doc-02) have to
behave.

2.6.2 Promoting Objects from Child WE to Parent WE

The user in a child work environment can modify his objects in isolation from other users.
When the user decides to export his modified objects to the parent work environment, an inte-
gration problem can occur. This means, when the user tries to promote his modifications on the
shared object, then the consistency problem will arise.

To resolve this problem, in TEMPO a user has to react by himself to the eventually conflict situ-
ations. He can write, using the TECA rules, which integration strategy has to be followed.

2.7 The Role Concept

Depending on the process where an object is used, the role of the object is different. When a
process type uses a role type, this role type makes it possible to change the definition of the
attributes, methods and constraints. With other words, within a process type, the role type is a
new type definition of objects (properties and behaviour).

Fragment
DESIGN

Fragment
REVIEW

Parent WE: Monitor

Child WE: Designing1

underdesign

doc-01

doc

Child WE: Reviewing1

underreview

doc-02

Fig. 2.2. Decomposition of WEs

E3 proposal: The Role Concept .

June 15, 1995 3:50 pm 8

SEED proposal II.7

June 15, 1995 3:50 pm 8

 The Role Concept

TEMPO and SOCCA 8/98

2.7.1 The Role Definition

A role is the set of object instances, having the same characteristics (= attributes) and behaviour
(= methods and constraints). An object instance can only play one role in a process!, but the
same object is allowed to play several roles in different processes. The syntax of a role [16] has
the following structure:

1. RoleName = name of the role.

2. mode = the mode describes in what way the objects are used by a role. When a role has the
mode modifiable, it means, that the objects can be manipulated and modified by the
process step where they play a role. When the role has the mode visualized, the
objects that play a role in a process cannot be modified by the process.

3. derived = gives the object type from where the role Rolename is derived.

4. card = the constructor provides a role with the cardinality (min,max). So it’s possible to
define the number of instances of each role.

5. ATTRIBUTE = list of attributes of the role.

6. METHOD = the list of methods of the role.

7. RULES = the list of rules of the role.

There is no strict relationship between a role and an object type, see also Fig. 2.3.:

i. An object instance plays a single role in a process.

ii. Object instances of the same type may play different roles.

iii. Instances of different types may play the same role, provided their types are compatible
(is not possible in this first specification of TEMPO).

The Role Syntax:

ROLE RoleName;

METHOD Methods;

RULES Rules;

ATTRIBUTE Attributes;

mode := { modifiable / visualizable };
card := Min, Max;
derived = ObjectType;

i.

ii.

iii.
*

* *

*

o

, = Roles

o = Object

Fig. 2.3. Role and Object Type

* = Object

E3 proposal: The Role Concept .

June 15, 1995 3:50 pm 9

SEED proposal II.7

June 15, 1995 3:50 pm 9

 The Role Concept

TEMPO and SOCCA 9/98

2.7.2 The Contextual Behaviour

A role is very useful to let objects adapt their behaviour according to the environment where
the objects are used. Each role can redefine the original attributes and methods or the role can
define new attributes and methods. The role concept makes it possible to accommodate the
original behaviour of the object to the behaviour of a work environment context. For example,
the module type has methods, which are independent of the context in which they are used. The
process test may test a module. In the test environment, the object will have to behave differ-
ently, namely according to the work environment context of the process test. In Fig. 2.4. is
shown, how the behaviour of the module is adapted to the test environment. The figure shows
the to_test role with two methods, compiling and testing. The compiling method overloads the
original compiling method which is defined in the software product model, and the method
testing is added to the set of methods of the object. So using the role concept, it’s possible to
describe the contextual behaviour of objects now.

It must be clear that an object in the Product Model is independent of the context, but an object
in a software process is context dependent.

2.7.3 Roles and Classes

Roles and classes look similar, so the following question can rise: is the role concept needed at
all ?

A role, as well as a class, is a set of instances sharing the same definition (static and behav-
ioural). A given object instance can be simultaneously a member of different roles (classes).
Both roles and classes can be regarded as a viewing mechanism since a given object instance
has a different description depending on the role (class). However the differences are the
following: The association between an instance and its class(es) is statically defined at instan-
tiation time, while an instance can be dynamically bound to an arbitrary role at any time. In an
O.O. system the class definition is created first, and then the instances of the class. While in
TEMPO, usually, the instances are created first, and are dynamically associated, to a (set of)
role(s).

Software Product Model Software Process

TYPEOBJECT module;

ATTRIBUTE

status = tested, not_tested;
...

METHOD

compiling

END module;

TYPEPROCESS test;

METHOD

compiling (with -g option)

ROLE to_test;

testing

END test;

Fig. 2.4. Contextual Behaviour.

derived = module;

E3 proposal: The Connection .

June 15, 1995 3:50 pm 10

SEED proposal II.7

June 15, 1995 3:50 pm 10

 The Connection

TEMPO and SOCCA 10/98

2.7.4 Roles and Processes

In TEMPO a process is a set of roles. Each role is the set of object instances sharing the same
static and dynamic description of that process (attributes, methods). In TEMPO a complex
process step, can be broken down in other subprocesses until the desired level of detail is
achieved. Thus a complex activity can be broken down into a hierarchy of other less complex
activities. However no special semantics are provided to express this policy.

2.8 The Connect ion

Each process model of a work environment, defines what happens in the work environment. In
this way it looks like, that the work environment is performing alone, but that is clearly not true.
In a process, several and different work environments are working together to reach the same
goal at the end. So it is obvious, that the different work environments have to collaborate and
to be synchronized with each other. The work environments can use the same objects. If the
work environments are not synchronized at a certain point in time, it will be impossible to inte-
grate the objects of their work environment with the shared objects in the other sub work envi-
ronments (each sub work environment will have his own version of a shared object). A
connection is relationship between two roles. The purpose of a connection is to define how each
pair of connected objects is coordinated, and so to define the collaboration of the different work
environments. The connection allows two roles to communicate with each other by data flow
and status checking. It must be clear that connections are not symmetric, e.g. a development
WE wants to get automatically new versions of objects, produced in a validation WE, and prob-
ably not the reverse. In Fig. 2.5. an example of a connection between two sub work environ-
ments is shown. Now the sub work environments (Designing1 and Reviewing1) can exchange
information with each other. The information they exchange is bi-directional.

.

To describe the exchange policies of the messages between the two work environments,
TEMPO uses the following structure to describe a connection:

Fragment
DESIGN

Fragment
REVIEW

Parent WE: Monitor

Child WE: Designing1

underdesign

doc-01

doc

Child WE: Reviewing1

underreview

doc-02

Fig. 2.5. Connection between two WEs

CONNECTION

E3 proposal: The Connection .

June 15, 1995 3:50 pm 11

SEED proposal II.7

June 15, 1995 3:50 pm 11

 The Connection

TEMPO and SOCCA 11/98

1. DOMAIN : The domain of a connection is situated in the clause DOMAIN of the type
CONNECTION. The connections are always binary, this means that a connection
always connect two processes with each other. A connection type describes the connec-
tion policy between a role of a process with the role of another process.

The connection is established between the roles underdesign and underreview.

2. PLUG-ON-RULES: When two processes have to be connected, these conditions are
described in the clause PLUG-ON-RULES.

When an occurrence of the process type Designing or Reviewing is created, the connection is
instantiated.

3. PLUG-OFF-RULES: For each connection type is it possible to describe the conditions for
which a connection must be disconnected. These constraints are written down in the
clause PLUG-OFF-RULES.

If one of the two cooperative processes finishes its activities, the connection between the two
processes is destroyed.

4. ACTIVE-RULES : For each connection type, it is possible to write a unit of TECA rules,
which are allowed to control the information exchange between two processes. When

The Connection :

Link ISA CONNECTION;

ACTIVE-RULES ...

PLUG-OFF-RULES ...

PLUG-ON-RULES ...

DOMAIN
Designing: underdesign ->
Reviewing: underreview;

END_OF link;

DOMAIN
Designing: underdesign ->
Reviewing: underreview;

E.g.

E.g.
PLUG-ON-RULES

WHEN create_process UPON (SOURCE OR DEST);

E.g.
PLUG-OFF-RULES
WHEN finish_execution UPON (SOURCE OR DEST);

E3 proposal: The Check in - Check out Mechanism .

June 15, 1995 3:50 pm 12

SEED proposal II.7

June 15, 1995 3:50 pm 12

 The Check in - Check out Mechanism

TEMPO and SOCCA 12/98

there is an update of the object in one of the connected processes, this will raise some
events in the other process. These TECA rules are defined in the clause ACTIVE-
RULES

This means, when a design document is completed in the process Designing1, the document (or
the modifications in the document) has (have) to be propagated to the process Reviewing1.

2.9 The Check in - Check out Mechanism

Because of the fact, that different work environments can be active at the same time, it’s prob-
able that the same objects are shared by different work environments. Figure 2.6. describes the
situation for two different work environments (= WE-A and WE-B), which are using the same
object (= o). The two work environments have both a copy of object o in their corresponding
work space.

1. Check out

To modify objects in isolation, a branch for each object must be created. A branch is a sequen-
tial list of revisions of an object. Such a branch is created by acheck out. This check out assures
that an object with its attributes and methods is copied from the database to the work environ-
ment, or the object is copied from the parent work environment to the corresponding child work
environment. The check out policy allows a user to manipulate the objects in isolation from
other users in his own work environment. The manipulation of the objects can be for a long
period of time, and without concurrency conflicts with other users.

2. Check in

Because of the manipulations of an object, new revisions of the object are created. If the user
decides to promote the modified objects in his work environment to the database or to the parent
work environment, this is performed by acheck in. The user (in WE-A) who is responsible for
the check in of the object in the data base or in the parent work environment, has to resolve
eventually arising merge conflicts. If during the merge phase, other processes promote the same
object, the check in operation of WE-A will be aborted. A promote operation will move

E.g. (and suppose the connection exists between Designing1 and Reviewing1)

ACTIVE-RULES
WHEN design_completed UPON SOURCE
DO allocate(% source, occurrence_of(% dest));

Database

o

WE-A WE-B

o1 o2

Fig. 2.6.

E3 proposal: The WS Manager and WSs .

June 15, 1995 3:50 pm 13

SEED proposal II.7

June 15, 1995 3:50 pm 13

 The WS Manager and WSs

TEMPO and SOCCA 13/98

attributes values of duplicated objects from the work environment to the database (or to the
parent work environment). If the user promotes an object with an attribute or method which is
not defined in the type of the object, the check in will be aborted. If there are no problems with
the promotion of the object, the check in will be committed.

For example, Fig. 2.7. is showing a scenario of the check in - check out concept. First a check
out of object O (the 2nd revision) from the database to WE-A is performed by the user of WE-
A. The user of WE-B has checked out the third revision of object O. Now the users in the work
environments can modify their object without influencing the other object in a other WE (=
copy of object O in WE-B) object. Because each user can modify his object, the user generates
new local revisions of the object. When a user decides to promote his object to the database, he
has to do this by a check in. In Fig. 2.7., object o1 in WE-A is moved to the database. The user
who promotes his revisioned object, is responsible for resolving merge conflicts. So when the
user in WE-A is promoting his object (= o1) to the database, he is responsible for the resolving
of eventually conflicts with object o2 in inside WE-B, before the check in can be performed.
Only when this is done, the check in will be committed.

2.10 The WS Manager and WSs

This is a small piece of writing about the ADELE Work Space Manager. The reason why
writing something about it is, that TEMPO uses this concept of ADELE. In TEMPO a work
environment consists of a work space, process model, user, tools. So a work environment can
be seen as a tuple of the following form WE=(WS, PM, User, Tools). On top of the ADELE
kernel, which consists of an object manager, version manager, transaction manager and a
trigger manager, the work space manager has been implemented. The task of the work space
manager is to deal with the different kind of coordinations between the different work spaces.
In the next two subsections the WS and the WS Manager will be described.

01

02

03

04

05

01

02

03

04

01

02

Database
(object o)

WE-A
(object o1)

WE-B
(object o2)

status = not tested

status = tested

status = not tested

status = tested

status = not tested

status = edited

status = compiled

status = tested

The merge operation is started

= object evolution
= check out

= check in(numbers are revisions)

Fig. 2.7. Check in - Check out

E3 proposal: The WS Manager and WSs .

June 15, 1995 3:50 pm 14

SEED proposal II.7

June 15, 1995 3:50 pm 14

 The WS Manager and WSs

TEMPO and SOCCA 14/98

2.10.1 The Work Spaces

A work space (=WS), is the place where the software engineering activities are executed. The
objects that can be found in a WS can be of different types. The WS is defined by:

1. the set of components it covers and

2. the coordination policies with the other WSs involving the same objects (the only possible
interactions between WSs are those defined by the coordination policies).

The WS itself is a sub database. This means that all the DBMS services are available in each
WS, like local version, protection, etc. A WS can only be a sub database if it is isolated. This
means that the WS has the usual ACID properties of transactions:

i. Atomicity: the work performed in the WS can be seen from outside as atomic (completely
undone or completely done). But it is very unusual, that the work performed in a WS is
completely undone, often parts of the work are made persistent.

ii . Consistency: the state of the database is ‘consistent’ when the WS was created and when it
was committed.

iii . Isolation: a change made on an object in a WS, is only visible in that WS and a change
performed on the ‘same’ object outside the WS isn’t visible in the WS.

iv. Durability: the changes made on the objects are persistent when they are committed.

2.10.2 The Work Space Manager

The work space manager is an intermediate level between the ADELE kernel and the process
level, e.g. TEMPO (see Fig. 2.8.). The work space manager provides two basic services:

1. Defining and controlling the WS content and

2. WS coordination.

If the coordination mechanism is used, the work performed in a WS is made visible to other
WSs. So a WS can then no longer be considered as an ACID transaction.

TEMPO

Fig. 2.8. The level of the WS manager

Trigger Man.

Object Man.

Transact. Man.

Version Man.

WS Manager

ADELE KERNEL

. . .

E3 proposal: The WS Structure: Father and Son WSs .

June 15, 1995 3:50 pm 15

SEED proposal II.7

June 15, 1995 3:50 pm 15

 The WS Structure: Father and Son WSs

TEMPO and SOCCA 15/98

2.11 The WS Structure: Father and Son WSs

When a work space is created it is initialized with already existing objects. These objects
belong to other work spaces, called fathers (e.g. by default the database). The ADELE WS
manager (which is a program) controls these work spaces. The activities can be performed in
all the work spaces, not only in the leaves of the work space structure. A work space can be
atomic or composite. This distinction depends on the objects it contains in its work space, if the
work space contains several objects which have a different father, the work space is called
composite, otherwise it’s called an atomic work space. So an atomic work space has a single
father.

The relationship between the father and son work space describes in which conditions the
changes performed on an object in the father / (son) WS have to be propagated to its sons /
(father) WS. So if in Fig. 2.9.1. an object x is changed in WS-1, this change may be immediately
propagated to object x in the father WS (= WS-0) and transitively to object x which is in WS-2.

Fig. 2.9.2. shows a composite WS (=WS-5), which has two different father WSs (= WS-3 and
WS-4).

2.12 The Coordinat ion of the WSs

Up till now the coordination is only defined between a father WS and his son WSs, the father
contains the original object and the sons have a copy of the original object in their work space
(= Father / Son coordination). There can be WSs containing the same copies of objects, so a
coordination policy can be defined between these objects belonging to any arbitrary pair of
WSs (= Peer to Peer coordination and Master / Slave coordination). The different kind of coor-
dinations will be described below:

1. Father / Son Coordination: The son WSs contain a copy of the original object which is in
the father WS. If the son work space is a composite WS it has several fathers, depending
on the objects it contains.

2. Peer to Peer Coordination: The different instances of a WS type, contain copies of the
objects in the common father WS. The peer to peer coordination allows to coordinate
these WSs without going through the father WS.

3. Master / Slave Coordination: If necessary two different WSs (= not of the same type) have
to be coordinated, because they share copies of the same objects. But without the need
of going through the common father.

4. Multiple Coordination : In general a large number of different coordinations can exist
concurrently. The WS manager is managing, supporting and controlling these coordi-
nations.

WS-0

WS-1 WS-2

Fig. 2.9.1.

WS-5

WS-3 WS-4

Fig. 2.9.2.

E3 proposal: The Scenario .

June 15, 1995 3:50 pm 16

SEED proposal II.7

June 15, 1995 3:50 pm 16

 The Scenario

TEMPO and SOCCA 16/98

In Fig. 2.10. is shown in a graphical way the different kind of coordinations.

2.12.1 The Differences between the Coordinations

1. Master / Slave Coordination: This coordination is based on the principle, that only the
objects in the slave WS can be modified. The slave WS integrates, the work done by its
master WS, but NOT the opposite. The Master / Slave coordination is in one direction,
from the master WS to the slave WS. So the slave WS can’t make changes in its master
WS.

2. Peer to Peer Coordination: This coordination is a kind of a Master / Slave coordination, but
with the difference, that the coordination is in both directions. This means that the WSs
which are connected by a Peer to Peer coordination can introduce changes in the other
WS(s).

3. Father / Son Coordination: The father creates the son WSs, and these son WSs always
know that they have a father WS. From time to time a son WS needs to synchronize with
its father WS (the father can be seen as the master and the son as the slave). However,
a father is not a common master, because it usually needs to work done in the son(s).
When the work performed in the son work space is terminated, it must be transferred to
the father WS, using the command ‘promote’.

2.13 The Scenar io

This scenario will be used for the comparison of the ADELE/TEMPO and SOCCA approach.
Two examples (example 1 and example 2) of the scenario will be modelled in the ADELE/
TEMPO formalism as well as in the SOCCA formalism. The other examples which have been
modelled in ADELE/TEMPO are given in Appendix B.

In this scenario the different members of the project team and their tasks they have to perform,
and tools used in the software process are modelled. The purpose is to make clear what activi-
ties the members are involved in and which other activities they can perform in parallel with
their current activity. E.g. you can think of a designer who is modifying a design document. He
is not allowed to review his own design or is not allowed to implement the corresponding
design document, but he may review and/or implement different other design document(s)
developed by (an)other designer(s).

After describing the examples, it will hopefully be possible to say more about the similarities
and differences between the two approaches.

WS-B’ WS-C’

WS-A

WS-B WS-C

= Father / Son

= Master / Slave
= Peer to Peer

Fig. 2.10. The Different Coordinations

E3 proposal: The Scenario .

June 15, 1995 3:50 pm 17

SEED proposal II.7

June 15, 1995 3:50 pm 17

 The Scenario

TEMPO and SOCCA 17/98

There will be many different interesting aspects in the scenario. They are categorized in the
following subparagraphs, where each aspect will be explained in more detail.

2.13.1 The Design Engineer

The design engineer can modify and review a document. It’s also possible that the design engi-
neer work on different documents at the same time. Of course it is not really at the same time,
because he will switch between his activities. The design engineer gets some tasks of the
project manager and after that he decides when and what he is going to do. E.g. A designer must
design two documents and he has to review another document at the same time.

2.13.2 The Mailtool

The mailtool will be used by the human participants of the software process to communicate
with each other. The mailtool comes up as a closed icon and the icon will be opened by clicking
on the mailtool icon. The incoming mail is stored in the buffer of the mailtool. A mailtool
consists of a main window with three push-buttons. These buttons are: a compose, a view and
a reply push-button. A more detailed description of the mailtool can be found in paragraph 3.5.
of the SOCCA examples.

2.13.3 Sharing Documents and Communication

There can be two or more designers working on the same document. They all have a different
version of the same document. At certain points of time the different versions of the same docu-
ment have to be merged, such that there won’t be any inconsistencies in the different versions
of the same document. The different documents in the various WEs have to be exchanged e.g.
as soon as a document in the design WE has been finished, it has to be sent to the review WE.
This is allowed by using the connection. The different members have to communicate with each
other in order to make some parts of a problem clear. They can communicate with each other
by using a mailtool. The mailtool has already been described, but it will be used in the different
work environments in order to allow the communication between the different persons who
participate in the software process.

2.13.4 Assigning Tools to Roles

In the project team different people work together with not the same status. A project manager
has status 1, a designer has status 2, a reviewer has status 3 and an implementer has status 4. It
is possible for them to use general tools at the same time e.g. FrameMaker. But there will be a
problem, because for the project team only four licences of FrameMaker are available. At a
certain point of time it could be possible, that all licences are occupied by some members of the
project team. If someone else of the team wants to use FrameMaker, the person deals with a
problem, because he can’t get a licence.

If the person with no licence has a higher status than someone using FrameMaker, the user of
FrameMaker with the lowest status has to give up his licence. After that, the person with no
licence will get a licence. This can be arranged by sending a message to the user with the lowest
status, the message will tell him to exit FrameMaker within 2 minutes. If he does not exit in
those 2 minutes, the system will do this automatically. Then a message is sent to the person with
the higher status, it will inform him that a licence is available and he can use FrameMaker now.

It’s also possible, that the person with no licence for FrameMaker, has a lower status than the
people with a licence. Then he has to wait or do something else until one of the users of Frame-
Maker has given up his licence.

E3 proposal: Examples Modelled in TEMPO .

June 15, 1995 3:50 pm 18

SEED proposal II.7

June 15, 1995 3:50 pm 18

 Examples Modelled in TEMPO

TEMPO and SOCCA 18/98

E.g. There are 4 licences of FrameMaker available for the project team. The following persons
have a licence; project manager, designer, reviewer and an implementer. At a certain moment
a designer with no licence wants to use FrameMaker. A message is sent to the implementor to
say he has to exit FrameMaker within 2 minutes. After the implementer has exit (voluntary or
by the system), a message is sent to the designer (with no licence). This message says that he
has a licence and that he is able to use FrameMaker now.

2.14 Examples Model led in TEMPO

2.14.1 Example 1: The Design Engineer
###
Example 1, paragraph 2.13.1.

In the process designing the users who have a design role, can perform their activities under
the role Design. In the scenario, a designer can design a document, but he can also review dif-
ferent other documents. So the object designer, must also be in the reviewing process.
Depending on what he wants to do, he can switch between these roles. He can design a docu-
ment and he can review a different document.
###

user ISA object;

 ATTRIBUTE
 name = String :=’’; # name of the user is empty #
 Position = Pmanager, Engineer, None := None # the position of a user #
 Status = 0,1,2,3,4:= 0; # The status of the user, No=0, PM=1, Des=2, #

Rev=3, Impl=4

 METHOD
 Stop; # the user wants to do something else #

END_OF user;

==
Designing ISA PROCESS;

 ROLE Design; # designing a document #

 derived = user; # object under this role is of type user #

 METHOD
 Work_in_doc; # the engineer modifies the document #
 Change_r; # change role of engineer, get role review #

 RULES
 PRE WHEN Begin_design DO Work_in_doc; # start design #
 PRE WHEN Stop_design DO Stop; # stop design #
 PRE WHEN Cont_design DO Work_in_doc; # continue designing #

E3 proposal: Examples Modelled in TEMPO .

June 15, 1995 3:50 pm 19

SEED proposal II.7

June 15, 1995 3:50 pm 19

 Examples Modelled in TEMPO

TEMPO and SOCCA 19/98

 PRE WHEN Change_role_r DO Change_r; # change role to review #

END_OF Designing;
==

==
Reviewing ISA PROCESS;

 ROLE Review; # reviewing a document #

 derived = user; # object under this role is of type user #

 METHOD
 Work_in_doc; # the engineer reviews the document #
 Change_d; # change role of engineer, get design role #
 Change_i; # change role of engineer, get implement role #

 RULES
 PRE WHEN Begin_review DO Work_in_doc; # start review #
 PRE WHEN Stop_review DO Stop; # stop review #
 PRE WHEN Cont_review DO Work_in_doc; # continue reviewing #
 PRE WHEN Change_role_d DO Change_d; # change role to design #
 PRE WHEN Change_role_i DO Change_i; # change role to implement #

END_OF Reviewing;
==

2.14.2 Example 2: The MailTool
###
Example 2, paragraph 2.13.2.

In this example I try to model how the different users are communicating with each other by
using a mailtool. In this specification of the mailtool it is assumed that there are high-level
events like push-button and that the methods do exist.
The communication is horizontal and vertical, and of coarse in two directions:
- Horizontal communication means, that the users in the sub WEs can communicate with each
other.
- Vertical communication means, that the users in the parent WE and the users in the child
WEs can communicate with each other.
In Fig. 2.11. is shown how to interpret the mail tool, with its corresponding popup windows.
###

E3 proposal: Examples Modelled in TEMPO .

June 15, 1995 3:50 pm 20

SEED proposal II.7

June 15, 1995 3:50 pm 20

 Examples Modelled in TEMPO

TEMPO and SOCCA 20/98

*** Mail Tool ***

DEFEVENT Start_MT = [!cmd = ‘double click on mailtool icon’];
DEFEVENT Stop_MT = [!cmd = ‘one click on main window’];
DEFEVENT Receive = [is system event];
DEFEVENT Compose = [!cmd = ‘push button Compose’];
DEFEVENT Deliver = [!cmd = ‘push button Deliver’];
DEFEVENT View = [!cmd = ‘push button View’];
DEFEVENT Reply = [!cmd = ‘push reply button’];

mailtool ISA object;

ATTRIBUTE
 name = String := ‘’; # name of mailtool #
 uname = String := ‘’; # user name#
 version = Real := 0; # version number #
 date = Date := 00/00/00; # date of release #

METHOD
 PopupMailToolWndw; # mail tool window is popped up #
 CloseMailToolWndw; # mail tool window is closed #

 Store; # store the mail in the buffer #
 Send; # send mail#;
 Sound; # make a sound to inform user for new mail #
 PopupComposeWndw; # Compose window is popped up #
 CloseComposeWndw; # Compose window is closed #

Deliver

To: Belkhatir@imag.fr

Subject: Re: SOCCA

Mail Tool Version 1.0 User Name

Compose View

Deliver

To: Luuk@wi.leidenuniv.nl

Subject:SOCCA

Reply

...

...

...

...

...

...

...

...

Compose Window Compose Window

Fig. 2.11. MailTool

1 rwillems@wi.leidenuniv.nl Fri 7 15:00 Socca_and_Tempo
2 Belkhatir@imag.fr Tue 4 10:30 SOCCA

E3 proposal: Examples Modelled in TEMPO .

June 15, 1995 3:50 pm 21

SEED proposal II.7

June 15, 1995 3:50 pm 21

 Examples Modelled in TEMPO

TEMPO and SOCCA 21/98

 GiveInfo; # information is provided to the user #
 DisplayMessage; # message is displayed in a window #

END_OF mailtool;

==
Designing ISA PROCESS;

ROLE Design; # designing a document #

derived = user; # object under this role is of type user #

 METHOD
 ...

 RULES
 ...

ROLE DMailtool; # mailtool for a designer #

 derived = mailtool; # object under this role is of type mailtool #

 RULES
 PRE WHEN Start_MT DO PopupMailToolWndw; # activate mailtool #
 PRE WHEN Stop_MT DO CloseMailToolWndw; # de-activate mailtool #

 PRE WHEN Receive DO Store; # receive new mail #
 POST WHEN Receive DO Sound;

 PRE WHEN Compose DO PopupComposeWndw; # User wants to send a message.#
 # User writes address, subject and the message in the #
 # compose window. #

 PRE WHEN Deliver DO Send; # mail is sent to destination #
 POST WHEN Deliver DO CloseComposeWndw;
 ERROR WHEN Deliver DO GiveInfo; # mail cannot be send #

 PRE WHEN View DO DisplayMessage; # user wants to read the mail #
 ERROR WHEN View DO GiveInfo; # no mail in mailbox #

 PRE WHEN Reply DO PopupComposeWndw; # now user doesn’t have to write#
 # the address of the destination#

END_OF Designing;

==

E3 proposal: .

June 15, 1995 3:50 pm 22

SEED proposal II.7

June 15, 1995 3:50 pm 22TEMPO and SOCCA 22/98

E3 proposal: Introduction into SOCCA .

June 15, 1995 3:50 pm 23

SEED proposal II.7

June 15, 1995 3:50 pm 23

 Introduction into SOCCA

TEMPO and SOCCA 23/98

C h a p t e r 3 T h e S O C C A F o r m a l i s m

3.1 Introduct ion into SOCCA

In the following paragraphs theSOCCA (Specificationsof Coordinated andCooperative
Activities) approach will be described. This is not a complete introduction, because the
complete one can be found in [10]. The SOCCA formalism has been developed at the Univer-
sity of Leiden (The Netherlands). This specification formalism for software process modelling
is not only being developed for describing the technical parts of the software process, but also
for the human parts, or rather the human team members of the software process. The system
should reflect all kinds of interactions between the various parts, including the non-human as
well as the human parts.

3.2 The 3 Di f ferent Perspect ives of SOCCA

SOCCA uses three different perspectives to describe a software process. These perspectives
are: thedata perspective, thebehaviour perspective and theprocess perspective. They will be
described in the following subparagraphs.

3.2.1 The Data Perspective

The data perspective covers thestatic structure of the process. This perspective is described
by an Extended Entity Relationship (EER) model. In this EER model two different diagrams,
a Class diagram and an Import/Export diagram, can be identified. The classes in the class
diagram have export operations, so a class diagram consists of attributes and export operations.
Export operations can then be called from other classes where they are imported. The classes
are connected by four different kind of relationships: the General relationship, the Uses rela-
tionship, the IS-A relationship and the Part-Of relationship. TheGeneral relationship describes
the relation between the different classes. TheUses relationship is used to indicate where the
various export operations are imported. The Import/Export diagram visualizes the Uses rela-
tionship between the several classes. TheIS-A relationship is utilized to describe the inherit-
ance between the different classes. ThePart-Of relationship is used to express which class is
part of another class.

3.2.2 The Behaviour Perspective

The behaviour perspective covers thedynamic part of the software process. The behaviour
perspective and the coordination of the behaviour, will be described by State Transition
Diagrams (STDs) and byPARADIGM on top of them. The STDs are used to describe the order
in which the operations can be called. This means to describe the behaviour of the classes in the
model. The behaviour of the class is composed of two different types of behaviour: the external
behaviour and the internal behaviour.

The External Behaviour: The external behaviour of a class is described with an STD. All the
export operations of the class appear as a label of a transition.

The Internal Behaviour: The export operations perform some task and to achieve this task,
they have to behave in a certain way. To this aim the export operations of the external
behaviour all have an internal behaviour (during the constructing of this master’s thesis, it
turns out to be, that not all export operations have an internal behaviour, but this will be
discussed later on in paragraph 3.4.5.). In principle each export operation has an internal

E3 proposal: Introduction into PARADIGM .

June 15, 1995 3:50 pm 24

SEED proposal II.7

June 15, 1995 3:50 pm 24

 Introduction into PARADIGM

TEMPO and SOCCA 24/98

behaviour. Each internal behaviour of an export operation is itself described by another
STD.

It’s obvious, that the cooperation between the external behaviour of a class and the internal
behaviour of its exports operations must be coordinated somehow. In SOCCA this will be
done by PARADIGM. Moreover, the internal behaviour of an export operation is also able
to call export operations from other classes. Summarizing this means, that there is commu-
nication between the external behaviour of a class and the internal behaviour of its export
operations within the same class, and there’s communication between the internal behav-
iour of the export operations from one class and the external behaviours of other classes
whose export operations are being called. Using the PARADIGM formalism, the behaviour
perspective and particularly the coordination of behaviour can be modelled. In paragraph
3.3. the PARADIGM description will be presented.

3.2.3 The Process Perspective

The process perspective will be modelled by Object Flow Diagrams (OFDs). Because of the
fact, that the integration of OFDs in SOCCA has not been completed yet, the process perspec-
tive won’t be discussed any further.

In Fig. 3.1. the concepts for the three different perspectives are shown, used in the SOCCA
approach.

3.3 Introduct ion into PARADIGM

As PARADIGM is less commonly known compared to EER and STD concepts, it will be
discussed briefly.

The PARADIGM (PARallelism its Analysis, Design andImplementation by aGeneral
Method) formalism was originally developed for the specification of coordinated parallel proc-
esses, see [13, 18, 19]. The basic ideas of modelling in PARADIGM are the following:

1. The sequential behaviour of each process can be described by an STD.

2. Within each STD, subdiagrams (called subprocesses) can be identified. These subprocesses
are temporary behaviour restrictions of the complete behaviour. A subprocess reflects the
allowed behaviour of a process within its STD before or after communication has taken place.

3. Within each subprocess, so-called traps, are identified being a subset of the states of a
subprocess. These traps are represented by shaded polygons around the states which are part of
the trap. When an object has entered such a trap, it indicates that it’s ready to switch from one
subprocess to another one. The key property of a trap of a subprocess is, if the process is in a
trap, it isn’t able to leave this trap as long as the process’ behaviour is restricted to that
subprocess. It waits until the manager process gives permission to leave the trap.

EER STD + Paradigm OFDSOCCA Concepts

Data Persp. Behaviour Persp. Process Persp.

Fig. 3.1. The Three Perspectives of SOCCA

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 25

SEED proposal II.7

June 15, 1995 3:50 pm 25

 Example 1: The Design Engineer

TEMPO and SOCCA 25/98

4.A manager process, described by an STD, takes care of the coordination of the behaviour and
the transitions between the different subprocesses of all objects. The employee processes,
which will be controlled by the manager, are the STDs having the subprocesses. The
employee’s subprocess is determined by the state of the manager. This means, that in each state
of the manager process, one or more subprocesses will be prescribed. The state labels of a
manager process correspond to a behaviour restriction, or a so-called subprocess of each of its
employees. A transition of a manager corresponds to a so-called trap of the current behaviour
restriction. The manager process can only make a transition, when the relevant employees have
entered these traps. An employee when entering a trap, actually prescribes the manager process
a new behaviour in which the transition corresponding to this trap is allowed, which was not
the case before the trap was entered.

In the following two subparagraphs the first two examples of the scenario will be modelled in
the SOCCA formalism. The first example is the modelling of a design engineer. This modelling
is different from the normal way of modelling in SOCCA. Generally the modelling is of type-
1, but here the modelling of type-2 has been used to describe the activities of the design engi-
neer. In the second example, a mailtool has been modelled. During the modelling of this
example, interesting and new aspects of the external behaviour have been appeared. This has
led to some extensions of the SOCCA formalism.

3.4 Example 1: The Design Engineer

In this example the behaviour of a design engineer is described. This example acquires type-2
communication instead of type-1 communication modelling. The type -2 communication has
been discussed in [10] very briefly, so hopefully this example will make the type-2 communi-
cation better understandable.

Engineer

Project
Manager

Design
Engineer

Document

Design
Document

...

Design Engineer

Begin_design
Change_role_d
Cont_design
Stop_design

Begin_review
Change_role_r
Cont_review
Stop_review

name

< Change_neutral >

Fig. 3.4.1. Class diagram: classes, IS-A, attributes and operations

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 26

SEED proposal II.7

June 15, 1995 3:50 pm 26

 Example 1: The Design Engineer

TEMPO and SOCCA 26/98

By the direction of the project manager, the design engineer has to modify or review a design
document. He can decide when he wants to design or review the document(s). First the external
behaviours (Fig. 3.4.4. and Fig. 3.4.5.) and then the internal behaviours (Fig. 3.4.6. - Fig.
3.4.14.) of Design Engineer will be described. The association between the manager’s (Design
Engineer) states and subprocesses and between the manager’s transitions and traps are
presented in Fig. 3.4.6.1. through to Fig. 3.4.14.1.

3.4.1 The Data Perspective of Design Engineer

First the class diagrams are presented.

It’s not a complex and complete diagram, because only the design engineer is of interest in this
example. The black triangle means, that the IS-A relationship is not disjoint and the hollow
triangle indicates, that the IS-A relationship is disjoint. So an engineer can be a project manager
as well as a design engineer. In this example the project manager and the design engineer are
two different persons (see Fig. 3.4.1.).

Now the general relationships to connect the different classes from the first step are added. The
general relationships used in this example are modifies and reviews. The hollow dots imply,

that the design document may be modified or reviewed by a design engineer or not at all. The
black dots mean that each design engineer can modify or review between zero and n design
documents. Note that Fig. 3.4.1. and Fig. 3.4.2. should be read together.

The next step is to give more information which is normally not given in an EER model. A new
binary relationship type, calledUses, denotes where the various export operations are imported.

Design
Engineer

Design
Documentmodifies

reviews

Fig. 3.4.2. Class diagram: classes and general relationships

Project
Manager

Design
Engineer

Design
Document

Inside Example scope

Outside Example scope

Uses1

Uses2 Uses3

Fig. 3.4.3. Import/Export Diagram

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 27

SEED proposal II.7

June 15, 1995 3:50 pm 27

 Example 1: The Design Engineer

TEMPO and SOCCA 27/98

The uses relationships can be found in the import/export diagram of Fig. 3.4.3. Each uses rela-
tionship has an attribute (import_list) for holding a list of names of imported operations. Here
the imported operations of Uses3 are not given, because Uses3 is out of the scope of this
example. The import_lists for uses1 and uses2 are:

3.4.2 The Behaviour Perspective of Design Engineer

In the previous subparagraph the static aspects (data aspect) have been described. Now the
behaviour perspective will be demonstrated. The behaviour comprises two different types of
behaviour: the external behaviour and the internal behaviour.

3.4.2.1 The External Behaviour of Design Engineer

In Fig. 3.4.4. the external behaviour of Design Engineer is depicted. The export operations
Begin_design and Review_design can be called by the project manager, in this way the design
engineer gets his tasks he has to perform. Up to now there is nothing unusual in the SOCCA
way of modelling.

Uses1

Begin_design
Begin_review

Uses2

Change_role_d
Cont_design
Stop_design

Change_role_r
Cont_review
Stop_review

< Change_neutral >

Real
Design

Role Role

Neutral
State

Change_role_rChange_role_d

Cont_design Cont_reviewStop_reviewStop_design

Change_role_r

Change_role_d

Fig. 3.4.4. Design Engineer: STD of the external behaviour

Designer Reviewer

Change_neutral

Change_neutral

Starting
Design

Starting
Review

Begin_design Begin_review

Real
Review

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 28

SEED proposal II.7

June 15, 1995 3:50 pm 28

 Example 1: The Design Engineer

TEMPO and SOCCA 28/98

But it is interesting to see how the design engineer can decide by himself when and what he
wants to do. This part of the external behaviour looks like an operating system way of model-
ling of the design engineer, because in the external behaviour you can see the operations
Cont_design, Stop_design, Cont_review andStop_review. This is analogous with a real OS,
because it also can start, stop, continue and select other programs (tasks/activities). The differ-
ences between a real operating system and the design engineer are:

1. The design engineer is human and an operating system (OS) of course not.

2. An OS prescribes a process when it is allowed to perform it’s tasks and when the process has
to stop. Here the design engineer makes his own decisions.

The OS way of modelling of the design engineer is described by the states:Role Designer, Role
Reviewer, Real Design andReal Review and by the operations:Change_role_d, Cont_design,
Stop_design, Change_role_r, Cont_review, Stop_review andChange_neutral. All the export
operations of Design Engineer will be explained in the internal behaviour STDs (Fig. 3.4.6. -
Fig. 3.4.14.).

The state calledNeutral State, is the state which the design engineer returns to after the design
or review activity has been started by him. The project manager calls the operations
Begin_design andBegin_review, so Design Engineer makes the transition from stateNeutral
State to stateStarting Design or stateStarting Review.

The stateStarting Design can be considered as the commencement of the design activity, and
the stateStarting Review can be regarded as the beginning of the review activity. At the time
that the Design Engineer is in one of these states it means, that the design activity or review
activity is ready to start, but stopped! The Design Engineer has only received the task(s) design
or review, but he doesn’t start the real designing or reviewing. The transitions from these states
back to the stateNeutral State have no export operations. So these transitions are made without
any calling initiative from abroad.

Now the state and transitions made by the design engineer are described. The stateRole
Designer means that the design engineer can act as a designer. This state will be reached by
calling theChange_role_d operation. The stateRole Reviewermeans that the design engineer
can behave as a reviewer. This state will be attained by calling theChange_role_roperation.
Note that the design engineer is still not really active in the sense of modifying or reviewing a
document. The design engineer can switch between his roles by using the operations
Change_role_dand Change_role_r. If the design engineer calls theCont_design or
Cont_review operations, he will transit to the statesReal Design or Real Review. In these states
he can really start with the design or the review of a document. So in these states he is actually
active. After a while the designer wants to stop designing or reviewing, therefore he uses the
operationsStop_design or Stop_review to stop his activity and go back to his stateRole
Designer or stateRole Reviewer. When the design engineer wants to go back to stateNeutral
State, he uses the operationChange_neutral. As soon as the design engineer is back in its
neutral state, he can get new tasks of the project manager. It is possible, that the design engineer
wants to start his activities again. Then the same operations have to be called by him as
described above. This finishes the description of the external behaviour of Design Engineer.

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 29

SEED proposal II.7

June 15, 1995 3:50 pm 29

 Example 1: The Design Engineer

TEMPO and SOCCA 29/98

3.4.2.2 An Alternative for the External Behaviour of Design Engineer

During the modelling of this example, an alternative for the external behaviour of Design Engi-
neer arose (see Fig. 3.4.5.). In this alternative external behaviour, Design Engineer is reduced
with the operationChange_neutral and the stateNeutral state. The operationChange_neutral
is represented in the class diagram between < >, because this means that it mustnot be used in
this alternative external behaviour. In Fig. 3.4.5., the statesRole Designer andRole Reviewer
can be regarded as the neutral states. Further, nothing has been changed in comparison with the
external behaviour of Design Engineer in Fig. 3.4.4. The statesStarting Design andStarting
Review are added and connected with stateRole Reviewer. This implies, that the same export
operations and the same internal behaviours have been utilized.

3.4.2.3 The Internal Behaviour of Design Engineer

After the specification of the external behaviour, the internal behaviours of all operations have
to be specified. These operations have to correspond to the various export operations called
from elsewhere and by the design engineer himself. Before the specification of the internal
behaviours, a list of possibly imported operations for each uses relationship will be presented.

This enumeration of operation names shows all possibly imported operations. Note that the
internal behaviours are described with respect to Design Engineer. These internal behaviours
have also been used in the two alternative managers (Design Engineer2 and Design Engineer3).
In design Engineer2 and Design Engineer3 not all internal behaviours and states have been used

Real
Design

Real
Review

Cont_design Cont_reviewStop_reviewStop_design

Change_role_r
Role
Designer

Role
Reviewer

Starting
Design

Starting
Review

Change_role_d

Begin_design Begin_review

Starting
Design

Starting
Review

Begin_design Begin_review

Fig. 3.4.5. Design Engineer2: alternative STD of the external behaviour

Uses1

Begin_design
Begin_review

Uses2

Change_role_d
Cont_design
Stop_design
Change_role_r
Cont_review
Stop_review

< Change_neutral >

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 30

SEED proposal II.7

June 15, 1995 3:50 pm 30

 Example 1: The Design Engineer

TEMPO and SOCCA 30/98

as in Design Engineer. In Design Engineer3 the way of modelling differs from the original way
of modelling in SOCCA. These differences will all be explained and described in the corre-
sponding subparagraphs. Now the specification of the internal behaviours will be presented.
The nine internal behaviour specifications can be found in Fig. 3.4.6. through to Fig. 3.4.14.
Note, that below each internal behaviour specification the corresponding subprocesses and
traps are given. The subprocesses and traps can be found in Fig. 3.4.6.1. through to Fig.
3.4.14.1.

In Fig. 3.4.6. the internal behaviour of operationBegin_design (int-Begin_design) is shown.

The three subprocesses (S-1, S-2 and S-3) and the four traps (t-1, t-1a, t-2 and t-3) belonging to
int-Begin_design can be found in Fig. 3.4.6.1. In the beginning the design engineer has nothing
to do and waits for the tasks the project manager is going to give him. If the project manager
calls e.g.Begin_design, the manager Design Engineer (see Fig. 3.4.15.) is requested to transit
from State Neutral to Starting Design. Nevertheless, Design Engineer is still outside the state
Starting Design. This indicates, that int-Begin_design is in its subprocess S-1, and hopefully
within trap t-1. The manager Design Engineer can (and will) make the transition fromState
Neutral to Starting Design, only after int-Begin_design has reached trap t-1. When the state
Starting Design has been entered, Design Engineer assigns subprocess S-2 to int-Begin_design.
Considering that int-Begin_design was in trap t-1, it directly starts inside subprocess S-2 from
stateNo Begin_design, and then nearly right away entering trap t-2. When trap t-2 has been
entered, Design Engineer leaves the stateStarting Design and transits to stateNeutral State.
Because of the transition Design Engineer prescribes subprocess S-1 to int-Begin_design. For
int-Begin_design, this means that it is waiting in its stateDesign activated of subprocess S-1.
Only when the design engineer really wants to perform the design activity, he must use the
operationChange_role_d to reach the stateRole Designer of the manager Design Engineer.
When the design engineer calls the operationCont_design, Design Engineer is invited to transit
from stateRole Designer to stateReal Design. Because int-Begin_design is in subprocess S-1
and in trap t-1a, Design Engineer makes the transition to stateReal Design. Upon enteringReal
Design, Design Engineer now prescribes subprocess S-3 (instead of S-1) to int-Begin_design.
As int-Begin_design was in trap t-1a, it directly starts within subprocess S-3 from stateDesign
activated thereby nearly immediately entering trap t-3, now the real design is occurring. The
design can be considered as a sequence of activity steps. In Fig. 3.4.6.1. this is represented by
step1 Work_in_doc ... step n Work_in_doc. If the designer wants to stop his design activity,

Design
activated

Design
continue

Design
continue

. . .

act_design

des_cont des_stop

Step 1

Work_in_doc

Fig. 3.4.6. int-Begin_design: STD of its internal behaviour

No
Begin_
design

Design
stopped

Design
continue

des_cont des_stop

Design
stopped

Design
continue

des_cont des_stop

Step n

Work_in_doc

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 31

SEED proposal II.7

June 15, 1995 3:50 pm 31

 Example 1: The Design Engineer

TEMPO and SOCCA 31/98

Design Engineer will prescribe subprocess S-1 for int-Begin_design. As int-Begin_design was
in trap t-3, it starts inside S-1 from stateDesign Continue, thereby nearly directly entering trap
t-1a of subprocess S-1. When the design engineer wants to go on with the design (operation
Cont_design), Design Engineer will prescribe subprocess S-3 for him and so he is allowed to
perform his design activity again.

In Fig. 3.4.7. the internal behaviour of the operationChange_role_d (int-Change_role_d) is
depicted.

t-1

t-1a

t-2

t-3

S-1

S-2

S-3

Fig. 3.4.6.1. int-Begin_design’s subprocesses and traps with respect to Design Engineer

Design
activated

Design
continue

Design
continue

. . .

des_stop

No
Begin_
design

Design
stopped

Design
continue

des_stop

Design
stopped

Design
continue

des_stop

Design
activated

Design
continue

Design
continue

. . .

des_cont

Step 1

Work_in_doc

Design
stopped

Design
continue

des_cont

Design
stopped

Design
continue

des_cont

Step n

Work_in_doc

Design
activatedact_design

No
Begin_
design

No
Change_

Change_
role_d

role_d

act_

Fig. 3.4.7. int-Change_role_d: STD of its internal behaviour

Change_r Role
Changed

Change_role_d started

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 32

SEED proposal II.7

June 15, 1995 3:50 pm 32

 Example 1: The Design Engineer

TEMPO and SOCCA 32/98

This operation is called by the design engineer, as soon as he wants to change to the designer
role. The two subprocesses (S-4 and S-5) and the two traps (t-4 and t-5) can be found in Fig.
3.4.7.1. If the design engineer callsChange_role_d, the manager Design Engineer, is asked to
transit from stateNeutral State to stateRole Designer. Notwithstanding, Design Engineer is still
outside the stateRole Designer. This means, that int-Change_role_d is in its subprocess S-4 and
expectantly in trap t-4.

The manager Design Engineer can only make the transition, if int-Change_role_d is in trap t-
4, and if the Design Engineer is prescribing other subprocesses and traps, but this will be
explained later on. As soon as Design Engineer is in stateRole Designer, subprocess S-5 is
prescribed and the role has been changed to the designer role. When the Design Engineer
returns back to the stateNeutral State, int-Change_role_d must be in subprocess S-5 and in trap
t-5.

In Fig. 3.4.8. the internal behaviour of the operationCont_design (int-Cont_design) is
displayed, and in Fig. 3.4.8.1. the subprocesses belonging to int-Cont_design are represented.
The operationCont_design is also an operation which can be called by the design engineer
himself. This operation allows a design engineer to really start his design activity. of course
before calling the operationCont_design, Design Engineer is in its stateRole Designer, and
prescribes subprocess S-6 to int-Cont_design.

The Design Engineer can only make a transition to its stateReal Design, if int-Cont_design is
in subprocess S-6 and in trap t-6.

Fig. 3.4.7.1. int-Change_role_d’s subprocesses and traps
with respect to Design Engineer

S-4

S-5

t-4

t-5

No
Change_
role_d

Role
Changed

No
Change_

Change_
role_d

role_d

act_ Change_r Role
ChangedChange_role_d started

No
Cont_

Cont-act_
Cont_design

Fig. 3.4.8. int-Cont_design: STD of its internal behaviour

Work_in_
doc

Stopped
design

design
started

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 33

SEED proposal II.7

June 15, 1995 3:50 pm 33

 Example 1: The Design Engineer

TEMPO and SOCCA 33/98

Now the last operation in the context of the design activity is explained. In Fig. 3.4.9. the
internal behaviour of the operationStop_design (int-Stop_design) and in Fig. 3.4.9.1. its
subprocesses and traps are described. This operation will be called by the design engineer as
soon as he wants to stop his design activity.

The Design Engineer can only make the transition back to its stateRole Designer, if int-
Stop_design is in subprocess S-8 and in trap t-8.

Fig. 3.4.8.1. int-Cont_design’s subprocesses and traps
with respect to Design Engineer

S-6

S-7

t-6

t-7

No
Cont_ Stopped
design

No
Cont_

Cont-act_
Cont_design

Work_in_
doc

Stopped
design

design
started

No
Stop_

Stop-
design Stopped

design
act_
Stop_design started

Stop

Fig. 3.4.9. int-Stop_design: STD of its internal behaviour

Fig. 3.4.9.1. int-Stop_design’s subprocesses and traps
with respect to Design Engineer

S-8

S-9

t-8

t-9

No
Stop_ Stopped
design

No
Stop_

Stop-
design Stopped

design
act_
Stop_design started

Stop

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 34

SEED proposal II.7

June 15, 1995 3:50 pm 34

 Example 1: The Design Engineer

TEMPO and SOCCA 34/98

This finishes the explanation of the internal operations which corresponds to the design activity
context of the design engineer. Now will be continued with the clarification of the review
activity which can also be performed by the design engineer.

In Fig. 3.4.10. the internal behaviour of operationBegin_review(int-Begin_review) is repre-

sented. The three subprocesses (S-10, S-11 and S-12) and the four traps (t-10, t-10a, t-11 and t-
12) belonging to int-Begin_review can be found in Fig. 3.4.10.1. The design engineer waits for
the tasks the project manager is going to give him. If the project manager calls e.g.
Begin_review, the manager Design Engineer (see Fig. 3.4.15.) is requested to transit fromState
Neutral toStarting Review. However, Design Engineer is still outside the stateStarting Review.
This indicates, that int-Begin_review is in its subprocess S-10, and hopefully within trap t-10.
The manager Design Engineer can (and will) make the transition fromState Neutral toStarting
Review, only after int-Begin_review has reached trap t-10. When the stateStarting Review has
been entered, Design Engineer appoints subprocess S-11 to int-Begin_review. Considering that
int-Begin_design was in trap t-10, it directly starts inside subprocess S-11 from stateNo
Begin_review, and then nearly right away entering trap t-11. When trap t-11 has been entered,
Design Engineer leaves the stateStarting Reviewand moves to stateNeutral State. Because of
the transition Design Engineer prescribes subprocess S-10 to int-Begin_review. For int-
Begin_review, this means that it is waiting in its stateReview activated and trapped in trap t-
10a of subprocess S-10. Only when the design engineer really wants to perform the review
activity, he must utilize the operationChange_role_r to reach the stateRole Reviewerof the
manager Design Engineer.

Review
activated

Review
continue

Review
continue

. . .

act_review

rev_cont rev_stop

Step 1

Work_in_doc

Fig. 3.4.10. int-Begin_review: STD of its internal behaviour

No
Begin_
review

Review
stopped

Review
continue

rev_cont rev_stop

Review
stopped

Review
continue

rev_cont rev_stop

Step n

Work_in_doc

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 35

SEED proposal II.7

June 15, 1995 3:50 pm 35

 Example 1: The Design Engineer

TEMPO and SOCCA 35/98

When the design engineer calls the operationCont_review, Design Engineer is invited to transit
from stateRole Reviewerto stateReal Review. Because int-Begin_review is in subprocess S-
10 and in trap t-10a, Design Engineer makes the transition to stateReal Review. Upon entering.
Real Review, Design Engineer now prescribes subprocess S-12 (instead of S-10) to int-
Begin_review. As int-Begin_review was in trap t-10a, it directly starts within subprocess S-12
from stateReview activated thereby almost immediately entering trap t-12. Now the real review
is happening. The review can be regarded as a sequence of activity steps. In Fig. 3.4.10.1. this
is represented bystep 1 Work_in_doc ... step n Work_in_doc. If the designer wants to stop his
review activity, Design Engineer will prescribe subprocess S-10 for int-Begin_review. As int-
Begin_review was in trap t-12, it starts inside S-10 from stateReview Continue, thereby nearly
immediately entering trap t-10a of subprocess S-10. When the design engineer wants to go on
with the review (operationCont_review), Design Engineer will prescribe subprocess S-12 for
him and so he is allowed to perform his review activity again. In Fig. 3.4.11. the internal behav-
iour of the operationChange_role_r(int-Change_role_r) is represented.

t-10

t-10a

t-11

t-12

S-10

S-11

S-12

Fig. 3.4.10.1. int-Begin_review’s subprocesses and traps with respect to Design Engineer

Review
activated

Review
continue

Review
continue

. . .

rev_stop

No
Begin_
review

Review
stopped

Review
continue

rev_stop

Review
stopped

Review
continue

rev_stop

Review
activated

Review
continue

Review
continue

. . .

rev_cont

Step 1

Work_in_doc

Review
stopped

Review
continue

rev_cont

Review
stopped

Review
continue

rev_cont

Step n

Work_in_doc

Review
activatedact_design

No
Begin_
review

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 36

SEED proposal II.7

June 15, 1995 3:50 pm 36

 Example 1: The Design Engineer

TEMPO and SOCCA 36/98

This operation is called by the design engineer, as soon as he wants to change to the reviewer
role.

The two subprocesses (S-13 and S-14) and the two traps (t-13 and t-14) are depicted in Fig.
3.4.11.1. If the design engineer callsChange_role_r, the manager Design Engineer, is asked to
transit from stateNeutral State to stateRole Reviewer. Although, Design Engineer is still
outside the stateRole Reviewer, it means, that int-Change_role_r is in its subprocess S-13 and
hopefully in trap t-13.

The manager Design Engineer can only make the transition, if int-Change_role_r is in trap t-
13, and if the Design Engineer prescribes other subprocesses and traps, but this will be
explained later on. Then subprocess S-14 is prescribed and the role has been changed to the
reviewer role. When the Design Engineer returns back to the stateNeutral State, int-
Change_role_r must be in subprocess S-14 and in trap t-14.

In Fig. 3.4.12. the internal behaviour of the operationCont_review(int-Cont_review) is
showed, and in Fig. 3.4.12.1. the subprocesses belonging to int-Cont_review are demonstrated.

No
Change_

Change_
role_r

role_r

act_

Fig. 3.4.11. int-Change_role_r: STD of its internal behaviour

Change_r Role
Changed

Change_role_r started

Fig. 3.4.11.1. int-Change_role_r’s subprocesses and traps
with respect to Design Engineer

S-13

S-14

t-13

t-14

No
Change_
role_r

Role
Changed

No
Change_

Change_
role_r

role_r

act_ Change_r Role
ChangedChange_role_r started

No
Cont_

Cont-act_
Cont_review

Fig. 3.4.12. int-Cont_review: STD of its internal behaviour

Work_in_
doc

Stopped
review

review
started

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 37

SEED proposal II.7

June 15, 1995 3:50 pm 37

 Example 1: The Design Engineer

TEMPO and SOCCA 37/98

The operationCont_reviewis also an operation which can be called by the design engineer
himself. This operation allows a design engineer to really start his review activity. Of course
before calling the operationCont_review, Design Engineer is in its stateRole Reviewer, and
prescribes subprocess S-15 to int-Cont_review. The Design Engineer can only make a transi-
tion to its stateReal Review, if int-Cont_review is in subprocess S-15 and in trap t-15.

The last operation in the context of the review activity will be explained. In Fig. 3.4.13. the
internal behaviour of the operationStop_review(int-Stop_review) and in Fig. 3.4.13.1. its
subprocesses and traps are described. This operation will be called by the design engineer as
soon as he wants to stop his review activity.

The Design Engineer can only make a transition back to its stateRole Reviewer, if int-
Stop_review is in subprocess S-17 and in trap t-17.

Fig. 3.4.12.1. int-Cont_review’s subprocesses and traps
with respect to Design Engineer

S-15

S-16

t-15

t-16

No
Cont_ Stopped
review

No
Cont_

Cont-act_
Cont_review

Work_in_
doc

Stopped
review

review
started

No
Stop_

Stop-
review Stopped

review
act_
Stop_review started

Stop

Fig. 3.4.13. int-Stop_review: STD of its internal behaviour

Fig. 3.4.13.1. int-Stop_review’s subprocesses and traps
with respect to Design Engineer

S-17

S-18

t-17

t-18

No
Stop_ Stopped
review

No
Stop_

Stop-
review Stopped

review
act_
Stop_review started

Stop

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 38

SEED proposal II.7

June 15, 1995 3:50 pm 38

 Example 1: The Design Engineer

TEMPO and SOCCA 38/98

This finalizes the explanation of the internal operations which corresponds to the review
activity context of the design engineer.

In Fig. 3.4.14. the internal behaviour of the extra added operationChange_neutral(int-
Change_neutral) is presented. It’s an extra operation because in the TEMPO description this
operation hasn’t been used. In Fig. 3.4.14.1. the subprocesses belonging to int-Change_neutral
are demonstrated. This operation is necessary to let Design Engineer make the transition back
to stateNeutral State. When Design Engineer is in stateRole Designer or in stateRole

Reviewer, the design engineer can make the decision to go on with the design or review. This
means he has to use the operationCont_design or Cont_review. If he wants to go back to his
neutral state in order to wait for some new tasks of the project manager, he must use the oper-
ationChange_neutral.

The manager Design Engineer can only make a transition to its stateNeutral State, if int-
Change_neutral is in subprocess S-19 and in trap t-19.

3.4.3 The Manager Process: Design Engineer

The external behaviour of Design Engineer is used as the manager process. The employees are
the nine internal behaviours of Design Engineer (int-Begin_design, int-Change_role_d, int-
Cont_design, int-Stop_design, int-Begin_review, int-Change_role_r, int-Cont_review, int-
Stop_review and int-Change_neutral). The internal behaviours of Project Manager are
employees too, but they are not used because the Project Manager is not inside the scope of this
example.

The manager’s starting state is stateNeutral State. Suppose that the project manager calls the
operationBegin_design of design engineer. So after the calling, Design Engineer is requested

No
Change_

Change_
neutral

Stateact_
Change_neutral

Change_n

Fig. 3.4.14. int-Change_neutral: STD of its internal behaviour

neutral
Changed

started

Fig. 3.4.14.1. int-Change_neutral’s subprocesses and traps
with respect to Design Engineer

S-19

S-20

t-19

t-20

No
Change_

State

neutral
Changed

No
Change_

Change_
neutral

Stateact_
Change_neutral

Change_n

neutral
Changed

started

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 39

SEED proposal II.7

June 15, 1995 3:50 pm 39

 Example 1: The Design Engineer

TEMPO and SOCCA 39/98

to make the transition to the state Starting Design. This is only possible when int-Begin_design
is in subprocess S-1 and in trap t-1. As soon as int-Begin_design is in subprocess S-2 and in
trap t-2, the manager Design Engineer is leavingStarting Design and returns to itsNeutral
State. It is possible for the design engineer to start another design or review, but only if he is
called to do so.

Up to now, the design engineer was able to obtain his tasks from the project manager. When he
wants to perform his activities, he must change to the role under which he can accomplish these
activities. So in case of a design activity, he has to change to the stateRole Designer and in case
of a review activity he has to change to the stateRole Reviewer. Now the design engineer can
decide if he wants to do the real design. In this case he must first change to the stateRole
Designer. This can only be done if int-Begin_design is in subprocess S-1 and in trap t-1a, int-
Change_role_d must be in subprocess S-4 and in trap t-4, and int-Change_neutral is in
subprocess S-20 and trapped in trap t-20. When the design engineer wants to review a docu-
ment, Design Engineer must be able to change to stateRole Reviewer. This transition only can
be made if int-Begin_review is in subprocess S-10 and in trap t-10a, int-Change_role_r is in
subprocess S-13 and in trap t-13, and int-Change_neutral is in its subprocess S-20 and in trap
t-20.

To return back to stateNeutral state, Design Engineer must prescribe subprocess S-5, trap t-5
for int-Change_role_d and subprocess S-19, trap t-19 for int-Change_neutral if the manager is
in stateRole designer. When the Design Engineer is in stateRole Reviewer, the manager must
prescribe subprocess S-14, trap t-14 for int-Change_role_r and subprocess S-19, trap t-19 for
int-Change_neutral.

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 40

SEED proposal II.7

June 15, 1995 3:50 pm 40

 Example 1: The Design Engineer

TEMPO and SOCCA 40/98

S-3
S-5
S-7
S-8
S-10
S-13

Fig. 3.4.15. Design Engineer, manager of nine employees

S-15
S-18

S-1
S-5
S-6
S-9
S-10
S-13
S-15
S-18

S-1
S-4
S-6
S-9
S-10
S-14
S-15
S-18

S-1
S-4
S-6
S-9
S-12
S-14
S-16
S-17

S-1
S-4
S-6
S-9
S-10
S-13
S-15
S-18

S-2
S-4
S-6
S-9
S-10
S-13
S-15
S-18

S-1
S-4
S-6
S-9
S-11
S-13
S-15
S-18

t-3
t-7
t-8

t-1a
t-6
t-9

t-12
t-16
t-17

t-10a
t-15
t-18

t-5, t-13

t-4, t-14

t-5 t-14

t-10at-1a

t-1 t-10

t-2 t-11

t-4 t-13

S-19 S-19

S-19S-19

S-20

S-20 S-20

t-20 t-20

t-19t-19

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 41

SEED proposal II.7

June 15, 1995 3:50 pm 41

 Example 1: The Design Engineer

TEMPO and SOCCA 41/98

Of course the design engineer can change between his roles (designer role and reviewer role).
This is possible by using the operationsChange_role_d andChange_role_r. If the manager is
in stateRole Designer, and the design engineer wants to do the review activity, then Design
Engineer must prescribe subprocess S-5, trap t-5 for int-Change_role_d and subprocess S-13,
trap t-13 for int-Change_role_r to transit to stateRole Reviewer. If the manager is in stateRole
Reviewer, and the design engineer wishes to do the design activity, then Design Engineer must
prescribe subprocess S-4, trap t-4 for int-Change_role_d and subprocess S-14, trap t-14 for int-
Change_role_r to make the transition to stateRole Designer.

To perform his real activities, the Design Engineer must perform the transitions to the states
Real Design and Real Review.To transit to stateReal Design, the Design Engineer must
prescribe the next subprocesses and traps: S-1, t-1a for int-Begin_design, S-6, t-6 for int-
Cont_design and S-9, t-9 for int-Stop_design. When the design engineer wants to stop his
design activity, he has to use the operationStop_design. To make the transition to the stateRole
Designer, the manager prescribes the following subprocesses and traps: S-3, t-3 for int-
Begin_design, S-7, t-7 for int-Cont_design and S-8, t-8 for int-Stop_design.

If the manager is in stateRole Reviewer and wants to change to stateReal Review, the Design
Engineer must assign the next subprocesses and traps: S-10, t-10a for int-Begin_review, S-15,
t-15 for int-Cont_review and S-18, t-18 for int-Stop_review. When the design engineer wants
to stop his review work, he has to use the operationsStop_review. To make the transition to the
stateRole Reviewer, the manager prescribes the following subprocesses and traps: S-12, t-12
for int-Begin_review, S-16, t-16 for int-Cont_review and S-17, t-17 for int-Stop_review. In the
following two paragraphs two alternative managers will be described.

3.4.4 An Alternative for Manager Design Engineer: Design Engineer2

In Fig. 3.4.16., an alternative manager Design Engineer2 is given. This manager process is
based upon the external behaviour of Design Engineer (see Fig. 3.4.5.). Design Engineer2 has
been modelled, in order to prevent the adding of one extra operation (operation
Change_neutral). So in Design Engineer2, the stateNeutral State and the operation
Change_neutral have been removed. Note that this manager reflects the resemblance with the
modelling of the design engineer in the ADELE-TEMPO example in a more accurate way,
because the same operations have been used to describe the design engineer.

3.4.5 A Second Alternative for Design Engineer: Design Engineer3

The second alternative manager (Design Engineer3) is presented in Fig. 3.4.17. The structure
of this manager and the export operations are the same as those used for describing manager
Design Engineer2 (see Fig. 3.4.16.). The underlying idea of this manager is, that all original
export operations will be utilized. But not every operation has an internal behaviour, this means
that the operations which are typical for type-2 communication don’t have subprocesses and
traps. So the internal behaviours: int-Change_role_d, int-Cont_design, int-Stop_design, int-
Change_role_r, int-Cont_review and int-Stop_review, and the corresponding subprocesses and
traps aren’t used. In fact the real activities of the design engineer are described by the internal
behaviours: int-Begin_design and int-Begin_review. Therefore in Design Engineer3 only two
internal behaviours are of interest, instead of the eight internal behaviours used in Design
Engineer2. It is clear, that this alternative is not really corresponding to the original SOCCA
formalism, but it could be a useful adaptation to simplify the manager and to reduce the number
of employee processes of the manager process. So it is a serious option for simplifying SOCCA
models.

E3 proposal: Example 1: The Design Engineer .

June 15, 1995 3:50 pm 42

SEED proposal II.7

June 15, 1995 3:50 pm 42

 Example 1: The Design Engineer

TEMPO and SOCCA 42/98

S-3
S-5
S-7
S-8
S-10
S-13
S-15
S-18

S-1
S-4
S-6
S-9
S-12
S-14
S-16
S-17

S-1
S-5
S-6
S-9
S-10
S-13
S-15
S-18

S-1
S-4
S-6
S-9
S-10
S-14
S-15
S-18

S-1
S-4
S-6
S-9
S-11
S-14
S-15
S-18

S-2
S-4
S-6
S-9
S-10
S-14
S-15
S-18

S-1
S-5
S-6
S-9
S-11
S-13
S-15
S-18

S-2
S-5
S-6
S-9
S-10
S-13
S-15
S-18

Fig. 3.4.16. Design Engineer2, alternative manager of eight employees

t-1a
t-6

t-3
t-7
t-8

t-5

t-4

t-1 t-2 t-11 t-10

t-10a
t-15
t-18

t-12
t-16
t-17

t-1
t-2

t-11 t-10

t-9

t-13

t-14

S-3
S-10

S-1
S-12

S-1
S-10

S-1
S-11

S-2
S-10

Fig. 3.4.17. Design Engineer3, alternative manager of two employees

t-1at-3

t-1 t-2
t-11 t-10

t-10at-12

S-1
S-11

S-2
S-10

S-1
S-10

t-1 t-2
t-11 t-10

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 43

SEED proposal II.7

June 15, 1995 3:50 pm 43

 Example 2: The MailTool

TEMPO and SOCCA 43/98

3.5 Example 2: The Mai lTool

In this example a mailtool is described. In Fig. 3.5.1. a graphical representation of the mailtool
is given. The mailtool comes up as a closed icon and the icon will be opened by clicking on the
mailtool icon. The incoming mail is stored in the buffer of the mailtool. A mailtool consists of
a main window with three push-buttons. These buttons are: a compose, a view and a reply push-
button.

In case of pushing the compose button a compose window will be popped up. This window is
a text window, in which the user composes messages to send. It moreover has mail header lines
such as ‘To:’ and ‘Subject:’.

When the user pushes the view button a view window will be popped up. In the view window
the user reads the mail he had received.

The pushing of the reply button causes the opening of a compose window to reply to a selected
message e.g. Belkhatir@imag.fr (see Fig. 3.5.1.). The reply window is also a text window, in
which the user writes messages to send. This window has mailheader lines such as
‘To:<address>’ and ‘Subject: Re:<subject>’. The <...> indicate, that the address and the subject
are inserted behind the header lines automatically.

A deliver push-button, can be found in the compose window and in the reply window. This
button must be pushed when the user wants to send (deliver) the message to someone else. An
ok push-button is part of the view window, the pushing of this button causes the closing of the
view window.

Deliver

To: Belkhatir@imag.fr

Subject: Re: SOCCA

Mail Tool Version 1.0 User Name

Compose View

Deliver

To: Luuk@wi.leidenuniv.nl

Subject:SOCCA

Reply

...

...

...

...

...

...

...

...

Compose Window Compose Window

Fig. 3.5.1. MailTool

1 rwillems@wi.leidenuniv.nl Fri 7 15:00 Socca_and_Tempo
2 Belkhatir@imag.fr Tue 4 10:30 SOCCA

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 44

SEED proposal II.7

June 15, 1995 3:50 pm 44

 Example 2: The MailTool

TEMPO and SOCCA 44/98

3.5.1 The Data Perspective of MailTool

In Fig. 3.5.2. a class diagram for the MailTool is given.

In the class diagram is shown, that a UserIS-A Person and a MailToolIS-A Tool. The User
represents the person who is using the mailtool, this can be anyone in the process. In the soft-
ware process several tools are involved, e.g. compiler, editor, mailtool.

In the next diagram (Fig. 3.5.3.), the general relationship is added in order to connect the
different classes of Fig. 3.5.2., by means other than the relationshipIS-A. The general relation-
ship in Fig. 3.5.3. is called utilizes. Note that Fig. 3.5.2. and Fig. 3.5.3. must be read together.
The hollow dot implies, that the MailTool may be used by a user or not at all. The black dot
indicates, that the user can utilize between zero and n mailtools.

Now, more information will be provided which is usually not given in an EER model. The Uses
relationship, expresses where the various export operations are imported. In Fig. 3.5.4., the
Uses relationships can be found.

Tool

MailTool ...

MailTool

Receive
Start_MT

name

Person

User

uname
version
date

dep_Start_MT
Stop_MT
dep_Stop_MT
Compose
View

Fig. 3.5.2. Class Diagram: classes, IS-A, attributes and operations

Reply
Deliver
Ok

User MailTool
utilizes

Fig. 3.5.3. Class Diagram: classes and general relationship

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 45

SEED proposal II.7

June 15, 1995 3:50 pm 45

 Example 2: The MailTool

TEMPO and SOCCA 45/98

The import_lists for uses1 and uses2 are:

3.5.2 The Behaviour Perspective of MailTool

In this paragraph, the dynamic aspects of the mailtool will be described. These aspects consist
of two different types of behaviour: the external behaviour and the internal behaviour.

3.5.2.1 The Extension of the External Behaviour: Several STDs.

Up to now, the external behaviour was described by one STD. This allows only the description
of sequential behaviour in the external behaviour. But in some cases it is necessary to have a
parallel description in the external behaviour. So the way of modelling has to be adapted
slightly. As soon as parallel behaviour has to be expressed in the external behaviour, several
STDs must be used instead of one STD. Two different STD types can be distinguished to
describe the external behaviour. There is a STD type calledMain-STD and some STDs which
are dependent of this Main-STD, these STD types are calledDep-STDs. The dependencies
between a Main-STD and its Dep-STDs have to be expressed in the external behaviour. This
can be done by choosing the ‘right’ export-operation names of the Dep-STDs. This means, that
an export operation name of a Dep-STD, which has to make clear the dependency between the
Main-STD and its own STD, must have the same name as the export operation of the Main-
STD and must be preceded by the prefix ‘dep_’.

User MailTool

Inside Example scope

Outside Example scope

Uses1

Uses2

Fig. 3.5.4. Import/Export diagram

Uses1

Start_MT

Uses2

Receive
Stop_MT
Compose
View
Reply
Deliver

dep_Start_MT
dep_Stop_MT

Ok

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 46

SEED proposal II.7

June 15, 1995 3:50 pm 46

 Example 2: The MailTool

TEMPO and SOCCA 46/98

E.g.

Dependently upon on the number of different parallel behaviours which someone wants to
model, 2 up to n STDs can be found in the external behaviour.

3.5.2.2 The External Behaviour of MailTool

In Fig. 3.5.5. the external behaviour of MailTool is depicted. The external behaviour consist of
four STDs, each describing a different part of the behaviour of a mailtool.

1). In the first STD (MailTool/Main Window) the opening of the mailtool icon and the
receiving of mail messages has been described. The receiving of mail messages (operation
Receive) is expressed by the statesStarting Receive. Although the states are the same, there is
a tiny difference. In the highest stateStarting Receive, the mailtool can receive mail when the
mailtool icon is closed. In the lowest stateStarting Receive the mailtool can receive mail when
the mailtool’s icon is opened and the main window has been popped up. The neutral state of the
mailtool is stateIcon Closed. As soon as a mail message has reached the mailtool, the MailTool/
Main Window is making the transition to stateStarting Receive. In this state the mail message
will be stored in the mailtool buffer. The MailTool/Main Window returns to the statesIcon
Closed or Icon Open after the internal receive activity has really started. When the user clicks
on the mailtool icon (operationStart_MT), the icon is opened and a mailtool main window is
opened. To close the mailtool, the user has to click on the main window. This matches to the
export operationStop_MT.

2). In the second STD (ext-Compose Window) the external behaviour of the compose window
has been depicted. The manager ext-Compose Window is dependent of manager MailTool/
Main Window, because this second window can only be popped up as the main window has
been popped up too. The dependency between these windows is expressed by the export oper-
ationsdep_Start_MT and dep_Stop_MT. The statesIcon Closed andIcon Open are the same as
in the first STD. The user can pop up a compose window by pushing the compose button in the
main window. Pushing of the compose button corresponds to the export operationCompose.
When the user has finished writing his message in the compose window and decides to send it,
he has to push the deliver button. The export operationDeliver corresponds to the pushing of
the deliver button. After the pushing of the deliver button, ext-Compose Window has to return
to stateIcon Open when the main window is open at that moment or to stateIcon Closed when
the main window has been closed.

3). In the third STD (ext-View Window) the external behaviour of the view window has been
described. This ext-View Window is also dependent of MailTool/Main Window, because this
third window can only be popped up as the main window has been popped up too. The depend-
ency between these windows is expressed by the export operationsdep_Start_MT and
dep_Stop_MT. The statesIcon Closed and Icon Openare also the same as in the first STD.
When the user pushes the view button in the main window, the view window is popped up.
Pushing of the view button corresponds to the export operationView. When the user has
finished reading the message in the view window and he wants to close it, he has to push the ok
button. After the pushing of the ok button, ext-View Window has to return to stateIcon Open

STD type STD name export operation

Main-STD

Dep-STD

STD1

STD2

exp_op1

dep_exp_op1

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 47

SEED proposal II.7

June 15, 1995 3:50 pm 47

 Example 2: The MailTool

TEMPO and SOCCA 47/98

when the main window is open at that moment or to stateIcon Closed when the main window
has been closed.

4). The fourth and last STD (ext-Reply Window) is nearly the same as the second STD (ext-
Compose Window), only one export operation is different. Instead of export operation
Compose, the export operationReply has been used. In this window it’s possible to reply to
someone’s message. By pushing the reply button, a reply window is popped up and the address
of the sender is automatically added at the place where the user normally had to type the email
address. Because of the great resemblance with the second STD this finishes the discussion of
this Dep-STD (ext-Reply Window).

Describing the external behaviour with more than one STD influences the way of describing
the subprocess and traps. The idea is, that the Main-STD is a manager of the Dep-STDs. This

Starting
Receive

Icon
Closed

Icon
Open

Starting
Receive

Icon
Open

Starting
Compose

Icon
Open

Starting
View

Starting
Deliver

Start_MT

Receive

Stop_MT

Receive

Icon
Closed

dep_Start_MT dep_Stop_MT

Icon
Closed

dep_Start_MT dep_Stop_MT

Compose

Deliver

View

Icon
Open

Starting
Reply

Starting
Deliver

Icon
Closed

dep_Start_MT dep_Stop_MT

Reply

Deliver

Fig. 3.5.5. MailTool: STD of the external behaviour

MailTool/Main Window

ext-Compose Window ext-View Window ext-Reply Window

Ok

Ok

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 48

SEED proposal II.7

June 15, 1995 3:50 pm 48

 Example 2: The MailTool

TEMPO and SOCCA 48/98

means, that the Main-STD is a manager of a part of the manager (Dep-STDs). Here the Main-
STD is: MailTool/Main Window and the Dep-STDs are: ext-Compose Window, ext-View
Window and ext-Reply Window. So for the Dep-STDs the right subprocesses and traps with
respect to the Main-STD have to be chosen. These subprocesses are called manager subproc-
esses (MS) and the traps are called manager traps (mt). The three parts of the external behav-
iour with respect to the Main-STD (MailTool/Main Window) are: ext-Compose Window, ext-
View Window and ext-Reply Window. The convention for naming these external behaviours
prefixes ‘ext-’ to the possibly abbreviated name of the corresponding Dep-STD.

In Fig. 3.5.5. the external behaviour of the Compose Window (ext-Compose Window) is
presented. The two manager subprocesses (MS-1 and MS-2) and the two manager traps (mt-1
and mt-2) belonging to ext-Compose Window can be found in Fig. 3.5.5.1.

The starting state of MailTool/Main Window isIcon Closed. In this state the MailTool/Main
Window prescribes manager subprocess MS-1 for ext-Compose Window. As soon as the user
has opened the mailtool icon, MailTool/Main Window is invited to transit from stateIcon
Closed to stateIcon Open. The manager can (and will) make the transition from Icon Closed to
Icon Open, only when ext-Compose Window is trapped in manager trap mt-1. The large
manager trap mt-1 allows the MailTool/Main Window to make the transition to manager
subprocess MS-2 as soon as possible. When the transition has been made, MailTool/Main
Window assigns manager subprocess MS-2 to ext-Compose Window. Considering that ext-
Compose Window was in manager trap mt-1, it directly starts inside manager subprocess MS-
2, and thereby nearly right away entering manager trap mt-2. If the user wants to close the mail-

Icon
Open

Starting
Compose

Starting

Icon

dep_Stop_MT

Deliver

Icon
Open

Starting

Starting

Icon
Closed

dep_Start_MT

Compose

Deliver

Fig. 3.5.5.1. ext-Compose Window’s subprocesses and traps with respect to MailTool/Main Window

MS-1 MS-2

Closed

mt-1

mt-2

Compose

DeliverDeliver

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 49

SEED proposal II.7

June 15, 1995 3:50 pm 49

 Example 2: The MailTool

TEMPO and SOCCA 49/98

tool icon, he has to click on the main window. By doing this, the manager process is invited to
go back to its stateIcon Closed. For ext-Compose Window, it’s no problem to return to
subprocess MS-1, because the manager trap mt-2 is chosen to be as large as possible, to allow
the manager making the transition to its stateIcon Closed as soon as possible. The manager
process prescribes manager subprocess MS-1 in case of closeness of the mailtool icon, and
manager subprocess MS-2 in case of openness of the mailtool icon.

The external behaviour of the View Window (ext-View Window) is given in Fig. 3.5.5. The two
manager subprocesses (MS-3 and MS-4) and the two manager traps (mt-3 and mt-4) belonging
to ext-View Window are presented in Fig. 3.5.5.2.

The starting state of MailTool/Main Window isIcon Closed. In this state MailTool/Main
Window prescribes manager subprocess MS-3 for ext-View Window. As soon as the user has
opened the mailtool icon, MailTool/Main Window is invited to transit from stateIcon Closed
to stateIcon Open. The manager MailTool, can (and will) make the transition from Icon Closed
to Icon Open, when ext-View Window is trapped in manager trap mt-3. When the transition has
been made, MailTool/Main Window assigns manager subprocess MS-4 to ext-View Window.
Keeping in view, that ext-View Window was in manager trap mt-3, it directly starts inside
manager subprocess MS-4, and thereby nearly right away entering manager trap mt-4. If the
user wants to close the mailtool icon, he has to click on the main window. By doing this, the
manager process MailTool/Main Window is invited to go back to its stateIcon Closed. For ext-
View Window, it’s no problem to return to subprocess MS-3, because the manager trap mt-4
covers the statesIcon Open andStarting View, to allow the manager making the transition to its
stateIcon Closed as soon as possible. The manager process prescribes manager subprocess MS-
3 when the mailtool icon is closed, and manager subprocess MS-4 in case of the mailtool icon
being open.

In Fig. 3.5.5. the external behaviour of the Reply Window (ext-Reply Window) is shown. The
two manager subprocesses (MS-5 and MS-6) and the two manager traps (mt-5 and mt-6)
belonging to ext-Reply Window can be found in Fig. 3.5.5.3.

Icon
Open

Starting

Icon
Closed

dep_Stop_MT

Icon
Open

Starting
View

Icon
Closed

dep_Start_MT

View

Fig. 3.5.5.2. ext-View Window’s subprocesses and traps with respect to MailTool/Main Window

MS-3 MS-4mt-3

mt-4

View

Ok

Ok

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 50

SEED proposal II.7

June 15, 1995 3:50 pm 50

 Example 2: The MailTool

TEMPO and SOCCA 50/98

The starting state of MailTool/Main Window isIcon Closed. In this state the MailTool/Main
Window prescribes manager subprocess MS-5 for ext-Reply Window. As soon as the user has
opened the mailtool icon, MailTool/Main Window is invited to transit from stateIcon Closed
to stateIcon Open. The manager MailTool/Main Window, can (and will) make the transition
from Icon Closed to Icon Open, only after ext-Reply Window is trapped in manager trap mt-5.
Of course, other (manager) subprocesses and (manager) traps are involved to let the MailTool
make its transition to stateIcon Open. When the transition has been made, MailTool/Main
Window assigns manager subprocess MS-6 to ext-Reply Window. Bearing in mind, that ext-
Reply Window was in manager trap mt-5, it directly starts inside manager subprocess MS-6,
and thereby nearly right away entering manager trap mt-6. If the user decides to close the mail-
tool icon, he has to click on the main window. By doing this, the manager process is invited to
transit to its stateIcon Closed. For ext-Reply Window, it’s no problem to return to subprocess
MS-5, because the manager trap mt-6 has been chosen as large as possible, to allow the
manager making the transition to its stateIcon Closed as soon as possible. The manager process
prescribes manager subprocess MS-5 when the mailtool icon is closed, and manager subprocess
MS-6 when the mailtool icon is open.

Icon
Open

Starting
Reply

Starting
Deliver

Icon

dep_Stop_MT

Deliver

Icon
Open

Starting

Starting

Icon
Closed

dep_Start_MT

Reply

Deliver

Fig. 3.5.5.3. ext-Reply Window’s subprocesses and traps with respect to MailTool/Main Window

MS-5 MS-6

Closed

mt-5

mt-6

Reply

Deliver

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 51

SEED proposal II.7

June 15, 1995 3:50 pm 51

 Example 2: The MailTool

TEMPO and SOCCA 51/98

3.5.2.3 The Internal Behaviour of MailTool

Now the internal behaviours of all export operations have to be specified. These operations can
be called by the user who uses the mailtool and by the mailtool itself. Before the specification
of the internal behaviours, a list of possibly imported operations for each uses relationship will
be presented.

This list of operation names present all possibly imported operations. The user is allowed to call
the export operationsStart_MT, Stop_MT, Compose, View, Reply, Deliver and Ok. The export
operations with the prefix ‘dep_’ don’t have any subprocesses and traps. They are just used to
express the dependency between the Main-STD and the Dep-STD. So they are not the same as
the normally used export operations. The seven (normal) internal behaviour specifications are
depicted in Fig. 3.5.6. through to Fig. 3.5.13. Below each internal behaviour specification the
corresponding subprocesses and traps are presented. These subprocesses and traps are shown
in Fig. 3.5.6.1. through to Fig. 3.5.13.1.

In Fig. 3.5.6. the internal behaviour of the operationStart_MT (int-Start_MT) is expressed.

This operation is called by the user, when the user wants to open the mailtool icon. The opening
of the mailtool icon is achieved by clicking twice on the icon. The two subprocesses (S-1 and
S-2) and the two traps (t-1 and t-2) are given in Fig. 3.5.6.1. When the operationStart_MT is
called, the manager MailTool/Main Window, is asked to transit from stateIcon Closed to state
Icon Open. The manager can only make the transition, if int-Start_MT is in subprocess S-1 and
trapped in trap t-1.

Uses1

Start_MT

Uses2

Receive
Stop_MT
Compose
View
Reply
Deliver

dep_Start_MT
dep_Stop_MT

Ok

No
Start_

Start_
MTact_

Start_MT

Fig. 3.5.6. int-Start_MT: STD of its internal behaviour

MT

PopupMail-
ToolWndwstarted

MailTool
Wndw
popped up

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 52

SEED proposal II.7

June 15, 1995 3:50 pm 52

 Example 2: The MailTool

TEMPO and SOCCA 52/98

In subprocess S-2 a mailtool main window is popped up. The MailTool/Main Window has to
prescribe subprocess S-2 and trap t-2 for int-Start_MT, when the MailTool/Main Window
makes the transition to its neutral stateIcon Closed.

In Fig. 3.5.7. the internal behaviour of the operationStop_MT (int-Stop_MT) and in Fig.
3.5.7.1. the subprocesses and traps being part of int-Stop_MT are depicted.

This operation is called by the user, when the user wants to close the mailtool icon. The closing
of the mailtool icon is achieved by clicking twice on the main window. When the operation
Stop_MT is called, the manager MailTool/Main Window, is asked to transit from stateIcon
Open to stateIcon Closed. The manager can only make the transition, if int-Stop_MT is in
subprocess S-3 and in trap t-3. This operation takes care for the closing of the main window of
the mailtool.

Fig. 3.5.6.1. int-Start_MT’s subprocesses and traps

S-1

S-2

No
Start_

MailTool
Wndw
popped up

No
Start_

Start_
MTact_

Start_MTMT
PopupMail-
ToolWndwstarted

MailTool
Wndw
popped up

with respect to MailTool/Main Window

t-1

t-2

MT

No
Stop_

Stop_
MTact_

Stop_MT

Fig. 3.5.7. int-Stop_MT: STD of its internal behaviour

CloseMail-
ToolWndwstarted

MailTool
Wndw
closedMT

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 53

SEED proposal II.7

June 15, 1995 3:50 pm 53

 Example 2: The MailTool

TEMPO and SOCCA 53/98

In Fig. 3.5.8. the internal behaviour of the operationReceive (int-Receive) is given. This oper-
ation is called by the mailtool, when the mailtool receives some mail. The two subprocesses (S-
5 and S-6) and the two traps (t-5 and t-6) are given in Fig. 3.5.8.1. When the operationReceive
has been called, the MailTool/Main Window is requested to transit from stateIcon Closed or
from stateIcon Open to stateStarting Receive. The manager can only make the transition, if
int-Receive is in subprocess S-5 and trapped in trap t-5. As soon as int-Receive is in subprocess
S-6, the mailtool can store the new mail in its buffer and make a sound to make the user aware
of the new mail. The trap t-6 is as large as possible, because this allows the MailTool/Main
Window to return as soon as possible to the stateIcon Closed or to the stateIcon Open.

Fig. 3.5.7.1. int-Stop_MT’s subprocesses and traps

S-3

S-4

with respect to MailTool/Main Window

t-3

t-4

No
Stop_

MailTool
Wndw
closedMT

No
Stop_

Stop_
MTact_

Stop_MT
CloseMail-
ToolWndwstarted

MailTool
Wndw
closedMT

No
Receive

Receive
started

act_
Receive

Fig. 3.5.8. int-Receive: STD of its internal behaviour

Mail
stored

Sound
made

Store Sound

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 54

SEED proposal II.7

June 15, 1995 3:50 pm 54

 Example 2: The MailTool

TEMPO and SOCCA 54/98

In Fig. 3.5.9. the internal behaviour of the operationCompose (int-Compose) is presented. This
operation is called by the user, when he wants to send a message. By pushing the compose
button, a compose window will be popped up. The two subprocesses (S-7 and S-8) and the two
traps (t-7 and t-8) can be found in Fig. 3.5.9.1.

When the operationCompose has been called, the manager ext-Compose Window is requested
to transit from stateIcon Open to stateStarting Compose. The manager can only make the tran-
sition, if int-Compose is in subprocess S-7 and in trap t-7. As soon as int-Compose is in
subprocess S-8, the mailtool pops up a compose window in which the user can write his
message.

No
Receive

Receive
started

act_
Receive

Fig. 3.5.8.1. int-Receive’s subprocesses and traps with respect to MailTool/Main Window

Mail
stored

Sound
made

Store Sound

No
Receive

Receive
started

Mail
stored

Sound
made

Store Sound

S-5

S-6

t-5

t-6

No
Compose

Compose
started

act_
Compose

Fig. 3.5.9. int-Compose: STD of its internal behaviour

Popup- Compose
WndwComposeWndw popped up

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 55

SEED proposal II.7

June 15, 1995 3:50 pm 55

 Example 2: The MailTool

TEMPO and SOCCA 55/98

The internal behaviour of the operation View (int-View) is depicted in Fig. 3.5.10. The subproc-

esses and traps belonging to int-View are presented in Fig. 3.5.10.1. The operationView is
called by the user when he wants to read a mail message. If no problems have been detected by
the mailtool, the message will be displayed in a view window by the internal operationDisplay
Message. But if a message cannot be displayed or some other problems occur, some informa-
tion will be given. This is done by the internal operationGiveInfo. As soon as the operation
View has been called, the manager ext-View Window is requested to transit from stateIcon
Open to stateStarting View. The manager can only make the transition, if int-View is in
subprocess S-9 and trapped in trap t-9.

No
Compose

Compose
started

act_
Compose

Fig. 3.5.9.1. int-Compose’s subprocesses and traps

Popup- Compose
WndwComposeWndw popped up

No
Compose

Compose
Wndw
popped up

S-7

S-8

with respect to ext-Compose Window

t-7

t-8

No
View

View
started

act_
View

Message
displayed

Display
Message

GiveInfo Info
displayed

Fig. 3.5.10. int-View: STD of its internal behaviour

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 56

SEED proposal II.7

June 15, 1995 3:50 pm 56

 Example 2: The MailTool

TEMPO and SOCCA 56/98

In subprocess S-10 the manager really pops up the view window with the corresponding
message or displays a window with information about the problems. To let the manager make
the transition from stateStarting View to stateIcon Open or to stateIcon Closed, the manager
ext-View Window must prescribe subprocess S-10 and trap t-10 for int-View.

In Fig. 3.5.11. the internal behaviour of the operationReply (int-Reply) is given. The corre-

sponding subprocesses and traps of int-Reply are depicted in Fig. 3.5.11.1. This operationReply
is called by the user if he wants to reply to a certain message. The reply window will be popped
up as soon as the user clicks on the reply button in the main window. Immediately after the
calling of operationReply, the manager ext-Reply Window is requested to transit from state
Icon Open to stateStarting Reply. The manager can only make this transition, if int-Reply is in
subprocess S-11 and trapped in trap t-11.

No
View

View
started

act_
View

Message
displayed

Display
Message

GiveInfo Info
displayed

No
View

Message
displayed

Info
displayed

Fig. 3.5.10.1. int-View’s subprocesses and traps
with respect to ext-View Window

S-9

t-9

S-10
t-10

No
reply

Reply
started

act_
Reply

Fig. 3.5.11. int-Reply: STD of its internal behaviour

Popup-
Compose
Wndw

ComposeWndw popped up

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 57

SEED proposal II.7

June 15, 1995 3:50 pm 57

 Example 2: The MailTool

TEMPO and SOCCA 57/98

In subprocess S-12 the manager really pops up a reply window. This reply window is a compose

window, but with a small difference. In the reply window the address of the person to whom
the user wants to send the mail is automatically added. To let the manager make the transition
from stateStarting Reply to stateStarting Deliver, the manager ext-Reply Window must
prescribe subprocess S-12 and trap t-12 for int-Reply.

The internal behaviour of the operationDeliver (int-Deliver) is presented in Fig. 3.5.12. The
subprocesses and traps which belong to this operation are given in Fig. 3.5.12.1. The operation
Deliver is called by the user. When the user is satisfied about what he had written in his mail
message, he can send it by clicking on the deliver button in the compose window or reply
window.

Right after the calling of operationDeliver, the corresponding manager (ext-Compose Window
or ext-Reply Window) is asked to transit from stateStarting Compose or stateStarting Reply
to stateStarting Deliver. The manager can only make this transition, if int-Deliver is in
subprocess S-13 and trapped in trap t-13.

In subprocess S-14 the mailtool really sends the message (operationSend) or displays a window
with information when an error occurs (operationGiveInfo). After this, the mailtool closes the
windows and int-Reply ends up in its stateCompose Wndw closed. To let the manager make
the transition from stateStarting Deliver to stateIcon Open or to stateIcon Closed. The
manager must prescribe subprocess S-14 and trap t-14 for int-Deliver.

No
Reply

Reply
started

act_
Reply

Fig. 3.5.11.1. int-Reply’s subprocesses and traps

Popup-
Compose
Wndw

ComposeWndw popped up

No
Reply

Compose
Wndw
popped up

S-11

S-12

with respect to ext-Reply Window

t-11

t-12

No
Deliver

Deliver
started

act_
Deliver

Mail
Send

GiveInfo Info
displayed

Compose
Wndw
closed

CloseComposeWndw

CloseComposeWndw

Fig. 3.5.12. int-Deliver: STD of its internal behaviour

sent

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 58

SEED proposal II.7

June 15, 1995 3:50 pm 58

 Example 2: The MailTool

TEMPO and SOCCA 58/98

In Fig. 3.5.13. the internal behaviour of the operationOk (int-Ok) is shown. The corresponding
subprocesses and traps of int-Ok are depicted in Fig. 3.5.13.1.

This operationOk is called by the user if he wants to quit the view window. Of course, this ok
button could have been modelled in the compose window and in the reply window. The ok
button is not modelled in those windows, because they are closed by the operationDeliver (see
Fig. 3.5.12.1.). The view window will be closed as soon as the user clicks on the ok button in
the view window. Immediately after the calling of operationOk, the manger ext-View Window
is requested to transit from stateStarting Viewto stateIcon Openor to stateIcon Closed. The
manager can only make this transition, if int-Ok is in subprocess S-15 and trapped in trap t-15.
The internal operationClose View Wndw of int-Ok is used to close the view window.

No
Deliver

Compose
Wndw
closed

No
Deliver

Deliver
started

act_
Deliver

Mail
Send

GiveInfo Info
displayed

Compose
Wndw
closed

CloseComposeWndw

CloseComposeWndw

S-13

S-14

Fig. 3.5.12.1. int-Deliver’s subprocesses and traps with respect to ext-Compose Window and ext-Reply Window

t-13

t-14sent

No
Ok

Ok
started

act_
Ok

Fig. 3.5.13. int-Ok: STD of its internal behaviour

Close
View
Wndw

View Wndw closed

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 59

SEED proposal II.7

June 15, 1995 3:50 pm 59

 Example 2: The MailTool

TEMPO and SOCCA 59/98

3.5.3 The Manager Process of MailTool

The external behaviour of MailTool will be used as the manager process (Fig. 3.5.14.). Note,
that MailTool is considered to be the aggregation of the four manager processes (MailTool/
Main Window, ext-Compose Window, ext-View Window and ext-Reply Window). The
employee processes being associated with this manager process are: ext-Compose Window,
ext-View Window, ext-Reply Window, int-Start_MT, int-Stop_MT, int-Receive, int-Compose,
int-View, int-Reply, int-Deliver and int-Ok. Of course the internal behaviours of the user are
employees too, but the user isn’t within the scope of this example. The manager process Mail-
Tool will be described, by giving a explanation of each STD (Main-STD and Dep-STDs).

Main-STD: MailTool/Main Window

The manager’s starting state isIcon Closed. When the user decides to use the mailtool, he
has to click on the mailtool icon. This means, that the user calls the operationStart_MT.
After the calling, MailTool/Main Window is requested to make the transition to stateIcon
Open. This is only possible when int-Start_MT is in subprocess S-1 and trapped in trap t-1,
int-Stop_MT is in subprocess S-4 and in trap t-4, ext-Compose Window is in manager
subprocess MS-1 and in manager trap mt-1, ext-View Window is in manager subprocess
MS-3 and trapped in manager trap mt-3, and ext-Reply Window is in manager subprocess
MS-5 and in manager trap mt-5. Because of the transition from stateIcon Closed to Icon
Open of the Main-STD (MailTool/Main Window), the Dep-STDs (ext-Compose Window,
ext-View Window and ext-Reply Window) make automatically the transition from state
Icon Closed to stateIcon Open in their own STD (operationdep_Start_MT). As soon as the
user decides to stop using the mailtool, he has to click twice at the main window, which
causes the calling of operationStop_MT. Now the manager MailTool/Main Window is
invited to go back to stateIcon Closed. Only after int-Start_MT is in subprocess S-2 and
has reached trap t-2, int-Stop_MT is in subprocess S-3 and trapped in trap t-3, ext-Compose
Window is in manager subprocess MS-2 and in manager trap mt-2, ext-View Window is in
manager subprocess MS-4 and in manager trap mt-4, and ext-Reply Window is in manager
subprocess MS-6 and trapped in manager trap mt-6, the manager can make this transition.

It must be clear, that the mailtool can receive mail messages independently of the state of
the mailtool icon. This means, that it must be possible for the mailtool to receive mail when
the mailtool icon is closed and the mailtool must be able to receive mail when the mailtool

No
Ok

Ok
started

act_
Ok

Fig. 3.5.13.1. int-Ok’s subprocesses and traps

Close
View
Wndw

View Wndw closed

No
Ok

View
Wndw
closed

S-15

S-16

with respect to ext-View Window

t-15

t-16

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 60

SEED proposal II.7

June 15, 1995 3:50 pm 60

 Example 2: The MailTool

TEMPO and SOCCA 60/98

icon is opened. The mailtool can receive mail, when MailTool/Main Window prescribes
subprocess S-5 and trap t-5 for int-Receive. When the mailtool has stored the mail and has
made a sound, it can go back to stateIcon Closed or Icon Open. This depends on the state
of the mailtool icon (icon opened or icon closed). To let manager MailTool/Main Window
transit to stateIcon Closed or Icon Open, int-Receive must be in subprocess S-6 and trapped
in trap t-6.

Dep-STD: ext-Compose Window

At the time that the user wants to send a message he must pop up a compose window. To
get a compose window, he has to click on the compose button in the main window. The click
on this compose button, causes the calling of operationCompose. After calling the manager
ext-Compose Window is invited to transit from stateIcon Open to stateStarting Compose.
At the moment however, the manager is still outsideStarting Compose. This means that int-
Compose is in subprocess S-7 and sanguinely in trap t-7. Only when int-Compose has
reached trap-7, ext-Compose Window will make the transition to stateStarting Compose.
Now the compose window can be popped up.

After writing the message in the compose window, the user has to send the message. This
is done by pushing the deliver button in the compose window. The pushing of the deliver
button, provokes the calling of operationDeliver. Right after the calling of operation
Deliver, the manager is asked to make the transition from stateStarting Compose to state
Starting Deliver. The manager can only make this transition, if int-Compose is in
subprocess S-8 and trapped in trap t-8, and int-Deliver is in subprocess S-13 and in trap t-
13. As soon as int-Deliver has performed its operations (Sendor GiveInfo andCloseCom-
poseWndw), ext-Compose Window transits to stateIcon Open or to stateIcon Closed. This
will be done when int-Deliver has been arrived at trap t-14.

Dep-STD: ext-View Window

To read a mail message, the user has to start a view window. To get such a view window,
he has to click on the view button in the main window. The pushing of this view button,
induces the calling of operationView. After the calling of this operation, the manager ext-
View Window is invited to transit from state Icon Closed to stateStarting View. However,
ext-View Window is still outsideStarting View. This indicates, that int-View is in
subprocess S-9 and hopefully within trap t-9. Only when int-View has reached trap-9 and
int-Ok is in subprocess S-16 and in trap t-16, the manager will make the transition to state
Starting View. Now the view window will be popped up by the internal operationDisplay
Message of int-View. If an error is detected by the mailtool, then a window is displayed with
the corresponding information (operationGiveInfo of int-View).

After reading the message, the view window has to be closed. This is performed by pushing
the ok button in the view window. After the calling of operationOk, the manager is
provoked to transit from stateStarting View to stateIcon Open or to stateIcon Closed. The
manager ext-View Window can only make this transition, if int-View is in subprocess S-10
and trapped in trap t-10, and int-Ok is in subprocess S-15 and in trap t-15.

Dep-STD: ext-Reply Window

When the user decides to reply to a certain mail message, he must pop up a reply window.
This window is nearly the same as a compose window. The only difference is, that the
address has been added in the reply window already e.g. Belkhatir@imag.fr (see Fig.
3.5.1.). To get a reply window, the user has to click on the reply button in the main window.
The pushing of this reply button, causes the calling of operationReply. After the calling, the

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 61

SEED proposal II.7

June 15, 1995 3:50 pm 61

 Example 2: The MailTool

TEMPO and SOCCA 61/98

manager ext-Reply Window is asked to transit from stateIcon Open to stateStarting Reply.
Notwithstanding, ext-Reply Window is still outsideStarting Reply. This indicates, that int-
Reply is in subprocess S-11 and expectantly in trap t-11. Only when int-Reply has entered
trap-11, ext-Reply Window will transit to stateStarting Reply. Now the reply window will
be popped up by the internal operationPopupComposeWndw of int-Reply.

After writing the message in the reply window, the user has to send the message. This is
achieved by pushing the deliver button in the reply window. The pushing of the deliver
button, evokes the calling of operationDeliver. Immediately after the calling of operation
Deliver, the manager is asked to transit from stateStarting Replyto stateStarting Deliver.

MS-1
MS-3
MS-5
S-1
S-4
S-6

MS-2
MS-4
MS-6
S-2
S-3
S-5

MS-2
MS-4
MS-6
S-2
S-3
S-6

S-7
S-13

S-7
S-14

S-7
S-13

S-8
S-13

MS-1
MS-3
MS-5
S-1
S-4
S-5

S-11
S-13

S-11
S-14

S-11
S-13

S-12
S-13

S-10

S-9

S-9

Fig. 3.5.14. MailTool/Main Window, manager of six employees

t-6 t-5

mt-1
mt-3
mt-5
t-1
t-4

mt-2
mt-4
mt-6
t-2
t-3

t-5 t-6

t-7

t-8
t-13

t-14

t-14

t-9 t-10

t-10

t-11

t-12
t-13

t-14

t-14

S-16

S-16

t-16

S-15

t-15

t-15

MailTool/Main Window

ext-Compose Window ext-View Window ext-Reply Window

ext-Compose Window, manager of two employees
ext-View Window, manager of two employees
ext-Reply Window, manager of two employees

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 62

SEED proposal II.7

June 15, 1995 3:50 pm 62

 Example 2: The MailTool

TEMPO and SOCCA 62/98

The manager can only make this transition, if int-Reply is in subprocess S-12 and trapped
in trap t-12, and int-Deliver is in subprocess S-13 and in trap t-13. As soon as int-Deliver
has performed its operations (Sendor GiveInfo andCloseComposeWndw), the manager ext-
Reply Window transits to stateIcon Open or to stateIcon Closed. This transition will be
performed as soon as int-Deliver has been arrived at trap t-14.

3.5.4 An Alternative for MailTool: MailTool2

In this paragraph an alternative for MailTool is presented. This means, that the Main-STD
(MailTool/Main Window) is used for the alternative way of modelling (see Fig. 3.5.16). The
idea is to combine the internal behaviours of two different export operations into one STD. This
reduces the number of employee processes in the manager process. Here the internal behav-
iours of the two export operations Start_MT andStop_MT are combined. The new subprocess
S-01 substitutes the two old subprocesses S-1 and S-4. Subprocess S-02 replaces the two old
subprocesses S-2 and S-3. In Fig. 3.5.15. the combination of these two internal behaviours is
depicted.

The corresponding subprocesses (S-01 and S-02) and traps (t-01 and t-02) are expressed in Fig.
3.5.15.1. The calling of the export operations remain the same as in the original way of model-
ling in SOCCA. But instead of the four subprocesses (S-1, S-2, S-3 and S-4) and the four traps
(t-1, t-2, t-3 and t-4), only two subprocesses (S-01 and S-02) and two traps (t-01 and t-02) are
used now.

No
Start_MT

Start_MT
started

MailTool
WndwPopupMail-

ToolWndw popped up

Stop_MT
started

act_Stop_MT
CloseMail-
ToolWndw

Fig. 3.5.15. int-Start_Stop_MT: STD of its internal behaviour

act_Start_MT

S-01

S-02

Fig. 3.5.15.1. int-Start_Stop_MT’s subprocesses and traps
with respect to MailTool/Main Window2

No
Start_MT

MailTool
Wndw
popped up

Stop_MT
started

act_Stop_MT
CloseMail-
ToolWndw

t-01

No
Start_MT

Start_MT
started

MailTool
WndwPopupMail-

ToolWndw popped up

act_Start_MT

t-02

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 63

SEED proposal II.7

June 15, 1995 3:50 pm 63

 Example 2: The MailTool

TEMPO and SOCCA 63/98

The starting state of MailTool/Main Window2 is the same as for the previous manager, namely
stateIcon Closed. Only the manager prescribes subprocess S-01 instead of the subprocesses S-
1 and S-4. When the operationStart_MT has been called, the manager MailTool/Main
Window2 is invited to make the transition from stateIcon Closed to Icon Open. This transition
can only be made if int-Start_Stop_MT is in subprocess S-01 and in trap t-01. The closing of
the mailtool will be performed by clicking twice on the main window. This causes the calling
of operationStop_MT. Now MailTool2 is asked to transit from stateIcon Open to stateIcon
Closed. The manager can only make this transition, is int-Start_Stop_MT in subprocess S-02
and in trap t-02.

In Fig. 3.5.16. the alternative manager MailTool/Main Window2 is shown. This external behav-
iour should have been complete when the other parts of the external behaviour (ext-Compose
Window, ext-View Window and ext-Reply Window) were presented too. But only the changed
part of the external behaviour has been depicted. The employee processes being associated with
this part of the alternative manager are: ext-Compose Window, ext-View Window, ext-Reply
Window, int-Start_Stop_MT and int-Receive. The combination of two different internal behav-
iours into one internal behaviour, reduces the number of employee processes of the manager

MS-1
MS-3
MS-5
S-01
S-6

MS-2
MS-4
MS-6
S-02
S-5

MS-2
MS-4
MS-6
S-02
S-6

MS-1
MS-3
MS-5
S-01
S-5

t-6 t-5

mt-1
mt-3
mt-5
t-01

mt-2
mt-4
mt-6
t-02

t-5 t-6

Fig. 3.5.16. Part of alternative manager MailTool/Main Window2,
manager of five employees

MailTool/Main Window2

E3 proposal: Example 2: The MailTool .

June 15, 1995 3:50 pm 64

SEED proposal II.7

June 15, 1995 3:50 pm 64

 Example 2: The MailTool

TEMPO and SOCCA 64/98

process. So it is also possible to combine some internal behaviours of Design Engineer with
each other. I don’t present the STDs, but I will only give the internal behaviours which could
be combined with each other. The following internal behaviours can be combined with each
other: the internal behaviours of int-Cont_design and int-Stop_design (Fig. 3.5.8. and Fig.
3.5.9.), the internal behaviours of int-Change_role_d and int-Change_role_r (Fig. 3.5.7. and
Fig. 3.5.11.), and the internal behaviours of int-Cont_review and int-Stop_review (Fig. 3.5.12.
and Fig. 3.5.13.).

E3 proposal: Introduction into Role Concepts .

June 15, 1995 3:50 pm 65

SEED proposal II.7

June 15, 1995 3:50 pm 65

 Introduction into Role Concepts

TEMPO and SOCCA 65/98

C h a p t e r 4 V a r i o u s R o l e C o n c e p t s

4.1 Introduct ion into Role Concepts

In the following subparagraphs several role concepts used in the different process modelling
formalisms and found in several articles will be presented. It’s an interesting topic in the
process modelling area, because the role concept is used to describe the behaviour or parts of
the behaviour of the human as well as the non-human participants in a (software) process.
Because of the fact that agents, roles and activities are closely related to each other, the defini-
tions of the agents and activities are taking into account. After these descriptions a proposition
will be presented in paragraph 4.6. how to integrate the role concept into the SOCCA
formalism, and in paragraph 4.6.1. the role concept will be applied on some examples modelled
in SOCCA.

4.2 MERLIN

In [14] MERLIN is described. It is a prototype Process-centred Software Development Envi-
ronment (PSDE). The concepts used in MERLIN are:

- Resources: The resources in the software process are people who participate in the production
of software and the technical resources such as tools supporting the software develop-
ment activities (e.g. compiler and editors).

- Activities: An activity is a collection of tasks which achieve a goal related to the production
of a software product (e.g. specify, edit, compile or test a module).

- Role: A role is a group of activities which are logically highly related (e.g. project manage-
ment, design, etc.).

The users in the software process are associated with one or more roles. The users are supported
primarily by the display of the relevant information in a working context associated with their
current role. In MERLIN the working context is displayed on the screen. The working context
shows documents which have to be manipulated, their dependencies with other documents and
the activities which have to be performed on each document. In this way you have a clearly
overview of how the concepts of agent, role and activities are used in the MERLIN working
context.

4.3 OIKOS

In [17] the software process modelling formalism OIKOS is described. The purpose of the
OIKOS project is to leisure the construction of process-centred software development environ-
ments. There are three subgoals in OIKOS and one of them is interesting in the context of the
role concept:

(2). ‘to define a systematic way to model the process at different levels of abstraction such that
each actor playing a role in the process can be naturally provided with a personalized view of
the process which is more and more detailed as it is nearer and nearer to the focus of the actor‘s
role.’

E3 proposal: ALF .

June 15, 1995 3:50 pm 66

SEED proposal II.7

June 15, 1995 3:50 pm 66

 ALF

TEMPO and SOCCA 66/98

The concepts used in OIKOS are:

- The terms likeAgent, Task andActivity are used in the everyday meaning and not in the
precise meaning of the software process modelling classification.

- Role: A role is used to model the actions of the actors performing in the software process.
Each actor is allowed to play several roles and each role defines a coherent set of contri-
butions to the process and a coherent view of the state of the process that permits the
actor to provide the expected contributions. During the enactment of the process each
role corresponds to a window on the actor’s display. The managing and technical roles
are considered to be the same. In both roles, the contributions are in terms of tool appli-
cation or inputs in the process. Only the kind of information provided or the kind of
tools used in the process, vary between the managing and technical roles.

4.4 ALF

In [6] ALF is described. ALF is a research project which wants to provide computerized facil-
ities to support software development activities.

The concepts relevant for roles found in the ALF formalism are:

- Agent: An agent or actor is a human participant in the process. The agent playing a specific
role can execute its activities. Actors work in work contexts, in these work contexts an
actor works with objects, tools, has to follow certain policies, etc.

- Role: A role is a set ofactivities enactable by an agent. Agents are playing the same role if
they are working in the same working context, if they can access the same objects, if
they can invoke the same operators and if they are subject to the same prescriptions.
Role cooperation occurs when agents are working in the same team. A role can
prescribe constraints to another one, e.g. in the roledesigner a rule can be defined to
trigger an action (modify-design) if the attribute approved=false of a document is set by
the rolereviewer.

4.5 ADELE-TEMPO

In [1, 2, 3, 4, 5, 16] ADELE-TEMPO is depicted.

The concepts in the context of roles in ADELE-TEMPO are:

- User: A user is a human person who can work in a work environment (WE), he can use tools
to perform his activities.

- Methods: The methods are the activities in the process. When a certain event is true the corre-
sponding method will be executed.

- Role: The role concept is used to define the common behaviour and characteristics of the
objects in the software process. The terms characteristics and behaviour mean, valid
attributes respectively methods and constraints. The role type allows to change the defi-
nition of attributes, methods and constraints of an object type, depending on where the
object ‘plays’ its role.

E3 proposal: Several Articles .

June 15, 1995 3:50 pm 67

SEED proposal II.7

June 15, 1995 3:50 pm 67

 Several Articles

TEMPO and SOCCA 67/98

4.6 Several Art ic les

In [8] a software production process is characterized as a partially ordered network of activities
which are interacting with each other, in order to produce a software product. The activities are
performed by human agents supported by tools. The basic definitions in the context of roles are:

- Agent: A human or a specific person, performing the activities related to a role. An agent is
characterized by the role properties and his/her availability. In the article they also
mention some key roles of agents in the software process like, process owner, process
technology provider, process designer, process manager and process agent.

- Activity : An activity incorporates procedures, rules and policies and its purpose is to generate
and modify a given set of artifacts. The activities may be organized into networks with
both horizontal (chaining) and vertical (decomposition) dimensions. Activities are
associated with roles, artifacts and tools.

- Role: A role describes a set of responsibilities, rights and skills necessary to accomplish a
specific activity in the software process.

- Tool: A tool can be a computer program supporting or automating a part of the work related
to an activity.

- Artifact : The artifact are the (sub)products of a process. An artifact produced by a process
may be used as input by the same or a different process to produce other artifacts. The
artifacts in a process are often persistent and versioned.

In [15] the importance of a clear conceptual and terminological framework for software process
engineering is discussed. The concepts and definitions related to roles are:

- Agent: Definition: ‘A performer of a process. It may be a human or a computerized tool’.
Comments: A set of agents can perform elementary activities. The automatic activities
only rely on computerized agents, interactive activities need both types of agents, inter-
acting to reach the appointed goal. The manual activities only involve human agents.
Computerized agents are tools being associated with the domain support technology.

- Activity : Definition: ‘An elementary process step. At the level of abstraction of the process
description, an activity has no visible substructure’.

- Task: Definition: ‘A managed process step. Managed means that resources are allocated to it,
it is scheduled, it is assigned to one or several agents, and it is monitored’.

Comments: Tasks are well known entities in the area of project management. In the field
of software process engineering some analysis-oriented approaches and guidance-
oriented approaches particularly focus on this level of abstraction (i.e. their elementary
activities are the managed tasks). In some other approaches, they are split into smaller
activities which are not managed. Clearly, there’s no essential distinction between a task
and an activity. It’s just a human decision about whether a process step should be
managed or not. Moreover, when the distinction between tasks and activities has been
made, it gives rise to the question whether an activity is consequently a subprocess of
some task or not.

E3 proposal: SOCCA .

June 15, 1995 3:50 pm 68

SEED proposal II.7

June 15, 1995 3:50 pm 68

 SOCCA

TEMPO and SOCCA 68/98

- Role: Definition: ‘A set of permissions and obligations associated to a functional objective’.
Comments: E.g. the permissions to achieve the set of activities of the process aimed to
reach the objective and obligations to ‘satisfy’ the corresponding constraints. The
objectives and the related roles may be refined from general roles (e.g. software devel-
oper) into specific ones (e.g. designer). At a certain level of refinement, it is possible to
recognize three aspects:

1. thegeneric role (e.g. team leader),

2. thespecific role (e.g. the team leader of the team, developing the component x within
the project y) and

3. therole occupants (e.g. Jacques, team leader of team, developing the product x of
project y).

A human or a computerized agent occupies (plays) a role when the corresponding role
is assigned to him. A dynamic mapping between role occupants and processes is
possible by using roles. The role occupants are allowed to play several roles at different
times and a given role may be played by different occupants at various times.

4.7 SOCCA

After having presented several concepts of different process modelling formalisms, the
concepts related to roles in SOCCA will be discussed in this paragraph. The SOCCA formalism
is described in [9, 10]. The main focus will be therole conceptin this paragraph. This means
how to integrate the role concept into the SOCCA formalism in a flexible, understandable and
useful way. Although the terms agent, activity and role do exist in the SOCCA formalism
already, they will be mentioned explicitly and a proposition will be given how to interpret them.
The concepts relevant for roles and the role concept in SOCCA will be given. The concepts in
the context of roles in SOCCA are:

- Agent: An agent can be a human or a non-human participant of the software process. The
human participants are e.g. project manager, design engineer, etc. The non-human
participants of the software process are e.g. tools (mailtool, compiler, etc.), documents,
etc.

- Activity : The activities are the export operations and the internal operations. They all describe
a certain part (activity) of the software process. As in [8], the activities may be organ-
ized into horizontal (chaining) and vertical (decomposition) dimensions. Thehori-
zontal dimension means, that the activities can be connected with each other. This
corresponds to the states and the transitions in an STD. Thevertical dimension indi-
cates, that the export operations all have an internal behaviour which will be described
by internal operations (activities).

- Role: A role is a collection of activities which are highly related with each other. Of course a
role must have a name to make a distinction between the several roles. A role can be
played by several agents e.g. a design engineer and a review engineer can both have the
roleReviewing. An agent can have several roles e.g. a design engineer can play the role
Designingand the roleReviewing. In SOCCA the external behaviour will be a perfect
candidate for defining roles. Because the external behaviour is the behaviour visible
from outside and each part of this visible behaviour comes close to the intuitive feeling
of a ‘role’. A role can be the complete external behaviour or a part of the external behav-
iour. It must be clear, that a role comprises some states and transitions of the external
behaviour and therefore the role is a restriction of the external behaviour. The role

E3 proposal: SOCCA .

June 15, 1995 3:50 pm 69

SEED proposal II.7

June 15, 1995 3:50 pm 69

 SOCCA

TEMPO and SOCCA 69/98

description can be found in the internal behaviours belonging to the export operations.
Now some restrictions with respect to the role concept in SOCCA will be presented.
These restrictions are:

1. Each external behaviour has at least one role. The number of roles of the external
behaviour varies between 1 and n, depending on the preferences of the modeller.

2. The role concept provides the facility to prevent the explosion of states and transi-
tions of the external behaviour. This is achieved by restricting the number of states of
the external behaviour which can be part of a role. Although the number of states for
a role is intuitively determined, I will propose to restrict the number of states of a role
between 2 and 10. There must be at least two states in a role, because the external
behaviour has a neutral state and another state to which it has to switch to start a role.

Probably after more experiences of modelling in SOCCA, the number of states of a
role can be tuned to attain a more acceptable restriction for the role concept.

Summarizing, a role in SOCCA consist of the following ingredients:a. rolename,b. list of
states,c. list of transitions andd. number of roles.

4.7.1 Using the Role Concept in SOCCA

In this subparagraph the role concept will be applied to three examples which have been
modelled in the SOCCA formalism.

In the first example the role concept will be applied to a design document: Design. The docu-
ment Design has been modelled in [10]. In Table 1. the roles which belong to the design docu-
ment Design are presented. The roles Under design and Under review are induced by the roles
Designing and Reviewing of Design Engineer2 (see Table 2.).

In the second example the role concept will be applied to an agent (human): Design Engineer.
The external behaviour of Design Engineer2 will be used and can be found in Fig. 3.4.5. Table
2. presents the roles belonging to Design Engineer2.

In the third example the role concept will be applied to a tool: MailTool. The external behav-
iour of MailTool will be utilized and is presented in Fig. 3.5.5. In this external behaviour it is
easy to distinguish the different role, because for each separate STD a role can be defined. In
Table 3. the roles corresponding to MailTool are depicted.

E3 proposal: SOCCA .

June 15, 1995 3:50 pm 70

SEED proposal II.7

June 15, 1995 3:50 pm 70

 SOCCA

TEMPO and SOCCA 70/98

Number States Transitions
of roles

Rolename

3 Under design non existing prepare

creatable create_first

starting creation create_next

created open_for_modify

modifiable modify

starting modify close_modify

Under review pre review open_for_review

reviewable review

starting review close_and_review_not_ok

close_and_review_ok

Under copy readable copy

starting copying

Table 1. Roles of Design

Number States Transitions
of roles

Rolename

2 Designing Role Designer Begin_design

Starting Design Cont_design

Real Design Stop_design

Reviewing Role Reviewer Begin_review

Starting Review Cont_review

Real Review Stop_review

Change_role_d

Table 2. Roles of Design Engineer2

Change_role_r

E3 proposal: SOCCA .

June 15, 1995 3:50 pm 71

SEED proposal II.7

June 15, 1995 3:50 pm 71

 SOCCA

TEMPO and SOCCA 71/98

Number States Transitions
of roles

Rolename

4 Main Icon Closed Start_MT

Icon Open Stop_MT

Starting Receive Receive

Viewing Icon Closed dep_Start_MT

Icon Open dep_Stop_MT

Starting View View

Ok

Table 3. Roles of MailTool

Composing Icon Closed dep_Start_MT

Icon Open dep_Stop_MT

Starting Compose Compose

Starting Deliver Deliver

Replying Icon Closed dep_Start_MT

Icon Open dep_Stop_MT

Starting Reply Reply

Starting Deliver Deliver

E3 proposal: .

June 15, 1995 3:50 pm 72

SEED proposal II.7

June 15, 1995 3:50 pm 72TEMPO and SOCCA 72/98

E3 proposal: The Similarities between TEMPO and SOCCA .

June 15, 1995 3:50 pm 73

SEED proposal II.7

June 15, 1995 3:50 pm 73

 The Similarities between TEMPO and SOCCA

TEMPO and SOCCA 73/98

C h a p t e r 5 T E M P O v e r s u s S O C C A

After modelling some examples in TEMPO and SOCCA, it will be interesting to compare the
two software process modelling approaches. In the following four subparagraphs the similari-
ties, differences, advantages and drawbacks of the TEMPO formalism and SOCCA formalism
will be discussed. This is very useful, because in this way you get can get a quick overview of
both approaches. The results of the comparison have been presented in Table 1 through to Table
4 and eventually some comments will be given to explain the tables.

5.1 The Simi lar i t ies between TEMPO and SOCCA

In Table 1 the similarities between TEMPO and SOCCA are given.

The terms which have been mentioned in Table 1. will be explained in more detail now.

1. TEMPO : TEMPO has been build on top of the ADELE database and this database is based
upon an entity relationship database, complemented by object-oriented concepts (e.g.
multiple inheritance, object versioning).

SOCCA: In SOCCA the EER model is appropriate for the data perspective of the process
model. The data perspective is described by classes (attributes and operations) and rela-
tionships (part-of, is-a, general and uses).

2. TEMPO : The users, tools, documents, etc. are described by objects in TEMPO. The objects
contain attributes and methods.

SOCCA: In SOCCA the classes which contain the attributes and operations represent the
users, tools, documents, etc. Concrete instances of a class are being called objects
according to object oriented terminology.

3. For both approaches the attribute is a name with a domain (integer, real, string, etc.).

4. TEMPO : The events in TEMPO are the commands executed by tools, mostly users or tools.

nr. TEMPO SOCCA

1 EER EER

2 Object Class

3 Attribute Attribute

4 Event Export operation

5 Method Internal behaviour

6 Connection Relationship

7 Role Role

Table 1: The similarities between TEMPO and SOCCA

E3 proposal: The Differences between TEMPO and SOCCA .

June 15, 1995 3:50 pm 74

SEED proposal II.7

June 15, 1995 3:50 pm 74

 The Differences between TEMPO and SOCCA

TEMPO and SOCCA 74/98

SOCCA: The export operations of the external behaviour in SOCCA are the commands or
actions performed by other objects, particularly users or tools. This is represented by
transitions from one state to another.

The examples which have been modelled express the resemblance between the events and the
export operations in a clearly way, because they are equal in number and have the same
names.

5. TEMPO : As soon as an event arise the corresponding method(s) are executed in TEMPO.

SOCCA: In SOCCA, as it has been extended in this thesis, most export operations have an
internal behaviour. In the original SOCCA version, all export operation have an internal
behaviour. The export operations perform some task and to carry out this task, separate
behaviour has been modelled, mostly as internal behaviour.

6. TEMPO : The connection used in TEMPO is a special kind of relationship, assumed to be
instantiated between pairs of roles. A connection is meant to define how each pair of
connected objects in the different WEs is coordinated. The connection is a dynamic
relationship, because it will be instantiated or deleted when necessary between the pairs
of roles.

SOCCA: In SOCCA the different classes are connected by general relationships and uses
relationships. The instances of the general relationship have a dynamic character, see
Section 7 in [10]. The uses relationship is a static relationship and this relationship indi-
cates where the various export operations are imported.

7. TEMPO : In TEMPO the role concept is used to describe the behaviour of the object. The
role makes it possible to change the attributes, methods and constraints of an object
depending on where the object plays its role (contextual behaviour).

SOCCA: In SOCCA, as it has been extended in this thesis, the role concept is used to aggre-
gate the states and transitions of the external behaviour which are relevant for a specific
role. So the external behaviour can be dived into several roles.

5.2 The Dif ferences between TEMPO and SOCCA

The following table (Table 2.) presents the differences between the TEMPO and SOCCA
formalisms. Below the table the differences will be described.

nr. TEMPO SOCCA

1 Progr. language Graph. language

2 Rule/Event based

3 Triggers

4 STD+PARADIGM

5 Work Environments

6 Bottom up Top down

Table 2: The differences between TEMPO and SOCCA

E3 proposal: The Advantages and Drawbacks of TEMPO .

June 15, 1995 3:50 pm 75

SEED proposal II.7

June 15, 1995 3:50 pm 75

 The Advantages and Drawbacks of TEMPO

TEMPO and SOCCA 75/98

1. TEMPO : TEMPO is a high level programming language based on the role and connection
concepts.

SOCCA: SOCCA is a graphical language based on class diagrams, STDs and PARADIGM.

2. TEMPO : The TEMPO language is rule/event based, because the TECA formalism is used
to describe the rules by: temporal events, their conditions and corresponding actions.

3. TEMPO : The triggers are executed each time a corresponding event is true.

4. SOCCA: The STDs describe the behaviour and PARADIGM expresses the coordination of
the agents and documents in the software process in a graphical way. On a more abstract
level one can argue however, that SOCCA’s communication corresponds to events and
triggers.

5. TEMPO : In TEMPO each software (sub) process is associated by a work environment. This
work environment is defined by the following tuple: WE = (WS, PM, Tools, User). At
this moment a similar grouping of classes/instances is not present in SOCCA.

6. TEMPO : The ADELE database has already been used for several years. TEMPO’s proto-
type is/has been built on top of the ADELE database. This indicates, that the TEMPO
formalism has been based on the ADELE database and concepts. This typically is a
bottom up approach for developing abstract concepts.

SOCCA: On the contrary SOCCA is independent of a specific database. The SOCCA
approach is to start first with abstract concepts, this typically is a top down approach for
developing abstract concepts.

5.3 The Advantages and Drawbacks of TEMPO

First the advantages and thereafter the drawbacks of TEMPO will be discussed.

The advantages of TEMPO are:

1. For people who are used to work with programming languages, the TEMPO language can
and will be grasped rather easily, at least in principle.

2. The role concept provides the facility to describe the contextual behaviour of the objects.
This means, the role concept prescribes for the same object (without losing identity) its behav-
iour depending on where the object ‘plays’ its role.

3. Although the prototype has not been finished yet, it will be easier to describe and understand
software processes by using a prototype.

nr. Advantages nr. Drawbacks

1 Progr. language 1 Progr. language

2 Role concept 2 Examples

3 Prototype 3 Syntax

4 WE 4 WE (WS)

5 Shared objects 5 User modelling

Table 3: The advantages and drawbacks of TEMPO

E3 proposal: The Advantages and Drawbacks of SOCCA .

June 15, 1995 3:50 pm 76

SEED proposal II.7

June 15, 1995 3:50 pm 76

 The Advantages and Drawbacks of SOCCA

TEMPO and SOCCA 76/98

4. A WE is a grouping of user(s), tool(s) and work space. Using a WE simplifies a software
process, because the software process is split into smaller and coherent parts of the process.
This improves the understanding and simplifying of the process.

5. TEMPO supports the sharing of objects. An object shared by multiple work environments
can be modified within each work environment. In this way for each shared object a revision
list or branch exists. The problems which will arise when exchanging or promoting the objects
can be solved by TEMPO.

The following drawbacks of TEMPO have been found:

1. The TEMPO language has been based upon the ADELE language. The ADELE language is
not really developed for the ease of use of the users, because a lot of symbols are used and there-
fore the language is hard to grasp. So TEMPO is suffering of these drawbacks, and therefore
not really userfriendly.

2. The few examples which have been modelled in TEMPO are small and incomplete. This
causes also the difficulties in understanding the TEMPO approach. Probably if the ISWP-6 and
ISWP-7 or more examples have been modelled, a better and faster understanding of TEMPO
will be achieved.

3. A huge drawback of TEMPO is the changing of the used syntax. In nearly every article a
different syntax has been proposed and used. This does not really contribute to the under-
standing and clarity of the TEMPO formalism.

4. In each work space (WS) an agent or document performs its tasks. This has been modelled
by using the role concept. The disadvantage is that several WSs and therefore WEs must be
created when an agent has different roles. This indicates, that the roles which belong to the same
person or tool are spread over the different WEs, e.g. a design engineer can have different roles
like designing and reviewing. So two work environments have to be created. Another possi-
bility which isn’t supported by TEMPO is that only one work environment must be created in
which several role s of a agent can be defined.

5. The examples which have been modelled in TEMPO did not focus on user modelling, but
more attention has been paid to the modelling of the documents in the software process. This
makes TEMPO, through ADELE, perhaps too DB oriented.

5.4 The Advantages and Drawbacks of SOCCA

In this subparagraph the advantages and drawbacks of the SOCCA formalism will be discussed.

nr. Advantages nr. Drawbacks

1 Modular 1 Large

2 Graphical 2 Complex

3 Role concept 3 No prototype

4 User modelling

5 Examples

Table 4: The advantages and drawbacks of SOCCA

E3 proposal: The Advantages and Drawbacks of SOCCA .

June 15, 1995 3:50 pm 77

SEED proposal II.7

June 15, 1995 3:50 pm 77

 The Advantages and Drawbacks of SOCCA

TEMPO and SOCCA 77/98

The advantages of SOCCA are:

1. The modular modelling of SOCCA is expressed by the different perspectives: data perspec-
tive, behaviour perspective and process perspective. By using these perspectives a software
process can be described in a modular way.

2. The STDs in SOCCA are used to describe the behaviour (external behaviour and internal
behaviour) in a graphical manner. This is a userfriendly approach of representing the software
process.

3. The role concept which has been applied to SOCCA in this thesis, is useful for several
reasons. This role concept allows to group relevant parts of the external behaviour into roles.
This grouping expresses a more global view of the external behaviour, such that it will be more
easy to understand. Another advantage is, that this role concept is unique in that sense that it
can restrict the extent of the role, by restricting the number of states in the role. This implicitly
indicates, that the description of the software process (level of detail) can be restricted by using
this role concept.

4. Much attention has been paid to the modelling of users. In this thesis a user (design engineer)
has been described in an operating system way by using the type-2 communication of SOCCA.

5. Rather a lot of examples have been modelled in SOCCA like the following examples: ISWP-
6, ISWP-7, MERLIN Process Transactions, Petri Nets, some problems in companies (e.g.
Philips) and the examples in this thesis. This is useful for evaluating the SOCCA formalism,
because of the differences and varieties of the examples. By this evaluation the advantages,
weaknesses and possibly some extensions of SOCCA can be found. Another advantage is, that
when someone wants to understand SOCCA, he has some good and complete examples to
focus on. This increases the comprehension of SOCCA.

The drawbacks of SOCCA are:

1. The specifications in SOCCA are very large, because of the PARADIGM part. A number of
propositions have been raised e.g. using state charts, combing different internal behaviours, not
every export operation has an internal behaviour. These topics can be subject for further
research.

2. The specifications are complex, because of the great number of STDs which are used. The
manager process can also be complex as soon as it contains a lot of employees and transitions.

3. The lack of a prototype of SOCCA is a drawback. There is no environment, no tools, this
makes it more difficult to model in SOCCA.

E3 proposal: .

June 15, 1995 3:50 pm 78

SEED proposal II.7

June 15, 1995 3:50 pm 78TEMPO and SOCCA 78/98

E3 proposal: Role, Agent, Position and Process .

June 15, 1995 3:50 pm 79

SEED proposal II.7

June 15, 1995 3:50 pm 79

 Role, Agent, Position and Process

TEMPO and SOCCA 79/98

C h a p t e r 6 T h e R A P P D i a g r a m

The R.A.P.P. (=Roles ofAgents and theirPosition in aProcess) diagram describes in a clearly
way how the different agents, positions, roles and processes have to be interpreted.

6.1 Role, Agent, Posi t ion and Process

The terms role, agent, position and process are the key-words upon which the R.A.P.P. diagram
has been based. In this section the different terms will be explained.

Process: A process can consists of N agents which have position(s) and role(s) in a specific
process. A process comprises the activities performed by the agents (human as well as non-
human agents). The process can be decomposed into several subprocesses, so a hierarchy
of processes and subprocesses can be created.

Agent: The term agent refers to human as well as to non-human agents. The human agents are
the persons involved in the process and the non-human agents are for example the tools
used by the human agents in the process. Each agent can have N positions, e.g. an agent can
have the position of team leader and the position of design engineer.

Position: A position is an intermediate level of abstraction between an agent and a role. A posi-
tion comprises a set of N roles for an agent, e.g. the position design engineer has the
following roles: designing and reviewing. A position can belong to N agents, e.g. the posi-
tion design engineer can belong to two different persons (agents).

Role: Each agent has one or more roles in a process. A role can be owned by N positions, e.g.
the role reviewing can belong to the positions design engineer and review engineer. Each
role consists of N activities, e.g. the role designing comprises the activities: modify design,
review design, etc.

The cardinalities and the dependencies between the different terms are represented in Fig. 6.1.
and Fig. 6.2.

Agent Position RoleN N N N

Fig. 6.1. Cardinalities

ActivityN NProcessN N

E3 proposal: The R.A.P.P. Diagram .

June 15, 1995 3:50 pm 80

SEED proposal II.7

June 15, 1995 3:50 pm 80

 The R.A.P.P. Diagram

TEMPO and SOCCA 80/98

6.2 The R.A.P.P. Diagram

The R.A.P.P. diagram describes the general overview of a software process. It is an informal
and intuitive description of how to express a software process in a more global way. This
means, that only processes, their dependencies/connections, agents, positions and roles are
described. Note that the two figures, Fig. 6.3. and Fig. 6.4. should be read together. Fig. 6.4. is
a more detailed description of each process and it also contains the description of the Tool
Depot.

In Fig. 6.3. the different processes are connected with each other. There are three kinds of
connections.

1. The first connection is theParent-Child connection which is represented by a black arrow.
This connection expresses, that the parent takes care of the child. This means, that the parent
process monitors its child processes. The work performed in the parent process and child
process can be exchanged with each other. E.g. the monitor process (parent) manages the proc-
esses Design, Review and Implement (children).

2. The second connection is called theBrother-Sister connection and is represented by a dashed
arrow. This connection reflects the cooperation between processes of the same parent, e.g. the
work done in a design process has to be reviewed in the review process.

3. The third connection is called theTwins connection and is represented by a bi-directional
dashed arrow. This connections connects two processes of the same type, e.g. two design proc-
esses are cooperating with each other in order to produce a software product.

Process

Agent 1 Agent K. . .

Position 1.1 . . .

Role 1.1.M. . .

Position 1.L

Role 1.1.1

. . .Activity
1.1.1.1

Activity
1.1.1.N

Fig. 6.2. Dependencies

E3 proposal: The R.A.P.P. Diagram .

June 15, 1995 3:50 pm 81

SEED proposal II.7

June 15, 1995 3:50 pm 81

 The R.A.P.P. Diagram

TEMPO and SOCCA 81/98

In Fig. 6.4. a representation for an agent, its position and its roles in a process has been given.
This is described by a rectangle which consists of two fields ‘A: <Agent name>’, a field
‘P:<Position name>’ to represent to corresponding name and position of a person or tool. In the
same rectangle some ellipses can be distinguished which represent the roles the agent can/must
perform.

At the left side of each process, a rectangle is depicted with information about what kind of
tools are used by the agents in the process. This is represented with characters below TD (Tool
Depot), each character reflects a certain tool which can be found in the Tool Depot. In the Tool
Depot (TD) all tools are stored which can be used in a process. There is no explicit connection
between a process and the TD, because the character which reflects the tool, implies that the
agent can use this tool.

Review

Design

Design

Monitor

Review

Implement

Fig. 6.3. RAPP diagram

E3 proposal: The R.A.P.P. Diagram .

June 15, 1995 3:50 pm 82

SEED proposal II.7

June 15, 1995 3:50 pm 82

 The R.A.P.P. Diagram

TEMPO and SOCCA 82/98

In Fig. 6.5. a legend of the used symbols and connections is presented.

Considering the roles of the mailtool and the roles of the design engineer in the SOCCA exam-
ples, is it clear that the RAPP diagram can be used on top of SOCCA as a general and more
global description of a software process.

A: < Tool Name>

P: Mail Tool

Main

Tool-Depot (TD)

A: < Tool Name>

P: Editor

Edit

A: < Tool Name>

P: Compiler

Compile

M

E

C

A: < Name >

P: Review Eng

Implementing

Reviewing

A: < Doc-Name >

P: Design Doc

Under Impl

Under Review

Process Review
TD

M

E

.

.

.

A: < Name >

P: Review Eng

Reviewing

Designing

A: < Doc-Name >

P: Design Doc

Under Review

Under Design

Process Design
TD

M

E

.

.

.

Fig. 6.4. RAPP diagram

Composing

Viewing

Replying

. . .

= Process

A: < Name >

P: < Position >

Role 2

Role 1
= Agent, Position and Roles

= Parent-Child connection

= Brother-Sister connection

= Twins connection

Fig. 6.5. Legend

= Induces

E3 proposal: .

June 15, 1995 3:50 pm 83

SEED proposal II.7

June 15, 1995 3:50 pm 83TEMPO and SOCCA 83/98

C h a p t e r 7 C o n c l u s i o n s

In this thesis TEMPO and SOCCA have been discussed. Although they don’t use the same
concepts, it was possible to find some similarities. The main similarities between TEMPO and
SOCCA were: both are object oriented, the events of TEMPO correspond to SOCCA’s export
operations of the external behaviour and the methods used in TEMPO correspond to the
internal behaviour of the export operations in SOCCA. It turns out to be, that by using these
similarities the examples modelled in TEMPO could be translated into a SOCCA description.

During the modelling of the examples (Design Engineer and MailTool) interesting aspects and
extensions came into light. The modelling of Design Engineer wasn’t of type-1 communica-
tion, but of type-2 communication. This resulted in an operating system way of describing the
design engineer. In paragraph 3.4.5. a second alternative for the manager Design Engineer has
been given. In this paragraph a proposition has been made to simplify the description of the
manager process. Normally for each export operation the corresponding internal behaviour
with its subprocesses and traps were given, but here not every export operation has an internal
behaviour. The export operations which were typical for type-2 communication weren’t
described by any internal behaviour (subprocesses and traps). Although this proposition
doesn’t correspond to the original SOCCA formalism, it could be a useful adaptation to
simplify the manager and to reduce the number of employee processes of the manager process.
So it is a serious option for simplifying SOCCA models. During the modelling of the MailTool
(see paragraph 3.5.) some extensions of the SOCCA formalism have been proposed and made.
In the original SOCCA formalism, only one STD was used to represent the external behaviour.
But in this thesis, the external behaviour of MailTool has been presented by more than one STD.
This allows to describe parallel behaviour even in the external behaviour. Of course, this exten-
sion needs more adaptations of the SOCCA formalism, so more details can be found in para-
graph 3.5. and its subparagraphs. This extension is an interesting topic for future research,
because it could be applied for several other aspects of the software process e.g. representing
associations, team representation. In the paragraph 3.7.5. an alternative for the manager Mail-
Tool has been given. The idea was to combine the internal behaviours of two closely related
export operations into one internal behaviour. This allows to reduce the number of employee
processes of the manager process too.

In Chapter 4, various role concepts were presented and finally a role concept for the SOCCA
formalism has been proposed. This role concept admits to divide the external behaviour into
several roles (at least one). By using this role concept the extent of a role can be restricted and
therefore also the size of the total model of a software process.

In the last chapter, the RAPP diagram has been presented. The purpose of this diagram is to
represent the software process on a more global level. So only four terms are of interest namely
Roles, Agents, Position and Process. Despite this diagram is an informal and intuitive descrip-
tion of a software process, it could be used on top of SOCCA and probably on top of other
formalisms too. So the RAPP diagram can be an interesting topic of future research.

A final remark will be, that for both software process modelling approaches TEMPO and
SOCCA, it would be highly preferable that an environment will be implemented in the near
future.

E3 proposal: .

June 15, 1995 3:50 pm 84

SEED proposal II.7

June 15, 1995 3:50 pm 84TEMPO and SOCCA 84/98

E3 proposal: .

June 15, 1995 3:50 pm 85

SEED proposal II.7

June 15, 1995 3:50 pm 85TEMPO and SOCCA 85/98

A p p e n d i x A : M n e m o n i c s

ACID : Atomicity, Consistency, Isolation and Durability

DB: Database

DBMS: Database Management System

DEST: Destination

ECA: Event, Condition and Action

EER: Extended Entity-Relationship

MS: Manager Subprocess

mt: manager trap

OFD: Object Flow Diagram

OO: Object Oriented

PARADIGM : PARallelism its Analysis, Design and Implementation by a General Method

PSDE: Process-centred Software Development Environment

RAPP: Roles of Agents and their Position in a Process

SOCCA: Specifications of Coordinated and Cooperative Activities

STD: State Transition Diagram

TD: Tool Depot

TECA : Temporal Event, Condition and Action

WE: Work Environment

WS: Work Space

E3 proposal: .

June 15, 1995 3:50 pm 86

SEED proposal II.7

June 15, 1995 3:50 pm 86TEMPO and SOCCA 86/98

E3 proposal: .

June 15, 1995 3:50 pm 87

SEED proposal II.7

June 15, 1995 3:50 pm 87TEMPO and SOCCA 87/98

A p p e n d i x B : M o r e T E M P O E x a m p l e s

###
Example 3, paragraph 2.13.3.

In this example the problem is: what to do if two designers work on the same document. They
have to solve eventually merge conflicts, when they check in their documents.
###

user ISA object;

 ATTRIBUTE
 name = String :=’’; # name of the user is empty #
 Position = Pmanager, Engineer, None := None # the position of a user #
 Status = 0,1,2,3,4:= 0; # The status of the user, No=0,PM=1,Des=2 #

 # ,Rev=3, Impl=4 #

 METHOD
 Stop; # the user wants to do something else #

END_OF user;

document ISA object;

 ATTRIBUTE
 Name = String := ‘’; # document name is empty #
 Status = designed, reviewed, approved, implemented, none := none; # status of

doc#
 Date = Date; # the date of the document #

END_OF document;

==
Monitor ISA PROCESS;

 CONTROL DESIGN;
 Fragment = Designing; # Designing corresponds with the fragment DESIGN #

appearing in the type Monitor

 CONTROL REVIEW;
 Fragment = Reviewing; # Reviewing corresponds with the fragment REVIEW #

 # appearing in the type Monitor #

 ROLE Undermonitor; # role of the document #

E3 proposal: .

June 15, 1995 3:50 pm 88

SEED proposal II.7

June 15, 1995 3:50 pm 88TEMPO and SOCCA 88/98

 derived = document; # object under this role is of type document #

 METHOD
 Update; # Update the status of the document #

 # IF the date of status designed < date #
 # of status reviewed THEN the document #
 # gets the status approved. #

 RULES
 PRE WHEN Promote DO Update; # document is promoted #

END_OF Monitor;
==

==
Designing ISA PROCESS;

ROLE Design; # designing a document #

 derived = user; # object under this role is of type user #

 METHOD
 Checkout; # check out document from parent WE (= Monitor) #
 Checkin; # check in document to parent WE (= Monitor) #
 Decide; # if conflict, make decision what to do #

 RULES
 PRE WHEN Get_doc DO Checkout; # check out document #
 PRE WHEN Give_doc DO Checkin; # check in document #
 !?PRE WHEN Conflict DO Decide; # decide what to do #

 ROLE Underdesign; # role of the document #

 derived = document; # object under this role is of type document #

 METHOD
 Mod_doc; # document can be modified #
 Stop_mod_doc; # document can’t be modified and status document #

is designed.

RULES
 PRE WHEN Open_doc DO Mod_doc; # document open #
 PRE WHEN Close_doc DO Stop_mod_doc; # document closed #

END_OF Designing;
==

E3 proposal: .

June 15, 1995 3:50 pm 89

SEED proposal II.7

June 15, 1995 3:50 pm 89TEMPO and SOCCA 89/98

###
Example 4, paragraph 2.13.4.

In this example I try to model what a tool has to do in case of a problem with licence rights. If
someone with a lower priority wants to use the tool while all licences are occupied, he has to
wait until one of the users give up his licence.
But if someone has a higher priority and he wants to use the tool, someone else has to give up
his licence. The user (with the lower priority) has to give up his license within 2 minutes, if he
doesn’t do that, the system will do it. After that a message is sent to inform the user with the
higher priority that he can use the tool now. In this example the tool will be an editor (=
FrameMaker).
###

DEFEVENT Start_FM = [!cmd = start_fm];

FrameMaker ISA object;

 ATTRIBUTE
 name = String := ‘’; # name of FrameMaker #
 uname = String := ‘’; # user name #
 uprio = 0,1,2,3,4 := 0; # priority of the user,1 is highest #
 version = Integer := 0; # version number #
 date = Date := 00/00/00; # date of release #

 METHOD
 CheckLicenseFree; # check if there is a free license #
 PopUpFMWndw; # FrameMaker menu is started #
 Wait; # wait #
 GetLicense; # user gets a license #
 GiveUpLicense; # user’s license is given up #

END_OF FrameMaker;

==
Designing ISA PROCESS;

 ROLE Design; # designing a document #

 derived = user; # object under this role is of type user #

METHOD
 ...

 RULES
 ...

 ROLE D_FrameMaker; # FrameMaker for a designer #

E3 proposal: .

June 15, 1995 3:50 pm 90

SEED proposal II.7

June 15, 1995 3:50 pm 90TEMPO and SOCCA 90/98

 derived = FrameMaker; # object under this role is of type FrameMaker #

 RULES
 PRE WHEN Start_FM DO {IF CheckLicenceFree THEN

 PopUpFMWndw
 ELSE

 ABORT;}

 ERROR WHEN Start_FM DO {IF SearchLowPrio(user,user*) THEN
 {sendmessage(‘give up licence in 2 min’,user);
 Wait(2min);

 IF CheckLicenceFree THEN
 GetLicence(user);
 sendmessage(‘you’ve a licence’,user);

 ELSE
 GiveUpLicence(user*);
 sendmessage(‘you’ve a licence,user);}

ELSE
 sendmessage(‘you’ve to wait, try again’,user);
ABORT;}

END_OF Designing;
==

###
Example 5

In this example will be described how the different project members communicate with each
other. The project members use a mailtool to communicate.
The cooperation between the documents is defined by a connection.
###

user ISA object;

 ATTRIBUTE
 name = String := ‘’; # username is empty #
 Position = Pmanager,Engineer,None := None # the position of a user #
 Status = Integer := 0; # The status of the user, No=0,PM=1, Des=2#

 # ,Rev=3, Impl=4 #

 METHOD
 ...

END_OF user;

E3 proposal: .

June 15, 1995 3:50 pm 91

SEED proposal II.7

June 15, 1995 3:50 pm 91TEMPO and SOCCA 91/98

document ISA object;

 ATTRIBUTE
 name = String := ‘’; # document name is empty #
 Status = designed,reviewed,approved,implemented,none := none;

 # status of the document
#

 METHOD
 ...

END_OF document;

mailtool ISA object;

 ATTRIBUTE
 name = String := ‘’; # name of mailtool #
 uname = String := ‘’; # user name #
 version = Integer := 0; # version number #
 date = Date := 00/00/00; # date of release #

 METHOD
 PopupMailToolWndw;# mail tool window is popped up #
 Store; # store the mail in the buffer #
 Send; # send mail #
 Sound; # make a sound to inform user for new mail #
 PopupComposeWndw; # Compose window is popped up #
 CloseComposeWndw; # Compose window is closed #
 GiveInfo; # information is provided to the user #
 DisplayMessage; # message is displayed in a window #

END_OF mailtool;

==
Monitor ISA PROCESS;

 CONTROL DESIGN;
 Fragment = Designing; # Designing corresponds with the fragment DESIGN #

appearing in the type Monitor

 CONTROL REVIEW;
 Fragment = Reviewing; # Reviewing corresponds with the fragment REVIEW #

appearing in the type Monitor

E3 proposal: .

June 15, 1995 3:50 pm 92

SEED proposal II.7

June 15, 1995 3:50 pm 92TEMPO and SOCCA 92/98

 ROLE Manage; # role of the user #

 derived = user; # object under this role is of type user #

METHOD
 ...

 RULES
 ...

 ROLE Undermonitor; # role of the document #

 derived = document; # object under this role is of type document #

 METHOD
 Merge_doc; # merge doc. of child WE with doc. in parent WE #

RULES
 PRE WHEN Promote DO Merge_doc; # document is promoted #

 ROLE M_Mailtool; # mailtool for a manager #

 derived = mailtool; # object under this role is of type mailtool #

 RULES
 PRE WHEN Start_MT DO PopupMailToolWndw; # activate mail tool #
 PRE WHEN Receive DO Store; # receive new mail #
 POST WHEN Receive DO Sound;
 PRE WHEN Compose DO PopupComposeWndw;# User wants to send a message#

User writes address, subject
and the message in the com-
 # pose window. #

 PRE WHEN Deliver Do Send; # mail is sent to destination #
 POST WHEN Deliver DO CloseComposeWndw;
 ERROR WHEN Deliver DO GiveInfo; # mail cannot be send #

 PRE WHEN View DO DisplayMessage; # user wants to read the mail #
 ERROR WHEN View DO GiveInfo; # no mail in mailbox #

 PRE WHEN Reply DO PopupComposeWndw;# user doesn’t have to write #
the address of the destination#

END_OF Monitor; # end of process Monitor #
==

==
Designing ISA PROCESS;

 ROLE Design; # designing a document #

E3 proposal: .

June 15, 1995 3:50 pm 93

SEED proposal II.7

June 15, 1995 3:50 pm 93TEMPO and SOCCA 93/98

 derived = user; # object under this role is of type user #

 METHOD
 ...

 RULES
 ...

 ROLE D_Mailtool; # mailtool for a designer #

 derived = mailtool; # object under this role is of type mailtool #

 RULES
 PRE WHEN Start_MT DO PopupMailToolWndw; # activate mail tool #

 PRE WHEN Receive DO Store; # receive new mail #
 POST WHEN Receive DO Sound;

 PRE WHEN Compose DO PopupComposeWndw;# User wants to send a message#
User writes address, subject
and the message in the com-
 # pose window. #

 PRE WHEN Deliver Do Send; # mail is sent to destination #
 POST WHEN Deliver DO CloseComposeWndw;
 ERROR WHEN Deliver DO GiveInfo; # mail cannot be send #

 PRE WHEN View DO DisplayMessage; # user wants to read the mail #
 ERROR WHEN View DO GiveInfo; # no mail in mailbox #

 PRE WHEN Reply DO PopupComposeWndw;# user doesn’t have to write #
 #the address of the destination #

END_OF Designing;
==

==
Reviewing ISA PROCESS;

 ROLE Review; # reviewing a document #

 derived = user; # object under this role is of type user #

 METHOD
 ...

 RULES
 ...

E3 proposal: .

June 15, 1995 3:50 pm 94

SEED proposal II.7

June 15, 1995 3:50 pm 94TEMPO and SOCCA 94/98

 ROLE R_Mailtool; # mailtool for a designer #

 derived = mailtool; # object under this role is of type mailtool #

 RULES
 PRE WHEN Start_MT DO PopupMailToolWndw; # activate mail tool #

 PRE WHEN Receive DO Store; # receive new mail #
 POST WHEN Receive DO Sound;

 PRE WHEN Compose DO PopupComposeWndw;# User wants to send a message#
 # User writes address, subject #
and the message in the com-
 # pose window. #

 PRE WHEN Deliver Do Send; # mail is sent to destination #
 POST WHEN Deliver DO CloseComposeWndw;
 ERROR WHEN Deliver DO GiveInfo; # mail cannot be send #

 PRE WHEN View DO DisplayMessage; # user wants to read the mail #
 ERROR WHEN View DO GiveInfo; # no mail in mailbox #

 PRE WHEN Reply DO PopupComposeWndw;# user doesn’t have to write #
 # the address of the destination#

END_OF Reviewing;
==

--
des_rev_doc ISA CONNECTION # connection between the roles of the document #

 # in the WE-Designing and the WE-Reviewing #

 DOMAIN Designing: Underdesign ->
 Reviewing: Underreview;

 PLUG-ON-RULES
 WHEN Begin_design UPON SOURCE;
 WHEN Continu_design UPON SOURCE;
 WHEN Begin_review UPON DEST;
 WHEN Cont_review UPON DEST;

 ACTIVE-RULES
 WHEN Design_completed UPON SOURCE
 DO Send_doc; # send document to reviewer #

 WHEN Design_reviewed UPON DEST
 DO Send_doc; # if changes, send document to designer #

 # else to the manager #

E3 proposal: .

June 15, 1995 3:50 pm 95

SEED proposal II.7

June 15, 1995 3:50 pm 95TEMPO and SOCCA 95/98

 PLUG-OFF-RULES
 WHEN Stop_design UPON SOURCE;
 WHEN Finish_design UPON SOURCE;
 WHEN Stop_review UPON DEST;
 WHEN Finish_review UPON DEST;

END_OF des_rev_doc; # end of connection des_rev_doc #
--

--
des_des_doc ISA CONNECTION # connection between the roles of the document #

 # in the WE-Designing and other WE-Designing #

 DOMAIN Designing: Underdesign ->
 Designing: Underdesign;

 PLUG-ON-RULES
 WHEN Begin_design UPON (SOURCE OR DEST);
 WHEN Continu_design UPON (SOURCE OR DEST);

 ACTIVE-RULES
 WHEN Design_problem UPON (SOURCE OR DEST);
 DO Send_doc; # send document to other designer #

 WHEN Problem_solved UPON (SOURCE OR DEST);
 DO Send_doc; # send document back with updates #

 PLUG-OFF-RULES
 WHEN Stop_design UPON (SOURCE OR DEST);
 WHEN Finish_design UPON (SOURCE OR DEST);

END_OF des_des_doc; # end of connection des_des_doc #
--

E3 proposal: .

June 15, 1995 3:50 pm 96

SEED proposal II.7

June 15, 1995 3:50 pm 96TEMPO and SOCCA 96/98

E3 proposal: .

June 15, 1995 3:50 pm 97

SEED proposal II.7

June 15, 1995 3:50 pm 97TEMPO and SOCCA 97/98

R e f e r e n c e s

[1] Belkhatir, N., Melo, W.L. and Estublier, J.: Adele 2: A Support to Large Software
Development Process. In Dowson, M. (editor): Proceedings of the First International
Conference on the Software Process, Redondo Beach, CA, October 21-22, 1991.

[2] Belkhatir, N., Melo, W.L., Estublier, J. and Nacer, M.A.: Supporting Software Mainte-
nance Evolution Processes in the Adele System. In Proceedings of the 30th Annual
ACM Southeast Conference, Raleigh, NC, April 08-10, 1992.

[3] Belkhatir, N. and Melo, W.L.: TEMPO: a Software Process Model Based on Object
Context Behavior. In Proceedings of the 5th International Conference on Software
Engineering & its Applications, Toulouse, France, December 07-12, 1992.

[4] Belkhatir, N., Estublier, J. and Melo, W.L.: Software Process Model and Work Space
Control in the Adele System. In Osterweil, L. (editor): Proceedings of the 2nd Interna-
tional Conference on the Software Process, Berlin, Germany, February, 1993.

[5] Belkhatir, N., Estublier, J. and Melo, W.L.: ADELE-TEMPO: An Environment to
Support Process Modelling and Enaction. In Finkelstein, A., Kramer, J. and Nuseibeh,
B. (editors): Software Process Modelling and Technology, 1994.

[6] Canals, G., Boudjlida, N., Derniame, J.C., Godart, C. and Lonchamp, J.: ALF: A
Framework for Building Process-Centred Software Engineering Environments. In
Finkelstein, A., Kramer, J. and Nuseibeh, B. (editors): Software Process Modelling and
Technology, 1994.

[7] Casallas, R.: Using Triggers in a Software Configuration Manager, Techn. Rep., Labo-
ratoire de Génie Informatique, Grenoble, 1992.

[8] Conradi, R., Fernström, C. and Fuggetta, A.: Concepts for Evolving Software Proc-
esses. In Finkelstein, A., Kramer, J. and Nuseibeh, B. (editors): Software Process
Modelling and Technology, 1994.

[9] Engels, G. and Groenewegen, L.P.J.: Specification of Coordinated Behaviour in the
Software Development Process (Position Paper). In Derniame, J.C. (editor): Proceed-
ings of the 2nd European Workshop on Software Process Technology (EWSPT 92),
Tronheim, Norway , Springer-Verlag, Berlin, LNCS 635, 1992.

[10] Engels, G. and Groenewegen, L.P.J.: SOCCA: Specifications of Coordinated and Coop-
erative Activities. In Finkelstein, A., Kramer, J. and Nuseibeh, B. (editors): Software
Process Modelling and Technology, 1994.

[11] Estublier, J.: The Adele Configuration Manager, Techn. Rep., Laboratoire de Génie
Informatique, Grenoble, 1992.

[12] Estublier, J.: The Adele Work Space Manager, Techn. Rep., Laboratoire de Génie Infor-
matique, Grenoble, 1994.

[13] Groenewegen, L.P.J.: Parallel Phenomena 1 - 14, Techn. Rep. 86-20, 87-01, 87-05, 87-
06, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17, 88-18, 90-18, 91-19, University of
Leiden, Department of Computer Science, 1986-1991.

E3 proposal: .

June 15, 1995 3:50 pm 98

SEED proposal II.7

June 15, 1995 3:50 pm 98TEMPO and SOCCA 98/98

[14] Junkermann, G., Peuschel, B., Schäfer, W. and Wolf, S.: MERLIN: Supporting in Soft-
ware Development Through a Knowledge-Based Environment. In Finkelstein, A.,
Kramer, J. and Nuseibeh, B. (editors): Software Process Modelling and Technology,
1994.

[15] Lonchamp, J.: A Structured Conceptual and Terminological Framework for Software
Process Engineering. In Osterweil, L. (editor): Proceedings of the 2nd International
Conference on the Software Process, Berlin, Germany, February, 1993.

[16] Melo, W.L.: TEMPO: Un Environnement de Développement Logiciel Centré Procédés
de Fabrication. Ph.D. Thesis. (French), Laboratoire de Génie Informatique, l’Université
Joseph Fourier, Grenoble, October 22, 1993.

[17] Montangero, C. and Ambriola, V.: OIKOS: Constructing Process-Centred SDEs. In
Finkelstein, A., Kramer, J. and Nuseibeh, B. (editors): Software Process Modelling and
Technology, 1994.

[18] Morssink, P.J.A.: Behaviour Modelling in Information Systems Design: Application of
the PARADIGM Formalism. Ph.D. Thesis, University of Leiden, Department of
Computer Science, 1993.

[19] Steen van, M.R.: Modelling Dynamic Systems by Parallel Decision Processes. Ph.D.
Thesis, University of Leiden, Department of Computer Science, 1988.

