
Graph Grammars andOperations on GraphsJan Joris VereijkenMay 19, 1993
Department of Computer ScienceLeiden UniversityThe Netherlands

iiMaster's Thesis, Leiden University, The Netherlands.Title : Graph Grammars and Operations on GraphsAuthor : Jan Joris VereijkenSupervisor : Dr. Joost EngelfrietCompletion date : May 19, 1993

Copyright c
1993 � Jan Joris Vereijken � Leiden Typeset by AMS-LaTEX.

iii
Problems worthyof attackprove their worthby hitting back.

Contents1 Introduction 11.1 Graph grammars : 11.2 The structure of this thesis : 21.3 Closing remarks : 42 De�nitions 52.1 Terminology : 52.2 Typing : 82.3 Typed alphabets : 92.4 Typed languages : 102.5 Typed grammars : 112.6 Typed languages versus typed grammars : : : : : : : : : : : : : : : : : : : 123 I/O-hypergraphs 173.1 De�nition : 173.2 Terminology : 183.3 Depiction of hypergraphs : 193.4 Ordinary graphs : 203.5 String graphs : 203.6 External versus internal nodes : 223.7 Hypergraph languages : 223.8 Union of hypergraph languages : 234 Composition 254.1 Sequential composition : 254.2 Sequential composition versus degree and loops : : : : : : : : : : : : : : : 274.3 Parallel composition : 284.4 Sequential versus parallel composition : 29v

vi Contents4.5 Expressions used as a function : 315 Decomposition 335.1 De�nition : 335.2 HGR ��! LA : 345.3 LA ��! LB : 355.4 LB ��! LC2 [LC3 : 365.5 LC3 �;+�! LC1 [LC2 : 375.6 LC2 �;+�! LC4 [LC5 : 375.7 LC4 �;+�! LC6 : 405.8 LC5 �;+�! LC6 : 415.9 LB �;+�! LC : 415.10 Conclusions : 416 Folds and
ips 436.1 De�nition : 436.2 Basic properties : 446.3 Derived properties : 457 Interpretation 477.1 De�nition of an interpreter : 477.2 De�nition of Int : 487.3 Examples of interpretation : 497.4 Edge Normal Form : 517.5 Existence of isomorphic copies : 527.6 Bounded degree implies bounded cutwidth : : : : : : : : : : : : : : : : : : 538 Power of interpretation 578.1 Int(RLIN) = Int(LIN) : 578.2 Int(RLIN) = Int(DB) : 648.3 Int(STR(Int(K))) = Int(K) : 728.4 About STR(Int(RLIN)) : 788.5 The power of interpretation theorems : 798.6 Conclusions : 809 Closure properties of Int(K) 839.1 Closure under sequential composition : 839.2 Closure under union : 84

Contents vii9.3 Closure under Kleene closure : 849.4 Closure under +fUng and fUng+ : 859.5 Closure under parallel composition : 869.6 Closure under fold and backfold : 869.7 Closure under
ip : 869.8 Closure under split : 889.9 Closure under edge relabeling : 889.10 Conclusions : 8810 Another characterization 9110.1 Using HGR : 9110.2 Using the sequential pseudo base set : 9210.3 Using the full base set : 9310.4 Conclusions : 9311 Other literature 9511.1 Introduction : 9511.2 Engelfriet and Heyker : 9611.3 Context-Free Hypergraph Grammars : 9711.4 split(�(LIN-CFHG)) = Int(RLIN) : 9811.5 Int(RLIN) Int(CF) : 10111.6 Int(CF) split(�(CFHG)) : 10211.7 Bauderon and Courcelle : 10411.8 Habel and Kreowski : 10611.9 Further reading : 10712 Summary 10913 Acknowledgments 111A Naming conventions 113B Proofs 117B.1 Proofs concerning Section 6.3 : 117B.2 Proofs concerning Section 8.2 : 120Bibliography 127Index 129

For those who like this sort of thing,this is the sort of thing they like.| Abraham Lincoln 1Introduction1.1 Graph grammarsJust like sets of strings (string languages) can be characterized by string grammars, sets ofgraphs (graph languages) can be characterized by graph grammars. Over the past decade,a lot of research has been done into this subject. The approach mainly taken was eitherto rewrite edges, or to rewrite nodes.However, a completely di�erent approach to de�ne graph languages is also imaginable:one de�nes a number of operations on graphs (including constants), and considers a stringlanguage of expressions over these operations. The graphs obtained by evaluating theseexpressions then form a graph language.In this thesis we describe and investigate a simple formalism of the latter kind. Wede�ne only one nonconstant operation on graphs: sequential composition.When we now take a string language over some alphabet, and a function from thatalphabet to a set of graphs, we can do the following. For each string in the language, takethe graphs one obtains by applying the function to all the symbols that form that string.Now take the sequential composition of all those graphs, in the order as indicated by theorder of the symbols that form the string. This yields a graph. So, for every string inthe language, we obtain a graph. Together they form a graph language. We have calledthis formalism interpretation: we take a string language and a function, and interpretthe strings in that language as graphs, in the way indicated by that function (called theinterpreter). Note that the symbols in the alphabet may be viewed as graph constants,1

2 Introductionthat can be arbitrarily interpreted as graphs, by the interpreter. Strings may be viewedas expressions over these constants and sequential composition. Thus, concatenation ofstrings is interpreted as sequential composition of graphs.This formalism to associate graph languages with string languages has the followingobvious advantage above a graph grammar formalism. From formal language theory, a lotof di�erent classes (for example, the Chomsky hierarchy) of string languages are known.By means of interpretation, we can immediately derive classes of graph languages fromthese classes of string languages. For example, from the class of all regular languages, weinstantly derive the class of all graph languages obtainable by interpretation of regularlanguages. In this way, for every known class of string languages, we now also have acorresponding class of graph languages.In the chapters to follow, we will investigate the relations between several classes ob-tained by interpretation in this way. We will look at their properties, and how our formalismrelates to other formalisms (mainly graph grammars) that were proposed to de�ne graphlanguages. That brings us to the title of this thesis: \Graph Grammars and Operationson Graphs". In our view, a string grammar/interpreter pair is just a \graph grammar indisguise". This will be justi�ed by the results we will �nd; they are very much alike theresults obtained by using a \real" graph grammar.1.2 The structure of this thesisThe structure of this thesis is the following. In Chapter 2, we lay out the mathematicalframework needed to express ourselves. In particular, we will introduce the concept of typ-ing: every symbol, string, string language, graph, or whatever, has two integers associatedwith it, its input type, and its output type.As we will want to interpret concatenation as sequential composition, we will need aspecial kind of graphs, namely i/o-hypergraphs (Chapter 3). These have distinguished inputnodes and output nodes, so we have an easy way to de�ne how the sequential compositionacts on them: roughly speaking, sequential composition connects two graphs to one anotherby \hooking" the �rst's output nodes to the second's input nodes, just like railroad carsare hooked together to form a train. By the typing, we indicate the number of nodes thatneed to be hooked. If we now make sure that the types of two neighboring symbols withina string match, and that the interpretation function preserves the type of the symbols, wecan guarantee that in the process of interpreting we will only apply sequential compositionto graphs that \�t". This is, in short, the reason we need all our objects to be typed:to ensure that all our operations are applied in a way that makes sense, i.e., the objectsoperated on must �t.

The structure of this thesis 3Then, in Chapter 4, we formally de�ne the sequential composition operation, and its lessimportant counterpart, parallel composition. Using these operations, we can take \small"graphs, and use them to build larger ones. As noted, sequential composition is like hookingrailroad cars together, with graphs. Continuing this metaphor, parallel composition is likestacking railroad cars on top of one another (for example, in order to build a double-deckautomobile carrier).Just like the composition operations build larger graphs form small ones, we can alsodo the opposite: take a large graph to pieces, namely small graphs. In Chapter 5, weinvestigate this process, which is called decomposition. We will try to �nd the \smallest"set of \small" graphs from which all other ones can be built. Or in other words, we searchfor the \basic building blocks" of graphs (the answer, more or less, is: edges).In Chapter 6 we introduce four auxiliary operations on graphs. These operations do notoperate on the internal structure of graphs, but only on the \super�cial" structure of whichdistinguished nodes are input nodes, and which ones are output nodes. Some properties ofthese operations are investigated. They will \only" be needed to conveniently express thetechnical details of some proofs, but nonetheless they have a beauty of their own.After that, in Chapter 7, we are �nally ready to introduce the formalism of interpreta-tion, and will devote three chapters to the investigation of its power and properties. Firstof all, we will prove some theorems about classes of graph languages obtained by interpre-tation, one of them concerning a normal form for interpretation. Most importantly, thesetheorems will gain us an insight in the structure of these kinds of classes.Then, in Chapter 8, we look at the classes of regular, linear, and derivation-boundedlanguages under interpretation. As it turns out, all three give rise to the same class, whichwe propose as the \class of regular graph languages". Furthermore, we indicate how largea class can get so that under interpretation it is still the same as the class of all regulargraph languages. This culminates in the two \power of interpretation" theorems, whichgive strong indications on the power of interpretation.In Chapter 9 we look at some closure properties of a general class of graph languagesobtained by interpretation. The conditions for closure will be given in terms of closureproperties of the underlying class of string languages on which the interpretation acted.Following that, there are two chapters where we make comparisons with other for-malisms. In Chapter 10 we give a \smallest class closed under : : : " characterization of theclass of all regular graph languages, and in Chapter 11 we look at the relations betweenthe formalism of interpretation and some other formalisms that have been proposed in theliterature. Luckily, our idea of \the class of regular graph languages" corresponds very wellwith some classes proposed by other researchers.There are two appendices. In Appendix A we account for the naming conventions (e.g.,

4 Introductionn is always an integer, w is always a string of symbols) we have used throughout this thesis.By strictly adhering to these conventions, we hope to have made our constructions easierto read. Appendix B contains some proofs that we did not want in give in full in the maintext.Finally, there is a Bibliography, which contains information about the literature werefer to, and an extensive Index.1.3 Closing remarksThis Master's thesis was written in the �nal ful�llment of the requirements for a Master'sdegree in Theoretical Computer Science at theRijksuniversiteit te Leiden, The Netherlands,under the supervision of Dr. Joost Engelfriet.For those curious, the motto on page iii appeared as a fortune cookie on my computerterminal one winter night at 4:30 AM, when after a whole night of TEX'ing and �ddlingwith the de�nition of interpretation, I found out that I had \�xed" the de�nition, butbroken all my proofs, seemingly beyond repair. Disillusioned I logged out of our vax/vmssystem, only to end up with a screen that said, in large, friendly, VT100 letters:Problems worthy of attack provetheir worth by hitting back.It seemed very appropriate.

We will restrict ourselves to natural numbersonly, as there are quite enough of these.| Edsger Wybe Dijkstra 2De�nitionsIn this chapter the de�nitions and notations are laid out of the mathematical frameworkwe will need. Some of them are very common, and in wide use, and some are quite novel.In particular, we introduce typed variants of the concepts of a grammar and a language,as noted in the introduction.2.1 TerminologyWe assume the reader to be familiar with elementary set theory (see, e.g., [Kam50], [BS87,x5], or [Her75, x1.1]), and elementary formal language theory (see, e.g., [HU79] or [CL89]).Some basic knowledge about graphs is also useful (see, e.g., [BS87, x11] or [Joh84, x3]).Numbers: N denotes the set f0; 1; 2; : : : g of all nonnegative natural numbers. The in-terval f1; : : : ; ng is denoted by [n], and the interval fm; : : : ; ng by [m;n]. For a �nite setV N, by max(V) we denote the largest element of V , and by min(V) the smallestelement.Sets: Set inclusion is denoted by �, proper set inclusion by , set union by [, setintersection by \. Set di�erence is denoted by n or �. The symbols � and ! denote theinverses of � and . The empty set is denoted by ?, set membership by 2, or inversely,3. For a set V , P(V) denotes the power set of V ; P(V) = fW j W � V g. The cardinality5

6 De�nitionsof a set V is denoted1 by jV j. The cartesian product of two sets V and W is denoted byV �W , and the n times repeated cartesian product of a set V with itself by V n.Sequences: A sequence over a set V is denoted (v1; : : : ; vn), the empty sequence () by �,and V � denotes the set of all sequences. The length of a sequence � 2 V � is denoted by j�j.A sequence of length n will also be called an n-sequence.Logic: By TRUE and FALSE we denote the boolean constants for true and false. Logicalor is denoted by _, and logical and by ^. The symbol =) denotes logical implication,and () logical equivalence (if and only if). We follow the convention to write \i�"as a shorthand for \if and only if". The symbol 8 denotes universal quanti�cation (\forall") and 9 denotes existential quanti�cation (\there exists"). These quantors are alwayssubscripted by the declarations of the variables that are local to the quanti�cation, e.g.,8a;b;c;n2N+ (n � 3 =) an + bn 6= cn). Name clash ambiguities between local and globalvariables are not allowed.Relations: The symbol � always denotes an equivalence relation. For a set V and anequivalence relation � on V , the equivalence class of v 2 V with respect to � is denotedby [v]�, and the set of all equivalence classes by V=�. An equivalence relation � on someset V may be thought of as a set, namely the set f (v; v0) 2 V � V j v � v0 g of all pairsfrom V that are equivalent.We extend the notation to sequences and functions in the following way. For a sequence(v1; : : : ; vn) over a set V , and � an equivalence relation on V , by [(v1; : : : ; vn)]� we denotethe sequence ([v1]�; : : : ; [vn]�). For a function f : V1 ! V2 and an equivalence relation �on V , the function f� is de�ned as f�(v) = [f(v)]�, for all v 2 V1. By the symbol � wedenote the informal concept of \approximate" equality. Formally, � means nothing at all !Functions: For two functions f : V1 ! V2 and g : V2 ! V3 the composition is written asg � f , and for all v 2 V1, (g � f)(v) = g(f(v)). The restriction of a function f : V ! Wto a subset V 0 of V is denoted f � V 0. A function f : V ! W whose domain V containsexactly one element may be denoted a 7! f(a), where a is that one element. For a bijectivefunction (also called bijection) f : V1 ! V2, its inverse is denoted f�1 : V2 ! V1.Alphabets: An alphabet (also called ordinary alphabet) is a nonempty �nite set of sym-bols. A ranked alphabet is an alphabet that has a rank from N associated with every1Warning : the symbol # is only used in identi�er names, not to denote set cardinality.

Terminology 7symbol. For an alphabet � and a symbol a 2 �, this rank is denoted as rank�(a). Toexpress its rank, a symbol a with rank n may be denoted (a; n).Strings: A string2 over an alphabet � is a sequence w 2 ��, a substring v 2 �� of astring w 2 �� is a string such that there exists strings u; z 2 �� such that uvz = w. Ifu = � the string v is called a pre�x of w, and if furthermore v and z are both nonemptyit is called a proper pre�x. Conversely, when z = �, the string v is called a post�x, and aproper post�x if also u and v are nonempty. By the symbol � we denote the concatenationof strings. For a string w = a1 : : : an its reverse an : : : a1 is denoted by wR. This operationis called reversal. A language over an alphabet � is a set L � ��, in other words, a setof strings over �. If we say that L is strictly over �, we mean that all symbols are reallyused, i.e., for all a 2 � there exists a string w 2 L such that a is a substring of w.Grammars: A context-free grammar is denoted G = (N;T; P; S), where N is the non-terminal alphabet, T is the terminal alphabet (disjoint with N), P is the set of productions(of the form A! � with A 2 N , and � 2 (N [T)�), and S 2 N is the initial symbol. Aderivation of an � 2 (N [T)� by a nonterminal A 2 N will be denoted A)� �. Whenwe want to explicitly mention the length k of the derivation, we write A)k �. We maypre�x any of these syntactic constructs by the name G of the grammar in order to stressto which grammar it belongs. E.g.: G : A)� �, meaning A derives � in G. The set of allcontext-free grammars is denoted by G(CF). For a context-free grammar G the languageit de�nes is denoted L(G).Classes of languages: The class of all context-free languages, fL(G) jG 2 G(CF) g isdenoted by L(CF). The following well-known classes of context-free languages are used inthis thesis: L(RLIN), the class of all right-linear languages, L(LIN), the class of all linearlanguages and L(DB), the class of all derivation-bounded languages. Where there can beno confusion, we may omit the L's.A language L is said to be right-linear i� it can be generated by a context-free grammarG that satis�es the restriction that for every p 2 P , p is of the form A! wB, or A! w,where A;B 2 N and w 2 T �. Such a grammar G is also called right-linear. The class of allright-linear languages is also often called the class of all regular languages, and therefore,sometimes denoted as REG.A language L is linear i� it can be generated by a context-free grammar G that satis�esthe restriction that for every p 2 P , p is of the form A! vBw, or A! v, where A;B 2 Nand v;w 2 T �. Such a grammar G is also called linear.2Traditionally, strings are also often called words.

8 De�nitionsA language L is derivation-bounded i� it can be generated by a context-free grammar Gsuch that for some m 2 N, for every w 2 L there is a derivation S) �1) � � �) �n) w,where �i 2 (N [T)�, in G such that there is no �i that contains more than m occurrencesof symbols from N . This bound m is called the derivation bound. Such a grammar G isalso called derivation-bounded.The relation between the above mentioned classes of languages is RLIN LIN DB CF (note that all inclusions are proper).Formally, if X is a property of a grammar, then G(X) is the class of all grammarsthat have that property, and L(X) = fL(G) jG 2 G(X) g is the class of all languagesgenerated by those grammars. So, strictly speaking, RLIN (for example) is a property ofgrammars (namely, right-linearity), G(RLIN) is a class of grammars, and L(RLIN) is aclass of languages. As noted, we will informally often omit the L, and use X to denoteL(X).2.2 TypingAs noted in the introduction, we want our objects to be \typed". That is, with almostevery object, be it a symbol, an alphabet, a language, or whatever, we want to associate atype, denoted (m! n) (where m;n 2 N).The general idea behind this is twofold. Firstly, for some our functions we will wantto require type preservingness, i.e., the function must always return an object of the sametype as the object it took as argument. Secondly, we will want to specify type conditions,i.e., some binary operations will only be de�ned under certain conditions on the types ofthe two arguments. In this way, we can always assure that the results of our computationsare de�ned and meaningful.Compare this to what happens in strongly typed programming languages. Take forexample pascal. There all variables have to be declared, and must be used in accordancewith their declaration. So when, e.g., we declare var n:integer; x:real; the assignmentx := sqrt(n); makes sense, but n := sqrt(x); will result in a compile-time error. Orcompare it to what happens in physics, where we have the concept of unit. We are onlyallowed to operate on quantities in a way that makes sense with respect to their respectiveunits. So, one kilogram plus two kilograms makes three, but two meters plus four secondsis always nonsense. Just as obeying the declarations in pascal program, and the units ina physical computation, is a sine qua non for the results to make sense, we will have toobey certain rules of typing too.The reason that we want to give each object an input type and an output type, is thatour graphs (to be de�ned later) will have two distinguished types of nodes: input nodes,

Typed alphabets 9and output nodes. Intuitively, an object of type (m ! n) stands as a placeholder for agraph with m input nodes and n output nodes.In the three sections to follow, we will de�ne typed variants of the concepts of analphabet, a language and a grammar.2.3 Typed alphabetsA typed alphabet is an alphabet that has two ranks from N associated with every symbol.For an alphabet � and a symbol a 2 �, these two ranks are denoted as #in�(a) (the inputtype) and #out�(a) (the output type). We may drop the subscribed � where there can beno confusion. A symbol a 2 � with input type m and output type n may also be denoted(a;m! n). It is said to be of type (m! n). If we want to stress the fact that a symbolbelongs to a typed alphabet, we may call it a typed symbol. Consequently, a symbol froman ordinary alphabet may be called an ordinary symbol. Mutatis mutandis, we de�ne atyped set to be a set that has two ranks from N associated with every element, and referto a nontyped set as an ordinary set.A typed alphabet �1 and an ordinary alphabet �2 such that both contain exactly thesame symbols are considered equal (denoted �1 = �2), albeit there are two functionsthat are de�ned on the �rst that are unde�ned on the second (also see the \philosophicalsidenote" at the end of Section 2.4).Let � be a typed alphabet. For two symbols a1; a2 2 �, the concatenation w = a1 �a2 isonly de�ned when#out(a1) =#in(a2). The type of the resulting string w is (#in(a1)!#out(a2)). Kleene closure on � is de�ned as follows:�+ = f a1 : : : an jn � 1;#out�(ai) =#in�(ai+1) for 1 � i < n; a1; : : : ; an 2 � g ;�� = f (�; n! n) jn 2 N g [�+:Here (�; n ! n) denotes the empty string of type (n ! n) (note that there is no suchthing as a (�;m ! n) where m 6= n). For a nonempty string w 2 ��, � = a1 : : : an theinput type of w, denoted #in�(w), is #in�(a1). The output type, denoted #out�(w), is#out�(an). A string w 2 �� of type (m! n) can be denoted (w;m! n). Note that ��is a typed set.A string w = a1 : : : an over a typed alphabet � is called correctly internally typed if#out�(ai) = #in�(ai+1) for all 1 � i < n. Note that, by the above de�nition of Kleeneclosure on a typed set, �� consists of exactly all correctly internally typed strings over �.Concatenation of two strings v;w 2 �� is only de�ned when the output type of the �rst

10 De�nitionsmatches the input type of the second. So for (v;m! n) and w;n! k) we de�ne:(v;m! n) � (w;n! k) = (vw;m! k):Note that for a string v 2 �� all substrings of w are also in ��. By de�nition of a substring,the empty string (�; n ! n) is a substring of v i� there is a symbol a 2 � in v such that#in�(a) = n or #out�(a) = n.As with symbols, we will use the terms ordinary string and typed string to discriminatebetween the two.2.4 Typed languagesA typed language L is a set of correctly internally typed strings over some typed alphabet�, such that all strings have the same type:8w1;w22L (#in(w1) =#in(w2) and #out(w1) =#out(w2)) :A typed language L in which all strings are of type (m! n) can be denoted (L;m! n)when clarity demands it. We say that L is of type (m ! n). If necessary, the input andoutput type can be denoted as follows: #in(L) = m and #out(L) = n. In the case of theempty language of type (m! n), we need to write (?;m! n) to make its type explicit.If m = n, L is called of uniform type. Note that a typed language that contains the emptystring � must necessarily be of uniform type: a typed � always has the same input andoutput type, say (�; k ! k), for some k 2 N, and all strings in L have the same type, soL has type (k ! k).Concatenation, union, and Kleene closure are de�ned on typed languages over the samealphabet � in the following way (let (L;m ! n), (L1;m1 ! n1) and (L2;m2 ! n2) betyped languages).� L1 �L2 = fw1 �w2 jw1 2 L1 and w2 2 L2 g, in the case that n1 = m2, and unde�nedotherwise. Note that L1 � L2 is of type (m1 ! n2),� L1 [L2 = fw jw 2 L1 or w 2 L2 g, in the case that m1 = m2 and n1 = n2, andunde�ned otherwise. Note that L1 [L2 is of type (m1 ! n1),� L� = S1k=0 Lk, in the case that m = n, and unde�ned otherwise. Here Lk denotes L, ktimes concatenated to itself. L0 denotes the appropriate unity element, f(�;m! m)gin this case. Note that L� is of type (m! m).

Typed grammars 11Finally, when we want to stress the fact that a string language is not typed, we will referto it as an ordinary string language. For a typed string language L, the ordinary stringlanguage L0 such that L and L0 contain exactly the same strings (albeit those in L aretyped, and those in L0 are not) is called the underlying language of L0.For a class K of ordinary string languages, we denote by L�(K) the class of all typedlanguages whose underlying languages are in L(K). Note that since we use X to denoteL(X), L�(X) denotes L� (L(X)).As a \philosophical" sidenote: normally we would consider two languages equal i� theycontain exactly the same strings. In order to remain faithful to this intuitive concept, wewill allow a typed language L1 and a nontyped language L2 to be equal to each other, albeitthat nonetheless there is a di�erence: the strings in L1 have a type associated with them,those in L2 do not. This (non)typing, however, is not considered to be all that importantfor the essence of the language, it is merely something that is added on for convenience.We will write: L1 = L2.If all this sounds counter-intuitive, notice that something similar is being done in or-dinary formal language theory, where two languages over di�erent alphabets can be thesame, provided only a common subset of symbols from both alphabets is actually used inthe two languages.In other words: not where the symbol came from (the one alphabet or the other)matters, but what the symbol is.Note that from this point of view L(CF) = L�(CF)! (Proof: assign type (0 ! 0)to all symbols.) So when we write L 2 L� (CF) formally speaking we could just as wellhave dropped the � . However, in what follows we will implicitly assume that the � inL 2 L�(CF) means that we have a �xed typing in mind for that L.Unfortunately, this also prohibits us from writing L1 = L2, if, for two typed languagesL1; L2, we want to express that they are equal and also have the same typing de�ned onthem (or = would not be an equivalence relation anymore, something we certainly do notwant to happen). Therefore, we will write L1 =� L2 instead, if we want to express thatL1 = L2 and L1; L2 � �� for some typed alphabet �, i.e., L1 and L2 are equal even withthe typing. Note that =� indeed is an equivalence relation.2.5 Typed grammarsA context-free grammar G = (N;T; P; S) where N and T are typed alphabets is calledtyped, if for every production p : A ! �, A 2 N , � 2 (N [T)�, A and � are of thesame type. Be aware that the Kleene closure is over a typed alphabet, so � is a correctlyinternally typed string with respect to N [T . Let G0 = (N 0; T 0; P 0; S0) be the underlying

12 De�nitionsgrammar of G, i.e., N 0 = N , T 0 = T (albeit there is no typing de�ned on N 0 and T 0),P 0 = P , and S0 = S. We now de�ne L(G), the typed language generated by the typedgrammar G: L(G) = 8><>:L(G0); typed according to T if L(G0) 6= ?;(?;#inN(S)!#outN (S)) if L(G0) = ?Warning: note that this de�nition only makes sense if L(G0) is a typed language withrespect to T . That this is indeed the case, will be proved in the next section, where wewill also prove that L(G) is always of the same type as S.When we want to stress the fact that a grammar is not typed, we will refer to it as anordinary grammar.We extend the notation G(X), all grammars with a certain property, (for example,X = CF), to G�(X), all typed grammars whose underlying grammar is in G(X).2.6 Typed languages versus typed grammarsContext-free typed languages and typed grammars are equivalent in the sense that everytyped grammar generates a context-free typed language, and that every context-free typedlanguage is generated by some context-free typed grammar. Formally:8G2G� (CF) L(G) 2 L� (CF);and8L2L� (CF)9G2G� (CF) L =� L(G): (2.1)Part 1:Firstly, we will prove that for every typed context-free grammar G, we have L(G) 2L� (CF)3. Let G = (N;T; P; S) 2 G� (CF), and G0 = (N 0; T 0; P 0; S0) the underlying gram-mar of G. Now for every production p : A ! �, A 2 N , � 2 (N [T)�, we have, byde�nition, #inN (A) =#in(N[T)(�), and #outN(A) = #out(N[T)(�). To start with, wewill prove that for every derivation: G0 : S 0)� �;where � 2 (N 0 [T 0)�, we have that:� � is correctly internally typed with respect to N [T , and,3Formally speaking, this is trivially true (by de�nition)! Recall however the above warning that we stillneed to verify that the de�nition is correct. This veri�cation is what the now following proof is about.

Typed languages versus typed grammars 13� with respect to N [T , � is of the same type as S0.We proceed by induction on the length of the derivation. Induction basis: length is 0.There is only one derivation of length 0: S 0)0 S 0, for which both conditions trivially hold.Induction step: length is k + 1. We assume that our claim holds for length k. Consider aderivation of length k + 1, which has the form:S0)k � p) �:To prove: � is correctly internally typed, and has the same type as S0. Let the productionapplied in the last step be p : A0!
. Then �must have the form �0A0�00, and consequently� the form �0
�00. As � is correctly typed internally, by the induction hypothesis, so are�0 and �00. And, as A0 has the same type as
, and
 is correctly typed internally (bothby the de�nition of p), necessarily � is correctly typed internally also. Furthermore, asobviously � has the same type as �, and, by the induction hypothesis, � has the same typeas S0, it is clear that � has the same type as S0. End of induction proof.Now for any w 2 T 0� in L(G0), i.e., S 0)� w, w has the same type as S 0 with respect toN[T , and is correctly internally typed with respect to N[T . As an important consequence,we now have veri�ed that L(G0) is indeed a correctly typed language with respect to T ,which ensures that the de�nition of the language generated by a typed languages (see theprevious section) is indeed meaningful.Consequently, all the above statements also hold for L(G), and, hence, L(G) is a typedlanguage of type (#inN(S) ! #outN(S)). Therefore, L(G) 2 L� (CF), which completesthe �rst part of the proof.Part 2:Secondly, for a given context-free typed language L 2 L�(CF) over some typed alphabet�, we will construct a context-free typed grammar G 2 G�(CF) such that L =� L(G). Wedistinguish three cases:� L = (?;m! n), for some m;n 2 N, or,� L = f(�; n! n)g, for some n 2 N, or,� none of the above.The �rst two cases are almost trivial. If L = (?;m! n), it is generated by the context-free typed grammar (f(S;m ! n)g;?;?; S). If L = f(�; n ! n)g, it is generated bythe context-free typed grammar (f(S; n ! n)g;?; fS ! (�; n ! n)g; S). The last case

14 De�nitions(\none of the above"), is the di�cult one. There, choose4 an ordinary, reduced, �-free,context-free grammar G = (N;T; P; S) (where T = �) such that L � f�g = L(G) (albeitthat there is a typing associated with L, and not with L(G)). Now extend G to a typedgrammar by de�ning functions #in and #out on N and T . Take #inT (a) = #in�(a),and #outT (a) =#out�(a), for every a 2 T . For a nonterminal A 2 N , de�ne #inN and#outN in the following way: if A)� w in G (with w 2 T+) then #inN (A) = #in�(w),and #outN (A) =#out�(w). Such a w always exists, as G is reduced and �-free.That this de�nition is consistent, i.e., if A)� v, and A)� w, then v and w are ofthe same type, is quite straightforward. Choose an arbitrary derivation S)� uAz (whereu; z 2 T �), the existence of which is guaranteed by the reachability of A. Because G iscontext-free we now have S)� uvz and S)� uwz. As uvz; uwz 2 L � �� we know that#in�(v) = #out�(u) = #in�(w), and #out�(v) = #in�(z) = #out�(w)5. Togetherwith the usefulness of A this consistency guarantees that #inN (A), and #outN (A), arealways properly de�ned.Left to show that the thus de�ned typing functions on N [T indeed make G a typedgrammar, i.e., that G satis�es the restriction that for all productions p : A ! �, � mustbe a correctly internally typed string over N [T , of the same type as A. Suppose � hasthe following form: � = w0A1w1 : : :wn�1An�1wn;where w0; : : : ; wn 2 T �, and A1; : : : ; An�1 2 N . By the reducedness of G, there now existderivations Ai)� vi, where vi 2 T �, for all 1 � i < n. So:A)� w0v1w1 : : : wn�1vn�1vn = z:By the reachability of A, there exists a u 2 L, such that z is a substring of u. As u iscorrectly internally typed, so is z. Furthermore, as for all Ai)� vi, 1 � i < n, Ai andvi have the same type, � is also correctly internally typed, and � has the same type as z,which is the type of A.Because we did not modify G in any way (we only extended N and T to be typed) thethus typed grammar obviously generates L�f�g. We now distinguish two cases. First case:� =2 L. This means L(G) =� L, so we have arrived at the typed grammar G we are lookingfor. Second case: � 2 L. By adding the production S ! (�;#inN (S)!#outN(S)) to P4Such a grammar always exists. See for example [HU79, x4.4].5These expressions are trickier than one might perceive at �rst sight. Note that we require a u and z tobe there. This in e�ect means that when u or z should happen to be \empty" we will use the empty typedstring of the appropriate type to represent them. In this case that would amount to (�;#in(L)!#in(L))for u, and likewise, (�;#out(L) ! #out(L)) for z. The reader should be alert for this \trick" whichoccurs several times in the chapters to follow (see also the index under \lambda trick").

Typed languages versus typed grammars 15we can extend the typed grammar G in such a way that L(G) =� L. Note that necessarily#inN (S) =#outN (S): as L is a typed language that contains a �, it must be of uniformtype. This completes the proof that for every L 2 L� (CF) there exists a G 2 G� (CF) suchthat L =� L(G).Finally, note that in proving (2.1) the only use we made of CF was that all languagesin L(CF) are context-free and all grammars in G(CF) are �-free reducible. Consequently,we can easily extend it to other classes than CF. Let X be a property of grammars suchthat L(X) L(CF) and G(X) �-free reducible, then:8G2G� (X)L(G) 2 L� (X);and8L2L� (X)9G2G� (X) L =� L(G): (2.2)In particular, the equivalence of typed languages with typed grammars holds for the prop-erties RLIN, LIN, and DB (this is not trivial, but checking the conditions is beyond thescope of this thesis).

Leibniz spoke of it �rst, calling it geometria situs. Thisbranch of geometry deals with relations dependent onposition alone, and investigates the properties of position.| Leonhard Euler 3I/O-hypergraphsIn this chapter, we will de�ne the kind of graphs we will be working with. Instead oftaking the standard de�nition of a directed graph, where edges stand for 2-sequences ofnodes, we will generalize to hypergraphs, where the hyperedges stand for n-sequences ofnodes. The reason for this is, that we want to compare our method to a well-known typeof context-free graph grammar that works with hypergraphs.Furthermore, we will de�ne a sequence of input nodes, and a sequence of output nodes.Hence the name: i/o-hypergraphs. This we do because in that way we can easily de�neoperations (read: sequential composition) on our graphs; our main operation will take twographs, and then \hook" the output nodes of the �rst to the input nodes of the second,thereby former a larger graph, just like railroad cars are hooked together to form a train.3.1 De�nitionLet � be a ranked alphabet. An i/o-hypergraph H over � is a 6-tuple (V;E;nod; lab;in;out) where V is the �nite set of nodes1, E is the �nite set of (hyper)edges, nod : E ! V �is the incidence function, lab : E ! � is the labeling function, in 2 V � is the sequence ofinput nodes and out 2 V � is the sequence of output nodes.If necessary, we can denote these components by VH , EH , nodH , labH , inH and outHrespectively, in order to avoid possible confusion with other hypergraphs. It is required1Traditionally, nodes are sometimes also called vertices.17

18 I/O-hypergraphsthat for every e 2 E, rank�(lab(e)) = jnod(e)j. If nod(e) = (v1; : : : ; vn), n 2 N, then viis also denoted by nod(e; i), and we say that e and vi are incident. In the same fashion, ifin = (v1; : : : ; vn), then vi is denoted in(i), and similarly for out. Furthermore, we de�ne#in(H) = jinj and #out(H) = joutj, the length of the input and output sequences.Where convenient, we may choose to view in and out as being sets. In such a case, theydenote the sets f in(i) j 1 � i � jinj g and f out(i) j 1 � i � joutj g respectively.Finally, we assume the reader to be experienced in the problem of concrete versusabstract graphs (where an abstract graph is a class of isomorphic concrete graphs). Asusual in the theory of graph grammars we consider graph languages (to be de�ned forhypergraphs in Section 3.7) to consist of abstract graphs; however, in all our constructionswe deal with concrete graphs (taking an isomorphic copy when necessary). The notion ofisomorphism is the obvious one, preserving the incidence structure, the edge labels, andthe sequences of input and output nodes.3.2 TerminologyLet H be the hypergraph (V;E;nod; lab; in;out). For v 2 V , by deg(v) we denote thenumber of edges incident with v, its degree. We extend this notation to H by de�ningdeg(H) =max(fdeg(v) j v 2 VH g).An i/o-hypergraph withm input nodes and n output nodes is said to be of type (m! n).Where convenient, it is called of input type m and of output type n. An i/o-hypergraphof type (n ! n) is called of uniform type n. An i/o-hypergraph of type (0 ! 0) is calledsimple. An i/o-hypergraph H such that no node v 2 VH appears more than twice in inH ,nor in outH, is called identi�cation free.For a ranked alphabet � the set of all i/o-hypergraphs over � is denoted by HGR(�).Note that HGR(�) is a typed set, under the following2 typing functions: for all H 2HGR(�), #inHGR(�)(H) = #in(H) and #outHGR(�)(H) = #out(H). The set of alli/o-hypergraphs of type (m ! n) over � is denoted by HGRm;n(�). Finally, by HGR,we denote the set of all hypergraphs (not restricted to some �xed alphabet).From now on, unless the context proves otherwise, the word \hypergraph" is used as asynonym to \i/o-hypergraph".2Note that the left-hand side refers to #in, the input type of a typed set, and the right-hand side to#in, the length of the input sequence of H

Depiction of hypergraphs 193.3 Depiction of hypergraphsSometimes, instead of just formally de�ning a hypergraph, we will also give a graphical(hypergraphical?) representation of it. In depicting a hypergraph H we will follow thefollowing conventions (almost literally adopted from [EH91, page 331]). A node of H isindicated by a fat dot, as usual, and an edge e of H is indicated by a box containinglab(e), with a thin line between e and nod(e; i), labeled by a tiny i. These lines (or thecorresponding integers) are also called the tentacles of the hyperedge e. An edge e withtwo tentacles (i.e., with jnod(e)j = 2) may also be drawn as a thick directed line fromnod(e; 1) to nod(e; 2), with label lab(e), as usual in ordinary graphs. The input nodesinH(i) are indicated by a label i to the left of the nodes, the output nodes outH(i) by alabel i to the right of the nodes.In the following example, of a hypergraphH = (V;E;nod; lab; in;out) of type (4! 3),all conventions can be observed.
b abu1; 3 u u4 1

u2 2u 3�c��������� ������@@@@@@1 2; 3 1 32
Here V = fv1; v2; v3; v4; v5g, E = fe1; e2; e3; e4g, nod(e1) = (v1; v2; v2), nod(e2) = (v2; v1),nod(e3) = (v2; v4; v3), nod(e4) = �, lab(e1) = b, lab(e2) = c, lab(e3) = b, lab(e4) = a,in = (v1; v3; v1; v5), and out = (v5; v3; v4).There is only one hypergraph that cannot be satisfactorily depicted by these conven-tions: the \empty" hypergraph (?;?;?;?; �; �), which has no nodes, and no edges. Wewill depict it by a big ? symbol.

20 I/O-hypergraphs3.4 Ordinary graphsOrdinary (directed) graphs, that is hypergraphs where all edges are incident with exactlytwo nodes, are special cases of hypergraphs. In other words: a hypergraph over a rankedalphabet � is an ordinary graph i� for all symbols a 2 �, rank�(a) = 2. For an ordinarygraph H, an edge e 2 EH such that nodH(e; 1) = nodH(e; 2) (i.e., both tentacles of e areincident with the same node) is called a loop.On ordinary graphs we will de�ne the notion of cutwidth. Let H be an ordinary graph,and suppose that jVH j = n. Now a bijection f : VH ! f1; : : : ; ng is called a linear layoutof H. A cut is one of the numbers i with 1 � i < n. Intuitively, H is cut between nodef�1(i) and f�1(i+ 1)), and by the width of cut i is meant the number of edges that crossthis cut, i.e., those edges e for which either f(nod(e; 1)) � i and f(nod(e; 2)) > i, orf(nod(e; 2)) � i and f(nod(e; 1)) > i. The cutwidth of H under f , denoted cw(H; f),is the maximum number of edges e, for all 1 � i < n, for which either f(nod(e; 1)) � iand f(nod(e; 2)) > i, or f(nod(e; 2)) � i and f(nod(e; 1)) > i. Thus, cw(H; f) is themaximal width of all cuts. The cutwidth of H, denoted cw(H), is de�ned as follows:cw(H) =min(f cw(H; f) j f is a linear layout of H g): (3.1)The following lemma on cutwidth gives as absolute upper bound on the cutwidth of anygiven ordinary graph, as a function of the number of nodes it has. For a given ordinarygraph H, over some alphabet �, and a linear layout of f ofH the cutwidth of H is boundedby 12 � deg(H) � jVH j: 8H2HGR(�)f :VH![jVH j] cw(H; f) � 12 � deg(H) � jVH j : (3.2)The proof is trivial, as obviously cw(H; f) � jEH j, and clearly, by elementary graph theory,jEH j � 12 � deg(H) � jVH j. Therefore, no more than 12 � deg(H) � jVH j edges can possibly becut in any linear layout. This observation immediately leads to the following, somewhatweaker, lemma: 8H2HGR(�) cw(H) � 12 � deg(H) � jVH j : (3.3)Finally, a linear layout f : VH ! f1; : : : ; ng may intuitively be thought of as the sequence(f�1(1); : : : ; f�1(n)) of all nodes in H.3.5 String graphsAn ordinary graph where all edges \lie in line" is called a string graph. This is due tothe fact that every string can be uniquely represented as a string graph. For example, the

String graphs 21string: abacabcorresponds to the following string graph (i.e. ordinary graph, i.e. hypergraph):-a -b -a -c -a -bu u u u uu1 u 1Formally, for an ordinary string w = a1 : : : an over an alphabet �, the string graph corre-sponding with it, denoted gr(w), is de�ned as follows:gr(w) = (V;E;nod; lab; in;out);where V = fv0; : : : ; vng; E = fe1; : : : ; eng;nod(ei) = (vi�1; vi) and lab(ei) = ai; for 1 � i � n;in = (v0);out = (vn):Note that by this de�nition, gr(�) consists of just one node, and no edges (as one wouldexpect), and: 8w1;w22�� gr(w1 � w2) = gr(w1) � gr(w2): (3.4)The function gr : �� ! HGR(�) is, as can be easily checked, injective. In other words:no two di�erent strings are ever mapped to the same string graph, so, as noted, a stringgraph uniquely represents a certain string. The degree of a string graph is a direct functionof the length of the underlying string. For a string w:deg(gr(w)) = 8>>>><>>>>:0 if jwj = 0;1 if jwj = 1;2 if jwj � 2: (3.5)Therefore, a string graph H always has deg(H) � 2. Finally, note that a string graphnever contains a loop, as can be directly seen in the de�nition.Now for a class K of hypergraph languages, by STR(K) we denote the class of allordinary string languages L such that gr(L) 2K:STR(K) = fL jgr(L) 2K g :Note that STR(K) is a class of string languages, not hypergraph languages, and fur-thermore that for every class K of hypergraph languages, and every class K of string

22 I/O-hypergraphslanguages: STR(gr(K)) = K (3.6)gr(STR(K)) �K: (3.7)3.6 External versus internal nodesNodes that are either input nodes, output nodes, or both, are called external nodes. Twohypergraphs H1 = (V1; E1;nod1; lab1; in1;out), H2 = (V2; E2;nod2; lab2; in2;out2) aresaid to be equal modulo i/o, denoted H1 �io H2, when V1 = V2, E1 = E2, nod1 = nod2,and lab1 = lab2. In other words, H1 �io H2 holds when H1 is equal to H2, except possiblyfor their input or output sequences. Note that �io is an equivalence relation, and that interms of external nodes a simple hypergraph is just a hypergraph with no external nodes.This notation is extended to sets of hypergraphs in the following way. For two setsof hypergraphs L1 and L2 we have L1 �io L2 if for every H 2 L1 there exists a H 0 2 L2such that H �io H 0, and, vice versa, for every H 2 L2 there exists a H 0 2 L1 such thatH �io H 0.Nodes that are not external are called internal nodes.3.7 Hypergraph languagesA hypergraph language over a ranked alphabet � is a set of hypergraphs L � HGR(�).We require that all hypergraphs in L be of type (m ! n). L is called of type (m ! n).Like hypergraphs, when L is of type (n ! n), it is called of uniform type n. Whereconvenient, we will write (L;m! n) instead of just L, to explicitly express the type. Theempty language must have a type too. The empty hypergraph language of type (m! n)is almost always denoted (?;m! n) because its type cannot simply be derived from thehypergraphs within it, as is the case with a nonempty hypergraph language.The notion of a type extends to classes of hypergraph languages. When a class K ofhypergraph languages only contains hypergraph languages of type (m! n) it is also calledof type (m! n). Otherwise, it is called of mixed type. Note that there is no such thing asa hypergraph language of mixed type3.When L contains exactly one hypergraph, it is called a singleton hypergraph lan-guage. For a set of hypergraphs (not necessarily a hypergraph language) L, Sing(L)3It is very well possible to put hypergraphs of di�erent types in one set, but that is not a hypergraphlanguage as far as our de�nition is concerned.

Union of hypergraph languages 23denotes the class of all singleton hypergraph languages in P(L): Sing(L) = fL0 j L0 �L and L0 is a singletong. This class Sing(L) is called the singleton class derived from L.A hypergraph language L is said to be of bounded degree k if for all graphs H 2 L, thedegree of H is � k. A hypergraph language L that contains only ordinary graphs, is saidto be of bounded cutwidth k (where k 2 N) if for all graphs H 2 L the cutwidth of H is� k.3.8 Union of hypergraph languagesFor two hypergraph languages L1 = (V1;m! n) and L2 = (V2;m! n) of the same type,the union of both is de�ned as the hypergraph language L3 = L1[L2 = (V1[V2;m! n).Note that the resulting hypergraph language is also of type (m! n). The empty languageof type (m! n), (?;m! n), is the unity element of this union.Actually we are de�ning countably in�nite union operators: one for every type (m! n).When convenient, we will write [m;n instead of just [to make clear we are applying theunion operator to hypergraph languages of type (m! n).

Text processing has made it possible toright-justify any idea, even one whichcannot be justi�ed on any other grounds.| J. Finnigan 4CompositionIn this chapter we will de�ne two binary operations on hypergraphs: sequential composition(the main one), and parallel composition. Using these operations it is possible to takeseveral hypergraphs and use them to build a larger one.4.1 Sequential compositionThe sequential composition of two hypergraphs H1 and H2, denoted H1 �H2, is only de�nedwhen #out(H1) = #in(H2). One �nds H1 �H2 by �rst taking the disjoint union of H1and H2, and then identifying the ith node of outH1 with the ith node of inH2 , for every1 � i � #out(H1). The resulting graph H1 � H2 has inH1 as input node sequence, andoutH2 as output node sequence. Formally, H1 �H2 is de�ned as:((VH1 [VH2)=�; EH1 [EH2; (nodH1 [nodH2)�; labH1 [labH2; [inH1]�; [outH2]�);where � is the smallest equivalence relation on VH1 [VH2 that contains the following pairs:f (outH1(i); inH2(i)) j 1 � i �#out(H1) g :All this is supposing H1 and H2 are disjoint. If not, we take an isomorphic copy. Theresult of the sequential composition of two hypergraphs is also called their product. Notethat the product of two hypergraphs is an ordinary graph i� both hypergraphs are alsoordinary. 25

26 CompositionActually we are de�ning countably in�nite sequential composition operators: one forevery (m;n; k) 2 N3. When convenient, we will write �m;n;k instead of just � to make clearwe are applying the � operator to a H1 of type (m! n) and a H2 of type (n! k), for all� a typed alphabet:�m;n;k : HGRm;n(�)�HGRn;k(�)! HGRm;k(�):For every n 2 N we de�ne a hypergraph Un, called the unity hypergraph of type (n! n):Un = (fv1; : : : ; vng;?;?;?; (v1; : : : ; vn); (v1; : : : ; vn)):So, for example, U4 is: uuuu4 43 32 21 1
Note that Un indeed is of type (n ! n), that for every hypergraph H of input type n wehave Un �H = H; (4.1)and for every hypergraph G of output type n similarlyG � Un = G: (4.2)The unity hypergraph of type (0! 0), U0, is also called the empty hypergraph, for obviousreasons.The sequential composition can also be applied to two hypergraph languages, providedthe output type of the �rst matches the input type of the second. Let L1 = (V1;m! n)and L2 = (V2; n! k) be hypergraph languages. Now the hypergraph language L3 = L1�L2is de�ned as follows: L3 = (fH1 �H2 j H1 2 V1;H2 2 V2g;m! k) : (4.3)The sequential composition operation is associative, although proving this is surprisinglyhard. Sketch of proof is as follows. Take disjoint hypergraphs H1, H2, and H3. Now by

Sequential composition versus degree and loops 27completely writing out the expressions H1 � (H2 �H3) and (H1 �H2) �H3 by the de�nition,in both cases we arrive at hypergraphs that are isomorphic to:((VH1 [VH2 [VH3)=�; EH1 [EH2 [EH3 ; (nodH1 [nodH2 [nodH3)�;labH1 [labH2 [labH3; [inH1]�; [outH3]�):Where � denotes the smallest equivalence relation on VH1 [VH2 [VH3 , that contains thefollowing pairs: f (outH1(i); inH2(i)) j 1 � i �#out(H1) g ;f (outH2(i); inH3(i)) j 1 � i �#out(H2) g :It can be easily seen that in general H1 � H2 6= H2 � H1, so the sequential compositionoperation is noncommutative. However, when both H1 and H2 are simple hypergraphs thesequential composition operation is commutative, as in that case it reduces to just takingthe disjoint union of both hypergraphs.The symbol Q stands for a repeatedly applied sequential composition:nYi=1Hi = H1 : : :Hn; (4.4)for all n 2 N; n 6= 0.Sequential composition is also often called concatenation, because of the analogy withstring concatenation1. We may write the shorthand version H1H2 for H1 �H2.Because of the associativity of the concatenation we can de�ne Kleene closure on uni-form hypergraph languages. For a hypergraph language L of uniform type n:L� = 1[k=0Lk;where Lk denotes L, k times concatenated to itself. L0 denotes the appropriate unityelement, fUng in this case. Note that L� is again of uniform type n.4.2 Sequential composition versus degree and loopsSequential composition can only increase the degree of the hypergraphs involved. Formallyexpressed: 8H1;H22HGR(�) 8><>:deg(H1 �H2) � deg(H1);deg(H1 �H2) � deg(H2): (4.5)1To summarize: \sequential composition" and \concatenation" are synonyms, and can stand for boththe operation and for the result. The word \product" always denotes the result, and never the operation.

28 CompositionThe proof is trivial, as in the process of sequential composition, a node always remainsincident with all the edges it was incident with before. Therefore, the degree of the productmust be at least the degree of the original two hypergraphs. The degree of the productcan be larger, however. This is the case when during identi�cation two or more nodes thathave edges attached to them get merged in such a way that the total degree of the resultingnode is larger than the degree of the original hypergraphs. We can generalize (4.5) to theproduct of n hypergraphs in the following way:8H1;:::;Hn2HGR(�) deg nYi=1Hi! �max (fdeg(Hi) j 1 � i � n g) : (4.6)Regarding loops, note that by the de�nition of sequential composition, for hypergraphsH;H1;H2, such that H = H1 �H2, if H1, or H2, or both, contain a loop, then H itself alsocontains a loop.As a special cases of these properties, for a string graph H, and hypergraphs H1; : : : ;Hn,such that H = H1 : : :Hn, for all Hi, 1 � i � n, deg(Hi) � 2. Proof: as H is a string graph,deg(H) � 2 (see Section 3.5), and the result directly follows from (4.6). Furthermore, asH (being a string graph) does not contain a loop, neither does Hi, for 1 � i � n.4.3 Parallel compositionThe parallel composition of two hypergraphs H1 and H2, denoted H1 + H2, is alwaysde�ned. One �nds H1 + H2 by taking the disjoint union of H1 and H2, and puttinginH1+H2 = inH1 � inH2 and outH1+H2 = outH1 � outH2 . Formally, H1 +H2 is de�ned as:(VH1 [VH2 ; EH1 [EH2;nodH1 [nodH2 ; labH1 [labH2 ; inH1 � inH2;outH1 � outH2);All this is supposing H1 and H2 are disjoint. If not, we take an isomorphic copy. Theresult of the parallel composition of two hypergraphs is called their sum.The unity element of the parallel composition is the empty hypergraph, U0. It can beeasily veri�ed that for every hypergraph H we have U0+H = H and likewise H+U0 = H.The parallel composition acts on unity hypergraphs in the following way:Un + Um = Un+m: (4.7)The parallel composition operation is associative. The proof, which directly follows fromthe associativity of [and � (on sequences) is very easily accomplished by writing out infull (H1 +H2) + H3 and H1 + (H2 +H3) where H1;H2;H3 2 HGR(�) for some �, andH1;H2;H3 mutually disjoint. Both expressions yield the same hypergraph:(V1[V2[V3; E1[E2[E3;nod1[nod2[nod3; lab1[lab2[lab3; in1�in2�in3;out1�out2�out3);

Sequential versus parallel composition 29which proves the associativity of +.The parallel composition H1 +H2 is commutative when one or both of H1 and H2 aresimple hypergraphs, but not in general.The symbol P stands for a repeatedly applied parallel composition:nXi=1Hi = H1 + � � �+Hn; (4.8)for all n 2 N; n 6= 0. For the case n = 0 we de�ne P0i=1Hi = U0.By the associativity of + on both natural numbers and hypergraphs we can now cangeneralize (4.7) to: mXk=1Unk = U(Pmk=1 nk): (4.9)The parallel composition can also be applied to two hypergraph languages. Let L1 =(V1;m1 ! n1) and L2 = (V2;m1 ! n2) be hypergraph languages. Now the hypergraphlanguage L3 = L1 +L2 is de�ned as follows:L3 = (fH1 +H2 j H1 2 V1;H2 2 V2g;m1 +m2 ! n1 + n2) :Note that L3 is by de�nition of type (m1 +m2 ! n1 + n2).4.4 Sequential versus parallel compositionThe basic relationship between the sequential and parallel composition is as follows:(H1 +H2) � (H 01 +H 02) = H1H 01 +H2H 02; (4.10)where we require that #outH1 = #inH2, and #outH1 = #inH2. Sketch of proof isas follows. By completely writing out the left-hand and right-hand expression by thede�nitions, we arrive in both cases at:((VH1 [VH2 [VH 01 [VH 02)=�; EH1 [EH2 [EH 01 [EH 02 ;(nodH1 [nodH2 [nodH 01 [nodH 02)=�; labH1 [labH2 [labH 01 [labH 02 ;(inH1 � inH2)=�; (outH 01 � outH 02)=�):Where � denotes the smallest equivalence relation on VH1 [VH2 [VH 01 [VH 02 , that containsthe following pairs: n (outH1(i); inH 01(i)) j 1 � i �#out(H1) o ;

30 Compositionn (outH2(i); inH 02(i)) j 1 � i �#out(H2) o :All this is, or course, supposing that H1, H2, H 01, and H 02 are mutually disjoint. If not, wetake isomorphic copies.By repeatedly applying (4.10) to itself we get, for all n 2 N, n � 1:(H1 + � � � +Hn) � (H 01 + � � �+H 0n) = H1H 01 + � � �+HnH 0n; (4.11)under the condition that H1H 01, : : : , HnH 0n are all de�ned. Proof by induction on n. Theinduction basis (n = 1) is trivially ful�lled: (H1) � (H 01) = H1H 01. Induction step, assumingthe induction hypothesis holds for n = k:(H1 + � � �+Hk+1) � (H 01 + � � � +H 0k+1) =(adding parentheses)((H1 + � � �+Hk) +Hk+1) � ((H 01 + � � �+H 0k) +H 0k+1)(4.10)=(H1 + � � �+Hk) � (H 01 + : : :H 0k) +Hk+1H 0k+1 =(induction hypothesis)(H1H 01 + � � �+HkH 0k) +Hk+1H 0k+1 =(removing parentheses)H1H 01 + � � �+Hk+1H 0k+1;which proves (4.11). Note that we can rephrase this equation as: nXi=1Hi! � 0@ nXj=1H 0j1A = nXi=1HiH 0i: (4.12)This relation too can be made more general by repeatedly applying it to itself, whichultimately gives us the most general case:mYi=1 nXj=1Hij = nXj=1 mYi=1Hij : (4.13)for every m;n 2 N, m;n � 1. Proof by induction on m (only). Induction basis (m = 1):1Yi=1 nXj=1Hij (4.4)= nXj=1Hij (4.4)= nXj=1 1Yi=1Hij :Induction step, assuming the induction hypothesis holds for m = k:k+1Yi=1 nXj=1Hij (4.4)=0@ kYi=1 nXj=1Hij1A � nXj=1H(k+1)j =(induction hypothesis)

Expressions used as a function 310@ nXj=1 kYi=1Hij1A � nXj=1H(k+1)j (4.4)=0@ nXj=1 kYi=1Hij1A � 0@ nXj=1 k+1Yi=k+1Hij1A (4.12)=nXj=10@ kYi=1Hij! � 0@ k+1Yi=k+1Hij1A1A (4.4)=nXj=1 k+1Yi=1 Hij;which proves (4.13). Note that (4.10) is just the case m = 2, n = 2 of (4.13), and (4.11) isjust the case m = 2.Furthermore, for simple hypergraphs H1 and H2 we have:H1 �H2 = H1 +H2:Finally, the � operator has precedence over the + operator.4.5 Expressions used as a functionLet H;G : V ! HGR(�) be functions, with a common input domain V , that yieldhypergraphs over some ranked alphabet �. We now de�ne two new functions F1;F2 :V ! HGR(�). For all v 2 V : F1(v) =H(v) �G(v);F2(v) =H(v) +G(v):In the case that V = HGR(�) we also de�ne F3;F4;F5;F6 : V ! HGR(�). For allv 2 V : F3(v) = v �H(v);F4(v) =H(v) � v;F5(v) = v +H(v);F6(v) =H(v) + v:(These six new functions need not be complete.) These constructions deserve their ownnotation: we may notate these ad hoc functions F1; : : : ;F6 asH �G,H+G, �H,H�, +H,and H+ respectively. When we consider a hypergraph H 2 HGR(�) as a function that

32 Compositionreturns H for every v 2 V , we may now write expressions like \+Un", the function thatadds the unity hypergraph of uniform order n to its input, or, by recursively applying thisnew notation, \(+
ip)�backfold". (
ip and backfold are total functions on hypergraphs,that will be de�ned in Section 6.1). Finally, we may do the same thing for functions thatyield hypergraph languages.

"What's one and one and one and one and oneand one and one and one and one and one?""I don't know," said Alice. "I lost count."| Lewis Carroll 5DecompositionSequential and parallel composition are essentially about taking small hypergraphs andusing them to build larger ones. But we can also do the opposite: take a large hypergraph,and try to break it down in smaller hypergraphs. This process is called decomposition.In this chapter we will try to �nd a \small" set of \small" hypergraphs that can be usedto build all other hypergraphs. The result will be useful in de�ning the class of all \regular"hypergraph languages (see Chapter 10) and in �nding a normal form for interpreters (seeChapter 7).5.1 De�nitionLet L;L0 � HGR be sets of hypergraphs. We now write L ��! L0, pronounced L decom-poses sequentially into L0, if for every H 2 L there exist H1; : : : ;Hn 2 L0, n � 1, suchthat H = Qni=1Hi. In words: every graph H in L can be built from graphs in L0 by justusing sequential composition.If we also allow parallel composition to be used, we write L �;+�! L0, pronounced L fullydecomposes into L0. In words: for every H 2 L there exist H1; : : : ;Hn 2 L0 such that Hcan be built using just H1; : : : ;Hn, �, and +. Formally: L is a subset of the smallest set ofhypergraphs that contains L0 and is closed under � and +.It can easily be seen that both ��! and �;+�! are re
exive, transitive relations, and thatsequential decomposition implies full decomposition. In the sections to follow we willconstruct sets LA;LB, and LC such that HGR ��! LA ��! LB �;+�! LC. The last step will33

34 Decompositioninvolve several substeps.5.2 HGR ��! LAWe de�ne LA as follows:LA = fH 2 HGR j all nodes v 2 VH are externalg:Now to prove HGR ��! LA it su�ces to prove that:8H2HGR9H1;H22LA H = H1 �H2:For a givenH we can always construct such a H1 andH2 by making all nodes in H external,resulting in H1, and constructing H2 (without edges) in such a way that only the nodesthat are supposed to be external are passed through. Formally, letH = (V;E;nod; lab; in;out) : p! q:Furthermore, let fv1; : : : ; vng be the set of internal nodes of H. We now de�ne:H1 = (V;E;nod; lab; in;out � (v1; : : : ; vn)) : p! q + n;H2 = (fw1; : : : ; wq+ng;?;?;?; (w1; : : : ; wq+n); (w1; : : : ; wq)) : q + n! q:We now have H = H1 �H2.Example:Let H be the hypergraph of type (1! 1), with 2 internal nodes (so p = q = 1 and n = 2),depicted by: H = u1 �����������@@@@@@@@@@R u�����������u@@@@@@@@@@R u 1�

LA ��! LB 35Then H1 and H2 are of type (1! 3) and (3! 1) respectively, and look as follows:H1 = u1 �����������@@@@@@@@@@R u 3�����������u 2@@@@@@@@@@R u 1� H2 = u3 u2 u1 1
Note that the edge labels have been left out, as they are irrelevant for the construction.5.3 LA ��! LBWe de�ne LB as follows: LB = fH 2 LA j jEH j � 1 g:Now to prove LA ��! LB it su�ces to prove that:8H2LA;jEH j>19H1;H22LA (H = H1 �H2 and jEH1 j < jEH j and jEH2j < jEHj) :For a given H we can always construct such a H1 and H2 by picking an edge e and rerouteit outside H: H1 � H � feg, H2 � feg. Formally, let:H = (V;E;nod; lab; in;out) : p! q;and choose an edge e 2 E. Suppose jnod(e)j = n. We now de�ne:H1 = (V;E � feg;nod � (E � feg); lab � (E � feg); in;out � nod(e)) : p ! q + n;H2 = (fw1; : : : ; wq+ng; feg; e 7! (wq+1; : : : ; wq+n);e 7! lab(e); (w1; : : : ; wq+n); (w1; : : : ; wq)) : q + n! q:We now have H = H1 �H2, jEH1 j = jEH j � 1 < jEH j, and jEH2j = 1 < jEH j. This methodto remove an edge by sequential decomposition is called edge removal.Example:Let H be the hypergraph, of type (4! 2) (so p = 4 and q = 2), depicted by:

36 DecompositionH = u3 u2; 4 u1 c2 ��������1b2 PPPPPPPP3 ��������1a��������21 u 2u 1Then applying edge removal at the edge labeled b (so n = 3), yields the hypergraphs H1and H2, of type (4! 5) and (5! 2) respectively, that look as follows:H1 = u3 u2; 4 4u1 c2 ��������1a��������21 u 2; 5u 1; 3 H2 = u5 u4 u3 u2 2u1 1 b��������32PPPPPPPP1
5.4 LB ��! LC2 [LC3First we de�ne sets LC1, LC2, and LC3 as follows:LC1 = f
a j a a ranked symbol g ;LC2 = fH 2 LB j jEHj = 0 g ;LC3 = fH 2 LB j 9n2N;a a ranked symbolH = Un +
a g ;where
a, for rank(a) = n, is de�ned as follows:
a = (fv1; : : : ; vng; feg; e 7! (v1; : : : ; vn); e 7! a; (v1; : : : ; vn); �):For example, when a has rank 5,
a = (fv1; v2; v3; v4; v5g; feg; e 7! (v1; v2; v3; v4; v5); e 7! a; (v1; v2; v3; v4; v5); �) =

LC3 �;+�! LC1 [LC2 37
u5 u4 u3 u2 u1 aXXXXXXXXXXXX HHHHHHHHHHHH ������������ ������������ 54321Now to prove LB ��! LC2 [LC3, take an H 2 LB. If jEH j = 1, sequentially decompose itinto H1 and H2 using edge removal. We now have: H = H1H2, H1 2 LC2 and H2 2 LC3(note that H2 = Uq +
lab(e), for the q and e as meant in the de�nition of edge removal).If jEHj 6= 1, it must be 0, so H 2 LC2. This completes the proof.5.5 LC3 �;+�! LC1 [LC2Proof. For all H 2 LC3, H = Un +
a for some n 2 N and a a ranked symbol. ButUn 2 LC2 and
a 2 LC1, so LC3 �;+�! LC1 [LC2. This completes the proof.5.6 LC2 �;+�! LC4 [LC5De�ne sets LC4 and LC5 as follows:LC4 = f1m;n jm;n 2 N; (m;n) 6= (0; 0) g ;LC5 = f��;�0 ;k j�; �0 permutations of (1; : : : ; k); k 2 N g :Here 1m;n is de�ned as follows:1m;n = (fvg;?;?;?; (v; : : : ; v)| {z }m times ; (v; : : : ; v)| {z }n times):For example, 13;2 = (fvg;?;?;?; (v; v; v); (v; v)) =u1; 2; 3 1; 2

38 DecompositionFurthermore, ��;�0;k is de�ned as follows. Suppose � = (i1; : : : ; ik) and �0 = (j1; : : : ; jk).��;�0 ;k = (fv1; : : : ; vkg;?;?;?; (vi1; : : : ; vik); (vj1; : : : ; vjk))For example, �(2;1;3);(3;1;2);3 = (fv1; v2; v3g;?;?;?; (v2; v1; v3); (v3; v1; v2)) =u3 1u1 3u2 2This kind of hypergraph is called a permutation hypergraph. Note that it is overkill touse two permutations, as both can always be combined into one. For technical reasonshowever (the symmetry allows us to specify the inverse permutation by swapping � and�0) we choose to use two.Choose an H 2 LC2. Suppose jVH j = k, V = fv1; : : : ; vkg, and H : m ! n. Now Hcan always be sequentially decomposed as follows1:H = H� �H� �H�0 :Here H� : m ! n is de�ned as follows. Let pi indicate the number of occurrences of viin inH , and p0i the number of occurrences of vi in outH . Note that for all 1 � i � k,(pi; pi0) 6= (0; 0) as H 2 LB. H� = kXi=1 1pi;p0iThis H� we now have is almost equal to H, albeit that in and out have been \sorted":inH� = sort(inH) and outH� = sort(outH). This is illustrated by the following example:H = (fv1; v2; v3; v4g;?;?;?; (v1; v4; v3); (v1; v3; v2; v2)) =1In order to avoid confusion: the �, �0 and � in H� , H�0 and H� are just used as a subscript, and haveno meaning of their own. So, the � in H� is not a permutation. It is only used to give a hint that H� willbe de�ned as a permutation graph.

LC2 �;+�! LC4 [LC5 39
u2 u3 2u 3; 4u1 1

Now: H� = 11;1 + 10;2 + 11;1 + 11;0= (fv1; v2; v3; v4g;?;?;?; (v1; v3; v4); (v1; v2; v2; v3)) =
u3 u2 4u 2; 3u1 1

Note that (v1; v3; v4) = sort((v1; v4; v3)) and (v1; v2; v2; v3) = sort((v1; v3; v2; v2)) (wherevi � vj () i � j). Now consider a permutation (a1; : : : ; am) of (1; : : : ;m) such that:inH(a1) � � � � � inH(am);so we have (inH(a1); : : : ; inH(am)) = sort(inH). Similarly, consider a permutation (b1; : : : ;bn) of (1; : : : ; n) such that: outH(b1) � � � � � outH(bn);so we have (outH(b1); : : : ;outH(bn)) = sort(outH). Now de�ne H� = �(1;:::;m);(a1;:::;am);mand H�0 = �(b1;:::;bn);(1;:::;n);n. So, continuing the previous example we have: (a1; a2; a3) =(1; 3; 2) and (b1; b2; b3; b4) = (1; 3; 4; 2)2, and so:H� = (fv1; v2; v3g;?;?;?; (v1; v2; v3); (v1; v3; v2));H�0 = (fv1; v2; v3; v4g;?;?;?; (v1; v3; v4; v2); (v1; v2; v3; v4)):2Note that these permutations need not be uniquely determined. For example, we could have chosen(1; 4; 3; 2) instead of (1; 3; 4; 2) for (b1; b2; b3; b4)

40 DecompositionH� = u3 2u2 3u1 1 H�0 = u3 4u2 3u4 2u1 1
Now, applying the permutation (a1; : : : ; am) to inH results in sort(inH), and likewise,applying (b1; : : : ; bn) to outH in sort(outH). As inH� = sort(inH), and outH�0 =sort(outH), we now have H = H� �H� �H�0 . This completes the proof that L2 �;+�! L4[L5.5.7 LC4 �;+�! LC6De�ne LC6 as follows: LC6 = fU0;10;1;11;0;11;2;12;1;X g ;where X = (fv1; v2g;?;?;?; (v1; v2); (v2; v1)). Graphically, LC6 looks as follows:8>>>>>>>>>>>><>>>>>>>>>>>>: ?, u 1, u1 , u1 1; 2, u1; 2 1, u1 2u2 1 9>>>>>>>>>>>>=>>>>>>>>>>>>;The following induction steps now su�ce to fully decompose LC4 into LC6:11;1 = 11;2 � 12;1;1m+1;1 = (1m;1 + 11;1) � 12;1 for m � 1;11;n+1 = 11;2 � (11;n + 11;1) for n � 1;1m;n = 1m;1 � 11;n for m;n 2 N:Therefore, LC4 �;+�! LC6.

LC5 �;+�! LC6 415.8 LC5 �;+�! LC6Choose an H 2 L5. Suppose jVH j = n. By de�nition, we now have that outH is a permu-tation � of inH . From combinatorics/algebra it is well known3 that every permutation � becan decomposed into permutations �1; : : : ; �k where each of the permutations �i only swapstwo neighboring elements. Using these permutations �i we can sequentially decompose H:H = �(1;:::;n);�;n = kYi=1�(1;:::;n);�i;n:These hypergraphs �(1;:::;n);�i;n are obviously of the form:11;1 + � � � + 11;1 +X + 11;1 + � � � + 11;1;so we have fully decomposed LC5 into LC6. Therefore, LC5 �;+�! LC6 . As a consequence ofthis, and by the previous sections, LC2 �;+�! LC6.5.9 LB �;+�! LCWe de�ne LC as follows: LC = LC1 [LC6. By the transitivity of �;+�!, and because ��!implies �;+�!, the results of the previous sections now justify the conclusion LB �;+�! LC.5.10 ConclusionsIn trying to decompose HGR a result (not the strongest) we got with sequential decom-position was HGR ��! LB:This set LB is called the sequential pseudo base set, because all graphs in HGR can bebuilt from it, using just sequential composition. Note that it is not �nite, and by no meansminimal, as LB can be further sequentially decomposed. (for example to LC2 [LC3, andfurther). For these reason, it is only a pseudo base. There does not exist a \real" sequentialbase set (�nite, minimal), as HGR contains hypergraphs of type (m! n) for arbitrarilylarge m;n 2 N, and by sequential composition it is not possible to \pump up" the type ofhypergraph.Using full decomposition we ultimately arrived atHGR �;+�! LC:3See for example Knuth, [Knu73, x5.1], or Herstein, [Her75, x2.10].

42 DecompositionThis set LC is called the full base set because all graphs inHGR can be built from it, usingboth sequential and parallel composition. Contrary to the sequential pseudo base set, atleast for a �xed edge label alphabet, the full base set is minimal: it cannot be furtherdecomposed (into a proper subset). Furthermore, for a �xed edge label alphabet, the fullbase set is �nite. Formally, by LC \for a �xed edge label alphabet �", we mean LC \HGR(�). That this set is indeed minimal under this condition can be easily understoodfrom the following considerations:� For a �xed label alphabet �, all hypergraphs
a, for a 2 �, are really needed,because without all of them, we would be unable to generate hypergraphs that containhyperedges labeled a for all a 2 �,� U0 is really needed, as it obviously cannot be built from any other hypergraph otherthan itself,� 10;1 and 11;0 are really needed, as without them we could not generate edge-lesshypergraphs with internal nodes. Sketch of proof: in all other edge-less hypergraphsin LC, i.e, fU0;11;2;12;1;Xg, all nodes are both input and output nodes. This prop-erty clearly remains invariant under both sequential and parallel composition. Endof sketch. That 10;1 and 11;0 are both needed can be shown by similar arguments.Intuitively, 10;1 and 11;0 are needed to be able to \get rid of external nodes".� 11;2 and 12;1 are really needed, as without them we could only generate identi�cation-free hypergraphs. Sketch of proof: all other hypergraphs in LC are identi�cation-free, and this property remains invariant under both parallel composition (trivial)and sequential composition (almost trivial). End of sketch. Again, the fact that 11;2and 12;1 are both needed can be show by similar arguments.Intuitively, 11;2 and 12;1 are needed to be able to \split up external nodes".� X is really needed, as without it we could only generate hypergraphs H such thatfor all 1 � i < j � #in(H), 1 � i0 < j0 � #in(H), such that inH(i) 6= inH(j) andoutH(i0) 6= outH(j0), not both inH(i) = outH(j0) and inH(j) = outH(i0). Sketchof proof: this property holds for all other hypergraphs in LC , and remains invariantunder both parallel composition (trivial), and sequential composition (almost trivial).End of sketch.Intuitively,X is needed to be able to \permute external nodes".We do not know whetherHGR(�) can be fully decomposed into another minimal set thathas less elements, but that eventuality seems highly unlikely.

Fold: to bend over or double up sothat one part lies on another part.| The American Heritage Dictionary 6Folds and
ipsIn this chapter we will de�ne four natural functions on hypergraphs: fold, backfold,
ip,and split. They exhibit several nice properties that make them very suitable for buildingthe constructions needed to prove two classes of hypergraph languages equal.6.1 De�nitionPut H = (V;E;nod; lab; in;out) : m! n, and de�ne the following unary operations
ip,fold, backfold, and split on H:
ip(H) = (V;E;nod; lab;out; in) : n! m;fold(H) = (V;E;nod; lab; �; in � out) : 0! m+ n;backfold(H) = (V;E;nod; lab; in � out; �) : m+ n! 0:Put H = (V;E;nod; lab; (v1; : : : ; vm); (vm+1; : : : ; vm+n)) : m ! n, and de�ne the unaryoperation splitp;q on H for all p; q 2 N, m+ n = p+ q:splitp;q(H) = (V;E;nod; lab; (v1; : : : ; vp); (vp+1; : : : ; vp+q)) : p! q:Recall that � denotes the empty sequence, and � denotes the concatenation of sequences.Note that these operations only manipulate the input and output sequences, the V , E,nod, and lab components are not changed.43

44 Folds and
ipsWe will use the
ip, fold, backfold, and split as verbs where convenient, for exampleas in \(6.33) is proved by
ipping both sides of (6.32)", i.e., by applying the operation
ipto both sides of the equation.6.2 Basic propertiesThese de�nitions lead to, amongst others, the following properties. Let H be of type(m! n), and p; q; p0; q0 2 N such that p + q = p0 + q0 = m+ n.splitm;n(H) = H; (6.1)
ip(
ip(H) = H; (6.2)
ip(fold(H)) = backfold(H); (6.3)
ip(backfold(H)) = fold(H); (6.4)fold(fold(H)) = fold(H); (6.5)fold(backfold(H)) = fold(H); (6.6)fold(splitp;q(H)) = fold(H); (6.7)backfold(fold(H)) = backfold(H); (6.8)backfold(backfold(H)) = backfold(H); (6.9)backfold(splitp;q(H)) = backfold(H); (6.10)splitp;q(fold(H)) = splitp;q(H); (6.11)splitp;q(backfold(H)) = splitp;q(H); (6.12)splitp;q(splitp0;q0(H)) = splitp;q(H): (6.13)There are no simpler expressions in terms of
ip, fold, backfold, and split for the ex-pressions fold(
ip(H)), backfold(
ip(H)), splitp;q(
ip(H)), and
ip(splitp;q(H)). Fur-thermore we have, directly from the de�nitions, the following properties:#in(
ip(H)) =#out(H); (6.14)#out(
ip(H)) =#in(H); (6.15)#in(fold(H)) = 0; (6.16)#out(fold(H)) =#in(H) +#out(H); (6.17)#in(backfold(H)) =#in(H) +#out(H); (6.18)#out(backfold(H)) = 0; (6.19)#in(splitp;q(H)) = p; (6.20)

Derived properties 45#out(splitp;q(H)) = q: (6.21)As previously noted, the
ip, fold, backfold, and split operations only manipulate theinput and output sequences (recall from Section 3.6 that �io is an equivalence relation):H �io
ip(H) �io fold(H) �io backfold(H) �io splitp;q(H): (6.22)The
ip operation is linked to sequential and parallel composition in the following way:
ip(G �H) =
ip(H) �
ip(G); (6.23)
ip(G+H) =
ip(G) +
ip(H); (6.24)
ip(Un) = Un: (6.25)As it turns out, splitp;q can be expressed in terms of fold and backfold, and vice versa.So, in a sense, either split, or fold and backfold are super
uous. In practice we needboth of them, as some concepts are more elegantly expressed in folds and backfolds, othersin splits. The relations between them are as follows:fold(H) = split0;#in(H)+#out(H)(H); (6.26)backfold(H) = split#in(H)+#out(H);0(H); (6.27)splitp;q(H) = (Up + fold(Uq)) � (backfold(H) + Uq): (6.28)We extend split to apply to classes of hypergraph languages. Let K be any class ofhypergraph languages.split(K) = f splitp;q(L) jL 2K and p; q 2 N; p + q =#in(L) +#out(L) g (6.29)Note that now, by (6.26) and (6.27), we have:fold(K) � split(K) (6.30)backfold(K) � split(K) (6.31)The above properties are easily veri�ed by expanding the respective de�nitions.6.3 Derived propertiesA few properties that can be derived from the basic properties are listed below. Theyare illustrated in Appendix B, and will be used in Section 8.1 (page 57) and Section 8.2(page 64) where they are needed in an induction proof.fold(H2) � (
ip(H1) +H3) = fold(H1H2H3); (6.32)

46 Folds and
ips(H1 +
ip(H3)) � backfold(H2) = backfold(H1H2H3); (6.33)both under the condition that H1H2H3 is de�ned.(H1 + fold(H3)) � (backfold(H2) +H4) = H1H2H3H4; (6.34)(fold(H2) +
ip(H4)) � (
ip(H1) + backfold(H3)) =
ip(H1H2H3H4); (6.35)under the condition that H1H2H3H4 is de�ned.(fold(H2) + fold(H4)) � (
ip(H1) + backfold(H3) +H5) = fold(H1H2H3H4H5); (6.36)(H1 + fold(H3) +
ip(H5)) � (backfold(H2) + backfold(H4)) = backfold(H1H2H3H4H5);(6.37)under the condition that H1H2H3H4H5 is de�ned.Note that by
ipping both sides of (6.32), (6.34), or (6.36), we get (6.33), (6.35), or(6.37) respectively, and vice versa. The above six properties can be proved from the basicproperties, albeit in a highly nontrivial way. See also Section B.1.

Be aware of bugs in the above code; I haveonly proved it correct, not tried it.| Donald Ervin Knuth 7InterpretationIn this chapter we devise a method to interpret a string as a hypergraph. As this methodcan be extended to interpret string languages as hypergraph languages, and classes of stringlanguages as classes of hypergraph languages, we can instantly de�ne a lot of classes ofhypergraph languages. For example, from LIN, all linear languages, we instantly deriveInt(LIN), all linear languages under interpretation as hypergraph languages.7.1 De�nition of an interpreterLet � be a typed alphabet, and � a ranked alphabet. Let h be a function, h : � !HGR(�), that is type preserving, that is, it must satisfy the condition that for everya 2 � the hypergraph h(a) is of the same type as the symbol a. Let w be a string from��, w = a1 : : : an. Now extend h to �� in the following way: h(w) = h(a1) : : : h(an).Furthermore, if w = (�; n! n), we de�ne h((�; n! n)) as Un. By the de�nition of h and� we now have, for all v;w 2 ��: h(vw) = h(v)h(w); (7.1)provided vw is de�ned. By the associativity of � on both strings and hypergraphs thisgeneralizes to: h nYk=1wk! = nYk=1 h(wk); (7.2)47

48 Interpretationprovided, again, Qnk=1 wk is de�ned.The 3-tuple (�;�; h) is called an interpreter, and h is called the interpretation function.For an interpreter I, we will denote its three components by �I , �I , and hI respectively.Let L be a typed string language over a typed alphabet �, and I = (�;�; h) aninterpreter. Now, I is called an interpreter for L.7.2 De�nition of IntLet L be a typed string language and I an interpreter for L. We now de�ne IntI(L), theinterpretation of L under I to be the hypergraph language:IntI(L) = f hI(w) jw 2 L g : (7.3)Note that IntI(L) � HGR(�I). We can extend Int to interpret one speci�c language asa class of hypergraph languages, without specifying an interpreter. The generic interpre-tation of L, denoted Int(L) is de�ned as follows:Int(L) = f IntI(L) j I an interpreter for L g : (7.4)We extend Int to classes of languages. Let K be a class of ordinary string languages. Wenow de�ne Int(K), the generic class interpretation of K, as follows:Int(K) = f IntI(L) jL 2 L�(K); I an interpreter for L g : (7.5)Recall that L 2 L� (K) means that the underlying language of L is in K. By the de�nitionof an interpreter IntI(L) is always of the type (#in(L)!#out(L)). A generic interpre-tation Int(L) or a class interpretation Int(K) is always of mixed type. Finally, we de�nethree di�erent kinds of typed class interpretation (let m;n 2 N):Intm!(K) = fL 2 Int(K) j#in(L) = m g ;Int!n(K) = fL 2 Int(K) j#out(L) = n g ;Intm!n(K) = fL 2 Int(K) j#in(L) = m and #out(L) = n g :These last three de�nitions lead immediately to the following two sequences of inclusions:Intm!n(K) � Intm!(K) � Int(K); (7.6)Intm!n(K) � Int!n(K) � Int(K): (7.7)Finally, note that for an ordinary alphabet �, and an ordinary language L over �, by (3.4)and (7.1), we can express the hypergraph language gr(L) of string graphs in terms of Int:gr(L) = IntI(L); (7.8)

Examples of interpretation 49where I = (�0;�; h), �0 = � such that all symbols a 2 �0 have type (1 ! 1). Note thatL is correctly typed with respect to �0. Furthermore, � = �y, and h(a) = gr(a)z for alla 2 �. We can prove (7.8) as follows:gr(L) =(set theory)fgr(w) jw 2 L g =(rewriting w as symbols)fgr(a1 : : : an) j a1 : : : an 2 L g (3.4)=fgr(a1) : : :gr(an) j a1 : : : an 2 L g =(de�nition of h)fh(a1) : : : h(an) j a1 : : : an 2 L g (7.2)=fh(a1 : : : an) j a1 : : : an 2 L g =(rewriting symbols as w)fh(w) jw 2 L g (7.3)=IntI(L):As a consequence of all this, for all classes K of ordinary string languages:gr(K) � Int(K): (7.9)7.3 Examples of interpretationIn order to understand more clearly what interpretation is all about, let us take a look atthree examples of it. For the sake of simplicity, both only involve ordinary graphs.Example 1We de�ne the typed right-linear language L = f abnc jn 2 N g, and the interpreter I =(�;�; h) for L, where � = f(a; 1 ! 3); (b; 3 ! 3); (c; 3 ! 1)g, � = f(a; 2); (b; 2); (c; 2)g(note that by the fact that all ranks in � are 2, I will generate ordinary graphs only), andh de�ned as depicted hereafter.h(a) = u 2; 3u1 1 h(b) = u3 u2 u1 u 3u 2u 1-c�b-a h(c) = u3 1u1; 2yAlbeit ranked instead of typed. All symbols a 2 � have rank�(a) = 2.zEven though we here seem to be expressing gr in terms of itself, there is really no circularity involved.We are merely using a �nite number of graph constants, namely gr(a) for all a 2 �.

50 InterpretationNow, h(abnc) = gr(anbncn). For example, for n = 5, h(abbbbbc) is:u1 -a u -a u -a u -a uHHHHHHja u������ �bu�bu�bu�bu������ �buHHHHHHjc u -c u -c u -c u -c u 1Therefore, IntI(L) = f gr(anbncn) jn 2 N g = gr (f anbncn jn 2 N g) (all of which are oftype (1 ! 1)). This is somewhat surprising, as the string language f anbncn jn 2 N g isthe classic example of a language that is not context-free!Example 2As second example, an interpretation that is slightly more di�cult. We take the sameright-linear language L = f abnc jn 2 N g, over the same alphabet �, and the interpreterI = (�;�; h) for L, where this time � = fag, and h de�ned as follows:h(a) = u 1u 2; 3 h(b) = u1 1u2 u3 3 u 2-6 h(c) = u1 u2; 3We omit the edge labels, as they are all a. Now, h(abnc) is the \clockwise spinning wheelwith n spokes". To understand what we mean by this, look at the case n = 8. Thenh(abbbbbbbbc) is:

Edge Normal Form 51uAAAAAA K �������������*HHHHHHjAAAAAAU������ ������� � HHHHHH Yu - u@@@R u?u���	u�u@@@Iu6u����Therefore, IntI(L) consists of all such clockwise spinning wheels with n spokes, for alln 2 N (all these hypergraphs are simple).Example 3Let L be the ordinary string language fag, and K = fLg the class that only contains L.Now, Int(K) is the class of all singleton hypergraph languages. This can be easily proved.First, for every interpreter I for L, IntI(L) obviously only contains one hypergraph (namelyhI(a)), so it is a singleton hypergraph language. Secondly, for every singleton hypergraphlanguage fHg, we can construct an interpreter I for L such that IntI(L) = fHg, namelythat interpreter that has a 7! H as interpretation function.7.4 Edge Normal FormUsing the results on decomposition from Chapter 5 we can derive a normal form for inter-preters. This normal form is called Edge Normal Form, or ENF for short. An interpreterI = (�;�; h) is in Edge Normal Form if for all a 2 �, the hypergraph h(a) contains atmost one edge, and no internal nodes:8a2� ����Eh(a)��� � 1 and Vh(a) = inh(a) [outh(a)� :The following theorem intuitively says that, for almost all classes K, all hypergraph lan-guages in Int(K) can be obtained using an interpreter in Edge Normal Form.Edge Normal Form Theorem:Let K be a class of string languages that is closed under �-free homomorphisms. Now forall L 2 L� (K) and I = (�;�; h) an interpreter for L there exists an L0 2 L� (K) and an

52 Interpretationinterpreter I 0 = (�0;�0; h0) for L0 such that I 0 is in ENF and IntI 0(L0) = IntI(L).Proof. As proved in sections 5.2 and 5.3, every hypergraph H can be sequentially decom-posed in hypergraphs H1; : : : ;Hn, where Hi contains at most one edge, and no internalnodes, for 1 � i � n. For every hypergraph h(a), for a 2 �, choose such a decomposition:h(a) = naYi=1Ha;i:Here na denotes the length of the decomposition for h(a). Let ha; ii denote an elementfrom the typed alphabet �0, which is de�ned as follows:�0 = f ha; ii j a 2 � and 1 � i � na g :Here the type of a symbol ha; ii is de�ned as (#in(Ha;i) ! #out(Ha;i)). Now de�nethe typed language L0 = �(L) over �0, where � : � ! �0 denotes the following �-freehomomorphism: for all a 2 �, �(a) = Qnai=1ha; ii. De�ne I 0 = (�0;�0; h0), where �0 = �,and for all ha; ii 2 �0, h0(ha; ii) = Ha;i. Note that by this de�nition (keep in mind the �xeddecompositions) for all a 2 �, h0(�(a)) = h(a). We now have: IntI 0(L0) = IntI(L). Proof:IntI 0(L0)(7.3)=fh0(w) jw 2 L0 g =(de�nition of L0)fh0(w) jw 2 �(L) g =(set theory)fh0(�(v)) j v 2 L g =(de�nition of h0, �, and h)fh(v) j v 2 L g (7.3)=IntI(L):This completes the proof of the Edge Normal Form theorem.7.5 Existence of isomorphic copiesIn a sense, every hypergraph language that can be obtained by interpretation, can be soin an in�nite number of ways. We will formally express this by the following theorem.Isomorphic Copies Theorem:For a classK that is closed under isomorphism, a typed language L 2 K, and an interpreterI for L, we can always �nd an L0 2 K, and an interpreter I 0 for L0, such that IntI(L) =IntI 0(L0), and L disjoint with L0.

Bounded degree implies bounded cutwidth 53Proof. Given a hypergraph language L over a ranked alphabet �, a typed string languageL over a typed alphabet �, and an interpreter I = (�;�; h) for L, such that IntI(L) = L,there exists a typed string language L0 over a typed alphabet �0 such that L0 = f(L) forsome isomorphism f , and an interpreter I 0 = (�0;�0; h0) for L0, such that � \ �0 = ? andIntI 0(L0) = L:8L2HGR(�)L���I=(�;�;h) 0BBB@(IntI(L) = L) =) 9f :�!�0 (bijective)L0��0 �I 0=(�0 ;�0;h0) 0BBB@� \ �0 = ? ^f(L) = L0 ^IntI 0(L0) = L1CCCA1CCCA : (7.10)This can be proved by taking the following �0, f , L0, �0, and h0:�0 = f (a0;m! n) j (a;m! n) 2 � g ;f((a;m! n)) = (a0;m! n); for all (a;m! n) 2 �;L0 = f a01 : : : a0n j a1 : : : an 2 L g ;�0 = �;h0(a0) = h(a):Obviously L0 = f(L). Now for given L, I, and L such that IntI(L) = L we have:IntI 0(L0)(7.3)=fh0(w0) jw0 2 L0 g =(rewriting w0 as symbols)fh0(a01 : : : a0n) j a01 : : : a0n 2 L0 g (7.2)=fh0(a01) : : : h0(a0n) j a01 : : : a0n 2 L0 g =(de�nition of h, h0, and L0)fh(a1) : : : h(an) j a1 : : : an 2 L g (7.2)=fh(a1 : : : an) j a1 : : : an 2 L g =(rewriting symbols as w)fh(w) jw 2 L g (7.3)=IntI(L) =(by de�nition)L:This completes the proof of (7.10), from which the Isomorphic Copies Theorem follows asa corollary.7.6 Bounded degree implies bounded cutwidthBy the nature of interpretation, some kinds of hypergraph languages are inherently im-possible to form. As an example of such a limitation, for all IntI(L) that only contain

54 Interpretationordinary graphs, we have that if IntI(L) is of bounded degree, necessarily IntI(L) is alsoof bounded cutwidth (see Section 3.4):Degree versus Cutwidth Theorem:8 IntI(L) thatonly containordinary graphs IntI(L) of bounded degree =) IntI(L) of bounded cutwidth: (7.11)Proof. Denote IntI(L) by L, with L strictly over some typed alphabet �, and I = (�;�; h)an interpreter for L. Let d be the bound on deg(L), and note that by the de�nition ofinterpretation, the de�nition of deg(L), and (4.6), now also deg(h(a)) � d for all a 2 �.De�ne � as the maximum number of nodes in any interpreted symbol:� =max�n ���Vh(a)��� ��� a 2 �o� :Now de�ne the following property P of H 2 HGR(�):P(H)()There exists a linear layout w1; : : : ; wp; wp+1; : : : ; wp+q of H (formally: jVH j = p+q for somep; q 2 N, and there exists a linear layout f for H such that f(wi) = i for all 1 � i � p+ q)such that the following three conditions hold:1. cw(H; f) � d�,2. fw1; : : : ; wpg = VH � outH,3. fwp+1; : : : ; wp+qg = outH .In words: P(H) means that H has a linear layout with cutwidth � d�, such that all outnodes come at the end.We are now going to prove that: 8H2L cw(H) � d�: (7.12)Let H 2 L. If H = Un for some n 2 N, cw(H) = 0, and we are done (this case arises if(�; n ! n) 2 L, because then h((�; n ! n)) = Un). Otherwise, by (7.3) and (7.2), thereexists a string a1 : : : an 2 L, for some n � 1 such that:H = h(a1 : : : an) = h(a1) : : : h(an):

Bounded degree implies bounded cutwidth 55So in order to prove cw(H) � d�, it su�ces to prove P(H), or, P(h(a1) : : : h(an)). We willprove this by proving the following proposition Q(k), which is de�ned for 1 � k � n, fork = n: Q(k) () P(h(a1) : : : h(ak)):We will proceed by induction on k.Induction basis, k = 1:Q(1) (() P(h(a1))), is trivially ful�lled by (3.2), because deg(h(a1)) � d, and ���Vh(a1)��� ��, and therefore cw(h(a1); f) � 12d� � d� for any layout f for h(a1). Hence, a layoutwhere the out nodes of h(a1) come last will satisfy all three conditions in P(h(a1)). Sucha layout obviously exists, which completes the induction basis.Induction step, k = m+ 1:Assuming Q(m) (() P(h(a1) : : : h(am))), where 1 � m < n, we are now goingto prove Q(m + 1) (() P(h(a1) : : : h(am+1))). This is done as follows. Note thath(a1) : : : h(am+1) = (h(a1) : : : h(am)) � h(am+1). Look at the conditions in the de�nitionof P(h(a1) : : : h(am+1)). Take as linear layout for h(a1) : : : h(am+1) a layout that startswith w1; : : : ; wp as meant in P(h(a1) : : : h(am)). As none of these nodes were out nodes ofh(a1) : : : h(am), no identi�cation has taken place on them during the concatenation withh(am+1), and consequently no new edges have become incident with them. Therefore, this�rst part of the layout still has cutwidth � d�.The remainder of the layout can be chosen at wish, under the restriction that the outnodes of h(am+1) come last. As this second part of the layout contains at most � nodes (bythe de�nition of concatenation), and because deg(h(a1) : : : h(am+1)) � d (by (4.6)), therecan be at most d� edges running either within this second part, or between this secondpart and the �rst part (formally: there can be at most d� edges that are incident with anode in the second part). Therefore, the cut between the �rst and the second part of thelayout, and the cuts within the second part, all have width � d�.The layout thus constructed, as can be easily seen, satis�es the conditions in the def-inition of P(h(a1) : : : h(am+1)). Therefore, P(h(a1) : : : h(am+1)) holds, and consequentlyQ(m+ 1) holds also. By induction we have now proven that Q(n) holds, and as an imme-diate consequence cw(H) � d�. This completes the proof of (7.12), so cw(L) � d�.This theorem puts a clear restriction on the kind of hypergraph languages L that can begenerated using interpretation: an L with bounded degree, but no bounded cutwidth isfundamentally impossible. An example of such a language L is the language of all ordinary

56 Interpretationgraphs that form binary trees. As Lengauer proved in 1982 [Len82], a complete binary treeof depth 2k has cutwidth k + 1 (for k � 1). As L contains all complete binary trees, thismeans that L is not of bounded cutwidth. Since L is of bounded degree, it cannot begenerated by means of interpretation.As a �nal remark, let it be noted that something quite similar has been done for eNCEgraph grammars (a node rewriting based approach), by Engelfriet and Leih in 1989 (see[EL89, x5]).

We will not give formal correctness proofs ofour constructions, because we feel that thesewould only obscure the underlying intuitions.| Joost Engelfriet and George Leih 8Power of interpretationIn this chapter we will examine RLIN, LIN, and DB under interpretation. As it turnsout: Int(RLIN) = Int(LIN) = Int(DB). However, Int(RLIN) Int(CF). We will alsoexamine Int(STR(Int(K))), and will �nd that under a few weak conditions on K, it isequal to Int(K). From these results, we will be able to prove two theorems that nicelyindicate the power of interpretation.8.1 Int(RLIN) = Int(LIN)Firstly, to prove Int(RLIN) � Int(LIN) we only have to observe that RLIN � LIN. So forany L 2 L�(RLIN) and I an interpreter for L, there exists an L0 2 L� (LIN) and an I 0 aninterpreter for L0 such that IntI(L) = IntI 0(L0) (namely: L0 = L and I 0 = I). This provesthat Int(RLIN) � Int(LIN). As a matter of fact this proof extends to any K1 � K2:(K1 � K2) =) (Int(K1) � Int(K2)) : (8.1)Secondly, to prove Int(RLIN) � Int(LIN) we construct for every L 2 L�(LIN) and I =(�;�; h) an interpreter for L an L0 2 L�(RLIN) and an interpreter I 0 for L0 such thatIntI(L) = IntI 0(L0).Choose a typed linear grammar G = (N;T; P; S) (where T = �) such that L(G) = L.Now construct the following typed right-linear grammar G0 = (N 0; T 0; P 0; S0), and I 0 aninterpreter for L(G0). Note that from now on we will mostly write h and h0 instead of hIand h0I respectively, as there can be no confusion.57

58 Power of interpretation� I 0 = (�0;�0; h0), where �0 = T 0, �0 = �, and h0 as de�ned below.� N 0 = N [fDg;D =2 N ,For A 2 N 0, A 6= D, #inN 0(A) =#inN (A)+#outN (A)+#out(L), #outN 0(A) =#out(L). Furthermore,#inN 0(D) =#in(L), and #outN 0(D) =#out(L),� T 0 = fap j p 2 Pg [fbg,� P 0 = fp0 j p 2 Pg [fqg.If p : A! vBw, where A;B 2 N and v;w 2 T �, then1:p0 : A! apB;where h0(ap) = h(v) +
ip(h(w)) + U#out(L), #inT 0(ap) = #in(h0(ap)) = #in(v) +#out(w) +#out(L), and #outT 0(ap) = #out(h0(ap)) = #out(v) +#in(w) +#out(L).If p : A! v then: p0 : A! ap;where h0(ap) = backfold(h(v)) + U#out(L), #inT 0(ap) = #in(h0(ap)) = #in(v) +#out(v) +#out(L), and #outT 0(ap) =#out(h0(ap)) =#out(L).And �nally: q : D! bS;where h0(b) = U#in(L) + fold(U#out(L)), #inT 0(b) = #in(h0(b)) = #in(L), and#outT 0(b) =#out(h0(b)) =#in(L) + 2#out(L),� S0 = D.We now claim IntI 0(L(G0)) = IntI(L), so L(G0) is the L0 we are looking for. Proof of theclaim by head recursion as follows.Invariant:For all H 2 HGR(�), A 2 N , and i 2 N:9v;w2T � �G : S)i vAw and H = h(v) +
ip(h(w)) + U#out(L)�()9v02T 0� �G0 : S)i v0A and H = h0(v0)� :1Note the �-case! (See also the footnote on page 14.)

Int(RLIN) = Int(LIN) 59Proof:By induction on the length of the derivations (= on i):Induction basis, i = 0:G : S)0 S;v = (�;#in(L)!#in(L));w = (�;#out(L)!#out(L));G0 : S)0 S;v0 = (�;#in(L) + 2#out(L)!#in(L) + 2#out(L)):To prove: h(v) +
ip(h(w)) + U#out(L) = h0(v0):Proof: h(v) +
ip(h(w)) + U#out(L) =(de�nition of h)U#in(L) +
ip(U#out(L)) + U#out(L)(6.25)=U#in(L) + U#out(L) + U#out(L)(4.9)=U#in(L)+2#out(L) =(de�nition of h0)h0(v0):Induction step (assuming the hypothesis holds for i = n), from left to right, i = n + 1:Consider a derivation of length n+ 1 in G:G : S)n vAw)1 vuBzw;where A;B 2 N , and u; v; w; z 2 T � with the production p : A ! uBz applied in the laststep. By the induction hypothesis, there exists a derivation G0 : S)n v0A, where v0 2 T 0�,such that: h0(v0) = h(v) +
ip(h(w)) + U#out(L): (8.2)Let p0 : A! apB be the production of G0 corresponding to p : A! uBz, by the de�nitionof P 0. We now have: G0 : S)n v0A)1 v0apB:To prove: h0(v0ap) = h(vu) +
ip(h(zw)) + U#out(L):

60 Power of interpretationProof: h0(v0ap)(7.1)=h0(v0) � h0(ap)(8.2)=(h(v) +
ip(h(w)) + U#out(L)) � h0(ap) =(de�nition of h0(ap))(h(v) +
ip(h(w)) + U#out(L)) � (h(u) +
ip(h(z)) + U#out(L))(4.11)=h(v) � h(u) +
ip(h(w)) �
ip(h(z)) + U#out(L)(7.1)=h(vu) +
ip(h(w)) �
ip(h(z)) + U#out(L)(6.23)=h(vu) +
ip(h(z)h(w)) + U#out(L)(7.1)=h(vu) +
ip(h(zw)) + U#out(L):A similar proof applies for the direction from right to left. This completes the proof of theinvariant for i = n + 1, and overall proof of the invariant.Now for any H 2 IntI(L):9v;w;u2T � G : S)� vAw)1 vuw; such that h(vuw) = H;where A 2 N , and production p : A! u applied in the last step. Choose such a v;w; u 2T �. As implied by the invariant:9v02T 0� G0 : S)� v0A and h(v) +
ip(h(w)) + U#out(L) = h0(v0):Choose such a v0 2 T 0�. Let p0 : A! ap be the production in P 0 corresponding to p. Then,G0 : S)� v0A)1 v0ap, and:h0(v0ap)(7.1)=h0(v0) � h0(ap) =(invariant)(h(v) +
ip(h(w)) + U#out(L)) � h0(ap) =(de�nition of h0(ap))(h(v) +
ip(h(w)) + U#out(L)) � (backfold(h(u)) + U#out(L))(6.33)=backfold(h(v)h(u)h(w)) + U#out(L)(7.2)=backfold(h(vuw)) + U#out(L) =(as h(vuw)=H)backfold(H) + U#out(L):And therefore also: G0 : D)1 bS)� bv0A)1 bv0ap;

Int(RLIN) = Int(LIN) 61and: h0(bv0ap)(7.1)=h0(b) � h0(v0ap) =(as by de�nition h0(b)=U#in(L)+fold(U#out(L)))(U#in(L) + fold(U#out(L))) � h0(v0ap) =(proven above)(U#in(L) + fold(U#out(L))) � (backfold(H) + U#out(L))(6.34)=U#in(L) �H � U#out(L) � U#out(L) =(unity)H:This proves that H 2 IntI 0(L0), so IntI(L) � IntI 0(L0). The proof in the other direction,IntI(L) � IntI 0(L0), works in the same way. This completes the proof of our claim thatIntI(L) = IntI 0(L0), and thus also completes the overall proof Int(RLIN) = Int(LIN).In order to make the construction we used in this proof more clear, we will give anexample.Example:Let L be the typed language f anbcn jn 2 N g, over the typed alphabet � = f(a; 1 !1); (b; 1! 1); (c; 1! 1)g. By elementary formal language theory, this is a linear languagethat is not right-linear2. Let I = (�;�; h) be the interpreter for L de�ned by � as above,� = ((a; 2); (b; 2); (c; 2)), and h = gr. So:h(a)= u1 -a u 1 h(b)= u1 -b u 1 h(c)= u1 -c u 1As can be easily seen, for all w 2 L, h(w) = gr(w), so:IntI(L) = gr(L) = fgr(anbcn) jn 2 N g :We will now apply the construction given at the beginning of this section to �nd a typedright-linear grammar G0 and an interpreter I 0 for L(G0), such that IntI 0(L(G0)) = IntI(L).First, we need to choose a typed linear grammar G = (N;T; P; S) (where T = �) suchthat L(G) = L. We take:� N = f(S; 1! 1)g,2Standard procedure to prove this: give a linear grammar that generates L, which proves that L isindeed linear, and then use the pumping lemma to show that L is not regular, i.e., not right-linear.

62 Power of interpretation� T = � = f(a; 1! 1); (b; 1! 1); (c; 1! 1)g,� P = fp1 : S ! aSc; p2 : S ! bg;� S = S:The typed right-linear grammar G0 = (N 0; T 0; P 0; S0) and the interpreter I 0 = (�0;�0; h0)for L(G0) are now, following the construction, de�ned as:� �0 = T 0 (de�ned below), �0 = �, and h0 also as de�ned below,� N 0 = f(S; 3 ! 1); (D; 1 ! 1)g,� T 0 = fap1; ap2; bg (types will be de�ned below),� P 0 = fp01; p02; qg,p01 : S ! ap1S, where ap1 has type (3! 3), and h0(ap1) = h(a) +
ip(h(c)) + U1:h0(ap1) = u1 -a u 1u2 �c u 2u3 3p02 : S ! ap2, where ap2 has type (3! 1), and h0(ap2) = backfold(h(b)) + U1:h0(ap2) = u1 ��?bu2 u3 1q : D! bS, where b has type (1! 3), and h0(b) = U1 + fold(U1):

Int(RLIN) = Int(LIN) 63h0(b) = u1 1u 2; 3� S0 = D.As was previously proved, now IntI 0(L(G0)) = IntI(L). Is this plausible? Let us take alook. It can be easily seen that the very simple typed right-linear grammar G0 generatesthe typed language: L(G0) = n banp1ap2 jn 2 N o :Note that (modulo isomorphy) this is just the language f abnc jn 2 N g in disguise. Thequestion now is: IntI 0 �n banp1ap2 ��� n 2 No� ?= fgr(anbcn) jn 2 N g :Consider the case n = 2 on the left-hand side:h0(bap1ap1ap2) =u1 1u 2; 3 � u1 -a u 1u2 �c u 2u3 3 � u1 -a u 1u2 �c u 2u3 3 � u1 ��?bu2 u3 1 =u1 u -a u -a u ��?bu�cu�cuu u u u 1������������XXXXXX =u1 u u u u u 1-a -a -b -c -c =gr(aabcc):

64 Power of interpretationN.B.: the thin lines in the above denote that the nodes they connect have been identi�ed.As we have just shown: h0(ba2p1ap2) = h(a2bc2):Because instead of 2 we could have taken any n 2 N, this more or less \proves" thatIntI 0(L0) = IntI(L). So, yes, the claim is plausible. This concludes the example of theconstruction used to prove Int(RLIN) = Int(LIN).8.2 Int(RLIN) = Int(DB)Firstly, it is trivial that Int(RLIN) � Int(DB) because RLIN � DB (8.1). Secondly,to prove Int(RLIN) � Int(DB) we construct for every L 2 L� (DB) and I = (�;�; h)an interpreter for L an L0 2 L�(RLIN) and an interpreter I 0 for L0 such that IntI(L) =IntI 0(L0).Choose a typed derivation-bounded grammar G = (N;T; P; S) (where T = �) suchthat L(G) = L. Now construct the following right-linear grammar G0 = (N 0; T 0; P 0; S0),where k denotes the derivation bound of G, and I 0 an interpreter for L(G0).� I 0 = (�0;�0; h0), where �0 = T 0, �0 = �, and h0 as de�ned above,� N 0 = � Ski=1N 0i � [fDg, where N 0i = f [A1 : : : Ai] jA1; : : : ; Ai 2 N g.Intuitively: there exists a nonterminal in N 0 for every sequence of up to k nonter-minals in N. Furthermore, there is a new nonterminal D.The type of [A1 : : :An] 2 N 0 is:#inN 0([A1 : : :Am]) = mXk=1 (#inN (Ak) +#outN (Ak))!+#out(L);#outN 0([A1 : : :Am]) =#out(L):Furthermore,#inN 0(D) =#in(L) and #outN 0(D) =#out(L).� T 0 = fap j p 2 P 0g.Intuitively: there exists a unique terminal for every production in P 0,� P 0 = �Sp2P Q(p)� [fp0g.Intuitively: Q(p) comprises a set of productions that \accomplishes" the same inG0 as p \accomplishes" in G. This will become clearer after Q(p) has been de�ned.Furthermore, there is a production p0. Forp : A0 ! v1A1v2A2 : : : vn�1An�1vn; v1; : : : ; vn 2 T �; A0; : : : ; An�1 2 N; n � 1;

Int(RLIN) = Int(DB) 65Q(p) contains the production q(p; [B1 : : : Bm]; i) for every [B1; : : : ; Bm] 2 N 0, andevery i, 1 � i � m, such that A0 = Bi, under the condition that m+ n� 2 � k.The production p0 = q(p; [B1 : : : Bm]; i) looks as follows:[B1 : : :Bm]! ap0[B1 : : : Bi�1A1 : : : An�1Bi+1 : : :Bm]N.B.:1. Should [B1 : : : Bi�1A1 : : :An�1Bi+1 : : :Bm] reduce to \[]" because m = 1, n = 1,and i = 1, we will interpret this as the syntactically empty string (in otherwords, we will pretend the [] is not there at all). When that happens p0 reducesto the production [B1]! ap0.2. Becausem+n�2 � k it is guaranteed that [B1 : : : Bi�1A1 : : :An�1Bi+1 : : : Bm] 2N 0 (unless, or course, it reduces to []).3. This condition m+ n� 2 � k is not a restrictive one, as the derivation bound-edness of G guarantees that there is \no need" for sentential forms that containmore than k nonterminals.4. Intuitively the above production rewrites the ith nonterminal according to p.For this production h0(ap0) is de�ned as follows3:h0(ap0) =H(B1)+� � �+H(Bi�1)+H(v1)+� � �+H(vn)+H(Bi+1)+� � �+H(Bm)+U#out(L);where: H(Bj) = U#in(Bj)+#out(Bj) for 1 � j � i� 1 or i+ 1 � j � m;H(v1) = backfold(h(v1)) for n = 1;H(v1) = h(v1) for n � 2;H(vj) = fold(h(vj)) for n � 2 and 2 � j � n � 1;H(vn) =
ip(h(vn)) for n � 2:Furthermore, we need to de�ne:#inT 0(ap0) =#in(h0(ap0)) = (Pml=1 (#inN (Bl) +#outN (Bl))) +#out(L);#outT 0(ap0) =#out(h0(ap0)) = �Pi�1l=1 (#inN(Bl) +#outN(Bl))�+�Pn�1l=1 (#inN (Al) +#outN (Al))�+�Pml=i+1 (#inN (Bl) +#outN(Bl))�+#out(L):3Note the �-case! (See also the footnote on page 14.)

66 Power of interpretationAnd �nally: p0 : D ! ap0[S];where h0(ap0) = U#in(L)+ fold(U#out(L)),#inT 0(ap0) =#in(L), and #outT 0(ap0) =#in(L) + 2#out(L),� S0 = D.We now have IntI 0(L(G0)) = IntI(L), so L(G0) is the L0 we are looking for. Proof by headrecursion as follows:Invariant:For all H 2 HGR(�), Ai 2 N , n � 2, and j 2 N:9v1;:::;vn2T � 0BBBB@ G : S)j v1A1v2 : : : vn�1An�1vnandH = h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)1CCCCA()9v02T 0� �G0 : [S])j v0[A1 : : :An�1] and H = h0(v0)� :Proof:In proving this invariant, we reason along the same lines as we did in the proof in Sec-tion 8.1. Consequently, we will notate somewhat more tersely now, as there is enoughverbatim correspondence between the two proofs as it is. Induction on the length of thederivations (= on j):Induction basis, j=0:G : S)0 S;n = 2;v1 = (�;#in(L)!#in(L));v2 = (�;#out(L)!#out(L));G0 : [S])0 [S];v0 = (�;#in(L) + 2#out(L)!#in(L) + 2#out(L)):To prove: h(v1) +
ip(h(v2)) + U#out(L) = h0(v0):

Int(RLIN) = Int(DB) 67Proof: h(v1) +
ip(h(v2)) + U#out(L) =(de�nition of h)U#in(L) +
ip(U#out(L)) + U#out(L)(6.25)=U#in(L) + U#out(L) + U#out(L)(4.9)=U#in(L)+2#out(L) =(de�nition of h0)h0(v0):Induction step, assuming the hypothesis holds for)l, j = l + 1:Consider a derivation of length l + 1 in G. Such a derivation necessarily consists of aderivation of length l: G : S)l v1A1v2 : : : vn�1An�1vn;followed by a last step in which we apply the production:p : Ai ! w1B1w2 : : : wm�1Bm�1wm:Firstly, we examine the case where in the last derivation step we are applying a productionthat does not have a terminal-only right-hand side (so m � 2), and of that case the subcase1 < i < n� 1, and n > 2. Then, by the induction hypothesis, there exists a derivation inG0: G0 : [S])l v0[A1 : : :An�1];such that:h0(v0) = h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L): (8.3)Let p0 be the production q(p; [A1 : : :An�1]; i) of G0 (which corresponds to applying p in thecurrent context):p0 : [A1 : : : An�1]! ap0[A1 : : :Ai�1B1 : : : Bm�1Ai+1 : : : An�1]:Combining these derivations of length l with these last steps, we now have:G : S)l v1A1v2 : : : vn�1An�1vn)1 v1A1v2 : : :viw1B1w2 : : :wm�1Bm�1wmvi+1 : : :vn�1An�1vn;G0 : [S])l v0[A1 : : :An�1])1 v0ap0 [A1 : : :Ai�1B1 : : :Bm�1Ai+1 : : :An�1]:Note that from the existence of these derivations we can derive, for 1 � r < n:#in(Ar) =#out(h(vr));#out(Ar) =#in(h(vr+1)); (8.4)

68 Power of interpretationwhich will come in very handy in our proof.To prove:h0(v0ap0) = h(v1) + fold(h(v2)) + � � �+ fold(h(vi�1)) +fold(h(viw1)) + fold(w2) + � � �+ fold(wm�1) + fold(h(wmvi+1)) +fold(h(vi+2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L):Although the expressions in what now follows look quite abhorrent, the steps in betweenthem are actually very simple. All what happens is some reshu�ing of U 's using (4.9), andthe rewriting of #in(Ai) and #out(Ai), as #out(h(vi)) and #in(h(vi+1)) respectively.Only in the last step, where we apply (B.2)4, some \real" work is being done.Proof:h0(v0ap0)(7.1)=h0(v0) � h0(ap0)(8.3)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) � h0(ap0) =(de�nition of h0(ap0))(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBB@ U#in(A1)+#out(A1) + � � �+ U#in(Ai�1)+#out(Ai�1) +h(w1) + fold(h(w2)) + � � �+ fold(h(wm�1)) +
ip(h(wm)) +U#in(Ai+1)+#out(Ai+1) + � � �+ U#in(An�1)+#out(An�1) + U#out(L)1CCCA (4.9)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBB@ U#in(A1)+#out(A1)+���+#in(Ai�1)+#out(Ai�1) +h(w1) + fold(h(w2)) + � � �+ fold(h(wm�1)) +
ip(h(wm)) +U#in(Ai+1)+#out(Ai+1)+���+#in(An�1)+#out(An�1) + U#out(L) 1CCCA (8.4)=4The \B" in \(B.2)" refers to Appendix B.

Int(RLIN) = Int(DB) 69(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBBBBB@ U#out(h(v1))+#in(h(v2))+#out(h(v2))+���+#in(h(vi�1))+#out(h(vi�1))+#in(h(vi)) +h(w1) + fold(h(w2)) + � � �+ fold(h(wm�1)) +
ip(h(wm)) +U#out(h(ai+1))+#in(h(vi+2))+#out(h(vi+2))+���+#in(h(vn�1))+#out(h(vn�1))+#in(h(vn)) +U#out(L) 1CCCCCCA (4.9)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBBBBB@ U#out(h(v1)) + U#in(h(v2))+#out(h(v2)) + � � �+ U#in(h(vi�1))+#out(h(vi�1)) +U#in(h(vi)) + h(w1) + fold(h(w2)) + � � �+ fold(h(wm�1)) +
ip(h(wm)) + U#out(h(ai+1)) +U#in(h(vi+2))+#out(h(vi+2)) + � � �+ U#in(h(vn�1))+#out(h(vn�1)) + U#in(h(vn)) +U#out(L) 1CCCCCCA (B.2)=0BBB@ h(v1) + fold(h(v2)) + � � �+ fold(h(vi�1)) +fold(h(viw1)) + fold(w2) + � � �+ fold(wm�1) + fold(h(wmvi+1)) +fold(h(vi+2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L) 1CCCA :The equivalents for the subcases (i = 1 and n > 2), (i = n� 1 and n > 2), and (i = 1 andn = 2) are not written out in full here, as they are very similar. Most importantly, theydi�er in the fact that instead of applying (B.2) in the last step, one needs to apply (B.3),(B.4), and (B.5) respectively. Note that it is more or less imaginable to combine all thesefour cases using a kind meta notation just as in (B.1), but only at the cost of an even morecrippled clarity of the above derivation.Secondly, we examine the case where in the last derivation step we are applying a produc-tion that does have a terminal-only right-hand side (so m = 1). We start with the subcase1 < i < n� 1 and n > 2. This time, we arrive at the following derivations of length l + 1:G : S)l v1A1v2 : : : vn�1An�1vn)1 v1A1v2 : : : viw1vi+1 : : : vn�1An�1vn;G0 : [S])l v0[A1 : : :An�1])1 v0ap0[A1 : : :Ai�1Ai+1 : : : An�1]:Note that (8.3) and (8.4) also hold for these derivations.To prove:h0(v0ap0) = h(v1) + fold(h(v2)) + � � �+ fold(h(vi�1)) + fold(h(viw1vi+1)) +fold(h(vi+2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L):

70 Power of interpretationProof (derivation is almost the same as the previous one):h0(v0ap0)(7.1)=h0(v0) � h0(ap0)(8.3)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) � h0(ap0) =(de�nition of h0(ap0))(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBB@ U#in(A1)+#out(A1) + � � �+ U#in(Ai�1)+#out(Ai�1) +backfold(h(w1)) +U#in(Ai+1)+#out(Ai+1) + � � �+ U#in(An�1)+#out(An�1) + U#out(L)1CCCA (4.9)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBB@ U#in(A1)+#out(A1)+���+#in(Ai�1)+#out(Ai�1) +backfold(h(w1)) +U#in(Ai+1)+#out(Ai+1)+���+#in(An�1)+#out(An�1) + U#out(L)1CCCA (8.4)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBBBBB@ U#out(h(v1))+#in(h(v2))+#out(h(v2))+���+#in(h(vi�1))+#out(h(vi�1))+#in(h(vi)) +backfold(h(w1)) +U#out(h(ai+1))+#in(h(vi+2))+#out(h(vi+2))+���+#in(h(vn�1))+#out(h(vn�1))+#in(h(vn)) +U#out(L) 1CCCCCCA (4.9)=(h(v1) + fold(h(v2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)) �0BBBBBB@ U#out(h(v1)) + U#in(h(v2))+#out(h(v2)) + � � �+ U#in(h(vi�1))+#out(h(vi�1)) +U#in(h(vi)) + backfold(h(w1)) + U#out(h(ai+1)) +U#in(h(vi+2))+#out(h(vi+2)) + � � �+ U#in(h(vn�1))+#out(h(vn�1)) + U#in(h(vn)) +U#out(L) 1CCCCCCA (B.7)=0BBB@ h(v1) + fold(h(v2)) + � � �+ fold(h(vi�1)) +fold(h(viw1vi+1)) +fold(h(vi+2)) + � � �+ fold(h(vn�1)) +
ip(h(vn)) + U#out(L)1CCCA

Int(RLIN) = Int(DB) 71The equivalents for the subcases (i = 1 and n > 2), (i = n� 1 and n > 2), and (i = 1 andn = 2) are not written out in full here, as they are very similar. Most importantly, theydi�er in the fact that instead of applying (B.7) in the last step, one needs to apply (B.8),(B.9), and (B.10) respectively.The similar proof applies for the direction from right to left, where we use the same pairsof derivations for each value of j. This completes the overall proof of the invariant.Now for any H 2 IntI(L):59v;w;u2T � G : S)� vAw)1 vuw; such that h(vuw) = H;where A 2 N , and production p : A! u applied in the last step. Choose such a v;w; u 2T �. As implied by the invariant:9v02T 0� G0 : [S])� v0[A] and h(v) +
ip(h(w)) + U#out(L) = h0(v0):Choose such a v0 2 T 0�. De�ne p0 to be q(p; [A]; 1]), the production in P 0 corresponding tothe application of p in the context of [A]. Thus, p0 : [A]! ap0. Then, G0 : [S])� v0[A])1v0ap0, and:h0(v0ap0)(7.1)=h0(v0) � h0(ap0) =(invariant)(h(v) +
ip(h(w)) + U#out(L)) � h0(ap0) =(de�nition of h0(ap0))(h(v) +
ip(h(w)) + U#out(L)) � (backfold(h(u)) + U#out(L))(6.33)=backfold(h(v)h(u)h(w)) + U#out(L)(7.2)=backfold(h(vuw)) + U#out(L) =(as by de�nition h(vuw)=H)backfold(H) + U#out(L):And therefore also: G0 : D)1 ap0[S])� ap0v0[A])1 ap0v0ap0;and: h0(ap0v0ap0)(7.1)=h0(ap0) � h0(v0ap0) =(as by de�nition h0(ap0)=U#in(L)+fold(U#out(L)))(U#in(L) + fold(U#out(L))) � h0(v0ap0) =(as proven above)5N.B.: this part is almost identical to the last part of Section 8.1.

72 Power of interpretation(U#in(L) + fold(U#out(L))) � (backfold(H) + U#out(L))(6.34)=U#in(L) �H � U#out(L) � U#out(L) =(unity)H:Which proves that H 2 IntI 0(L0), so IntI(L) � IntI 0(L0). The proof in the other direction,IntI(L) � IntI 0(L0), works in the same way. This completes the proof of our claim thatIntI(L) = IntI 0(L0), and thus also completes the overall proof of Int(RLIN) = Int(DB).8.3 Int(STR(Int(K))) = Int(K)Given a classK of string languages, it turns out that under the remarkably weak conditionsthat:� K is closed under �-free �nite substitution, and,� K is closed under intersection with a regular language,we have that: Int(STR(Int(K))) = Int(K): (8.5)Both RLIN and CF, and most other classes not deliberately constructed to violate theseconditions, can be substituted for K. We will not give a complete formal proof, but onlythe construction for a graph language L in the one side of (8.5), given L is contained inthe other side.Proof. The direction Int(STR(Int(K))) � Int(K) is easy, as by (7.9) gr(K) �Int(K), so therefore also STR(gr(K)) � STR(Int(K)), and by (3.6)K � STR(Int(K)),from which the result Int(K) � Int(STR(Int(K))) immediately follows.The other direction, Int(STR(Int(K))) � Int(K), involves a lot of hard work. Givena hypergraph language L 2 Int(STR(Int(K))), we construct6 an L0 2 L� (K), and aninterpreter I 0 = (�0;�0; h0) for L0, such that IntI 0(L0) = L.Construction:There exist alphabets �1, �2, languages L0 � ��1, L1 � ��2, with L0 2 K, and interpretersI1 = (�1;�1; h1), and I2 = (�2;�2; h2) for L0 and L1 respectively, such that IntI1(L0) =6Be warned: the construction we give is
ooded with technical detail to such an extend, that it borderson the totally incomprehensible. However, it should be possible to grasp the essence of its inner workingsby studying the explanation that follows the construction.

Int(STR(Int(K))) = Int(K) 73gr(L1), and IntI2(L1) = L (note that necessarily �2 = �1, save the types and ranks).Assume (without loss of generality, as K is closed under �-free �nite substitution) that I1is in ENF. De�ne � to be the maximum input or output type of a h2(a) for all a 2 �2:� =maxf#in(h2(a));#out(h2(a)) j a 2 �2 g :L0 is formed by applying a �-free �nite substitution to L0, and then intersecting the resultwith a regular language: L0 = �(L0) \ LT :Here � is a mapping from �1 to �nite subsets of �0:� : �1 ! P(�0);and LT � �0� is a regular language. �0 is derived from �1:�0 = [a2�1 �a:Here, for every symbol (a;m! n) 2 �1, �a is de�ned as follows:�a = 8<: ha; hi1; : : : ; imi; ho1; : : : ; onii ������ i1; : : : ; im; o1; : : : ; on 2 [�] ^P(ha; hi1; : : : ; imi; ho1; : : : ; onii) 9=; ;where for �a = ha; hi1; : : : ; imi; ho1; : : : ; onii, and h1(a) = (V;E;nod; lab; in;out), P(�a)denotes the following condition (note that because IntI1(L0) only contains ordinary graphs,

74 Power of interpretationh1(a) is necessarily also an ordinary graph):0BBBBBBBBBBBBBBBBBBB@8 e2Enod(e)=(v1;v2)lab(e)=d 266666666666666666664
�81�j�m (v1 = in(j) =) #in�2(d) = ij)�^�81�j�n (v1 = out(j) =) #in�2(d) = oj)�^�81�j�m (v2 = in(j) =) #out�2(d) = ij)�^�81�j�n (v2 = out(j) =) #out�2(d) = oj)�

377777777777777777775
1CCCCCCCCCCCCCCCCCCCA^2666666666664 �81�j;j0�m (in(j) = in(j0) =) ij = ij0)�^�81�j;j0�n (out(j) = out(j0) =) oj = oj0)�^�81�j�m;1�j0�n (in(j) = out(j0) =) ij = oj0)�3777777777775The typing on �0 is de�ned as follows. For all (�a;m! n) 2 �0, where �a = ha; hi1; : : : ; imi;ho1; : : : ; onii: #in�0(�a) = mXj=1 ij;#out�0(�a) = nXj=1 oj :Now for all a 2 �1 the substitution � is de�ned as follows:�(a) = �a;and the language LT as follows:LT = (�a1 : : :�ak ����� k � 0; �a1 : : :�ak 2 �0�;81�i<kmatch(�ai; �ai+1) ^#in�0(�a1) = #in(L) ^#out�0(�ak) = #out(L)) [f(�;#in(L)!#in(L))g

Int(STR(Int(K))) = Int(K) 75where match is de�ned as follows. For all �a;�b 2 �0,�a = ha; hi1; : : : ; imi; ho1; : : : ; onii;�b = hb; hi01; : : : ; i0m0i; ho01; : : : ; o0n0ii;match(�a;�b) () ho1; : : : ; oni = hi01; : : : ; i0m0i:Note that match(�a;�b) implies that #out(�a) = #in(�b), but not the other way around!This condition, together with the conditions #in�0(�a1) = #in(L) and #out�0(�ak) =#out(L), guarantees that LT , and therefore L0 also, is a typed language with respect to�0. Finally, we now have fully and uniquely de�ned L0:L0 = �(L0) \ LT :In order to completely de�ne I 0, we still have to specify h0. This interpretation function h0we de�ne as follows7. For all (�a;m! n) 2 �0:�a = ha; hi1; : : : ; imi; ho1; : : : ; onii;and h1(a) = (V;E;nod; lab; in;out);we de�ne: h0(�a) = (V 0; E0;nod0; lab0; in0;out0):Here we distinguish two cases:� The hypergraph h1(a) contains no edges; E = ?,� The hypergraph h1(a) contains exactly one edge; E = feg.Other cases do not occur, as I1 is in ENF.Case 1, E = ?. V 0 = f hin(j); ki j 1 � j � m and 1 � k � ij g [f hout(j); ki j 1 � j � n and 1 � k � oj g ;E 0 = nod0 = lab0 = ?;in0 = �hin[1]; 1i; : : : ; hin[1]; i1i;...hin[m]; 1i; : : : ; hin[m]; imi�;7Keep in mind that �a 2 �0 implies that the condition P(�a) holds.

76 Power of interpretationout0 =�hout[1]; 1i; : : : ; hout[1]; o1i;...hout[n]; 1i; : : : ; hout[m]; oni�.Case 2, E = feg;nod(e) = (v1; v2); lab(e) = d. Note that necessarily v1 6= v2, becauseotherwise h1(a) would contain a loop, and therefore some H 2 IntI1(L0) also. As this is alanguage of string graphs, this cannot happen (see also Section 4.2).V 0 = f hin(j); ki j 1 � j � m and 1 � k � ij and in(j) =2 fv1; v2g g [f hout(j); ki j 1 � j � n and 1 � k � oj and out(j) =2 fv1; v2g g [Vh2(d);E 0 = Eh2(d);nod0 = nodh2(d);lab0 = labh2(d);in0 = in01 : : : in0m; where:in0k = 8>>>><>>>>:(hin(k); 1i; : : : ; hin(k); iki) if in(k) =2 fv1; v2g;inh2(d) if in(k) = v1;outh2(d) if in(k) = v2:out0 = out01 : : :out0n; where:out0k = 8>>>><>>>>:(hout(k); 1i; : : : ; hout(k); oki) if out(k) =2 fv1; v2g;inh2(d) if out(k) = v1;outh2(d) if out(k) = v2:This fully completes the construction of I 0.We have now constructed an L0 and an interpreter I 0 for L0, for which we claim thatIntI 0(L0) = L. However, we will not give a formal proof of this claim, but instead make itplausible by explaining how the construction works.The construction used in this proof is based on the intuition that (8.5):Int(STR(Int(K))) = Int(K)holds because we can always \move" an outermost interpretation I2 on the left-hand sideinto its corresponding innermost one I1, so that we get an interpretation I 0 that performs

Int(STR(Int(K))) = Int(K) 77\I2 � I1". This is done by applying the interpretation function h2 of I2 to the hypergraphsthat occur in the de�nition of h1. In that process, every edge e that occurs in h1 is replacedby the hypergraph h2(lab(e)). In order to do that, we need to split up the node nod(e; 1)into #in(h2(lab(e))) new ones, and the node nod(e; 2) into #out(h2(lab(e))) new ones,so that the replacing hypergraph h2(lab(e)) \�ts".In that way, all nodes in h1 get split up properly, except for those that are not incidentwith an edge. These nodes also need to split up, namely in p new ones, where 0 � p � �.However, we do not directly know p. Therefore, using �, we generate all possible \split-up's". Then to remove the ones that are incorrect, we intersect �(L0) with the \typechecking" language LT . This LT contains all sequences of split-up's that match up. To bemore precise, for an (a;m! n) 2 �1, the typed set �a of all its split-up's consists of allsymbols �a = ha; hi1; : : : ; imi; ho1; : : : ; onii, where the i's are used to indicate that the pthinput node of h1(a) should be split up into ip new nodes, and the qth output node into jqnew nodes.So, L0 = �(L0) \ LT consists of all words w 2 L0, together with the intended split-upnumbers of their symbols, which numbers are meaningful. Then h0(�a) is de�ned as h1(a)properly split up, with the eventual edge e replaced by h2(lab(e)). Note that as h1 is inEdge Normal Form, there can be at most one edge. The h0 thus obtained, intuitively, is\h2 applied to h1". Finally, the closure conditions on K for (8.5) arise from the operationsused to de�ne L0, i.e., to guarantee that L0 2 K.We would very much have liked to give a tangible example of all this. However, thetendency of the construction to lead to a combinatorial explosion seems to defy any attemptat such an example. The only examples that are manageable are the highly trivial ones,where L consists of string graphs only. To give an indication of the exponential growth ofthe construction, if we would use the L and I from Example 1 in Section 7.3 (which arequite simple) for L0 and I1, and about the simplest nontrivial interpretation I2 (where, say,� is only 2), �0 already contains 747 symbols, and �(L0) and LT are apparently impossibleto write down in a way that is essentially simpler than just giving their de�nition. Butthings are worse than that: I1 is required to be in Edge Normal Form. This gives rise toeven more combinatorial headaches!Conclusion: there seems to be no way to give a proper example, one that is neithertrivial, nor monstrous. We do consider this, together with absence of a formal proof, majorshortcomings of our construction. We would very much welcome a better one.For what it is worth, we are convinced that the conjecture (8.5) is true, because theconstruction and the intuition leading to it are quite convincing (to us). Nonetheless, theconjecture should be considered a conjecture, and nothing more. At best, its status maybe described as an \interesting and promising direction for further research".

78 Power of interpretation8.4 About STR(Int(RLIN))By the results of the previous section we can now make some strong statements on theclass STR(Int(RLIN)). To start with:DB STR(Int(RLIN)): (8.6)Proof. Firstly, we prove that DB � STR(Int(RLIN)). By (3.6), DB = STR(gr(DB)),by (7.9), gr(DB) � Int(DB), and therefore also STR(gr(DB)) � STR(Int(DB)), and�nally, by Section 8.2, Int(DB) = Int(RLIN), and therefore also STR(Int(DB)) =STR(Int(RLIN)). Merging these equations, we get:DB = STR(gr(DB)) � STR(Int(DB)) = STR(Int(RLIN)):So, DB � STR(Int(RLIN)). Now, secondly, we have to �nd a string language L such thatL =2 DB, but still L 2 STR(Int(RLIN)). We take: L = f anbncn j n 2 N g. This L, as iswell known from formal language theory, is not in DB (not even in CF). And as shown inSection 7.3, L 2 STR(Int(RLIN)). This completes the proof of (8.6).The above result enables us to extend our sequence of properly included classes ofstring-languages: RLIN LIN DB STR(Int(RLIN)):Furthermore, in the previous three sections, we proved that these classes are all the sameunder interpretation.Now we have proven that RLIN and STR(Int(RLIN)) are the same under interpreta-tion, from this, and the de�nition of Int(K), it follows that for any class of languages Ksuch that RLIN � K � STR(Int(RLIN)) it must be the case that Int(RLIN) = Int(K):RLIN � K � STR(Int(RLIN)) =) Int(RLIN) = Int(K): (8.7)Proof: because RLIN � K, by (8.1), we have Int(RLIN) � Int(K). And because K �STR(Int(RLIN), we also have Int(K) � STR(Int(RLIN)). Now from Int(RLIN) =STR(Int(RLIN)) it directly follows that Int(RLIN) = Int(K).At this point, one might be curious whether there exists a class K still larger thanSTR(Int(RLIN)), such that Int(K) = Int(RLIN). The answer is: no. Proof by reductioad absurdum: given a class K ! STR(Int(RLIN), suppose Int(K) = Int(RLIN). Then ofcourse also STR(Int(K)) = STR(Int(RLIN)). Now because gr(K) � Int(K) (by (7.9)),STR(gr(K)) � STR(Int(RLIN)). But then, by (3.6), K � STR(Int(RLIN))), and wehave a contradiction.

The power of interpretation theorems 79Combining the above results, for any class K of string languages, we have:Int(K) � Int(RLIN) () K � STR(Int(RLIN)): (8.8)The proof is just a recapitulation of earlier proofs in this section. Firstly, the direction =)holds because, as proved in Section 8.3, Int(RLIN) = Int(STR(Int(RLIN))), and hence ifInt(K) � Int(RLIN), then also K = STR(gr(K)) � STR(Int(K)) � STR(Int(RLIN)).Secondly, the direction (= holds because, if K � STR(Int(RLIN), then also Int(K) �Int(STR(Int(RLIN))) = Int(RLIN).Finally, the class STR(Int(RLIN)) was found to be equal to the class OUT(2DGSM)by8 Engelfriet and Heyker in 1991.About this class OUT(2DGSM), the class of all output languages of two-way determin-istic generalized sequential machines, quite a lot is known; for example, it is a substitutionclosed full AFL. For further properties, see [ERS80] and its references.8.5 The power of interpretation theoremsFrom the results we have now obtained, we will derive two theorems on the power ofinterpretation. Given two classes K and K 0, they give necessary and su�cient conditionsfor:� Int(K) � Int(K 0), and,� Int(K) = Int(K 0).These conditions will be in terms of ordinary string languages only.Power of Interpretation Theorem I:For all classes K 0 that are closed under �-free �nite substitution, and under intersectionwith a regular language, we have that for any class K:Int(K) � Int(K 0) () K � STR(Int(K 0)): (8.9)Proof. As in the proof of (8.8) we did not speci�cally use properties of RLIN, otherthan that it is closed under �-free �nite substitution, and under intersection with a regularlanguage, we can extend it from RLIN to any classK 0 that satis�es these closure properties.8See [EH91, page 356], where STR(Int(RLIN)) is called STR(LIN-CFHG). However, beware: theirde�nition of STR is not identical to ours. See also Section 11.4, where the relation between Int(RLIN)and LIN-CFHG is discussed (\essentially equal").

80 Power of interpretationPower of Interpretation Theorem II:For all classes K and K 0, such that both are closed under �-free �nite substitution, andunder intersection with a regular language, we have:Int(K) = Int(K 0) () STR(Int(K)) = STR(Int(K 0)): (8.10)Proof. The direction =) is trivial. The direction (= is as follows: if STR(Int(K)) =STR(Int(K 0)), then obviously also Int(STR(Int(K))) = Int(STR(Int(K 0))). By Sec-tion 8.3, Int(STR(Int(K))) = Int(K), and Int(STR(Int(K 0))) = Int(K 0), from whichthe result then immediately follows.These two theorem are have clear implications. The second one, intuitively, says that fortwo classes of string languages K and K 0, if we want to know whether Int(K) and Int(K 0)are equal, we just have to check some simple closure properties, and prove the equality forthe string-graph languages in Int(K) and Int(K 0) only.The �rst one gives, given a class K 0 that satis�es some closure properties, the largestclass K such that Int(K) is still contained in Int(K 0).8.6 ConclusionsThe results from this chapter give strong indications on the \power" of interpretation. Thefact that Int(RLIN) is equal to Int(DB), although there is quite a gap between RLIN andDB, tells us that a lot of complexity can be moved out of the interpreted language, into theinterpreter. For example: we can choose a complex language L 2 DB and any interpreterI for L, and then construct a simple language L0 2 RLIN and an interpreter I 0 for L0 thatgenerates the same hypergraph language: IntI(L) = IntI 0(L0). Somehow the complexityhas \
ed" out of L, into I 0!However, there are limits to the amount of complexity that can be moved in this way.As we will prove in Section 11.5, Int(CF) is a proper superset of Int(DB). Confusinglyenough, there are languages that are not even context-free, and still under interpretation donot yield stronger results than RLIN under interpretation (see section 8.4). As an exampleof this, take L = f anbncn j n 2 N g. As shown in Section 7.3, L 2 STR(Int(RLIN)). Andby Section 8.3: Int(STR(Int(RLIN))) = Int(RLIN).This is strange! On the one hand, the class STR(Int(RLIN)) contains a wealth ofcomplex languages, amongst which all of DB, and even non context-free languages. On theother hand, all the complexity of Int(STR(Int(RLIN))) can be moved into an interpreter

Conclusions 81acting on RLIN. Apparently, the complexity of STR(Int(RLIN)) is of a \speci�c kind"which can be \handled" by interpretation on RLIN. However, as noted, the complexity ofCF is not of that speci�c kind, and it can not be handled by interpretation on RLIN. Asa side result of these considerations, by the way, one can easily see that STR(Int(RLIN))and CF are incomparable, i.e. neither is a subset of the other.For the case of interpretation on RLIN, we have proven that the kind of complexity inter-pretation can \cope with", is exactly the kind of complexity of the class STR(Int(RLIN)).And in general, for a class K that is closed under �-free �nite substitution, and under inter-section with a regular language, interpretation on K can exactly cope with the complexitygenerated by STR(Int(K)), and nothing more (Power of Interpretation Theorem I).Furthermore, the Power of Interpretation Theorem II is of great help to prove twoclasses equal under interpretation. If for some classes K and K 0 we want to prove thatInt(K) = Int(K 0), essentially all we have to do is to prove it for the string graphs only.Still a question remains: given a class K, what is the nature of the class STR(Int(K))?What does it look like? What is its relation with other known classes? As for RLIN, weknow that is leads to OUT(2DGSM). For a similar problem (but beyond the reach of theformalism of interpretation), Engelfriet and Heyker [EH91, page 355], arrived at the classOUT(DTWT), all output languages of deterministic tree-walking transducers. Hence, itseems reasonable to assume STR(Int(K)), for di�erent K, will be equal to other knownclasses, and possibly even interesting unknown classes.Maybe future research will give a more profound insight into the exact nature ofSTR(Int(K)), or in other words, into the nature of the complexity interpretation cancope with. In that way, interpretation might serve as a vehicle to obtain further knowledgein the �eld of traditional formal language theory; by taking a detour through the realm ofgraph languages, we have found complexity measures on string languages.

A mathematician is a machine forconverting co�ee into theorems.| A. N. Onymous 9Closure properties of Int(K)In this chapter we will examine the closure properties of Int(K) under several operations.We will give su�cient conditions for closure in terms of closure properties of K. Sometimeswe can give several, mutually independent, su�cient conditions.9.1 Closure under sequential compositionSu�cient condition: K closed under concatenation and isomorphism.Proof. Given two hypergraph languages L1;L2 2 Int(K) choose two typed languagesL1; L2 2 L� (K) over disjoint alphabets (the existence of which is guaranteed by the de�ni-tion of Int, the isomorphic copies theorem, and the closure of K under isomorphism), andtwo interpreters I1, I2 for L1 and L2 such that IntI1(L1) = L1 and IntI2(L2) = L2.As K is closed under concatenation we know that L3 = L1 � L2 is in K. TakingI3 = I1 [I2 (performing the union pairwise on all elements of the 3-tuple) as interpreterfor L3 we get IntI3(L3) = L1 �L2. This is proved as follows:IntI3(L3)(7.3)=fh3(w) jw 2 L3 g =(de�nition of L3)fh3(w1 � w2) jw1 2 L1; w2 2 L2 g (7.1)=fh3(w1) � h3(w2) jw1 2 L1; w2 2 L2 g =(de�nition of h3)83

84 Closure properties of Int(K)fh1(w1) � h2(w2) jw1 2 L1; w2 2 L2 g (4.3)=fh1(w) jw 2 L1 g � fh2(w) jw 2 L2 g (7.3)=IntI1(L1) � IntI2(L2) =(de�nition of L1;L2)L1 �L2:Therefore, Int(K) is closed under sequential composition. Proving Int(K) closed underunion and Kleene closure works in a similar way. Be warned however: the following twosections are boringly alike this one!9.2 Closure under unionSu�cient condition: K closed under union and isomorphism.Proof. Given two hypergraph languages L1;L2 2 Int(K) choose two typed languagesL1; L2 2 L� (K) over disjoint alphabets (the existence of which is guaranteed by the de�ni-tion of Int, the isomorphic copies theorem, and the closure under isomorphism), and twointerpreters I1, I2 for L1 and L2 such that IntI1(L1) = L1 and IntI2(L2) = L2.As K is closed under union we know that L3 = L1 [L2 is in K. Taking I3 = I1 [I2(performing the union pairwise on all elements of the 3-tuple) as interpreter for L3 we getIntI3(L3) = L1 [L2. This is proved as follows:IntI3(L3)(7.3)=fh3(w) jw 2 L3 g =(de�nition of L3)fh3(w) jw 2 L1 [L2 g =(set theory)fh3(w) jw 2 L1 g [fh3(w) jw 2 L2 g =(de�nition of h3)fh1(w) jw 2 L1 g [fh2(w) jw 2 L2 g (7.3)=IntI1(L1) [IntI2(L2) =(de�nition of L1;L2)L1 [L2:Therefore, Int(K) is closed under union.9.3 Closure under Kleene closureSu�cient condition: K closed under Kleene closure.Proof. Given a hypergraph language L 2 Int(K) choose a typed language L 2 L� (K) andan interpreter I for L, such that IntI(L) = L.

Closure under +fUng and fUng+ 85As K is closed under Kleene closure we know that L0 = L� is in K. We now haveIntI(L0) = L�. This is proved as follows:IntI(L0)(7.3)=fh(w) jw 2 L0 g =(de�nition of L0)fh(w) jw 2 L� g (7.2)=fh(w) jw 2 L g� =(de�nition of L)L�:Therefore, Int(K) is closed under Kleene closure.9.4 Closure under +fUng and fUng+Su�cient condition: TRUE.Proof. Given a hypergraph language L 2 Int(K) and an n 2 N, choose an L 2 L�(K) andan I = (�;�; h), an interpreter for L, such that IntI(L) = L. De�ne I 0 = (�0;�0; h0) =(�;�; h+ Un). We now have: IntI 0(L) = L+ fUng. This can be proved as follows:IntI 0(L)(7.3)=fh0(w) jw 2 L g =(rewriting w as symbols)fh0(a1 : : : am) j a1 : : : am 2 L g (7.2)=fh0(a1) : : : h0(am) j a1 : : : am 2 L g =(de�nition of h0)f (h(a1) + Un) : : : (h(am) + Un) j a1 : : : am 2 L g (4.13)=f (h(a1) : : : h(am)) + (Un : : :Un) j a1 : : : am 2 L g =(unity)f (h(a1) : : : h(am)) + Un j a1 : : : am 2 L g (7.2)=fh(a1 : : : am) + Un j a1 : : : am 2 L g =(rewriting symbols as w)fh(w) + Un jw 2 L g =(de�nition of +fUng)fh(w) jw 2 L g+ fUng(7.3)=IntI(L) + fUng=(de�nition of L)L+ fUng:Therefore, Int(K) is closed under +fUng. Similarly, we can prove Int(K) to be closedunder fUng+.

86 Closure properties of Int(K)9.5 Closure under parallel compositionSu�cient condition: Int(K) closed under sequential composition. So in terms of asu�cient condition on K: K closed under concatenation and isomorphism.Proof. Let L1;L2 2 Int(K) be hypergraph languages. We can now derive:(L1 + fU#in(L2)g) � (fU#out(L1)g+L2)(4.10)=L1 � fU#out(L1)g+ fU#in(L2)g �L2 =(unity)L1 +L2:Because Int(K) is closed under all operations involved (�, +fUng, fUng+, see sections 9.1and 9.4) this proves that L1+L2 2 Int(K), so Int(K) is closed under parallel composition.9.6 Closure under fold and backfoldSu�cient condition: fold(fUng) 2 Int(K) (backfold(fUng) 2 Int(K) for closure underbackfold) and Int(K) closed under � and +. So in terms of a su�cient condition on K:fag 2 K for some symbol a, and K is closed under concatenation and isomorphism.Proof. Let L 2 Int(K) be a hypergraph language. We can now derive:fold(fU#in(L)g) � (fU#in(L)g+L)(6.32)=fold(
ip(fU#in(L)g) � fU#in(L)g �L)(6.25)=fold(fU#in(L)g � fU#in(L)g �L) =(unity)fold(L):Because Int(K) is closed under all operations involved (�, +), and because fU#in(L)g,fold(fU#in(L)g) 2 Int(K) as we can obtain it by interpreting fag 2 K in the appropriateway, this proves that fold(L) 2 Int(K), so Int(K) is closed under folding. Proving Int(K)closed under backfolding works in the same manner, using (6.33) instead of (6.32).9.7 Closure under
ipSu�cient condition: fUng 2 Int(K) and Int(K) closed under �, +, fold, and backfold.So in terms of a su�cient condition on K: fag 2 K for some symbol a, and K is closedunder concatenation and isomorphism.

Closure under
ip 87Proof. Let L 2 Int(K) be a hypergraph language. We can now derive:(fold(L) + fU#out(L)g) � (fU#in(L)g+ backfold(fU#out(L)g))(6.25)=(fold(L) +
ip(fU#out(L)g)) � (
ip(fU#in(L)g) + backfold(fU#out(L)g))(6.35)=
ip(fU#in(L)g �L � fU#out(L)g � fU#out(L)g) =(unity)
ip(L):Because Int(K) is closed under all operations involved (�, +, fold, backfold), and becausefU#out(L)g, fU#in(L)g 2 Int(K) as we can obtain them by interpreting fag 2 K in theappropriate way, this proves that
ip(L) 2 Int(K), so Int(K) is closed under
ipping.However, there is also another, very natural, su�cient condition for closure under
ipping:Su�cient condition: K is closed under reversal.Proof. Given an L 2 Int(K), choose an L 2 L� (K) and an I = (�;�; h), an interpreterfor L, such that IntI(L) = L. As we know that K is closed under reversal, LR 2 K. De�neI 0 = (�0;�0; h0) = (�;�;
ip � h). We now have: IntI 0(LR) =
ip(L). This can be provedas follows: IntI 0(LR)(7.3)=nh0(w) ���w 2 LR o =(de�nition of reversal)nh0(wR) jw 2 L o =(rewriting w as symbols)fh0(an : : : a1) j a1 : : : an 2 L g (7.2)=fh0(an) : : : h0(a1) j a1 : : : an 2 L g =(de�nition of h0)f
ip(h(an)) : : :
ip(h(a1)) j a1 : : : an 2 L g (6.23)=f
ip(h(a1) : : : h(an)) j a1 : : : an 2 L g (7.2)=f
ip(h(a1 : : : an)) j a1 : : : an 2 L g =(rewriting symbols as w)f
ip(h(w)) jw 2 L g =(set theory)
ip (fh(w) jw 2 L g) (7.3)=
ip (IntI(L)) =(de�nition of L)
ip(L):Therefore, Int(K) is closed under
ipping.

88 Closure properties of Int(K)9.8 Closure under splitSu�cient condition: fUng 2 Int(K) and Int(K) closed under fold, backfold, � and +.So in terms of a su�cient condition on K: fag 2 K for some symbol a, and K is closedunder concatenation and isomorphism.Proof. Let L 2 Int(K) be a hypergraph language, and p; q 2 N arbitrary integers suchthat p+ q =#in(L) +#out(L). We can now derive:splitp;q(L)(6.28)= (fUpg+ fold(fUqg) � (backfold(L) + fUqg):Because Int(K) is closed under all operations involved (fold, backfold, �, +), and becausefUpg; fUqg 2 K as we can obtain them by interpreting fag 2 K in the appropriate way,this proves that splitp;q(L) 2 Int(K), so Int(K) is closed under splitp;q. As p and q werearbitrarily chosen, and by (6.29), this means that Int(K) is also closed under split (ingeneral, without speci�ed p and q).9.9 Closure under edge relabelingSu�cient condition: TRUE.Proof. Let L 2 Int(K) be a hypergraph language over a ranked alphabet �, �0 a rankedalphabet, and f : � ! �0 a rank preserving function (8a2� rank(f(a)) = rank(a)).Extend f in the obvious way to operate on hypergraphs, such that it returns the samehypergraph, only with the edges relabeled. Now choose a language L 2 L�(K) and I =(�;�; h) an interpreter for L such that IntI(L) = L. If we now choose I 0 = (�;�0; f �h), then clearly IntI 0(L) is the hypergraph language that results from applying the edgerelabeling f to (the edge labels in) L. Therefore, Int(K) is closed under the relabeling ofedges.9.10 ConclusionsSummarizing the results from this chapter, we can draw the following table to expressthe su�cient conditions for closure of Int(K). Each row indicates for a certain operationwhich closure conditions on K are su�cient to guarantee closure on Int(K) under thatoperation. Needed conditions are marked by a bullet (�), \edge relab." stands for edgerelabeling, and \isomorph" for isomorphism.

Conclusions 89� [� isomorph fag 2 K reversal� � �+ � �[� �� �+fUngfUng+fold � � �backfold � � �splitp;q � � �
ip � � �
ip �edge relab.Finally, note that RLIN and CF satisfy all mentioned closure conditions. Therefore, bothInt(RLIN) and Int(CF) are closed under all mentioned operations.

If you cannot convince them, confuse them.| Harry S. Truman 10Another characterizationIt turns out that there is another beautiful way to characterize the class of hypergraphlanguages Int(RLIN), without the concept of \interpreting" at all! This characterizationis as follows:Int(RLIN) is the smallest class of hypergraph languages that is closedunder concatenation, parallel composition, union, and Kleene closure, andthat contains the singleton class derived from the full base set.Before we will be able to prove this characterization, we will �rst prove that some othercharacterizations that look like it also de�ne the class Int(RLIN).10.1 Using HGRTo begin with, we characterize Int(RLIN) as the smallest class of hypergraph languagesthat is closed under concatenation, union, and Kleene closure, and that contains all single-ton hypergraph languages. To prove that this characterization indeed de�nes the classInt(RLIN), we need to prove three things. Firstly, by Section 9.10, it is clear thatInt(RLIN) is indeed closed under concatenation, union, and Kleene closure. Secondly,it is trivial that Int(RLIN) contains all singleton hypergraph languages, as Int(ffagg)consists of exactly all singleton hypergraph languages (see Example 3 of Section 7.3), andclearly fag 2 RLIN. Therefore by (8.1), Int(ffagg) � Int(RLIN). The third (and last)part is the hardest: Int(RLIN) is the smallest class that is closed under concatenation,91

92 Another characterizationKleene closure, and union, and that contains all singleton hypergraph languages. In orderto prove this, we have to show that every hypergraph language L 2 Int(RLIN) over somealphabet � can be denoted by a �nite expression over Sing(HGR(�)), �, �, and [(alsocalled a regular expression).Proof. Choose such an L 2 Int(RLIN). Let L be a typed right-linear language oversome alphabet �, and I = (�;�; h) an interpreter for L, such that IntI(L) = L. Fromformal language theory, it is a well known fact1 that L can be expressed by a regularexpression over �, �, [, and �. So, let r be a regular (string) expression that denotes L.Now let r0 be the regular (graph) expression derived from r by replacing every occurrenceof fag by fh(a)g, for all a 2 �. As we know that for all string languages L0 and L00:� if L0 � L00 is typed, then so are L0 and L00,� if L0� is typed, then so is L0,� if L0 [L00 is typed, then so are L0 and L00,� h(L0 � L00) = h(L0) � h(L00),� h(L0�) = h(L0)�,� h(L0 [L00) = h(L0) [h(L00);this proves that r0 = h(r) (by induction on the length of r). Because h(r) = IntI(L) = L,the regular expression r0 thus obtained denotes the language L. This completes the proofthat every language L 2 Int(RLIN) can be denoted by a regular expression. Together withthe �rst two parts, this third part concludes the overall proof that the new characterizationindeed exactly characterizes the class Int(RLIN) we already know.10.2 Using the sequential pseudo base setHaving obtained the result of the previous section, we can easily make it stronger by usingthe results from Chapter 5. In this way, we can characterize Int(RLIN) as the smallest classof hypergraph languages that is closed under concatenation, union, and Kleene closure, andthat contains the singleton class derived from the sequential pseudo base set. In additionto what we already proved in the previous section, it now su�ces to only prove that everysingleton language inHGR can be represented by an expression over the sequential pseudobase set and sequential composition. Or, formally expressed, HGR ��! LB. But this wehave already proved in Section 5.10, so we are done.1See for example Hopcroft and Ullman [HU79, x2.5], or Carroll and Long [CL89, x6.2].

Using the full base set 93Recall that the sequential pseudo base set contains exactly all hypergraphs that haveat most one edge. So, intuitively, this characterization says that Int(RLIN) is the smallestclass of hypergraph languages that is closed under concatenation, union, and Kleene clo-sure, and that contains all singleton hypergraph languages fHg where H has zero or oneedges.10.3 Using the full base setThe same as in the previous section can be done for the full base set. Now, we characterizeInt(RLIN) as the smallest class of hypergraph languages that is closed under concatenation,parallel composition, union, and Kleene closure, and that contains the singleton classderived from the full base set (this is the same characterization as given at the beginning ofthis chapter). The additionally needed proof follows directly from the fact that Int(RLIN)is closed under parallel composition (Section 9.5), and HGR �;+�! LC.Recall that the full set consists of all \edges" and six \auxiliary hypergraphs". So,intuitively, this characterization says that Int(RLIN) is the smallest class of hypergraphlanguages that is closed under concatenation, parallel composition, union, and Kleeneclosure, and that contains all \edges" (and a few auxiliary hypergraphs).10.4 ConclusionsThere is strong resemblance between the characterization given at the beginning of thischapter, and the characterization (from formal language theory) of RLIN as the smallestclass that is closed under concatenation, union, and Kleene closure, and that contains all\symbols" (i.e., languages of the form fag, where a is a symbol). Just as that characteriza-tion intuitively says \the class of regular string languages can be build by regular expres-sions over the basic building blocks, namely symbols", ours says \the class Int(RLIN) canbe build by regular expressions over the basic building blocks, namely edges". We thinkthat because of this resemblance, Int(RLIN) deserves to be called \the class of regulargraph languages".

There's too many men, too many people,making too many problems. Can't yousee this is a land of confusion?| Phil Collins 11Other literatureMore than 20 years ago, the concept of a graph grammar was introduced by A. Rosenfeldas a formulation of some problems in pattern recognition and image processing, as well asby H. J. Schneider in Germany as a method for data type speci�cation. In this chapterwe will make a comparison between our Int(K) classes of hypergraph languages, andsome classes of hypergraph languages generated by graph grammars on which results havebeen published in the scienti�c literature. In particular we will �nd that Int(RLIN) �LIN-CFHG1, where LIN-CFHG is the class of (languages generated by) linear context-freehypergraph grammars, as de�ned by Engelfriet and Heyker.11.1 IntroductionBe aware that there is no universally, or even widely, agreed on concept of the \right" wayto de�ne a graph grammar. Instead, there are many fundamentally di�erent approaches.For example: what should nonterminals stand for, nodes, edges, or perhaps even somethingelse? As a consequence of this controversy, seemingly simple questions like \what is contextfreeness with regard to a graph grammar?" have no conclusive answer (yet).Although our means of de�ning hypergraph languages by interpretation has strictlyspoken little or nothing to do with a graph grammar, a string grammar/interpreter pair1We write � instead of = because their hypergraphs have only one sequence of external nodes, whileours have two. Except for that small matter, both classes are completely identical. We will turn this intoa precise formal statement, and prove it, in Section 11.4.95

96 Other literatureis, in our view, a \graph grammar in disguise". Not surprisingly, some of our results (forexample, our claim that the class Int(RLIN) deserves to be called \the class of regulargraph languages", and the decomposition of HGR(�) in a base set) are strikingly similarto some results derived using a hyper-edge replacement graph grammar approach. Hencethe title of this thesis: \Graphs Grammars and Operations on Graphs".In what follows, we will make comparisons to work of Engelfriet and Heyker ([EH91],[EH92]), Bauderon and Courcelle ([BC87]), and Habel and Kreowski ([Hab92]), all of whichare hyper-edge replacement oriented approaches.No comparison whatsoever is made with node-replacement oriented approaches. Itmay be interesting to observe that node replacement is in general more powerful than edgereplacement. For example, the set of all complete graphs can easily be generated by a node-replacement graph grammar, but not by means of the above mentioned edge-replacementgraph grammars.For an overview of developments in the �eld, recent proceedings of the \InternationalWorkshop on Graph Grammars and Their Application to Computer Science" ([ENRR87],[EKR91]) are a good place to start.11.2 Engelfriet and HeykerThe class Int(RLIN) we de�ned is very similar to the class LIN-CFHG de�ned by Engelfrietand Heyker in 1991 [EH91]. Before we can make precise statements, however, we need away to \translate" their notion of \hypergraphs" into our idea of hypergraphs as de�nedin Chapter 2.For clarity's sake, we will call the \hypergraphs" as de�ned by Engelfriet and HeykerBC-hypergraphs2, and correspondingly their equivalent of our set of all hypergraphs over aranked alphabet �,HGR(�), we will callBC-HGR(�). The reader is referred to [EH91,pages 330{331] for the exact de�nitions of BC-hypergraphs, and the notation involved. Letit su�ce here to summarize that BC-hypergraphs are very much like our hypergraphs albeitthat they do not distinguish between input nodes and output nodes. Instead, they haveonly one kind of external node, called external node(!)3. The sequence of all external nodesis called ext. A BC-hypergraph H is denoted as: H = (V;E;nod; lab; ext), where V , E,nod, and lab are de�ned in the same manner as we do, and ext 2 V �. The \type" of aBC-hypergraph is called rank, and is de�ned as the length of ext: rank(H) = jextj. This2After Bauderon and Courcelle, who �rst proposed this kind of hypergraph.3Note the di�erence between an external node of a BC-hypergraph, as de�ned here, and an externalnode of a hypergraph in our de�nition, as de�ned on page 22. Luckily, although de�ned on di�erent kindsof hypergraphs, both concepts of external node stand for exactly the same thing.

Context-Free Hypergraph Grammars 97brings us to our translation functions � and � . Let � be a ranked alphabet.� : BC-HGR(�)!HGR(�); for a BC-hypergraph H = (V;E;nod; lab; ext) :�(H) def= (V;E;nod; lab; ext; �);� :HGR(�)! BC-HGR(�); for a hypergraph H = (V;E;nod; lab; in;out) :� (H) def= (V;E;nod; lab; in � out):Note that for �(H) we simply use the sequence of external nodes of H as input nodes,and leave the sequence of output nodes empty. For � (H) we concatenate in and outand use this product as sequence of external nodes. Be aware that although � and � are each other's inverse in some sense, they are not so mathematically speaking. Theconnection between the two of them is as follows (let H 2 HGR(�) of type (m! n), andH 2 BC-HGR(�) for some ranked alphabet �):� (�(H)) = H; (11.1)�(� (H)) = backfold(H); (11.2)splitm;n(�(� (H))) = H: (11.3)The proofs follow immediately from the de�nitions involved. Note that from (11.2), (11.3),and (6.12) it follows that for any class K of hypergraph languages that is closed undersplit, we have: split(�(� (K))) =K: (11.4)11.3 Context-Free Hypergraph GrammarsUsing BC-hypergraphs, Engelfriet and Heyker follow a hyperedge replacement graph gram-mar approach to de�ne classes of graph languages. Their grammars have the form (�;�;P; S), where � is the (ranked) alphabet of edge labels, � � � is the alphabet of terminaledge labels, P is the (�nite) set of productions, and S 2 ��� is the initial nonterminal.Every production � in P is of the form � = (X;H), where X 2 � �� is a nonterminalsymbol, and H 2 BC-HGR(�) is a hypergraph, such that rank�(X) = rank(H).In short, a derivation in such a grammar proceeds as follows. Let n = rank�(S). Tobegin, one takes a hypergraph which consists only of one edge, labeled S, and n nodes, allof which external:(fv1; : : : ; vng; feg;nod(e) 7! (v1; : : : ; vn); lab(e) 7! S; (v1; : : : ; vn)):

98 Other literatureThen in each step, one chooses an edge labeled by a nonterminal symbol X 2 ���, anda production � = (X;H). The hypergraph under consideration then gets his chosen edgereplaced with the hypergraph H, where the former attachment nodes of the tentacles ofthe edge get identi�ed with the corresponding external nodes of H. This edge replacementprocess continues until we reach the moment where all edge labels are terminal. At thatpoint, our derivation has completed. Note that all \sentential forms", including the �nallyderived hypergraph, are of rank n.For a given grammar G = (�;�; P; S), the hypergraph language L(G) consists of allhypergraphs over � that have a derivation in G. The class of all hypergraph languages ob-tainable in this way, is denoted CFHG, standing for \Context-Free Hypergraph Grammar".If we put the restriction on the grammars that the right hand side of a production mayat most contain one nonterminal edge, we get the class LIN-CFHG (for Linear Context-Free Hypergraph Grammar). Loosely speaking, we will also use LIN-CFHG and CFHG todenote the sets of their grammars.11.4 split(�(LIN-CFHG)) = Int(RLIN)Firstly, we prove split(�(LIN-CFHG)) � Int(RLIN). Given a linear grammar G = (�;�;P; S) conform [EH91], and two integersm;n 2 N such that rank(S) = m+n, we construct4a right-linear typed grammarG0 = (N 0; T 0; P 0; S0), that generates the typed language L(G0)of type (m! n), and an interpreter I 0 = (�0;�0; h0) (where �0 = T 0 and �0 = �) for L(G),such that IntI(L(G0)) = splitm;n(�(L(G))):� N 0 = (� ��) [fDg, D =2 (���),where for A 2 N 0, A 6= D, its type is de�ned by #inN 0(A) = rank�(A) + n, and#outN 0(A) = 0. For D, #inN 0(D) = m, and #outN 0(D) = n,� T 0 = f a� j� 2 P g [fbg,where for � = (X;H), the type of a� is de�ned by #inT 0(a�) = rank(H) + n =rank�(X) + n, and #outT 0(a�) = rank�(labH(nont(H))) + n if H contains onenonterminal, and 0 otherwise. For b, #inT 0(b) = m, and #outT 0(b) = m+ 2n,� P 0 = f p� j� 2 P g [fqg.4The construction is based on splitm;n(�(H)) = (Um + fold(Un)) � (�(H) + Un), by (6.28).

split(�(LIN-CFHG)) = Int(RLIN) 99If � = (X;H) and H contains exactly one nonterminal edge (namely nont(H)), thenthe production p� looks as follows5:p� : X ! a�labH(nont(H));h0(a�) = (VH; EH � nont(H);nodH; labH; extH;nodH(nont(H))) + Un:If � = (X;H) and H does not contain a nonterminal edge (the only other alternative;as G is linearH cannot contain more than one nonterminal edge) then the productionp� looks as follows: p� : X ! a�;h0(a�) = �(H) + Un:The production q is de�ned as follows:q : D! bS;and h0(b) = Um + fold(Un),� S0 = D,� �0 = �, �0 = �, and h0 as de�ned above.We now claim that splitm;n(�(L(G))) = IntI(L(G0)). Instead of giving a full formal proof,we will give the invariant that describes the relation between the derivations in G and G0.Invariant:For all H 2 BC-HGR(�), and j 2 N: G : S)j H()9w2T 0�;A2N 0 �G0 : S)j wA and h0(w) � (H(A) + Un) = �(H) + Un� ;where, for k = rank�(A):H(A) = (fv1; : : : ; vkg; feg;nod(e) 7! (v1; : : : ; vk); lab(e) 7! A; (v1; : : : ; vk); �):The proof of the correctness of this invariant, and of the fact that our claim follows fromit, then proceeds along similar lines as in the comparable proof in Section 8.1. The validity5Note the �-case! (See also the footnote on page 14.)

100 Other literatureof this claim completes the proof of split(�(LIN-CFHG)) � Int(RLIN).Conversely, we prove split(�(LIN-CFHG)) � Int(RLIN). Given a right-linear typedgrammar G = (N;T; P; S) that generates the typed language L(G) of type (m ! n),and an interpreter I = (�;�; h) (where � = T) for L(G), we construct a LIN-CFHGgrammar G0 = (�0;�0; P 0; S0) such that L(G0) = � (IntI(L(G))), and hence, by (11.3),splitm;n(�(L(G0))) = IntI(L(G)):� �0 = N [�,where for a 2 �0, rank�0(a) = 8><>:#inN(a) +#outN (a) if a 2 N;rank�(a) if a 2 �;� �0 = � (the ranks of its symbols have already been determined above),� P 0 = f �p j p 2 P g.If p has the form p : A! wB, and m0 =#outT (w) =#inN(B), then the production�p looks as follows6: �p = (A;� (h(w) �H(B)));where: H(B) = (fv1; : : : ; vm0+ng; feg;nod(e) 7! (v1; : : : ; vm0+n);lab(e) 7! B; (v1; : : : ; vm0); (vm0+1; : : : ; vm0+n)):Note that this H is type preserving.If p : A! w, then the production �p looks as follows:�p = (A;� (h(w)));� S0 = S.We now claim that splitm;n(�(L(G0))) = IntI(L(G)). Again, instead of giving a full formalproof, we will give the invariant that describes the relation between the derivations in Gand G0.6Note the �-case! (See also the footnote on page 14.)

Int(RLIN) Int(CF) 101Invariant:For all H 2 BC-HGR(�0), and j 2 N:9w2T �;A2N �G : S)j wA and H = � (h(w) �H(A))�()G0 : S 0)j H:The validity of this claim completes the proof of split(�(LIN-CFHG)) � Int(RLIN).Together with the previous result split(�(LIN-CFHG)) � Int(RLIN), this completes theoverall proof of split(�(LIN-CFHG)) = Int(RLIN).What does this mean, i.e., what does split�� do? Well, � just translates the sequenceext of a BC-hypergraph in the sequences in = ext, and out = �, of an i/o-hypergraph.Then, split just redistributes all input nodes over in and out, in all possible ways suchthat the order stays the same (i.e., in � out stays invariant). So, split �� does not changethe structure of its argument at all! The only thing it does is translate and redistributeexternal nodes. Therefore, intuitively speaking, LIN-CFHG contains exactly the samehypergraph languages as Int(RLIN), albeit that the former contains BC-hypergraphs, andthe latter i/o-hypergraphs.11.5 Int(RLIN) Int(CF)The proof of Int(RLIN) Int(CF) is quite involved. We will derive it from a result byEngelfriet and Heyker [EH91], who in turn rely on a result by Greibach [Gre78].Firstly, by (8.1), it is obvious that Int(RLIN) � Int(CF). Secondly, on page 357of [EH91] it is shown that there exists a string language L 2 L(CF), such that L =2STR(LIN-CFHG), so7 we also have L =2 STR(Int(RLIN)). From this, by the Power ofInterpretation theorem I (or more speci�cally, by (8.8) for K = fLg), it follows that:9L2Int(L)L =2 Int(STR(Int(RLIN)));so by the results from Section 8.3:9L2Int(L)L =2 Int(RLIN):Choose such a hypergraph language L. Now, as L 2 L(CF), by (7.5), we have Int(L) �Int(CF). Therefore, L =2 Int(RLIN), and at the same time, L 2 Int(CF). This completesthe proof of Int(RLIN) Int(CF).7Note that, in [EH91], STR is de�ned slightly di�erent than here. In this section, however, we will onlyuse STR(LIN-CFHG), which is equal to STR(Int(RLIN)), as can be seen from the respective de�nitionsof STR, and the results from Section 11.4.

102 Other literature11.6 Int(CF) split(�(CFHG))In a sense, Int(CF) is completely contained in CFHG, but the opposite does not hold:there are hypergraph languages in CFHG that have no equivalent in Int(CF). Formallyexpressed: Int(CF) split(�(CFHG): (11.5)In order to prove this, we need to do two things. Firstly, we will give a hypergraph languageL, the language of all binary trees, such that L =2 Int(CF) and L 2 split(�(CFHG)).Then, secondly, for every hypergraph language L 2 Int(CF) of type (m! n), we will givea graph grammar G0 2 CFHG such that splitm;n(�(L(G0))) = L.Firstly, the language L of all binary trees. By a binary tree we here mean an ordinarygraph of type (0 ! 0) that forms a binary tree, and where the direction of all edges isfrom root to leaves. Instead of giving a complete formal de�nition, we give an example(the edge labels have been left out, as they are all a):
u���������������3QQQQQQQQQQQQQQQs u����������*HHHHHHHHHHj

u����������*HHHHHHHHHHj
u����������*HHHHHHHHHHju
u����������*HHHHHHHHHHju

uu����������*HHHHHHHHHHju
u����������*HHHHHHHHHHj

uuu
u

This language L is not in Int(CF), as it is of bounded degree 3, but by [Len82] not ofbounded cutwidth. Such a language, as we have proven in Section 7.6, can impossibly beobtained by interpretation.That L is indeed in split(�(CFHG)), is shown by the following grammar G 2 CFHG.G = (�;�; P; S), where � = fa;A; Sg (a of rank 2, A of rank 1, and S of rank 0), � = fag,

Int(CF) split(�(CFHG)) 103P = f�1; �2; �3g. The three productions in P look as follows (we mimic the notation of[EH91]): S ::= u A1 A ::= u1 ����������*aHHHHHHHHHHja uu A1 A1 A ::= u1Clearly, this G generates all binary trees, or formally, split0;0(�(L(G))) = L. Therefore,L 2 split(�(CFHG)).Secondly, for a given hypergraph language L 2 Int(CF) of type (m ! n), we willconstruct a graph grammarG0 2 CFHG such that L(G0) = � (L), so splitm;n(�(L(G0))) =L. This grammar G0 can be constructed as follows8. Let G = (N;T; P; S) be a typedgrammar, and I = (�;�; h) (where � = T) an interpreter for L(G), such that IntI(L(G)) =L. Now choose G0 = (�0;�0; P 0; S0) as follows:� �0 = N [�,where for a 2 �0, rank�0(a) = 8><>:#inN(a) +#outN (a) if a 2 N;rank�(a) if a 2 �;� �0 = � (the ranks of its symbols have already been determined above),� P 0 = f �p j p 2 P g.If p has the form9: A0 ! w1A1w2 : : : wk�1Ak�1wk;for some k � 1, and for all 1 � i < k, mi = #inN(Ai) and ni = #outN(Ai), thenthe production �p looks as follows:�p = (A0;� (h(w1) �H(A1) � h(w2) � : : : � h(wk�1) �H(Ak�1) � h(wk)));where:H(Ai) = (fv1; : : : ; vmi+nig; feg;nod(e) 7! (v1; : : : ; vmi+ni); lab(e) = Ai;(v1; : : : ; vmi); (vmi+1; : : : ; vmi+ni)) : mi ! ni:Note that this H is type preserving.8The construction is a more-or-less straightforward extension of the second construction in Section 11.4.9Note the �-case! (See also the footnote on page 14.)

104 Other literature� S0 = S.We now claim that splitm;n(�(L(G0))) = L. Instead of giving a full formal proof, we willgive the invariant that describes the relation between the derivations in G and G0.Invariant:For all H 2 BC-HGR(�0), k = jnont(H)j + 1, and j 2 N:266649 w1;:::;wk2T �A1 ;:::;Ak�12N 0BBB@ G : S)j w1A1w2 : : :wk�1Ak�1wkandH = � (h(w1) �H(A1) � h(w2) � : : : � h(wk�1) �H(Ak�1) � h(wk))1CCCA37775()G0 : S 0)j H:By the validity of our claim, and because L(G0) 2 CFHG (by de�nition), we now haveL 2 split(�(CFHG)). This proves that Int(CF) � split(�(CFHG)). Together with the�rst part, this completes the overall proof of Int(CF) split(�(CFHG)).11.7 Bauderon and CourcelleThe hypergraphs de�ned by Bauderon and Courcelle ([BC87]), are the same BC-hyper-graphs we mentioned earlier in Section 11.2, except for minor notational di�erences. The(single) sequence of external nodes is called the sequence of sources, denoted src, and theincidence function is called vert (for vertices, i.e., nodes). To translate back and forthbetween our hypergraphs and these hypergraphs we will use the same functions � and � we used in Section 11.2.Bauderon and Courcelle de�ne three kinds of operations on BC-hypergraphs:� Sum, a binary operation, denoted by H�H0,� Rede�nition of Sources, a unary operation, denoted by ��(H),� Source Fusion, a unary operation, denoted by ��(H).Loosely speaking, these operations perform the following actions. Let H and H0 be arbi-trary BC-hypergraphs of rank n and rank n0 respectively. The operation H�H0 does thesame thing as our parallel composition, but note the fact that it operates on hypergraphsthat have only one sequence of external nodes. The sum H � H0 has rank n + n0. The

Bauderon and Courcelle 105operation ��(H), where � is a mapping from [m] to [n] rede�nes the sequence of n sourcenodes of H in a new sequence ofm source nodes, in such a way that, for 1 � i � m, the newsource node i is the old source node �(i). So, ��(H) is of rank m. The operation ��(H),where � is an equivalence relation on [n] (intuitively: on the external nodes), identi�esthose external nodes srcH(i), srcH(j), 1 � i; j � n, such that (i; j) 2 �. So intuitively,��(H) identi�es those external nodes of H that are in the relation (as implied by) �. Theresult is again a BC-hypergraph of rank n.These operations can be expressed in terms of our sequential and parallel composition,and sequential and parallel composition can be expressed in terms of �, ��, and ��. inthe following way. Let H and H0 be arbitrary BC-hypergraphs of rank n and rank n0respectively.Sum:The sum H�H0 can be expressed in terms of + as follows:�(H�H0) = �(H) + �(H0):Rede�nition of Sources:For a mapping � from [m] to [n], ��(H) can be expressed in terms of � as follows:�(��(H)) = H� � �(H);where H� = (fv1; : : : ; vng;?;?;?; (v�(1); : : : ; v�(m)); (v1; : : : ; vn)) : m! n.Source Fusion:For an equivalence relation � on [n], ��(H) can be expressed in terms of � as follows:�(��(H)) = H� � �(H);where H� = ([n]=�;?;?;?; ([1]�; : : : ; [n]�); ([1]�; : : : ; [n]�)) : n! n.Parallel Composition:The parallel composition of two hypergraphs H : m! n and H 0 : m0! n0 can be expressedin terms of � and �� as follows:� (H +H 0) = ��(� (H)� � (H 0)):

106 Other literatureHere � denotes a mapping from [m+m0 + n+ n0] to [m+ n+m0 + n0], de�ned by:�(i) = 8>>>>>>><>>>>>>>:i for 1 � i � m;i+ n for m+ 1 � i � m+m0;i�m0 for m+m0 + 1 � i � m+m0 + n;i for m+m0 + n+ 1 � i � m+m0 + n + n0:Sequential Composition:The sequential composition of two hypergraphs H : m ! n and H 0 : n ! k can beexpressed in terms of �� and �� as follows:� (H �H 0) = ��(��(� (H) � � (H 0))):Here � denotes the smallest equivalence relation on [m+2n+k] that contains the followingpairs: f (i; j) jm+ 1 � i � m+ n and j = i+ n g ;and � is the mapping from [m+ k] to [m+ 2n + k] de�ned by:�(i) = 8><>:i for 1 � i � m;i+ 2n for m+ 1 � i � m+ k:Concluding, we have now proved that the operations �, ��, and �� can be expressedin terms of � and +, and vice versa. Intuitively, this means that the graph grammars(or rather expression grammars, where the expressions de�ne graphs) that are de�nedby Bauderon and Courcelle in [BC87], could also have been de�ned using sequential andparallel composition, in such a way that their power stays exactly the same (it cannotincrease, as the emulation of the operations goes both ways). Neither the formal expressionof this intuition, nor its proof, are trivial. As both are beyond the scope of this thesis, wewill make no attempt at formulating them.11.8 Habel and KreowskiIn their paper \May we introduce to you: hyperedge replacement" [ENRR87, page 15{26]Habel and Kreowski make a strong case for taking a hypergraph edge rewriting approachto graph grammars. The hypergraphs they de�ne look very much like our hypergraphs,having a sequence of \input" nodes (called begin) and a sequence of \output" nodes (calledend). However, they di�er in the fact that the hyperedge-label alphabet is ranked instead

Further reading 107of typed. Consequently, their hyperedges have two kind a tentacles: source tentacles, andtarget tentacles. This makes the hyperedge replacement scheme they propose conceptuallyvery easy: one \lifts" a hyperedge out of a hypergraph, and then inserts an edge replacinghypergraph, thereby connecting the begin and end sequences to the former source andtarget nodes of the removed edge.In this respect, their approach looks very much like the approach taken by Bauderon andCourcelle (and, later, by Engelfriet and Heyker), albeit that Habel and Kreowski chooseto have two sequences of external nodes per hypergraph, and two sequences of tentaclesper hyperedge. As Bauderon and Courcelle correctly point out [BC87, page 113], this doesnot increase the power of formalism: both kinds of graph grammars can be emulated bythe other. Therefore, it may be considered a matter of taste whether one wants one or twosequences of external nodes. In the above mentioned paper Habel and Kreowski argue, bygiving quite a few real-life examples, that having two sequences is preferable.However, in order to avoid some complications that arise with identi�cation, Habel andKreowski do not allow nodes to appear more than once in the begin and end sequences ofa graph. This puts a real restriction on the class of graph languages that can be generated,albeit not a severe one. Informally speaking, the same languages that could by generatedwithout this restriction can still be generated, minus the non identi�cation-free graphs theycontained. This was proved by Engelfriet and Heyker in 1992, see [EH92, page 171].11.9 Further readingAs noted, for an overview of recent developments in the �eld of graph grammars, [ENRR87]and [EKR91] are a good place to start, especially because they contain comprehensivetutorials. Furthermore, the Ph.D. thesis of Habel [Hab92] contains lots of interestingresults. As a matter of fact, at the time of this writing it is the only existing book onthe (modern) theory of context-free graph grammars, and one of the few books at all, andprobably the most up-to-date one, on graph grammars.Finally, the reader should be well aware of the fact that there is a large area of the�eld that has been barely touched upon in this master's thesis: node replacement graphgrammars. For an introduction to this kind of approach, read the tutorials by Engelfrietand Rozenberg, [ENRR87, page 55{66] and [EKR91, page 12{23].

There was things which he stretchedbut mainly he told the truth.| Mark Twain 12SummaryThis thesis is about the formalism of interpretation. This concept is closely linked to thatof a graph grammar. In Chapter 2 we extended the well-known concepts of grammars andlanguages to typed variants of them. We had to do this to be able to exercise strong controlon the types of our objects, in order to ensure they are properly de�ned. Then we de�neda special kind of graph, the i/o-hypergraph (Chapter 3). On this type of graph, we de�nedtwo main operations: sequential composition and parallel composition (Chapter 4), whichcan be used to compose larger graphs from smaller ones. The relation between the two, andsome of their properties were investigated. Then in Chapter 5 we looked at the opposite:decomposing large graphs into smaller ones. We found a small set of small graphs, calledthe full base set, that serve as building blocks to build all other graphs with sequential andparallel composition.In Chapter 6, we de�ned several more operations (of minor importance than composi-tion) on graphs, and gave some properties. These were mainly needed in proofs of theoremsthat do not contain these operations, but still intuitively are based on them. These oper-ations seem quite natural to us, and their properties have a beauty of their own.Having de�ned all the above concepts, we were �nally able to introduce the pivot of thisthesis: interpretation (Chapter 7). Interpretation is a mechanism by which we can obtaina graph language, on the basis of a given string language. As we argued, the formalismof interpretation may be considered a special kind of an edge-rewriting graph grammarformalism, albeit in disguise. We gave a few examples of how interpretation works, anddeveloped a normal form for it. Furthermore, we proved that if a graph language obtained109

110 Summaryby interpretation has bounded degree, it must also have bounded cutwidth.Now having completely de�ned interpretation, in Chapter 8 we turned to the power ofour formalism. We looked at right-linear, linear, and derivation-bounded languages, andfound that all three yield the same class of hypergraph languages under interpretation.However, the class of all context-free languages under interpretation does give a larger classof hypergraph languages. We also proved (Section 8.3) that \repeated" interpretation (insome sense), usually does not increase its power. Finally, we gave two theorems on thepower of interpretation.The �rst one gives, given a class K 0 that satis�es some closure properties, the largestclass K such that Int(K) is still contained in Int(K 0). The second one, intuitively, saysthat for two classes of string languages K and K 0, if we want to know whether Int(K)and Int(K 0) are equal, we just have to check some simple closure properties, and provethe equality for the string graphs in Int(K) and Int(K 0) only.In Chapter 9, we examined the closure properties of Int(K) in terms of su�cient closureproperties on K, in particular for closure under sequential and parallel composition, union,Kleene closure, fold, backfold, split,
ip, and edge relabeling.Then, in Chapter 10 we showed that the class of all regular languages under interpre-tation is identical to the smallest class of hypergraph languages that is closed under bothsequential and parallel composition, union, and Kleene closure, and that contains the fullbase set. As a similar characterization is used in traditional formal language theory tode�ne the class of all regular languages, it can be argued that Int(RLIN) deserves to becalled \the class of all regular hypergraph languages".To conclude, in Chapter 11 we looked at a few other formalisms for graph grammarsthat have been described in the literature. We made a comparison between some of theclasses of hypergraph languages we de�ned, and some of those that have been described byothers. In particular we found that Int(RLIN) � LIN-CFHG, which may also be used toargue that this class deserves to be called \the class of all regular hypergraph languages".

So long, and thanks for all the �sh.| Douglas Adams 13AcknowledgmentsFirst and foremost, I would like to thank dr. Joost Engelfriet. For the honesty of rejectingpreliminary versions of this thesis time after time, and for the extensive weekly guidance.For teaching me how to transform my vague intuitions into solid mathematical writing(did I make progress, or did you give up?), and for more than a year of pleasant Tuesdayafternoon conversations. You have been as good a thesis supervisor as one could wish for,and I am in your debt for the numerous suggestions and ideas that have �nally led to thisthesis.Then, I would like to thank drs. Gerard Borsboom for teaching me TEX and puttingup with the silly questions. Also thanks to Hans van Dongen for laboriously proofreadingthe complete �nal draft, for laughing himself to tears over a quite erroneous version ofSection 5.6, and for all the beer. Thanks to Huibert Kreb for pointing out the di�erencebetween inherently true propositions, which need no proof, and true theorems, which aremerely true by virtue of their proof, and will loose their validity real soon after that proofgets lost (see [Kre92]).Furthermore thanks to ir. Erik Olofsen, ir. Tycho Lamerigts, Carin Tiggeloven, andMaarten van Dantzich, for their various useful comments, and to dr. Hendrik-Jan Hooge-boom for showing me how real books number empty pages (they don't). Thanks to ir. ErikKruyt too, for generously providing computer facilities, and to the various people who wereinvolved in creating the TEX, METAFONT, emTEX, LaTEX, and AMS-LaTEX suites of type-setting software, all of which were extensively used in creating this document.This thesis would not have been possible without the help of drs. Frits Vereijken and111

112 AcknowledgmentsBerth Vereijken-Baeten, whom I thank for their continuous moral and �nancial supportthroughout my study.Last but not least, I am greatly indebted to Tieleke Stibbe, for being my main source ofinspiration, and for trying to understand the di�erence between hypergraphs, hypergraphlanguages, and classes of the latter. It is to you, with love, I dedicate this thesis.Jan Joris Vereijken,
Leiden, May 19, 1993.

The nice thing about standards is thatthere are so many to choose from.| Andrew S. Tanenbaum ANaming conventionsThe names of variables, functions, etc. are called identi�ers. In assigning those names wehave strictly adhered to the following conventions.� Uppercase roman letters:{ For propositions we use a P, or a Q.� Uppercase italic letters:{ For sets in general we use letters late in the alphabet: V , W .{ For a set that is a string language we use an L. For one that is a class oflanguages a K. For a set of terminal symbols: T . For a set of nonterminalsymbols: N . For a set of productions: P or Q. For a set of vertices: V . For aset of edges: E.{ For the starting symbol in a nonterminal alphabet an S.{ For grammars: G. For a property of grammars: X.{ For hypergraphs we use letters near \H": H, G, F .{ For interpreters we use an I.{ For nonterminal symbols we use letters early in the alphabet: A, B, C, D.113

114 Naming conventions� Lowercase italic letters:{ For integers we use letters near the middle of the alphabet: n, m, k, l, i, j, r,p, q.{ For terminal symbols we use letters early in the alphabet: a, b, c, d. The a isalso used for a symbol in general.{ For functions in general we use letters near \f": f , g, h.{ For productions we use letters near \p": p, q.{ For strings over terminal symbols we use letters near the end of the alphabet:w, v, u, z.{ For vertices: v, w, u, z. For edges: e.{ For (regular) expressions: r.� Greek upper case letters:{ For alphabets: �, �.� Greek lower case letters:{ For strings over terminal symbols, nonterminal symbols, or both, we use lettersearly in the alphabet: �, �,
, �.{ For morphisms on string languages: �.{ For numbers that denote a maximum or minimum in some sense: �.� Other cases:{ For ad hoc functions that yield hypergraphs we use bold uppercase italic lettersnear \H": H, G, F .{ For hypergraph languages, and occasionally for sets of hypergraphs, we use abold uppercase italic \L": L. For classes for hypergraph languages: K.{ For EH-hypergraphs and BC-hypergraphs (see Chapter 11) we will use \calli-graphic" uppercase letters near \H": H, G, F .{ General functions on hypergraphs are: #in,#out,
ip, fold, backfold, split.{ In speci�c cases we are allowed to abandon the general naming rules, and in-troduce identi�ers of our own choosing. These must however keep their �xedmeaning throughout the whole thesis. The following is a complete list of them:N, TRUE, FALSE. L, L� , G, G� , P, Un, �, RLIN, LIN, DB, CF, rank, nod,

115lab, in, out, deg, HGR, BC-HGR, Sing, Int, �, � ,
a, 1m;n, ��;�0;k, gr,STR, match.{ When we refer to results from other sources, we may choose to adapt theirnotation. See for example Section 11.4, where we use notation from [EH91].In general our symbols may be subscripted (e.g., A1, ap, �i) at wish if we need more ofthem than are available otherwise. The same holds for priming them (e.g., a0, H 00), orbarring them (e.g., �a). We also may build new symbols by grouping old symbols togetherin a list (e.g., ha; ii, [A1A2A3]). Although some symbols have more than one use (V , u, v,w, z, p, q and G), this is not a problem in practice.

Seek simplicity, and distrust it.| Alfred North Whitehead BProofsAs a rule, proofs are given right after the theorem they prove. However, some theorems aresmall, beautiful, and \obviously" true, but have nonetheless long, tedious, and bothersomeproofs. It is this category of proofs that are not given in the main text, but in this appendix.B.1 Proofs concerning Section 6.3The six properties from Section 6.3 can be proven by introducing unity hypergraphs U tothe left and the right of all H's involved, and then \massaging" the H's out by applying(4.10) and the basic properties from Section 6.2. As a result, we get the same proper-ties back again, but now applied to the unity hypergraphs U only. The thus simpli�edproperties can then be proven directly by expanding the de�nitions involved.We will not write out these proof in full however, as they are very long, and worse, theydo not attribute at all to a better understanding of the properties. Instead, we will givea graphical representation of the structure of the properties. In the following pictures, athick line indicates a hypergraph, and a dot indicates external nodes. An arrow in the linepoints form in to out to avoid confusion. Folding is indicated folding the line, and
ippingby
ipping it (hence the names!). Finally, a thin-lined bounding box is drawn around thehypergraph that is formed by evaluating the parallel compositions in the properties. Firstwe give the equation of the property, and then a picture of the structure.117

118 ProofsProperty (6.32): fold(H2) � (
ip(H1) +H3) = fold(H1H2H3)Structure: uu��?H2 � u u�H1u u-H3 = uu��?H2 u u�H1u u-H3Property (6.33):(H1 +
ip(H3)) � backfold(H2) = backfold(H1H2H3)Structure:u u-H1u u�H3 � uu ��?H2 = u u-H1u u�H3 uu ��?H2Property (6.34):(H1 + fold(H3)) � (backfold(H2) +H4) = H1H2H3H4Structure:u u-H1 uu��?H3 � uu ��?H2u u-H4 = u u-H1 uu ��?H2uu��?H3 u u-H4

Proofs concerning Section 6.3 119Property (6.35):(fold(H2) +
ip(H4)) � (
ip(H1) + backfold(H3)) =
ip(H1H2H3H4)Structure: uu��?H2u u�H4 � u u�H1uu ��?H3 = u u�H1uu��?H2 uu ��?H3u u�H4Property (6.36):(fold(H2) + fold(H4)) � (
ip(H1) + backfold(H3) +H5) = fold(H1H2H3H4H5)Structure: uu��?H2 uu��?H4 � u u�H1uu ��?H3u u-H5 = u u�H1uu��?H2 uu ��?H3uu��?H4 u u-H5

120 ProofsProperty (6.37):(H1+ fold(H3) +
ip(H5)) � (backfold(H2) +backfold(H4)) = backfold(H1H2H3H4H5)Structure:u u-H1 uu��?H3u u�H5 � uu ��?H2uu ��?H4 = u u-H1 uu ��?H2uu��?H3 uu ��?H4u u�H5B.2 Proofs concerning Section 8.2The following properties are derived from the properties given in Sections 6.2 and 6.3.First property: (H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0BBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) + U#in(Hi) +G1 + fold(G2) + � � �+ fold(Gm�1) +
ip(Gm) +U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1CCCA=0BBB@ H1(H1) +H2(H2) + � � � +Hi�1(Hi�1) +Hi(HiG1) +Hi+1(G2) + � � �+Hi+m�2(Gm�1) +Hi+m�1(GmHi+1) +Hi+m(Hi+2) + � � �+Hm+n�3(Hn�1) +Hm+n�2(Hn) 1CCCA : (B.1)Where: Hj(H) = 8>>>><>>>>:H if j = 1;fold(H) if 1 < j < m+ n� 2;
ip(H) if j = m+ n� 2:

Proofs concerning Section 8.2 121under the condition that HiG1 and GmHi+1 are both de�ned, 1 � i < n, n � 2 and m � 2.Actually, this property could better be called a \meta property". By this we mean that(B.1) is a property that comprises of four similar but distinct properties. We get this fourproperties by distinguishing the following four cases:1 < i < n� 1 and n > 2;i = 1 and n > 2;i = n� 1 and n > 2;i = 1 and n = 2:If we do this, all four properties can be written without the function H, using
ip andfold instead at the appropriate places.To prove (B.1) (and to resolve the ambiguity that might arise when one tries to interpretit!), we write out the four cases in full, and prove them separately.Firstly, the case where 1 < i < n� 1 and n > 2:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0BBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) + U#in(Hi) +G1 + fold(G2) + � � �+ fold(Gm�1) +
ip(Gm) +U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1CCCA=0@ H1 + fold(H2) + � � �+ fold(Hi�1) + fold(HiG1) + fold(G2) + � � �+fold(Gm�1) + fold(GmHi+1) + fold(Hi+2) + � � �+ fold(Hn�1) +
ip(Hn)1A ; (B.2)under the condition thatHiG1 and GmHi+1 are both de�ned. This property follows directlyfrom (4.11), as the left-hand side can be written as:(H1 + fold(H2) + � � � + fold(Hi) + U0 + fold(Hi+1) + � � �+ fold(Hn�1) +
ip(Hn))�0BBBBBBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) +hU#in(Hi) +G1i| {z }connects to fold(Hi) + [fold(G2) + � � �+ fold(Gm�1)]| {z }connects to U0 + h
ip(Gm) + U#out(Hi+1)i| {z }connects to fold(Hi+1) +U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn) 1CCCCCCCA :

122 ProofsApplying (4.11) now yields the following expression:0B@ H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + � � �+ fold(Hi�1)U#in(Hi�1)+#out(Hi�1) +fold(Hi)[U#in(Hi) +G1] + U0[fold(G2) + � � �+ fold(Gm�1)] + fold(Hi+1)[
ip(Gm) + U#out(Hi+1)] +fold(Hi+1)U#in(Hi+1)+#out(Hi+1) + � � �+ fold(Hn�1)U#in(Hn�1)+#out(Hn�1) +
ip(Hn)U#in(Hn) 1CAwhich easily reduces to0@ H1 + fold(H2) + � � �+ fold(Hi�1) + fold(HiG1) + fold(G2) + � � �+fold(Gm�1) + fold(GmHi+1) + fold(Hi+2) + � � �+ fold(Hn�1) +
ip(Hn)1Aby applying (4.2) and (6.32). This completes the proof of (B.2).Secondly, the property (B.1) for the case i = 1 and n > 2 looks like this:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0@ G1 + fold(G2) + � � �+ fold(Gm�1) +
ip(Gm) +U#out(H2) + U#in(H3)+#out(H3) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1A=0@H1G1 + fold(G2) + � � �+ fold(Gm�1) + fold(GmH2) +fold(H3) + � � �+ fold(Hn�1) +
ip(Hn) 1A ; (B.3)under the condition that H1G1 and GmH2 are both de�ned. It is proved in a similar wayas (B.2), using, amongst others, (6.32).Thirdly, the case i = n � 1 and n > 2 is as follows:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0@U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hn�2)+#out(Hn�2) + U#in(Hn�1) +G1 + fold(G2) + � � � + fold(Gm�1) +
ip(Gm) 1A=0@ H1 + fold(H2) + � � �+ fold(Hn�2) +fold(Hn�1G1) + fold(G2) + � � �+ fold(Gm�1) +
ip(GmHn)1A ; (B.4)under the condition that Hn�1G1 and GmHn are both de�ned. This case too is proved ina way similar as (B.2), using, amongst others, (6.32) and (6.23).

Proofs concerning Section 8.2 123Finally, the fourth case, i = 1 and n = 2:(H1 +
ip(H2))��G1 + fold(G2) + � � � + fold(Gm�1) +
ip(Gm)�=�H1G1 + fold(G2) + � � �+ fold(Gm�1) +
ip(GmH2)� ; (B.5)under the condition that H1G1 and GmH2 are both de�ned. This case is proved using(4.11).Second property: (H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0BBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) + U#in(Hi) +backfold(G) +U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1CCCA=0BBB@ H1(H1) +H2(H2) + � � � +Hi�1(Hi�1) +Hi(HiGHi+1) +Hi+1(Hi+2) + � � � +Hn�2(Hn�1) +Hn�1(Hn)1CCCA : (B.6)Where: Hj(H) = 8>>>>>>><>>>>>>>:H if j = 1 and n > 2;fold(H) if 1 < j < n � 1 and n > 2;
ip(H) if j = n � 1 and n > 2;backfold(H) if j = 1 and n = 2:under the condition that HiGHi+1 is de�ned, 1 � i < n, and n � 2. As above, this metaproperty is distinguished in 4 cases:1 < i < n� 1 and n > 2;i = 1 and n > 2;i = n� 1 and n > 2;

124 Proofsi = 1 and n = 2:Note that, in a way, (B.6) can intuitively be considered as the equivalent of (B.1) for thecase m = 1. We write out all cases to prove (B.6).Firstly, the case 1 < i < n� 1 and n > 2:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0BBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) + U#in(Hi) +backfold(G) +U#out(Hi+1) + U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1CCCA=0@H1 + fold(H2) + � � �+ fold(Hi�1) + fold(HiGHi+1) +fold(Hi+2) + � � �+ fold(Hn�1) +
ip(Hn) 1A ; (B.7)under the condition that HiGHi+1 is de�ned. The proof of this property can be derivedfrom (4.11) and (6.36) by rewriting the left hand side as:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0BBBBBBB@ U#out(H1) + U#in(H2)+#out(H2) + � � �+ U#in(Hi�1)+#out(Hi�1) +hU#in(Hi) + backfold(G) + U#out(Hi+1)i| {z }connects to fold(Hi) + fold(Hi+1) +U#in(Hi+2)+#out(Hi+2) + � � �+ U#in(Hn�1)+#out(Hn�1) + U#in(Hn)1CCCCCCCA :Applying (4.11) now yields:0BB@ H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + � � �+ fold(Hi�1)U#in(Hi�1)+#out(Hi�1) +�(fold(Hi) + fold(Hi+1)) � (U#in(H1) + backfold(G) + U#out(Hi+1))� +fold(Hi+2)U#in(Hi+2)+#out(Hi+2) + � � �+ fold(Hn�1)U#in(Hn�1)+#out(Hn�1) +
ip(Hn)U#in(Hn)1CCA :Rewriting the central part using (6.25) and (6.36) reduces this to:0BB@ H1U#out(H1) + fold(H2)U#in(H2)+#out(H2) + � � �+ fold(Hi�1)U#in(Hi�1)+#out(Hi�1) +fold(U#in(Hi)HiGHi+1U#out(Hi+1)) +fold(Hi+2)U#in(Hi+2)+#out(Hi+2) + � � �+ fold(Hn�1)U#in(Hn�1)+#out(Hn�1) +
ip(Hn)U#in(Hn)1CCA ;

Proofs concerning Section 8.2 125which in turn easily reduces to0@H1 + fold(H2) + � � � + fold(Hi�1) + fold(HiGHi+1) +fold(Hi+2) + � � �+ fold(Hn�1) +
ip(Hn) 1Aby applying (4.2) and (4.1). This completes the proof of (B.7).Secondly, the case i = 1 and n > 2 is as follows:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0@backfold(G) + U#out(H2) + U#in(H3)+#out(H3) + � � �+U#in(Hn�1)+#out(Hn�1) + U#in(Hn) 1A=�H1GH2 + fold(H3) + � � �+ fold(Hn�1) +
ip(Hn)� ; (B.8)under the condition that H1GH2 is de�ned. It is proved in a similar way as (B.7) itself,using (6.34) instead of (6.36).Thirdly, the case i = n � 1 and n > 2 is as follows:(H1 + fold(H2) + � � �+ fold(Hn�1) +
ip(Hn))�0@ U#out(H1) + U#in(H2)+#out(H2) + � � � +U#in(Hn�2)+#out(Hn�2) + U#in(Hn�1) + backfold(G)1A=�H1 + fold(H2) + � � �+ fold(Hn�2) +
ip(Hn�1GHn)� ; (B.9)under the condition that Hn�1GHn is de�ned. It is proved in a similar way as (B.7) itself,using (6.35) instead of (6.36).Finally, the fourth case, i = 1 and n = 2:(H1 +
ip(H2))��backfold(G)�=�backfold(H1GH2)� ; (B.10)under the condition that H1GH2 is de�ned. This case is identical to (6.33).

Bibliography[BC87] Michel Bauderon and Bruno Courcelle,Graph expressions and graph rewritings,Mathematical Systems Theory 20 (1987), no. 2 & 3, 83{127.[BS87] Mario Benedicty and Frank R. Sledge, Discrete mathematical structures, Har-court Brace Jovanovich, Orlando, FL, 1987, ISBN 0-15-517683-8.[CL89] John Carroll and Darrell Long, Theory of �nite automata, Prentice-Hall, En-glewood Cli�s, NJ, 1989, ISBN 0-13-913708-4.[EH91] Joost Engelfriet and Linda Heyker, The string generating power of context-freehypergraph grammars, Journal of Computer and System Sciences 43 (1991),no. 2, 328{360.[EH92] Joost Engelfriet and Linda Heyker, Context-free hypergraph grammars havethe same term-generating power as attribute grammars, Acta Informatica 29(1992), 161{210.[EKR91] H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.), Graph grammars and theirapplication to computer science, Lecture Notes in Computer Science, vol. 532,Springer-Verlag, Berlin, 1991, 4th International Workshop, Bremen, Germany,March 1990, ISBN 3-540-54478-X.[EL89] Joost Engelfriet and George Leih, Linear graph grammars: Power and com-plexity, Information and Computation 81 (1989), no. 1, 88{121.[ENRR87] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld (eds.), Graph grammarsand their application to computer science, Lecture Notes in Computer Science,vol. 291, Springer-Verlag, Berlin, 1987, 3rd International Workshop, Warrenton,Virginia, USA, December 1986, ISBN 3-540-18771-5.127

128 Bibliography[ERS80] J. Engelfriet, G. Rozenberg, and G. Slutzki, Tree transducers, L systems, andtwo-way machines, Journal of Computer and System Sciences 20 (1980), 150{202.[Gre78] S. Greibach, One-way visit automata, Theoretical Computer Science 6 (1978),175{221.[Hab92] Annegret Habel, Hyperedge replacement: grammars and languages, LectureNotes in Computer Science, vol. 643, Springer-Verlag, Berlin, 1992, ISBN 3-540-56005-X (originally appeared as Ph.D. thesis, Bremen).[Her75] I. N. Herstein, Topics in algebra, second ed., John Wiley & Sons, New York,NY, 1975, ISBN 0-471-02371-X.[HU79] John E. Hopcroft and Je�rey D. Ullman, Introduction to automata theory, lan-guages and computation, Addison-Wesley, Reading, MA, 1979, ISBN 0-201-02988-X.[Joh84] Richard Johnsonbaugh, Discrete mathematics, Macmillan Publishing Company,New York, NY, 1984, ISBN 0-02-360900-1.[Kam50] E. Kamke, Theory of sets, Dover Publications, New York, NY, 1950, ISBN 0-486-60141-2 (this is a translation from the German second edition calledMenge-lehre.[Knu73] Donald Ervin Knuth, Sorting and searching, The Art of Computer Program-ming, vol. 3, Addison-Wesley, Reading, MA, 1973, ISBN 0-201-03803-X.[Kre92] Huibert L. Kreb, Proving the klets lemma, Stand-up lecture at Leiden Univer-sity, unpublished, 1992.[Len82] T. Lengauer, Upper and lower bounds on the complexity of the min-cut lineararrangement problem on trees, SIAM Journal of Algebraic Discrete Methods 3(1982), 99{113.

IndexThis index contains references to all de�nitions and notations used in this thesis. It is notuncommon for something to be de�ned more than once. For example, \type" is de�ned onpage 9 (for a symbol) and on page 18 (for a hypergraph). Furthermore, important conceptsand names of persons have been indexed at the relevant places. De�nitions are indicatedby a bold-face number, e.g. 42, and references to naming conventions by a slanted numbere.g. 42.(?;m! n), 22(a; n), 7(m! n), 9, 10(v1; : : : ; vn), 6�, 5=� , 11A, 113B, 113C, 113D, 113E, 113EH , 17F , 113G, 113, 115G :, 7H, 113I, 113K, 113
L, 113N , 113P , 113Q, 113S, 113T , 113Un, 26, 114V , 113, 115V=�, 6V �, 6V n, 6VH , 17W , 113X, 113[(v1; : : : ; vn)]�, 6[: : :], 115[m;n], 5[n], 5129

130 Index[v]�, 6#, 6BC-HGR, 115BC-HGR(�), 96�, 114G, 7, 114G� , 12, 114HGR, 18, 115HGRm;n(�), 18Int, 115Int(K), 48Int(L), 48IntI(L), 48Int!n(K), 48Intm!n(K), 48Intm!(K), 48L, 7, 114L� , 114L� , 11N, 5, 114
a, 36, 115P, 113��;�0;k, 38, 115Q, 113STR, 115STR(K), 21�, 114��, 9�+, 9Sing, 115Sing(L), 22�, 114�, 6�, 97, 104, 115� , 97, 104, 1151m;n, 37, 115X, 40

backfold, 43, 114�, 114F , 114G, 114H, 114K, 114L, 114�, 88F , 114G, 114H, 114\, 5jV j, 6j�j, 6�, 7, 25�m;n;k, 26�, 6[, 5[m;n, 23�;+�!, 33��!, 33deg, 18, 115�, 114)k, 7)�, 7?, 5, 19�, 6�io, 229, 6FALSE, 6, 114
ip, 43, 114fold, 43, 1148, 6
, 114gr, 115gr(w), 21#in, 18, 114

Index 131#in�, 9#out, 18, 114#out�, 9() , 6=) , 62, 5lab, 115labH , 17�, 6, 114^, 6h: : : i, 115_, 67!, 6match, 115max, 5min, 5�, 1143, 5nod, 114nodH, 17in, 115inH, 17out, 115outH , 17�, 104P, 114P(V), 5Qi, 27rank, 114rank(H), 96rank�, 7L�, 27Lk, 27�, 6n, 5�, 114��, 104

split, 114split(K), 45splitp;q, 43src, 104 , 5�, 5Pi, 29!, 5�, 5��, 104�, 6TRUE, 6, 114vert, 104a, 114b, 114c, 114d, 114e, 114f , 114f�1, 6f�, 6g, 114h, 114i, 114j, 114k, 114l, 114m, 114n, 114p, 114, 115q, 114, 115r, 114u, 114, 115v, 114, 115w, 114, 115wR, 7z, 114, 115

132 Indexabstract graph, 18algebra, 41alphabet, 6ordinary, 6ranked, 6typed, 9AMS-LaTEX, ii, 111attackproblems worthy of, iii, 4backfoldin terms of split, 45backfolding, 44closure under, 86Baeten, Berth, 112base setfull, 42sequential, 41Bauderon, Michel, 96, 104, 106, 107BC-hypergraph, 96graph grammar using, 97binary tree, 56, 102Borsboom, Gerard, 111bounded cutwidth, 23, 102theorem on, 54bounded degree, 23, 102theorem on, 54cardinality, 5CF, 7, 114CFHG, 97, 98, 102Chomsky hierarchy, 2closuresummary table, 89under +fUng, fUng+, 85under backfolding, 86under concatenation, 83under edge relabeling, 88

under
ipping, 86under folding, 86under Kleene closure, 84under parallel composition, 86under sequential composition, 83under splitting, 88under union, 84combinatorics, 41compositionparallel, 3, 28relation between sequential and paral-lel, 29sequential, 1, 25concatenation, 10, 27closure under, 83concrete graph, 18context-free grammar, 7context-free hypergraph grammar, 97context-free language, 7correctly internally typed, 9Courcelle, Bruno, 96, 104, 106, 107cut, 20cutwidth, 20bounded, 23, 102lemma on, 20van Dantzich, Maarten, 111DB, 7, 114decomposition, 3, 33full, 33sequential, 33de�nitionsregarding alphabets, 6regarding classes of languages, 7regarding functions, 6regarding grammars, 7regarding logic, 6regarding numbers, 5

Index 133regarding relations, 6regarding sequences, 6regarding sets, 5regarding strings, 7degree, 18bounded, 23, 102vs sequential composition, 27degree of string graph, 21Degree versus Cutwidth Theorem, 54derivation bound, 8derivation-bounded grammar, 8derivation-bounded language, 8disguisegraph grammar in, 2van Dongen, Hans, 111edge, see hyperedge\laying in line", 20Edge Normal Form, 51theorem, 51edge relabelingclosure under, 88edge removal, 35empty hypergraph, 26empty hypergraph language, 22emTEX, 111eNCE graph grammar, 56ENF, see Edge Normal FormEngelfriet, Joost, ii, 4, 56, 79, 81, 95, 96,107, 111equal modulo i/o, 22existence of isomorphic copies, 52external node, 22, 96
ipping, 44closure under, 86foldin terms of split, 45

folding, 44closure under, 86full base set, 42full decomposition, 33generic class interpretation, 48generic interpretation, 48grammar, 7context-free, 7derivation-bounded, 8linear, 7ordinary, 12right-linear, 7typed, 11underlying, 12graphabstract, 18concrete, 18ordinary, 20string, 20graph grammar, 1context-free hypergraph : : : , 97eNCE, 56in disguise, 2, 96using BC-hypergraphs, 97graphical representation, 19Greibach, S. A., 101Habel, Annegret, 96, 106, 107Herstein, I. N., 41Heyker, Linda, 79, 81, 95, 96, 107homomorphism�-free, 51Hoogeboom, Hendrik-Jan, 111hyperedge, 17hypergraph, 2abstract, see graphBC, 96

134 Indexconcrete, see graphdegree of, 18empty, 26graphical representation of, 19identi�cation-free, 18isomorphic, 18permutation, 38product, 25simple, 18sum, 28tentacle of, 19unity, 26hypergraph language, 22empty, 22singleton, 22union on, 23i/o equal modulo, 22i/o-hypergraph, 17identi�cation, 25identi�cation-free, 18identi�er, 6, 113i�, 6incidence function, 17, 104incident, 18input node, 2, 17input type, 2, 9, 18internal node, 22internally typed, see correctly : : :interpretation, 48example of, 49generic, 48generic class, 48limitations of, 53power of, 80string graph in terms of, 48interpretation function, 48

interpreter, 1, 48Edge Normal Form, 51for L, 48isomorphic copiesexistence of, 52Isomorphic Copies Theorem, 52isomorphic hypergraph, 18isomorphism, 18, 52Kleene closure, 10, 27closure under, 84Knuth, Donald Ervin, 41Kreb, Huibert, 111Kreowski, Hans-J�org, 96, 106Kruyt, Erik, 111labeling function, 17lambda trick, 14, 58, 65, 99, 100, 103Lamerigts, Tycho, 111languagecontext-free, 7derivation-bounded, 8hypergraph, 22linear, 7ordinary, 11right-linear, 7typed, 10underlying, 11language over, 7late night fortune cookie, 4LaTEX, 111layoutlinear, 20Leih, George, 56lemma on cutwidth, 20Lengauer, T., 56LIN, 7, 114LIN-CFHG, 98

Index 135linear grammar, 7linear language, 7linear layout, 20loop, 20in a string graph, 21vs sequential composition, 27METAFONT, 111mixed type, 22n-sequence, see sequencenaming, 113node, 17external, 22, 96input, 17internal, 22output, 17normal form, see Edge Normal FormOlofsen, Erik, 111operator precedence, 31ordinary alphabet, 6ordinary grammar, 12ordinary graph, 20loop, 20sequential composition on, 25ordinary language, 11ordinary set, 9ordinary string, 10ordinary symbol, 9OUT(2DGSM), 79OUT(DTWT), 81output node, 2, 17output type, 2, 9, 18parallel composition, 3, 28associativity of, 28closure under, 86commutativity of, 29

relation with sequential composition,29stacking railroad cars metaphor, 3unity element of, 28pascal, 8permutation hypergraph, 38philosophical sidenote, 11post�x, 7proper, 7Power of Interpretation Theorem I, 79Power of Interpretation Theorem II, 80power set, 5precedence of operators, 31pre�x, 7proper, 7problemsworthy of attack, iii, 4product, 25of ordinary graphs, 25pseudo base set, see sequential : : :quotation fromA. N. Onymous, 83Abraham Lincoln, 1Alfred North Whitehead, 117Andrew S. Tanenbaum, 113Donald Ervin Knuth, 47Douglas Adams, 111Edsger Wybe Dijkstra, 5Harry S. Truman, 91J. Finnigan, 25Joost Engelfriet and George Leih, 57Leonhard Euler, 17Lewis Carroll, 33Mark Twain, 109Phil Collins, 95The AmericanHeritage Dictionary, 43

136 Indexrailroad cars metaphor, 2rank, 6ranked alphabet, 6REG, 7regular, 7regular expression, 92reversal, 7, 87right-linear grammar, 7right-linear language, 7Rijksuniversiteit te Leiden, 4RLIN, 7, 114Rosenfeld, A., 95Rozenberg, Grzegorz, 107Schneider, H. J., 95n-sequence, see sequencesequential composition, 1, 25associativity of, 26closure under, 83commutativity of, 27hooking railroad cars metaphor, 3of ordinary graphs, 25relation with parallel composition, 29unity element of, 26vs degree, 27vs loops, 27sequential decomposition, 33sequential pseudo base set, 41set cardinality of, 5ordinary, 9sequence over a, 6typed, 9silly index entry, 136simple hypergraph, 18singleton class, 23singleton hypergraph language, 22source, 104

splitin terms of (back)fold, 45split-up, 77splitting, 44closure under, 88Stibbe, Tieleke, 112STR(Int(RLIN)), 78strictly over, 7string, 7ordinary, 10typed, 10string graph, 20contains no loops, 21degree of, 21in term of interpretation, 48substring, 7sum, 28symbolordinary, 9typed, 9tentacle, 19, 98, 107TEX, 111theoremon bounded cutwidth, 54on bounded degree, 54on degree versus cutwidth, 54on Edge Normal Form, 51on isomorphic copies, 52on the power of interpretation, 79Tiggeloven, Carin, 111treebinary, 56, 102�-trick, see lambda tricktype, 9, 10, 18input, 2, 9, 18mixed, 22output, 2, 9, 18

Index 137uniform, 10, 18type conditions, 8type preservingness, 8typedcorrectly internally, 9typed class interpretation, 48typed grammar, 11typed language, 10concatenation, 10Kleene closure, 10union, 10typed set, 9typed string, 10typed symbol, 9typing, 2example from pascal, 8example from physics, 8+fUng, fUng+closure under, 85underlying grammar, 12underlying language, 11uniform type, 10, 18union, 10closure under, 84on hypergraph languages, 23unity elementof parallel composition, 28of sequential composition, 26unity hypergraph, 26variable name clash, 6Vereijken, Frits, 111Vereijken, Jan Joris, ii, 112vertex, see nodewheel, 50word, see string

