
page 1

EVOLUTIONARY CHANGE
the evolution of change management

by Jeroen van der Zon

University of Leiden, Department of Computer Science

April 24, 1996

page 2

page 3

Abstract

In this thesis, evolutionary change is studied by describing the evolution of Change Manage-
ment (CM). CM is one of the important aspects of the software process modelling lifecycle. It
describes the organizational aspects of changing a software product. In order to be able to de-
scribe the evolution of CM, two models describing CM have been developed first. Both models
have been designed with the use of Socca. The first model describes the basic requirements for
a CM-model. The second model is an extension of the first model. The CM-process will under-
go an evolutionary transformation from this first model to this second model. This will be called
evolutionary change. The evolutionary change is described by means of an extra process com-
ponent called WODAN, first introduced in [2]. In order to relate the WODAN approach to sim-
ilar approaches used by others, also PMMS [9] has been used to describe the change.

page 4

page 5

Table of contents

Abstract . 3

Table of contents . 5

1 General introduction . 7

2 Socca and Paradigm . 9

2.1 Introduction into Socca . 9

2.1.1 The data perspective . 9

2.1.2 The behaviour perspective . 9

2.1.3 The process perspective . 10

2.2 Introduction into Paradigm . 10

3 Modelling Change Management . 13

3.1 Introduction . 13

3.2 Data perspective . 13

3.3 Behaviour perspective . 16

3.3.1 Designing the external behaviours of the classes . 16

3.3.2 Designing the internal behaviours of the export-operations 21

3.3.3 Adding Paradigm to model the communication . 26

4 The new model . 45

4.1 Introduction . 45

4.2 Designing the new model . 45

4.2.1 Designing the new external behaviours of the classes . 50

4.2.2 Designing the new internal behaviours of the export-operations 53

4.3 The communication in the new model . 59

5 WODAN, a method to describe change . 79

5.1 Introduction . 79

5.2 Types of change . 80

5.3 Problems as a consequence of change . 80

6 Changing the software process model using WODAN . 83

6.1 A setup for WODAN . 83

6.2 Designing WODAN to manage the change . 84

7 PMMS . 99

7.1 Introduction . 99

7.2 Change Management modelled by means of PMMS . 100

7.3 Behaviour of the basic components . 101

7.4 Communication between the components . 109

8 Conclusions and future research . 123

page 6

9 References . 125

Appendix A. Simultaneous calls described in more detail . 127

Appendix B. Logical transitions . 131

Appendix C. List of subprocesses w.r.t. WODAN . 133

Appendix D. List of figures . 135

General introduction

page 7

1 General introduction
Whenever a software process model does not answer to the expectations or cannot cope with
the actual situation anymore, it will have to be changed. This type of change is called evolution-
ary change. It was first introduced in [2]. In [2] also a method to describe this type of change
was introduced and a small example was presented. This thesis will present a larger, more com-
plicated and realistic example of the so-called evolutionary change of a software process model.
The software process model on which this example will be based, is the software process model
describing Change Management (CM). CM is one of the important aspects of the software proc-
ess modelling lifecycle. It describes the organizational aspects of changing a software product.
This type of change is called configuration change in order to distinguish it from the evolution-
ary change.
In order to be able to present the example describing the evolutionary change of CM, CM has
to be modelled first. A base scenario for CM has been given in ISPW-9 [6]. Based on this sce-
nario the CM-aspect of the lifecycle will be modelled. The scenario also involves the aspect of
problem reporting, however the models in this thesis will not consider this issue. Also the actual
change of the software will not be considered. The models in this thesis will focus upon the way
the configuration change is embedded into CM and the organizational aspects of CM involving
the Change Advisory Board (CAB). The CAB can be seen as the coordinator of the configura-
tion change management process and consists of several (human) team members.
There are many ways to model (aspects of) a software process. Socca (and Paradigm, an inte-
grated part of Socca) is one of them. Socca is especially suited to model CM, as it has not only
been developed for describing the technical parts of the software process, but also for the human
parts, or rather the human team members, of the software process. Therefore the models, that
describe Change Management, will be designed with the use of Socca. The first model describes
the basic requirements for a CM-model. Whenever a change of a software product is requested,
a meeting will be prepared and opened. In this meeting the request will be discussed and even-
tually accepted or rejected. In case the request has been accepted, it will trigger a change in the
software. The model will be an extension of the original example presented in ISPW-6 [5]. Parts
of the model to be designed can also be applied to other situations, as it in fact describes a way
to plan a meeting.
As mentioned above this thesis elaborates further upon the type of change called evolutionary
change. Therefore a second model, that describes Change Management too, has to be designed.
The first model described just the basic requirements for a Change Management model. The
second model is a more realistic extension of the first model. There will be made a distinction
between big and small changes, moreover more than one request can be handled in a meeting.
After designing the second model the enactment of this model is desired. In order to accomplish
this one has to switch from the first to the second model. This is the type of change called evo-
lutionary change. The first model will represent the first evolution phase, and the second model
will represent the second evolution phase. In this thesis these models will be discussed more or
less separately, without the evolutionary transformation from the first into the second model.
That will be discussed in another chapter.
In order to facilitate the modelling of both CM models, Socca will be extended with some new
concepts. These concepts are "layered visibility" (first introduced in [3]), logical transitions and
simultaneous calls. These new concepts will of course be clarified in this thesis.

Before presenting the structure of this thesis, I want to thank Luuk Groenewegen for the excel-
lent guidance and the many discussions which led to a better understanding of the ideas behind
Change Management, WODAN and PMMS.

General introduction

page 8

This thesis has been organized as follows. The next chapter consists of a short introduction into
Socca and Paradigm. Those readers familiar with Socca and Paradigm may skip this chapter.
Chapter 3 describes the first Change Management model. Also the concept of "layered visibil-
ity" is introduced. In chapter 4 the model as presented in chapter 3 will be extended in order to
meet more realistic requirements. In chapter 5 a method [2] with which the change from the first
to the extended model can be described is introduced and in chapter 6 this change is modelled
with the use of that method. Finally, in chapter 7, another method to describe evolutionary
change is discussed. It will clarify the way evolutionary change is conducted. Appendices de-
scribing simultaneous calls (Appendix A) and logical transitions (Appendix B) have been added
too.

Socca and Paradigm

page 9

2 Socca and Paradigm

2.1 Introduction into Socca

In [3] a complete introduction of Socca has been given. Those readers familiar with it may skip
this chapter.
Socca, which stands forSpecificationsof Coordinated andCooperativeActivities, is a software
process modelling methodology, developed at the University of Leiden, department of Compu-
ter Science. Socca has not only been developed for describing the technical parts of the software
process, but also for the human parts, or rather the human team members, of the software proc-
ess. The idea behind Socca is the separation of concern. A Socca model describes the software
process from three different perspectives; the data perspective, the behaviour perspective and
the process perspective. To achieve this, Socca consists of (parts of) several formalisms com-
bined together to describe the software process models.

2.1.1 The data perspective

The data perspective describes the static structure of the system and its relation to its environ-
ment by means of object-oriented class diagram models, based on Extended Entity-Relationship
(EER) models. One of the features of the classes is that they can have export-operations. These
export-operations are imported in other classes in order to be called (or used) from there. To
visualize this with respect to the class diagram in Socca an extra relationship is introduced be-
tween the various classes; the uses relationship. Consequently the class models have been ex-
tended with an extra diagram, the import/export diagram, to display the uses relationship. The
other relationships that can be identified in the class diagram are the IS-A relationship, the Part-
Of relationship and the general relationship. The IS-A relationship is used to describe the inher-
itance between the different classes and the Part-Of relationship expresses which class is part of
another class. The general relationship describes the relation between the different classes and
is usually presented in a separate diagram.

2.1.2 The behaviour perspective

The behaviour perspective covers the dynamic part of the software process. The behaviour per-
spective and the coordination of the behaviour will be described by State Transition Diagrams
(STD’s) and Paradigm on top of them. The STD’s are used to describe the order in which the
export-operations of a class can be called. So in fact, the behaviour of a class is described with
an STD of which some transitions are labelled with the export-operations of that class. This is
calledthe external behaviour of the class. Also each export-operation has aninternal behaviour;
this internal behaviour actually achieves the task the corresponding export-operation is sup-
posed to perform. To describe these internal behaviours also STD’s have been used. Together
the external behaviour of a class and the internal behaviours of its export-operations form the
behaviour of that class.
It is obvious that the cooperation between the external behaviour of a class and the internal be-
haviours of its export-operations has to be coordinated somehow. To this aim Paradigm has
been incorporated into Socca. Moreover, the internal behaviour of an export-operation can also
call export-operations from other classes. Therefore it is not only necessary to have communi-
cation between the external behaviour of a class and the internal behaviours of its export-oper-
ations, but there should also be communication between the external behaviour of one class and
the internal behaviours of another class from where the there imported export-operations are be-
ing called. This communication is also modelled by means of Paradigm. Section 2.2 gives a
short introduction into Paradigm.

Socca and Paradigm

page 10

2.1.3 The process perspective

The process perspective will be modelled by Object Flow Diagrams (OFD’s). As the integration
of OFD’s into Socca has not been completed yet, the process perspective will not be discussed
any further in this thesis.

2.2 Introduction into Paradigm

Paradigm (Parallelism, itsAnalysis,Design andImplementation by aGeneralMethod) is a
specification mechanism originally developed for the specification of coordinated parallel proc-
esses. A Paradigm model can be designed in the following manner:

1 Describe the sequential behaviour of each process by means of an STD. In case of a Socca
model the processes will be the classes and the export-operations, and the STD’s will
describe the external and internal behaviours.

2 Within an STD that describes internal behaviour a set of subdiagrams (calledsubprocesses)
is indicated. These subprocesses are temporary behaviour restrictions of the complete
behaviour. A subprocess reflects the allowed behaviour of a process within its STD before
or after communication has taken place.

3 Within each subprocess certain sets of states, so-calledtraps, can be identified. They are
usually represented by a shaded polygon drawn around the states which form the trap. By
entering such a trap, the STD indicates that it is ready to switch from the subprocess to
which this trap belongs to another subprocess. The set of traps of an STD is called thetrap
structure of that STD. An important property of a trap is that, within the subprocess the trap
belongs to, there are no transitions leading from one of the states of a trap to another state
outside the trap. Consequently when an STD has entered a trap, the STD cannot leave its
trap as long as the same subprocess restriction remains valid.

4 An STD that decribes external behaviour is called amanager process. It coordinates the
behaviour restrictions of some of the STD’s having subprocesses. An STD that is being
coordinated by the manager process is called anemployee process of that manager process.
Depending on the state it is in, the manager process prescribes subprocesses to each of its
employees. Every employee may only behave according to the subprocess which is cur-
rently being prescribed by its manager process. Next, the manager process monitors the
behaviour of its employees. Whenever an employee has entered a trap to another subpro-
cess, the manager will make the corresponding transition to another state where it prescribes
the subprocesses the employee wants to enter. However it can also postpone the prescribing
of the new subprocess to its employee as long as it wants to, possibly depending on traps
having been reached by other employee processes. The mapping of the states of the man-
ager process to the subprocesses of its various employees and the mapping of the transitions
of the manager process to the traps of its employees is called thestate-action interpreter of
the manager process with respect to its employees. So the state-action interpreter labels
each state of the manager process with the subprocesses it prescribes in that state to its
employees and labels the transitions of the manager process with those traps that have to be
entered for this transition to be selected.

Each manager process, i.e. external behaviour, is manager over:

1 each of its own internal behaviours and also over

2 each internal behaviour containing a call to one or more of the export-operations of that
manager process.

An individual STD may be the employee of more than one manager. In that case the STD will
have a separate set of subprocesses and a separate trap structure with respect to each of its man-

Socca and Paradigm

page 11

agers. The behaviour of the STD will be controlled by all of its manager processes together and
the STD will be restricted to the intersection of the different subprocesses prescribed by the dif-
ferent manager processes.
More information on Paradigm can be found in [7].

Socca and Paradigm

page 12

Modelling Change Management

page 13

3 Modelling Change Management

3.1 Introduction

In order to be able to present the evolutionary change of Change Management, models describ-
ing Change Management are necessary. Only then Change Management can evolve from one
evolution phase to another. Therefore in this chapter a model describing Change Management
will be designed. This model will represent the first evolution phase.
The model will be relatively simple, just clarifying some essentials of Change Management. For
every change-request, i.e. a request for changing a software product, a meeting, in which the
request is discussed, will be prepared and opened. Consequently every request corresponds with
a meeting. There will be made no difference between requests. This implies that all requests will
be treated the same way. Because of "layered visibility" (explained later) simultaneous requests
are possible, i.e. requests can be made simultaneously. Because of parametrization of operations
meetings can also be held concurrently. The model itself is an extension of the original example
(ISPW-6). In the next sections the data-perspective of the model and the behaviour perspective
of the model will be given. To describe the behaviour perspective the external behaviours of the
classes, the internal behaviours of the export-operations and the communication between these
behaviours will be given. The process-perspective will not be discussed. Later on, in Chapter 4,
the model will be extended and better tuned to what is needed in reality. Then more than one
request can be discussed in a meeting and also there will be made a difference between big and
small changes. That model will represent the second evolution phase.

3.2 Data perspective

In order to describe the data perspective of the model an EER based class diagram has to be de-
fined. In this class diagram three extra classes have been defined compared to the original ex-
ample (ISPW-6 [5]):

 • Change Advisory Board (CAB): the coordinator of the change management process, it con-
sists of several (human) team members; a ProjectManager, two DesignEngineers (for
design expertise), two Quality-AssuranceEngineers (for testing expertise) and two User-
Representatives. The ProjectManager is also the board-leader, who prepares a meeting after
it has been requested.

 • CABMember: a superclass, which possesses all properties members of the board should pos-
sess. Its subclasses are Engineer and UserRepresentative. Note that not every Engineer
always acts as a CABMember, although it has all the properties of the class CABMember,
because not every instance of the class Engineer is related to every instance of the class
CAB (see also Figure 1).

 • UserRepresentative: one of the members of the board and a subclass of the class CABMem-
ber.

Figure 1 shows the class diagram of the model. Not all details are given on the data perspective
level. Later on in the model, at the behaviour perspective level (section 3.3.1), a parallel descrip-
tion in the external behaviour of CAB will be introduced. CAB will be split into two (sub)class-
es: MainCAB (has only one instance) and DepCAB (has several instances). MainCAB will be
the manager of DepCAB. This is called "layered visibility" and was first introduced in [3]. By
this means parallel behaviour in one and the same external behaviour is modelled. MainCAB
and several instances of DepCAB can be executed concurrently, thereby making simultaneous
requests possible. The separation of MainCAB and DepCAB is not visible at the data perspec-
tive level.

Modelling Change Management

page 14

Note that every change, not only the first change, by which the software is created, is considered
to be a project.

Figure 2 shows the operations of the three extra classes and the additional operation of the class
ProjectManager. In the latter case for the sake of completeness the original attributes and oper-
ations have also been mentioned.

Engineer

Compiler Project-
Manager

QA
Engineer

Design
Engineer

Tools

Project

Project
Team

Project
Docs

Design Code Test
Plan

Test
Pack

Design
Document

Test
Document

Document

CABUser-
Repr.

Figure 1. Class diagram: classes and IS-A and Part-Of relationships

CAB-
Member

Figure 2. Class diagram: attributes and operations

ProjectManager CAB UserRepresentative

name

assign_and_schedule_t.
monitor
prepare_meeting

request_for_change
open_meeting

CABMember

join_meeting

do_meeting
close_meeting

leave_meeting
check_agenda

do_change
authorize
cancel

receive_confirmation

Modelling Change Management

page 15

The export-operations of the class CAB have all (implicitly) been parametrized with a parame-
ter request-id, just like the operationsassign_and_schedule_tasks andmonitor of ProjectMan-
ager have (implicitly) been parametrized with a parameterdoc_name (see [1]). Also the
operationprepare_meeting has been parametrized with the parameterrequest-id. In section
3.3.1 the external behaviour of CAB will be modelled and a reason for using the parameterre-
quest-id will be given.
Note that the classes ProjectManager, DesignEngineer, QualityAssuranceEngineer (through the
class Engineer) and UserRepresentative all inherite the operationsjoin_meeting, leave_meeting,
check_agenda andreceive_confirmation from the class CABMember.
In the following step of describing the data perspective of the model the general relationships
between the classes have to be defined. Only the new general relationships are shown in Figure
3.

As a last step in the description of the data perspective of the model, the uses relation is given
(Figure 4) together with the corresponding import list (Figure 5). Note that only the new uses
relations are given in the figures, as the old uses relations will not be useful for our discussion.

Figure 3. Class diagram: classes and general relationships

Engineer

Project-
Manager

CAB User-
Repr.

CAB-
Member

contacts

leads

exchanges info

Modelling Change Management

page 16

Note that the operationscheck_agenda, receive_confirmation, join_meeting andleave_meeting
are parametrized with the parametermember as an explicit reminder of the fact that some details
in the calling operations have been omitted. These details, which actually are rather complicat-
ed, will be discussed in Appendix A.

3.3 Behaviour perspective

3.3.1 Designing the external behaviours of the classes

First the external behaviours of the classes will be specified. From then on, the order in which
the export-operations can be called will be known. Not only the classes CAB and UserRepre-
sentative have to be modelled, but also the classes ProjectManager, DesignEngineer and Qual-
ityAssuranceEngineer have to be remodelled because some new operations have to be added to
model Change Management. Note that the external behaviour of the class CABMember will not
be given here, because it is a generalization of some specialized classes. The class itself has no
instances, only through its subclasses.

CAB

CAB-

Project-
Manager

Figure 4. Import/export diagram

use1

use2

use3 use4Member use5

use1
prepare_meeting
schedule_and_assign_tasks

use2
open_meeting
do_meeting
close_meeting

use3
check_agenda (member)
receive_confirmation (member)

use4
join_meeting (member)
leave_meeting (member)

use5
do_change

Figure 5. Import list

Modelling Change Management

page 17

A possible STD for the class CAB is given in the following figure.

The STD, presented in Figure 6, provides all the necessary export-operations, but there is one
major disadvantage: because of the sequentiality of the model one has to wait for a previous
change being implemented and after that authorized or cancelled before requesting a new
change.
To solve this problem 3 other ways to model the external behaviour, thereby modelling Change
Management, are possible:

1 The first solution is the interleaved version. As one can see in Figure 7, it is not immediately
clear in what order the operations are called.

2 The second solution has to do with an n-dimensional state-space (n = number of simulta-
neous requests). For large n this will be very complicated.

3 The third solution has to do with “layered visibility” or "zooming", as you are zooming in
on an operation, in this caserequest_for_change. If one uses this solution to describe the
external behaviour, the STD of the external behaviour will be split in two layers. So actually
one gets two STD’s when describing external behaviour: one STD modelling the first layer
of visibility and one STD modelling the second layer of visibility (see Figures 8 and 9).
Layered visibility is not supported by the original SOCCA approach.

Note that whatever solution is chosen, for every request a separate meeting has to be prepared
and opened. But these three solutions have the advantage that requests, meetings and the reali-
sation of changes can be executed simultaneously (unless e.g. the same person is supposed to
join two or more overlapping meetings).

neutral

change

software

authorized

open_meeting

request_

do_change

cancel

authorize

Figure 6. CAB: possible STD of the external behaviour

cancelled develop.

requested

for_change

meeting

close_meeting

meeting
closed

do_meeting
meeting

opened

Modelling Change Management

page 18

In order to model Change Management the third solution will be used. Normally the external
behaviour of a class is described by one STD. This allows only the description of sequential be-
haviour in the external behaviour. In this case more than one STD is used to describe the exter-
nal behaviour. This allows a parallel description in the external behaviour. Two STD-types can
be distinguished to describe the external behaviour. There is one STD type called Main-STD
and some STD’s which are dependent of this Main-STD, these STD-types are called Dep-
STD’s. In this case however there is only one Dep-STD (actually there are as many Dep-STD’s
as there are requests, but the external behaviours of these Dep-STD’s are all similar). The de-
pendencies between the Main-STD and the Dep-STD have to be expressed in the external be-
haviour. This can be done by giving the export-operation of the Dep-STD, that makes clear the
dependency between the Main-Std and the Dep-STD, the same name as the export-operation of
the Main-STD preceded by the prefixdep (see also [3]).

Every time a change is requested the external behaviour of DepCAB will be activated. For that
reason the first transition of the external behaviour of DepCAB is labeled with
dep_request_for_change. Simultaneous requests activate their own external behaviour of Dep-
CAB, so for every request a new meeting will be prepared and opened. To that aim the operation
request_for_change has been parametrized with a parameterrequest-id. So there are as many
operationsrequest_for_change, stateschange requested and instances of DepCAB as there are

neutral

meeting

Figure 7. CAB (solution 1): the interleaved version

open_meeting

request_for_
change

do_change

cancel

authorize

cancelledchange
requested

authorized

software
develop.

do_meeting close_

meeting
opened

meeting
closed

meeting

neutral change
requested

request_for_change

Figure 8. MainCAB (solution 3): Main-STD of the external behaviour

w.r.t WODAN this is subprocess s-111 and its state space is trap t-111

Modelling Change Management

page 19

requests. As every instance of DepCAB uses the same set of export-operations, these export-
operations also have to be parametrized (with the parameterrequest-id), otherwise two or more
instances of DepCAB could not operate concurrently when they want to use the same operation
at the same time. Note that this parameterrequest-id has not been indicated explicitly in Figure
8 and Figure 9.

The class UserRepresentative contains only export-operations relevant to Change Management.
These operations are all inherited from the class CABMember. The internal behaviours of other
export-operations are less relevant for our discussion, so they will not be shown in the external
behaviour of the class UserRepresentative.

In addition the external behaviour of the class ProjectManager as well as the external behaviour
of the class DesignEngineer is changed, because new operations have been added in comparison
with the original example (ISPW-6). These operations arecheck_agenda, join_meeting,
leave_meeting andreceive_confirmation. They are inherited, via the class Engineer, from the
class CABMember. Figure 11 shows the changed external behaviour of ProjectManager. The
changed external behaviour of the class DesignEnigineer is given in Figure 12.

neutral

change

software

authorized

open_meeting

dep_request_

do_change

cancel

authorize

Figure 9. DepCAB (solution 3): Dep-STD of the external behaviour

cancelled develop.

requested

for_change

meeting

close_meeting

meeting
closed

do_meeting
meeting

opened

w.r.t. WODAN this is subprocess s-112 and its state space is trap t-112

neutral

in CAB-
meeting

checking
agenda

check_
agenda

join_
meeting

leave_
meeting

Figure 10. UserRepresentative: STD of the external behaviour

receive_
confirmation

confirm
received

Modelling Change Management

page 20

Note that only the ProjectManager can decide which tasks a DesignEngineer has to perform.

starting

in CAB-

schedule_and_
assign_tasks

monitor

join_meeting

prepare_
meeting

neutral

starting

Figure 11. ProjectManager: STD of the external behaviour

monitor

starting
schedule

preparation

meeting

checking
agenda

check_
agenda

leave_
meeting

confirm
received

receive_
confirmation

w.r.t. WODAN this is subprocess s-113 and its state space is trap t-113

neutral

starting
review

starting
design

starting
code

in CAB-
meeting

checking
agenda

Figure 12. DesignEngineer: STD of the external behaviour

design code

review

check_
agenda

join_
meeting

leave_
meeting

receive_
confirmation

confirm
received

Modelling Change Management

page 21

The order, in which these tasks have to be performed, is not controlled by the ProjectManager.
As soon as an operation has been activated, it will run on the background and a new operation
can be activated. If one wants a DesignEngineer to be able to switch between its tasks explicitly,
one has to extend the model. Such an extended model is given in [3, figure 3.4.4 or figure 3.4.5].

The class QualityAsurranceEngineer also inherits the export-operations of the class CABMem-
ber. Therefore its external behaviour has to be changed too. As the class QAEngineer is not that
important for our discussion, its changed external behaviour will not be given here. The behav-
iour can be remodelled the same way the external behaviour of the class DesignEngineer has
been remodelled.

3.3.2 Designing the internal behaviours of the export-operations

After specifying the external behaviours of the classes, the internal behaviours of the operations
can be specified. The conventions used to specify the internal behaviours of the operations are
the same as the conventions used in [1]. Two different types of operations can occur within an
internal behaviour specification. First of all, imported operations can be used. They are preceed-
ed by the prefixcall. The second type of operations are the internal operations within the inter-
nal behaviour and will not be worked out further. The internal operation having the prefixact
(short foractivate) reflects the fact that the internal behaviour is activated, which not means it
is actually going.
The export-operations of the class CAB arerequest_for_change (called by a UserRepresenta-
tive or perhaps the Configuration Control Board (CCB)),cancel, authorize (both called by the
CCB),open_meeting, do_meeting, close_meeting (all three called by the class ProjectManager
from within prepare_meeting) and do_change (called by the class CAB itself from within
do_meeting). The internal behaviours ofcancel andauthorize will not be given here as they are
irrelevant to the problem. Also the model would grow unnecessarily big.
The internal behaviours ofrequest_for_change, open_meeting, do_meeting, close_meeting and
do_change are shown in figures 13, 14, 15, 16 and 17 respectively. As mentioned before these
operations have been parametrized implicitly with the parameterrequest-id.

Figure 13. int-request_for_change

no
request

preparation
asked

requesting
change

call_prepare_
meeting

act_request_for_change

w.r.t. WODAN this is subprocess s-114

Modelling Change Management

page 22

Note that the statemembers joined is a simplified representation of an (sub)STD in which all
members of the board are called in some order. In order to remind one that some details have
been omitted, the parameter incall_join_meeting has been indicated explicitly. The exact rep-
resentation of the (sub)STD does not matter here, more information can be found in Appendix
A.

meetingact_open_meeting

call_join_

opened
asked

members
joined

meeting

start_meetingmeeting
opened

Figure 14. int-open_meeting

neutral

(member)

meeting

Figure 15. int-do_meeting

meeting
ended

meeting
ended

request
checked

act_do_meeting

check_request

call_do_change

reject_request

started
no

meeting

w.r.t. WODAN this is subprocess s-116 and the state space is trap t-116

Modelling Change Management

page 23

Note that the statemembers left is a simplified representation of an (sub)STD in which all mem-
bers of the board are called in some order. In order to remind one that some details have been
omitted, the parameter incall_leave_meeting has been indicated explicitly. The exact represen-
tation of the (sub)STD does not matter here, more information can be found in Appendix A.

Note thatcall_schedule_and_assign_tasks implicitly has been parametrized with the parameter
doc_name (see also [1]).
The export-operations of the class CABMember arejoin_meeting, leave_meeting,
check_agenda andreceive_confirmation(shown in figures 18, 19 and 20 respectively). As men-
tioned before these operations are all inherited by the classes ProjectManager, DesignEngineer,
QAEngineer (all through Engineer) and UserRepresentative.

Note that the internal behaviours originally corresponding to the operationsjoin_meeting and
leave_meeting have been merged into one STD. The reason to do so is that the operations have
a very strong influence on each other. The internal behaviours originally corresponding to the
operations are exactly opposite to each other, i.e. activation of one operation implies that the
other operation has to return to its neutral state. This property has made it possible to merge the
operations.

Figure 16. int-close_meeting

neutral
act_close_meeting

meeting
closed

close
meeting
asked

call_leave_meeting (member)

end_meeting

members
left

Figure 17. int-do_change

act_do_change

call_schedule_and_
assign_tasks

neutral

change
scheduled

change
started

Figure 18. int-join/leave_meeting

act_join_meeting CAB
meeting
joined

CAB
meeting

left act_leave_meeting

Modelling Change Management

page 24

The export-operations of the class ProjectManager areschedule_and_assign_tasks (called by
the class CAB from withindo_change), monitor (called by the class ProjectManager itself from
within schedule_and_assign_tasks) andprepare_meeting (called by the class CAB from within
change_for_request). Also the class ProjectManager inherites the operationsjoin_meeting,
leave_meeting, check_agenda and receive_confirmation from the class CABMember. The
STD’s of the internal behaviours ofschedule_and_assign_tasks and monitor can be found in
[1]. As they are not very important for our discussion, we simply omit them here. It is from the
internal behaviour of prepare_meeting (see Figure 21) that check_agenda,
receive_confirmation and alsoopen_, do_ andclose_meeting are called. The last three opera-
tions have been parametrized with the parameterrequest-id. In order to pass this parameter
through,int-prepare_meeting has been parametrized too. Another reason to do so is that one has
to be able to prepare more than one meeting at a time.

Figure 19. int-check_agenda

no
check

check
started

dates
picked

act_check_agenda

pick_
possible_dates

report_datesdates
reported

no
confirm

date of
meeting

confirmed

act_receive_confirmation

Figure 20. int-receive_confirmation

agenda
updated

put_date_in_agenda

Modelling Change Management

page 25

The result ofcall_check_agenda is a list of possible dates and times. We simply assume that
always a suitable date and time can be selected. Note that the stateagenda checked is a simpli-
fied representation of an (sub)STD in which all members of the board are called in some order.
In order to remind one that some details have been omitted, the parameter incall_check_agenda
has been indicated explicitly. The exact representation of the (sub)STD does not matter here,
more information can be found in Appendix A. The same holds for the stateconfirm send .

The export-operations of the class DesigEngineer aredesign, code andreview (all three called
by the class ProjectManager from withinschedule_and_assign_tasks). The STD’s of the inter-
nal behaviours of these operations can be found in [1]. Also the class DesignEngineer inherites
the operationsjoin_meeting, leave_meeting, receive_confirmation andcheck_agenda from the
class CABMember.
The export-operations of the class UserRepresentative relevant to Change Management are
join_meeting, leave_meeting, receive_confirmation andcheck_agenda (inherited from the class
CABMember). The internal behaviours of other export-operations are less relevant for our dis-
cussion. So they will be omitted.

no
prepare

prepare
started

members
selected

agenda
checked

act_prepare_meeting

select_
members

call_

select_date

call_close_meeting

Figure 21. int-prepare_meeting

confirm
send

check_agenda

call_open_meeting

call_do_meeting

waiting

wait
done

meeting
ended

meeting
started

date
selected

call_receive_

(member)

confirmation
(member)

w.r.t. WODAN this is subprocess s-115 and the state space is trap t-115

Modelling Change Management

page 26

3.3.3 Adding Paradigm to model the communication

After the specification of the external and internal behaviours of the classes and operations, the
communication between these behaviours has to be modelled. This communication is presented
in five parts. Before it is presented, the standard way of modelling communication in Paradigm
will be discussed.
The external behaviours act as the manager processes and the internal behaviours of the export-
operations act as the employee processes. A manager process can have two kinds of employee
processes: the internal behaviours of export-operations being called (called operations, they be-
long to the same class acting as the manager process) and the internal behaviours of operations
performing these calls (calling operations). In Paradigm in the case of called operations the in-
ternal behaviour is usually split into two subprocesses. Both subprocesses contain all states. One
subprocess has a small trap, which contains only the state preceding the transition labeled with
act_name_of_operation (the neutral state). The other subprocess has a large trap containing all
other states in order to enable the manager to continue as soon as possible to go to its next state.
In both subprocesses the transitions coming out of the traps have of course been removed. Also
in the case of calling operations the internal behaviour is usually split into two subprocesses.
Again both subprocesses contain all states. One subprocess has a small trap containing only the
state preceded by the transition labeled withcall_name_of_operation andname_of_operation
being an operation of the class acting as manager. The other subprocess has a large trap, which
contains all other states. Again of course in both subprocesses the transitions coming out of the
traps have been removed. Note that these standards are the same as the Socca conventions used
in [1]. Whenever the model deviates from these standards, it will be mentioned and a reason will
be given.
When the external behaviour of a class is described by more than one STD, the external behav-
iour described by the Main-STD will be the manager of the external behaviours described by
the Dep-STD’s (see also [3]). The external behaviour of a Dep-STD will also be split into two
so-called manager subprocesses. They both contain all states. One manager subprocess has a
small manager trap, containing the (neutral) state preceding the transition labeled by
dep_name_of_operation. The other manager subprocess has a large manager trap, which con-
tains all other states. In both manager subprocesses the transitions coming out of the manager
traps have been removed. This is very similar to the standards described above to model the
communication between external behaviours and internal behaviours of called operations. Note
that the external behaviour of the MainCAB can also be the manager of some internal behav-
iours. Also the external behaviours of the DepSTD’s can be the manager of some internal be-
haviours.
Let us now return to our model. The first part of the communication specification presents the
communication between the manager process MainCAB and its employee processesint-
request_for_change and DepCAB.Int-request_for_change is the internal behaviour of an op-
eration of MainCAB itself, DepCAB is the external behaviour of a part of the class CAB.
MainCAB (Figure 24) starts in its stateneutral. When a change is requested, the manager waits
for int-request_for_change to be trapped in its trap t-1, which means that a possible previous
request has been dealt with, and DepCAB to be trapped in mt-1. When these traps have been
entered, CAB makes the transition to the state change requested and prescribes subprocess s-2
to int-request_for_change, thereby making it possible to start the preparations, and manager
subprocess MS-2 to DepCAB, so that the request can be discussed and handled if necessary. If
int-request_for_change has entered its trap t-2, which means that the preparations have been
started, if moreover DepCAB has entered its manager trap mt-2, which means the request is be-
ing discussed or handled, then MainCAB will return to its stateneutral.

Modelling Change Management

page 27

Figure 22. int-request_for_change’s subprocesses and traps w.r.t. MainCAB

no
request

preparation
asked

t-1

s-1

requesting
change

call_prepare_
meeting

no
request

preparation
asked

requesting
change

call_prepare_
meeting

t-2

s-2
act_request_for_change

Modelling Change Management

page 28

neutral

change

software

authorized

open_meeting

dep_request_

do_change

cancel

authorize

Figure 23. DepCAB’s subprocesses and traps w.r.t. MainCAB

cancelled develop.

requested

for_change

meeting

close_meeting

meeting
closed

do_meeting
meeting

opened

neutral

change

software

authorized

open_meeting

do_change

cancel

authorize

cancelled develop.

requested
meeting

close_meeting

meeting
closed

do_meeting
meeting

opened

MS-1

mt-1

MS-2

mt-2

Modelling Change Management

page 29

Figure 24 shows MainCAB as manager of DepCAB andint-request_for_change (a called op-
eration).

Remember that the operationrequest_for_change has been parametrized with the parameterre-
quest-id (not explicitly indicated in Figure 24). So there are as many operations
request_for_change, stateschange requested and external behaviours of DepCAB as there are
requests. When MainCAB is in one of its stateschange requested, the manager subprocess MS-
2 will be prescibed to only one external behaviour of DepCAB. The manager subprocess MS-1
will remain prescribed to all other external behaviours of DepCAB.

The second part of the communication specification presents the communication between the
manager process DepCAB and its employee processesint-open_meeting, int-do_meeting, int-
close_meeting, int-do_change andint-prepare_meeting. The export-operationscancel and au-
thorize have not been modelled and also the calling of these operations has been left out, so the
communication between DepCAB and these operations will not be specified.Int-open_meeting,
int-do_meeting, int-close_meeting andint-do_change all are internal behaviours of operations
of DepCAB itself.Int-prepare_meeting is the internal behaviour of an operation that calls op-
erations of DepCAB.
Every DepCAB (Figure 30) starts in its stateneutral. Whenever MainCAB goes to one of its
stateschange requested, one particular DepCAB goes to its statechange requested too, as the
dependency between MainCAB and DepCAB is modelled that way. Ifint-open_meeting has en-
tered its trap t-3, which means that the meeting can be opened, if moreoverint-prepare_meeting
has entered its trap t-16, which means that the preparations have come to the point the meeting
actually can be asked to start, thenopen_meeting is performed and DepCAB will transit from
its statechange requested to its statemeeting opened. There DepCAB will prescribe the sub-
processes s-4 and s-17 toint-open_meeting andint-prepare_meeting respectively. The mem-
bers will be called to join the meeting and after that the meeting will be started. Ifint-
prepare_meeting has entered its trap t-17, if alsoint-open_meeting has entered its trap t-4,
which means the meeting has been opened, andint-do_meeting is in its trap t-9, then DepCAB
will go to its statemeeting. There subprocesses s-3, s-5 and s-18 are going to be prescribed to
int-open_meeting, int-do_meeting andint-prepare_meeting respectively. The meeting can take
place and the request will be discussed now. Ifint-do_meeting has entered its trap t-5 or t-6,
which means the meeting has ended and a result with respect to the request has been established,
if also int-close_meeting has entered its trap t-10, which means the meeting can be closed, if
furthermoreint-prepare_meeting has entered its trap t-18, thenclose_meeting can and will be
performed and DepCAB transits to its statemeeting closed. There the subprocesses s-11 and s-
16 will be prescribed toint-close_meeting and int-prepare_meeting respectively. Toint-
do_meeting subprocess s-5 is still being prescribed. Soint-do_meeting will still be waiting in
its trap t-5 or t-6. In this state of DepCAB the meeting will be ended. As soon asint-
close_meeting enters its trap t-11, which means the meeting has been closed, DepCAB will
make its next transition. In caseint-do_meeting is waiting in its trap t-5, the request had been
rejected and DepCAB will go back to its stateneutral.In caseint-do_meeting is waiting in its
trap t-6, the request had been accepted, and whenint-do_change is in its trap t-12, DepCAB will

neutral change
requested

request_for_change

Figure 24. MainCAB: viewed as manager of 2 employees

MS-2MS-1
in mt-1, t-1

in mt-2, t-2
s-1 s-2

Modelling Change Management

page 30

transit to its statesoftware developing. In both stateneutral and statesoftware developing sub-
process s-9 is prescribed toint-do_meeting and subprocess s-10 toint-close_meeting. Normally,
as soon as the change has been establishedauthorize will follow. However, sometimes the soft-
ware development may be interrupted bycancel. In both casesint-do_change has to be in its
trap t-13.

meetingact_open_meeting

call_join_

opened
asked

members
joined

meeting

start_meetingmeeting
opened

Figure 25. int-open_meeting’s subprocesses and traps w.r.t. DepCAB

meeting
opened

s-4s-3

t-3

t-4

neutralneutral

(member)

Figure 26. int-do_meeting’s subprocesses and traps w.r.t. DepCAB

meeting
ended

meeting
ended

request
checked

check_request

call_do_change

reject_request

no
meeting

meeting
started

act_do_meeting
s-5

t-5

t-6

s-9
meeting
ended

meeting
ended

no
meeting

t-9

Modelling Change Management

page 31

Note that the trap-structures ofint-open_meeting, int-do_meeting and int-close_meeting (fig-
ures 25, 26 and 27 respectively) deviate from the standards described above. Asint-
open_meeting, int-do_meeting andint-close_meeting are actually part of one big operation that
has been split into three parts, these three operations cannot operate in a parallel way. In order
to sequentialize these operations only small traps are used, because only then the operation is
ready before the trap is entered and after that the manager will make its next move.

Figure 27. int-close_meeting’s subprocesses and traps w.r.t DepCAB

neutral

meeting
closed

call_leave_meeting (member)members
left

neutral
act_close_meeting

meeting
closed

close
meeting
asked

end_meeting

members
left

s-10

s-11

t-10

t-11

Figure 28. int-do_change’s subprocesses and traps w.r.t. DepCAB

act_do_change

call_schedule_and_
assign_tasks

neutral

change
scheduled

change
started

s-13

t-13

call_schedule_and_
assign_tasks

neutral

change
scheduled

change
started

s-12

t-12

Modelling Change Management

page 32

Note that the trap-structure ofint-prepare_meeting (Figure 29) deviates from the standards de-

scribed before. This time there are three subprocesses. The reason to do so is thatint-
prepare_meeting calls three different operations of the DepCAB. Asprepare_meeting is a call-
ing operation, every subprocess hass a small trap containing one state preceded by the transition
labeled with the call. For the calling itself this is in accordance with the standards.

no
prepare

prepare
started

members
selected

agenda
checked

act_prepare_

select_
members

call_

select_date

Figure 29. int-prepare_meeting’s subprocesses and traps w.r.t. DepCAB

confirm
send

check_agenda

call_open_

waiting

wait
done

meeting
started

meeting

meeting

no
prepare

call_close_

meeting
ended

meeting

s-16

s-18

t-18

t-16

date
selected

call_receive_

call_do_
meeting

meeting
ended

meeting
started

t-17

s-17

(member)

confirmation
(member)

Modelling Change Management

page 33

Figure 30 shows the class DepCAB as manager ofint-open_meeting, int-do_meeting, int-

close_meeting, int-do_change (called operations) andint-prepare_meeting (calling operation).
Note that the statesneutral, software developing, cancelled andauthorized are equal w.r.t. each
of these employees (except fordo_change), that is the subprocesses of these employees remain
unchanged in all states.

neutral

change

softwarecancelled

authorized

open_meeting

dep_request_

do_change

cancel

authorize

Figure 30. DepCAB: viewed as manager of 5 employees
developing

requested
meeting

close_

meeting
closed

do_meeting

meeting
opened

for_change

employee mapping order used:

int-open_meeting (figure 25)
int-do_meeting (figure 26)
int-close_meeting (figure 27)
int-do_change (figure 28)

s-3
s-9
s-10
s-12

s-4
s-9
s-10
s-12

s-3
s-5
s-10
s-12

s-3
s-5
s-11
s-12

s-3
s-9
s-10
s-12

s-3
s-9
s-10
s-12

s-3
s-9
s-10
s-12

s-3
s-9
s-10
s-13

in t-3, t-16 in t-4, t-9, t-17

in t-5 or t-6,
t-10, t-18

in t-5, t-11

in t-6, t-11,

meeting

s-16 s-17 s-18

s-16

s-16

s-16 s-16

int-prepare_meeting (figure 29)

s-16

t-12

in t-13

in t-13

Modelling Change Management

page 34

The third part of the communication specification shows the communication between the man-
ager process ProjectManager and its employee processesint-check_agenda, int-
prepare_meeting, int-receive_confirmation, int-request_for_change, int-join_meeting, int-
leave_meeting, int-open_meeting, int-close_meeting and int-do_change. The internal behav-
iours of the export-operations int-check_agenda, int-receive_confirmation, int-
prepare_meeting, int-request_for_change, int-join_meeting and int-leave_meeting belong to
the class ProjectManager itself.Int-open_meeting, int-close_meeting andint-do_change are the
internal behaviours of operations that call operations of the class ProjectManager. As the sub-
processes and traps ofint-schedule_and_assign_tasks andint-monitor are not very important
for our discussion, we simply omit this part of the communication specification.
Note that the trap-structure ofint-check_agenda (Figure 31) deviates from the standards de-
scribed before. It is clear that before a meeting can be started a date has to be picked. Small traps
are used inint_check_agenda, so that every member, including ProjectManager, will report its
possible dates before returning to its neutral state. When using large traps they can return to their
neutral states before they have reported their possible dates. Consequently, when a meeting is
opened, members could be called to join the meeting before they have reported their dates.

ProjectManager starts in its stateneutral. There subprocess s-22 has been prescribed toint-
prepare_meeting. If this behaviour has entered its trap t-22a, which means a preparation can be
started, if alsoint-request_for_change has entered its trap t-25, which means a preparation has
been asked, thenprepare_meeting will be executed and ProjectManager will go to its statestart-
ing preparation. There subprocess s-23 is prescribed toint-prepare_meeting, so that the prepa-
rations will be started, and subprocess s-26 toint-request_for_change, so that a new request can
be made. Ifint-prepare_meeting has entered its trap t-23, which means all members of the board
including ProjectManager itself have been asked to check their agenda and send a list of possi-
ble dates, andint-check_agendais in its trap t-20, which means the agenda can be checked, then
ProjectManager can go to its statechecking agenda. There the subprocesses s-21 and s-24 are
prescribed toint-check_agenda and int-prepare_meeting respectively. ProjectManager will
check its agenda now. Ifint-check_agenda has entered its trap t-21 andint-prepare_meeting has
entered its trap t-24, which means the own agenda has been checked, if furthermoreint-
request_for_change has entered its trap t-26, then ProjectManager can go to its stateneutral.
There ProjectManager continues to prepare the meeting or doing whatever is was doing. Note
thatint-prepare_meeting will remain in its trap t-24, therefore subprocess s-24 is still being pre-
scribed. As soon asint-prepare_meeting has entered its trap t-24a andint-receive_confirmation
has entered its trap t-40, ProjectManager can and will go to its stateconfirm received. In this
state subprocess s-22 is prescribed again toint-prepare_meeting and subprocess s-41 toint-

Figure 31. int-check_agenda’s subprocesses and traps w.r.t. CABMember

no
check

check
started

dates
picked

act_check_agenda

pick_
possible_dates

report_datesdates
reported

no
check

dates
reported

s-21s-20

t-20

t-21

Modelling Change Management

page 35

receive_confirmation. The date that has been picked for the meeting will be put in the agenda.
Whenint-receive_confirmation enters its trap t-41 andint_prepare_meeting enters its trap t-22,
which means the confirmation has been received, ProjectManager will return to its stateneutral.
Int-prepare_meeting will remain in its subprocess s-22. Toint-receive_confirmation subproc-
ess s-40 will be prescribed again. In the neutral state ProjectManager can now start the prepa-
rations for a new meeting, schedule and assign tasks and monitor the design process.

Figure 32. int-request_for_change’s subprocesses and traps w.r.t. ProjectManager

no
request

requesting
change

preparation
asked

call_prepare_

act_request_for_change

meeting

t-25

s-25

no
request

requesting
change

preparation
asked

act_request_for_change

s-26

t-26

Figure 33. int-receive_confirmation’s subprocesses and traps w.r.t CABMember

s-40

s-41

no
confirm

date of
meeting

confirmed

agenda
updated

put_date_in_agenda

no
confirm

date of
meeting

confirmed

act_receive_confirmation

agenda
updated

put_date_in_agenda

t-41

t-40

Modelling Change Management

page 36

Note that the trap-structure ofint-prepare_meeting (Figure 34) deviates from the standards de-
scribed before.Prepare_meeting is of course a called operation, as it belongs to the class Pro-
jectManager itself, but it is also a calling operation as it performs a call to the operations
check_agenda andreceive_confirmation which belong to the same (instance of the) class as
prepare_meeting. As it is a called operation there must be a subprocess having a small trap,
which contains only the neutral state (no prepare), and as it is a calling operation there must be
subprocesses having a small trap, which contains only the state preceded bycall_check_agenda
or call_receive_confirmation. Therefore there are three subprocesses containing a small trap.
Two of these subprocesses also have a large trap embedding the small trap in order to allow Pro-
jectManager to go to its next state without waiting for the small trap to be entered. In the next

act_prepare_

Figure 34. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager

prepare
started

members
selected

agenda
checked

select_
members

call_
check_agenda

no
prepare

call_close_

call_open_

call_do
meeting

meeting
ended

meeting
started

meeting

meeting

meeting
no

prepare

s-22 s-23

t-23

t-22a

confirm
send

waiting

wait
done

(member)

confirm
send

agenda
checked

select_date

date
selected

call_receive_
confirmation
(member)

s-24

t-24a

t-24
t-22

Modelling Change Management

page 37

state of ProjectManager the same subprocess will be prescribed. Only after the small trap has
been entered this next state can be left.
Note also that the partition of subprocesses in Figure 34. overrides the partition of subprocesses
in Figure 40, which means that although ProjectManager is a subclass of the class CABMember,
the original partition (Figure 40) will not be inherited from the class CABMember and thatint-
prepare_meeting’s subprocesses and traps are redefined for the class Projectmanager in Figure
34.
Note also that the internal behaviour ofprepare_meeting cannot go to the statedate selected,
even ifint-prepare_meeting already is in its subprocess s-24 prescribed by the ProjectManager,
until every other member of the board has reacted to trap t-42 and consequently has prescribed
subprocess s-44 (see also Figure 40).
Also note that this operation has been parametrized implicitly with the parameterrequest-id.
This implies that two or more meetings can be prepared simultaneously. ProjectManager how-
ever can prepare a new meeting, i.e. execute the nextprepare_meeting, only when it has re-
turned to its stateneutral. This implies thatint-prepare_meeting initiated by the previous
request has had to pass its statedate selected and enter its trap t-24 (see also Figure 39). If not,
ProjectManager will not be in its stateneutral andint-prepare_meeting initiated by the new re-
quest will have to wait in its stateno prepare.

Now let us return to the manager process. After the actual preparations have been finished, i.e.
the agendas have been checked, the date has been picked and the confirmations have been re-
ceived, the meeting eventually will take place and ProjectManager will have to join it. When
int-open_meeting is in its trap t-31, which means all members including the ProjectManager are
called to join the meeting, andint-join_meeting is in its trap t-27, which means ProjectManager
is able to join the meeting, and alsoint-close_meeting is in its trap t-34, which means a possible
previous meeting in which ProjectManager was involved has been closed,join_meeting will be
performed and ProjectManager will make the transition to its statein cab-meeting. If int-
close_meeting has entered its trap t-33, which means all members including the ProjectManager
are called to leave the meeting, if moreoverint-leave_meeting has entered its trap t-28, which
means the Projectmanager is able to leave the meeting, if furthermoreint-open_meeting has en-
tered its trap t-32, thenleave_meeting is executed and ProjectManager will return to its state
neutral. There ProjectManager can continue to do whatever it was doing.

Figure 35. int-join/leave_meeting’s subprocesses and traps w.r.t. CABMember

CAB
meeting

t-27
joined

s-27

act_join_meeting CAB
meeting

t-28
joined

s-28

CAB
meeting

left

CAB
meeting

left

act_leave_meeting

Modelling Change Management

page 38

Figure 36. int-open_meeting’s subprocesses and traps w.r.t. CABMember

meetingact_open_meeting
opened
asked

members
joined

start_meetingmeeting
opened

neutral

meetingact_open_meeting

call_join_

opened
asked

members
joined

meeting

meeting
opened

neutral

s-31

s-32

t-31

t-32

(member)

Figure 37. int-close_meeting’s subprocesses and traps w.r.t. CABMember

neutral
act_close_meeting

meeting
closed

close
meeting
asked

end_meeting

members
left

neutral
act_close_meeting

meeting
closed

close
meeting
asked

call_leave_meeting (member)

end_meeting

members
left

s-33

t-33

t-34

s-34

Modelling Change Management

page 39

Note that the partitions in figures 36 and 37 (and 40 too) are valid for every member of the
board. These partitions are partitions of internal behaviours of operations of another class. The
states in which these operations remain, are not only dependent on the subprocesses the other
class prescribes, but are also dependent on the subprocesses every member prescribes. Only
when all members have reacted to trap t-31 and consequently have prescribed subprocess s-32
to int-open_meeting, the internal behaviour ofint-open_meeting can continue to go to its next
state and enter trap t-32. Only whenint-open_meeting has entered trap t-32, any particular mem-
ber is allowed to go to its next state. So it seems that every member has to wait until all other
members have prescribed subprocess s-32, before going to its next state. However this is not the
case. As the statemembers called is a simplified representation of an (sub)STD, in which all
members are called, the trap-structure is in fact more complicated. This implies that every mem-
ber can react to trap t-32 without waiting for the other members. More information can be found
in Appendix A. The same applies toint-close_meeting.
The partitions in figures 31, 33 and 35 are also valid for all members of the board. These parti-
tions are partitions of internal behaviours of operations (receive_confirmation, join_meeting,
leave_meeting andcheck_agenda) of the class itself, in this case ProjectManager, DesignEngi-
neer, UserRepresentive or QAEngineer. The states in which these operations remain, are de-
pendent on the subprocesses one particular member prescribes, as these operations do not call
to other members, in contradistinction to the operations described above.

Now let us return to the manager process again. One detail still has to be discussed. In stateneu-
tral ProjectManager can also execute the operationsschedule_and_assign_tasks andmonitor.
If int-do_change has entered its trap t-35, which means the operation
schedule_and_assign_tasks has been called, then ProjectManager will go to its statestarting
schedule. As soon asint-do_change enters its trap t-36 and naturally the tasks have been sched-
uled, Projectmanager will go back to its stateneutral. As mentioned before the communication
between the manager ProjectManager and its other employeesint-schedule_and_assign_tasks
(Figure 62) andint-monitor [2, figure 12] falls outside the scope of the problem of modelling
Change Management and the subprocesses and traps of these operations w.r.t. ProjectManager
will not be given here. However they can be found in [2, figures 53 and 55 respectively].

Figure 38. int-do_change’s subprocesses and traps w.r.t. Projectmanager

neutral

change
scheduled

act_do_change

call_schedule_and_
assign_tasks

neutral

change
scheduled

change
started

s-36

s-35

t-36

t-35

act_do_change change
started

Modelling Change Management

page 40

Figure 39 shows the class ProjectManager as manager ofint-join_meeting, int-leave_meeting,

int-prepare_meeting, int-check_agenda, int-receive_confirmation (called operations),int-
request_for_change, int-open_meeting, int-close_meeting and int-do_change (calling opera-
tions).

starting

in cab-

schedule_and_
assign_tasks

monitor

join_meeting

prepare_
meeting

neutral

starting

Figure 39. ProjectManager: viewed as manager of 8 employees

monitor

starting
schedule

preparation

meeting

checking
agenda

check_agenda

employee mapping order used:

int-join/leave_meeting (figure 35)

leave_
meeting

int-prepare_meeting (figure 34)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-request_for_change (figure 32)
int-open_meeting (figure 36)
int-close_meeting (figure 37)

s-27
s-22
s-20
s-40
s-25
s-31

s-27
s-22 or s-24
s-20
s-40
s-25
s-31

s-27
s-22
s-20
s-40
s-25
s-31

s-27
s-23
s-20
s-40
s-26
s-31

s-27
s-24
s-21
s-40
s-26
s-31

s-28
s-22
s-20
s-40
s-25
s-32

in t-22a, t-25

in t-20, t-23

in t-21, t-24, t-26

in t-27, t-31,
t-34in t-28, t-32,

t-33

s-34s-34

s-34

s-34

s-33

s-34

in t-36

in t-35

int-do_change (figure 38)

s-35

s-35

s-35

s-35s-36

s-35

confirm
received

s-27
s-22
s-20
s-41
s-25
s-31
s-34
s-35

receive_
confirmation
in t-24a, t-40

in t-22, t-41

Modelling Change Management

page 41

The fourth part of the communication specification shows the communication between the man-
ager process DesignEngineer and its employee processesint-join_meeting, int-leave_meeting,
int-check_agenda, int-receive_confirmation, int-prepare_meeting, int-open_meeting and int-
close_meeting. The operationsdesign, code andreview have not been modelled, so the commu-
nication will not be specified. However the STD’s of the internal behaviours of these operations
and the subprocesses and traps of these internal behaviours can be found in [1]. The internal be-
haviours of the export-operations belonging to the class DesignEngineer areint-check_agenda,
int-join_meeting, int-leave_meeting and int-receive_confirmation. Int-open_meeting, int-
close_meeting andint-prepare_meeting are the internal behaviours of operations that call oper-
ations of the class DesignEngineer. As the class DesignEngineer is, just like ProjectManager, a
subclass of CABMember, a major part of the communication specification is equal to the com-
munication specification of the class ProjectManager. This part consists of the communication
between DesignEngineer and the employee processesint-join_meeting, int-leave_meeting, int-
check_agenda, int-open_meeting andint-close_meeting. So only the communication between
DesignEngineer andint-prepare_meeting will be given here.
DesignEngineer (Figure 41) starts in its stateneutral. When a particular DesignEngineer has
been selected by ProjectManager to be a member of the board, DesignEngineer will be asked to
check its agenda, i.e. to execute its operationcheck_agenda. If int-prepare_meeting has entered
its trap t-42, if moreoverint-check_agenda is in its trap t-20, then DesignEngineer can and will
go to its statechecking agenda. In this state the subprocesses s-44 and s-21 are going to be pre-
scribed toint-prepare_meeting andint-check_agenda respectively. DesignEngineer will check
its agenda now. As soon asint-check_agenda enters its trap t-21 andint-prepare_meeting enters
its trap t-44, DesignEngineer can return to its stateneutral. There subprocesses s-42 and s-20
will prescribed toint-prepare_meeting andint-check_agenda respectively. As soon as the date
of the meeting is selected, which is whenint-prepare_meeting has entered its trap t-43, andint-
receive_confirmation is in its trap t-40, DesignEngineer can go to its stateconfirm received.
There DesignEngineer will put the date in its agenda. DesignEngineer will return to its state
neutral whenint-receive_confirmation enters its trap t-41 and moreoverint-prepare_meeting
enters its trap t-45.
The traps that have to be entered to reach and leave the statein CAB-meeting are the same as
for ProjectManager.

Modelling Change Management

page 42

Note that, as it is the internal behaviour of an operation of another class, only when every mem-
ber has reacted to trap t-42 (or trap t-43) and consequently has prescribed subprocess s-44,int-
prepare_meeting can continue to go to the statedate selected (or statewait done). So it seems
that every member has to wait for all other members to be called before it can return to its neutral
state as t-44 (or t-45) can only be entered if statedate selected (or statewait done) can be
reached. However this is not the case. As the statesagenda checked andconfirm sendare sim-
plified representations of an (sub)STD, in which all members are called, the trap-structures are
in fact more complicated. This implies that every member can react to trap t-44 and trap t-45
without waiting for the other members. More information can be found in Appendix A.

no
prepare

prepare
started

members
selected

agenda
checked

act_prepare_

select_
members

call_check_

call_close_

Figure 40. int-prepare_meeting’s subprocesses and traps w.r.t. CABMember

confirm
send

agenda

call_open_

call_do_

wait
done

meeting
ended

meeting
started

date
selected

call_receive_

meeting

meeting

meeting

meeting
no

prepare
prepare
started

members
selected

agenda
checked

act_prepare_

select_
members

select_date

call_close_

confirm
send

call_open_

call_do_

waiting

wait
done

meeting
ended

meeting
started

date
selected

meeting

meeting

meeting

meeting

t-42

s-42 s-44

t-45

(member)

confirmation
(member)

t-43

t-44

Modelling Change Management

page 43

Figure 41 shows the class DesignEngineer as manager ofint-join_meeting, int-leave_meeting,

int-check_agenda, int-receive_confirmation (called operations),int-prepare_meeting, int-
open_meeting andint-close_meeting (calling operations). Note that the statesneutral, starting
design, starting review andstarting code are equal w.r.t. these employees, that is the subproc-
esses remain unchanged in all states.

neutral

starting
review

starting
design

starting
code

in CAB-
meeting

checking

Figure 41. DesignEngineer: viewed as manager of 6 employees

design codereview

check_agenda join_meeting

leave_
meeting

employee mapping order used:

int-join/leave_meeting (figure 35)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-prepare_meeting (figure 40)
int-open_meeting (figure 36)

s-28
s-20
s-40
s-42
s-32

s-27
s-21
s-40
s-44
s-31

s-27
s-20
s-40
s-42
s-31

s-27
s-20
s-40
s-42
s-31

s-27
s-20
s-40
s-42
s-31

s-27
s-20
s-40
s-42
s-31

in t-27, t-31,
t-34

in t-28, t-32,
t-33

in t-20, t-42

in t-21,
t-44

int-close_meeting (figure 37)

s-34 s-34 s-34

s-34

s-34 s-33

agenda
confirm

s-27
s-20
s-41
s-44
s-31
s-34

received

receive_
confirmation

in t-40, t-43

in t-41,
t-45

Modelling Change Management

page 44

The fifth part of the communication specification shows the communication between the man-
ager process UserRepresentative and its employee processesint-join_meeting, int-
leave_meeting, int-check_agenda, int-receive_confirmation, int-prepare_meeting, int-
open_meeting andint-close_meeting. The internal behaviours of the export-operations belong-
ing to the class UserRepresentative itself areint-check_agenda, int_receive_confirmation, int-
join_meeting andint-leave_meeting. The internal behaviours of operations that call operations
of the class UserRepresentative areint-open_meeting, int-close_meeting and int-
prepare_meeting. Because the class UserRepresentative is, just like DesignEngineer, a subclass
of CABMember, the communication specification is equal to the communication specification
of DesignEngineer and will therefore not be repeated here.
Figure 42 shows the class UserRepresentative as manager ofint-join_meeting, int-

leave_meeting, int-check_agenda, int-receive_confirmation (called operations), int-
prepare_meeting, int-open_meeting andint-close_meeting (calling operations).

neutral

in CAB-
meeting

checking
agenda

check_
agenda

join_
meeting

leave_
meeting

Figure 42. UserRepresentative: viewed as manager of 6 employees

employee mapping order used:

int-join/leave_meeting (figure 35)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-prepare_meeting (figure 40)
int-open_meeting (figure 36)

s-27
s-20
s-40
s-42
s-31

s-28
s-20
s-40
s-42
s-32

s-27
s-21
s-40
s-44
s-31

in t-27, t-31,
t-34

in t-28, t-32,

in t-20, t-42

in t-21, t-44

int-close_meeting (figure 37)

s-33s-34

s-34

t-33

confirm
received

s-27
s-20
s-41
s-44
s-31
s-34

receive_
confirmation

in t-40, t-43 in t-41,
t-45

The new model

page 45

4 The new model

4.1 Introduction

The model presented in the previous chapter implies a lot of meetings in which only one request
can be discussed, as for every request a new meeting will be prepared and opened. It would be
more practical and efficient, and more realistic too, to discuss more than one request in a meet-
ing. Also in the model presented in the previous chapter there is made no difference between
small and big changes. Again it would be more practical, efficient and realistic to model such a
difference, because small and big changes each have a different effect on the software process
model. Therefore in this chapter a new model, based upon the previous model, will be designed.
This new model is also necessary in order to be able to describe the evolutionary change of
Change Management. The previous model represents the first evolution phase, the new model
will represent the second evolution phase.
In the new model more than one request can be discussed in a meeting. This will be done by
placing requests on a list. As soon as a list is full a meeting will be requested, so every list will
correspond with a meeting. After that new requests will be placed on a new list. Of course also
during a meeting new requests will have to be handled.
In order to model this some new classes will be introduced and other classes will have to change.
The new class CABSecretary will administrate and handle the incoming change-requests and
will place them on a list. It will also handle the outgoing, i.e. accepted, change-requests. Anoth-
er new class will be the class Request, in which the status of the request is kept. The class CAB
will be changed as a part of the external behaviour becomes internal behaviour of an export-
operation of the new class CABSecretary (handle_change_request). In this new model meet-
ings cannot be held concurrently. However it is not necessary to model this possibility, as we
can assume that during a meeting a list will not grow so full that a new meeting already is nec-
essary. Consequently the parallel behaviour modelled by using a parallel description in the ex-
ternal behaviour of CAB, as has been used in the previous model, will be removed. This is
consistent with the original SOCCA approach.
In the new model also the difference between small and big changes will be modelled. When
modelling this difference, there are two possibilities:

1 split behaviours up: create separate STD’s for the external behaviour of some classes (in
this case Design) and for the internal behaviour of some operations in case of a big change
and in case of a small change. The result will be a lot of STD’s that will be almost identical,
for instanceschedule_and_assign_big_tasks andschedule_and_assign_small_tasks. It also
means that managers get a lot of employees. This implies the model grows very big.

2 parametrize transitions: make one STD and parametrize with a parametersize all transitions
that would cause creating separate STD’s when using the first possibility (see for instance
Figure 59). This implies the amount of STD’s will not grow too big.

In the new model the second possibility is used. From now on the model in the previous chapter
will be referred to as the old model.

4.2 Designing the new model

As mentioned in the previous section, some new classes will be added to the old model in order
to describe Change Management more precisely:

 • CABSecretary: handles some administrative business for the Change Advisory Board.

 • Request: for every request the status is kept and a possible change is initiated.

Also the classes CAB and Design will change, and from now on they will be referred to as the

The new model

page 46

class NewCAB and the class NewDesign respectively.
As some classes have been added to the model, the static structure of the model, i.e. the class-
diagram, will change too. Figure 43 shows the class diagram of the new model. Note that the
new classes CABSecretary and Request do not have a IS-A relationship or Part-Of relationship
with any other class.

Figure 44 shows the attributes and operations of the new classes and the changed class New-
CAB. The export-operations of the class NewDesign have not been changed. Therefore this
class will not be mentioned in the figure. The operations and attributes of all other classes will
not be given too.

Engineer

Compiler Project-
Manager

QA
Engineer

Design
Engineer

Tools

Project

Project
Team

Project
Docs

New- Code Test
Plan

Test
Pack

Design
Document

Test
Document

Document

NewCABUser-
Repr.

Figure 43. Class diagram of the new model: classes and IS-A and Part-Of relationships

CAB-
Member

Design

Request CAB-
Secretary

The new model

page 47

Note that the operations of the classes Request and CABSecretary (except forsend_list) have
all been parametrized (explicitly or implicitly) with the parameterrequest-id. The operations
add_to_list andsend_list have been parametrized implicitly with a parameterlist-id. The oper-
ationsrequest_for_change anddo_change have been parametrized with a parametersize.
As new classes have been added to the model and others have been changed, some new general
relationships between the classes can be defined. These new general relationships are shown in
Figure 45. Note that the old general relationships remain valid. Therefore they are also shown
in Figure 45.

Figure 44. Class diagram of the new model: attributes and operations

CABSecretary Request NewCAB

name

request_for_change (request-id, size)
handle_change_request
add_to_list

reject_request
big_impact
small_impact
do_change (size)send_list

status
request_id

request_for_meeting
open_meeting
do_meeting
close_meeting

size

The new model

page 48

By adding and changing classes, new uses relationships will appear too. In Figure 46 all uses
relations important to our discussion, i.e. the uses relations from the old model and all new uses
relations, are given. In Figure 47 the corresponding import list is given.

Figure 45. Class diagram of the new model: classes and general relationships

Engineer

Project-
Manager

NewCAB User-
Repr.

CAB-
Member

contacts

assigns

exchanges infoleads

CAB- Request
Secretary

initiates estimates impact

handles

Design

monitors

The new model

page 49

Note that the operationscheck_agenda, receive_confirmation, join_meeting andleave_meeting
are parametrized with the parametermember as an explicit reminder of the fact that some details
in the calling operations have been omitted. As mentioned in the previous chapter, these details,
which actually are rather complicated, will be discussed in Appendix A.

NewCAB

CAB-

Project-
Manager

Figure 46. Import/export diagram

use1

use2

use3 use4

Member

Request CAB-
Secretaryuse9

use10

use8
use5 use6

use11

use7

use12

Design

use13

use1
 prepare_meeting
use2
 open_meeting
do_meeting
close_meeting

use 3
check_agenda (member)
receive_confirmation
(member)

use4
join_meeting (member)
leave_meeting (member)

use5
request_for_meeting

use6
send_list

use7
sched_and_assign_tasks

use8
big_impact

 small_impact
use9
 handle_change_request
(req-id, size)

Figure 47. Import list

use10
 do_change (size)
use11
add_to_list

use12
monitor

use13
notify_modif_opened

 notify_modif_closed
 notify_review_opened
 report_review_result

The new model

page 50

4.2.1 Designing the new external behaviours of the classes

The external behaviours of the new and changed classes will be specified (figures 48 through
51). From then on, the order in which the export-operations can be called will be known.

The transition labeled withhandle_change_requestreplaces the "lower" part of the external be-
haviour of the class CAB. This transition has been parametrized with the parameterrequest-id,
so actually there are as many transitions as there are requests. The reason for doing this is that
by choosing the right subprocesses and traps forint-handle_change_request one can accom-
plish that more than one request at a time can be handled. This is necessary, otherwise everytime
a request is handled one has to wait for the previous request being authorized or cancelled and
there would be no profit of discussing more than one request in a meeting. It has also been par-
ametrized with the parametersize, because the value of this parameter is needed in the internal
behaviour of the operation to make the call todo_change.
Note that the operationsadd_to_list andsend_list have been parametrized implicitly with a pa-
rameterlist-id.

request_for_change

Figure 48. CABSecretary: STD of the external behaviour

handle_change_request
(request-id, size)

neutral
change
request
handled

request
retrieved

w.r.t. WODAN this is subprocess s-142 and the state space is trap t -142

list
send

request
added

add_to_listsend_list

neutral

request
rejected

big impact
estimated

small

estimated
impact

small_impactbig_impact

reject_

Figure 49. Request: STD of the external behaviour

do_change
(size)request

changing
software

w.r.t. WODAN this is subprocess s-143 and the state space is trap t-143

The new model

page 51

For every request (i.e request-id) an instance of the class Request exists, so for every request
(i.e request-id) an STD, as given in Figure 49, exists. When making the transition to the state
changing software the value of the parametersize is known, as it is passed through by
handle_change_request, which makes the call todo_change.
Another possibility when modelling the class Request is to parametrize an export-operation
accept_request with the parametersize, just like thedo_change operation has been para-
metrized, instead of usingbig_impact andsmall_impact. Also the statechanging software could
be removed by labelling the transitions leading from the statesbig impact estimated andsmall
impact estimated to the stateneutral with do_change. This is possible as for every instance of
the class Requestdo_change can only be called afterbig_impact or small_impact has been
called. However, if one wishes to add another operation to the class, the external behaviour of
Request as shown in Figure 49 is preferable.

The class NewCAB describes the behaviour of the Change Advisory Board in the new model.
The external behaviour of NewCAB is similar to the "upper" part of the external behaviour of
DepCAB, with the difference that the statelist available has been added. Also the operation
request_for_change has been replaced by the operationrequest_for_meeting. Consequently the
class NewCAB will no longer handle the change-requests. As can be seen above, the new class
CABSecretary will now perform this task.
There can only be one instance of the class NewCAB at a time, in contradistinction to the class
DepCAB. Therefore meetings cannot be held simultaneously. However this will not be a prob-
lem, as we can assume that during a meeting a new list will not grow so full that a new meeting
already has to be requested.

meeting

neutral

open_

request_

Figure 50. NewCAB: STD of the external behaviour

for_meeting meeting

close_meeting meeting
opened

do_meeting

list
requested

w.r.t. WODAN this is subprocess s-141 and the state space is trap t-141

meeting
closed

available

meeting

The new model

page 52

The class Design had to be changed to take into account the (estimated) size of the change.

When the (estimated) size of the change is big (for instance when a new product has to be de-
veloped) NewDesign will follow the path frompre-modifiable to reviewable through the states
marked by **, when the (estimated) size is small NewDesign will follow the path through the
states marked with * (in the latter case the review will be skipped, but of course the code docu-
ment will still be tested). This is done by parametrizing the transition labeled with
not_mod_opened with a parametersize (possible values:big or small). The parametersize is
passed through viacall_monitor in int-schedule_and_assign_tasks. The STD of the internal be-

Figure 51. NewDesign: STD of the external behaviour

non
existent creatable created

pre
modifiable

modifiable

closed

starting
creation

starting
modif.

pre
review

pre
review

starting
copying

readableclosedreviewable

starting
review

closed

modifiable

starting
modif.

prepare
create_
first

create_
next

report_
review_
result

not_mod_
opened

not_mod_
opened

close_
mod

close_
mod

copy
review

open_for_
review

not_rev_
opened

close_and_
rev_not_ok

close_and_
rev_ok

report_rev_
result

*

*

**

**

**

**

**

open_for_
mod

not_mod_
closed

modify

(size =big)

(size =small)

w.r.t. WODAN this is subprocess s-140

The new model

page 53

haviour ofint-monitor will be shown in Figure 63. Figure 51 is very similar (but not equal) to
another figure from Wulms, see [2, Figure 13]. Compared to the ISPW-6 example the path
marked with * has been added.

4.2.2 Designing the new internal behaviours of the export-operations

After specifying the external behaviours of the classes, the internal behaviours of the operations
can be specified. Of course only new and changed internal behaviours will be specified. The
conventions used to specify the internal behaviours of the operations are the same as the con-
ventions used in the old model.
The export-operations of the new class CABSecretary areadd_to_list, send_list (these two op-
erations have been parametrized implicitly with a parameterlist-id), request_for_change and
handle_change_request.

All requests are given a request-id, then the requests are put on a list. When the maximum
number of requests is reached or the time has been expired a meeting has to be requested. Note
that in the internal behaviour ofrequest_for_change an operation (add_to_list) belonging to the
same class asrequest_for_change is called. Note also that the internal behaviour of
request_for_change has changed completely in comparison with the old model (see Figure 13.).

no request requesting
change

request_id
determined

request
added

requests
counted

meeting
requested

Figure 52. int-request_for_change

time
expired

act_request_
for_change determine_id

call_add_
to_list

call_request_
for_meeting

call_request_
for_meeting

time_out
count_number_
of_requests

w.r.t WODAN this is subprocess s-144 and the state space is trap t-144

The new model

page 54

The internal behaviours of bothadd_to_list andsend_list are relatively simple. Activation of
the operations denotes execution of the operations. After that they will return to their neutral
states.

Whenever a list has to be send (to NewCAB), an empty list to put new requests on will be cre-
ated too. This internal operation will also determine a newlist-id for the empty list.

In the old model the internal behaviour ofhandle_change_request is part of the external behav-
iour of the class CAB (see Figure 9). In the new modelhandle_change_request is an export-
operation of the class CABSecretary, as it is just a formality to start the actual change after the
decision has been taken in the meeting, although it could also be an export-operation of the class
CAB.

neutral request
added

act_add_to_list

Figure 53. int-add_to_list

Figure 54. int-send_list

neutral list
send

act_send_list

create_empty_list

neutral

software

authorized

call_do_

cancel

authorize

cancelled develop.

starting
act_handle_change_request

Figure 55. int-handle_change_request

(req-id, size)
change

possible
change

(request-id, size)

The new model

page 55

The export-operations of the new class Request arereject_request, small_impact, big_impact
(as mentioned before these last two operations could be joined and parametrized) and
do_change.

In the internal behaviours ofbig_impact andsmall_impact the value of the parametersize is in-
itialized within the call tohandle_change_request. The parameter is needed there for the call to
do_change.

Note that the value ofsize must bebig.

Note that the value ofsize must besmall.

neutral

status
updated

act_reject_request

update_status

reject
request
asked

Figure 56. int-reject_request

neutral

status
updated

act_big_impact

call_handle_
change_request

update_status handle
request
asked

big
impact
asked

Figure 57. int-big_impact

(req-id, size =big)

neutral

status
updated

act_small_impact

call_handle_
change_request

update_status handle
request
asked

small
impact
asked

Figure 58. int-small_impact

(req-id, size =small)

The new model

page 56

Note that the call toschedule_and_assign_tasks is parametrized with the parametersize (possi-
ble values:big or small). This information is needed insideint-schedule_and_assign_tasks for
call_monitor. Note thatcall_schedule_and_assign_tasks implicitly has been parametrized with
the parameterdoc_name too (see also [1]).

The export-operations of the changed class NewCAB arerequest_for_meeting, open_meeting,
do_meeting andclose_meeting.

It is from the internal behaviour ofrequest_for_meeting that send_list and after that
prepare_meeting are called.
In the new model the behaviours of the export-operationsopen_meeting (Figure 14) and
close_meeting(Figure 16) are the same as in the old model, as the use of a list of requests instead
of a single request does not influence these behaviours. The export-operationdo_meeting is in-
fluenced by this change and has to be changed (Figure 61).

Figure 59. int-do_change

act_do_change (size)

call_schedule_and_
assign_tasks (size)

neutral
change
started

change
scheduled

Figure 60. int-request_for_meeting

no
request

requesting
meeting

preparation
asked

act_request_for_meeting

call_prepare_

list
asked

call_send_
list

list
send

meeting
wait

The new model

page 57

In do_meeting a request is picked from the request-list and a decision is made about the request.

After that the request-list is updated, which means the request actually will be removed from
the request-list. If there are any requests left on the list, a new request wil be picked and the cycle
starts all over again. If there are no requests left on the list the meeting will be ended.
Most internal operations as well as all calls are parametrized with the parameterrequest-id (tak-
en from the request-list), because thisrequest-id is needed to identify the right instance of the
class Request.

request-id

Figure 61. int-do_meeting (new version)

request
discussed

request
discussed

request
discussed

request
checked

estimating
impact

pick_request_

check_request

accept_request

call_reject_request

call_big_impact

call_small_impact

request
accepted

estimate_impact

known
meeting

no

act_do_
meeting

end_
meeting

request
picked

from_list

started

get_
request-id

list
updated

update_list

(request-id)

(request-id)

(request-id)

(request-id)

(request-id)

(request-id)

update_list

update_list

meeting
ended

w.r.t. WODAN this is subprocess s-150 and the state space is trap t-150

meeting

The new model

page 58

Two export-operations of the class Projectmanager, that have to be changed due to the fact that
there is a difference between big and small changes, areschedule_and_assign_tasks andmoni-
tor.

Note thatcall_design, call_review, call_code andcall_monitor all are parametrized with a doc-
ument namedoc_name. In additioncall_monitor is parametrized with a parametersize (possible
values:big or small), which is the (estimated) size of the change (and inint_monitor the call
not_mod_opened is also parametrized with the parametersize). Note also thatreview will only
be called in the case of a big change, as in the case of a small change the review will be skipped.
The STD’s of the internal behaviour ofint-design, int-review andint-code can be found in [1,
Figure 10], [1, Figure 11] and [2, Figure 34] respectively.

As can be seen above the STD ofint-monitor has a short-cut from the statenotify mod opened
asked to the statereport rev result asked because for small projects (i.e. changes) the exact in-
termediate result is not relevant. Note that this short-cut is an extra transition compared to the
original ISPW-6 example. A figure similar to Figure 63 can be found in [2, Figure 15].

no
schedule

schedule
started

design
assigned

review
assigned

code
assigned

monitor
assigned

Figure 62. int-schedule_and_assign_tasks

act_schedule_and
assign_tasks (size)

call_ call_
review

call_
code

call_
monitordesign
(size)

no
monitoring

monitor
started

notify mod
opened
asked

notify mod
closed
asked

not review
opened
asked

report rev
result
asked

act_
monitor

call_not_mod_opened
call_not_mod_closed

call_notify_
review_opened

call_report_review_resultupdate_statistics

update_
statistics

call_report_
review_result

Figure 63. int-monitor

(size)

(size)

w.r.t. WODAN this is subprocess s-147

The new model

page 59

4.3 The communication in the new model

After the specification of the external and internal behaviours of the classes and operations, the
communication between these behaviours has to be modelled. This communication is shown in
five parts. Whenever (parts of the) comunication specification of the old model will be used,
this will be mentioned. The standards used to describe the communication between the manager
process and its employee processes are the same as the standards described in the previous chap-
ter. When there is a deviation of these standards, a reason will be given.
The first part of the communication specification shows the communication between the man-
ager process CABSecretary and its employee processesint-add_to_list, int_send_list, int-
request_for_change, int-handle_change_request, int-big_impact, int-small_impact and int-
request_for_meeting. The internal behaviours of the export-operations belonging to the class
CABSecretary itself areint-add_to_list, int_send_list, int-request_for_change and int-
handle_change_request. The internal behaviours of operations that call operations of the class
CABSecretary areint-big_impact, int-small_impact andint-request_for_meeting.

CABSecretary (Figure 71) starts in its stateneutral. There subprocess s-54 has been prescribed
to int-request_for_change (Figure 65) If this behaviour has entered its trap t-54, which means
that a previous request has been administrated or a time-out has occurred, then CABSecretary
can make the transition to its staterequest retrieved. In that state subprocess s-56 is prescribed
to int-request_for_changeand the request can be administrated. Note that subprocess s-56 does
not contain all states; the staterequests counted has been omitted. However subprocess s-56
contains every state that can be reached in the staterequest retrieved (of CABSecretary). This
can be seen as follows. The internal behaviour ofrequest_for_change calls the export-operation
add_to_list of the class CABSecretary itself. This operation has to be activated first beforeint-
request_for_change can continue. However,add_to_list can only be activated in the neutral
state (of CABSecretary). Consequently the staterequests counted cannot be reached in the state
request retrieved (of CABSecretary). Also the transition labeled withtime-out has been omitted
in subprocess s-56. By this means the operation is forced to add the incoming request to the list
before a meeting can be requested due to time-out.
As soon asint-request_for_change enters its trap t-56, CABSecretary returns to its stateneutral.
There subprocess s-54 is prescribed toint-request_for_change. If this behaviour has entered its
trap t-55, if moreoverint-add_to_list is in its trap t-50, then CABSecretary will go to its state
request added. In that state subprocesses s-51 and s-57 will be prescribed toint-add_to_list and
int-request_for_change respectively and the request will be placed on the list. Again subprocess
s-57 does not contain all states, but only the states that can be reached in the staterequest added
(of CABSecretary). Whenint-request_for_change enters its trap t-57 and alsoint-add_to_list
enters its trap t-51, CABSecretary will return to its neutral state.

neutral request
added neutral request

added
act_add_to_list

Figure 64. int-add_to_list’s subprocesses and traps w.r.t. CABSecretary

t-51

s-51s-50

t-50

The new model

page 60

Note that subprocess s-54 contains two traps, a large trap t-54 and a small trap t-55. Note also
that a time-out can occur only in the subprocesses s-54 and s-57.

no request requesting
change

request_id
determined

request
added

requests
counted

meeting
requested

Figure 65. int-request_for_change’s subprocesses and traps w.r.t. CABSecretary

time
expired

determine_id

call_add_
to_list

call_request_
for_meeting

call_request_
for_meeting

time_out

s-54

t-55

s-57

no request

request
added

requests
counted

meeting
requested

time
expired

call_request_
for_meeting

call_request_
for_meeting

time_out

count_number_
of_requests

t-57

t-54

no request requesting
change

request_id
determined

request
added

determine_id

call_add_
to_list

t-56

act_request_
for_change

s-56

meeting
requested

time
expired

call_request_
for_meeting

The new model

page 61

Let us now continue with the manager process. CABSecretary is in its stateneutral. If int-
handle_change_request is in its trap t-58, which means a request can be handled, if moreover
int-big_impact has entered its trap t-60 orint_small_impact has entered its trap t-62, then
handle_change_request can be performed and the request will be handled. As soon asint-
handle_change_request enters its trap t-59 and alsoint-big_impact enters its trap t-61 or
int_small_impact enters its trap t-63, CABSecretary will return to its stateneutral and new re-
quests can be handled, administrated or placed on a list. Note that the order in which the oper-
ations are called is not completely arbitrary. A specific request has to be administrated before it
can be handled.

Note that for every request ahandle_change_request operation and a partition of subprocesses
of the internal behaviour of this operation exists as shown in Figure 66. So requests do not have
to wait for each other to be authorized or cancelled.

neutral

software

authorized
call_do_

cancel

authorize

cancelled develop.

starting

Figure 66. int-handle_change_request’s subprocesses and traps w.r.t. CABSecretary

(req-id, size)
change

possible
change

s-59

t-59

neutral

software

authorized

cancel

authorize

cancelled develop.

starting

act_handle_change_request

possible
change

s-58

t-58

(request-id, size)

call_do_

(req-id, size)
change

The new model

page 62

neutral

status
updated

update_status handle
request
asked

Figure 67. int-big_impact’s subprocesses and traps w.r.t. CABSecretary

neutral
act_big_impact

call_handle_
change_request

handle
request
asked

big
impact
asked

s-61

s-60

t-61

t-60

status
updated

act_big_impact big
impact
asked

(req-id, size =big)

neutral

status
updated

update_status handle
request
asked

Figure 68. int-small_impact’s subprocesses and traps w.r.t. CABSecretary

neutral
act_small_impact

call_handle_
change_request

handle
request
asked

small
impact
asked

s-63

s-62

t-63

t-62

status
updated

act_small_impact small
impact
asked

(req-id, size =small)

The new model

page 63

CABSecretary can also execute the operationsend_list. In order to activate this operation CAB-
Secretary must be in its stateneutral. There subprocesses s-64 and s-52 are prescribed toint-
request_for_meeting andint-send_list respectively. Ifint-request_for_meeting has entered its
trap t-64, if moreoverint-send_list has entered its trap t-52, then CABSecretary will make the
transition to its statelist send. There the subprocesses s-65 and s-53 will be prescribed and the
list will be send to NewCAB. As soon asint-request_for_meeting enters its trap t-65 andint-
send_list enters its trap t-53, CABSecretary will return to its neutral state. There new requests
can be handled and administrated.

neutral list
send neutral list

send
act_send_list

Figure 69. int-send_list’s subprocesses and traps w.r.t. CABSecretary

t-53

s-53s-52

t-52

create_
empty_list

no
request

requesting
meeting

preparation
asked

act_request_

call_prepare_

list
asked

call_
send_

list
send

meeting

for_meeting

list

no
request

requesting
meeting

preparation
asked

act_request_

call_prepare_

list
asked

list
send

meeting
wait

for_meeting

s-64 s-65

t-64

t-65

Figure 70. int-request_for_meeting’s subprocesses and traps w.r.t. CABSecretary

The new model

page 64

Figure 71 shows the class CABSecretary as manager ofint-add_to_list, int-send_list, int-
request_for_change, int-handle_change_request (called operations), int-big_impact,
int_small_impact andint-request_for_change (calling operations).

In the above figure the logical operatoror is used to describe the conditions under which the
operationhandle_change_request can be executed. For now the above notation will be used.
Details on the used notation will be given in Appendix B.

The second part of the communication specification shows the communication between the
manager process Request and its employee processesint-reject_request, int-big_impact,
int_small_impact, int-do_change, int-handle_change_request andint-do_meeting. The internal
behavioursint-reject_request, int-big_impact, int_small_impact and int-do_change belong to
the class Request itself.Int-handle_change_request andint-do_meetingare the internal behav-
iours of operations that call operations of the class Request.
Keep in mind that, as for every request (i.e. request-id) an instance of the class Request exists,
the following will hold for every instance. Request starts in its stateneutral. If int-do_meeting
has entered its trap t-74, which means the CAB suggests the request should be rejected, if more-
over int-reject_request is in its trap t-78, then Request can go to its staterequest rejected and
the change-request will be rejected. However ifint-do_meeting has entered its trap t-75, which
means the CAB suggests the change will have a big impact on the software, and alsoint-
big_impact is in its trap t-80, then Request can go to its statebig impact estimated and the

Figure 71. CABSecretary: viewed as manager of 7 employees

request_for_change
handle_change_request
(request-id, size)

change_request request
handled

in t-54

in t-56in t-59, (t-61 or t-63)

in t-58, (t-60 or t-62)

s-50

neutral

s-50
s-52

s-50
s-52

s-56
s-58

s-54
s-59

s-52
s-54
s-58

retrieved

s-60
s-62
s-64

s-61 s-60
s-62 s-63
s-64

s-60
s-62
s-64

s-50
s-53
s-54
s-58
s-60
s-62
s-64

s-51
s-52
s-57
s-58
s-60
s-62
s-64

request
added

list
send

add_to_listsend_list
in t-50, t-55in t-52, t-64

in t-51,

in t-53, t-65

employee mapping order used:

int-add_to_list (figure 64)
int-send_list (figure 69)
int-request_for_change (figure 65)
int-handle_change_request (figure 66)
int-big_impact (figure 67)
int-small_impact (figure 68)
int-request_for_meeting (figure 70)

t-57

or

The new model

page 65

change-request will be handled. Similarly, ifint-do_meeting has entered its trap t-76, which
means the CAB suggests the change will have a small impact on the software, if moreoverint-
small_impact is in its trap t-82, then Request can go to its statesmall impact estimated and the
change-request will be handled. In all three states the subprocess s-77 is prescribed toint-
do_meeting. Note that for every request only one of these three states can be reached, as a re-
quest cannot be rejected and accepted at the same time. Moreover a request cannot have both a
big and a small impact on the software. Whenint-do_meeting enters its trap t-77 and alsoint-
reject_request enters its trap t-79 orint-big_impact enters its trap t-81 orint-small_impact en-
ters its trap t-83, Request returns to its stateneutral.
If int-handle_change_request has entered its trap t-70, if moreoverint-do_change has entered
its trap t-84, then Request makes the transition to the statechanging software. As mentioned
before the value of the parametersize is known as it is passed through via
handle_change_request. Request will return to its stateneutral as soon asint-
handle_change_request has entered its trap t-71 andint-do_change has entered its trap t-85.
Note that, as we have mentioned before, the order in which the operations are called is not ar-
bitrary, although it may seem so taking into account the interleaved character of the external be-
haviour of the class Request. When looking more carefully at the model, it is clear that before
reaching the statechanging software one of the operationsbig_impact or small_impact has to
be executed, as these operations callhandle_change_request, which in its turn callsdo_change.

Figure 72. int-handle_change_request’s subprocesses and traps w.r.t. Request

neutral

software

authorized

cancel

authorize

cancelled develop.

starting
possible
change

s-71

t-71

neutral

software

authorized

cancelled develop.

starting

act_handle_change_request

possible
change

s-70

t-70

(request-id, size)

call_do_

(req-id, size)
change

act_handle_change_request
(request-id, size)

The new model

page 66

request-id

Figure 73. int-do_meeting’s (new version) subprocesses and traps w.r.t. Request

request
discussed

request
discussed

request
discussed

request
checked

estimating
impact

pick_request_

check_request

accept_request

call_reject_request

call_big_

call_small_impact

request
accepted

estimate_impact

known
meeting

no

act_do_
meeting end_

meeting

request
picked

from_list

started

get_
request-id

list
updated

update_list

(request-id)

(request-id)

(request-id)

(request-id)

impact

(request-id)

update_list

update_list

meeting
ended

(request-id)

meeting

no

act_do_
meeting end_

meeting

started

meeting
ended

list
updated

request
discussed

request
discussed

request
discussed

s-74

t-74

t-75

t-76

s-77

t-77

request-id

request
checked

estimating
impact

check_request

accept_request

request
accepted

estimate_impact

known

request
picked

get_request-id

(request-id)

(request-id)

(request-id)

pick_request_
from_list

meeting

meeting

The new model

page 67

Figure 74. int-do_change’s (new version) subprocesses and traps w.r.t. Request

act_do_change (size)

call_schedule_and_
assign_tasks (size)

neutral

change
scheduled

change
started

s-85

t-85

call_schedule_and_
assign_tasks (size)

neutral

change
scheduled

change
started

s-84

t-84

Figure 75. int-reject_request’s subprocesses and traps w.r.t. Request

s-78

s-79

t-79

neutral
reject

request
asked

status
updated update_statust-78

neutral
reject

request
asked

status
updated update_status

act-reject_request

The new model

page 68

Figure 76. int-big_impact’s subprocesses and traps w.r.t. Request

neutral
act_big_impact

call_handle_
change_request

handle
request
asked

big
impact
asked

s-80

s-81

t-81

status
updated

(req-id, size =big)

update_status

neutral

call_handle_
change_request

handle
request
asked

big
impact
asked

status
updated

(req-id, size =big)

update_status

t-80

Figure 77. int-small_impact’s subprocesses and traps w.r.t. Request

neutral
act_small_impact

call_handle_
change_request

handle
request
asked

small
impact
asked

s-82

s-83

t-83

status
updated

(req-id, size =small)

update_status

neutral

call_handle_
change_request

handle
request
asked

small
impact
asked

status
updated

(req-id, size =small)

update_status

t-82

The new model

page 69

Figure 78 shows the class Request as manager ofint-reject_request, int-big_impact,
int_small_impact, int-do_change (called operations),int-handle_change_request and int-
do_meeting (calling operations). As for every request-id an instance of the class Request exists,
there will exist a manager process too for every request-id.

neutral

request
rejected

big impact
estimated

small impact
estimated

small_impactbig_impact

reject_request

Figure 78. Request: viewed as manager of 6 employees

do_change
(size)

employee mapping order used:

int-reject_request (figure 75)
int-big_impact (figure 76)
int-small_impact (figure 77)
int-do_change (figure 74)
int-handle_change_request (figure 72)
int-do_meeting (figure 73)

s-78
s-80
s-82
s-84
s-70
s-74

s-78
s-81
s-82
s-84
s-70
s-77

s-78
s-80
s-83
s-84
s-70
s-77

s-79
s-80
s-82
s-84
s-70
s-77

in t-80, t-75 in t-82, t-76

in t-78, t-74

in t-83, t-77in t-81, t-77

in t-79, t-77

changing
software

s-78
s-80
s-82
s-85
s-71
s-74

in t-84, t-70

in t-85, t-71

The new model

page 70

The third part of the communication specification shows the communication between the man-

ager process NewCAB and its employee processesint-request_for_meeting, int-open_meeting,
int-do_meeting, int-close_meeting, int-request_for_change and int-prepare_meeting. The in-
ternal behaviours of the export-operations belonging to the class NewCAB areint-
request_for_meeting, int-open_meeting, int-do_meeting and int-close_meeting. The internal
behaviours of operations that call operations of the class NewCAB areint-request_for_change
andint-prepare_meeting. As int-open_meeting, int-close_meeting andint-prepare_meeting do
not have to be changed to fit the new model, their subprocesses and traps do not have to be
changed either. So the communation between NewCAB and these three employees is the same
as the communation between DepCAB and these three employees. Therefore this part of the
communication specification will not be repeated here.
Note that the trap-structure ofint-do_meeting (see Figure 79) deviates from the standards de-

request-id

Figure 79. int-do_meeting’s (new version) subprocesses and traps w.r.t. NewCAB

request
discussed

request
discussed

request
discussed

request
checked

estimating
impact

pick_request_

check_request

accept_request

call_reject_request

call_big_impact

call_small_impact

request
accepted

estimate_impact

known
meeting

neutral

act_do_
meeting

end_
meeting

request
picked

from_list

started

get_
request-id

list
updated

update_list

(request-id)

(request-id)

(request-id)

(request-id)

(request-id)

(request-id)

update_list

update_list

meeting
ended

s-91 t-91

neutral meeting
ended

s-90

t-90

The new model

page 71

scribed in the previous chapter.Do_meeting still is a part of a bigger operation, that has been
split into three parts. As these three parts cannot operate simultaneously the subprocesses of the
internal behaviour ofdo_meeting have to be sequentialized. This is done by using small traps,
because then the operation has to be finished before it can enter its trap and the manager thus
makes the next transition only after. The trap-structures ofint-request_for_meeting (Figure 80)
andint-request_for_change (Figure 81) also deviate from the standards. This will be explained
later.
NewCAB starts in its stateneutral. When a meeting has been requested, the manager waits for
int-request_for_meeting to be trapped in its trap t-92, which means a possible previous request
has been dealt with, and forint-request_for_change to be trapped in its trap t-94, which means
a meeting has been requested.

When these traps have been entered, NewCAB transits to the statemeeting requested and pre-
scribes subprocess s-93 toint-request_for_meeting. Also subprocess s-95 is prescribed toint-
request_for_change. In this state the new requests cannot be placed on a list in order to prevent
them from being placed on the already full list that (possibly) has not been sent yet. As soon as
int-request_for_meeting has entered its trap t-93, which meanssend_list has been activated, and
int-request_for_change has entered its trap t-95, the statelist available can be entered. There
subprocess s-92 is prescribed toint-request_for_meeting, thereby making it possible for Pro-
jectManager to start actual preparations, and subprocess s-96 toint-request_for_change. Now
CABSecretary can continue to administrate change-requests and place them on the list as far as
NewCAB is concerned. Almost instantlyint-request_for_change will enter its trap t-96.
Open_meeting can be considered now and NewCAB will transit to the statemeeting opened.
There subprocess s-94 will be prescribed again toint-request_for_change. Note though that
NewCAB cannot react to trap t-94 until its stateneutral. However, as mentioned before, trap t-
94 will usually be entered only in the neutral state, as we assumed that the list would not grow
full during the meeting.
Let us now continue with the manager process. NewCAB is in its statemeeting opened. When
int-do_meeting is in its trap t-90, NewCAB can go to its statemeeting and the requests can be
discussed. Ifint-do_meeting has entered its trap t-91, which means the meeting has ended and
results with respect to the requests have been established, thenclose_meeting is done and New-
CAB can go to its statemeeting closed. Eventually NewCAB will return to its stateneutral.

Figure 80. int-request_for_meeting’s subprocesses and traps w.r.t. NewCAB

no
request

preparation
asked

call_prepare_
list

send
meeting

no
request

requesting
meeting

act_request_

list
asked

call_send_
list

list
send

wait

for_meeting

t-93

t-92

s-92 s-93

The new model

page 72

As mentioned before the trap-structures ofint-request_for_meeting (Figure 80) andint-

request_for_change (Figure 81) deviate from the standards. Asint-request_for_meeting is a
called operation one would expect subprocess s-93 to have a large trap. However in this case a
small trap is used to assure that the call tosend_list has been executed before entering the next
state of NewCAB. As long as this is not assured (i.e. trap t-93 has not been entered) subprocess
s-95 has to be prescribed toint-request_for_change. In subprocess s-95 the call toadd_list has

no request requesting
change

request_id
determined

request
added

requests
counted

meeting
requested

Figure 81. int-request_for_change’s subprocesses and traps w.r.t. NewCAB

time
expired

act_request_
for_change determine_id

call_add_
to_list

call_request_
for_meeting

call_request_
for_meeting

time_out

count_number_
of_requests

s-94

t-94

no request requesting
change

request_id
determined

meeting
requested

time
expired

act_request_
for_change determine_id

time_out

s-95

t-95

no request requesting
change

request_id
determined

request
added

requests
counted

meeting
requested

time
expired

act_request_
for_change determine_id

call_add_
to_list

time_out
count_number_
of_requests

s-96

t-96

The new model

page 73

been removed in order to prevent new requests from being placed on an already full list that
(possibly) has not been sent yet. Only afterint-request_for_meeting has entered its trap t-93,
subprocess s-96 can be prescribed toint-request_for_change and requests can be put on a (new
and empty) list again.
Figure 82 shows the class NewCAB as manager ofint-request_for_meeting, int-open_meeting,

int-do_meeting, int-close_meeting (called operations),int-request_for_change and int-
prepare_meeting (calling operations).

The fourth part of the communication specification shows the communication between the man-
ager process NewDesign and its employee processint-monitor, which is the internal behaviour
of an operation calling export-operations of the class NewDesign. Subprocess s-100 is the start
state ofint-monitor for the first instance of Design; there is only one monitor per design docu-
ment but there are many instances of Design for each design document: one instance for every
separate version of the very same document (see [1] for a justification of this). In the subprocess
s-100,int-monitor will be waiting until Design will start the modifications. In subprocess s-101
it will be waiting until Design has closed the modification and in subprocesses s-102 and s-103
it will be waiting until Design has started the review process and until it has reported the review
result respectively. After thisint-monitor will go back to subprocess s-100 (when the review re-
sult isnot_ok) or to the neutral subprocess s-104 (when the review result isok). Note that sub-
process s-104 is also the starting state for the other instances of Design. Figures 83 and 84 can
also be found in [2, Figure 16] and [2, Figure 23] respectively.

neutral list

open_

request_for_meeting

Figure 82. NewCAB: viewed as manager of 6 employees

available

meeting

close_meeting

meeting
closed

do_meeting

meeting
opened

employee mapping order used:

int-request_for_meeting (figure 80)
int-open_meeting (figure 25)
int-do_meeting (figure 79)
int-close_meeting (figure 27)
int-request_for_change (figure 81)
int-prepare_meeting (figure 29)

s-92
s-3
s-90
s-10

s-16

s-92
s-4
s-90
s-10

s-17

s-92
s-3
s-91
s-10

s-18

s-92
s-3
s-90
s-11

s-16

s-92
s-3
s-90
s-10

s-16

in t-3, t-96,
in t-11

in t-10, t-91, t-18 in t-4, t-90, t-17

in t-92, t-94

t-16

s-96

s-94s-94s-94

s-94

meeting
requested

s-93
s-3
s-90
s-10

s-16
s-95

meeting

in t-93, t-95

The new model

page 74

no
monitoring

monitor
started

notify mod
opened
asked

notify mod
closed
asked

not review
opened
asked

report rev
result
asked

act_
monitor

call_not_mod_opened

call_notify_
review_opened

call_report_review_resultupdate_statistics

update_
statistics

Figure 83. int-monitor’s subprocesses and traps w.r.t. NewDesign

no
monitoring

monitor
started

notify mod
opened
asked

notify mod
closed
asked

not review
opened
asked

report rev
result
asked

act_
monitor

call_not_mod_opened
call_not_mod_closed

call_notify_
review_opened

call_report_review_resultupdate_statistics

update_
statistics

call_report_
review_result

notify mod
opened
asked

notify mod
closed
asked

call_not_
mod_closed notify mod

closed
asked

not review
opened
asked

call_notify_
review_opened

notify mod
opened
asked

not review
opened
asked

report rev
result
asked

call_report_

call_report_
review_result

review_result

s-100

s-101 s-102

s-103

s-104

t-100

t-101

t-102

t-103

t-104

(size)

(size)

(size)

(size)

The new model

page 75

Figure 84 shows the class NewDesign as manager ofint-monitor (a calling operation).

Figure 84. NewDesign: viewed as manager of int-monitor

non
existent

creatable created pre
modifiable

modifiable *

closed

starting
creation

starting
modif. *

pre review **

pre review **

starting
copying

readableclosedreviewable

starting reviewclosed

modifiable **

starting

prepare
create_
first

create_
next

report_
review_
result

not_mod_
opened (size)

not_mod_
opened (size)

close_
mod

close_
mod

copy
review

open_for_
review

not_rev_
opened

close_and_
rev_not_ok

close_and_
rev_ok

report_rev_
result

open_for_
mod

s-104 s-100 s-100

s-100

s-100

s-103

s-103

s-101

s-101

s-101

s-102

s-102s-103s-103

s-104

s-104s-103s-103
in t-103

in t-104

**

not_mod_
closed

modif. **

in t-100

in t-100

in t-102

in t-103

in t-101

modify

The new model

page 76

The communication specification between the manager process ProjectManager and its em-
ployee processes also has to be remodelled, as ProjectManager no longer is a manager ofint-
request_for_change, but instead is a manager ofint-request_for_meeting (which could be seen
as an extension ofint-request_for_change as used in the old model). This change has to be in-
corporated in the new model. Alsoint-do_change has slightly changed (one transition has been
parametrized) and for the sake of completeness its subprocesses and traps will be given. The
new, but very simular to the old subprocesses and traps ofint-schedule_and_assign_tasks and
int-monitor will not be given here. They are standard.
The fifth part of the communication specification shows the communication between the man-
ager process ProjectManager and its employee processesint-join_meeting, int-leave_meeting,
int-check_agenda, int-receive_confirmation, int-prepare_meeting, int-request_for_meeting,
int-open_meeting, int-close_meeting andint-do_change. The internal behaviours of the export-
operations belonging to the class ProjectManager areint-join_meeting, int-leave_meeting, int-
check_agenda, int-receive_confirmation andint-prepare_meeting. The internal behaviours of
operations that call export-operations of the class ProjectManager areint-request_for_meeting,
int-open_meeting, int-close_meeting andint-do_change. Because the communication between
the manager ProjectManager and its employeesint-join_meeting, int-leave_meeting, int-
check_agenda, int-receive_confirmation, int-prepare_meeting, int-open_meeting and int-
close_meeting is the same as in the old model, these employees’ subprocesses and traps will not
be shown again. Also the subprocesses and traps ofint-schedule_and_assign_tasks and int-
monitor will not be given here, as the changes in the internal behaviours of these operations do
not affect the subprocesses and traps w.r.t. ProjectManager. The subprocesses and traps of these
operations will remain standard. So we restrict our attention to the communication between Pro-
jectManager and the calling internal behavioursint-request_for_meeting andint-do_change.
ProjectManager (Figure 87) starts in its stateneutral. If int-request_for_meeting has entered its
trap t-105, which means a preparation has been asked, (and of courseint-prepare_meeting is in
its trap t-22) thenprepare_meeting can be performed and ProjectManager can go to its state
starting preparations. In that state subprocess s-106 is prescribed toint-request_for_meeting,
so that a new request can be made as soon as possible. When ProjectManager is in its state
checking agenda and int-request_for_meeting has entered its trap t-106 (and of courseint-
check_agenda has entered its trap t-21 andint-prepare_meeting has entered its trap t-23), Pro-
jectManager can return to its stateneutral. After that, whenint-do_change has entered its trap
t-107, ProjectManager can make the transition to the statestarting schedule. As soon asint-
do_change enters its trap t-108 ProjectManager will return to its neutral state. There other
changes can be scheduled or new meetings can be prepared.

The new model

page 77

Figure 85. int-request_for_meeting’s subprocesses and traps w.r.t. ProjectManager

s-106s-105

no
request

requesting
meeting

preparation
asked

act_request_

call_prepare_

list
asked

call_
send_

list
send

meeting

for_meeting

list

no
request

requesting
meeting

preparation
asked

act_request_

list
asked

list
send

wait

for_meeting

t-105

t-106

call_
send_
list

wait

Figure 86. int-do_change’s subprocesses and traps w.r.t. Projectmanager

neutral

change
scheduled

act_do_change (size)

call_schedule_and_
assign_tasks (size)

neutral

change
scheduled

change
started

s-108

s-107

t-108

t-107

act_do_change (size) change
started

The new model

page 78

Figure 87 shows the new version of Projectmanager as manager ofint-join_meeting, int-

leave_meeting, int-check_agenda, int-prepare_meeting (called operations), int-
request_for_meeting, int-open_meeting, int-close_meeting and int-do_change (calling opera-
tions).
Note that as the external behaviours of DesignEngineer and QAEngineer and the internal be-
haviours of the operations of both classes remain unchanged, the subprocesses and traps of these
operations w.r.t. these external behaviours remain unchanged as well. So in the new model the
communication specification between the manager process DesignEngineer and its employees
as well as the communication specification between the manager process QAEngineer and its
employees is the same as in the old model. Which concludes our discussion of the communica-
tion of the new model.

starting

in cab-

schedule_and_
assign_tasks

monitor

join_meeting

prepare_
meeting

neutral

starting

Figure 87. ProjectManager (new version): viewed as manager of 8 employees

monitor

starting
schedule

preparation

meeting

checking
agenda

check_agenda

employee mapping order used:

int-join/leave_meeting (figure 35)

leave_
meeting

int-prepare_meeting (figure 34)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-request_for_meeting (figure 85)
int-open_meeting (figure 36)
int-close_meeting (figure 37)

s-27
s-22
s-20
s-40
s-105
s-31

s-27
s-22 or s-24
s-20
s-40
s-105
s-31

s-27
s-22
s-20
s-40
s-105
s-31

s-27
s-23
s-20
s-40
s-106
s-31

s-27
s-23
s-21
s-40
s-106
s-31

s-28
s-22
s-20
s-40
s-105
s-32

in t-22, t-105

in t-20, t-23

in t-21, t-23, t-106

in t-27, t-31,
t-34in t-28, t-32,

t-33

s-34s-34

s-34

s-34

s-33

s-34

in t-108

in t-107

int-do_change (figure 86)

s-107

s-107

s-107

s-107s-108

s-107

confirm
received

s-27
s-24
s-20
s-41
s-105
s-31
s-34
s-107

receive_
confirmation
in t-24, t-40

in t-24, t-41

WODAN, a method to describe change

page 79

5 WODAN, a method to describe change

5.1 Introduction

In Chapter 3 a simple model for the Change Management software process was developed. Lat-
er on, in Chapter 4, this model had been changed in order to meet new requirements. Of course
this new model will have to be enacted at some point in time. However switching from one mod-
el to another is not a trivial thing to do. So we have to model the changing of the Change Man-
agement software process model as well. For this purpose an extra manager process, called
WODAN, is introduced, which manages the change from the old model to the new model. WO-
DAN, which stands for What Ought to be Done As Necessary, was first introduced in [2]. This
section will just be a brief introduction into WODAN, more information can be found in [2,
Chapter 3]. The actual change from the old model to the new model will be modelled in the next
chapter.
In order to describe the way WODAN works, some terms have to be defined. The internal be-
haviour of an operation is calledan internal process and the STD describing this behaviour is
calledthe internal process description. Similarly the external behaviour of a class is calledan
external process and the corresponding STD is calledthe external process description.
When a software process model evolves, the behaviour of (at least a part of) the model has to
be changed. The way this can be done is very similar to the way the behaviour of an internal
process changes when it makes a transition from one subprocess to another. Consider a subproc-
ess as a behaviour restriction, for a subprocess implies the restriction that the internal process
may only behave in accordance to those states and actions imposed by the subprocess. Then the
transition from one subprocess to another subprocess is the same kind of change as wanted for
evolving software process models. This evolution of the software process model can be consid-
ered as being a transition from one evolution stage to another evolution stage. So there is an
analogy between evolution stages and subprocesses.
One could change a software process model by viewing its external and internal process de-
scriptions as evolution stages, and therefore as being subprocesses of some larger, not explicitly
defined processes. These not explicitly designed external and internal processes combine the
various behaviours (past, current and future) of the software process model during all possible
evolution stages (EVS’s) and will be calledanachronistic external and internal processes.
WODAN will be the manager of all (not explicitly designed) anachronistic external and internal
processes. WODAN is an (extra) manager process used to formalize the change of a software
process model during enaction, in this case the change from the old Change Management soft-
ware process model to the new and extended Change Management software process model.
WODAN normally stays in the same state, just prescribing the current evolution stage, i.e. the
current external and internal process descriptions. As mentioned before they are subprocesses
of the anachronistic external and internal processes. When a change in the model has to be
made, WODAN can go to a state which for example is calledchanging the model; when WO-
DAN is in this state, the new external and internal process descriptions can be designed. More-
over, WODAN can also design new class descriptions when the static structure of the model has
to be changed due to extra requirements (in our example: the classes CABSecretary and Request
have been added). After the new model has been designed, WODAN will go to the state pre-
scribing the new process descriptions. Sometimes this can be done in one step, sometimes in-
termediate steps are necessary.
Adding or removing processes within Socca is possible since the processes are subprocesses of
the anachronistic processes. When a process E1 has to be added, one could say that the anach-
ronistic process EA of which E1 is a subprocess, already existed from the very beginning. How-
ever WODAN was prescribing a nearly empty subprocess of it before the process E1 was

WODAN, a method to describe change

page 80

necessary. This nearly empty subprocess consists of a single state together with one transition
from this state to itself. When WODAN prescibes the process E1, EA will transit from the single
state of the nearly empty subprocess to any possible starting state of E1. Also a process E1 can
be removed during evolution by prescribing a similar nearly empty subprocess of the anachro-
nistic process EA of which E1 is a subprocess with respect to WODAN. In this case EA will tran-
sit from any state of E1 to the single state of the nearly empty subprocess. Such a nearly empty
subprocess will be called the NULL process, or shorter NULL. This will also be used as a con-
vention when designing WODAN to introduce new processes or to remove old processes; in the
states of WODAN where the process did not exist yet or has been removed already, the NULL
process will be prescribed.

5.2 Types of change

The changes made to a software process model to achieve evolution, can be split up in different
types of change; they range from a relatively simple change to more complicated forms of
change. The following two types of change [2] can be distinguished when changing the Change
Management software process model (modelled in Chapter 6):

1 Add or remove processes and change the strategies and subprocesses of other processes.
The following processes have been removed: MainCAB and DepCAB. The processes that
have been added are: Request,int-reject_request, int-small_impact, int-big_impact, CAB-
Secretary,int-handle_change_request, NewCAB andint-request_for_meeting.

2 Do not add or remove processes, only change strategies and subprocesses and add or
remove states and transitions. In the new model states and transitions have been added to
Design in order to create NewDesign. The same has been done toint-request_for_change,
int-do_meeting, int-monitor and implicitly to all internal behaviours in which transitions
have been parametrized (e.g. inint-do_change) in order to create the new versions. Also the
subprocesses of these processes w.r.t. their managers have been changed. Strategies have
been changed too. In the new model some of the internal behaviours will be managed by
another manager (possibly a newly introduced process), e.g.int-do_change was managed
by DepCAB and in the new model it will be managed by Request.

As mentioned above both types of change are used to model the change of the Change Manage-
ment software process model.

5.3 Problems as a consequence of change

When changing the Change Management software process model some problems arise. Adding
a parametersize does not cause a lot of problems. Most problems have to do with the fact that
in the new model more than one request per meeting should be handled. This change affects a
lot of processes, is responsible for the removal and addition of processes and therefore causes
many poblems. The following problem is very common:

 • A process is within EVS1 in a state without a corresponding state in the process prescribed
within EVS2. This problem can arise for example withint-request_for_change and int-
do_meeting.

In order to present a solution to this problem, the terminterrelated has to be defined first:

 • Let PA be an anachronistic internal or external process with two subprocesses Pj and Pk, with
Pj the internal or external process prescribed during EVSj, Pk the internal or external pro-
cess prescribed during EVSk and k>j. So EVSk is an evolution phase after EVSj. Then the
process Pk will be calledinterrelated with the process Pj.

WODAN, a method to describe change

page 81

 • Let PA, Pj and Pk denote the same processes as above. Furthermore, let X1 be a state of PA
which existst in both subprocesses Pj and Pk of PA. The state X1 in Pk will be calledinterre-
lated with the state X1 in Pj. So in fact, we will regard this same state as two different (but
interrelated) states in the interrelated subprocesses.

Now the terminterrelated has been defined. Again let PA and Pj denote the same processes as
above and let Pj+1 be the subprocess of PA prescribed during EVSj+1. The problem to be solved
is that the process PA must go from EVSj, where subprocess Pj of PA is prescribed, to EVSj+1,
where subprocess Pj+1 of PA is prescribed. As long as there exist interrelated states in Pj and
Pj+1, these states can be used as a trap w.r.t. WODAN. Only when Pj is in one of these states,
PA can transit to the next evolution stage. If there are no interrelated states in Pj and Pj+1, an
intermediate subprocess Pj’ has to be created. Such an intermediate subprocess of PA contains
some states of the subprocess used in EVSj and some states of the subprocess used in EVSj+1.
The interrelated states in Pj and Pj’ are used as a trap to the intermediate phase, the interrelated
states in Pj’ and Pj+1 are used as a trap to the next evolution stage. This general method will al-
ways work. Note that in this case WODAN will have to contain an intermediate state in which
Pj’ is prescribed. However a new problem is introduced:

 • Changing one process may conflict with changing another process. This can occur for
instance when both the external behaviour of a class and an internal behaviour of an opera-
tion of that class are changed at the same time. The internal behaviour of the operation,
when it has already entered its trap w.r.t. WODAN, could affect the external behaviour of
the class in such a way that some states and possibly its trap w.r.t. WODAN could not be
reached anymore. If for instanceint-do_meeting and DepCAB would have been changed
simultaneously (Figure 105 and Figure 93 would be prescribed respectively), it is possible
that DepCAB could not leave its statemeeting opened anymore and consequently could not
reach its neutral state, which is its trap w.r.t. WODAN. The same problem arises when one
would changeint-prepare_meeting and DepCAB concurrently.

Therefore it is important to keep in mind that sometimes processes have to be changed in a spe-
cific order. This implies that WODAN sometimes will have to contain more than one interme-
diate state. Another problem is the following:

 • When a process is removed (temporarily or permanently), its partial side-effects up to the
actual removal have to be rolled back. Another way is to delay the removal by using a trap
which only contains the states that can be reached without causing side-effects, e.g. a neu-
tral state. This problem occurs for instance when DepCAB has to be removed; some
requests still could not have been handled and some meetings could not have been finished
yet. Therefore DepCAB can be removed only after these two problems have been coped
with.

WODAN, a method to describe change

page 82

Changing the software process model using WODAN

page 83

6 Changing the software process model using WODAN

6.1 A setup for WODAN

In order to model the change of the Change Management software process model, WODAN has
to be designed. WODAN will manage the evolution from the old model (Chapter 3) to the new
model (Chapter 4) via a state in which the new model is being designed. Some intermediate
states have to be used to reach the final state. In our case WODAN will consist of six states.

The six states of which WODAN consists are:

1 No change is made. The (old) model, described in Chapter 3, can be enacted as usual. This
is EVS1.

2 In this state the new processes, described in Chapter 4, are being designed. Also the inter-
mediate processes are being designed. These intermediate processes will be described in
section 6.2. Everything still is enacting in the old way.

3 The new and the intermediate processes have been designed. As requests should not be
received and handled in the old way anymore, MainCAB and DepCAB will be changed first
together with the export-operationrequest_for_change. In order to finish what has been
started, intermediate versions of MainCAB, DepCAB andint-request_for_change will be
prescribed. Note that in this stateint-request_for_change cannot be called. This implies that
incoming requests cannot be received in this state of WODAN. However the traps are cho-
sen in such a way that WODAN does not have to remain very long in this state.

4 In this state of WODAN MainCAB will be removed, as it has no function anymore. An
intermediate version of CABSecretary called TempCABSecretary will take over the task of
receiving the requests. Therefore TempCABSecretary will be the manager of an intermedi-
ate version ofint-request_for_change. In this intermediate version a list of requests is made,
but int-prepare_meeting cannot be called. So new meetings cannot be prepared yet. Also in
this state of WODAN an intermediate version of DepCAB will be prescribed. Whenever a
meeting has been started, i.e DepCAB has reached its statemeeting opened, the meeting can
be finished. In every other case the (old) request that would have caused a meeting will be
placed on a list, just like the new requests. Note that both the old and the new requests are
placed on the same list. In order to place the old requests on the list two things will happen.
First of all, DepCAB will get a temporary export-operationput_request_on_list, which
places the old request on a list. Alsoint-prepare_meeting, the operation that in fact coordi-
nates the behaviour of DepCAB, will be changed in such a way that not onlydo_meeting
andclose_meeting can be called (in order to finish a meeting that has already been started),
but alsoput_request_on_list. Second, every CABMember will get a temporary export-oper-
ationcancel_meeting, used when the preparations are being cancelled and the meeting had
not been started yet but already had been confirmed. Only if every (old) request has been
handled entirely or has been placed on a list, WODAN will transit to its next state.

5 In this state of WODAN the new model will be enacted almost entirely. However there are
two operations of which the final versions cannot be prescribed yet:do_meeting and

no change
(old model)

designing
new model

no change
(new model)

Figure 88. global external behaviour of WODAN

1 2 6

Changing the software process model using WODAN

page 84

prepare_meeting. To these operations intermediate versions are prescribed. These interme-
diate versions could not be prescribed in the previous state of WODAN, as they would con-
flict with the other changes.

6 The new model has been prescribed completely, also the final subprocesses ofint-
do_meeting andint-prepare_meeting have been prescribed here. Everything can enact in the
new way now. This is EVS2.

6.2 Designing WODAN to manage the change

The first prescriptive step, from the old model to the first intermediate phase, is modelled in Fig-
ure 89. As mentioned before in the set-up only three processes are affected in this step.

As soon as the new model has been designed, WODAN will transit to its stateswitching to new
behaviour (1). Note that MainCAB, DepCAB andint-request_for_change were already waiting
in their traps. WODAN will prescribe subprocesses s-120 and s-121 to MainCAB and DepCAB
respectively, as MainCAB has to finish what it has started. Also subprocess s-122 will be pre-
scribed toint-request_for_change, as the incoming requests should not be handled in the old
way anymore. In fact incoming requests are not being handled at all in this state of WODAN,
as the operationrequest_for_change cannot be called here, because the transitions labeled with
(dep-)request_for_change have been removed from the external behaviours of MainCAB and
DepCAB. However the traps necessary for WODAN to be entered in order to transit to its next
stateswitching to new behaviour (2), are entered almost instantly. Note that the state-action in-
terpreter of MainCAB w.r.t.int-request_for_change has been changed. To all other processes
that eventually have to be changed, the subprocesses used in the old model are still being pre-
scribed.

The subprocesses and traps of the first intermediate phase ofint-request_for_change w.r.t.
CABSecretary can be found on the next page.

designing
new model

switching to
new behaviour (1)

s-111 s-120close_change

in t-111, t-112, t-114

employee mapping order used:

MainCAB (figures 8 and 92)
DepCAB (figures 9 and 93)

Figure 89. first prescriptive step of WODAN

int-req_for_change (fig 13 and 90)

s-112
s-114

s-121
s-122

2 3

Figure 90. the first intermediate phase of int-request_for_change

no
request

preparation
asked

requesting
change

act_request_for_change

t-122

w.r.t. WODAN this is subprocess s-122

Changing the software process model using WODAN

page 85

Figure 91. int-request_for_change’s subprocesses and traps w.r.t. MainCAB

no
request

preparation
asked

t-1’

s-1’

requesting
change

no
request

preparation
asked

requesting
change

t-2’

s-2’
act_request_for_change

neutral change requested

Figure 92. intermediate phase of MainCAB

t-120

w.r.t. WODAN this is subprocess s-120

s-1’ s-2’in t-2’

Changing the software process model using WODAN

page 86

As the external behaviour of DepCAB has changed, its subprocesses and traps w.r.t. MainCAB
have changed too. However they will not be given here, as they only have changed slightly.

The second prescriptive step, from the first intermediate phase to the second intermediate phase,
is modelled in the following figure. The processes that are affected for the fist time this step are
marked with *.

As stated before, MainCAB will enter its trap t-120 almost immediately and alsoint-
request_for_change will enter its trap t-122 (this trap contains the only states that have a inter-
related state in the new model) almost instantly. DepCAB andint-prepare_meeting were al-
ready waiting in trap t-121 and t-115 respectively, as the state spaces of the behaviours are its
traps. WODAN will then continue to go to its next stateswitching to new behaviour (2). There
TempCABSecretary, the intermediate version of CABSecretary, will be installed by prescribing

neutral

change

software

authorized do_change

cancel

authorize

Figure 93. first intermediate phase of DepCAB

cancelled develop.

requested
meeting

close_

meeting
closed

do_meeting
meeting

opened

w.r.t. WODAN this is subprocess s-121 and the state space is trap t-121

open_meeting

meeting

Null
s-130

s-132
s-133

switching to
new behaviour (2)

s-120
s-121

Null
s-122

switching to
new behaviour (1)

in t-120, t-121,
t-113, t-122,

s-113 s-131

employee mapping order used:

MainCAB (figure 92)
DepCAB (figures 93 and 98)
ProjectManager (figures 11 and 103)
* CABSecretary (figure 97)
int-req_for_change (fig 90 and 95)

Figure 94. second prescriptive step of WODAN

3 4

s-134s-115 * int-prepare_meeting (fig 21 and 101)
t-115

Changing the software process model using WODAN

page 87

subprocess s-132 to it. Also subprocess s-133 will be prescribed toint-request_for_change, of
which TempCABSecretary will be the manager. This way new requests will be administrated
during switching. Just like in the new model the new requests will be put on a list, but
request_for_meeting cannot be called yet (see Figure 95). Now it can be made clear whyint-
request_for_change could not be called in the previous state of WODAN. The reason is that
MainCAB and TempCABSecretary are managing different intermediate versions ofint-
request_for_change, which cannot be prescribed at the same time, i.e. in the same state of WO-
DAN. The difference is of course that the intermediate version of CABSecretary places the re-
quests on a list and MainCAB does not.

no request requesting
change

request_id
determined

request
added

act_request_
for_change determine_id

call_add_
to_list

w.r.t. WODAN this is subprocess s-133 and the state space is trap t-133

Figure 95. the second intermediate phase of int-request_for_change

Changing the software process model using WODAN

page 88

Whenever the internal behaviour of an operation changes, the subprocesses and traps w.r.t. the
managers have to be changed too. Also the managers will change as the state-action interpreters
w.r.t. these operations have changed. This can be seen in figures 90, 91, 92 and 95, 96, 97. These
changes are standard; just omit in the subprocesses all transitions and states that have been omit-
ted in the internal behaviour of the operation. As this is a standard procedure, the subprocesses
and traps of other internal behaviours, that will be changed, will be given only in an exceptional
case.

Compared with the new model TempCABSecretary has less states, only two export-operations
(add_to_list and request_for_change) and a different state-action interpreter w.r.t.int-
request_for_change.

no request requesting
change

request-id
determined

request
added

Figure 96. int-request_for_change’s subprocesses and traps w.r.t. TempCABSecretary

determine_id

call_add_
to_list

no request requesting
change

request-id
determined

request
added

act_request_
for_change determine_id

call_add_
to_list

s-54’

t-54’

t-56’

s-56’

t-55’

s-57’

no request

request
added

t-57’

request_for_change

Figure 97. TempCABSecretary: viewed as manager of int-request_for_change

neutral request
retrieved

w.r.t. WODAN this is subprocess s-132 and the state space is trap t -132

s-54’ s-56’
in t-54’

in t-56’

request
added

add_to_listin t-55’

in t-57’
s-57’

Changing the software process model using WODAN

page 89

Also in this state of WODAN the Null-process is prescribed to MainCAB, as it has no function
anymore. Subprocess s-130 will be prescribed to (every) DepCAB, as the current meetings have
to be finished before switching to NewCAB. Note that there could be activated more than one
external behaviour of DepCAB, as for every change requested in the past the external behaviour
of DepCAB had been activated in order to open a meeting. Normally these meetings would take
place one by one after the previous meeting had been finished, assuming that in every meeting
the same members have to be present. Now the requests that would have caused these meetings
are placed on a list. To that aim DepCAB has been extended with a temporary export-operation
put_request_on_list (Figure 99). Also the class CABMember has been extended with a tempo-
rary export-operationcancel_meeting (Figure 100), in order to cancel a meeting whenever it had
already been confirmed but not been opened yet. It is from the internal behaviour of
prepare_meeting (Figure 101) that these operations are called. Therefore in this state of WO-
DAN subprocess s-134 will be prescribed toint-prepare_meeting (Figure 101). Also subproc-
ess s-131 will prescribed to ProjectManager (Figure 103). To all other processes that eventually
have to be changed, the subprocesses used in the old model are still being prescribed.

Note that Figure 98 is valid for every external behaviour of DepCAB that has been activated in
the past. Note also that the transition labeled withopen_meeting has (temporarily) been omitted,
as in this phase of WODAN no new meetings can be opened. Only the meetings that had already
been opened can be finished.

neutral

change

software

authorized do_change

cancel

authorize

Figure 98. second intermediate phase of DepCAB

cancelled develop.

requested
meeting

close_meeting

meeting
closed

do_meeting
meeting

opened

t-130

w.r.t. WODAN this is subprocess s-130

request
put on

list

put_request_
on_list

Changing the software process model using WODAN

page 90

The operationput_request_on_list places the request on a list, in order to handle all requests
from this list at the same time, as soon as the new model will be prescribed. The list on which
these requests are placed is the same list as on which the new requests are placed. Just like the
other export-operations of DepCAB the operationput_request_on_list has been (implicitly)
parametrized with the parameterrequest-id. The operation has also been parametrized explicitly
with a parameterlist-id, as all requests have to be placed on the same list. The subprocesses and
trapsint-put_request_on_list can be generated by applying the standards described in section
3.3.3 to it. They will not be given here.
As mentioned before also the class CABMember has been extended with a temporary export-
operation:cancel_meeting.

This operation will be called (from the temporary internal behaviour ofprepare_meeting)
whenever a meeting had already been confirmed but not been opened yet. The effect of the op-
eration will neutralize the effect ofreceive_confirmation; the date of the meeting will be
skipped from the agenda of the CABMember. The temporary operationcancel_meeting can be
integrated into the model in the same way asreceive_confirmation. Note that this operation, as
it is an operation of the class CABMember, will be inherited by the classes ProjectManager, De-
signEngineer, QAEngineer and UserRepresentative. Therefore the external behaviours of these
classes will change. The altered external behaviour of ProjectManager can be found in Figure
103. The changed external behaviours of DesignEngineer, QAEngineer and UserRepresentative
can be constructed in a similar way. They will not be given here. Also the subprocesses and traps
of int-cancel_meeting will not be given here. They can be generated by applying the standards
described in section 3.3.3 to it.

waiting request_id
determined

request
added

act_put_request_

add_to_list
(list-id)

request

Figure 99. int-put_request_on_list: a temporary operation of the class CAB

on_list (list-id)

act_cancel_meetingno
cancel

meeting
cancelled

Figure 100. int-cancel_meeting: a temporary operation of the class CABMember

agenda
updated

skip_date_from_agenda

Changing the software process model using WODAN

page 91

Now the changed internal behaviour ofprepare_meeting will be given.

When the preparations have not already led to a meeting, the preparations will be cancelled. In
case the preparations were finished, but the meeting had not been opened yet, the meeting will
be cancelled. Of course meetings that had already been started can be finished. By this means
most requests will be placed on a list instead of initiating a meeting, so the new model can be
enacted as soon as possible. In this caseint-prepare_meeting’s subprocesses and traps w.r.t.
ProjectManager will be given (Figure 102), as they differ quite a lot from the original ones. Con-
sequently the manager process ProjectManager changes a bit too (Figure 103).

no
prepare

prepare
started

members
selected

agenda
checked

call_

Figure 101. first intermediate phase of int-prepare_meeting

confirm
send

call_do_

wait
done

meeting
ended

meeting
started

date
selected

w.r.t. WODAN this is subprocess s-134

request
put on

list

call_put_request_
t-134

act_prepare_meeting

on_list
close_

meeting

prepare
cancelled

meeting

call_put_
request_
on_list

cancel_

cancel_

cancel_preparations

call_cancel_call_cancel_

preparations

preparations

meetingmeeting

Changing the software process model using WODAN

page 92

The subprocesses and traps ofint-prepare_meeting w.r.t. the other members can be generated

by applying the standards described in section 3.3.3 to it. They will not be given here.

no
prepare

prepare
started

call_

call_do_

meeting
ended

meeting
started

request
put on

list

call_put_
close_

meeting

prepare
cancelled

meeting

call_put_
request_
on_list

confirm
send

wait
done

request_

no
prepare

prepare
started

members
selected

agenda
checked

request
put on

list

call_put_request_

act_prepare_

on_list

prepare
cancelled

call_put_
request_
on_list

cancel_

cancel_

preparations

preparations

meeting

agenda
checked

confirm
send

date
selected

prepare
cancelled

cancel_

cancel_

preparations

preparations

confirm
send

wait
done

prepare
cancelled

call_cancel_
meeting

call_cancel_
meeting

Figure 102. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager

s-22’

t-22a’

t-22’

s-24’

t-24’

s-23’ s-29

t-29

t-23’

t-30

on_list

date
selected

cancel_
preparations

Changing the software process model using WODAN

page 93

Now the changed external behaviour of ProjectManager will be given.

The external behaviour of ProjectManager has been extended with a temporary export-opera-
tion cancel_meeting, also the transitions labeled withcheck_agenda andreceive_confirmation
have been removed from the external behaviour of ProjectManager, as these operations cannot
be called in this state of WODAN. However the internal behaviours of these operations still ex-
ist and ProjectManager still manages them, as these operations could have been started, but not
have been finished at the moment subprocess s-131 was prescribed to ProjectManager. The ex-
ternal behaviours of the other members (DesignEngineer, QAEngineer and UserRepresenta-
tive) can be constructed in a similar way.
Also ProjectManager’s state-action interpreter w.r.t.prepare_meeting has changed. Note that
in stateneutral only subprocess s-22’ (derived from subprocess s-22) can be prescribed, in con-
tradistinction to both the old and the new model where subprocess s-22 or s-24 could be pre-
scribed (Figure 39 and Figure 87). Subprocess s-24 was prescribed in stateneutral only when
ProjectManager still had to execute the operationreceive_confirmation. However this operation
cannot be called in this state of WODAN, so this will not occur. Note that when ProjectManager
was prescribing subprocess s-24 (Figure 34) in its neutral state at the moment the first interme-
diate version ofint-prepare_meeting will be prescribed,int-prepare_meeting must be in a state
that is a part of trap t-24. As the statedate selected is a part of this trap, this state has been in-
cluded in subprocess s-22’ and in trap t-24’.

starting

in CAB-

sched_a_assign_t.

join_meeting

prepare_
meeting neutral starting

Figure 103. ProjectManager: viewed as manager of int-prepare_meeting

monitor
starting
schedule

preparation

meetingchecking
agenda

leave_
meeting

confirm
received

meeting
cancelled

s-22’

s-23’

s-24’

s-22’

s-22’

s-22’s-22’

s-29

monitor

in t-22a’

in t-23’

in t-24’

in t-22’

in t-30
in t-29

or t-30

cancel_
meeting

w.r.t. WODAN this is subprocess s-131 and its state space is trap t-131

Changing the software process model using WODAN

page 94

The third prescriptive step, from the second intermediate phase to the third and last intermediate
phase, is modelled in the following figure. The processes that are affected for the first time this
step are marked with *.

So if (every) DepCAB has entered its trap t-130, if also ProjectManager has entered its trap t-
131, if moreover TempCABSecretary has entered its trap t-132, if furthermoreint-
request_for_change has entered its trap t-133, and if (every) int-prepare_meeting has entered
its trap t-134, then WODAN can and will transit to its next stateswitching to new behaviour (3).
Note that Design,int-do_meeting andint-monitor were already waiting in traps t-110, t-116 and
t-117 respectively. Note that the state space of the external behaviour of Design (see [2, Figure
13]) is its trap w.r.t. WODAN, as no states have been removed from the external behaviour of
Design, but only transitions and states have been added in order to model the external behaviour
of NewDesign. For the same reasons the state space ofint-monitor (old model, see [2, Figure
12]) is its trap w.r.t. WODAN. In this state of WODAN the changing from the old model to the
new model has been completed almost entirely. Here the subprocesses s-113, s-140, s-141, s-
142, s-143, s-144 and s-147 already will be prescribed to ProjectManager, NewDesign, New-
CAB, CABSecretary, Request,int-request_for_change andint-monitor respectively. The Null-
process is prescribed to DepCAB, as it has no function anymore. Every meeting has been fin-
ished and every (old) request has been placed on a list. Note that from now on meetings can be
requested, asrequest_for_meeting can be called now from within subprocess s-144 ofint-
request_for_change.
Note that ProjectManager’s trap t-131 (Figure 103) w.r.t. WODAN contains the statemeeting
cancelled and that ProjectManager’s subprocess s-113 (Figure 11) does not. This is not in ac-
cordance with the SOCCA-conventions. However it is garantueed that when WODAN transits
to its stateswitching to new behaviour (3), ProjectManager will never be in its statemeeting
cancelled, as in that caseint-prepare_meeting could not have entered its trap t-134 w.r.t. WO-
DAN. This can be seen as follows. In order for ProjectManager to leave the statemeeting can-
celled before WODAN transits to its next state,int-prepare_meeting must have entered its trap
t-29. This trap does not contain any state that is also contained byint-prepare_meeting’s trap t-
134 w.r.t. WODAN (see Figure 101 and Figure 102). So only after ProjectManager’s neutral
state has been reached and subprocess s-22’ has been prescribed toint-prepare_meeting again,
int-prepare_meeting’s states that form trap t-134 can be reached.
Also in this state of WODAN subprocesses s-146 and s-145 are prescribed to (every) int-
do_meeting and (every) int-prepare_meeting respectively. The final versions of these opera-
tions cannot be prescribed yet in this state of WODAN. If this had been done, the subprocesses
used in the previous state of WODAN would have needed a trap as used in the subprocesses s-

s-110
Null
s-130
s-131
Null
s-132
Null

switching to
new behaviour (2)

s-140
Null
Null
s-113
s-141
s-142
s-143

switching to
new behaviour (3)

in t-110, t-130,

s-133 s-144
t-131, t-132,
t-133, t-134,

s-134
s-116

s-145
s-146

t-116, t-117

employee mapping order used:

* (New)Design (figure 51)
MainCAB
DepCAB (figure 98)
ProjectManager (figures 103 and 11)
* NewCAB (figure 50)
CABSecretary (figures 97 and 48)
* Request (figure 49)
int-req_for_change (fig 95 and 52)
int-prepare_meeting (fig 101 and 106)
* int-do_meeting (figures 14 and 105)

Figure 104. third prescriptive step of WODAN

4 5

* int-monitor (figure 63)
s-117 s-147

Changing the software process model using WODAN

page 95

146 and s-145. However using such traps in the previous state would have caused problems. If
for instanceint-do_meeting had been trapped in its statemeeting started, it could never reach
its trap t-9 anymore. If at this moment DepCAB (Figure 93) would be in its statemeeting
opened, DepCAB could not reach its next state, as trap t-9 would never be entered, and therefore
could never reach its stateneutral, which is its trap w.r.t. WODAN.

The subprocess ofint-prepare_meeting used in the previous state has only one state (no pre-
pare) that could be used as a trap to the final version ofint-prepare_meeting. When trapped in
this state it is possible that the call toput_request_on_list would not be carried out, because the
transition labeled withact-prepare_meeting leading out of the trap was omitted. In that case
DepCAB would never reach its staterequest put on list and therefore would also never reach its
stateneutral (this is one of the problems described in section 5.3). In both cases the final state
of WODAN cannot be entered.

Note that Figure 105 and Figure 106 are valid for every internal behaviour ofdo_meeting and
prepare_meeting that has been activated in the past.

meeting

Figure 105. intermediate phase of int-do_meeting

meeting
ended

meeting
ended

request
checked

act_do_meeting

call_do_change

reject_request

started
no

meeting

t-146

w.r.t. WODAN this is subprocess s-146

Figure 106. second intermediate phase of int-prepare_meeting

w.r.t. WODAN this subprocess s-145

no
prepare

prepare
started

request
put on

list

call_put_request_
on_list

t-145

Changing the software process model using WODAN

page 96

The final prescriptive step from the third and last intermediate phase to the new model is mod-
elled in the following figure. In this step no processes will be affected for the first time. Only
int-do_meeting andint-prepare_meeting will be affected here.

In the fifth state of WODAN it is guaranteed thatint-do_meeting is in its stateneutral and that
int-prepare_meeting is in one of its statesrequest put on list or no prepare, otherwise DepCAB
would have never reached its neutral state. This implies that (every)int-do_meeting already is
in its trap t-146 and that (every)int-prepare_meeting already is in its trap t-145 or will enter this
trap almost immediately (both traps contain the only states that have a interrelated state in the
new model). So WODAN does not have to wait very long to enter its next state. In this last state
the changing to the new model has been fully completed.

s-140
Null
Null
s-113
s-141
s-142
s-143

switching to
new behaviour (3)

s-144

s-140
Null
Null
s-113
s-141
s-142
s-143

no change
(new model)

s-144
in t-145, t-146

s-145
s-146

s-115
s-150

employee mapping order used:

(New)Design (figure 51)
MainCAB
DepCAB
ProjectManager (figure 11)
NewCAB (figure 50)
CABSecretary (figure 48)
Request (figure 49)
int-req_for_change (figure 52)
int-prepare_meeting (figures 106 and 21)
int-do_meeting (figures 105 and 61)

Figure 107. final prescriptive step of WODAN

5 6

s-147s-147
int-monitor (figure 63)

Changing the software process model using WODAN

page 97

Figure 108 shows WODAN completely. A list of subprocesses w.r.t. WODAN is given in Ap-
pendix B.

The internal behaviours of all new operations (request_for_meeting, reject_request,
big_impact, small_impact andhandle_change_request) are implicitly managed by WODAN.
As soon as WODAN is in its fifth state or in stateno change (new model), which means the new
model will be prescribed (almost) completely, the internal behaviours of the new operations will
be prescribed too. In all other (previous) states the Null-process is prescribed to these opera-
tions. Every other internal or external behaviour has not been influenced by the change to the
new model. The temporary operationsput_request_on_list andcancel_meeting are also impic-
itly managed by WODAN. They only exist in the fourth state of WODAN, in every other state
the Null-process is prescribed to these operations. Note also thatevery external behaviour of
DepCAB should be trapped in its trap t-130, before the transition to the stateswitching to new
behaviour (3) can be made. Alsoevery internal behaviour ofdo_meeting andprepare_meeting
has to be trapped in its trap t-146 and t-145 respectively, before the transition to the stateno
change (new model) can be made.

Figure 108. WODAN: viewed as manager of 11 employees

s-110
s-111
s-112
s-113
Null

employee mapping order used:

(New)Design
MainCAB
DepCAB
ProjectManager
NewCAB

s-110
Null
s-130
s-131
Null

s-110
s-111
s-112
s-113
Null

Null
Null

Null
Null

s-132
Null

CABSecretary
Request

no change
(old model)

start_
change

in t-111, t-112, t-114

designing
new model

switching to
new behaviour (2)

s-140
Null
Null
s-113
s-141
s-142
s-143

switching to
new behaviour (3)

in t-110, t-130,

s-110
s-120
s-121
s-113
Null
Null
Null

switching to
new behaviour (1)

in t-120, t-121,
t-122, t-115,

close_change

int-request_for_changes-114 s-114

s-122 s-133 s-144

s-140
Null
Null
s-113
s-141
s-142
s-143

no change
(new model)

s-144

in t-145, t-146
t-131, t-132,
t-133, t-134,

int-prepare_meeting
int-do_meetings-115

s-116
s-115
s-116

s-115
s-116

s-134
s-116

s-145
s-146

s-115
s-150

t-116, t-117

1 2

3 4 5 6

int-monitor
s-117s-117

s-117 s-117 s-147 s-147

Changing the software process model using WODAN

page 98

PMMS

page 99

7 PMMS

7.1 Introduction

In Manchester the group of Warboys, together with some associates, has a long tradition in stud-
ying general business processes [9]. A characteristic feature of these processes is their ever
changing nature. To describe this kind of change they developed PMMS, which stands forProc-
essModel forManagementSupport. It is used for the description of general management sup-
port when designing, instantiating and enacting whatever process model, e.g a Socca-model. In
PMMS evolutionary change is inherent, as so-called Terms of Reference (ToR) can be replaced
by a new ToR. Every PMMS-model basically consists of four sequential components: manag-
ing, technology, logistics and administering. Dependent on the ToR extra sequential compo-
nents are added. They are placed under the administering-component. Together these extra
components are called the specific part of the PMMS-model. So a PMMS-model consists of the
four basic components and a specific part consisting of the extra components.
The way the basic components are interconnected with each other is shown in Figure 109. The
interconnections can be considered as, sometimes bidirectional, dataflows and the components
as dataflow processes.

Every basic component has some special tasks. The managing-component generates the Terms
of Reference (ToR), which can be seen as the verbal description of a model. A ToR tells what
is to be expected of the model, not how the model should be constructed. The logistics-compo-
nent then produces a setup for the model; a first, formal, but incomplete, description, which is
supposed to answer to the ToR. After that the technology-component designs the corresponding
methods in order to complete the formal description. The logistics-component instantiates these
methods as processes and the administering-component enacts these processes.
Note that one could also decide to give the logistics-component only one task: the instantiation
of the methods. In that case the technology-component will be asked by the logistics-component
to produce the complete formal description of the model, including the setup. However, as in a
PMMS-model no direct communication between the managing-component and the technology-
component exists (see Figure 109), the managing-component then can influence the design
process only indirectly, via the logistics-component. When describing the communication be-
tween the components (section 7.4) this will be more complicated. For this reason our logistics-
component has the two tasks mentioned.
When designing a Socca-model the tasks of the logistics-component and the technology-com-
ponent can be specified more exactly. The logistics-component in this case has to construct the
class diagram of the model and the general relationships between the classes. These can be seen
as the setup for the model. The task of the technology-component implies the description of the
uses relationships between the classes, the external behaviours of the classes, the internal be-

Figure 109. a basic PMMS-model and its four components

managing

technology

administering

logistics

PMMS

page 100

haviours of the operations and the communication-structure. This can be seen as the completion
of the formal model.
In [8] a small PMMS-model was transformed into a Paradigm-model. In the section 7.2 the
Change Management (CM) models, described by means of Socca and Paradigm, will be trans-
formed into a PMMS-model. After that, in sections 7.3 and 7.4, the management support for de-
signing the models and managing the evolutionary change will be illustrated by presenting a
full-blown Socca-model for the four basic components of the PMMS-model. As we will see the
PMMS-structure provides an excellent setup for further refining and structuring WODAN. On
the other hand, the Paradigm and Socca features indeed clarify many technical details, not ex-
plicitly specified by PMMS. So the work in [8] has been considerably extended from Paradigm
towards whole Socca.

7.2 Change Management modelled by means of PMMS

The CM-models, described by means of Socca and Paradigm, will be transformed into a
PMMS-model. First a PMMS-model, which describes the old CM-model (chapter 3), will be
constructed. Naturally it will consist of the four basic components. Also, due to ToR1, which
denotes the old model, some extra components are added. These extra components are exactly
the classes used to model Change Management. Note that only the classes, of which the external
behaviour has been given explicitly in chapter 3, are used, as components, in the specific part
of the PMMS-model. These classes are CAB, ProjectManager, DesignEngineer and UserRep-
resentative. Every other class presented in the class diagram (Figure 3), of which the external
behaviour has not been given explicitly in chapter 3, is not displayed, as a component, in the
specific part of the PMMS-model. Also there is a pool of Null-components, i.e. components that
have ceased to exist or do not exist yet but will exist in the future.
ToR2 denotes the new CM-model (chapter 4). Due to ToR2 some other components will be add-
ed to the specific part of the PMMS-model: Request and CABSecretary. These components
have not been used in the first CM-model, however they can be included into the PMMS-model.
They will be in the pool of Null-components during the enactment of the first model.
The PMMS-model describing both CM-models is given in Figure 110. The dashed components
and interconnections are added due to ToR2. The interconnections between the extra compo-
nents can be seen as the uses relationships between the classes.

PMMS

page 101

7.3 Behaviour of the basic components

The way the models are being designed and the way the change from ToR1 to ToR2 is being
executed, as e.g. controlled by WODAN, is not shown explicitly in the previous figure. This is
inherent to the PMMS-method, so to say. However it can be made more explicit by modelling
the basic components in Socca. In that case first the data-perspective of the model has to be de-
scribed. Therefore a class diagram has to be defined. Note that there are no IS-A or Part-Of re-
lationships between the basic components, so the class diagram, presented in Figure 111, only
shows the attributes and operations of these components.

Figure 110. a PMMS-model describing Change Management

managing

technology

administering

logistics

CABSecretary Request DesignEngineer UserRepr.

(New)CAB

ProjectManager

Figure 111. Class diagram: attributes and actions of the basic components

managing logistics technology

create_first_ToR
schedule_design
view_status

generate_setup
report_proposal

administering

enact_processes

modify_setup
get_methods

report_status

report_method_design
implement_methods
generate_change_setup

create_next_ToR

report_interm_steps

make_methods
report_methods
modify_methods

PMMS

page 102

As a next step in describing the data perspective the uses relations between the components have
to be given. They are shown in Figure 112. The corresponding import list is given in Figure 113.

Note that the communication between the components is modelled solely by means of the uses
relationship. The general relationships have been left out.

Note that inget_methods can be imported by the managing-component and by the logistics-
component itself.
Note also that, as indicated by the uses relations, in our model the operations marked with * will
be called from elsewhere. On the other hand, one can easily imagine that these operations are
spontaneously executed by the corresponding external behaviours. This then leads to a slightly
different communication, which has not been worked out here.

use7
use3

adminis-

logistics

managing

technology

use1

Figure 112. Import/export diagram

tering

use2

use6

use5

use4

use1
 generate_setup
 report_proposal*
 modify_setup
 get_methods*
 report_method_design*
 generate_change_setup*
 report_change_steps*
 instantiate_methods*

use2
view_status

use3
report_status

use4
create_next_ToR*

use5
enact_processes

use6
 make_methods
 report_methods*
 modify_methods
use7
 get_methods

Figure 113. import list

PMMS

page 103

Second the behaviour perspective of the model has to be described. Therefore the external be-
haviour of each of the basic components will be given, described by means of an STD as usual.
The managing-component (Figure 114) will create a (first) ToR, which is the informal descrip-
tion of a software process model, and will supervise the design of the formal model describing
the same software process. After the model has been enacted it will regularly view the status of
the model. Whenever problems occur in the model, the managing-component will create a next
ToR for that model. Note that for a model describing another software process, another (first)
ToR has to be created.

Note that there are three transitions labeled withview_status. The managing-component will
transit from one of its statesdesign scheduled to its stateviewing status in order to check a mod-
el that has just been enacted. In that caseview_status will be called from within the internal be-
haviour of instantiate_methods (Figure 123). In order to check a model that is already being
operative for a while, the managing-component will transit, every now and then, from its state
neutral to its stateviewing status. This calling ofview_status will not be modelled. Note that
when the status is viewed before the first ToR has been created for a software process model,
an empty status will be returned.
Note that there are also two transitions labeled withcreate_next_ToR. The managing-compo-
nent will transit from its stateviewing status to its statenext ToR defined whenever the status
report suggests to do so. In that casecreate_next_ToR will be called from within the internal
behaviour ofreport_status (Figure 125). However the managing-component can also decide to
create a next ToR without viewing the status first. In that case it will transit to its statenext ToR
created from its neutral state. Of course this can only be done whenever already a (first) ToR
existed. This calling ofcreate_next_ToR will not be modelled. Also the calling of
create_first_ToR andschedule_design will not be modelled.

neutral

Figure 114. external behaviour of the managing-component

status
viewing

create_first_ToR

next_ToR

first
ToR designschedule_design

create_

view_status

ToR
next

designschedule_design

view_status

defined

defined

view_
status

scheduled

scheduled

create_
next_ToR

PMMS

page 104

The logistics-component (Figure 115) will define a setup for the formal model, it will supervise
the technology-component and it will play a part of the WODAN-role, i.e. design a setup for the
change steps. All actions of the logistics-component will be called from within the internal be-
haviour ofschedule_design. Note that the setup for the model could also be defined by the tech-
nology-component. However, as there exists no direct communication between the managing-
and the technology-component, the communication will be more complicated in that case.

The technology-component (Figure 116) will make, and if necessary will modify, all methods
necessary for the model. All operations of the technology-component will be called from within
the internal behaviour ofget_methods.

The administering-component (Figure 117) will enact all processes when the design has been
completed. Whenever a new model has to be enacted, it will enact the intermediate models first.
So this component plays another important part of the WODAN-role. Also the administering-
component will regularly check the model, while it is running, to see whether problems have
arisen.

Figure 115. external behaviour of the logistics-component

neutral

methods
implem.

generate_setup report_proposal

modify_setup

get_

instantiate_methods

setup
generated

setup
reported

methods
available

methods

methods
reported

report_method_design

change
steps

available

change
steps

reported

generate

report_change_steps

instantiate_
methods

change
setup

generated

change_setup

get_methods

Figure 116. external behaviour of the technology-component

neutral methods
made

make_methods

methods
reported

modify_
methods

report_
methods

Figure 117. external behaviour of the administering-component

neutral
enact_processes

status
reported

processes
enacted

report_status

PMMS

page 105

In order to clarify the behaviour of the basic components, the internal behaviours of some of the
operations performed by these components will be given. This is the second step in describing
the behaviour perspective. First the behaviour of the managing-component will be clarified.
Therefore the internal behaviour ofschedule_design andview_status will be given. The internal
behaviour ofcreate_first_ToR andcreate_next_ToR will not be given.

Note that there are two transitions labeled withcall_instantiate_methods. The transition leading
from the statemethods reported to the statemethods instantiated will be used only when the
first model for a particular software process has to be instantiated, i.e. when in the external be-
haviour of the managing-componentschedule_design is preceded bycreate_first_ToR. Other-
wise, when in the external behaviour of the managing-componentschedule_design is preceded
by create_next_ToR, the other transition will be used.

Figure 118. int-schedule_design

neutral design setup setup

setup

proposal

call_generate_change_setup

act_schedule_ call_generate_

call_report_

call_modify_

approve_

disapprove_

discuss_

call_get_

call_instantiate_

call_report_

asked asked discussed

rejected

available

setup
approved

methods
reported

design setup

proposal

result

result

result

methods
instant.

methods
made

methods

method_design

setup

change

call_report_

asked
steps

change

reported
steps

methods

call_instantiate_
methods

change_steps

PMMS

page 106

Second the internal behaviours of some operations performed by the logistics-component will
be given:generate_setup, generate_change_setup, get_methods and instantiate_methods. In
order not to complicate the model unnecessarily the internal behaviours of the other operations
performed by the logistics-component will not be given here. Also they do not really contribute
to the understanding of the way models are being designed and the way the change from ToR1
to ToR2 is being executed (WODAN).

When within the internal behaviour ofgenerate_change_setup the evolutionary change cannot
be executed in only one change step, a next change step has to be developed. Consequently in
that case a next change setup has to be generated first. Whether a next change step is necessary
or not will be decided in the statechange step viewed.

Figure 119. int-view_status

neutral view
asked

status
reported

act_view_status

call_report_status

Figure 120. int-generate_setup

neutral setup
asked

class
diagram

ToR
viewed

act_generate_setup

make_class_
make_general_

made

relationships

view_ToR

general
relations

made

diagram

Figure 121. int-generate_change_setup

ToR’s
viewed

change
setupneutral

change change
setup

asked

created
step

act_generate_
change_setup view_ToR’s

create_first_
change_setup

call_get_methods

create_next_change_setup

methods
made

view_change_step

viewed

PMMS

page 107

As can be seen in the above figure, the logistics-component will decide whether the methods
developed by the technology-component answer to the setup or not.

The internal behaviour ofinstantiate_methods contains the possibly repeated calls of
enact_processes. So here the communication with the administering-component comes to light.

The only operation performed by the technology-component, of which the internal behaviour
will be given, ismake_methods.

Note that this operation will be called not only when a new model has to be designed, but also
when the evolutionary transformation from one model to another has to be specified. In that case
this action will change the external behaviours of the extra components (classes) and the internal

Figure 122. int-get_methods

neutral methods
asked

act_get_methods
call_make_

methods
available

methods

methods
rejected

methods
reported

methods
discussed

methods
approved

approve_methods

discuss_
methods

call_report_
methodscall_modify_

methods

disapprove_
methods

Figure 123. int-instantiate_methods

make_

act_instantiate_methods

make_next_processes

neutral instant.
asked

status processes
made

call_enact_processes

processes

processes
enacted

call_view_status

viewed

Figure 124. int-make_methods

setup
viewed

methodsneutral

internal
behaviours

external
behaviours

asked

mademade

act_make_methods view_setup

make_ext_
behaviours

make_int_make_comm.
structure behaviourscomm.

structure
made

uses
relations

made

make_uses
relationships

PMMS

page 108

behaviours of operations of these components. In view of also making the communication struc-
ture make_methods will furthermore create subprocesses and traps, also w.r.t. WODAN. More-
over it will create temporary operations for the extra components, when necessary.

Finally the internal behaviour of two operations performed by the administering-component
will be given. These operations arereport_status andenact_processes.

Note that this operation will not be called in between evolution phases, i.e. when intermediate
processes are being prescribed. It will only be called to monitor the processes of a model repre-
senting an evolution phase. Whenever problems are detected, i.e. the model is insufficient for
the actual situation, the managing-component will have to define a new ToR.

Int-enact_processes in fact represents (an important part of) WODAN. Inint-enact_processes
(new) processes are prescribed to both internal and external behaviours. These (new) processes
can be viewed as subprocesses of anachronistic processes. In Socca however only external be-
haviours can prescribe subprocesses to internal behaviours. So this part of WODAN is not yet
in accordance with the Socca-conventions (see [1]). For now the way this part of WODAN is
modelled is sufficient. Remodelling WODAN in complete and detailed accordance with Socca
is a topic of future research.

Figure 125. int-report_status

neutral report
asked

processes
monitored

status
reported

problem
detected

status
reported

problem
no

detected

act_report_status monitor_processes

report

detect_problem

report_problem

time_out

new
ToR
asked

call_create_
next_ToR

Figure 126. int-enact_processes

traps
entered

enact
neutral

processes
activated

processes
prescribed

asked
act_enact_processes wait_for_traps

prescribe_
processes

activate_processes

PMMS

page 109

7.4 Communication between the components

The final step in describing the behaviour perspective of the model is specifying the communi-
cation between the behaviours. As usual within Socca it will be specified by means of Paradigm.
The external behaviours of the basic components will act as the manager processes. The internal
behaviours of operations performed by a component and also the internal behaviours of opera-
tions calling the operations of this component will be the employee processes. By specifying the
communication between the behaviours the way models are designed and evolutionary change
is conducted (WODAN) will be clarified. Note that the communication between a component
and only a few of its employees, not all, will be specified here. Note also that the communication
between the technology-component and its employees will not be specified at all, as this com-
ponent is not very important in order to describe the way WODAN is organized. Furthermore
the specification of this part of the communication is rather straigtforward.
For this part of the modelling it seems best to have a rather sequential, interleaved execution of
some of the various behaviours, as some of the operations cannot be performed simultaneously.
Therefore the trap-structures of these operations will deviate from the standards described in
section 3.3.3., as mostly small traps are used.
First the communication between the managing-component and its employeesint-
schedule_design, int-view_status, int-report_status andint-instantiate_methods will be speci-
fied. The operationscreate_first_ToR and create_next_ToR have not been modelled, so the
communication between the managing-component and these operations will not be specified.
The internal behaviour of the operationsschedule_design andview_status belong to the man-
aging-component itself.Int-report_status andint-instantiate_methods are internal behaviours
of operations calling operations of the managing-component.
The managing-component (Figure 131) starts in its neutral state. As soon ascreate_first_ToR
is called, which has not been modelled, the managing-component will transit to its statefirst
ToR defined. When the ToR has been defined andint-schedule_design has entered its trap t-162,
the managing-component will make the transition to its statedesign scheduled. There subproc-
ess s-161 will be prescribed toint-schedule_design. Now a setup, answering to the ToR, can be
developed. It will be developed by the logistics-component. Note that in subprocess s-161 it is
not possible to generate change steps. However, the model to be developed will be the first mod-
el and therefore the enactment of this model can be performed without any change step. Conse-
quently it is not necessary to generate these change steps.

PMMS

page 110

Figure 127. int-schedule_design’s subprocesses and traps w.r.t. managing

neutral design setup setup

setup

proposal

call_generate_

act_schedule_ call_generate_

call_report_

call_modify_

approve_

disapprove_

discuss_

call_get_

call_report_

asked asked discussed

rejected

available

setup
approved

methods
reported

design setup

proposal result

result

result

methods
instant.

methods
made

methods

method_design

setup

change_setup

change

call_report_
change_steps

asked
steps

change

reported
steps

call_instantiate_
methods

s-160

t-160

neutral design setup setup

setup

proposal

act_schedule_ call_generate_

call_report_

call_modify_

approve_

disapprove_

discuss_
asked asked discussed

rejected

available

design setup

proposal
result

result

resultsetup

s-161

call_get_

call_report_

setup
approved

methods
reported

methods
made

methods

method_design

methods
instant.

call_instantiate_
methods

t-161

neutral

methods
instant.

s-162

t-162

PMMS

page 111

If int-schedule_design has entered its trap t-161, which means the model has been instantiated,
if furthermoreint-instantiate_methods has entered its trap t-168, which denotes the new model
has been enacted and the status of this enacted model is asked to be viewed, if moreoverint-
view_status has entered its trap t-166, which means the status can be viewed, andint-
report_status has entered its trap t-165, then the managing-component will transit to its state
viewing status. There subprocesses s-167, s-169 and s-162 are going to be prescribed toint-
view_status, int-instantiate_methods andint-schedule_design respectively. Subprocess s-163 is
prescribed toint-report_statusin order to be able to react to a new status report. From there,
dependent on which trapint-report_status will enter, the managing-component will either tran-
sit to its statenext ToR defined or return to its neutral state. The neutral state will be reached
only whenint-report_status has entered its trap t-163, which means the model is functioning
properly. The statenext ToR defined will be reached only whenint-report_statushas entered its
trap t-164, which means the model is not functioning properly. However to be able to reach one
of these two statesint-view_status must have entered its trap t-167 too and alsoint-
instantiate_methods must have entered its trap t-169.

In both statesnext ToR defined andneutral subprocesses s-166, s-168 and s-165 then will be
prescribed toint-view_status, int-instantiate_methodsandint-report_status respectively. In the
statenext ToR defined the managing-component will create a new ToR for the software process
model, possibly based on the current ToR. When the new ToR has been created andint-
schedule_design is in its trap t-162, the managing-component will transit to its statedesign

Figure 128. int-report_status’s subprocesses and traps w.r.t. managing

neutral report
asked

processes
monitored

status
reported

problem
detected

status
reported

problem
no

detected

act_report_status monitor_processes

report

detect_problem

report_problem

time_out

new
ToR
asked

call_create_
next_ToR

neutral report
asked

processes
monitored

status
reported

problem
detected

status
reported

problem
no

detected

act_report_status monitor_processes

detect_problem

report_problem

time_out

new
ToR
asked

s-165

t-165

s-163

t-163

t-164

PMMS

page 112

scheduled. In this state subprocess s-160 will be prescribed toint-schedule_design, thereby
forcing the logistics-component to create not only a new setup for the model, but also a setup
for the change steps necessary to be able to switch from the current model to that new model.
As soon asint-schedule_design enters its trap t-160, which means the new model has been in-
stantiated,int-instantiate_methods enters its trap t-168, which denotes the new model has been
enacted and the status of the new enacted model is asked to be viewed, if furthermoreint-
view_status has entered its trap t-166, which means the status can be viewed, andint-
report_status has entered its trap t-165, then the managing-component will transit to its state
viewing status again. When this new model is also not functioning properly, the managing-com-
ponent will again transit to its statenext ToR defined and the whole cycle of scheduling the de-
sign and viewing the status starts all over again. Eventually however a properly functioning
model will be developed and the managing-component will return to its stateneutral.

Figure 129. int-view_status’s subprocesses and traps w.r.t. managing

s-166

t-166

s-167

t-167

neutral view
asked

status
reported

call_report_status

neutral view
asked

status
reported

act_view_status

call_report_status

Figure 130. int-instantiate_methods’s subprocesses and traps w.r.t. managing

make_

act_instantiate_methods

make_next_processes

neutral instant.
asked

status processes
made

call_enact_processes

processes

processes
enacted

call_view_status

viewed

make_

act_instantiate_methods

make_next_processes

neutral instant.
asked

status processes
made

call_enact_processes

processes

processes
enactedviewed

s-168

t-168
s-169

t-169

PMMS

page 113

The managing-component is in its neutral state again. Every now and then the status of the cur-
rent software process model will be asked to be viewed again, in order to see whether problems
have occured since the last time the model has been viewed. In that case int-report_status must
be in its trap t-165,int-view_status must be in its trap t-166 and of courseview_status must have
been called, which has not been modelled. Only then the managing-component will make the
transition to its stateviewing status. Also in the neutral state the managing-component can de-
cide, without viewing the status of the model first, to change the current model. In that case it
will transit to its statenext ToR created. Of course in stateneutral the managing-component can
also transit to its statefirst ToR created again in order to create a ToR for a model describing
another software process.
Figure 131 shows the managing-component as manager ofint-schedule_design, int-view_status
(called operations),int-report_status andint-instantiate_methods (calling operations).

Second the communication specification between the logistics-component and its employees
int-schedule_design, int-instantiate_methods, int-generate_change_setup andint-get_methods
will be given. The operationsreport_proposal, modify_setup, report_method_design and
report_change_steps have not been modelled, so the communication between the logistics-
component and these operations will not be specified. Also the communication between the lo-
gistics-component and its employeeint-generate_setup will not be specified, as it is not that im-
portant for our discussion. Furthermore the specification of this part of the communication is
rather straigtforward.
The logistics-component (Figure 136) starts in its neutral state. There subprocess s-170 has been
prescribed toint-schedule_design. If this behaviour has entered its trap t-170, which means a
setup for a model has been asked, then the logistics-component will transit to its next statesetup
generated. In that state subprocess s-172 will be prescribed toint-schedule_design and a setup,
which answers to the given ToR, will be generated. As soon as this setup has been generated

Figure 131. managing-component: viewed as manager of 4 employees

neutral

viewing

create_first_ToR

next_ToR

first ToR
defined

design scheduled

schedule_design

create_

view_status

defined
next ToR design

schedule_design

view_status

create_first_ToRs-160

employee mapping order used:

int-schedule_design (figures 118 and 127)
int-view_status (figures 119 and 129)

s-162 s-162 s-161

s-162

s-160s-162

s-166 s-166 s-166

s-166s-166

s-167

in t-162

in t-161, t-166, t-168, t-165

in t-160, t-166, t-168, t-165

in t-167,

in t-167, status

in t-162

in t-166, t-165

int-report_status (figures 125 and 128)

s-165 s-165 s-165

s-163

s-165 s-165

scheduled

t-163,

t-164, t-169

int-instantiate_methods (figures 123 and 130)

s-168 s-168

s-169

s-168s-168

s-168

t-169

create_
next_ToR

PMMS

page 114

andint-schedule_design has entered its trap t-172, the logistics-component will report this setup
to the managing-component and transit to its statesetup reported. There subprocess s-170 will
be prescribed again toint-schedule_design. Whenint-schedule_design again enters its trap t-
170, which now means the setup has been disapproved of and a better setup is asked, the logis-
tics-component will have to modify the setup and return to its statesetup generated. As soon as
the modification of the setup has been completed andint-schedule_design has entered its trap t-
172 again, the logistics-component will report the modified setup to the managing-component
and return to its stateresult reported. This cycle can be repeated several times.

Figure 132. int-schedule_design’s subprocesses and traps w.r.t. logistics

neutral design setup
act_schedule_ call_generate_

asked asked
setup

setup

proposal

call_modify_

approve_

disapprove_

discuss_

call_get_

discussed

rejected

available

setup
approved

result

result

result

methods
made

methods

setup

call_generate_

methods
reported

change_setup

call_instantiate_
methods

methods
instant.

change

asked
steps

change

reported
steps

call_instantiate_
methods

s-170

t-170

s-174

t-174

t-175

methods
instant.

modeldesign

setup

proposal

call_report_

asked

available

proposal

s-172

t-172

call_report_

methods
reported

methods
made

method_design

s-173

t-173

change

change

call_report_
change_steps

asked
steps

available
steps

s-176

t-176

t-171

PMMS

page 115

Eventuallyint-schedule_design will enter its trap t-171, which means the setup has been ap-
proved of and corresponding methods are being asked. If alsoint-get_methods is in its trap t-
182, then the logistics-component will make the transition from its stateresult reported to its
statemethods available. There subprocesses s-173 and s-183 are going to be prescribed toint-
schedule_design andint-get_methods respectively. The logistics-component will now order the
technology-component to make the methods and also the logistics-component will supervise the
development of these methods, i.e. approve or disapprove of them. In the latter case the logis-
tics-component will order the technology-component to modify the methods.
If int-get_methods has entered its trap t-183, which means the methods have been developed
and approved of, andint-schedule_design has entered its trap t-173, which means the methods
are asked to be reported to the managing-component, then the logistics-component will transit
to its next statemethods reported. There subprocesses s-174 and s-182 will be prescribed toint-
schedule_design and int-get_methods respectively. The methods will now be reported to the
managing-component. Note however that the managing-component cannot overrule the deci-
sion of the logistics-component and disapprove of the methods.

If int-schedule_design has entered its trap t-174, which means instantiation of the model is
asked, if moreoverint-instantiate_methods is in its trap t-177, which means instantiation of the
model can be asked, then the logistics-component will transit to its statemethods instantiated.
Note thatint-schedule_design will enter its trap t-174 only when the first model for a particular
software process has to be instantiated, i.e. when in the external behaviour of the managing-
componentschedule_design is preceded bycreate_first_ToR.
Otherwiseint-schedule_design enters its trap t-175, which means the evolutionary transforma-
tion from the current model to the just developed model has to be prepared first. Consequently
the logistics-component is going to transit to its statechange setup generated. Note thatint-
generate_change_setup was already waiting in its stateneutral, which means trap t-179 had
been entered in the past. In the statechange setup generated subprocesses s-176 and s-181 will
be prescribed toint-generate_change_setup andint-schedule_designrespectively. Now a setup
for the (first) change step will be produced. If trap t-180 has been entered byint-

Figure 133. int-instantiate_methods’s subprocesses and traps w.r.t. logistics

make_

act_instantiate_methods

make_next_processes

neutral instant.
asked

status processes
made

call_enact_processes

processes

processes
enacted

call_view_status

viewed

s-177

t-178

make_

make_next_processes

neutral instant.
asked

status processes
made

call_enact_processes

processes

processes
enacted

call_view_status

viewed

s-178

t-177

PMMS

page 116

generate_change_set_up, which means the setup for the change step has been generated and
corresponding methods are being asked, if alsoint-get_methods has entered its trap t-182, which
means the methods can be asked, then the logistics-component will get these methods and tran-
sit to its statechange steps available. The logistics-component will order the technology-com-
ponent to make the methods necessary for the change step and will approve or disapprove of the
change step developed by the technology-component. After the change step has been approved
of, i.e. whenint-get_methods has entered its trap t-183, possibly a next change step has to be
developed, as the evolutionary change cannot always be executed in one step. In that caseint-
generate_change_setup will enter its trap t-180 and the logistics-component will return to its
statechange setup generated. There subprocesses s-181 and s-182 will be prescribed again to
int-generate_change_setup andint-get_methods respectively. A new change step can be devel-
oped now. This cycle will be repeated as many times as necessary in order to be able to complete
the evolutionary transformation.
Eventuallyint-generate_change_setup will enter its trap t-179, which means enough change
steps have been constructed by the technology-component to perform the evolutionary change.
If more int-get_methods has entered its trap t-183, if furthermoreint-schedule_design has en-
tered its trap t-176, which means the change step(s) are asked to be reported to the managing-
component, then the logistics-component will transit to its statechange steps reported. There
subprocess s-174 will be prescribed toint-schedule_design. Note that subprocess s-179 will still
be prescribed toint-generate_change_setup. The change steps will now be reported to the man-
aging-component. Note however that the managing-component cannot overrule the decision of
the logistics-component and disapprove of the change steps.

Figure 134. int-generate_change_setup’s subprocesses and traps w.r.t. logistics

neutral

change change
setup

created
step

create_next_change_setup

methods
made

view_change_step

ToR’s
viewed

change
setupneutral

change
setup

asked

created

act_generate_
change_setup view_ToR’s

create_first_
change_setup

call_get_methodsmethods
made

s-179

t-179

t-180

s-181

t-181

viewed

PMMS

page 117

Whenint-schedule_design enters its trap t-174, which means instantiation of the model is asked,
and if alsoint-instantiate_methods has entered its trap t-177, which means instantiation of the
model can be asked, then the logistics-component will make the transition to its statemethods
instantiated. There subprocesses s-170 and s-178 will be prescribed toint-schedule_design and
int-instantiate_methods respectively. In this stateenact_processes will be called for every in-
termediate step and of course for the new model. Note that the logistic-component knows how
many change steps have been generated and therefore knows how many timesenact_processes
has to be called. The conditions under which the processes can be enacted will not be checked
by the logistics-component. They will be checked withinint-enact_processes itself. If int-
instantiate_methods has entered its trap t-178, then the logistics-component can return to its
neutral state.

Figure 135. int-get_methods’s subprocesses and traps w.r.t. logistics

neutral methods
asked

act_get_ call_make_
methods
available

methods

methods
rejected

methods
reported

methods
discussed

methods
approved approve_methods

discuss_
methods

call_report_
methodscall_modify_

methods

disapprove_
methods

neutral

methods
approved

methods

t-183

t-182

s-182 s-183

PMMS

page 118

Figure 136 shows the logistics-component as manager ofint-instantiate_methods, int-
get_methods (called operations),int-schedule_design (a calling operation) andint-
generate_change_setup (both a called and a calling operation).

Finally the communication between the administering-component and its employeesint-
view_status, int-report_status, int-enact_processes andint-instantiate_methods will be speci-
fied. The internal behaviour of the operationsreport_status andenact_processes belong to the
administering-component itself. The internal behaviours of operations calling the operations of
the administering-component areint-view_status andint-instantiate_methods.
The administering-component (Figure 141) starts in its stateneutral. If int-instantiate_methods
has entered its trap t-192, which means the enactment of the just instantiated methods has been
called, if furtherint-enact_processes has entered its trap t-190, which means a model can be en-
acted, then the administering-component will transit to its stateprocesses enacted. There sub-
processes s-193 and s-191 are going to be prescribed toint-instantiate_methods and int-
enact_processes respectively. Now all (intermediate) processes of the same (intermediate)
phase are being enacted. As soon asint-enact_processes enters its trap t-191, which means all
(intermediate) processes have been enacted, andint-instantiate_methods enters its trap t-193,
the administering-component will return to its neutral state. There subprocesses s-190 and s-192
will be prescribed toint-enact_processes andint-instantiate_methods respectively. This cycle
will be repeated as many times as necessary in order to enact every change step from an old
model to a new model. Note that in the internal behaviour ofinstantiate_methods it is known
how many timesenact_processes has to be called.

Figure 136. the logistics-component: viewed as manager of 4 employees

neutral

methods
instant.

generate_setup report_proposal

modify_setup

get_methods

instantiate_methods

setup
generated

setup
reported

methods
available

methods
reported

report_method_design

change steps
available

change steps
reported

generate_change_setup

report_change_steps

instantiate_
methods

s-170 s-172 s-170

s-173s-174s-170

s-176s-174

in t-170

in t-172

in t-170

in t-171, t-182

in t-173, t-183in t-174, t-177

in t-175in t-174,

in t-176, t-179, t-183

employee mapping order used:
int-schedule_design (figures 118 and 132)
int-instantiate_methods (fig. 123 and 133)

t-177

in t-178

s-176get_methods

change setup
generated

int-generate_change_setup (fig. 121 and 134)

in t-180, t-183

int-get_methods (fig. 122 and 135)

s-177
s-179

s-177
s-179
s-182s-182

s-177
s-179
s-182

s-178
s-179
s-182

s-177
s-179
s-182

s-177
s-179
s-183

s-177
s-181
s-182

s-177
s-179
s-183

s-177
s-179
s-182

in t-181, t-182

PMMS

page 119

The administering-component will make the transition from its stateneutral to its statestatus
reported, whenint-report_status has entered its trap t-194, which means a status report can be
given, andint-view_status has entered its trap t-196, which means a status report has been asked.
In the statestatus reported subprocesses s-195 and s-197 will be prescribed toint-report_status
and int-view_status respectively. Now the administering-component will start monitoring all
running processes to check for possible problems. Ifint-report_status has entered its trap t-195,
if moreoverint-view_status has entered its trap t-197, then the administering-component will go
back to its stateneutral. There subprocesses s-194 and s-196 will be prescribed toint-
report_status andint-view_status respectively.
Note thatview_status can be called, from within the internal behaviour ofinstantiate_methods,
before the new model has been enacted completely. Inint-view_status thereforereport_status
can be called before the new model has been enacted completely. It might seem as if this is in-

Figure 137. int-enact_processes’s subprocesses and traps w.r.t. administering

traps
entered

enact
neutral

processes
activated

processes
prescribed

asked
act_enact_processes wait_for_traps

prescribe_
processes

activate_processes

neutral

processes
activated

s-190 s-191

t-190

t-191

Figure 138. int-instantiate_methods’s subprocesses and traps w.r.t. administering

make_

act_instantiate_methods
neutral instant.

asked

status
viewed

processes
made

call_enact_processes

processes

make_

act_instantiate_methods
neutral instant.

asked

status
viewed

processes
mademake_next_processes

processes

s-192

s-193

t-192

t-193

processes
enacted

processes
enacted

call_view_status

PMMS

page 120

consistent. Howeverreport_status can be executed only after the administering-component has
reached its neutral state and this state can be reached only when the model has been enacted
completely.

Figure 139. int-report_status’s subprocesses and traps w.r.t. administering

neutral report
asked

processes
monitored

status
reported

problem
detected

status
reported

problem
no

detected

monitor_processes

report

detect_problem

report_problem

time_out

new
ToR
asked

call_create_
next_ToR

neutral report
asked

processes
monitored

status
reported

problem
detected

status
reported

problem
no

detected

act_report_status monitor_processes

report

detect_problem

report_problem

time_out

new
ToR
asked

call_create_
next_ToR

s-195

s-194

t-194

t-195

PMMS

page 121

Figure 141 shows the administering-component as manager ofint-enact_processes, int-
report_status (called operations),int-instantiate_methods, int-view_status (calling operations).

As mentioned before the communication between the technology-component and its employees
will not be specified here. Note that in a first model describing the (communication between the)
components the logistics-component did not only create a setup for the change steps, but also
the methods for the change steps. Consequently during the phase of designing these change
steps there was no communication between the logistics- and the technology-component. Later
we added this communication, as we decided that the technology-component had to create the
methods for the change steps, just like it had to create the methods for the model. Therefore
some external and internal behaviours had to change. Changing this model to answer to the new
conditions was very easy. So we can say it is a flexible model, that can be adapted easily. Which
concludes our discussion of the communication of the basic components in PMMS.

Figure 140. int-view_status’s subprocesses and traps w.r.t. administering

neutral view
asked

act_view_status

call_report_status
status

reported

s-196

neutral view
asked

act_view_status

status
reported

t-196
s-197

t-197

Figure 141. the administering-component: viewed as manager of 4 employees

employee mapping order used:

int-report_status (figures 125 and 137)
int-view_status (figures 119 and 138)

in t-194, t-196 s-194s-194s-195

int-enact_processes (figures 126 and 135)
int-instantiate_methods (figures 123 and 136)

in t-195, t-197 in t-191, t-193

in t-190, t-192
s-197
s-190
s-192

s-196
s-190
s-192

s-196
s-191
s-193

neutral

enact_processes

status
reported

processes
enacted

report_status

PMMS

page 122

Conclusions and future research

page 123

8 Conclusions and future research
In this thesis the evolution of a particular software processs has been described by means of
WODAN and PMMS. This thesis shows that both WODAN and PMMS are suited to describe
such an evolution. WODAN is especially suited when all details of the evolutionary transfor-
mation itself have to be given explicitly. PMMS does not show these details, but clarifies some
issues on evolutionary change on a more global level by providing a well-structured approach
in presenting the process steps of designing, instantiating and enacting. WODAN does not pro-
vide a structure for these issues. So in fact these methods can be thought of as being comple-
mentary.
First the WODAN approach has been used to describe evolutionary change. It provides a lot of
insight in the actual evolutionary transformation of one model to another model. However the
WODAN approach still has its shortcomings. In [2] guidelines were given on how to switch
from one evolution stage to another. With these guidelines inconsistencies, which arise as a con-
sequence of the change, can be solved or avoided. In [2] these guidelines have been applied to
small models, which consist of only one process. This thesis extends this approach to larger
models. While changing a (larger) model intermediate steps can occur. One can assume that the
larger the model, the higher the number of intermediate steps. In our case three intermediate
steps have been introduced. However the guidelines did not tell how (large) models could be
changed best, i.e. how the number of intermediate steps could be minimized. A topic for furher
research is to analyse this. It is very likely that guidelines or rules for handling the change of
large models can be established, thereby optimizing the WODAN approach.
Another topic for further reseach is to change WODAN so that it will behave in accordance with
the Socca-conventions (see [1]). WODAN now prescribes (new) processes to both internal and
external behaviours. As mentioned before these (new) processes can be viewed as subprocesses
of anachronistic processes. In Socca however only external behaviours can prescribe subproc-
esses to internal behaviours. So WODAN is not yet in accordance with the Socca-conventions.
The solution to this problem is to ensure that WODAN no longer manages the internal behav-
iours directly. In that case the new subprocesses of the internal behaviours should be passed
through somehow via the external behaviours, which actually are the only possible manager
processes within the Socca approach.
Second in this thesis the evolutionary change has been described by means of PMMS, and also
an attempt has been made to describe the basic components of the PMMS-model by means of
Socca. By doing this the ideas behind PMMS were expressed explicitly. It is a topic of future
research to specify these basic components more exactly, especially the administering-compo-
nent, asenact_processes has not been worked out completely yet. Possibly some of the ideas
from WODAN can be used, thereby creating a more complete method to describe evolutionary
change.

Conclusions and future research

page 124

References

page 125

9 References
1 Engels G., Groenewegen L.:SOCCA: Specifications of Coordinated and Cooperative Activ-

ities. Technical Report 94-10, University of Leiden, Department of Computer Science, Feb-
ruary 1994.

2 Wulms A.:Adaptive software process modelling with SOCCA and PARADIGM. M.Sc. the-
sis, University of Leiden, Department of Computer Science, 1995.

3 Willemsen, R.: TEMPO and SOCCA, concepts, modelling and comparison. M.Sc. thesis,
University of Leiden, Department of Computer Science, 1995.

4 Verkoren E.H.:Een kwaliteitsaudit in IT-organisaties. M.Sc. University of Leiden, Depart-
ment of Computer Science, 1993.

5 Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-6 Software Process Example. In: Proc. of the 6th Int. Software Process Workshop:
support for the software process. Japan, October 1991.

6 Penedo M., Finkelstein A., Futatsugi K., Ghezzi C., Kaiser G., Narawanaswamy K., Perry
D.: ISPW-9 Life-cycle (Sub) Process Demonstration Scenario, March 1994.

7 Groenewegen L.:Parallel Phenomena 1-14. Technical Reports 86-20, 87-01, 87-05, 87-06,
87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17, 88-18, 90-18, 91-19, University of Leiden,
Department of Computer Science, 1986-1991.

8 Groenewegen L.:PMMS and Paradigm, Simple Banking Example. Personal notes for a talk
held in Manchester, 1995.

9 Snowdon R.:An Example of Software Change. In Derniame J.C. (ed.):Software Process
Technology. Springer-Verlag, Lecture Notes in Computer Science 635, 1992.

References

page 126

Simultaneous calls described in more detail

page 127

Appendix A Simultaneous calls described in more detail
The operationsprepare_meeting (figures 21, 34 and 40),open_meeting (figures 14 and 36) and
close_meeting(figures 16 and 37) are operations that perform a call to all members of the board
simultaneously. This is however a simplified representation of the realistic and more complicat-
ed behaviour. This more complicated behaviour will be given for the stateagenda_checked
(from the internal behaviour ofprepare_meeting), which is reached aftercall_check_agenda
has been performed. The method used will also hold for the statesconfirm send (also from int-
prepare_meeting), members joined (from int-open_meeting) and members left(from int-
close_meeting).
Suppose there are 3 members. Each of these three members can be either in a state in which the
agenda has not been checked yet or in a state in which the agenda indeed has been checked. This
means there must be 23 (=8) states to cover all possibilities. Note that whenever a state has been
reached in which a particular member has checked its agenda, it is not possible to go to a state
in which the same member has not checked its agenda yet. So there must be 3! (=6) different
ways to go through the 8 states and reach the statedate selected. This behaviour is shown in
Figure 142. In this figure the stateagenda checked has been replaced by a 3D-structure and there
are 6 (= 3!) different ways, via the edges of that structure, to reach the statedate selected. As
mentioned before one can construct a similar STD to modelcall_receive_confirmation,
call_join_meeting andcall_leave_meeting. For n members a n-dimensional structure can be
used.
Not only the internal behaviour ofint-prepare_meeting changes in accordance with the refine-
ment from Figure 142, also the subprocesses and traps w.r.t. a particular member change when
replacing a part ofint-prepare_meeting by the more exact representation of that part. Figure 143
shows the subprocesses and traps w.r.t. member 1. The upper plane of the 3D-structure contains
all states, in which member1 has not checked its agenda yet. So this plane will be trap t-42a
w.r.t. member1 and it will replace the original trap t-42 (Figure 40). The lower plane of the 3D-
structure contains all states, in which member1 indeed has checked its agenda. So this plane and
the statedate selected will be trap t-44a w.r.t. member1 and will replace the original trap t-44.
Also the subprocesses s-42 and s-44 will be replaced by the new subprocesses s-42a and s-44a.
Of course these new subprocesses and traps also contain every other state the original simplified
subprocesses and traps contain. The subprocesses and traps w.r.t. member2 (back and front
planes) and member3 (left and right planes) can be constructed in a similar manner. Note that
any of the three possible statesagenda checked (X,Y) can only be reached whenint-
prepare_meeting has entered both trap t-44a w.r.t. memberX and trap t-44a w.r.t. memberY.
From there it follows that the stateagenda checked (1,2,3) can only be reached whenint-
prepare_meeting has entered trap t-44a w.r.t. every member. So only when every member has
reacted to trap t-42a and consequently has prescribed subprocess s-44a,int-prepare_meeting
can continue to go to the statedate selected, as it is the internal behaviour of an operation of
another class (Figure 40).
In the simplified representation it seemed that every member had to wait for all other members
before returning to its neutral state, as trap t-44 could only be entered if statedate selected had
been reached. When looking at the trap-structure for the exact representation it is clear that this
is not the case. Member1 can react to trap t-44a before statedate selected has been reached and
therefore the external behaviour of Member1 can return to its neutral state without waiting for
the other members. Note that the order in which the members are called does not matter, as all
n! orders are possible.

Simultaneous calls described in more detail

page 128

The dotted transition from the statedate selected to the statemembers selected emphasizes that
the rest of the operation remains as it is.

Figure 142. a part of int-prepare_meeting modelled in more detail

members
selected

checking
asked

agenda
checked
(1,2,3)

agenda
checked

(1)

agenda
checked

(1,2)

agenda
checked

(1,3)

agenda
checked

(2,3)

agenda
checked

(2)

agenda
checked

(3)

date
selected

select_date

call_check_agenda
(member1, member2, member3)

Simultaneous calls described in more detail

page 129

Note that traps t-43 and t-45 remain unaltered by describing the stateagenda checked in more
detail. However they will change by describing the stateconfirm send in more detail.

members
selected

checking
asked

agenda
checked
(1,2,3)

agenda
checked

(1)

agenda
checked

(1,2)

agenda
checked

(1,3)

agenda
checked

(2,3)

agenda
checked

(2)

agenda
checked

(3)

date

select_date

call_check_agenda
(member1, member2, member3)

Figure 143. subprocesses and traps w.r.t. member1 modelled in more detail

checking
asked

agenda
checked
(1,2,3)

agenda
checked

(1)

agenda
checked

(1,2)

agenda
checked

(1,3)

agenda
checked

(2,3)

agenda
checked

(2)

agenda
checked

(3)

date
selected

select_date

selected

s-42a

t-42a

s-44a

t-44a

confirm
send

t-43

call_receive_
confirmation (member)

confirm
send

wait
done

members
selected

t-45

Simultaneous calls described in more detail

page 130

Logical transitions

page 131

Appendix B Logical transitions
As can be seen in Figure 71 logical expressions have been used to label transitions of the man-
ager process CABSecretary. We call such transitionslogical transitions. In Figure 144 the part
of CABSecretary that uses the logical transitions is shown again. Logical transitions can be used
to avoid multiple presences of the same state in the external behaviour of a class. These states
are identical. A logical transition can occur only if a transition has been labeled with an opera-
tion containing a parameter. When, dependent on the value of this parameter in the label of the
transition, different traps have to be entered and after that different subprocesses have to be pre-
scribed, logical transitions can be used. In this case the parametersize causes a logical transition,
as dependent on the value of this parameter to eitherint-big_impact or int-small_impact a dif-
ferent subprocess has to be prescribed.

Figure 145 shows the same part of the manager process CABSecretary as shown in the above
figure without using logical transitions. This figure is in accordance with the Socca-conven-
tions. One can see that the only difference in the labels of both transitions is the value of the
parametersize.

Of course logical transitions could be avoided by replacing the operationsbig_impact and
small_impact with a single operationimpact_estimated, which is parametrized with a parameter
size.

handle_change_request
(request-id, size)

change_request
handled

in t-59, (t-61 or t-63)

in t-58, (t-60 or t-62)

neutral

s-59 s-58
s-60
s-62

s-61 s-60
s-62 s-63

or

employee mapping order used:

int-handle_change_request
int-big_impact
int-small_impact

Figure 144. a part of the manager process CABSecretary using logical transitions

handle_change_request
(request-id, size =big)

change_request
handled in t-59, t-61

in t-58, t-60

neutral

s-59

s-58
s-60
s-62

s-61
s-62

employee mapping order used:

int-handle_change_request
int-big_impact
int-small_impact

handle_change_request
(request-id, size =small)

change_request
handled

in t-59, t-63

in t-58, t-62

s-59
s-60
s-63

Figure 145. multiple transitions (and states) replacing logical transitions

Logical transitions

page 132

List of subprocesses w.r.t. WODAN

page 133

Appendix C List of subprocesses w.r.t. WODAN

subprocess behaviour figure

s-110 Design [2, fig 13]

s-111 MainCAB 8

s-112 DepCAB 9

s-113 ProjectManager 11

s-114 int-request_for_change (old model) 13

s-115 int-prepare_meeting 21

s-116 int-do_meeting (old model) 15

s-117 int-monitor (old model) [2, fig 12]

s-120 intermediate phase of MainCAB 92

s-121 first intermediate phase of DepCAB 93

s-122 first intermediate phase of int-req_for_change 90

s-130 second intermediate phase of DepCAB 98

s-131 intermediate phase of ProjectManager 103

s-132 intermediate phase of CABSecretary 97

s-133 second intermediate phase of int-req_for_change 95

s-134 first intermediate phase of int-prepare_meeting 101

s-140 NewDesign 51

s-141 NewCAB 50

s-142 CABSecretary 48

s-143 Request 49

s-144 int-request_for_change (new model) 52

s-145 second intermediate phase of int-prepare_meeting 106

s-146 intermediate phase of int-do_meeting 105

s-147 int-monitor (new model) 63

s-150 int-do_meeting (new model) 61

Table 1: Subprocesses w.r.t. WODAN

List of subprocesses w.r.t. WODAN

page 134

List of figures

page 135

Appendix D List of figures
1. Class diagram: classes and IS-A and Part-Of relationships . 14
2. Class diagram: attributes and operations . 14
3. Class diagram: classes and general relationships . 15
4. Import/export diagram . 16
5. Import list . 16
6. CAB: possible STD of the external behaviour . 17
7. CAB (solution 1): the interleaved version . 18
8. MainCAB (solution 3): Main-STD of the external behaviour . 18
9. DepCAB (solution 3): Dep-STD of the external behaviour . 19
10. UserRepresentative: STD of the external behaviour . 19
11. ProjectManager: STD of the external behaviour . 20
12. DesignEngineer: STD of the external behaviour . 20
13. int-request_for_change . 21
14. int-open_meeting . 22
15. int-do_meeting . 22
16. int-close_meeting . 23
17. int-do_change . 23
18. int-join/leave_meeting . 23
19. int-check_agenda . 24
20. int-receive_confirmation . 24
21. int-prepare_meeting . 25
22. int-request_for_change’s subprocesses and traps w.r.t. MainCAB . 27
23. DepCAB’s subprocesses and traps w.r.t. MainCAB . 28
24. MainCAB: viewed as manager of 2 employees . 29
25. int-open_meeting’s subprocesses and traps w.r.t. DepCAB . 30
26. int-do_meeting’s subprocesses and traps w.r.t. DepCAB . 30
27. int-close_meeting’s subprocesses and traps w.r.t DepCAB . 31
28. int-do_change’s subprocesses and traps w.r.t. DepCAB . 31
29. int-prepare_meeting’s subprocesses and traps w.r.t. DepCAB . 32
30. DepCAB: viewed as manager of 5 employees . 33
31. int-check_agenda’s subprocesses and traps w.r.t. CABMember . 34
32. int-request_for_change’s subprocesses and traps w.r.t. ProjectManager 35
33. int-receive_confirmation’s subprocesses and traps w.r.t CABMember 35
34. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager 36
35. int-join/leave_meeting’s subprocesses and traps w.r.t. CABMember 37
36. int-open_meeting’s subprocesses and traps w.r.t. CABMember . 38
37. int-close_meeting’s subprocesses and traps w.r.t. CABMember . 38
38. int-do_change’s subprocesses and traps w.r.t. Projectmanager . 39
39. ProjectManager: viewed as manager of 8 employees . 40
40. int-prepare_meeting’s subprocesses and traps w.r.t. CABMember . 42
41. DesignEngineer: viewed as manager of 6 employees . 43
42. UserRepresentative: viewed as manager of 6 employees . 44
43. Class diagram of the new model: classes and IS-A and Part-Of relationships 46
44. Class diagram of the new model: attributes and operations . 47
45. Class diagram of the new model: classes and general relationships . 48
46. Import/export diagram . 49
47. Import list . 49
48. CABSecretary: STD of the external behaviour . 50

List of figures

page 136

49. Request: STD of the external behaviour . 50
50. NewCAB: STD of the external behaviour . 51
51. NewDesign: STD of the external behaviour . 52
52. int-request_for_change . 53
53. int-add_to_list . 54
54. int-send_list . 54
55. int-handle_change_request . 54
56. int-reject_request . 55
57. int-big_impact . 55
58. int-small_impact . 55
59. int-do_change . 56
60. int-request_for_meeting . 56
61. int-do_meeting (new version) . 57
62. int-schedule_and_assign_tasks . 58
63. int-monitor . 58
64. int-add_to_list’s subprocesses and traps w.r.t. CABSecretary . 59
65. int-request_for_change’s subprocesses and traps w.r.t. CABSecretary 60
66. int-handle_change_request’s subprocesses and traps w.r.t. CABSecretary 61
67. int-big_impact’s subprocesses and traps w.r.t. CABSecretary . 62
68. int-small_impact’s subprocesses and traps w.r.t. CABSecretary . 62
69. int-send_list’s subprocesses and traps w.r.t. CABSecretary . 63
70. int-request_for_meeting’s subprocesses and traps w.r.t. CABSecretary 63
71. CABSecretary: viewed as manager of 7 employees . 64
72. int-handle_change_request’s subprocesses and traps w.r.t. Request . 65
73. int-do_meeting’s (new version) subprocesses and traps w.r.t. Request 66
74. int-do_change’s (new version) subprocesses and traps w.r.t. Request 67
75. int-reject_request’s subprocesses and traps w.r.t. Request .67
76. int-big_impact’s subprocesses and traps w.r.t. Request . 68
77. int-small_impact’s subprocesses and traps w.r.t. Request . 68
78. Request: viewed as manager of 6 employees . 69
79. int-do_meeting’s (new version) subprocesses and traps w.r.t. NewCAB 70
80. int-request_for_meeting’s subprocesses and traps w.r.t. NewCAB . 71
81. int-request_for_change’s subprocesses and traps w.r.t. NewCAB . 72
82. NewCAB: viewed as manager of 6 employees . 73
83. int-monitor’s subprocesses and traps w.r.t. NewDesign . 74
84. NewDesign: viewed as manager of int-monitor . 75
85. int-request_for_meeting’s subprocesses and traps w.r.t. ProjectManager 77
86. int-do_change’s subprocesses and traps w.r.t. Projectmanager . 77
87. ProjectManager (new version): viewed as manager of 8 employees . 78
88. global external behaviour of WODAN . 83
89. first prescriptive step of WODAN . 84
90. the first intermediate phase of int-request_for_change . 84
91. int-request_for_change’s subprocesses and traps w.r.t. MainCAB . 85
92. intermediate phase of MainCAB . 85
93. first intermediate phase of DepCAB . 86
94. second prescriptive step of WODAN . 86
95. the second intermediate phase of int-request_for_change . 87
96. int-request_for_change’s subprocesses and traps w.r.t. TempCABSecretary 88
97. TempCABSecretary: viewed as manager of int-request_for_change 88
98. second intermediate phase of DepCAB . 89

List of figures

page 137

99. int-put_request_on_list: a temporary operation of the class CAB . 90
100. int-cancel_meeting: a temporary operation of the class CABMember 90
101. first intermediate phase of int-prepare_meeting . 91
102. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager 92
103. ProjectManager: viewed as manager of int-prepare_meeting . 93
104. third prescriptive step of WODAN . 94
105. intermediate phase of int-do_meeting . 95
106. second intermediate phase of int-prepare_meeting . 95
107. final prescriptive step of WODAN . 96
108. WODAN: viewed as manager of 11 employees . 97
109. a basic PMMS-model and its four components . 99
110. a PMMS-model describing Change Management . 101
111. Class diagram: attributes and actions of the basic components . 101
112. Import/export diagram . 102
113. import list . 102
114. external behaviour of the managing-component . 103
115. external behaviour of the logistics-component . 104
116. external behaviour of the technology-component . 104
117. external behaviour of the administering-component . 104
118. int-schedule_design . 105
119. int-view_status . 106
120. int-generate_setup . 106
121. int-generate_change_setup . 106
122. int-get_methods . 107
123. int-instantiate_methods . 107
124. int-make_methods . 107
125. int-report_status . 108
126. int-enact_processes . 108
127. int-schedule_design’s subprocesses and traps w.r.t. managing . 110
128. int-report_status’s subprocesses and traps w.r.t. managing . 111
129. int-view_status’s subprocesses and traps w.r.t. managing . 112
130. int-instantiate_methods’s subprocesses and traps w.r.t. managing 112
131. managing-component: viewed as manager of 4 employees . 113
132. int-schedule_design’s subprocesses and traps w.r.t. logistics . 114
133. int-instantiate_methods’s subprocesses and traps w.r.t. logistics . 115
134. int-generate_change_setup’s subprocesses and traps w.r.t. logistics 116
135. int-get_methods’s subprocesses and traps w.r.t. logistics . 117
136. the logistics-component: viewed as manager of 4 employees . 118
137. int-enact_processes’s subprocesses and traps w.r.t. administering 119
138. int-instantiate_methods’s subprocesses and traps w.r.t. administering 119
139. int-report_status’s subprocesses and traps w.r.t. administering . 120
140. int-view_status’s subprocesses and traps w.r.t. administering . 121
141. the administering-component: viewed as manager of 4 employees 121
142. a part of int-prepare_meeting modelled in more detail . 128
143. subprocesses and traps w.r.t. member1 modelled in more detail . 129
144. a part of the manager process CABSecretary using logical transitions 131
145. multiple transitions (and states) replacing logical transitions . 131

List of figures

page 138

