EVOLUTIONARY CHANGE
the evolution of change management

by Jeroen van der Zon
University of Leiden, Department of Computer Science
April 24, 1996

page 1

page 2

Abstract

In this thesis, evolutionary change is studied by describing the evolution of Change Manage-
ment (CM). CM is one of the important aspects of the software process modelling lifecycle. It
describes the organizational aspects of changing a software product. In order to be able to de-
scribe the evolution of CM, two models describing CM have been developed first. Both models
have been designed with the use of Socca. The first model describes the basic requirements for
a CM-model. The second model is an extension of the first model. The CM-process will under-
go an evolutionary transformation from this first model to this second model. This will be called
evolutionary change. The evolutionary change is described by means of an extra process com-
ponent called WODAN, first introduced in [2]. In order to relate the WODAN approach to sim-

ilar approaches used by others, also PMMS [9] has been used to describe the change.

page 3

page 4

Table of contents

DS ACot 3
Table Of CONLENTS o e e e e 5
1 General INtrodUCHION ot 7
2 Soccaand Paradigm 9
2.1 Introduction iNt0 SOCCA ottt 9
2.1.1 Thedata perspectiveot e 9
2.1.2 The behaviour perspective e e e 9
2.1.3The proCess PEIrSPECHIVEot e e e e e e 10
2.2 Introduction into Paradigm e 10
3 Modelling Change Managementttt e e e 13
3.1 INrodUCTION o 13
3.2 Data PerSPECHIVE . . . oot e e 13
3.3 BEhaVviour PeISPECHIVE oot t eea 16
3.3.1 Designing the external behaviours oftheclasses 16
3.3.2 Designing the internal behaviours of the export-operations 21
3.3.3 Adding Paradigm to model the communication 26
4 Thenew model 45
4.1 INtrodUCiON o 45
4.2 Designing the new model 45
4.2.1 Designing the new external behaviours oftheclasses 50
4.2.2 Designing the new internal behaviours of the export-operations 53
4.3 The communicationinthe newmodel i, 59
5 WODAN, amethodtodescribechange i, 79
B.10INtrodUCtioN oo e 79
B.2Typesof change 80
5.3 Problems as a consequenceofchange i, 80
6 Changing the software process model usingWODAN 83
6.1 Asetup for WODAN e e 83
6.2 Designing WODAN to managethechange 84
7 PMMS L 99
7.1 INtrodUCHION o 99
7.2 Change Management modelled by means of PMMS 100
7.3 Behaviour of the basic components 101
7.4 Communication between the components i i 109
8 Conclusions and futureresearch 123

page 5

O REfEIENCES . . . o o o 125

Appendix A. Simultaneous calls describedinmoredetail 127
Appendix B. Logical transitions e 131
Appendix C. List of subprocesses w.r.t. WODAN, 133
Appendix D. LISt Of fiQUIesS oo e 135

page 6

General introduction

1 General introduction

Whenever a software process model does not answer to the expectations or cannot cope with
the actual situation anymore, it will have to be changed. This type of change is called evolution-
ary change. It was first introduced in [2]. In [2] also a method to describe this type of change
was introduced and a small example was presented. This thesis will present a larger, more com-
plicated and realistic example of the so-called evolutionary change of a software process model.
The software process model on which this example will be based, is the software process model
describing Change Management (CM). CM is one of the important aspects of the software proc-
ess modelling lifecycle. It describes the organizational aspects of changing a software product.
This type of change is called configuration change in order to distinguish it from the evolution-
ary change.

In order to be able to present the example describing the evolutionary change of CM, CM has
to be modelled first. A base scenario for CM has been given in ISPW-9 [6]. Based on this sce-
nario the CM-aspect of the lifecycle will be modelled. The scenario also involves the aspect of
problem reporting, however the models in this thesis will not consider this issue. Also the actual
change of the software will not be considered. The models in this thesis will focus upon the way
the configuration change is embedded into CM and the organizational aspects of CM involving
the Change Advisory Board (CAB). The CAB can be seen as the coordinator of the configura-
tion change management process and consists of several (human) team members.

There are many ways to model (aspects of) a software process. Socca (and Paradigm, an inte-
grated part of Socca) is one of them. Socca is especially suited to model CM, as it has not only
been developed for describing the technical parts of the software process, but also for the human
parts, or rather the human team members, of the software process. Therefore the models, that
describe Change Management, will be designed with the use of Socca. The first model describes
the basic requirements for a CM-model. Whenever a change of a software product is requested,
a meeting will be prepared and opened. In this meeting the request will be discussed and even-
tually accepted or rejected. In case the request has been accepted, it will trigger a change in the
software. The model will be an extension of the original example presented in ISPW-6 [5]. Parts
of the model to be designed can also be applied to other situations, as it in fact describes a way
to plan a meeting.

As mentioned above this thesis elaborates further upon the type of change called evolutionary
change. Therefore a second model, that describes Change Management too, has to be designed.
The first model described just the basic requirements for a Change Management model. The
second model is a more realistic extension of the first model. There will be made a distinction
between big and small changes, moreover more than one request can be handled in a meeting.
After designing the second model the enactment of this model is desired. In order to accomplish
this one has to switch from the first to the second model. This is the type of change called evo-
lutionary change. The first model will represent the first evolution phase, and the second model
will represent the second evolution phase. In this thesis these models will be discussed more or
less separately, without the evolutionary transformation from the first into the second model.
That will be discussed in another chapter.

In order to facilitate the modelling of both CM models, Socca will be extended with some new
concepts. These concepts are "layered visibility" (first introduced in [3]), logical transitions and
simultaneous calls. These new concepts will of course be clarified in this thesis.

Before presenting the structure of this thesis, | want to thank Luuk Groenewegen for the excel-

lent guidance and the many discussions which led to a better understanding of the ideas behind
Change Management, WODAN and PMMS.

page 7

General introduction

This thesis has been organized as follows. The next chapter consists of a short introduction into
Socca and Paradigm. Those readers familiar with Socca and Paradigm may skip this chapter.
Chapter 3 describes the first Change Management model. Also the concept of "layered visibil-
ity" is introduced. In chapter 4 the model as presented in chapter 3 will be extended in order to
meet more realistic requirements. In chapter 5 a method [2] with which the change from the first
to the extended model can be described is introduced and in chapter 6 this change is modelled
with the use of that method. Finally, in chapter 7, another method to describe evolutionary
change is discussed. It will clarify the way evolutionary change is conducted. Appendices de-
scribing simultaneous calls (Appendix A) and logical transitions (Appendix B) have been added
too.

page 8

Socca and Paradigm

2 Socca and Paradigm

2.1 Introduction into Socca

In [3] a complete introduction of Socca has been given. Those readers familiar with it may skip
this chapter.

Socca, which stands f&pecificationsof Coordinated an€ooperativeActivities, is a software

process modelling methodology, developed at the University of Leiden, department of Compu-
ter Science. Socca has not only been developed for describing the technical parts of the software
process, but also for the human parts, or rather the human team members, of the software proc-
ess. The idea behind Socca is the separation of concern. A Socca model describes the software
process from three different perspectives; the data perspective, the behaviour perspective and
the process perspective. To achieve this, Socca consists of (parts of) several formalisms com-
bined together to describe the software process models.

2.1.1 The data perspective

The data perspective describes the static structure of the system and its relation to its environ-
ment by means of object-oriented class diagram models, based on Extended Entity-Relationship
(EER) models. One of the features of the classes is that they can have export-operations. These
export-operations are imported in other classes in order to be called (or used) from there. To
visualize this with respect to the class diagram in Socca an extra relationship is introduced be-
tween the various classes; the uses relationship. Consequently the class models have been ex-
tended with an extra diagram, the import/export diagram, to display the uses relationship. The
other relationships that can be identified in the class diagram are the IS-A relationship, the Part-
Of relationship and the general relationship. The I1S-A relationship is used to describe the inher-
itance between the different classes and the Part-Of relationship expresses which class is part of
another class. The general relationship describes the relation between the different classes and
is usually presented in a separate diagram.

2.1.2 The behaviour perspective

The behaviour perspective covers the dynamic part of the software process. The behaviour per-
spective and the coordination of the behaviour will be described by State Transition Diagrams
(STD’s) and Paradigm on top of them. The STD'’s are used to describe the order in which the
export-operations of a class can be called. So in fact, the behaviour of a class is described with
an STD of which some transitions are labelled with the export-operations of that class. This is
calledthe external behaviowf the class. Also each export-operation hasi@nnal behaviouyr

this internal behaviour actually achieves the task the corresponding export-operation is sup-
posed to perform. To describe these internal behaviours also STD’s have been used. Together
the external behaviour of a class and the internal behaviours of its export-operations form the
behaviour of that class.

It is obvious that the cooperation between the external behaviour of a class and the internal be-
haviours of its export-operations has to be coordinated somehow. To this aim Paradigm has
been incorporated into Socca. Moreover, the internal behaviour of an export-operation can also
call export-operations from other classes. Therefore it is not only necessary to have communi-
cation between the external behaviour of a class and the internal behaviours of its export-oper-
ations, but there should also be communication between the external behaviour of one class and
the internal behaviours of another class from where the there imported export-operations are be-
ing called. This communication is also modelled by means of Paradigm. Section 2.2 gives a
short introduction into Paradigm.

page 9

Socca and Paradigm

2.1.3 The process perspective

The process perspective will be modelled by Object Flow Diagrams (OFD’s). As the integration
of OFD’s into Socca has not been completed yet, the process perspective will not be discussed
any further in this thesis.

2.2 Introduction into Paradigm

Paradigm Parallelism, itsAnalysis,Design and mplementation by &eneralMethod) is a
specification mechanism originally developed for the specification of coordinated parallel proc-
esses. A Paradigm model can be designed in the following manner:

1 Describe the sequential behaviour of each process by means of an STD. In case of a Socca
model the processes will be the classes and the export-operations, and the STD’s will
describe the external and internal behaviours.

2 Within an STD that describes internal behaviour a set of subdiagrams &dilecesses
Is indicated. These subprocesses are temporary behaviour restrictions of the complete
behaviour. A subprocess reflects the allowed behaviour of a process within its STD before
or after communication has taken place.

3 Within each subprocess certain sets of states, so-dedlesl can be identified. They are
usually represented by a shaded polygon drawn around the states which form the trap. By
entering such a trap, the STD indicates that it is ready to switch from the subprocess to
which this trap belongs to another subprocess. The set of traps of an STD is cdfimg the
structureof that STD. An important property of a trap is that, within the subprocess the trap
belongs to, there are no transitions leading from one of the states of a trap to another state
outside the trap. Consequently when an STD has entered a trap, the STD cannot leave its
trap as long as the same subprocess restriction remains valid.

4 An STD that decribes external behaviour is calladamager procesdt coordinates the
behaviour restrictions of some of the STD’s having subprocesses. An STD that is being
coordinated by the manager process is calleehgployee process that manager process.
Depending on the state it is in, the manager process prescribes subprocesses to each of its
employees. Every employee may only behave according to the subprocess which is cur-
rently being prescribed by its manager process. Next, the manager process monitors the
behaviour of its employees. Whenever an employee has entered a trap to another subpro-
cess, the manager will make the corresponding transition to another state where it prescribes
the subprocesses the employee wants to enter. However it can also postpone the prescribing
of the new subprocess to its employee as long as it wants to, possibly depending on traps
having been reached by other employee processes. The mapping of the states of the man-
ager process to the subprocesses of its various employees and the mapping of the transitions
of the manager process to the traps of its employees is callsthtbection interpreteof
the manager process with respect to its employees. So the state-action interpreter labels
each state of the manager process with the subprocesses it prescribes in that state to its
employees and labels the transitions of the manager process with those traps that have to be
entered for this transition to be selected.

Each manager process, i.e. external behaviour, is manager over:
1 each of its own internal behaviours and also over

2 each internal behaviour containing a call to one or more of the export-operations of that
manager process.

An individual STD may be the employee of more than one manager. In that case the STD will
have a separate set of subprocesses and a separate trap structure with respect to each of its man-

page 10

Socca and Paradigm

agers. The behaviour of the STD will be controlled by all of its manager processes together and
the STD will be restricted to the intersection of the different subprocesses prescribed by the dif-

ferent manager processes.
More information on Paradigm can be found in [7].

page 11

Socca and Paradigm

page 12

Modelling Change Management

3 Modelling Change Management

3.1 Introduction

In order to be able to present the evolutionary change of Change Management, models describ-
ing Change Management are necessary. Only then Change Management can evolve from one
evolution phase to another. Therefore in this chapter a model describing Change Management
will be designed. This model will represent the first evolution phase.

The model will be relatively simple, just clarifying some essentials of Change Management. For
every change-request, i.e. a request for changing a software product, a meeting, in which the
request is discussed, will be prepared and opened. Consequently every request corresponds with
a meeting. There will be made no difference between requests. This implies that all requests will
be treated the same way. Because of "layered visibility” (explained later) simultaneous requests
are possible, i.e. requests can be made simultaneously. Because of parametrization of operations
meetings can also be held concurrently. The model itself is an extension of the original example
(ISPW-6). In the next sections the data-perspective of the model and the behaviour perspective
of the model will be given. To describe the behaviour perspective the external behaviours of the
classes, the internal behaviours of the export-operations and the communication between these
behaviours will be given. The process-perspective will not be discussed. Later on, in Chapter 4,
the model will be extended and better tuned to what is needed in reality. Then more than one
request can be discussed in a meeting and also there will be made a difference between big and
small changes. That model will represent the second evolution phase.

3.2 Data perspective

In order to describe the data perspective of the model an EER based class diagram has to be de-
fined. In this class diagram three extra classes have been defined compared to the original ex-
ample (ISPW-6 [5]):

» Change Advisory Board (CAB): the coordinator of the change management process, it con-
sists of several (human) team members; a ProjectManager, two DesignEngineers (for
design expertise), two Quality-AssuranceEngineers (for testing expertise) and two User-
Representatives. The ProjectManager is also the board-leader, who prepares a meeting after
it has been requested.

» CABMember: a superclass, which possesses all properties members of the board should pos-
sess. Its subclasses are Engineer and UserRepresentative. Note that not every Engineer
always acts as a CABMember, although it has all the properties of the class CABMember,
because not every instance of the class Engineer is related to every instance of the class
CAB (see also Figure 1).

» UserRepresentative: one of the members of the board and a subclass of the class CABMem-
ber.

Figure 1 shows the class diagram of the model. Not all details are given on the data perspective
level. Later on in the model, at the behaviour perspective level (section 3.3.1), a parallel descrip-
tion in the external behaviour of CAB will be introduced. CAB will be split into two (sub)class-

es: MainCAB (has only one instance) and DepCAB (has several instances). MainCAB will be
the manager of DepCAB. This is called "layered visibility" and was first introduced in [3]. By
this means parallel behaviour in one and the same external behaviour is modelled. MainCAB
and several instances of DepCAB can be executed concurrently, thereby making simultaneous
requests possible. The separation of MainCAB and DepCAB is not visible at the data perspec-
tive level.

page 13

Modelling Change Management

Note that every change, not only the first change, by which the software is created, is considered
to be a project.

User- CAB
Repr.
| °
CAB-
Member
Engineer Documen

A

Design Test
Document Document

AL

Compiler Project- QA
Manager Engineer

D S e S

Tools Project Design Code Test Test
Team Plan Pack

Project
Docs

Project

S

Figure 1. Class diagram: classes and IS-A and Part-Of relationships

Figure 2 shows the operations of the three extra classes and the additional operation of the class
ProjectManager. In the latter case for the sake of completeness the original attributes and oper-
ations have also been mentioned.

ProjectManager CAB UserRepresentative CABMember
name

assign_and_schedule_t. | request_for_change join_meeting
monitor open_meeting leave_meeting
prepare_meeting do_meeting check_agenda

close_meeting receive_confirmation

do_change

authorize

cancel

Figure 2. Class diagram: attributes and operations

page 14

Modelling Change Management

The export-operations of the class CAB have all (implicitly) been parametrized with a parame-
terrequest-id just like the operationsssign_and_schedule_tasksdmonitor of ProjectMan-

ager have (implicitly) been parametrized with a paraméter name(see [1]). Also the
operationprepare_meetindias been parametrized with the paramegquest-id In section

3.3.1 the external behaviour of CAB will be modelled and a reason for using the parameter
guest-idwill be given.

Note that the classes ProjectManager, DesignEngineer, QualityAssuranceEngineer (through the
class Engineer) and UserRepresentative all inherite the opefjationaeetingleave _meeting
check_agendandreceive_confirmatiofrom the class CABMember.

In the following step of describing the data perspective of the model the general relationships
between the classes have to be defined. Only the new general relationships are shown in Figure

3.
User-
Repr.

CAB-
Member

Engineer

exchanges infg

?

Project-
Manager

Figure 3. Class diagram: classes and general relationships

As a last step in the description of the data perspective of the model, the uses relation is given
(Figure 4) together with the corresponding import list (Figure 5). Note that only the new uses
relations are given in the figures, as the old uses relations will not be useful for our discussion.

page 15

Modelling Change Management

Project- usel CAB
Manager 4
use2
CAB- L
use3 Member use4 use5

Figure 4. Import/export diagram

usel use3
prepare_meeting check_agenda (member)
schedule_and_assign_tasks receive_confirmation (member)
use2 use4
open_meeting join_meeting (member)
do_meeting leave_meeting (member)
close_meeting useb5
do_change

Figure 5. Import list

Note that the operatiomhieck_agendaeceive_confirmatiofjoin_meetingandleave _meeting

are parametrized with the parametembemas an explicit reminder of the fact that some details

in the calling operations have been omitted. These details, which actually are rather complicat-
ed, will be discussed in Appendix A.

3.3 Behaviour perspective

3.3.1 Designing the external behaviours of the classes

First the external behaviours of the classes will be specified. From then on, the order in which
the export-operations can be called will be known. Not only the classes CAB and UserRepre-
sentative have to be modelled, but also the classes ProjectManager, DesignEngineer and Qual-
ityAssuranceEngineer have to be remodelled because some new operations have to be added to
model Change Management. Note that the external behaviour of the class CABMember will not
be given here, because it is a generalization of some specialized classes. The class itself has no
instances, only through its subclasses.

page 16

Modelling Change Management

A possible STD for the class CAB is given in the following figure.

The STD, presented in Figure 6, provides all the necessary export-operations, but there is one
major disadvantage: because of the sequentiality of the model one has to wait for a previous
change being implemented and after that authorized or cancelled before requesting a new

open_meeting
>

do_meeting

meeting
opened

request_

close meetinc
for_change - <

meeting
closed

do_change

authorize

cancel software

develop.

Figure 6. CAB: possible STD of the external behaviour

change.

To solve this problem 3 other ways to model the external behaviour, thereby modelling Change

Management, are possible:

1

Note that whatever solution is chosen, for every request a separate meeting has to be prepared
and opened. But these three solutions have the advantage that requests, meetings and the reali-
sation of changes can be executed simultaneously (unless e.g. the same person is supposed to

The first solution is the interleaved version. As one can see in Figure 7, it is not immediately

clear in what order the operations are called.

The second solution has to do with an n-dimensional state-space (n = number of simulta-

neous requests). For large n this will be very complicated.

The third solution has to do with “layered visibility” or "zooming", as you are zooming in

on an operation, in this casequest_for_changdf one uses this solution to describe the

external behaviour, the STD of the external behaviour will be split in two layers. So actually
one gets two STD’s when describing external behaviour: one STD modelling the first layer
of visibility and one STD modelling the second layer of visibility (see Figures 8 and 9).

Layered visibility is not supported by the original SOCCA approach.

join two or more overlapping meetings).

page 17

Modelling Change Management

request_for_
change

cancel

open_meeting authorize

authorize

neutral

close do_change

do_meeting
meeting

software
develop.

meeting
closed

Figure 7. CAB (solution 1): the interleaved version

In order to model Change Management the third solution will be used. Normally the external
behaviour of a class is described by one STD. This allows only the description of sequential be-
haviour in the external behaviour. In this case more than one STD is used to describe the exter-
nal behaviour. This allows a parallel description in the external behaviour. Two STD-types can
be distinguished to describe the external behaviour. There is one STD type called Main-STD
and some STD’s which are dependent of this Main-STD, these STD-types are called Dep-
STD’s. In this case however there is only one Dep-STD (actually there are as many Dep-STD’s
as there are requests, but the external behaviours of these Dep-STD’s are all similar). The de-
pendencies between the Main-STD and the Dep-STD have to be expressed in the external be-
haviour. This can be done by giving the export-operation of the Dep-STD, that makes clear the
dependency between the Main-Std and the Dep-STD, the same name as the export-operation of
the Main-STD preceded by the preflgp(see also [3]).

request_for_change

neutral

w.r.t WODAN this is subprocess s-111 and its state space is trap t-111
Figure 8. MainCAB (solution 3): Main-STD of the external behaviour

Every time a change is requested the external behaviour of DepCAB will be activated. For that
reason the first transition of the external behaviour of DepCAB is labeled with
dep_request_for_chang8imultaneous requests activate their own external behaviour of Dep-
CAB, so for every request a new meeting will be prepared and opened. To that aim the operation
request_for_changkas been parametrized with a parametquest-id So there are as many
operationgequest_for_changetateshange requesteahd instances of DepCAB as there are

page 18

Modelling Change Management

requests. As every instance of DepCAB uses the same set of export-operations, these export-
operations also have to be parametrized (with the pararegtest-id, otherwise two or more
instances of DepCAB could not operate concurrently when they want to use the same operation
at the same time. Note that this parametquest-idhas not been indicated explicitly in Figure

8 and Figure 9.

open_meeting
>

do_meeting

meeting
opened

dep_request_

for change close_meeting

meeting
closed

do_change

authorize

cancel

software
develop.

w.r.t. WODAN this is subprocess s-112 and its state space is trap t-112

Figure 9. DepCAB (solution 3): Dep-STD of the external behaviour
The class UserRepresentative contains only export-operations relevant to Change Management.
These operations are all inherited from the class CABMember. The internal behaviours of other
export-operations are less relevant for our discussion, so they will not be shown in the external
behaviour of the class UserRepresentative.

join_
meeting

receive_
confirmation

leave
meeting

in CAB-
meeting

confirm
received

Figure 10. UserRepresentative: STD of the external behaviour
In addition the external behaviour of the class ProjectManager as well as the external behaviour
of the class DesignEngineer is changed, because new operations have been added in comparison
with the original example (ISPW-6). These operations @reck agendajoin_meeting
leave_meetingndreceive_confirmationThey are inherited, via the class Engineer, from the
class CABMember. Figure 11 shows the changed external behaviour of ProjectManager. The
changed external behaviour of the class DesignEnigineer is given in Figure 12.

page 19

Modelling Change Management

receive_
confirmation

—

confirm
received

schedule_and_
assign_tasks

starting
schedule

neutral

monitor
prepare_ starting
meeting monitor
starting - _
preparatio leave_ join_meeting
meeting
check .
agenda in CAB-
meeting

Figure 11. ProjectManager: STD of the external behaviour
w.r.t. WODAN this is subprocess s-113 and its state space is trap

starting
code

starting
review

starting
design

review

join_
meeting

leave

receive_ N
' i meeting

in CAB-
meeting

confirm
received

Figure 12. DesignEngineer: STD of the external behaviour

Note that only the ProjectManager can decide which tasks a DesignEngineer has to perform.

page 20

Modelling Change Management

The order, in which these tasks have to be performed, is not controlled by the ProjectManager.
As soon as an operation has been activated, it will run on the background and a new operation
can be activated. If one wants a DesignEngineer to be able to switch between its tasks explicitly,
one has to extend the model. Such an extended model is given in [3, figure 3.4.4 or figure 3.4.5].

The class QualityAsurranceEngineer also inherits the export-operations of the class CABMem-
ber. Therefore its external behaviour has to be changed too. As the class QAENgineer is not that
important for our discussion, its changed external behaviour will not be given here. The behav-
iour can be remodelled the same way the external behaviour of the class DesignEngineer has
been remodelled.

3.3.2 Designing the internal behaviours of the export-operations

After specifying the external behaviours of the classes, the internal behaviours of the operations
can be specified. The conventions used to specify the internal behaviours of the operations are
the same as the conventions used in [1]. Two different types of operations can occur within an
internal behaviour specification. First of all, imported operations can be used. They are preceed-
ed by the prefixall. The second type of operations are the internal operations within the inter-
nal behaviour and will not be worked out further. The internal operation having thegmefix
(short foractivatg reflects the fact that the internal behaviour is activated, which not means it
Is actually going.

The export-operations of the class CAB sequest_for_changécalled by a UserRepresenta-

tive or perhaps the Configuration Control Board (CCBa)ce| authorize(both called by the
CCB),open_meetingdlo_meetingclose _meetingall three called by the class ProjectManager
from within prepare_meetingand do_change(called by the class CAB itself from within
do_meetiny The internal behaviours oéincelandauthorizewill not be given here as they are
irrelevant to the problem. Also the model would grow unnecessarily big.

The internal behaviours oéquest_for_chang®epen_meetinglo_meetingclose_meetingnd
do_changeare shown in figures 13, 14, 15, 16 and 17 respectively. As mentioned before these
operations have been parametrized implicitly with the parameeest-id

act_request_for_change

no
request

call_prepare_
meeting

w.r.t. WODAN this is subprocess s-114

Figure 13. int-request_for_change

page 21

Modelling Change Management

act_open_meeting

neutral

call_join_
meeting
(member)

start_meeting

Figure 14. int-open_meeting

Note that the statmembers joineds a simplified representation of an (sub)STD in which all
members of the board are called in some order. In order to remind one that some details have
been omitted, the parametercall_join_meetinghas been indicated explicitly. The exact rep-
resentation of the (sub)STD does not matter here, more information can be found in Appendix
A.

act_do_meeting

no
meeting

meeting
started

check_request

reject_request

meeting

request
ended

checked

call_do_change

meeting
ended

w.r.t. WODAN this is subprocess s-116 and the state space is trap t-116

Figure 15. int-do_meeting

page 22

Modelling Change Management

close
meeting
asked

act_close_meeting

neutral

end_meeting

call_leave_meeting (member) meeting

closed

Figure 16. int-close_meeting

Note that the statmembers lefis a simplified representation of an (sub)STD in which all mem-
bers of the board are called in some order. In order to remind one that some details have been
omitted, the parameter ¢all_leave_meetingas been indicated explicitly. The exact represen-
tation of the (sub)STD does not matter here, more information can be found in Appendix A.

change

act_do_change
started

neutral

call_schedule_and_
assign_tasks

scheduled

Figure 17. int-do_change

Note thatcall_schedule_and_assign_taskaplicitly has been parametrized with the parameter
doc_namégsee also [1]).

The export-operations of the class CABMember 3goin_meeting leave meeting
check_agendandreceive_confirmatiofshown in figures 18, 19 and 20 respectively). As men-
tioned before these operations are all inherited by the classes ProjectManager, DesignEngineer,
QAEngineer (all through Engineer) and UserRepresentative.

act_join_meeting

CAB
meeting
joined

CAB
meeting
left

act_leave_meeting

Figure 18. int-join/leave_meeting

Note that the internal behaviours originally corresponding to the opergionmeetingand
leave_meetinpave been merged into one STD. The reason to do so is that the operations have
a very strong influence on each other. The internal behaviours originally corresponding to the
operations are exactly opposite to each other, i.e. activation of one operation implies that the
other operation has to return to its neutral state. This property has made it possible to merge the
operations.

page 23

Modelling Change Management

act_check_agenda

check
started

pick_
possible _dates

dates report_dates

reported

Figure 19. int-check_agenda

date o
meeting
confirmed

act_receive_confirmation

no
confirm

agenda
updated

put_date in_agenda

Figure 20. int-receive_confirmation

The export-operations of the class ProjectManages@redule_and_assign_taskslled by

the class CAB from withido_changg monitor(called by the class ProjectManager itself from
within schedule_and_assign_tasksidprepare_meetingcalled by the class CAB from within
change_for_requelt Also the class ProjectManager inherites the operajmnsmeeting
leave_meetingcheck _agendaandreceive_confirmatiorfrom the class CABMember. The
STD’s of the internal behaviours s€hedule_and_assign_tasdsd monitor can be found in

[1]. As they are not very important for our discussion, we simply omit them here. It is from the
internal behaviour of prepare_meeting (see Figure 21) that check _agenda
receive_confirmatiomnd alsmpen, do_andclose_meetingre called. The last three opera-
tions have been parametrized with the paranrefguest-id In order to pass this parameter
through,int-prepare_meetingas been parametrized too. Another reason to do so is that one has
to be able to prepare more than one meeting at a time.

page 24

Modelling Change Management

act_prepare_meeting

no
prepare

prepare
started

select_
members

call_close_meeting

meeting
ended

call_
check _agenda
(member)

call_do_meeting

agenda
checked

call_open_meeting select_date

date
selected

call_receive_
confirmation
(member)

waiting

w.r.t. WODAN this is subprocess s-115 and the state space is trap t-11!
Figure 21. int-prepare_meeting

The result ofcall_check _agends a list of possible dates and times. We simply assume that
always a suitable date and time can be selected. Note that thegstadiea checkeid a simpli-

fied representation of an (sub)STD in which all members of the board are called in some order.
In order to remind one that some details have been omitted, the pararoaliecimeck _agenda

has been indicated explicitly. The exact representation of the (sub)STD does not matter here,
more information can be found in Appendix A. The same holds for thecstafien send

The export-operations of the class DesigEngineedesan codeandreview (all three called

by the class ProjectManager from witlsichedule_and_assign_tagk§he STD'’s of the inter-

nal behaviours of these operations can be found in [1]. Also the class DesignEngineer inherites
the operationgin_meetingleave _meetingeceive_confirmatiomndcheck_agend&om the

class CABMember.

The export-operations of the class UserRepresentative relevant to Change Management are
join_meetingleave _meetingeceive_confirmatioandcheck agendénherited from the class
CABMember). The internal behaviours of other export-operations are less relevant for our dis-
cussion. So they will be omitted.

page 25

Modelling Change Management

3.3.3 Adding Paradigm to model the communication

After the specification of the external and internal behaviours of the classes and operations, the
communication between these behaviours has to be modelled. This communication is presented
in five parts. Before it is presented, the standard way of modelling communication in Paradigm
will be discussed.

The external behaviours act as the manager processes and the internal behaviours of the export-
operations act as the employee processes. A manager process can have two kinds of employee
processes: the internal behaviours of export-operations being called (called operations, they be-
long to the same class acting as the manager process) and the internal behaviours of operations
performing these calls (calling operations). In Paradigm in the case of called operations the in-
ternal behaviour is usually split into two subprocesses. Both subprocesses contain all states. One
subprocess has a small trap, which contains only the state preceding the transition labeled with
act_name_of_operatiofthe neutral state). The other subprocess has a large trap containing all
other states in order to enable the manager to continue as soon as possible to go to its next state.
In both subprocesses the transitions coming out of the traps have of course been removed. Also
in the case of calling operations the internal behaviour is usually split into two subprocesses.
Again both subprocesses contain all states. One subprocess has a small trap containing only the
state preceded by the transition labeled wéh _name_of _operatioandname_of_operation

being an operation of the class acting as manager. The other subprocess has a large trap, which
contains all other states. Again of course in both subprocesses the transitions coming out of the
traps have been removed. Note that these standards are the same as the Socca conventions used
in [1]. Whenever the model deviates from these standards, it will be mentioned and a reason will
be given.

When the external behaviour of a class is described by more than one STD, the external behav-
iour described by the Main-STD will be the manager of the external behaviours described by
the Dep-STD'’s (see also [3]). The external behaviour of a Dep-STD will also be split into two
so-called manager subprocesses. They both contain all states. One manager subprocess has a
small manager trap, containing the (neutral) state preceding the transition labeled by
dep_name_of operatiofthe other manager subprocess has a large manager trap, which con-
tains all other states. In both manager subprocesses the transitions coming out of the manager
traps have been removed. This is very similar to the standards described above to model the
communication between external behaviours and internal behaviours of called operations. Note
that the external behaviour of the MainCAB can also be the manager of some internal behav-
iours. Also the external behaviours of the DepSTD’s can be the manager of some internal be-
haviours.

Let us now return to our model. The first part of the communication specification presents the
communication between the manager process MainCAB and its employee pranesses
request_for_changand DepCABInt-request_for_changes the internal behaviour of an op-
eration of MainCAB itself, DepCAB is the external behaviour of a part of the class CAB.
MainCAB (Figure 24) starts in its stateutral. When a change is requested, the manager waits

for int-request_for_changt be trapped in its trap t-1, which means that a possible previous
request has been dealt with, and DepCAB to be trapped in mt-1. When these traps have been
entered, CAB makes the transition to the sta@nge requesteaind prescribes subprocess s-2

to int-request_for_changdahereby making it possible to start the preparations, and manager
subprocess MS-2 to DepCAB, so that the request can be discussed and handled if necessary. If
int-request_for_changbas entered its trap t-2, which means that the preparations have been
started, if moreover DepCAB has entered its manager trap mt-2, which means the request is be-
ing discussed or handled, then MainCAB will return to its stateral

page 26

Modelling Change Management

s-1
no
request
call_prepare_
meeting
s-2
no
request

Figure 22. int-request_for_change’s subprocesses and traps w.r.t. MainCAB

page 27

Modelling Change Management

open_meeting meeting do_meeting

»| opened

close_meeting

meeting
closed

do_change

authorize

software
develop.

meeting
requesteq opened

meeting
closed

software
develop.

Figure 23. DepCAB’s subprocesses and traps w.r.t. MainCAB mt-2

page 28

Modelling Change Management

Figure 24 shows MainCAB as manager of DepCAB iatdequest_for_changé called op-
eration).

request_for_changa mt-1, t-1

MS-1 MS-2
s-1 s-2
in mt-2, t-2
neutral change
requested

Figure 24. MainCAB: viewed as manager of 2 employees

Remember that the operatimgguest_for_changeas been parametrized with the parameter
quest-id (not explicitly indicated in Figure 24). So there are as many operations
request_for_changestatexhange requesteaind external behaviours of DepCAB as there are
requests. When MainCAB is in one of its statieange requestethe manager subprocess MS-

2 will be prescibed to only one external behaviour of DepCAB. The manager subprocess MS-1
will remain prescribed to all other external behaviours of DepCAB.

The second part of the communication specification presents the communication between the
manager process DepCAB and its employee proc@dsepen_meetingnt-do_meetingint-
close_meetingnt-do_changendint-prepare_meetingThe export-operatiorsancelandau-
thorizehave not been modelled and also the calling of these operations has been left out, so the
communication between DepCAB and these operations will not be speaifiegen_meeting
int-do_meetingint-close_meetingndint-do_changeall are internal behaviours of operations

of DepCAB itself.Int-prepare_meetings the internal behaviour of an operation that calls op-
erations of DepCAB.

Every DepCAB (Figure 30) starts in its statutral Whenever MainCAB goes to one of its
stateschange requestedne particular DepCAB goes to its stakenge requesteo, as the
dependency between MainCAB and DepCAB is modelled that wiay-dpen_meetingas en-

tered its trap t-3, which means that the meeting can be opened, if moneg@repare_meeting

has entered its trap t-16, which means that the preparations have come to the point the meeting
actually can be asked to start, ttogren_meetings performed and DepCAB will transit from

its statechange requestetd its stateneeting openedrhere DepCAB will prescribe the sub-
processes s-4 and s-17imd-open_meetingndint-prepare_meetingespectively. The mem-

bers will be called to join the meeting and after that the meeting will be started- If
prepare_meetindhas entered its trap t-17, if alsd-open_meetindias entered its trap t-4,
which means the meeting has been openedingitth _meetings in its trap t-9, then DepCAB

will go to its statameeting There subprocesses s-3, s-5 and s-18 are going to be prescribed to
int-open_meetingnt-do_meetin@ndint-prepare_meetingespectively. The meeting can take
place and the request will be discussed nowntilo_meetinghas entered its trap t-5 or t-6,
which means the meeting has ended and a result with respect to the request has been established,
if alsoint-close_meetindpas entered its trap t-10, which means the meeting can be closed, if
furthermoreint-prepare_meetindpas entered its trap t-18, thelose_meetingan and will be
performed and DepCAB transits to its stateeting closedlhere the subprocesses s-11 and s-

16 will be prescribed tant-close_meetingand int-prepare_meetingespectively. Toint-
do_meetingsubprocess s-5 is still being prescribedirgalo _meetingwill still be waiting in

its trap t-5 or t-6. In this state of DepCAB the meeting will be ended. As soam-as
close_meetingnters its trap t-11, which means the meeting has been closed, DepCAB will
make its next transition. In cas#-do_meetings waiting in its trap t-5, the request had been
rejected and DepCAB will go back to its stawutral.In caseint-do_meetings waiting in its

trap t-6, the request had been accepted, and whdn_changes in its trap t-12, DepCAB will

page 29

Modelling Change Management

transit to its stateoftware developingn both stateeutraland statesoftware developingub-
process s-9 is prescribedmd-do_meetingand subprocess s-10itd-close_meetingNormally,
as soon as the change has been estabkstikedrizewill follow. However, sometimes the soft-

ware development may be interrupteddayicel In both casesit-do_changehas to be in its
trap t-13.

s-3 s-4

act_open_meeting/ meeting

neutral

call_join_
meeting
(member)

start_meeting
-

t-4
Figure 25. int-open_meeting's subprocesses and traps w.r.t. DepCAB

s-5 .
no act_do_meeting meeting
meeting started
check_request
t-5 :
. reject_request
meeting < request
ended checked
t-6 call_do_change
meeting
ended
s-9 t-9

no

meeting
meeting

ended

 —

meeting
ended

Figure 26. int-do_meeting’s subprocesses and traps w.r.t. DepCAB

page 30

Modelling Change Management

s-10

members call_leave_meeting (member) meeting
left closed

t-10

close
meeting
asked

act_close_meeting

neutral

end_meeting

meeting
closed

t-11

Figure 27. int-close_meeting’s subprocesses and traps w.r.t DepCAB

Note that the trap-structures iot-open_meetingnt-do_meetingandint-close_meetingfig-

ures 25, 26 and 27 respectively) deviate from the standards described abowe: As
open_meetingnt-do_meetingndint-close_meetingre actually part of one big operation that

has been split into three parts, these three operations cannot operate in a parallel way. In order
to sequentialize these operations only small traps are used, because only then the operation is
ready before the trap is entered and after that the manager will make its next move.

s-12

change
started

t-12 call_schedule_and_

assign_tasks

scheduled

s-13
act_do_change
neutral

scheduled

change
started

call_schedule_and_
assign_tasks

t-13

Figure 28. int-do_change’s subprocesses and traps w.r.t. DepCAB

page 31

Modelling Change Management

Note that the trap-structure ioit-prepare_meetingFigure 29) deviates from the standards de-

s-16 act_prepare s-17
no meeting prepare _
prepare started meeting
ended
select_
members t-17

call_do_
meeting

meeting
started

call_
check _agenda
(member)

meeting
started

t-16

call_open_ s-18

, select_date
meeting

no
prepare

date
selected

t-18 call_close

meeting

call_receive
confirmation
(member)

waiting

meeting
ended

Figure 29. int-prepare_meeting’s subprocesses and traps w.r.t. DepCAB

scribed before. This time there are three subprocesses. The reason to do sants that
prepare_meetingalls three different operations of the DepCAB pAapare_meeting a call-

ing operation, every subprocess hass a small trap containing one state preceded by the transition
labeled with the call. For the calling itself this is in accordance with the standards.

page 32

Modelling Change Management

Figure 30 shows the class DepCAB as managentedpen_meetingint-do_meetingint-

employee mapping order used

int-open_meeting (figure 25)
int-do_meeting (figure 26)
int-close_meeting (figure 27)
int-do_change (figure 28)
int-prepare_meeting (figure 29),

open_meeting do_meeting
int-3, t-16 in t-4, t-9, t-17
change meeting meeting
requested opened
in t-5 or t-6, close
dep_request_ t-10, t-18 meeting
for_change

in t-5, t-11

neutral

A

meeting
closed

int-6, t-11, | do_change
t-12

authorized

authorize
int-13

cancel

int-13

cancelled software

developing
Figure 30. DepCAB: viewed as manager of 5 employees

close_meetingnt-do_changdcalled operations) andt-prepare_meetingcalling operation).
Note that the stateseutral software developingancelledandauthorizedare equal w.r.t. each

of these employees (except ty_changg that is the subprocesses of these employees remain
unchanged in all states.

page 33

Modelling Change Management

The third part of the communication specification shows the communication between the man-
ager process ProjectManager and its employee procesdesheck agenda int-
prepare_meeting int-receive_confirmation int-request_for_changeint-join_meeting int-

leave _meetingint-open_meetingint-close_meetingndint-do_change The internal behav-

lours of the export-operationsint-check_agenda int-receive_confirmation int-
prepare_meetingint-request_for_changent-join_meetingand int-leave_meetingelong to

the class ProjectManager itséift-open_meetingnt-close_meetingndint-do_changere the

internal behaviours of operations that call operations of the class ProjectManager. As the sub-
processes and traps iaf-schedule_and_assign_tasisdint-monitor are not very important

for our discussion, we simply omit this part of the communication specification.

Note that the trap-structure woft-check_agenddFigure 31) deviates from the standards de-
scribed before. Itis clear that before a meeting can be started a date has to be picked. Small traps
are used ifnt_check _agendaso that every member, including ProjectManager, will report its
possible dates before returning to its neutral state. When using large traps they can return to their
neutral states before they have reported their possible dates. Consequently, when a meeting is
opened, members could be called to join the meeting before they have reported their dates.

s-20 s-21

no act_check _agenda
check

check
started

pick_
possible_dates

dates report_dates

reported

dates
reported

t-21
Figure 31. int-check_agenda’s subprocesses and traps w.r.t. CABMember

ProjectManager starts in its stateutral There subprocess s-22 has been prescribed-to
prepare_meetingf this behaviour has entered its trap t-22a, which means a preparation can be
started, if alsant-request_for_changkeas entered its trap t-25, which means a preparation has
been asked, thgmrepare_meetingill be executed and ProjectManager will go to its stdg-

ing preparation There subprocess s-23 is prescribedttprepare_meetingso that the prepa-
rations will be started, and subprocess s-26ttcequest_for_changeo that a new request can

be made. Iint-prepare_meetingas entered its trap t-23, which means all members of the board
including ProjectManager itself have been asked to check their agenda and send a list of possi-
ble dates, aniht-check _agendss in its trap t-20, which means the agenda can be checked, then
ProjectManager can go to its stateecking agendarhere the subprocesses s-21 and s-24 are
prescribed tant-check_agendand int-prepare_meetingespectively. ProjectManager will
check its agenda now.ifft-check_agendhas entered its trap t-21 antiprepare_meetingas

entered its trap t-24, which means the own agenda has been checked, if furthetmore
request_for_changbas entered its trap t-26, then ProjectManager can go to itstatal

There ProjectManager continues to prepare the meeting or doing whatever is was doing. Note
thatint-prepare_meetingvill remain in its trap t-24, therefore subprocess s-24 is still being pre-
scribed. As soon ast-prepare_meetingas entered its trap t-24a antireceive_confirmation

has entered its trap t-40, ProjectManager can and will go to itscetafiem receivedin this

state subprocess s-22 is prescribed againt{prepare_meetin@nd subprocess s-41 itu-

page 34

Modelling Change Management

receive_confirmationThe date that has been picked for the meeting will be put in the agenda.
Whenint-receive_confirmatioenters its trap t-41 andt_prepare_meetingnters its trap t-22,

which means the confirmation has been received, ProjectManager will return to itestede
Int-prepare_meetingill remain in its subprocess s-22. T-receive_confirmatiorsubproc-

ess s-40 will be prescribed again. In the neutral state ProjectManager can now start the prepa-
rations for a new meeting, schedule and assign tasks and monitor the design process.

s-25 :
no act_request_for_change frequestiny
request change

call_prepare_
meeting

t-25

S-26
no act_request_for_change /requesting
request change
-26

t

Figure 32. int-request_for_change’s subprocesses and traps w.r.t. ProjectManage

s-40
date o
meeting
confirmed
agenda put_date in_agenda
updated
s-41 _ _ _
no act_receive_confirmation :
confirm meeting
confirmed

agenda put_date_in_agenda

updated

t-41

Figure 33. int-receive_confirmation’s subprocesses and traps w.r.t CABMember

page 35

Modelling Change Management

s-22

no

prepare
t-22a

call_close_|
meeting

meeting
ended

call_do
meeting

meeting
started

call_open_
meeting

waiting

t-22

act_prepare_

s-23 g
meeting

no
prepare

prepare
started

select
members

call_
check _agend:
(member)

agenda
checked

t-23

s-24

agenda
checked

t-24

select_date

date
selected

call_receive_
confirmation
(member)

t-24a

Figure 34. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager

Note that the trap-structure ioit-prepare_meetingFigure 34) deviates from the standards de-
scribed beforePrepare_meetings of course a called operation, as it belongs to the class Pro-
jectManager itself, but it is also a calling operation as it performs a call to the operations
check_agendandreceive_confirmatiorwhich belong to the same (instance of the) class as
prepare_meetingAs it is a called operation there must be a subprocess having a small trap,
which contains only the neutral state (preparg, and as it is a calling operation there must be
subprocesses having a small trap, which contains only the state precedéddieck agenda

or call_receive_confirmationTherefore there are three subprocesses containing a small trap.
Two of these subprocesses also have a large trap embedding the small trap in order to allow Pro-
jectManager to go to its next state without waiting for the small trap to be entered. In the next

page 36

Modelling Change Management

state of ProjectManager the same subprocess will be prescribed. Only after the small trap has
been entered this next state can be left.

Note also that the partition of subprocesses in Figure 34. overrides the partition of subprocesses
in Figure 40, which means that although ProjectManager is a subclass of the class CABMember,
the original partition (Figure 40) will not be inherited from the class CABMember anidtthat
prepare_meeting subprocesses and traps are redefined for the class Projectmanager in Figure
34.

Note also that the internal behaviourppépare_meetingannot go to the statiate selected

even ifint-prepare_meetinglready is in its subprocess s-24 prescribed by the ProjectManager
until every other member of the board has reacted to trap t-42 and consequently has prescribed
subprocess s-44 (see also Figure 40).

Also note that this operation has been parametrized implicitly with the paraemiest-id

This implies that two or more meetings can be prepared simultaneously. ProjectManager how-
ever can prepare a new meeting, i.e. execute thepnegare _meetingonly when it has re-

turned to its stat@eutral This implies thatint-prepare_meetingnitiated by the previous
request has had to pass its sthtee selectednd enter its trap t-24 (see also Figure 39). If not,
ProjectManager will not be in its stateutralandint-prepare_meetingnitiated by the new re-

guest will have to wait in its state prepare

Now let us return to the manager process. After the actual preparations have been finished, i.e.
the agendas have been checked, the date has been picked and the confirmations have been re-
ceived, the meeting eventually will take place and ProjectManager will have to join it. When
int-open_meeting in its trap t-31, which means all members including the ProjectManager are
called to join the meeting, amt-join_meetings in its trap t-27, which means ProjectManager

is able to join the meeting, and alabclose_meetings in its trap t-34, which means a possible
previous meeting in which ProjectManager was involved has been glmsedjeetingwill be
performed and ProjectManager will make the transition to its statab-meetig. If int-
close_meetingas entered its trap t-33, which means all members including the ProjectManager
are called to leave the meeting, if moreowvgileave _meetindpas entered its trap t-28, which
means the Projectmanager is able to leave the meeting, if furthemtaopen_meetingas en-

tered its trap t-32, theleave_meetings executed and ProjectManager will return to its state
neutral There ProjectManager can continue to do whatever it was doing.

s-27
CAB act_leave_meeting CAB
meeting K meeting
left joined
t-27
s-28

CAB
meeting
left

CAB
meeting
joined

act_join_meeting

t-28

Figure 35. int-join/leave_meeting’s subprocesses and traps w.r.t. CABMember

page 37

Modelling Change Management

s-31 .
act_open_meeting

neutral

call_join_
meeting
(member)

s-32

start_meeting

Figure 36. int-open_meeting’s subprocesses and traps w.r.t. CABMember

s-33 |
neutral act_close_meeting
members call_leave_meeting (member)
left
t-33

close
meeting
asked

end_meeting

meeting
closed

s-34

close
meeting
asked

meeting
closed

Figure 37. int-close_meeting’s subprocesses and traps w.r.t. CABMember

page 38

Modelling Change Management

Note that the partitions in figures 36 and 37 (and 40 too) are valid for every member of the
board. These partitions are partitions of internal behaviours of operations of another class. The
states in which these operations remain, are not only dependent on the subprocesses the other
class prescribes, but are also dependent on the subprocesses every member prescribes. Only
when all members have reacted to trap t-31 and consequently have prescribed subprocess s-32
to int-open_meetinghe internal behaviour aft-open_meetingan continue to go to its next

state and enter trap t-32. Only whetaopen_meetinbas entered trap t-32, any particular mem-

ber is allowed to go to its next state. So it seems that every member has to wait until all other
members have prescribed subprocess s-32, before going to its next state. However this is not the
case. As the stateembers calleds a simplified representation of an (sub)STD, in which all
members are called, the trap-structure is in fact more complicated. This implies that every mem-
ber can react to trap t-32 without waiting for the other members. More information can be found

in Appendix A. The same appliesitd-close_meeting

The patrtitions in figures 31, 33 and 35 are also valid for all members of the board. These patrti-
tions are partitions of internal behaviours of operatioesefve_confirmation, join_meeting

leave _meetingndcheck agenda)f the class itself, in this case ProjectManager, DesignEngi-
neer, UserRepresentive or QAENngineer. The states in which these operations remain, are de-
pendent on the subprocesses one particular member prescribes, as these operations do not call
to other members, in contradistinction to the operations described above.

Now let us return to the manager process again. One detail still has to be discussechdu-state

tral ProjectManager can also execute the operatohedule_and_assign_tasksdmonitor.

If int-do_change has entered its trap t-35, which means the operation
schedule_and_assign_tadkas been called, then ProjectManager will go to its statéing
scheduleAs soon asit-do_changeenters its trap t-36 and naturally the tasks have been sched-
uled, Projectmanager will go back to its sta¢eitral As mentioned before the communication
between the manager ProjectManager and its other employesetiedule_and_assign_tasks
(Figure 62) andnt-monitor [2, figure 12] falls outside the scope of the problem of modelling
Change Management and the subprocesses and traps of these operations w.r.t. ProjectManager
will not be given here. However they can be found in [2, figures 53 and 55 respectively].

s-35

act_do_change change
neutral e
call_schedule_and_
scheduled assign_tasks
t-35
s-36
act_do_change change
neutral change
t-36

scheduled

Figure 38. int-do_change’s subprocesses and traps w.r.t. Projectmanager

page 39

Modelling Change Management

Figure 39 shows the class ProjectManager as managefjoin_meetingint-leave_meeting

receive_
confirmation

in t-24a, t-40

schedule_and_
assign_tasks

s-27

o 5-22 or 5-24 nt22. 4 confirm
s20 received
s-25
in t-36 s-31 .
s-34 monitor
s-35
Starting in t-22a, t-25 neutral
schedule prepare
meeting

starting
monitor
join_meeting
in t-27, t-31,
t-34
starting
preparation
check_agenda in t-21, t-24, t-26
in t-20, t-23
in cab-
meeting

employee mapping order used:

int-join/leave_meeting (figure 35)
int-prepare_meeting (figure 34)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33
int-request_for_change (figure 32)
int-open_meeting (figure 36)
int-close_meeting (figure 37)
int-do_change (figure 38)

checking
agenda

Figure 39. ProjectManager: viewed as manager of 8 employees
int-prepare_meeting int-check_agendaint-receive_confirmation(called operations)jnt-

request_for_changent-open_meetingint-close_meetingnd int-do_change(calling opera-
tions).

page 40

Modelling Change Management

The fourth part of the communication specification shows the communication between the man-
ager process DesignEngineer and its employee prodesges meetingint-leave_meeting
int-check_agendaint-receive_confirmationint-prepare_meetingint-open_meetingand int-
close_meetinglhe operationdesign codeandreviewhave not been modelled, so the commu-
nication will not be specified. However the STD'’s of the internal behaviours of these operations
and the subprocesses and traps of these internal behaviours can be found in [1]. The internal be-
haviours of the export-operations belonging to the class DesignEnginagrareck agenda
int-join_meeting int-leave_meetingand int-receive_confirmation Int-open_meeting int-
close_meetingndint-prepare_meetingre the internal behaviours of operations that call oper-
ations of the class DesignEngineer. As the class DesignEngineer is, just like ProjectManager, a
subclass of CABMember, a major part of the communication specification is equal to the com-
munication specification of the class ProjectManager. This part consists of the communication
between DesignEngineer and the employee procaggesn_meetingint-leave_meetingnt-

check agendant-open_meetingndint-close_meetingSo only the communication between
DesignEngineer aniat-prepare_meetingvill be given here.

DesignEngineer (Figure 41) starts in its staetral When a particular DesignEngineer has
been selected by ProjectManager to be a member of the board, DesignEngineer will be asked to
check its agenda, i.e. to execute its operatizatk agenddf int-prepare_meetingas entered

its trap t-42, if moreovant-check agendss in its trap t-20, then DesignEngineer can and will

go to its statehecking agenddn this state the subprocesses s-44 and s-21 are going to be pre-
scribed tant-prepare_meetingndint-check_agendeespectively. DesignEngineer will check

its agenda now. As soonias-check_agendanters its trap t-21 anidt-prepare_meetingnters

its trap t-44, DesignEngineer can return to its stetgral There subprocesses s-42 and s-20
will prescribed tant-prepare_meetingndint-check _agendeespectively. As soon as the date

of the meeting is selected, which is whetaprepare _meetingas entered its trap t-43, antt
receive_confirmations in its trap t-40, DesignEngineer can go to its statdirm received

There DesignEngineer will put the date in its agenda. DesignEngineer will return to its state
neutral whenint-receive_confirmatiorenters its trap t-41 and moreowet-prepare_meeting
enters its trap t-45.

The traps that have to be entered to reach and leave then<Tk8-meetingare the same as

for ProjectManager.

page 41

Modelling Change Management

act_prepare_
meeting

no
prepare

prepare
started

call_close_
meeting

meeting
ended

call_do_
meeting

select
members

call_check |
agenda
(member)

meeting
started

t-42
call_open_
meeting

date
selected

t-43

call_receive_
confirmation
(member)

no
prepare

meeting
ended

meeting
started

call_do_
meeting

act_prepare_
meeting

call_close_
meeting

prepare
started

select_
members

call_open_
meeting

select_date

date
selected

waiting

t-45

t-44

Figure 40. int-prepare_meeting’s subprocesses and traps w.r.t. CABMember

Note that, as it is the internal behaviour of an operation of another class, only when every mem-
ber has reacted to trap t-42 (or trap t-43) and consequently has prescribed subprogess s-44,
prepare_meetingan continue to go to the statate selectefor statewait dong. So it seems

that every member has to wait for all other members to be called before it can return to its neutral
state as t-44 (or t-45) can only be entered if sfate selecteqor statewait dong can be
reached. However this is not the case. As the sigiersda checkedndconfirm sendare sim-

plified representations of an (sub)STD, in which all members are called, the trap-structures are
in fact more complicated. This implies that every member can react to trap t-44 and trap t-45
without waiting for the other members. More information can be found in Appendix A.

page 42

Modelling Change Management

Figure 41 shows the class DesignEngineer as managsfjoin_meetingint-leave_meeting

starting

starting
code

starting
review

design

code

design review

employee mapping order used:

int-join/leave_meeting (figure 35)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-prepare_meeting (figure 40)
int-open_meeting (figure 36)
int-close_meeting (figure 37)

check _agends
in t-20, t-42

in t-27, t-31,
t-34

r_ecei_/e
confirmation
in t-40, t-43

meeting

in t-28, t-32,
t-33

checking confirm in CAB-
agenda received meeting

Figure 41. DesignEngineer: viewed as manager of 6 employees
int-check _agendaint-receive_confirmation(called operations)jnt-prepare_meeting int-
open_meetingndint-close_meetingcalling operations). Note that the statesitral starting

design starting reviewandstarting codeare equal w.r.t. these employees, that is the subproc-
esses remain unchanged in all states.

page 43

Modelling Change Management

The fifth part of the communication specification shows the communication between the man-
ager process UserRepresentative and its employee procedsesn_meeting int-
leave_meeting int-check_agenda int-receive_confirmation int-prepare_meeting int-
open_meetingndint-close_meetingThe internal behaviours of the export-operations belong-
ing to the class UserRepresentative itselfiasireheck _agendant_receive_confirmatiannt-
join_meetingandint-leave_meetingThe internal behaviours of operations that call operations
of the class UserRepresentative anet-open_meeting int-close_meeting and int-
prepare_meetingBecause the class UserRepresentative is, just like DesignEngineer, a subclass
of CABMember, the communication specification is equal to the communication specification
of DesignEngineer and will therefore not be repeated here.

Figure 42 shows the class UserRepresentative as managert-jofn_meeting int-

employee mapping order used:

int-join/leave_meeting (figure 35)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33)
int-prepare_meeting (figure 40)
int-open_meeting (figure 36)
int-close_meeting (figure 37)

join
check jom_
agenda meeting
in t-20, t-42 receive leave o
confirmation| | t41meet|ng
int-40, t-43y | {7 int-28, t-32,
t-33

int-21, t-44

checking confirm in CAB-
agenda received meeting

Figure 42. UserRepresentative: viewed as manager of 6 employees

leave_meeting int-check_agenda int-receive_confirmation (called operations), int-
prepare_meetingnt-open_meetingndint-close_meetingcalling operations).

page 44

The new model

4 The new model

4.1 Introduction

The model presented in the previous chapter implies a lot of meetings in which only one request
can be discussed, as for every request a new meeting will be prepared and opened. It would be
more practical and efficient, and more realistic too, to discuss more than one request in a meet-
ing. Also in the model presented in the previous chapter there is made no difference between
small and big changes. Again it would be more practical, efficient and realistic to model such a
difference, because small and big changes each have a different effect on the software process
model. Therefore in this chapter a new model, based upon the previous model, will be designed.
This new model is also necessary in order to be able to describe the evolutionary change of
Change Management. The previous model represents the first evolution phase, the new model
will represent the second evolution phase.

In the new model more than one request can be discussed in a meeting. This will be done by
placing requests on a list. As soon as a list is full a meeting will be requested, so every list will
correspond with a meeting. After that new requests will be placed on a new list. Of course also
during a meeting new requests will have to be handled.

In order to model this some new classes will be introduced and other classes will have to change.
The new class CABSecretary will administrate and handle the incoming change-requests and
will place them on a list. It will also handle the outgoing, i.e. accepted, change-requests. Anoth-
er new class will be the class Request, in which the status of the request is kept. The class CAB
will be changed as a part of the external behaviour becomes internal behaviour of an export-
operation of the new class CABSecretdmgr(dle_change_requestn this new model meet-

ings cannot be held concurrently. However it is not necessary to model this possibility, as we
can assume that during a meeting a list will not grow so full that a new meeting already is nec-
essary. Consequently the parallel behaviour modelled by using a parallel description in the ex-
ternal behaviour of CAB, as has been used in the previous model, will be removed. This is
consistent with the original SOCCA approach.

In the new model also the difference between small and big changes will be modelled. When
modelling this difference, there are two possibilities:

1 split behaviours up: create separate STD's for the external behaviour of some classes (in
this case Design) and for the internal behaviour of some operations in case of a big change
and in case of a small change. The result will be a lot of STD’s that will be almost identical,
for instanceschedule_and_assign_big_tasksdschedule_and_assign_small_taskslso
means that managers get a lot of employees. This implies the model grows very big.

2 parametrize transitions: make one STD and parametrize with a paraineddirtransitions
that would cause creating separate STD’s when using the first possibility (see for instance
Figure 59). This implies the amount of STD’s will not grow too big.

In the new model the second possibility is used. From now on the model in the previous chapter
will be referred to as the old model.

4.2 Designing the new model

As mentioned in the previous section, some new classes will be added to the old model in order
to describe Change Management more precisely:

» CABSecretary: handles some administrative business for the Change Advisory Board.
* Request: for every request the status is kept and a possible change is initiated.

Also the classes CAB and Design will change, and from now on they will be referred to as the

page 45

The new model

class NewCAB and the class NewDesign respectively.

As some classes have been added to the model, the static structure of the model, i.e. the class-
diagram, will change too. Figure 43 shows the class diagram of the new model. Note that the
new classes CABSecretary and Request do not have a IS-A relationship or Part-Of relationship

with any other class.

NewCAB

User-
Repr.
| °
CAB-
Member
Engineer

AL

Compiler Project- QA
Manager Engineer

Request

Documen

A

CAB-
Secretary

Tools Project
Team

Project

Figure 44 shows the attributes and operations of the new classes and the changed class New-
CAB. The export-operations of the class NewDesign have not been changed. Therefore this
class will not be mentioned in the figure. The operations and attributes of all other classes will

not be given too.

DI S

Design

Document

Test

Document

New-
Design

Code

Test
Plan

Test
Pack

S

Figure 43. Class diagram of the new model: classes and IS-A and Part-Of relationshig

page 46

The new model

CABSecretary Request NewCAB
name status

request_id

size
request_for_change (request-id, size) reject_request request_for_meeting
handle_change_request big_impact open_meeting
add_to_list small_impact do_meeting
send_list do_change (size) close_meeting

Figure 44. Class diagram of the new model: attributes and operations

Note that the operations of the classes Request and CABSecretary (exseptdfdis} have

all been parametrized (explicitly or implicitly) with the parameezuest-id The operations
add_to_listandsend_listhave been parametrized implicitly with a parambseid. The oper-
ationsrequest_for_changanddo_changéiave been parametrized with a paramsitex

As new classes have been added to the model and others have been changed, some new general
relationships between the classes can be defined. These new general relationships are shown in
Figure 45. Note that the old general relationships remain valid. Therefore they are also shown

in Figure 45.

page 47

The new model

NewCAB User-
Repr.

contacts

CAB-
Member

Engineer

>\

CAB- Request
Secretary O
®

S

Project-
Manager

Design

Figure 45. Class diagram of the new model: classes and general relationships

By adding and changing classes, new uses relationships will appear too. In Figure 46 all uses
relations important to our discussion, i.e. the uses relations from the old model and all new uses
relations, are given. In Figure 47 the corresponding import list is given.

page 48

The new model

CAB-
Member
usel? use3 use4
Project- NewCAB
Manager < usel
use2 >
use’7 use5 use6
use8
Request CAB-
use9 » Secretary
< uselO
usell
usel3
Design
Figure 46. Import/export diagram
usel useb uselO
prepare_meeting request_for_meeting do_change (size)
use2 use6 usell
open_meeting send_list add_to_list
do_meeting use’7 usel2
close_meeting sched_and_assign_tasks monitor
use 3 use8 usel3
check_agenda (member) big_impact notify_modif_opened
receive_confirmation small_impact notify_modif_closed
(member) use9 notify_review_opened
use4d handle_change _request report_review_result

join_meeting (member) (reg-id, size)
leave_meeting (member)

Figure 47. Import list
Note that the operatiomhieck_agendaeceive_confirmatiofjoin_meetingandleave _meeting
are parametrized with the parametembemas an explicit reminder of the fact that some details

in the calling operations have been omitted. As mentioned in the previous chapter, these details,
which actually are rather complicated, will be discussed in Appendix A.

page 49

The new model

4.2.1 Designing the new external behaviours of the classes

The external behaviours of the new and changed classes will be specified (figures 48 through
51). From then on, the order in which the export-operations can be called will be known.

handle_change_request
(request-id, size) request_for_change
neutral

change
request
handled

request
retrieved

send_list add_to_list

request
added

w.r.t. WODAN this is subprocess s-142 and the state space is trap t -142
Figure 48. CABSecretary: STD of the external behaviour

The transition labeled withandle_change_requestplaces the "lower" part of the external be-
haviour of the class CAB. This transition has been parametrized with the pansqasst-id

so actually there are as many transitions as there are requests. The reason for doing this is that
by choosing the right subprocesses and trapstdrandle_change_requeshe can accom-

plish that more than one request at a time can be handled. This is necessary, otherwise everytime
a request is handled one has to wait for the previous request being authorized or cancelled and
there would be no profit of discussing more than one request in a meeting. It has also been par-
ametrized with the parametgize because the value of this parameter is needed in the internal
behaviour of the operation to make the caliido change

Note that the operatiorzgld_to_listandsend_listhave been parametrized implicitly with a pa-
rameterist-id.

request
rejected

software

reject_
request

do_change
(size)

big_impact small_impact

small
impact
estimated

pbig impac
estimated

w.r.t. WODAN this is subprocess s-143 and the state space is trap t-143

Figure 49. Request: STD of the external behaviour

page 50

The new model

For every request (i.e request-id) an instance of the class Request exists, so for every request
(i.e request-id) an STD, as given in Figure 49, exists. When making the transition to the state
changing softwarethe value of the parametsize is known, as it is passed through by
handle_change_requesthich makes the call to_change

Another possibility when modelling the class Request is to parametrize an export-operation
accept_requeswith the parametesize just like thedo_changeoperation has been para-
metrized, instead of usirmyg_impactandsmall_impactAlso the statehanging softwareould

be removed by labelling the transitions leading from the stedeispact estimatedndsmall

impact estimatetb the statemeutralwith do_changeThis is possible as for every instance of

the class Requesto_changecan only be called aftdyig_impactor small_impacthas been

called. However, if one wishes to add another operation to the class, the external behaviour of
Request as shown in Figure 49 is preferable.

request_
for_meeting

list

meeting $
available

requeste

neutral

open_
meeting

meeting| Close_meeting
closed

do_meeting

meeting

w.r.t. WODAN this is subprocess s-141 and the state space is trap t-141
Figure 50. NewCAB: STD of the external behaviour

The class NewCAB describes the behaviour of the Change Advisory Board in the new model.
The external behaviour of NewCAB is similar to the "upper" part of the external behaviour of
DepCAB, with the difference that the stditg availablehas been added. Also the operation
request_for_changeas been replaced by the operatiuest_for_meetin@Consequently the

class NewCAB will no longer handle the change-requests. As can be seen above, the new class
CABSecretary will now perform this task.

There can only be one instance of the class NewCAB at a time, in contradistinction to the class
DepCAB. Therefore meetings cannot be held simultaneously. However this will not be a prob-
lem, as we can assume that during a meeting a new list will not grow so full that a new meeting
already has to be requested.

page 51

The new model

The class Design had to be changed to take into account the (estimated) size of the change.

close_and_ report_rev
rev_ok result

reviewable readable

close_and_
rev_not_ok not_rev_ copy
revie opened
starting pre starting
closed review review copying
%
open_for_
review
report_ not_mod pre
review_ closed g\ 'EYIEW
result
close
mod
modifiable
*%
not_mod
opened
(size =
create open_for_
prepare first mod
starting
creatable created modif.
%
create_
next

(size =smal)

starting
creation

starting
modif.
*

w.r.t. WODAN this is subprocess s-140

Figure 51. NewDesign: STD of the external behaviour

When the (estimated) size of the change is big (for instance when a new product has to be de-
veloped) NewDesign will follow the path fropre-modifiableto reviewablethrough the states
marked by **, when the (estimated) size is small NewDesign will follow the path through the
states marked with * (in the latter case the review will be skipped, but of course the code docu-
ment will still be tested). This is done by parametrizing the transition labeled with

not_mod_openedith a parametesize (possible valueshig or smal). The parametesizeis

passed through vizall_monitorin int-schedule_and_assign_task&e STD of the internal be-

page 52

The new model

haviour ofint-monitorwill be shown in Figure 63. Figure 51 is very similar (but not equal) to
another figure from Wulms, see [2, Figure 13]. Compared to the ISPW-6 example the path
marked with * has been added.

4.2.2 Designing the new internal behaviours of the export-operations

After specifying the external behaviours of the classes, the internal behaviours of the operations
can be specified. Of course only new and changed internal behaviours will be specified. The
conventions used to specify the internal behaviours of the operations are the same as the con-
ventions used in the old model.

The export-operations of the new class CABSecretargddeto_list send_listthese two op-
erations have been parametrized implicitly with a parantistad), request_for_changand
handle_change_request

act_request_
. for_change

determine_id

no reque

call_add__
to_list

count_number_

time_out request of_requests request
counted added
call_request_
for_meeting
call_request_
time for_meeting
expired

w.r.t WODAN this is subprocess s-144 and the state space is trap t-144

Figure 52. int-request_for_change

All requests are given a request-id, then the requests are put on a list. When the maximum
number of requests is reached or the time has been expired a meeting has to be requested. Note
that in the internal behaviour tdquest_for_changan operationgdd_to_lisj belonging to the

same class asequest_for_changes called. Note also that the internal behaviour of
request_for_changeas changed completely in comparison with the old model (see Figure 13.).

page 53

The new model

The internal behaviours of bo#dd_to_listandsend_listare relatively simple. Activation of
the operations denotes execution of the operations. After that they will return to their neutral

states.
act_add to_list request
neutral added

Figure 53. int-add_to_list

act_send_list .
neutral list
_ send
create_empty_list

Figure 54. int-send_list

Whenever a list has to be send (to NewCAB), an empty list to put new requests on will be cre-
ated too. This internal operation will also determine a lisvid for the empty list.

act_handle_change_request
(request-id, size)

starting
possible
change

neutral

call_ do
change
(reg-id, size)

authorize

cancel software

develop.

cancelle

Figure 55. int-handle_change_request

In the old model the internal behaviourhaindle_change_requeastpart of the external behav-

iour of the class CAB (see Figure 9). In the new mbdeldle _change requeist an export-
operation of the class CABSecretary, as it is just a formality to start the actual change after the
decision has been taken in the meeting, although it could also be an export-operation of the class

CAB.

page 54

The new model

The export-operations of the new class Requestegeet _requestsmall_impactbig_impact
(as mentioned before these last two operations could be joined and parametrized) and

do_change

reject
request
asked

act_reject_request

neutral

status update_status

updated

Figure 56. int-reject_request

In the internal behaviours bfg_impactandsmall_impacthe value of the parametgeeis in-
itialized within the call tdchandle_change_requedthe parameter is needed there for the call to
do_change

act big impact
neutral —01g_Imp

call_handle_
change_request
(reg-id, size =big)

handle
request
asked

status update_status

updated

Figure 57. int-big_impact
Note that the value afizemust bebig.

small
impact
asked

act_small_impact

neutral

call_handle_
change_request
(reg-id, size =small

handle
request
asked

status update_status

updated

Figure 58. int-small_impact
Note that the value dfizemust besmall

page 55

The new model

act_do_change (size)

neutral

call_schedule_and
assign_tasks (size)

scheduled

Figure 59. int-do_change

Note that the call techedule_and_assign_taskgarametrized with the paramesere(possi-
ble valuesbig or smal)). This information is needed insid@-schedule _and_assign_tadks
call_monitor. Note thatall_schedule_and_assign_tasknplicitly has been parametrized with
the parametedoc_nameoo (see also [1]).

The export-operations of the changed class NewCABegpgest_for_meetingpen_meeting
do_meetingandclose_meeting

act_request_for_meeting

requesting
meeting

no
request

call_send__
list

call_prepare
meeting

Figure 60. int-request_for_meeting

It is from the internal behaviour ofequest _for_meetinghat send_listand after that
prepare_meetingre called.

In the new model the behaviours of the export-operatapen_meetingFigure 14) and
close_meetin@Figure 16) are the same as in the old model, as the use of a list of requests instead
of a single request does not influence these behaviours. The export-opdwatioeetings in-
fluenced by this change and has to be changed (Figure 61).

page 56

The new model

In do_meeting request is picked from the request-list and a decision is made about the request.

no meeting request
meeting ended picked

act_do_ end_ get

meeting meeting Sick_request request-id

from_list

meeting

started

check_request
(request-id)

call_reject_request

request (request-id) request
discussed checked

list update_list
updated

accept_request
update_list (request-id)

request
accepted

request

call_big_impact
discussed

(request-id) estimate_impact

update_list (request-id)

estimating
impact

request

discussed call_small_impact

(request-id)

w.r.t. WODAN this is subprocess s-150 and the state space is trap t-150
Figure 61. int-do_meeting (new version)

After that the request-list is updated, which means the request actually will be removed from
the request-list. If there are any requests left on the list, a new request wil be picked and the cycle
starts all over again. If there are no requests left on the list the meeting will be ended.

Most internal operations as well as all calls are parametrized with the parseqatst-idtak-

en from the request-list), because tieiguest-idis needed to identify the right instance of the
class Request.

page 57

The new model

Two export-operations of the class Projectmanager, that have to be changed due to the fact that
there is a difference between big and small changescheelule_and_assign_tasksdmoni-
tor.

act_schedule_and
no assign_tasks (size) schedule

schedule started

review monitor
assigneg assigned assigned

Figure 62. int-schedule_and_assign_tasks

Note thatcall_designcall_review call_codeandcall_monitorall are parametrized with a doc-

ument nameoc_nameln additioncall_monitoris parametrized with a parameseze(possible
values:big or smal)), which is the (estimated) size of the change (andtinmonitorthe call
not_mod_opene also parametrized with the parameieg. Note also thateviewwill only

be called in the case of a big change, as in the case of a small change the review will be skipped.
The STD’s of the internal behaviour iot-design int-reviewandint-codecan be found in [1,

Figure 10], [1, Figure 11] and [2, Figure 34] respectively.

call_not_mod_opened
(size)

monitor call_not_mod_closed

started

act_ update™ call_report_ call_notify_
gg@;or statistics review_result review_opened

update_statistics report rev\ call_report_review_resuly Not review

no
monitoring

w.r.t. WODAN this is subprocess s-147
Figure 63. int-monitor

As can be seen above the STOm#fmonitor has a short-cut from the statetify mod opened
askedto the stateeport rev result askeecause for small projects (i.e. changes) the exact in-
termediate result is not relevant. Note that this short-cut is an extra transition compared to the
original ISPW-6 example. A figure similar to Figure 63 can be found in [2, Figure 15].

page 58

The new model

4.3 The communication in the new model

After the specification of the external and internal behaviours of the classes and operations, the
communication between these behaviours has to be modelled. This communication is shown in
five parts. Whenever (parts of the) comunication specification of the old model will be used,
this will be mentioned. The standards used to describe the communication between the manager
process and its employee processes are the same as the standards described in the previous chap-
ter. When there is a deviation of these standards, a reason will be given.

The first part of the communication specification shows the communication between the man-
ager process CABSecretary and its employee procéssadd_to _list int_send_list int-
request_for_changeint-handle_change_requesint-big_impact int-small_impactand int-
request_for_meetingrhe internal behaviours of the export-operations belonging to the class
CABSecretary itself areint-add_to_list int_send_list int-request_for_changeand int-
handle_change_reque&the internal behaviours of operations that call operations of the class
CABSecretary aret-big_impactint-small_impactndint-request_for_meeting

s-50 s-51

act_add_to_list|/ request
neutral » added

t-51

request
added

Figure 64. int-add_to_list's subprocesses and traps w.r.t. CABSecretary

CABSecretary (Figure 71) starts in its stageitral There subprocess s-54 has been prescribed

to int-request_for_chang@rigure 65) If this behaviour has entered its trap t-54, which means
that a previous request has been administrated or a time-out has occurred, then CABSecretary
can make the transition to its stadguest retrievedn that state subprocess s-56 is prescribed
toint-request_for_changand the request can be administrated. Note that subprocess s-56 does
not contain all states; the stagxjuests countetas been omitted. However subprocess s-56
contains every state that can be reached in therstpiest retrievedof CABSecretary). This

can be seen as follows. The internal behavioweadest_for_changealls the export-operation
add_to_listof the class CABSecretary itself. This operation has to be activated first ing¢fore
request_for_changean continue. Howeveadd_to_listcan only be activated in the neutral
state (of CABSecretary). Consequently the seqeests countecannot be reached in the state
request retrieve@of CABSecretary). Also the transition labeled withe-outhas been omitted

in subprocess s-56. By this means the operation is forced to add the incoming request to the list
before a meeting can be requested due to time-out.

As soon asmt-request_for_changenters its trap t-56, CABSecretary returns to its siatgral

There subprocess s-54 is prescribetoequest_for _changéf this behaviour has entered its

trap t-55, if moreoveint-add_to_listis in its trap t-50, then CABSecretary will go to its state
request addedn that state subprocesses s-51 and s-57 will be prescrilmeéhtid_to listand
int-request_for_changespectively and the request will be placed on the list. Again subprocess
s-57 does not contain all states, but only the states that can be reached intbgustst@dded

(of CABSecretary). Whemt-request_for_changenters its trap t-57 and algd-add_to_list

enters its trap t-51, CABSecretary will return to its neutral state.

page 59

The new model

Note that subprocess s-54 contains two traps, a large trap t-54 and a small trap t-55. Note also
that a time-out can occur only in the subprocesses s-54 and s-57.

s-54

determine_id request_Id

o reques determined

call_add_
to_list

requests request
counted agded

t-55
call_request_
for_meeting

time
expired requested| t-54

$-56 act_request_
. for_change
request
call_request_ added
time for_meeting
expired
s-57

Nno reques

count_number_

of_requests reqguest
agded

requests
counted

time
expired

Figure 65. int-request_for_change’s subprocesses and traps w.r.t. CABSecretary

page 60

The new model

Let us now continue with the manager process. CABSecretary is in itsetdtal If int-
handle_change_requesstin its trap t-58, which means a request can be handled, if moreover
int-big_impacthas entered its trap t-60 oit_small_impacthas entered its trap t-62, then
handle_change_requesan be performed and the request will be handled. As soori-as
handle_change_requesinters its trap t-59 and alsot-big_impactenters its trap t-61 or
int_small_impacenters its trap t-63, CABSecretary will return to its steietraland new re-

guests can be handled, administrated or placed on a list. Note that the order in which the oper-

ations are called is not completely arbitrary. A specific request has to be administrated before it
can be handled.

s-58
call_do_
] change
authorize (reg-id, size)
cancel
s-59

act_handle_change_request

neutral (request-id, size)

t-59 call_do_
change

(reg-id, size

~—

authorize

cancel

oo

Figure 66. int-handle_change_request’s subprocesses and traps w.r.t. CABSecretal

Note that for every requeshandle_change_requesperation and a partition of subprocesses
of the internal behaviour of this operation exists as shown in Figure 66. So requests do not have
to wait for each other to be authorized or cancelled.

page 61

The new model

$-60 act_big_impact
neutral
call_handle_
change_request
(reg-id, size =big)
t-60
s-61
act_big_impact
neutral
t-61

s-62 ,
act_small_impact
neutral
call_handle_
change_request
(reg-id, size =smal)
t-62
S-63
act_small_impact
neutral
t-63

update_status

Figure 68. int-small_impact’s subprocesses and traps w.r.t. CABSecretary

page 62

The new model

CABSecretary can also execute the operat@rd_listIn order to activate this operation CAB-
Secretary must be in its stateutral There subprocesses s-64 and s-52 are prescriliad to
request_for_meetingndint-send_listrespectively. lfint-request_for_meetingas entered its

trap t-64, if moreoveint-send_listhas entered its trap t-52, then CABSecretary will make the
transition to its statkst send There the subprocesses s-65 and s-53 will be prescribed and the
list will be send to NewCAB. As soon ad-request_for_meetingnters its trap t-65 andt-
send_listenters its trap t-53, CABSecretary will return to its neutral state. There new requests
can be handled and administrated.

s-52 s-53

act_send_list
neutral >

t-53

create_
empty_list

t-52
Figure 69. int-send_list's subprocesses and traps w.r.t. CABSecretary

S-64

no
request

act_request_
for_meeting /requesting

s-65

no
request

meeting

act_request_
for_meeting /requesting

meeting

call_
send_

t-64

call_prepare
meeting

meeting

t-65

Figure 70. int-request_for_meeting’s subprocesses and traps w.r.t. CABSecretary

page 63

The new model

Figure 71 shows the class CABSecretary as managar-afid_to_list int-send_list int-
request_for_change int-handle_change_request(called operations), int-big_impact
int_small_impactndint-request_for_changgalling operations).

employee mapping order used:

int-add_to_list (figure 64)

int-send_list (figure 69)
int-request_for_change (figure 65)
int-handle_change_request (figure 66)
int-big_impact (figure 67)
int-small_impact (figure 68)
int-request_for_meeting (figure 70)

handle_change_reque
(request-id 5?2(5 g ygg\g request_for_change@
. ! - . S-
in t-58, (t-60 or t-62) s-54 in t-54 >l 556
s-58 s-58
> -
in t-59, (t-61 or t-63) |s-60 in t-56 s-60
S-62 S-62
s-64, s-64
N/ N
change_request neutral request
handled retrieved

send_list add_to_list

in t-52, t-64 in t-50, t-55
in t-51,
t-57
in t-53, t-65
s-50 s-51
s-53 s-52
s-54 s-57
s-58 s-58
s-60 s-60
S-62 s-62
S-64 s-64
NG
list request
send added

Figure 71. CABSecretary: viewed as manager of 7 employees

In the above figure the logical operatoris used to describe the conditions under which the
operationhandle_change_requesan be executed. For now the above notation will be used.
Details on the used notation will be given in Appendix B.

The second part of the communication specification shows the communication between the
manager process Request and its employee procedsesgect requestint-big_impact
int_small_impagtint-do_changeint-handle_change_requestdint-do_meetingThe internal
behaviourdnt-reject_requestint-big_impact int_small_impactandint-do_changebelong to

the class Request itseliit-handle_change_ requeahdint-do_meetingre the internal behav-

iours of operations that call operations of the class Request.

Keep in mind that, as for every request (i.e. request-id) an instance of the class Request exists,
the following will hold for every instance. Request starts in its st@téral If int-do_meeting

has entered its trap t-74, which means the CAB suggests the request should be rejected, if more-
overint-reject_requesis in its trap t-78, then Request can go to its segeest rejectednd

the change-request will be rejected. Howevartido _meetindnas entered its trap t-75, which
means the CAB suggests the change will have a big impact on the software, aimd- also
big_impactis in its trap t-80, then Request can go to its dtajempact estimatednd the

page 64

The new model

change-request will be handled. Similarlyjnf-do_meetinghas entered its trap t-76, which
means the CAB suggests the change will have a small impact on the software, if mateover
small_impacis in its trap t-82, then Request can go to its stauall impact estimateand the
change-request will be handled. In all three states the subprocess s-77 is presdnbed to
do_meetingNote that for every request only one of these three states can be reached, as a re-
guest cannot be rejected and accepted at the same time. Moreover a request cannot have both a
big and a small impact on the software. Whdrdo_meetingenters its trap t-77 and alsu-
reject_requesenters its trap t-79 ant-big_impactenters its trap t-81 ant-small_impacten-

ters its trap t-83, Request returns to its statatral

If int-handle_change_requelas entered its trap t-70, if moreoudrdo_changehas entered

its trap t-84, then Request makes the transition to thedtateging softwareAs mentioned

before the value of the parametsize is known as it is passed through via
handle_change requestRequest will return to its stateeutral as soon asint-
handle_change_requebkas entered its trap t-71 aimd-do_changehas entered its trap t-85.

Note that, as we have mentioned before, the order in which the operations are called is not ar-
bitrary, although it may seem so taking into account the interleaved character of the external be-
haviour of the class Request. When looking more carefully at the model, it is clear that before
reaching the statehanging softwar@ne of the operatiortsig_impactor small_impacthas to

be executed, as these operationstaidle _change_requesthich in its turn callslo_change

s-70

act_handle_change_request
(request-id, size)

starting
possible
change

neutral

call_ do
change
(reg-id, size)

software
develop.

t-70

s-71
act_handle_change_request
(request-id, size)

starting
possible
change

neutral

t-71

authorize

cancel software

develop.

Figure 72. int-handle_change_request’s subprocesses and traps w.r.t. Request

page 65

The new model

s-74 meetir&g
ende
act_do
00 t
meeting end_ get_
meeting ick_request_ request-id
rom_list
meetindg equest-iy
starte known
check_request
(request-id)
call_reject_request
{request-id
accept_request
(request-id
call_big_
impact
(request-id)
estimate_impact
(request-id)
call_small_impact
(request-id)
s-77

no meetirag
meeting ende

meetin
starte

update_list

update_list

update_list

Figure 73. int-do_meeting’s (new version) subprocesses and traps w.r.t. Request

page 66

The new model

change
started

scheduleg call_schedule_and_
assign_tasks (size)

change
started

scheduleg
t-85

Figure 74. int-do_change’s (new version) subprocesses and traps w.r.t. Request

s-78 reject
request
asked
status
t-78 updated /~ ypdate_status
s-79

reject
request
asked

status
updated

t-79

Figure 75. int-reject_request’s subprocesses and traps w.r.t. Request

page 67

The new model

s-80
+80 call_handle_
change_request
(reg-id, size =big)
status update_status Pea(l]fﬂgt
updated e
s-81
t-81

status handle

request
updated acked

Figure 76. int-big_impact’s subprocesses and traps w.r.t. Request

s-82

t-82 call_handle

change_request
(reg-id, size =smal)

handle
request
asked

status
updated

update_status

s-83
small

impact

asked

t-83

status handle

request
updated asked

Figure 77. int-small_impact’s subprocesses and traps w.r.t. Request

page 68

The new model

Figure 78 shows the class Request as manageintokject request int-big_impact
int_small_impact int-do_change(called operations)jnt-handle_change_requesind int-
do_meetindcalling operations). As for every request-id an instance of the class Request exists,
there will exist a manager process too for every request-id.

employee mapping order used:

int-reject_request (figure 75)
int-big_impact (figure 76)
int-small_impact (figure 77)
int-do_change (figure 74)
int-handle_change_request (figure 72)
int-do_meeting (figure 73)

do_change
(size)

reject_request

in t-78, t-74

in t-84, t-70 g
changing

request
software

rejected in t-79, t-77
in t-85, t-71

small_impact
in t-82, t-76

big_impact
in t-80, t-75

neutral

in t-81, t-77 in t-83, t-77

big impact small impact
estimated estimated
Figure 78. Request: viewed as manager of 6 employees

page 69

The new model

The third part of the communication specification shows the communication between the man-

s-90
meeting
ended
t-90
s-91
reques
picked
act_do_ end_ get_
meeting meeting ick request request-id

rom_lis

check_request
(request-id)

call_reject_reque
('request-ld%

accept_request
(request-lt%

call_big_impac

(request-id) estimate_impact

(request-id)

estimating
impact

call_small_impact
(request-id)

Figure 79. int-do_meeting’s (new version) subprocesses and traps w.r.t. NewCAB

ager process NewCAB and its employee processesquest_for_meetingnt-open_meeting
int-do_meetingint-close_meetingint-request_for_changandint-prepare_meetingThe in-

ternal behaviours of the export-operations belonging to the class NewCABntare
request_for_meetingnt-open_meetingint-do_meetingand int-close_meetingThe internal
behaviours of operations that call operations of the class NewCABtaegjuest_for_change
andint-prepare_meetingAsint-open_meetingnt-close_meetingndint-prepare_meetinglo

not have to be changed to fit the new model, their subprocesses and traps do not have to be
changed either. So the communation between NewCAB and these three employees is the same
as the communation between DepCAB and these three employees. Therefore this part of the
communication specification will not be repeated here.

Note that the trap-structure mit-do_meetingsee Figure 79) deviates from the standards de-

page 70

The new model

scribed in the previous chapt®o_meetingstill is a part of a bigger operation, that has been

split into three parts. As these three parts cannot operate simultaneously the subprocesses of the
internal behaviour ofio_meetinghave to be sequentialized. This is done by using small traps,
because then the operation has to be finished before it can enter its trap and the manager thus
makes the next transition only after. The trap-structureg-oéquest_for_meetin@Figure 80)
andint-request_for_chang@-igure 81) also deviate from the standards. This will be explained
later.

NewCAB starts in its stateeutral When a meeting has been requested, the manager waits for
int-request_for_meeting be trapped in its trap t-92, which means a possible previous request
has been dealt with, and fiot-request_for_changt be trapped in its trap t-94, which means

a meeting has been requested.

s-92 s-93

act_request_
for_meeting

no
request

no
request

requesting
meeting

t-92

call_send_
list

wait

call_prepare
meeting

t-93

Figure 80. int-request_for_meeting’s subprocesses and traps w.r.t. NewCAB

When these traps have been entered, NewCAB transits to thensttiag requesteand pre-

scribes subprocess s-93imb-request_for_meetingAlso subprocess s-95 is prescribednte
request_for_changeén this state the new requests cannot be placed on a list in order to prevent
them from being placed on the already full list that (possibly) has not been sent yet. As soon as
int-request_for_meetinigas entered its trap t-93, which mesesd_lishas been activated, and
int-request_for_changbas entered its trap t-95, the st&eavailablecan be entered. There
subprocess s-92 is prescribedrtrequest _for _meetinghereby making it possible for Pro-
jectManager to start actual preparations, and subprocess sf@@equest_for_changéNow
CABSecretary can continue to administrate change-requests and place them on the list as far as
NewCAB is concerned. Almost instantipt-request_for_changevill enter its trap t-96.
Open_meetingan be considered now and NewCAB will transit to the stegeting opened

There subprocess s-94 will be prescribed againttcequest_for_changeNote though that
NewCAB cannot react to trap t-94 until its stagtral However, as mentioned before, trap t-

94 will usually be entered only in the neutral state, as we assumed that the list would not grow
full during the meeting.

Let us now continue with the manager process. NewCAB is in itsrstatng openedVhen
int-do_meetings in its trap t-90, NewCAB can go to its stateetingand the requests can be
discussed. Iint-do_meetindhas entered its trap t-91, which means the meeting has ended and
results with respect to the requests have been establishediademeetings done and New-

CAB can go to its statmeeting closedEventually NewCAB will return to its stateeutral

page 71

The new model

As mentioned before the trap-structuresimtfrequest _for_meetingFigure 80) andint-

s-94 act_request_
for_change
no request

time_out

call_request_
time for_meeting
expired >

act_request_

for_change
no request——=

determine_id_ fequest_Id

determined

call_add_
to_list

count_number
of_requests request
added

call_request_
for_meeting

t-94

s-95

determine_id

t-95

s-96

determine_id_ frequest_ iy

determined

act_request_
for_change
no request

time_out

time
expired

Figure 81. int-request_for_change’s subprocesses and traps w.r.t. NewCAB

request_for_changéFigure 81) deviate from the standards.ifsrequest_for_meeting a

called operation one would expect subprocess s-93 to have a large trap. However in this case a
small trap is used to assure that the cadletiod_listhas been executed before entering the next
state of NewCAB. As long as this is not assured (i.e. trap t-93 has not been entered) subprocess
s-95 has to be prescribedind-request_for_changeén subprocess s-95 the calladd_listhas

call_add_
to_list

count_number
requests, _ of_requests
counted

t-96

page 72

The new model

been removed in order to prevent new requests from being placed on an already full list that
(possibly) has not been sent yet. Only aiftéirequest_for_meetingas entered its trap t-93,
subprocess s-96 can be prescribedtoequest_for_changand requests can be put on a (new
and empty) list again.

Figure 82 shows the class NewCAB as managert-egequest_for_meetingnt-open_meeting

employee mapping order used:

int-request_for_meeting (figure 80)
int-open_meeting (figure 25)
int-do_meeting (figure 79)
int-close_meeting (figure 27)
int-request_for_change (figure 81
int-prepare_meeting (figure 29)

in t-93, t-95
neutral meeting
requested
in t-3, t-96,
t-16
close_meeting do_meeting
in t-10, t-91, t-18 in t-4, t-90, t-17
meeting meeting
closed opened

Figure 82. NewCAB: viewed as manager of 6 employees

int-do_meeting int-close_meeting(called operations),int-request_for_changeand int-
prepare_meetingcalling operations).

The fourth part of the communication specification shows the communication between the man-
ager process NewDesign and its employee prooessonitor, which is the internal behaviour

of an operation calling export-operations of the class NewDesign. Subprocess s-100 is the start
state ofint-monitorfor the first instance of Design; there is only one monitor per design docu-
ment but there are many instances of Design for each design document: one instance for every
separate version of the very same document (see [1] for a justification of this). In the subprocess
s-100,int-monitorwill be waiting until Design will start the modifications. In subprocess s-101

it will be waiting until Design has closed the modification and in subprocesses s-102 and s-103
it will be waiting until Design has started the review process and until it has reported the review
result respectively. After thist-monitorwill go back to subprocess s-100 (when the review re-

sult isnot_oR or to the neutral subprocess s-104 (when the review resilt iSote that sub-
process s-104 is also the starting state for the other instances of Design. Figures 83 and 84 can
also be found in [2, Figure 16] and [2, Figure 23] respectively.

page 73

The new model

s-100

call_not_mod_opene
monitor '\ (size)

started

t-100

act_ i
monitor g&?fsfc_s fg\yﬁr\;\?t%_ene
(size) a

call_report_review_resul not review
opened

asked

no
monitoring

update_statistics

s-102

call_notify_
review_opened

call_report_
review_result

call_report_
review_resul

s-104 t-104

monitor
started

no
monitoring

Figure 83. int-monitor’s subprocesses and traps w.r.t. NewDesign

page 74

The new model

Figure 84 shows the class NewDesign as managet-ofonitor (a calling operation).

close_and_

close_and_ reviewable closed
rev_not_ok not_rev_
review opened
in t-102

O

report_rev
result

rev_ok
int-10

readable
opy

o

starting
copying
closed starting review pre review **
open_for_
review
not_mod_
report_ closed
review_ int-101
result
in t-103 pre review ** close_
mod
closed
mod
not_mod
opened (sizey modifiable **
in t-100
create open_for_
prepare first mod
in t-104
non creatable created pre starting
existent create modlﬂable m0d|f **
next
not_mod_
opened (size)
in t-100
starting modifiable *
reation .
creatio modify
Figure 84. NewDesign: viewed f int-monit Startng
igure 84. NewDesign: viewed as manager of int-monitor modif. *

page 75

The new model

The communication specification between the manager process ProjectManager and its em-
ployee processes also has to be remodelled, as ProjectManager no longer is a manager of
request_for_changdut instead is a managerionf-request_for_meetinfyhich could be seen

as an extension aft-request_for_changas used in the old model). This change has to be in-
corporated in the new model. Alsd-do_changdas slightly changed (one transition has been
parametrized) and for the sake of completeness its subprocesses and traps will be given. The
new, but very simular to the old subprocesses and trapssfhedule_and_assign_tasksd
int-monitorwill not be given here. They are standard.

The fifth part of the communication specification shows the communication between the man-
ager process ProjectManager and its employee prodes$eis meetingint-leave _meeting
int-check _agendaint-receive_confirmation int-prepare_meeting int-request_for_meeting
int-open_meetingnt-close_meetingndint-do_changeThe internal behaviours of the export-
operations belonging to the class ProjectManagein&jein_meetingint-leave_meetingnt-

check agendant-receive_confirmatiorandint-prepare_meetingThe internal behaviours of
operations that call export-operations of the class ProjectManaget-egquest_for_meeting
int-open_meetingnt-close_meetingndint-do_changeBecause the communication between

the manager ProjectManager and its employieégoin_meeting int-leave _meetingint-
check_agendaint-receive_confirmation int-prepare_meeting int-open_meetingand int-
close_meeting the same as in the old model, these employees’ subprocesses and traps will not
be shown again. Also the subprocesses and trapg-s¢hedule_and_assign_tas&sd int-
monitorwill not be given here, as the changes in the internal behaviours of these operations do
not affect the subprocesses and traps w.r.t. ProjectManager. The subprocesses and traps of these
operations will remain standard. So we restrict our attention to the communication between Pro-
jectManager and the calling internal behaviaotgequest_for_meetingndint-do_change
ProjectManager (Figure 87) starts in its stegatral If int-request_for_meetingas entered its

trap t-105, which means a preparation has been asked, (and ofinbprepare_meetings in

its trap t-22) themprepare_meetingan be performed and ProjectManager can go to its state
starting preparationsin that state subprocess s-106 is prescribedtt®quest_for_meeting

so that a new request can be made as soon as possible. When ProjectManager is in its state
checking agendandint-request_for_meetingas entered its trap t-106 (and of courde
check_agendaas entered its trap t-21 aimt-prepare_meetingpas entered its trap t-23), Pro-
jectManager can return to its stateutral After that, whennt-do_changéhas entered its trap

t-107, ProjectManager can make the transition to the stateng scheduleAs soon asnt-
do_changeenters its trap t-108 ProjectManager will return to its neutral state. There other
changes can be scheduled or new meetings can be prepared.

page 76

The new model

s-105 s-106

act_request_

no
request

no
request

call_prepare
meeting

Figure 85. int-request_for_meeting’s subprocesses and traps w.r.t. ProjectManaget

s-107 |
neutral act_do_change (size) g?g?gg
call_schedule_and_
scheduleg assign_tasks (size)
t-107
s-108

change
started

scheduled

Figure 86. int-do_change’s subprocesses and traps w.r.t. Projectmanager

page 77

The new model

Figure 87 shows the new version of Projectmanager as managdrj@h_meeting int-

receive_
confirmation

in t-24, t-40

schedule_and__
assign_tasks

in t-107

int-24, t-41 Conflrm

received

in t-108

monitor

starti ng int-22, t-105 neutral
schedule prepare

meeting

starting
monitor

leave_ join_meeting

meeting in t-27, t-31,

in t-28, t-32, 34

t-33

starting
preparation
check_agenda in t-21, t-23, t-106
in t-20, t-23
meeting

employee mapping order used:

int-join/leave_meeting (figure 35)
int-prepare_meeting (figure 34)
int-check_agenda (figure 31)
int-receive_confirmation (figure 33
int-request_for_meeting (figure 85)

checking int-open_meeting (figure 36)
int-close_meeting (figure 37)
agenda int-do_change (figure 86)

Figure 87. ProjectManager (new version): viewed as manager of 8 employees

leave _meeting int-check _agenda int-prepare_meeting (called operations), int-
request_for_meetingnt-open_meetingnt-close_meetin@gndint-do_changgcalling opera-

tions).

Note that as the external behaviours of DesignEngineer and QAEngineer and the internal be-
haviours of the operations of both classes remain unchanged, the subprocesses and traps of these
operations w.r.t. these external behaviours remain unchanged as well. So in the new model the
communication specification between the manager process DesignEngineer and its employees
as well as the communication specification between the manager process QAEngineer and its
employees is the same as in the old model. Which concludes our discussion of the communica-
tion of the new model.

page 78

WODAN, a method to describe change

5 WODAN, a method to describe change

5.1 Introduction

In Chapter 3 a simple model for the Change Management software process was developed. Lat-
er on, in Chapter 4, this model had been changed in order to meet new requirements. Of course
this new model will have to be enacted at some point in time. However switching from one mod-

el to another is not a trivial thing to do. So we have to model the changing of the Change Man-
agement software process model as well. For this purpose an extra manager process, called
WODAN, is introduced, which manages the change from the old model to the new model. WO-
DAN, which stands for What Ought to be Done As Necessary, was first introduced in [2]. This
section will just be a brief introduction into WODAN, more information can be found in [2,
Chapter 3]. The actual change from the old model to the new model will be modelled in the next
chapter.

In order to describe the way WODAN works, some terms have to be defined. The internal be-
haviour of an operation is callesh internal procesand the STD describing this behaviour is
calledthe internal process descriptioSimilarly the external behaviour of a class is cadled

external procesand the corresponding STD is caltbe external process description

When a software process model evolves, the behaviour of (at least a part of) the model has to
be changed. The way this can be done is very similar to the way the behaviour of an internal
process changes when it makes a transition from one subprocess to another. Consider a subproc-
ess as a behaviour restriction, for a subprocess implies the restriction that the internal process
may only behave in accordance to those states and actions imposed by the subprocess. Then the
transition from one subprocess to another subprocess is the same kind of change as wanted for
evolving software process models. This evolution of the software process model can be consid-
ered as being a transition from one evolution stage to another evolution stage. So there is an
analogy between evolution stages and subprocesses.

One could change a software process model by viewing its external and internal process de-
scriptions as evolution stages, and therefore as being subprocesses of some larger, not explicitly
defined processes. These not explicitly designed external and internal processes combine the
various behaviours (past, current and future) of the software process model during all possible
evolution stages (EVS’s) and will be calledachronisticexternal and internal processes.

WODAN will be the manager of all (not explicitly designed) anachronistic external and internal
processes. WODAN is an (extra) manager process used to formalize the change of a software
process model during enaction, in this case the change from the old Change Management soft-
ware process model to the new and extended Change Management software process model.
WODAN normally stays in the same state, just prescribing the current evolution stage, i.e. the
current external and internal process descriptions. As mentioned before they are subprocesses
of the anachronistic external and internal processes. When a change in the model has to be
made, WODAN can go to a state which for example is caledging the modewhen WO-

DAN is in this state, the new external and internal process descriptions can be designed. More-
over, WODAN can also design new class descriptions when the static structure of the model has
to be changed due to extra requirements (in our example: the classes CABSecretary and Request
have been added). After the new model has been designed, WODAN will go to the state pre-
scribing the new process descriptions. Sometimes this can be done in one step, sometimes in-
termediate steps are necessary.

Adding or removing processes within Socca is possible since the processes are subprocesses of
the anachronistic processes. When a proce$si&to be added, one could say that the anach-
ronistic process Eof which g is a subprocess, already existed from the very beginning. How-
ever WODAN was prescribing a nearly empty subprocess of it before the process E

page 79

WODAN, a method to describe change

necessary. This nearly empty subprocess consists of a single state together with one transition
from this state to itself. When WODAN prescibes the procesgEwill transit from the single

state of the nearly empty subprocess to any possible starting stateAtddEa process f£can

be removed during evolution by prescribing a similar nearly empty subprocess of the anachro-
nistic process g of which g is a subprocess with respect to WODAN. In this caseilt tran-

sit from any state of o the single state of the nearly empty subprocess. Such a nearly empty
subprocess will be called the NULL process, or shorter NULL. This will also be used as a con-
vention when designing WODAN to introduce new processes or to remove old processes; in the
states of WODAN where the process did not exist yet or has been removed already, the NULL
process will be prescribed.

5.2 Types of change

The changes made to a software process model to achieve evolution, can be split up in different
types of change; they range from a relatively simple change to more complicated forms of
change. The following two types of change [2] can be distinguished when changing the Change
Management software process model (modelled in Chapter 6):

1 Add or remove processes and change the strategies and subprocesses of other processes.
The following processes have been removed: MainCAB and DepCAB. The processes that
have been added are: Requettreject_requestint-small_impactint-big_impact CAB-
Secretaryint-handle_change_requediewCAB andnt-request_for_meeting

2 Do not add or remove processes, only change strategies and subprocesses and add or
remove states and transitions. In the new model states and transitions have been added to
Design in order to create NewDesign. The same has been dmteeguest _for_change
int-do_meetingint-monitor and implicitly to all internal behaviours in which transitions
have been parametrized (e.giritdo_changgin order to create the new versions. Also the
subprocesses of these processes w.r.t. their managers have been changed. Strategies have
been changed too. In the new model some of the internal behaviours will be managed by
another manager (possibly a newly introduced process)inedp changevas managed
by DepCAB and in the new model it will be managed by Request.

As mentioned above both types of change are used to model the change of the Change Manage-
ment software process model.

5.3 Problems as a consequence of change

When changing the Change Management software process model some problems arise. Adding
a parametesizedoes not cause a lot of problems. Most problems have to do with the fact that

in the new model more than one request per meeting should be handled. This change affects a
lot of processes, is responsible for the removal and addition of processes and therefore causes
many poblems. The following problem is very common:

* A process is within EVS1 in a state without a corresponding state in the process prescribed
within EVS2. This problem can arise for example witkrequest_for_changand int-
do_meeting

In order to present a solution to this problem, the iaterrelatedhas to be defined first:

* Let B be an anachronistic internal or external process with two subprocgasesip with
P the internal or external process prescribed during;ERShe internal or external pro-
cess prescribed during EY&nd k>j. So EVGis an evolution phase after EVShen the
process Pwill be calledinterrelatedwith the process;P

page 80

WODAN, a method to describe change

* Let By, A and R denote the same processes as above. Furthermorg,detXstate of £
which existst in both subprocessgsfd k of Py. The state Xin R will be calledinterre-
lated with the state Xin F. So in fact, we will regard this same state as two different (but
interrelated) states in the interrelated subprocesses.

Now the terminterrelatedhas been defined. Again leg Bnd P denote the same processes as
above and let;P; be the subprocess of Prescribed during EV(5. The problem to be solved

is that the processyAnust go from EVS where subprocess &f Py, is prescribed, to EV5,

where subprocess,f of P is prescribed. As long as there exist interrelated statgsandP

Pi+1, these states can be used as a trap w.r.t. WODAN. Only wheimPne of these states,

P, can transit to the next evolution stage. If there are no interrelated stajesnih §2,, an
intermediate subprocess Ras to be created. Such an intermediate subprocegscohkains
some states of the subprocess used in; W& some states of the subprocess used iREVS
The interrelated states in &d R are used as a trap to the intermediate phase, the interrelated
states in P and B, are used as a trap to the next evolution stage. This general method will al-
ways work. Note that in this case WODAN will have to contain an intermediate state in which
P; is prescribed. However a new problem is introduced:

» Changing one process may conflict with changing another process. This can occur for
instance when both the external behaviour of a class and an internal behaviour of an opera-
tion of that class are changed at the same time. The internal behaviour of the operation,
when it has already entered its trap w.r.t. WODAN, could affect the external behaviour of
the class in such a way that some states and possibly its trap w.r.t. WODAN could not be
reached anymore. If for instano#-do_meetingand DepCAB would have been changed
simultaneously (Figure 105 and Figure 93 would be prescribed respectively), it is possible
that DepCAB could not leave its staeeting openednymore and consequently could not
reach its neutral state, which is its trap w.r.t. WODAN. The same problem arises when one
would changent-prepare_meetingnd DepCAB concurrently.

Therefore it is important to keep in mind that sometimes processes have to be changed in a spe-
cific order. This implies that WODAN sometimes will have to contain more than one interme-
diate state. Another problem is the following:

* When a process is removed (temporarily or permanently), its partial side-effects up to the
actual removal have to be rolled back. Another way is to delay the removal by using a trap
which only contains the states that can be reached without causing side-effects, e.g. a neu-
tral state. This problem occurs for instance when DepCAB has to be removed; some
requests still could not have been handled and some meetings could not have been finished
yet. Therefore DepCAB can be removed only after these two problems have been coped
with.

page 81

WODAN, a method to describe change

page 82

Changing the software process model using WODAN

6 Changing the software process model using WODAN

6.1 A setup for WODAN

In order to model the change of the Change Management software process model, WODAN has
to be designed. WODAN will manage the evolution from the old model (Chapter 3) to the new
model (Chapter 4) via a state in which the new model is being designed. Some intermediate
states have to be used to reach the final state. In our case WODAN will consist of six states.

Figure 88. global external behaviour of WODAN

The six states of which WODAN consists are:

1 No change is made. The (old) model, described in Chapter 3, can be enacted as usual. This
is EVS1.

2 In this state the new processes, described in Chapter 4, are being designed. Also the inter-
mediate processes are being designed. These intermediate processes will be described in
section 6.2. Everything still is enacting in the old way.

3 The new and the intermediate processes have been designed. As requests should not be
received and handled in the old way anymore, MainCAB and DepCAB will be changed first
together with the export-operatioaquest_for_changdn order to finish what has been
started, intermediate versions of MainCAB, DepCAB amdequest_for_changwill be
prescribed. Note that in this staté-request_for_changeannot be called. This implies that
incoming requests cannot be received in this state of WODAN. However the traps are cho-
sen in such a way that WODAN does not have to remain very long in this state.

4 In this state of WODAN MainCAB will be removed, as it has no function anymore. An
intermediate version of CABSecretary called TempCABSecretary will take over the task of
receiving the requests. Therefore TempCABSecretary will be the manager of an intermedi-
ate version oint-request_for_changén this intermediate version a list of requests is made,
butint-prepare_meetingannot be called. So nhew meetings cannot be prepared yet. Also in
this state of WODAN an intermediate version of DepCAB will be prescribed. Whenever a
meeting has been started, i.e DepCAB has reached iter&atemg openedhe meeting can
be finished. In every other case the (old) request that would have caused a meeting will be
placed on a list, just like the new requests. Note that both the old and the new requests are
placed on the same list. In order to place the old requests on the list two things will happen.
First of all, DepCAB will get a temporary export-operatioat_request_on_listwhich
places the old request on a list. Alsbprepare_meetingthe operation that in fact coordi-
nates the behaviour of DepCAB, will be changed in such a way that notl@niyeeting
andclose_meetingan be called (in order to finish a meeting that has already been started),
but alsoput_request_on_lisGecond, every CABMember will get a temporary export-oper-
ationcancel_meetingused when the preparations are being cancelled and the meeting had
not been started yet but already had been confirmed. Only if every (old) request has been
handled entirely or has been placed on a list, WODAN will transit to its next state.

5 In this state of WODAN the new model will be enacted almost entirely. However there are
two operations of which the final versions cannot be prescribeddgemeetingand

page 83

Changing the software process model using WODAN

prepare_meetingTo these operations intermediate versions are prescribed. These interme-
diate versions could not be prescribed in the previous state of WODAN, as they would con-
flict with the other changes.

6 The new model has been prescribed completely, also the final subprocessés of
do_meetin@ndint-prepare_meetingave been prescribed here. Everything can enact in the
new way now. This is EVS2.

6.2 Designing WODAN to manage the change

The first prescriptive step, from the old model to the first intermediate phase, is modelled in Fig-
ure 89. As mentioned before in the set-up only three processes are affected in this step.

2 11 employee mapping order used:
S_
s-112 close_change MainCAB (figures 8 and 92)
. DepCAB (figures 9 and 93)
s-114] in 111, +-112, t-114 int-req_for_change (fig 13 and 90)
designing switching to
new model new behaviour (1)

Figure 89. first prescriptive step of WODAN

As soon as the new model has been designed, WODAN will transit to itswitateing to new
behaviour (1) Note that MainCAB, DepCAB anidt-request_for_changeere already waiting

in their traps. WODAN will prescribe subprocesses s-120 and s-121 to MainCAB and DepCAB
respectively, as MainCAB has to finish what it has started. Also subprocess s-122 will be pre-
scribed toint-request_for_changeas the incoming requests should not be handled in the old
way anymore. In fact incoming requests are not being handled at all in this state of WODAN,
as the operatiorequest_for_changeannot be called here, because the transitions labeled with
(dep-)request_for_chandeve been removed from the external behaviours of MainCAB and
DepCAB. However the traps necessary for WODAN to be entered in order to transit to its next
stateswitching to new behaviour (2re entered almost instantly. Note that the state-action in-
terpreter of MainCAB w.r.tint-request_for_changbas been changed. To all other processes
that eventually have to be changed, the subprocesses used in the old model are still being pre-
scribed.

no act_request_for_change

request

t-122

w.r.t. WODAN this is subprocess s-122

Figure 90. the first intermediate phase of int-request_for_change

The subprocesses and traps of the first intermediate phaserefuest for _changev.r.t.
CABSecretary can be found on the next page.

page 84

Changing the software process model using WODAN

s-1’
no
request
s-2’
no
request

Figure 91. int-request_for_change’s subprocesses and traps w.r.t. MainCAB

int-2 52

t-120
neutral change requested

w.r.t. WODAN this is subprocess s-120
Figure 92. intermediate phase of MainCAB

page 85

Changing the software process model using WODAN

open_meeting do_meeting

meeting
opened

close
meeting

do_change

authorize

cancel

software
develop.

w.r.t. WODAN this is subprocess s-121 and the state space is trap t-121
Figure 93. first intermediate phase of DepCAB

As the external behaviour of DepCAB has changed, its subprocesses and traps w.r.t. MainCAB
have changed too. However they will not be given here, as they only have changed slightly.

The second prescriptive step, from the first intermediate phase to the second intermediate phase,
is modelled in the following figure. The processes that are affected for the fist time this step are
marked with *.

3

employee mapping order used:

MainCAB (figure 92)
DepCAB (figures 93 and 98)

in t-120, t-121, ProjectManager (figures 11 and 103
t-113, t-122, * CABSecretary (figure 97)
t-115 int-req_for_change (fig 90 and 95)
* int-prepare_meeting (fig 21 and 101)
switching to switching to

new behaviour (1) new behaviour (2)

Figure 94. second prescriptive step of WODAN

As stated before, MainCAB will enter its trap t-120 almost immediately and imiso
request_for_changwill enter its trap t-122 (this trap contains the only states that have a inter-
related state in the new model) almost instantly. DepCABiI@RAgrepare_meetingvere al-

ready waiting in trap t-121 and t-115 respectively, as the state spaces of the behaviours are its
traps. WODAN will then continue to go to its next statetching to new behaviour (2)here
TempCABSecretary, the intermediate version of CABSecretary, will be installed by prescribing

page 86

Changing the software process model using WODAN

subprocess s-132 to it. Also subprocess s-133 will be prescrilgeréguest_for_changef

which TempCABSecretary will be the manager. This way new requests will be administrated
during switching. Just like in the new model the new requests will be put on a list, but
request_for_meetingannot be called yet (see Figure 95). Now it can be made cleantwhy
request_for_changeould not be called in the previous state of WODAN. The reason is that
MainCAB and TempCABSecretary are managing different intermediate versiomg- of
request_for_changeavhich cannot be prescribed at the same time, i.e. in the same state of WO-
DAN. The difference is of course that the intermediate version of CABSecretary places the re-
guests on a list and MainCAB does not.

no reques

request
added

w.r.t. WODAN this is subprocess s-133 and the state space is trap t-133
Figure 95. the second intermediate phase of int-request_for_change

page 87

Changing the software process model using WODAN

s-54’
no reques determineld
; call_add_
t-54 to list
request
added
t-55’
s-56’ act_request_
\ for_change ing determine_id
no reque determineld
call_add|
-56’ to_list
sS-57’
no request
t-57° request

added

Figure 96. int-request_for_change’s subprocesses and traps w.r.t. TempCABSecret

Whenever the internal behaviour of an operation changes, the subprocesses and traps w.r.t. the
managers have to be changed too. Also the managers will change as the state-action interpreters
w.r.t. these operations have changed. This can be seen in figures 90, 91, 92 and 95, 96, 97. These
changes are standard; just omit in the subprocesses all transitions and states that have been omit-
ted in the internal behaviour of the operation. As this is a standard procedure, the subprocesses
and traps of other internal behaviours, that will be changed, will be given only in an exceptional
case.

add_to_listin t-55’ /—\ request_for_changein t-54’

s-57’ s-54’ S-56’
int-57° in t-56'
request neutral request
added retrieved

w.r.t. WODAN this is subprocess s-132 and the state space is trap t -132

Figure 97. TempCABSecretary: viewed as manager of int-request_for_change

Compared with the new model TempCABSecretary has less states, only two export-operations
(add_to_list and request_for_changeand a different state-action interpreter w.irit-
request_for_change

page 88

Changing the software process model using WODAN

Also in this state of WODAN the Null-process is prescribed to MainCAB, as it has no function
anymore. Subprocess s-130 will be prescribedverfy) DepCAB, as the current meetings have

to be finished before switching to NewCAB. Note that there could be activated more than one
external behaviour of DepCAB, as for every change requested in the past the external behaviour
of DepCAB had been activated in order to open a meeting. Normally these meetings would take
place one by one after the previous meeting had been finished, assuming that in every meeting
the same members have to be present. Now the requests that would have caused these meetings
are placed on a list. To that aim DepCAB has been extended with a temporary export-operation
put_request_on_ligiFigure 99). Also the class CABMember has been extended with a tempo-
rary export-operationancel_meetin@igure 100), in order to cancel a meeting whenever it had
already been confirmed but not been opened yet. It is from the internal behaviour of
prepare_meetingFigure 101) that these operations are called. Therefore in this state of WO-
DAN subprocess s-134 will be prescribedrbprepare_meetingFigure 101). Also subproc-

ess s-131 will prescribed to ProjectManager (Figure 103). To all other processes that eventually
have to be changed, the subprocesses used in the old model are still being prescribed.

meeting do_meeting
requesteq opened
put_request >
on_list close_meeting
\ meeting
/] closed
t-130
] do_change
authorize
] cancel software
develop.

w.r.t. WODAN this is subprocess s-130

Figure 98. second intermediate phase of DepCAB
Note that Figure 98 is valid for every external behaviour of DepCAB that has been activated in
the past. Note also that the transition labeled apéin_meetingas (temporarily) been omitted,

as in this phase of WODAN no new meetings can be opened. Only the meetings that had already
been opened can be finished.

page 89

Changing the software process model using WODAN

act_put_request_
on_list (list-id)

waiting
request

add_to_list
(list-id)

request
added

Figure 99. int-put_request_on_list: a temporary operation of the class CAB

The operatiorput_request_on_ligblaces the request on a list, in order to handle all requests
from this list at the same time, as soon as the new model will be prescribed. The list on which
these requests are placed is the same list as on which the new requests are placed. Just like the
other export-operations of DepCAB the operaout_request_on_lishas been (implicitly)
parametrized with the parametequest-id The operation has also been parametrized explicitly

with a parametdist-id, as all requests have to be placed on the same list. The subprocesses and
trapsint-put_request_on_listan be generated by applying the standards described in section
3.3.3 to it. They will not be given here.

As mentioned before also the class CABMember has been extended with a temporary export-
operationccancel_meeting

act_cancel_meeting

no

meeting
cancel

cancelled

agenda

skip_date_from_agenda
updated

Figure 100. int-cancel_meeting: a temporary operation of the class CABMember

This operation will be called (from the temporary internal behavioysrepare_meeting
whenever a meeting had already been confirmed but not been opened yet. The effect of the op-
eration will neutralize the effect akceive_confirmationthe date of the meeting will be
skipped from the agenda of the CABMember. The temporary opecatmel meetingan be
integrated into the model in the same wayegive _confirmationNote that this operation, as

itis an operation of the class CABMember, will be inherited by the classes ProjectManager, De-
signEngineer, QAEngineer and UserRepresentative. Therefore the external behaviours of these
classes will change. The altered external behaviour of ProjectManager can be found in Figure
103. The changed external behaviours of DesignEngineer, QAEngineer and UserRepresentative
can be constructed in a similar way. They will not be given here. Also the subprocesses and traps
of int-cancel_meetingyill not be given here. They can be generated by applying the standards
described in section 3.3.3 to it.

page 90

Changing the software process model using WODAN

Now the changed internal behavioumpoépare _meetingyill be given.

no act_prepare_meeting prepare
prepare started

call_put_request
call_ on_list t-134
close _

meeting

meeting
ended

call_do

00_ cancel_
meeting

preparations

agenda
checked

cancelled cancel

cancel_preparations

call_cancel _ call_cancel _
wait meeting meeting date
done @ selected

w.r.t. WODAN this is subprocess s-134
Figure 101. first intermediate phase of int-prepare_meeting

When the preparations have not already led to a meeting, the preparations will be cancelled. In
case the preparations were finished, but the meeting had not been opened yet, the meeting will
be cancelled. Of course meetings that had already been started can be finished. By this means
most requests will be placed on a list instead of initiating a meeting, so the new model can be
enacted as soon as possible. In this aaisprepare_meeting subprocesses and traps w.r.t.
ProjectManager will be given (Figure 102), as they differ quite a lot from the original ones. Con-
sequently the manager process ProjectManager changes a bit too (Figure 103).

page 91

Changing the software process model using WODAN

The subprocesses and trapsntfprepare_meetingy.r.t. the other members can be generated
s-22’ s-24’

t-22a]
no
prepare

cancel_
prepare preparati
cancelled

ONg agenda

checked

prepare
started

call_put_ cance

call s
close request_ preparatio
‘ date
meeting selected
ended

call_put_ t-24°
request_
on_list

call_do_
meeting

prepare

cancelleg cancel_

preparations

t-22’

wait
done
s-23’ s-29
act_prepare_ t-23’
no meeting prepare prepare
prepare started cancelleg
t-29

date

t-30 selected

call_put_request_| call_cancel call_cancel_
request on_list meeting meeting
put on
list
wait
call_put_ done
requ_e€5t_ Cance-|_
on_lisi preparations
agenda
prepare
cancelle cancel_ | checked
preparation

Figure 102. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager
by applying the standards described in section 3.3.3 to it. They will not be given here.

page 92

Changing the software process model using WODAN

Now the changed external behaviour of ProjectManager will be given.

received

sched_a_assign_} monitor

s-22' s-22’
prepare_ _
starting meeting neutral starting
schedule monitor

in t-22a’

leave join_meeting

starting / , meeting
preparation / Int-24
in CAB-
heckin :
Caggn dg meeting

Figure 103. ProjectManager: viewed as manager of int-prepare_meeting
w.r.t. WODAN this is subprocess s-131 and its state space is trap t-131

The external behaviour of ProjectManager has been extended with a temporary export-opera-
tion cancel_meetingalso the transitions labeled witheck_agendandreceive_confirmation

have been removed from the external behaviour of ProjectManager, as these operations cannot
be called in this state of WODAN. However the internal behaviours of these operations still ex-
ist and ProjectManager still manages them, as these operations could have been started, but not
have been finished at the moment subprocess s-131 was prescribed to ProjectManager. The ex-
ternal behaviours of the other members (DesignEngineer, QAEngineer and UserRepresenta-
tive) can be constructed in a similar way.

Also ProjectManager’s state-action interpreter warépare _meetindpas changed. Note that

in stateneutralonly subprocess s-22’ (derived from subprocess s-22) can be prescribed, in con-
tradistinction to both the old and the new model where subprocess s-22 or s-24 could be pre-
scribed (Figure 39 and Figure 87). Subprocess s-24 was prescribed mestedéonly when
ProjectManager still had to execute the operagarive confirmatiorHowever this operation

cannot be called in this state of WODAN, so this will not occur. Note that when ProjectManager
was prescribing subprocess s-24 (Figure 34) in its neutral state at the moment the first interme-
diate version oint-prepare_meetingvill be prescribedint-prepare_meetinghust be in a state

that is a part of trap t-24. As the stdtde selecteds a part of this trap, this state has been in-
cluded in subprocess s-22’ and in trap t-24".

page 93

Changing the software process model using WODAN

The third prescriptive step, from the second intermediate phase to the third and last intermediate
phase, is modelled in the following figure. The processes that are affected for the first time this
step are marked with *.

) @ 5@ ﬁmployee mapping order used: \

Null Null * (New)Design (figure 51)

MainCAB
Zigcl) SN_‘i"ls DepCAB (figure 98)

ProjectManager (figures 103 and 11
Null L gls-141 * NewCAB (figure 50)
s-132 | int-110, t-130, | s-142 CABSecretary (figures 97 and 48)
Null t-131, t-132, s-143 * Request (figure 49)
s-133 | t+133,t-134, s-144 int-req_for_change (fig 95 and 52)

134 t-116, t-117 145 int-prepare_meeting (fig 101 and 106)
S- S- * int-do_meeting (figures 14 and 105)
s-116 s-146 * int-monitor (figure 63)
switching to switching to

new behaviour (2) new behaviour (3)

Figure 104. third prescriptive step of WODAN

So if (every) DepCAB has entered its trap t-130, if also ProjectManager has entered its trap t-
131, if moreover TempCABSecretary has entered its trap t-132, if furthermbre
request_for_changbas entered its trap t-133, andat/€ry)int-prepare_meetingpas entered

its trap t-134, then WODAN can and will transit to its next statiéching to new behaviour (3)

Note that Designnt-do_meetin@ndint-monitorwere already waiting in traps t-110, t-116 and

t-117 respectively. Note that the state space of the external behaviour of Design (see [2, Figure
13]) is its trap w.r.t. WODAN, as no states have been removed from the external behaviour of
Design, but only transitions and states have been added in order to model the external behaviour
of NewDesign. For the same reasons the state spacembnitor (old model, see [2, Figure

12]) is its trap w.r.t. WODAN. In this state of WODAN the changing from the old model to the
new model has been completed almost entirely. Here the subprocesses s-113, s-140, s-141, s-
142, s-143, s-144 and s-147 already will be prescribed to ProjectManager, NewDesign, New-
CAB, CABSecretary, Requestt-request_for_changandint-monitorrespectively. The Null-
process is prescribed to DepCAB, as it has no function anymore. Every meeting has been fin-
ished and every (old) request has been placed on a list. Note that from now on meetings can be
requested, asequest_for_meetingan be called now from within subprocess s-144ntf
request_for_change

Note that ProjectManager’s trap t-131 (Figure 103) w.r.t. WODAN contains therstateng
cancelledand that ProjectManager’s subprocess s-113 (Figure 11) does not. This is not in ac-
cordance with the SOCCA-conventions. However it is garantueed that when WODAN transits
to its stateswitching to new behaviour (3ProjectManager will never be in its stabeeting
cancelled as in that cas@at-prepare_meetingould not have entered its trap t-134 w.r.t. WO-
DAN. This can be seen as follows. In order for ProjectManager to leave thmetdirg can-
celledbefore WODAN transits to its next staitet-prepare_meetinghust have entered its trap

t-29. This trap does not contain any state that is also containedpgrgpare _meetirig trap t-

134 w.r.t. WODAN (see Figure 101 and Figure 102). So only after ProjectManager’s neutral
state has been reached and subprocess s-22’" has been presanigectpmre _meetinggain,
int-prepare_meeting states that form trap t-134 can be reached.

Also in this state of WODAN subprocesses s-146 and s-145 are prescrilmcery) int-
do_meetingand every)int-prepare_meetingespectively. The final versions of these opera-
tions cannot be prescribed yet in this state of WODAN. If this had been done, the subprocesses
used in the previous state of WODAN would have needed a trap as used in the subprocesses s-

page 94

Changing the software process model using WODAN

146 and s-145. However using such traps in the previous state would have caused problems. If
for instancent-do_meetindhad been trapped in its staeeting startedit could never reach

its trap t-9 anymore. If at this moment DepCAB (Figure 93) would be in its rsiaéding
openedDepCAB could not reach its next state, as trap t-9 would never be entered, and therefore
could never reach its stateutral which is its trap w.r.t. WODAN.

no
meeting

act_do_meeting

meeting
started

t-146

meeting\ reject_request
ended

request
checked

call_do_change

w.r.t. WODAN this is subprocess s-146
Figure 105. intermediate phase of int-do_meeting

The subprocess aft-prepare_meetingised in the previous state has only one staiep(e-

pare) that could be used as a trap to the final versiantgirepare_meetingWWhen trapped in

this state it is possible that the calptat_request_on_listould not be carried out, because the
transition labeled witlact-prepare_meetinggading out of the trap was omitted. In that case
DepCAB would never reach its staegjuest put on lishnd therefore would also never reach its
stateneutral (this is one of the problems described in section 5.3). In both cases the final state
of WODAN cannot be entered.

no call_put_request / prepare
prepare on_list started

w.r.t. WODAN this subprocess s-145
Figure 106. second intermediate phase of int-prepare_meeting

Note that Figure 105 and Figure 106 are valid for every internal behavidor ofeetingand
prepare_meetinghat has been activated in the past.

page 95

Changing the software process model using WODAN

The final prescriptive step from the third and last intermediate phase to the new model is mod-
elled in the following figure. In this step no processes will be affected for the first time. Only
int-do_meetin@ndint-prepare_meetingvill be affected here.

° @ 6 @0\ ﬁmployee mapping order used: \

New)Design (figure 51
Null Null fvlam%AB gn (fig)
Null Null De
pCAB
s-113 s-113 ProjectManager (figure 11)
s-141 s-141 NewCAB (figure 50)
s-142 — i 5-142 CABSecretary (figure 48)
s-143 | int-145,t-146 | 5_143 Request (figure 49)
s-144 s-144 int-req_for_change (figure 52)
int-prepare_meeting (figures 106 and 21)
s-145 s-115 int-do_meeting (figures 105 and 61)
s-146 s-150 wt-monitor (figure 63) /
switching to no change
new behaviour (3) (new model)

Figure 107. final prescriptive step of WODAN

In the fifth state of WODAN it is guaranteed tivatdo _meetings in its stateneutraland that
int-prepare_meetings in one of its stategquest put on lisbr no prepare otherwise DepCAB

would have never reached its neutral state. This impliesahaty)int-do_meetinglready is

in its trap t-146 and thagyery)int-prepare_meetinglready is in its trap t-145 or will enter this

trap almost immediately (both traps contain the only states that have a interrelated state in the
new model). So WODAN does not have to wait very long to enter its next state. In this last state
the changing to the new model has been fully completed.

page 96

Changing the software process model using WODAN

Figure 108 shows WODAN completely. A list of subprocesses w.r.t. WODAN is given in Ap-
pendix B.

1@ 2@ ﬁmployee mapping order u@d:

New)Design

s-111 s-111 (rew)Desig

s-112 s-112 DepCAB

s-113 start_ s-113 ProjectManager

Null change Null NewCAB

Null » Null CABSecretary
Request

gllﬂ_ 4 Nsu::_ll 4 int-request_for_change

B B int-prepare_meeting
s-115 s-115 int-do_meeting
s-116 s-116 Q]t-monitor /

designing
new model

no change
(old model)

close_change
in t-111, t-112, t-114

3 4 5 6
5110 /5110 /5-140) /5140
s-120 Null Null Null
s-121 s-130 Null Null
s-113 s-131 s-113 s-113
Null p NUll | s-141 1 0000000 0s-141
Null int-120, t-121, | $-132 | int-110, t-130, | S-142 | int-145, t-146 | S-142
Null t-122, t-115, Null | t131,t132, |s-143 s-143
s-122 s-133 | M98 1130 | s-144 s-144
s-115 s-134 ’ s-145 s-115
s-116 s-116 s-146 s-150

switching to switching to switching to no change

new behaviour (1) new behaviour (2) new behaviour (3) (new model)

Figure 108. WODAN: viewed as manager of 11 employees

The internal behaviours of all new operationeq(est for_meetingreject_request
big_impact small_impactandhandle_change_requgsire implicitly managed by WODAN.

As soon as WODAN is in its fifth state or in statechange (new modeiyhich means the new
model will be prescribed (almost) completely, the internal behaviours of the new operations will
be prescribed too. In all other (previous) states the Null-process is prescribed to these opera-
tions. Every other internal or external behaviour has not been influenced by the change to the
new model. The temporary operatigng_request_on_lisindcancel_meetingre also impic-

itly managed by WODAN. They only exist in the fourth state of WODAN, in every other state
the Null-process is prescribed to these operations. Note alsevirgtexternal behaviour of
DepCAB should be trapped in its trap t-130, before the transition to theswitthing to new
behaviour (3)can be made. Alsevery internal behaviour afo_meetingndprepare_meeting

has to be trapped in its trap t-146 and t-145 respectively, before the transition to the state
change (new modetan be made.

page 97

Changing the software process model using WODAN

page 98

PMMS

7 PMMS

7.1 Introduction

In Manchester the group of Warboys, together with some associates, has a long tradition in stud-
ying general business processes [9]. A characteristic feature of these processes is their ever
changing nature. To describe this kind of change they developed PMMS, which sténds-for

essM odel forManagemenBupport. It is used for the description of general management sup-
port when designing, instantiating and enacting whatever process model, e.g a Socca-model. In
PMMS evolutionary change is inherent, as so-called Terms of Reference (ToR) can be replaced
by a new ToR. Every PMMS-model basically consists of four sequential components: manag-
ing, technology, logistics and administering. Dependent on the ToR extra sequential compo-
nents are added. They are placed under the administering-component. Together these extra
components are called the specific part of the PMMS-model. So a PMMS-model consists of the
four basic components and a specific part consisting of the extra components.

The way the basic components are interconnected with each other is shown in Figure 109. The
interconnections can be considered as, sometimes bidirectional, dataflows and the components
as dataflow processes.

managing

technology

Figure 109. a basic PMMS-model and its four components

Every basic component has some special tasks. The managing-component generates the Terms
of Reference (ToR), which can be seen as the verbal description of a model. A ToR tells what

is to be expected of the model, not how the model should be constructed. The logistics-compo-
nent then produces a setup for the model; a first, formal, but incomplete, description, which is
supposed to answer to the ToR. After that the technology-component designs the corresponding
methods in order to complete the formal description. The logistics-component instantiates these
methods as processes and the administering-component enacts these processes.

Note that one could also decide to give the logistics-component only one task: the instantiation
of the methods. In that case the technology-component will be asked by the logistics-component
to produce the complete formal description of the model, including the setup. However, as in a
PMMS-model no direct communication between the managing-component and the technology-
component exists (see Figure 109), the managing-component then can influence the design
process only indirectly, via the logistics-component. When describing the communication be-
tween the components (section 7.4) this will be more complicated. For this reason our logistics-
component has the two tasks mentioned.

When designing a Socca-model the tasks of the logistics-component and the technology-com-
ponent can be specified more exactly. The logistics-component in this case has to construct the
class diagram of the model and the general relationships between the classes. These can be seen
as the setup for the model. The task of the technology-component implies the description of the
uses relationships between the classes, the external behaviours of the classes, the internal be-

page 99

PMMS

haviours of the operations and the communication-structure. This can be seen as the completion
of the formal model.

In [8] a small PMMS-model was transformed into a Paradigm-model. In the section 7.2 the
Change Management (CM) models, described by means of Socca and Paradigm, will be trans-
formed into a PMMS-model. After that, in sections 7.3 and 7.4, the management support for de-
signing the models and managing the evolutionary change will be illustrated by presenting a
full-blown Socca-model for the four basic components of the PMMS-model. As we will see the
PMMS-structure provides an excellent setup for further refining and structuring WODAN. On
the other hand, the Paradigm and Socca features indeed clarify many technical details, not ex-
plicitly specified by PMMS. So the work in [8] has been considerably extended from Paradigm
towards whole Socca.

7.2 Change Management modelled by means of PMMS

The CM-models, described by means of Socca and Paradigm, will be transformed into a
PMMS-model. First a PMMS-model, which describes the old CM-model (chapter 3), will be
constructed. Naturally it will consist of the four basic components. Also, due tg Whith

denotes the old model, some extra components are added. These extra components are exactly
the classes used to model Change Management. Note that only the classes, of which the external
behaviour has been given explicitly in chapter 3, are used, as components, in the specific part
of the PMMS-model. These classes are CAB, ProjectManager, DesignEngineer and UserRep-
resentative. Every other class presented in the class diagram (Figure 3), of which the external
behaviour has not been given explicitly in chapter 3, is not displayed, as a component, in the
specific part of the PMMS-model. Also there is a pool of Null-components, i.e. components that
have ceased to exist or do not exist yet but will exist in the future.

ToR, denotes the new CM-model (chapter 4). Due tolsdne other components will be add-

ed to the specific part of the PMMS-model: Request and CABSecretary. These components
have not been used in the first CM-model, however they can be included into the PMMS-model.
They will be in the pool of Null-components during the enactment of the first model.

The PMMS-model describing both CM-models is given in Figure 110. The dashed components
and interconnections are added due to JIdRe interconnections between the extra compo-
nents can be seen as the uses relationships between the classes.

page 100

PMMS

managing

logistics

technology

administering

~ /
~ /s
~ 7/
—— = o —

N N
/CABSecretary)— — Request)
N N

- AN
~ - N
~
~ - AN
~ N

Figure 110. a PMMS-model describing Change Management

7.3 Behaviour of the basic components

The way the models are being designed and the way the change frqnioTBéR, is being
executed, as e.g. controlled by WODAN, is not shown explicitly in the previous figure. This is
inherent to the PMMS-method, so to say. However it can be made more explicit by modelling
the basic components in Socca. In that case first the data-perspective of the model has to be de-
scribed. Therefore a class diagram has to be defined. Note that there are no IS-A or Part-Of re-
lationships between the basic components, so the class diagram, presented in Figure 111, only
shows the attributes and operations of these components.

managing logistics technology administering
create_first_ ToR generate_setup make_methods enact_processes
schedule_design report_proposal report_methods report_status
view_status modify_setup modify_methods
create_next_ToR get_methods

report_method_design

implement_methods

generate_change_setup

report_interm_steps

Figure 111. Class diagram: attributes and actions of the basic components

page 101

PMMS

As a next step in describing the data perspective the uses relations between the components have
to be given. They are shown in Figure 112. The corresponding import list is given in Figure 113.

managing
usel

use2

technolog logistics
use6

use4
use3 5 E

use use7

adminis-

L—_> tering

Figure 112. Import/export diagram

Note that the communication between the components is modelled solely by means of the uses
relationship. The general relationships have been left out.

usel use2 use6
generate_setup view_status make_methods
report_proposat use3 report_methods$
modify_setup report_status modify_methods
get_method$ use4d use’7
report_method_design create_next_ToR get_methods
generate_change_settip uses
report_change_steps enact_processes

instantiate_methods

Figure 113. import list

Note that inget_methodsan be imported by the managing-component and by the logistics-
component itself.

Note also that, as indicated by the uses relations, in our model the operations marked with * will
be called from elsewhere. On the other hand, one can easily imagine that these operations are
spontaneously executed by the corresponding external behaviours. This then leads to a slightly
different communication, which has not been worked out here.

page 102

PMMS

Second the behaviour perspective of the model has to be described. Therefore the external be-
haviour of each of the basic components will be given, described by means of an STD as usual.
The managing-component (Figure 114) will create a (first) ToR, which is the informal descrip-
tion of a software process model, and will supervise the design of the formal model describing
the same software process. After the model has been enacted it will regularly view the status of
the model. Whenever problems occur in the model, the managing-component will create a next
ToR for that model. Note that for a model describing another software process, another (first)
ToR has to be created.

first
ToR
defined

create_first_ToR schedule_design

neutral

scheduled

view view_status
status
create_ fewi
next_ToR viewing
— status
create_
next_ToR view_status

next
ToR
defined

schedule_design

scheduled

Figure 114. external behaviour of the managing-component

Note that there are three transitions labeled wighv_status The managing-component will
transit from one of its stateesign schedulet its stateviewing statusn order to check a mod-

el that has just been enacted. In that vése_statusill be called from within the internal be-
haviour ofinstantiate_method@&-igure 123). In order to check a model that is already being
operative for a while, the managing-component will transit, every now and then, from its state
neutralto its stateviewing statusThis calling ofview_statuswill not be modelled. Note that
when the status is viewed before the first TOR has been created for a software process model,
an empty status will be returned.

Note that there are also two transitions labeled wigtate_next ToRThe managing-compo-

nent will transit from its stateiewing statugo its statenext ToR definedhenever the status
report suggests to do so. In that cassate_next_ToRvill be called from within the internal
behaviour ofeport_statugFigure 125). However the managing-component can also decide to
create a next ToR without viewing the status first. In that case it will transit to itesxafBoR
createdfrom its neutral state. Of course this can only be done whenever already a (first) ToR
existed. This calling ofcreate_next ToRwill not be modelled. Also the calling of
create_first_ ToRandschedule_desigwill not be modelled.

page 103

PMMS

The logistics-component (Figure 115) will define a setup for the formal model, it will supervise
the technology-component and it will play a part of the WODAN-role, i.e. design a setup for the
change steps. All actions of the logistics-component will be called from within the internal be-
haviour ofschedule_desigiNote that the setup for the model could also be defined by the tech-
nology-component. However, as there exists no direct communication between the managing-
and the technology-component, the communication will be more complicated in that case.

generate_setup report_proposal

neutral

modify setup

get_
methods

methods instantiate_methods /' method

report_method_design method
implem.

available

generate

instantiate_ change_setup

methods

report_change_steps’ chang get_methods

steps
availabl

Figure 115. external behaviour of the logistics-component

The technology-component (Figure 116) will make, and if necessary will modify, all methods
necessary for the model. All operations of the technology-component will be called from within
the internal behaviour @fet_methods.

make_methods

neutral

report_
methods

modify
methods

Figure 116. external behaviour of the technology-component

The administering-component (Figure 117) will enact all processes when the design has been
completed. Whenever a new model has to be enacted, it will enact the intermediate models first.
So this component plays another important part of the WODAN-role. Also the administering-
component will regularly check the model, while it is running, to see whether problems have
arisen.

report_status enact_processes

w

Figure 117. external behaviour of the administering-component

processes

page 104

PMMS

In order to clarify the behaviour of the basic components, the internal behaviours of some of the
operations performed by these components will be given. This is the second step in describing
the behaviour perspective. First the behaviour of the managing-component will be clarified.
Therefore the internal behavioursshedule _desigandview_statusvill be given. The internal
behaviour ofcreate_first ToRandcreate _next_ToRill not be given.

call_modify
setup

disapprove_
result

call_generate
setup

act_schedule
design

discussed

call_report
proposal
approve_
result

instant. approved

call_get_
methods

call_instantiate__
methods

call_instantiate
methods

call_report_

call_report_ method_desig

change_steps

Figure 118. int-schedule_design

Note that there are two transitions labeled wih_instantiate_method3 he transition leading

from the statemethods reportetb the statenethods instantiatedill be used only when the

first model for a particular software process has to be instantiated, i.e. when in the external be-
haviour of the managing-componesthedule_ desigis preceded bgreate first ToROther-

wise, when in the external behaviour of the managing-compsnbkatule_desigis preceded

by create_next_ToRhe other transition will be used.

page 105

PMMS

act_view_status

neutral

call_report_status

Figure 119. int-view_status

Second the internal behaviours of some operations performed by the logistics-component will
be given:generate_setypmenerate_change_setuget _methodsnd instantiate_methoddn

order not to complicate the model unnecessarily the internal behaviours of the other operations
performed by the logistics-component will not be given here. Also they do not really contribute
to the understanding of the way models are being designed and the way the change from ToR
to ToR, is being executed (WODAN).

act_generate_setup setup view_ToR
asked

neutral

make_class_
diagram

make_general_
relationships

Figure 120. int-generate_setup

act_generate_
change_setup

view_ToR’s ToR’s

viewed

neutral

create_first_
change_setup

create_next_change_setup

call_get_methods

Figure 121. int-generate_change_setup

When within the internal behaviour génerate_change_settipe evolutionary change cannot

be executed in only one change step, a next change step has to be developed. Consequently in
that case a next change setup has to be generated first. Whether a next change step is necessary
or not will be decided in the statBange step viewed

page 106

PMMS

call_make_
act_get_methods methods
neutral
. call_report
call_modify met_hodps -
methods

discuss

methods methods

approve_methods

discussed

Figure 122. int-get_methods

As can be seen in the above figure, the logistics-component will decide whether the methods
developed by the technology-component answer to the setup or not.

act_instantiate_methods instant.

asked

neutral

make_
processes

processe
made

status
viewed

; call_enact_processes
call_view_status orocess _ _p
enacted
make_next_processe

Figure 123. int-instantiate_methods

The internal behaviour ofnstantiate_methodscontains the possibly repeated calls of
enact_processeSo here the communication with the administering-component comes to light.

The only operation performed by the technology-component, of which the internal behaviour
will be given, ismake_methods

act_make_methods /' method view_setup
asked

setup
viewed

neutral

make_uses
relationships

make_ext_
behaviours

behaviours
made

Figure 124. int-make_methods

Note that this operation will be called not only when a new model has to be designed, but also
when the evolutionary transformation from one model to another has to be specified. In that case
this action will change the external behaviours of the extra components (classes) and the internal

page 107

PMMS

behaviours of operations of these components. In view of also making the communication struc-
ture make_methods will furthermore create subprocesses and traps, also w.r.t. WODAN. More-
over it will create temporary operations for the extra components, when necessary.

Finally the internal behaviour of two operations performed by the administering-component
will be given. These operations aeport_statusandenact_processes

no
problem
detected

report

time_out

act_report_status monitor_proces

Processe
monitored

report
asked

neutral

detect_problem

call_create

next_ToR report_problem

problem
detected

Figure 125. int-report_status

Note that this operation will not be called in between evolution phases, i.e. when intermediate

processes are being prescribed. It will only be called to monitor the processes of a model repre-
senting an evolution phase. Whenever problems are detected, i.e. the model is insufficient for
the actual situation, the managing-component will have to define a new ToR.

act_enact_processes’ anact wait_for_traps
neutral asked

prescribe_
processes

activate_processes

processe
prescribed

Processe
activated

Figure 126. int-enact_processes

Int-enact_processés fact represents (an important part of) WODANInRenact_processes

(new) processes are prescribed to both internal and external behaviours. These (new) processes
can be viewed as subprocesses of anachronistic processes. In Socca however only external be-
haviours can prescribe subprocesses to internal behaviours. So this part of WODAN is not yet
in accordance with the Socca-conventions (see [1]). For now the way this part of WODAN is
modelled is sufficient. Remodelling WODAN in complete and detailed accordance with Socca

is a topic of future research.

page 108

PMMS

7.4 Communication between the components

The final step in describing the behaviour perspective of the model is specifying the communi-
cation between the behaviours. As usual within Socca it will be specified by means of Paradigm.
The external behaviours of the basic components will act as the manager processes. The internal
behaviours of operations performed by a component and also the internal behaviours of opera-
tions calling the operations of this component will be the employee processes. By specifying the
communication between the behaviours the way models are designed and evolutionary change
is conducted (WODAN) will be clarified. Note that the communication between a component
and only a few of its employees, not all, will be specified here. Note also that the communication
between the technology-component and its employees will not be specified at all, as this com-
ponent is not very important in order to describe the way WODAN is organized. Furthermore
the specification of this part of the communication is rather straigtforward.

For this part of the modelling it seems best to have a rather sequential, interleaved execution of
some of the various behaviours, as some of the operations cannot be performed simultaneously.
Therefore the trap-structures of these operations will deviate from the standards described in
section 3.3.3., as mostly small traps are used.

First the communication between the managing-component and its employees
schedule_desigrnnt-view_statusint-report_statusandint-instantiate_methodwill be speci-

fied. The operationsreate_first ToRand create_next_ToRave not been modelled, so the
communication between the managing-component and these operations will not be specified.
The internal behaviour of the operatisthedule_desigandview_statuselong to the man-
aging-component itselfnt-report_statusandint-instantiate_methodare internal behaviours

of operations calling operations of the managing-component.

The managing-component (Figure 131) starts in its neutral state. As so@atas first_ ToR

is called, which has not been modelled, the managing-component will transit to if¥state

ToR definedWhen the ToR has been defined amteéschedule _desigias entered its trap t-162,

the managing-component will make the transition to its sesegn scheduled’here subproc-

ess s-161 will be prescribeditd-schedule_desigmMNow a setup, answering to the ToR, can be
developed. It will be developed by the logistics-component. Note that in subprocess s-161 it is
not possible to generate change steps. However, the model to be developed will be the first mod-
el and therefore the enactment of this model can be performed without any change step. Conse-
guently it is not necessary to generate these change steps.

page 109

PMMS

s-160

disapprove_

call_modify
result

setup
call_generate

discussed

call_report> approve
proposal proposa result
available
t-160
methods
instant. approved
_ _ call_get_
call_instantiate__ methods
methods
call_report_ call_report_

change_steps method_desig

methods
reported

call_generate__
change_setup

s-161
disapprove

call_modify_
result

setup

call_generate
setup

setup
discussed

approve_
result

call_report>
proposal

instant. approved

call_get_
methods

call_instantiate__
methods

s-162

call_report_
method_desig

t-162

methods
instant.

Figure 127. int-schedule_design’s subprocesses and traps w.r.t. managing

page 110

PMMS

If int-schedule_desighas entered its trap t-161, which means the model has been instantiated,
if furthermoreint-instantiate _methodsas entered its trap t-168, which denotes the new model
has been enacted and the status of this enacted model is asked to be viewed, if mbreover
view_statushas entered its trap t-166, which means the status can be viewedt-and
report_statushas entered its trap t-165, then the managing-component will transit to its state
viewing statusThere subprocesses s-167, s-169 and s-162 are going to be presairilbed to
view_statusint-instantiate_methodsndint-schedule_desigrespectively. Subprocess s-163 is
prescribed tont-report_statusan order to be able to react to a new status report. From there,
dependent on which trapt-report_statuswill enter, the managing-component will either tran-

sit to its statenext TOR definedr return to its neutral state. The neutral state will be reached
only whenint-report_statushas entered its trap t-163, which means the model is functioning
properly. The stateext ToR definedill be reached only whent-report_statudas entered its

trap t-164, which means the model is not functioning properly. However to be able to reach one
of these two statemt-view_statusmust have entered its trap t-167 too and afge
instantiate_methodsust have entered its trap t-169.

s-163
report no
problem
detected
t-163
time_out
act_report_status monitor_proces \
neutral |00 — oPOM report P Process
asked monitoreg
detect_problem
call_create__
new next_ToR report_problem
ToR
asked
s-165
t-165
time_out
act_report_status monitor_proces)
neutral Lo o= POt report o Process

asked monitoreg

detect_problem

report_problem

?g‘g problem
asked detected

Figure 128. int-report_status’s subprocesses and traps w.r.t. managing

In both statemext ToR definedndneutral subprocesses s-166, s-168 and s-165 then will be
prescribed tant-view_statusint-instantiate_methodsndint-report_statugespectively. In the
statenext ToR definethe managing-component will create a new ToR for the software process
model, possibly based on the current ToR. When the new ToR has been createtd and
schedule_desigis in its trap t-162, the managing-component will transit to its skasegn

page 111

PMMS

scheduledIn this state subprocess s-160 will be prescribedttechedule desigrthereby
forcing the logistics-component to create not only a new setup for the model, but also a setup
for the change steps necessary to be able to switch from the current model to that new model.
As soon asnt-schedule_desiganters its trap t-160, which means the new model has been in-
stantiatedint-instantiate_methodsanters its trap t-168, which denotes the new model has been
enacted and the status of the new enacted model is asked to be viewed, if furti@rmore
view_statushas entered its trap t-166, which means the status can be viewedt-and
report_statushas entered its trap t-165, then the managing-component will transit to its state
viewing statuggain. When this new model is also not functioning properly, the managing-com-
ponent will again transit to its statext ToR definednd the whole cycle of scheduling the de-
sign and viewing the status starts all over again. Eventually however a properly functioning
model will be developed and the managing-component will return to itsstatiel

s-166

s-167
@
Figure 129. int-view_status’s subprocesses and traps w.r.t. managing

s-168 act_instantiate_methods
neutral

; call_enact_processes
status < call_view_status @ _ _p
viewed enacted
t-168 make_next_processe

act_instantiate_methods

call_report_status

t-167

instant.
asked

make_
processes

processe
made

s-169

instant.
asked

neutral

make

t-169 processes

call_enact_processes
status

viewed

make_next_processe

Figure 130. int-instantiate_methods’s subprocesses and traps w.r.t. managing

page 112

PMMS

The managing-component is in its neutral state again. Every now and then the status of the cur-
rent software process model will be asked to be viewed again, in order to see whether problems
have occured since the last time the model has been viewed. In that-capert_statusnust

be in its trap t-165nt-view_statusnust be in its trap t-166 and of couvsew_statusnust have

been called, which has not been modelled. Only then the managing-component will make the
transition to its stateiewing statusAlso in the neutral state the managing-component can de-
cide, without viewing the status of the model first, to change the current model. In that case it
will transit to its stat@ext ToR createdf course in stateeutralthe managing-component can

also transit to its stat@st TOR createdagain in order to create a ToR for a model describing
another software process.

Figure 131 shows the managing-component as manamgg¢schedule_desigmt-view_status

(called operations)nt-report_statusandint-instantiate_method&alling operations).

employee mapping order used:

int-schedule_design (figures 118 and 127)
int-view_status (figures 119 and 129)
int-report_status (figures 125 and 128)
int-instantiate_methods (figures 123 and 130)

create_first_ ToR schedule_design

in t-162

int-167, first ToR

t-163, ;
169 defined

neutral design scheduled

view_status
in t-166, t-165 in t-161, t-166, t-168, t-165
create_

next_ToR
create_
next_ToR viewing
int167, Status
t-164, t-169

view_status
in t-160, t-166, t-168, t-165

schedule_design

in t-162

next ToR design
defined scheduled

Figure 131. managing-component: viewed as manager of 4 employees

Second the communication specification between the logistics-component and its employees
int-schedule_desigmnt-instantiate_methoddnt-generate _change_setamdint-get_methods

will be given. The operationseport_proposal modify _setup report_method_desigmand
report_change_steplBave not been modelled, so the communication between the logistics-
component and these operations will not be specified. Also the communication between the lo-
gistics-component and its employaegenerate_setuwill not be specified, as it is not that im-
portant for our discussion. Furthermore the specification of this part of the communication is
rather straigtforward.

The logistics-component (Figure 136) starts in its neutral state. There subprocess s-170 has been
prescribed tant-schedule_desigrif this behaviour has entered its trap t-170, which means a
setup for a model has been asked, then the logistics-component will transit to its negtigbate
generatedIn that state subprocess s-172 will be prescribét-&chedule_desigand a setup,

which answers to the given ToR, will be generated. As soon as this setup has been generated

page 113

PMMS

andint-schedule_desigas entered its trap t-172, the logistics-component will report this setup

to the managing-component and transit to its Steti@p reportedThere subprocess s-170 will

be prescribed again tot-schedule_desigi'#Whenint-schedule_desigagain enters its trap t-

170, which now means the setup has been disapproved of and a better setup is asked, the logis-
tics-component will have to modify the setup and return to its Séaig generated\s soon as

the modification of the setup has been completedrargthedule_desighas entered its trap t-

172 again, the logistics-component will report the modified setup to the managing-component
and return to its statesult reported This cycle can be repeated several times.

s-170
call_modify
setup

disapprove_
result

act_schedule
design

call_generat
model

discussed

discuss_
result

approve.
result

methods
instant.

approved

call_get_

s-172 s-173 methods
call_report_ methods
method_design made

call_report "
proposal proposa t-171
available
t-172
s-174

t-174

methods
instant.

call_report_
change_steps

call_instantiate "
methods call_instantiate__

methods

t-175

call_generate_
change_setup

Figure 132. int-schedule_design’s subprocesses and traps w.r.t. logistics

page 114

PMMS

Eventuallyint-schedule_desigwill enter its trap t-171, which means the setup has been ap-
proved of and corresponding methods are being asked. lindlget_methodss in its trap t-

182, then the logistics-component will make the transition from its iatdt reportedo its
statemethods availableThere subprocesses s-173 and s-183 are going to be presciitied to
schedule_desigandint-get _methodsespectively. The logistics-component will now order the
technology-component to make the methods and also the logistics-component will supervise the
development of these methods, i.e. approve or disapprove of them. In the latter case the logis-
tics-component will order the technology-component to modify the methods.

If int-get_methodsas entered its trap t-183, which means the methods have been developed
and approved of, andt-schedule_desighas entered its trap t-173, which means the methods
are asked to be reported to the managing-component, then the logistics-component will transit
to its next statenethods reportedrhere subprocesses s-174 and s-182 will be prescriib@d to
schedule_desigandint-get_methodsespectively. The methods will now be reported to the
managing-component. Note however that the managing-component cannot overrule the deci-
sion of the logistics-component and disapprove of the methods.

s-177 ‘

instant.
asked

t-177

make_
processes

call_view_status

processe
made

make_next_processe

s-178

act_instantiate_methods

instant.
asked

@

make
processes

call view status call_enact_processe

status
viewed

processe
made

make_next_processe

t-178

Figure 133. int-instantiate_methods’s subprocesses and traps w.r.t. logistics

If int-schedule_desighas entered its trap t-174, which means instantiation of the model is
asked, if moreovent-instantiate_methods in its trap t-177, which means instantiation of the
model can be asked, then the logistics-component will transit to itsrstttteds instantiated

Note thatint-schedule_desigwill enter its trap t-174 only when the first model for a particular
software process has to be instantiated, i.e. when in the external behaviour of the managing-
componenschedule_desigis preceded bgreate first ToR

Otherwiseint-schedule_desigenters its trap t-175, which means the evolutionary transforma-
tion from the current model to the just developed model has to be prepared first. Consequently
the logistics-component is going to transit to its stét@nge setup generatedote thatint-
generate_change_setuyas already waiting in its stateeutral which means trap t-179 had

been entered in the past. In the sthi@nge setup generatedbprocesses s-176 and s-181 will

be prescribed tmt-generate_change_setapdint-schedule desigrespectively. Now a setup

for the (first) change step will be produced. If trap t-180 has been enteradt-by

page 115

PMMS

generate_change_set ,uphich means the setup for the change step has been generated and
corresponding methods are being asked, ifiatsget_methodbkas entered its trap t-182, which
means the methods can be asked, then the logistics-component will get these methods and tran-
sit to its statehange steps availabl@he logistics-component will order the technology-com-
ponent to make the methods necessary for the change step and will approve or disapprove of the
change step developed by the technology-component. After the change step has been approved
of, i.e. whenint-get_methodéas entered its trap t-183, possibly a next change step has to be
developed, as the evolutionary change cannot always be executed in one step. Inititat case
generate_change_setuyll enter its trap t-180 and the logistics-component will return to its
statechange setup generatetihere subprocesses s-181 and s-182 will be prescribed again to
int-generate_change_setapdint-get_methodsespectively. A new change step can be devel-
oped now. This cycle will be repeated as many times as necessary in order to be able to complete
the evolutionary transformation.

Eventuallyint-generate_change_setwpll enter its trap t-179, which means enough change
steps have been constructed by the technology-component to perform the evolutionary change.
If moreint-get_methodéas entered its trap t-183, if furthermareschedule_desighas en-

tered its trap t-176, which means the change step(s) are asked to be reported to the managing-
component, then the logistics-component will transit to its sta@ge steps reportedhere
subprocess s-174 will be prescribethteschedule _desigiNote that subprocess s-179 will still

be prescribed tmt-generate_change_setuphe change steps will now be reported to the man-
aging-component. Note however that the managing-component cannot overrule the decision of
the logistics-component and disapprove of the change steps.

s-179
t-179
create_next_change_setup
view_change_step t-180
s-181 act_generate

change_setup view_ToR’s

ToR’s

neutral viewed

create_first_
change_setup

call_get_methods

Figure 134. int-generate_change_setup’s subprocesses and traps w.r.t. logistics

page 116

PMMS

Whenint-schedule_desiganters its trap t-174, which means instantiation of the model is asked,
and if alsaint-instantiate_methodsas entered its trap t-177, which means instantiation of the
model can be asked, then the logistics-component will make the transition to itaettabels
instantiated There subprocesses s-170 and s-178 will be prescrilr@estthedule _desigand
int-instantiate_methodsespectively. In this statenact_processesill be called for every in-
termediate step and of course for the new model. Note that the logistic-component knows how
many change steps have been generated and therefore knows how maegdtohgsocesses

has to be called. The conditions under which the processes can be enacted will not be checked
by the logistics-component. They will be checked witimtienact_processesself. If int-
instantiate_methodbas entered its trap t-178, then the logistics-component can return to its
neutral state.

s-182 s-183

act_get

- call_make__
methods

methods

call_report_
methods

call_modify_
methods

t-182

discuss_

methods methods

t-183

approvedT® discusseg

approve_methods

Figure 135. int-get_methods’s subprocesses and traps w.r.t. logistics

page 117

PMMS

Figure 136 shows the logistics-component as manageintaéhstantiate_methodsint-
get_methods (called operations),int-schedule_design(a calling operation) andint-
generate_change_setgipoth a called and a calling operation).

employee mapping order used:

int-schedule_design (figures 118 and 132)
int-instantiate_methods (fig. 123 and 133)
int-generate_change_setup (fig. 121 and 134)
int-get_methods (fig. 122 and 135)

report_proposalin t-172

generate_setup

int-170

modify_setup int-170

neutral setup setup
generated reported

get_methods
int-171, t-182

int-178

instantiate_methods report_method_desig

int-174, t-177 int-173, t-183
methods methods methods
instant. reported available
_ generate_change_setup
instantiate | in t-174, int-175

methods t-177
int-181, t-182

int-176, t-179, t-183
report_change_steps@m get_methods
s-179

s-183 in t-180, t-183

change steps change steps change setup
reported available generated

Figure 136. the logistics-component: viewed as manager of 4 employees

Finally the communication between the administering-component and its employees
view_statusint-report_statusint-enact_processeandint-instantiate_methodwill be speci-

fied. The internal behaviour of the operatioeport_statusandenact_processdselong to the
administering-component itself. The internal behaviours of operations calling the operations of
the administering-component arg-view_statusandint-instantiate_methods

The administering-component (Figure 141) starts in its s@igal If int-instantiate_methods

has entered its trap t-192, which means the enactment of the just instantiated methods has been
called, if furtherint-enact_processdtas entered its trap t-190, which means a model can be en-
acted, then the administering-component will transit to its ptateesses enacte@here sub-
processes s-193 and s-191 are going to be prescribed-itstantiate_ methodand int-
enact_processerespectively. Now all (intermediate) processes of the same (intermediate)
phase are being enacted. As soom&enact_processemnters its trap t-191, which means all
(intermediate) processes have been enactedntirnbtantiate_methodsenters its trap t-193,

the administering-component will return to its neutral state. There subprocesses s-190 and s-192
will be prescribed tant-enact_processeandint-instantiate_methodsespectively. This cycle

will be repeated as many times as necessary in order to enact every change step from an old
model to a new model. Note that in the internal behavioursthntiate_methods is known

how many time€nact_processdsas to be called.

page 118

PMMS

s-190 s-191

act_enact_processes gnact \ Wwait_for_traps

neutral

t-190

prescribe_
processes

processes activate_processes
activated

processe

processe
activated i

prescribed

t-191

Figure 137. int-enact_processes’s subprocesses and traps w.r.t. administering

s-192 act_instantiate_methods instant
neutral '
asked
make
processes
status call_enact_processe4 gcesse
viewed - made
t-192
s-193

act_instantiate_methods instant.

asked

neutral

make
processes

status | call_view_status process

viewed @ make_next_processes
t-193

Figure 138. int-instantiate_methods’s subprocesses and traps w.r.t. administering

The administering-component will make the transition from its stat#ral to its statestatus
reported whenint-report_statushas entered its trap t-194, which means a status report can be
given, andnt-view_statudas entered its trap t-196, which means a status report has been asked.
In the statestatus reportedubprocesses s-195 and s-197 will be prescribed-teport_status
andint-view_statugespectively. Now the administering-component will start monitoring all
running processes to check for possible problennst-teport_statusas entered its trap t-195,

if moreoverint-view_statudas entered its trap t-197, then the administering-component will go
back to its stateneutral There subprocesses s-194 and s-196 will be prescribat-to
report_statusandint-view_statugespectively.

Note thatview_statugan be called, from within the internal behaviouinstantiate_methods

before the new model has been enacted completeiyt-inew_statughereforereport_status

can be called before the new model has been enacted completely. It might seem as if this is in-

page 119

PMMS

consistent. Howeveeport_statusan be executed only after the administering-component has
reached its neutral state and this state can be reached only when the model has been enacted

completely.
s-194

no
problem
detected

report

time_out

MONItOr_processesn qcesses

monitored

report
asked

detect_problem

call_create_
next_ToR

report

asked monitored

Figure 139. int-report_status’s subprocesses and traps w.r.t. administering

page 120

PMMS

s-196 .
act_view_status
neutral
call_report_status
s-197
act_view_status ;
— = view
neutral asked

t-197

Figure 140. int-view_status’s subprocesses and traps w.r.t. administering

Figure 141 shows the administering-component as managent-ehact_processesnt-
report_statugcalled operationsjpt-instantiate_methodat-view_statugcalling operations).

employee mapping order used:

int-report_status (figures 125 and 137)
int-view_status (figures 119 and 138)
int-enact_processes (figures 126 and 135)
int-instantiate_methods (figures 123 and 136)

report_statusin t-194, t-196 @enact_processe’m t-190, t-19

s-196
s-190
in t-195, t-197 s-192 in t-191, t-193

status neutral processes
reported enacted

Figure 141. the administering-component: viewed as manager of 4 employees

As mentioned before the communication between the technology-component and its employees
will not be specified here. Note that in a first model describing the (communication between the)
components the logistics-component did not only create a setup for the change steps, but also
the methods for the change steps. Consequently during the phase of designing these change
steps there was no communication between the logistics- and the technology-component. Later
we added this communication, as we decided that the technology-component had to create the
methods for the change steps, just like it had to create the methods for the model. Therefore
some external and internal behaviours had to change. Changing this model to answer to the new
conditions was very easy. So we can say it is a flexible model, that can be adapted easily. Which
concludes our discussion of the communication of the basic components in PMMS.

page 121

PMMS

page 122

Conclusions and future research

8 Conclusions and future research

In this thesis the evolution of a particular software processs has been described by means of
WODAN and PMMS. This thesis shows that both WODAN and PMMS are suited to describe
such an evolution. WODAN is especially suited when all details of the evolutionary transfor-
mation itself have to be given explicitly. PMMS does not show these details, but clarifies some
issues on evolutionary change on a more global level by providing a well-structured approach
in presenting the process steps of designing, instantiating and enacting. WODAN does not pro-
vide a structure for these issues. So in fact these methods can be thought of as being comple-
mentary.

First the WODAN approach has been used to describe evolutionary change. It provides a lot of
insight in the actual evolutionary transformation of one model to another model. However the
WODAN approach still has its shortcomings. In [2] guidelines were given on how to switch
from one evolution stage to another. With these guidelines inconsistencies, which arise as a con-
sequence of the change, can be solved or avoided. In [2] these guidelines have been applied to
small models, which consist of only one process. This thesis extends this approach to larger
models. While changing a (larger) model intermediate steps can occur. One can assume that the
larger the model, the higher the number of intermediate steps. In our case three intermediate
steps have been introduced. However the guidelines did not tell how (large) models could be
changed best, i.e. how the number of intermediate steps could be minimized. A topic for furher
research is to analyse this. It is very likely that guidelines or rules for handling the change of
large models can be established, thereby optimizing the WODAN approach.

Another topic for further reseach is to change WODAN so that it will behave in accordance with
the Socca-conventions (see [1]). WODAN now prescribes (new) processes to both internal and
external behaviours. As mentioned before these (new) processes can be viewed as subprocesses
of anachronistic processes. In Socca however only external behaviours can prescribe subproc-
esses to internal behaviours. So WODAN is not yet in accordance with the Socca-conventions.
The solution to this problem is to ensure that WODAN no longer manages the internal behav-
iours directly. In that case the new subprocesses of the internal behaviours should be passed
through somehow via the external behaviours, which actually are the only possible manager
processes within the Socca approach.

Second in this thesis the evolutionary change has been described by means of PMMS, and also
an attempt has been made to describe the basic components of the PMMS-model by means of
Socca. By doing this the ideas behind PMMS were expressed explicitly. It is a topic of future
research to specify these basic components more exactly, especially the administering-compo-
nent, aenact_processdsas not been worked out completely yet. Possibly some of the ideas
from WODAN can be used, thereby creating a more complete method to describe evolutionary
change.

page 123

Conclusions and future research

page 124

References

9 References

1

Engels G., Groenewegen ISOCCA: Specifications of Coordinated and Cooperative Activ-
ities. Technical Report 94-10, University of Leiden, Department of Computer Science, Feb-
ruary 1994,

Wulms A.: Adaptive software process modelling with SOCCA and PARADNEBKc. the-
sis, University of Leiden, Department of Computer Science, 1995.

Willemsen, R..TEMPO and SOCCA, concepts, modelling and comparigb8c. thesis,
University of Leiden, Department of Computer Science, 1995.

Verkoren E.H.Een kwaliteitsaudit in IT-organisatieM.Sc. University of Leiden, Depart-
ment of Computer Science, 1993.

Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-6 Software Process Exampie Proc. of the 6th Int. Software Process Workshop:
support for the software process. Japan, October 1991.

Penedo M., Finkelstein A., Futatsugi K., Ghezzi C., Kaiser G., Narawanaswamy K., Perry
D.: ISPW-9 Life-cycle (Sub) Process Demonstration Scenslidoch 1994.

Groenewegen LParallel Phenomena 1-14echnical Reports 86-20, 87-01, 87-05, 87-06,
87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17, 88-18, 90-18, 91-19, University of Leiden,
Department of Computer Science, 1986-1991.

Groenewegen LPMMS and Paradigm, Simple Banking Examplersonal notes for a talk
held in Manchester, 1995.

Snowdon R.AAn Example of Software Chanda Derniame J.C. (ed.Boftware Process
TechnologySpringer-Verlag, Lecture Notes in Computer Science 635, 1992.

page 125

References

page 126

Simultaneous calls described in more detail

Appendix A Simultaneous calls described in more detail

The operationprepare_meeting¢figures 21, 34 and 409pen_meetingfigures 14 and 36) and
close_meetinffigures 16 and 37) are operations that perform a call to all members of the board
simultaneously. This is however a simplified representation of the realistic and more complicat-
ed behaviour. This more complicated behaviour will be given for the agateda checked

(from the internal behaviour girepare_meeting which is reached afterall_check agenda

has been performed. The method used will also hold for the statfisn sendalso fromint-
prepare_meeting members joinedfrom int-open_meetingland members leftfrom int-
close_meeting

Suppose there are 3 members. Each of these three members can be either in a state in which the
agenda has not been checked yet or in a state in which the agenda indeed has been checked. This
means there must bé @8) states to cover all possibilities. Note that whenever a state has been
reached in which a particular member has checked its agenda, it is not possible to go to a state
in which the same member has not checked its agenda yet. So there must be 3! (=6) different
ways to go through the 8 states and reach the ddideselectedThis behaviour is shown in

Figure 142. In this figure the statgenda checkelaas been replaced by a 3D-structure and there

are 6 (= 3!) different ways, via the edges of that structure, to reach thdatmtelectedAs
mentioned before one can construct a similar STD to modklreceive confirmation
call_join_meetingandcall_leave _meetingFor n members a n-dimensional structure can be
used.

Not only the internal behaviour oft-prepare_meetinghanges in accordance with the refine-

ment from Figure 142, also the subprocesses and traps w.r.t. a particular member change when
replacing a part aht-prepare_meetingy the more exact representation of that part. Figure 143
shows the subprocesses and traps w.r.t. member 1. The upper plane of the 3D-structure contains
all states, in which memberl has not checked its agenda yet. So this plane will be trap t-42a
w.r.t. memberl and it will replace the original trap t-42 (Figure 40). The lower plane of the 3D-
structure contains all states, in which memberl indeed has checked its agenda. So this plane and
the statadate selectewvill be trap t-44a w.r.t. memberl and will replace the original trap t-44.

Also the subprocesses s-42 and s-44 will be replaced by the new subprocesses s-42a and s-44a.
Of course these new subprocesses and traps also contain every other state the original simplified
subprocesses and traps contain. The subprocesses and traps w.r.t. member2 (back and front
planes) and member3 (left and right planes) can be constructed in a similar manner. Note that
any of the three possible statagenda checked (X,Ygan only be reached whant-
prepare_meetindpas entered both trap t-44a w.r.t. memberX and trap t-44a w.r.t. memberyY.
From there it follows that the statgienda checked (1,2,8pn only be reached whemt-
prepare_meetingas entered trap t-44a w.r.t. every member. So only when every member has
reacted to trap t-42a and consequently has prescribed subprocesins{gépare _meeting

can continue to go to the statate selectedas it is the internal behaviour of an operation of
another class (Figure 40).

In the simplified representation it seemed that every member had to wait for all other members
before returning to its neutral state, as trap t-44 could only be entered dagtaselectetiad

been reached. When looking at the trap-structure for the exact representation it is clear that this
is not the case. Memberl can react to trap t-44a beforalatateelectetias been reached and
therefore the external behaviour of Memberl can return to its neutral state without waiting for
the other members. Note that the order in which the members are called does not matter, as all
n! orders are possible.

page 127

Simultaneous calls described in more detail

call_check_agenda
(memberl, member2, member3)

agenda
checked
(2,3)

select_date

selected

Figure 142. a part of int-prepare_meeting modelled in more detail

The dotted transition from the statate selectetb the statenembers selecteamphasizes that
the rest of the operation remains as it is.

page 128

Simultaneous calls described in more detail

s-42a

call_check_agenda
(meémberl, member2, member3)

t-42a

call_receive_
confirmation (member

t-43

selecteq

Figure 143. subprocesses and traps w.r.t. memberl modelled in more detail

Note that traps t-43 and t-45 remain unaltered by describing theg&atda checkeith more
detail. However they will change by describing the statdirm sendn more detalil.

page 129

Simultaneous calls described in more detail

page 130

Logical transitions

Appendix B Logical transitions

As can be seen in Figure 71 logical expressions have been used to label transitions of the man-
ager process CABSecretary. We call such transitagisal transitions In Figure 144 the part

of CABSecretary that uses the logical transitions is shown again. Logical transitions can be used
to avoid multiple presences of the same state in the external behaviour of a class. These states
are identical. A logical transition can occur only if a transition has been labeled with an opera-
tion containing a parameter. When, dependent on the value of this parameter in the label of the
transition, different traps have to be entered and after that different subprocesses have to be pre-
scribed, logical transitions can be used. In this case the paraimetauses a logical transition,

as dependent on the value of this parameter to eithbrg_impactor int-small_impact dif-

ferent subprocess has to be prescribed.

handle_change_request

(request-id, size)
s-59 in t-58, (t-60 or '[-62) s-58 employee mapping order usey:
(5_61 or(s-6 s-60 !nt-Bandle_change_request
t- t
s-6 $-68)" in t-59, (t-61 or t-63) 562 int-small impact
change_request neutral
handled

Figure 144. a part of the manager process CABSecretary using logical transitions

Figure 145 shows the same part of the manager process CABSecretary as shown in the above
figure without using logical transitions. This figure is in accordance with the Socca-conven-
tions. One can see that the only difference in the labels of both transitions is the value of the
parametesize

handle_change_request :
(request-id, size big) employee mapping order usey:
in to _ int-handle_change_request

In t-58, t-60 int-big_impact
int-small_impact

change_request
handled i t-59, t-61

in t-59, t-63

neutral

handle_change_request
(request-id, size smal)

change_request t-58, -62
handled

Figure 145. multiple transitions (and states) replacing logical transitions

Of course logical transitions could be avoided by replacing the operdiignsnpactand
small_impactith a single operatiompact_estimatedvhich is parametrized with a parameter
size

page 131

Logical transitions

page 132

List of subprocesses w.r.t. WODAN

Appendix C List of subprocesses w.r.t. WODAN

subprocess§ behaviour figure
s-110 Design [2, fig 13]
s-111 MainCAB 8

s-112 DepCAB 9

s-113 ProjectManager 11
s-114 int-request_for_change (old model) 13
s-115 int-prepare_meeting 21
s-116 int-do_meeting (old model) 15
s-117 int-monitor (old model) [2, fig 12]
s-120 intermediate phase of MainCAB 92
s-121 first intermediate phase of DepCAB 93
s-122 first intermediate phase of int-req_for_change 90
s-130 second intermediate phase of DepCAB 98
s-131 intermediate phase of ProjectManager 103
s-132 intermediate phase of CABSecretary 97
s-133 second intermediate phase of int-req_for_change 95
s-134 first intermediate phase of int-prepare_meeting 101
s-140 NewDesign 51

s-141 NewCAB 50

s-142 CABSecretary 48
s-143 Request 49

s-144 int-request_for_change (new model) 52
s-145 second intermediate phase of int-prepare_meegting 106
s-146 intermediate phase of int-do_meeting 105
s-147 int-monitor (new model) 63
s-150 int-do_meeting (new model) 61

Table 1: Subprocesses w.r.t. WODAN

page 133

List of subprocesses w.r.t. WODAN

page 134

List of figures

Appendix D List of figures

1. Class diagram: classes and IS-A and Part-Of relationships ot 14
2. Class diagram: attributes and operationsttt e 14
3. Class diagram: classes and general relationshipso i, 15
4. IMPOrt/eXport diagramottt e e e 16
D IMPOI LISt . oo 16
6. CAB: possible STD of the external behaviour 17
7. CAB (solution 1): the interleaved VErsSioNnt 18
8. MainCAB (solution 3): Main-STD of the external behaviour 18

9. DepCAB (solution 3): Dep-STD of the external behaviour 19
10. UserRepresentative: STD of the external behaviour 19
11. ProjectManager: STD of the external behaviour 20
12. DesignEngineer: STD of the externalbehaviour 20
13.int-request_for_Change 21
14, INE-0PEN _MEEBHING . . . ottt ettt e e e e e e e 22
15, iNt-d0 MEEBLING . . . oot 22
16. INt-ClOSE_MEELINGottt e e 23
17.0INt-d0_ChaNge . .. oo 23
18. int-join/leave _MEEtING oot 23
19.0int-Check_agenda o 24
20. int-receive_CoNfirmation e 24
21, INt-prepare _MeEELINGottt 25
22. int-request_for_change’s subprocesses and trapsw.r.t. MainCAB 27
23. DepCAB’s subprocesses and trapsw.r.t. MainCAB i, 28
24. MainCAB: viewed as managerof 2employees 29
25. int-open_meeting’s subprocesses and traps w.r.t. DepCABt 30
26. int-do_meeting’s subprocesses and traps w.r.t. DepCAB i, 30
27. int-close_meeting’s subprocesses and trapsw.rtDepCABt 31
28. int-do_change’s subprocesses and trapsw.r.t. DepCAB 31
29. int-prepare_meeting’s subprocesses and trapsw.r.t. DepCAB 32
30. DepCAB: viewed as manager of 5employees 33
31. int-check_agenda’s subprocesses and traps w.r.t. CABMember....................... 34
32.int-request_for_change’s subprocesses and traps w.r.t. ProjectManager................ 35
33. int-receive_confirmation’s subprocesses and traps w.rt CABMember................. 35
34. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager................... 36
35. int-join/leave_meeting’s subprocesses and traps w.r.t. CABMember................... 37
36. int-open_meeting’s subprocesses and traps w.r.t. CABMember....................... 38
37.int-close_meeting’s subprocesses and traps w.r.t. CABMember....................... 38
38. int-do_change’s subprocesses and traps w.r.t. Projectmanager........................ 39
39. ProjectManager: viewed as managerof 8employees 40
40. int-prepare_meeting’s subprocesses and traps w.r.t. CABMember..................... 42
41. DesignEngineer: viewed as managerof 6 employees i i 43
42. UserRepresentative: viewed as managerof6employees., 44
43. Class diagram of the new model: classes and IS-A and Part-Of relationships 46
44. Class diagram of the new model: attributes and operations a7
45, Class diagram of the new model: classes and general relationships..................... 48
46. IMpPOrt/exXport diagramot 49
A7 IMPOIT LSt . . oo 49
48. CABSecretary: STD of the external behaviour 50

page 135

List of figures

49. Request: STD of the externalbehaviour i .. 50
50. NewCAB: STD of the externalbehaviour i 51
51. NewDesign: STD of the external behaviour i 52
52.int-request_for_change e 53
B3.int-add to LISt . ..o e 54
B, INt-SeNA LISto 54
55.int-handle_change request. ... e 54
BB, INE-r et TEQUEST . . . o i e e 55
7. INE-DIg _IMPACT o 55
B8.int-small_Impact e 55
50, INt-d0_Change o e e e 56
60. INt-request_for_Meetingt 56
61. Int-do_meeting (NEW VEISION)ottt e e e ettt et et et 57
62. int-schedule_and_assign _tasks i e 58
B3, INE-MIONITOT . . . oot 58
64. int-add_to_list’s subprocesses and trapsw.r.t. CABSecretary 59
65. int-request_for_change’s subprocesses and traps w.r.t. CABSecretary 60
66. int-handle_change_request’s subprocesses and traps w.r.t. CABSecretary 61
67. int-big_impact’s subprocesses and trapsw.r.t. CABSecretary 62
68. int-small_impact’'s subprocesses and traps w.r.t. CABSecretary 62
69. int-send_list's subprocesses and traps w.r.t. CABSecretary 63
70. int-request_for_meeting’s subprocesses and traps w.r.t. CABSecretary 63
71. CABSecretary: viewed as managerof 7employees i 64
72.int-handle_change_request’s subprocesses and trapsw.r.t. Request.................... 65
73. int-do_meeting’s (new version) subprocesses and traps w.r.t. Request 66
74. int-do_change’s (new version) subprocesses and trapsw.r.t. Request. 67
75. int-reject_request’s subprocesses and trapsw.r.t. Request.............., 67
76. int-big_impact’s subprocesses andtrapsw.rt. Request............ i, 68
77.int-small_impact’'s subprocesses and trapsw.rt.Request......................coou... 68
78. Request: viewed as manager of 6 employees 69
79. int-do_meeting’s (new version) subprocesses and traps w.r.t. NewCAB 70
80. int-request_for_meeting’s subprocesses and trapsw.r.t. NewCAB 71
81. int-request_for_change’s subprocesses and trapsw.r.t. NewCAB 72
82. NewCAB: viewed as manager of 6 employees 73
83. int-monitor’s subprocesses and traps w.r.t. NewDesign i i 74
84. NewDesign: viewed as manager of int-monitor 75
85. int-request_for_meeting’s subprocesses and traps w.r.t. ProjectManager............... 77
86. int-do_change’s subprocesses and traps w.r.t. Projectmanager........................ 77
87. ProjectManager (new version): viewed as manager of 8employees.................... 78
88. global external behaviour of WODAN i e e e 83
89. first prescriptive step Of WOD AN e 84
90. the first intermediate phase of int-request_for change 84
91. int-request_for_change’s subprocesses and trapsw.r.t. MainCAB 85
92. intermediate phase of MaINCAB i e e e e e 85
93. firstintermediate phase of DEpPCAB 86
94. second prescriptive Step Of WODAN e e 86
95. the second intermediate phase of int-request_for change............................. 87
96. int-request_for_change’s subprocesses and traps w.r.t. TempCABSecretary 88
97. TempCABSecretary: viewed as manager of int-request_for change.................... 88
98. second intermediate phase 0Of DEPCAB i e 89

page 136

List of figures

99. int-put_request_on_list: a temporary operation oftheclassCAB 90
100. int-cancel_meeting: a temporary operation of the class CABMember................. 90
101. firstintermediate phase of int-prepare_meeting i 91
102. int-prepare_meeting’s subprocesses and traps w.r.t. ProjectManager................. 92
103. ProjectManager: viewed as manager of int-prepare_ meeting......................... 93
104. third prescriptive step Of WODANo 94
105. intermediate phase of int-do_meeting i e 95
106. second intermediate phase of int-prepare_meeting.............. ..., 95
107. final prescriptive step Of WODAN 96
108. WODAN: viewed as managerof 11 employees, 97
109. a basic PMMS-model and itsfourcomponents. i 99
110. a PMMS-model describing Change Management 101
111. Class diagram: attributes and actions of the basiccomponents...................... 101
112. Import/export diagram e 102
10 MRt ISt . . o 102
114. external behaviour of the managing-component. i, 103
115. external behaviour of the logistics-component i .. 104
116. external behaviour of the technology-component i, 104
117. external behaviour of the administering-component. 104
118.int-schedule_design oot e e 105
110, INE-VIEW _STAtUS . . . oottt et e e e 106
120. INt-geNErate SEIUD . . . ottt ettt e e e e 106
121.int-generate_change Setup e 106
122.iNt-get_Methods 107
123. int-instantiate_methods 107
124, int-make _mMethods o e e e 107
125, INt-TEPOIT_StAtUS . . . oot e 108
126, INt-EBNACE PrOCESSES . o v vt ittt ettt e e ettt e e 108
127. int-schedule_design’s subprocesses and trapsw.rt.managing...................... 110
128. int-report_status’s subprocesses and trapsw.r.t. managing 111
129. int-view_status’s subprocesses and trapsw.r.t. managingcooviie.. .. 112
130. int-instantiate_methods’s subprocesses and trapsw.r.t.managing................... 112
131. managing-component: viewed as manager of 4 employees, 113
132. int-schedule_design’s subprocesses and traps w.r.t. logistics 114
133. int-instantiate_methods’s subprocesses and traps w.r.t. logistics 115
134. int-generate_change_setup’s subprocesses and traps w.r.t. logistics 116
135. int-get_methods’s subprocesses and trapsw.r.t. logistics 117
136. the logistics-component: viewed as manager of 4 employees 118
137. int-enact_processes’s subprocesses and traps w.r.t. administering 119
138. int-instantiate_methods’s subprocesses and traps w.r.t. administering 119
139. int-report_status’s subprocesses and traps w.r.t. administering 120
140. int-view_status’s subprocesses and traps w.r.t. administering 121
141. the administering-component: viewed as manager of 4 employees 121
142. a part of int-prepare_meeting modelledinmoredetail 128
143. subprocesses and traps w.r.t. memberl modelled inmoredetail 129
144. a part of the manager process CABSecretary using logical transitions 131
145. multiple transitions (and states) replacing logical transitions 131

page 137

List of figures

page 138

