
Blackboard Systems in SOCCA

Process Evolution visualised by
Reproductive, communicating

Blackboard Systems

Carla Spruit

Augustus 1997

MASTER’S THESIS
Department of Computer Science
Leiden University
P.O.Box 9512
2300 RA Leiden
The Netherlands

28/8/97 Blackboard Systems in SOCCA 2

Abstract

Goal of this thesis is to specify Blackboard Systems in SOCCA and to investigate the possibility to
model evolving processes by means of communicating Blackboard Systems. In the field of Software
Process Modelling, the ability to model evolution is of great interest as it can support the structured
thinking and simulation of processes.

Blackboard Systems were originally developed in the field of artificial intelligence as a method to
organise problem-solving programs. The problem-solving is dynamically controlled by automated
experts that communicate with each other through a global database, called ‘the Blackboard’.
The evolution of the problem-solving is visualised by the recording of the successive modifications on
the Blackboard.
By replacing the automated experts by humans, Blackboard Systems naturally represent evolution of
human collaboration processes.

First, a Blackboard System that is fit to represent human collaboration processes is designed by using
SOCCA, a process modelling language that models automated and human parts of a system in exactly
the same way. As no automated parts are included in the proposed Blackboard System, the SOCCA
model will be a model of a completely non-automated process.
Like processes, this Blackboard System has to be able to create, influence and terminate other
Blackboard Systems. They must be able to operate concurrently and communicate with each other.

Secondly, the representation of evolving processes by means of Blackboard Systems is illustrated by
applying the Blackboard System model to a ‘real-life’ example. This example describes a ‘groupware
like’, non-automated human collaboration process: the collaboratively writing of a book.

28/8/97 Blackboard Systems in SOCCA 3

Acknowledgement

First of all, I would like to thank Dr. Luuk Groenewegen and Dr. Ida Sprinkhuizen-Kuyper for all
their guidance and support, enabling me to work with constant pleasure on two topics of my interest:
Blackboard Systems and SOCCA.
Furthermore, I would like to thank my parents for their ready support and encouragement during my
study.
And finally, thank you Cor, for motivating me and for listening to all that abstract stuff.

28/8/97 Blackboard Systems in SOCCA 4

Abstract 2

Acknowledgement 3

Contents 4

Part I: Basic concepts 7

1.1 Introduction 7
1.2 Contents 8
1.3 Blackboard Systems 8
1.4 SOCCA 9
1.5 The example 10

1.5.1 Introduction to the example 10
1.5.2 A verbal description of the example 10

Part II: Specification of the Blackboard System 13

2.1 The basic concept of a single Blackboard System 13
2.1.1. A Blackboard System Process Model 13

2.2 Problems 14
2.3 Child-Blackboard Systems 16
2.4 Proposals 17
2.5 Behaviour of the KSs 18
2.6 Behaviour of the CKS 18

2.6.1 General behaviour of the CKS 18
2.6.2 The CKS and human roles 19
2.6.3 Multiple CKSs in a BB-system 20
2.6.4 The CKS and communication between BB-systems 20

2.7 Information on the BB 20
2.8 Communication between the BB-systems 21

Part III: The SOCCA model 22

3.1 SOCCA 22
3.2 Class diagrams 22
3.3 The export diagram 25

3.3.1 The communication between the objects of one Blackboard System 26
3.3.2 Communication between a parent-Blackboard System and a child-Blackboard

System 26

28/8/97 Blackboard Systems in SOCCA 5

3.3.3 All other communication between Blackboard Systems 27
3.4 STD’s External behaviour 28
3.5 STD’s Internal behaviour 30

3.5.1 STD’s Internal behaviour Blackboard System (BB_sys) 30
3.5.1.1 Operation int_create_BB_sys 30
3.5.1.2 Operation int-modify_BB_sys 31
3.5.1.3 Operation int_finish_BB_sys 32
3.5.1.4 Operation int_get_info 32

3.5.2 STD’s Internal behaviour Knowledge Source (KS) 33
3.5.2.1 Operation int-activate_KS 33
3.5.2.2 Operation int-activate_proposal 34
3.5.2.3 Operation int_deactivate_KS 35

3.5.3 STD’s Internal behaviour Control Knowledge Source (CKS) 36
3.5.3.1 Operation int-activate_CKS 36
3.5.3.2 Operation int-deactivate_CKS 37

3.5.4 STD’s Internal behaviour Blackboard (BB) 38
3.5.4.1 Operation int-select_problem 38
3.5.4.2 Operation int-modify_BB 38
3.5.4.3 Operation int-put_on_BB 38

3.5.5 STD’s Internal behaviour Control Blackboard (CBB) 39
3.5.5.1 Operation int-select_proposal 39
3.5.5.2 Operation int-put_on_CBB 39
3.5.5.3 Operation int-update_HistoryList 39
3.5.5.4 Operation int-delete_nonrelevant_proposals 39

3.6 Subprocesses and traps 40
3.6.1 Subprocesses with respect to Blackboard System (BB_sys) 40
3.6.2 Subprocesses with respect to Knowledge Source (KS) 46
3.6.3 Subprocesses with respect to Control Knowledge Source (CKS) 52
3.6.4 Subprocesses with respect to Blackboard (BB) 54
3.6.5 Subprocesses with respect to Control Blackboard (CBB) 56

Part IV: Application of the given example 60

4.1 Introduction 60
4.2 Event traces 60
4.3 The export operations and their parameters 60
4.4 The division of the example into BB-systems, child-BB-systems, problems and

subproblems 61
4.5 Representation of the example in 9 steps 62

4.5.1 Step 1 : The creation of the root-BB-system Process Creation 62
4.5.2 Step 2 : Creation and activation of the first child-BB-system

 Promoter Meeting 64
4.5.3 Step 3 : BB-system Promoter Meeting makes decisions about the second

 book 66
4.5.4 Step 4 : The creation of more than one child-BB-system to solve a single

 problem 69
4.5.5 Step 5 : BB-system Promoter Meeting receives the results of the child-BB-

 systems 72

28/8/97 Blackboard Systems in SOCCA 6

4.5.6 Step 6 : Processing the results of the child-BB-systems and the termination
of the child- BB-systems 75

4.5.7 Step 7 : A discussion on the BB of Chapter 9 Group and
 Promoter Meeting proposes its own termination 78

4.5.8 Step 8 : BB-system Chapter 9 changes its own ‘initial’ problem 80
4.5.9 Step 9 : Parent Book2 formulates a second problem for BB-system Chapter 9

 83

Part V: Conclusions and further research 85

References 86

Appendix A: Identification of BB-systems and problems of the given
example 87

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 7

Part I: Basic concepts

1.1 Introduction

Blackboard Systems were originally developed in the field of artificial intelligence as a method to
organise problem-solving programs. The problem-solving is dynamically controlled by automated
experts that communicate with each other through a global database, called ‘the Blackboard’ [1].
As the automated experts are in control, one of the tasks of the automated experts is to organise the
problem-solving on the Blackboard. In other words, they have to enforce opportunistic evolution on
the Blackboard.
This evolution can be visualised by the recording of the successive modifications on the Blackboard.

In the field of Software Process Modelling, the Blackboard System concept is of special interest as
Blackboard Systems naturally provide a way to model the evolution of processes. The ability to model
evolution is of great interest as it can support the structured thinking of processes.
By replacing the automated experts by humans, Blackboard Systems can also model evolving
processes of human collaboration.
Not surprisingly, Blackboard Systems are already recognised in the field of CSCW (Computer
Supported Cooperative Work) as a method to model and support human collaboration environments
[7].

In this thesis, a Blackboard System is defined that is appropriate to model human collaboration
processes.
As processes can influence and create other processes, the Blackboard System must have the
capability to start up, influence and terminate other Blackboard Systems. They must be able to process
concurrently and communicate with each other.
The Blackboard System model is specified by using SOCCA, a Software Process Modelling
Language, that is currently still under development at the University of Leiden [4].
SOCCA is a suitable language to model this human collaboration Blackboard System, as no
distinction is made between the modelling of automated and human parts. This way, the interaction
between human- and automated parts or even the interaction between human parts of a system, can be
modelled more explicitly than usual.
As no automated parts are included in the proposed Blackboard System, the SOCCA model will be a
model of a completely non-automated process.
However, as the model provides a detailed description of the behaviour of all parts of a reproductive
Blackboard System and the communication between the systems, it can also serve as the basic design
of similar automated Blackboard Systems.

A SOCCA-model can become very complicated when too many details are to be modelled. For this
reason, some choices have to be made. As a result, this SOCCA-model will emphasise the
organisation of the problem-solving more than the problem-solving itself. However, as the experts are
personified by humans, it is better to avoid too many details concerning the way problems are to be
solved.

In order to visualise the evolving of and communication between human collaboration processes, the
Blackboard System model is applied to a ‘real life’ example.
In this example, describing the process of the collaborative writing of a book, several different
‘groupware-like’ subprocesses can be identified, like the progress of- and decision-making during an
assembly, the cooperatively working on a chapter of the book, a discussion concerning the contents
of the chapter, the contracting of activities out to other groups and the evaluation of its results and
finally, individual processes.

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 8

1.2 Contents

This thesis is structured as follows:
Part I introduces the main concepts that are used in this thesis like Blackboard Systems, SOCCA
and the given example.
Part II presents the design of a Blackboard System that is fit to represent the evolving of human
collaboration processes.
Part III presents the SOCCA model of this Blackboard System.
Part IV illustrates the evolution on the Blackboard Systems by the application of the SOCCA model
to the given example. The evolution on the Blackboard Systems is represented by the means of event
traces and process models.
Appendix A presents the translation of the verbal description of the example into problems and
Blackboard Systems.

1.3 Blackboard Systems

The Blackboard System concept was developed by AI researchers as a method to handle
organisational aspects of problem-solving programs [1] .
The idea behind the Blackboard System is first mentioned in 1962 by AI researcher Allen Newell:

‘Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge when he has
something worthwhile to add to it. This conception is just that of Selfridge’s
Pandemonium (Selfridge, 1995) : a set of deamons, each independently looking at
the total situation and shrieking in proportion to what they see that fits their
natures....[6]

Later, between 1971 and 1976, the concept was developed further during the Hearsay-II speech
understanding project [9] , leading to the first Blackboard System, commonly known as the Hearsay-
II Speech-Understanding System.

A Blackboard System consists of 3 parts:

Knowledge Sources Independently operating software modules that have special
knowledge about the problems to be solved.

The Blackboard A global database that contains all information concerning the
problems and through which the Knowledge Sources communicate
with each other.

The control System The system that determines the order in which the Knowledge

Sources make changes to the Blackboard.

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 9

The advantages of this concept lie in the ability to:

- model different points of view on the problem-solving into separate modules that can behave
independently of each other.
- change the knowledge involved in the problem-solving by refinement of the Knowledge Sources or
by the addition of new Knowledge Sources.
- specify different problem-solving techniques into different Knowledge Sources
-dynamically control the problem-solving on the Blackboard as the Knowledge Sources are self-
activating and only controlled by the Control System.

The Blackboard concept is very general and only outlines organisational principles. There is no
information provided about the way working Blackboard Systems are to be developed.
Therefore, the design of a Blackboard System depends highly on the purpose of the Blackboard
System.
The Blackboard System concept has proven to be a very strong and general concept that was and still
is successfully applied to a large variety of problems.

Although originally designed as a method to organise problem-solving programs, the Blackboard
System concept is currently also used in other ways.
By replacing the automated experts by humans, Blackboard Systems can serve very well as an
organisational model of human collaboration.
As a result, the Blackboard approach is also recognised in the field of CSCW as a suitable way to
dynamically control and support the processes within human collaboration environments . See also
[7].

1.4 SOCCA

This section will only introduce SOCCA (Specification Of Coordinated and Cooperative Activities)
briefly, as the complete description can be found in [4].
Until now, no formalism exists that is suitable to model all aspects of software processes. For this
reason, SOCCA proposes a combination of 3 different formalisms to model processes:

1) The use of EER (Extended Entity Relation) diagrams to specify the data perspective. All
classes and the relations between the classes that describe the static structure of the process
are specified by means of EER diagrams.
In addition to the EER diagrams, the so-called export-diagrams are used. Export-diagrams
specify for every object the imported export operations of itself or other objects.

2) The use of STD’s (State Transition Diagrams) to specify the first part of the behaviour
perspective.
The external and internal behaviour of the objects are defined by means of STD’s. The
external behaviour of an object defines the behaviour that is visible from outside, or, the
allowed sequences of operation calls to the object.
The internal behaviour of an operation, represents the functionality of the operation. It defines
, the possible sequences of calls to itself or to other objects. By defining the internal
behaviour of every export-operation of an object, the complete internal behaviour, or the
‘hidden behaviour’ of an object is defined.

3) Finally, the second part of the behaviour perspective is defined by the use of Paradigm.
Paradigm (PARallelism, its Analysis, Design and Implementation by a General Method)[5] is
a formalism that is based on STD’s, enabling the specification of coordinated parallel
processes.

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 10

By using Paradigm on top of the STD’s of the external and the internal behaviour, the
coordination between the internal behaviour of an object and the communication between the
objects is specified.
To model this coordination, subprocesses and traps within the STD’s of the internal behaviour
of the objects have to be identified. A subprocess denotes temporary behaviour restrictions of
the complete behaviour of an operation, a trap is a part of the subprocess that regulates the
switching between the subprocesses.
The subprocesses and traps of an object are ‘managed’ by an STD, called the manager
process. Every object has its own manager process in which possible combinations of
subprocesses define the states of the object and the possible combinations of traps define the
state-transitions between the objects.

1.5 The example

This thesis presents a SOCCA-model of a Blackboard System. This Backboard System is used to
visualise evolution of processes on the basis of a given example, describing the collaborative writing
of a book. In part IV, the actual application of the Blackboard System on the example is outlined.
This section presents the example.

1.5.1 Introduction to the example

The example, the verbal description of the example is presented in the next section, originates from
the second book of the PROMOTER community [3].
PROMOTER is a European project, financed by ESPRIT, in which a number of universities
participate to exchange ideas on Software Process Modelling.

The example is part of chapter 7 of the book, titled ‘Where will Software Process Models lead us’. It
describes the actual history of the collaborative writing of chapter 7 and is used to illustrate the
correspondence between Organisational Process Models and Software Process Models. In order to do
so, the example is modelled in both modelling techniques.
As the choice of the example itself was not made without discussion, the objections against the
example – and the refutations against these objections – are also part of the chapter.
Some of the advantages mentioned also apply to the use of the example in this thesis, for instance:

- there is much evolution
- there is a meta process
- the example is from another process world, far away from software processes
- the example describes no automated processes

The fact that the example is already analysed and modelled in the book, adds an important advantage
to the use of the example in this thesis. Furthermore the example relates types of human collaboration
that are so familiar to everybody that they do not need any further explanation.

1.5.2 A verbal description of the example

On 19940209 – date descriptions like this give the year, month and day in this order; so this date
refers to the 9th of February, 1994 – it was being proposed in a PROMOTER meeting in Villard de
Lans, France, that the PROMOTER community should start working on a second book, this second
book should contain a problem-oriented presentation of the software process modelling field. After
some preliminary discussions about the book structure, it was decided to prepare some proposals
concerning this structure for the following day. Furthermore it was decided that the author of this

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 11

second PROMOTER book should be PROMOTER, that Jean-Claude should be the general editor,
that Alfonso should be the general co-editor, and that Ali should give technical support to these
editors. In addition, for every chapter to be part of the book there should be one editor, at least two
authors, and two reviewers. Editors and authors were to be appointed the following day, after the
decision about the (chapter) structure would have been taken.

On 19940210 there were two proposals for a possible structure. After some discussion it was decided
to have a structure of the book consisting of 9 chapters. As for this example only chapter 9 – which is
the present chapter 7 – is relevant, the details of the other chapters will be omitted. Chapter 9 should
have the title Software Process Perspectives – an earlier version of the title actually was Related
Domains. The main topic to be addressed in chapter 9 should be the question, where will software
processes lead us. During a subsequent discussion, this time in groups in order to make it easier to
form a team for each chapter consisting of an editor and at least two authors, Vicenzo and Luuk have
formed such a small group. First they had the idea to have a preference for chapter 8, called User
Interaction and Social aspects. But it was decided to prefer chapter 9, and it was moreover decided
that Luuk should be the editor of that chapter, and that Jacques and Vicenzo should be the authors. As
Jacques had already left Villard de Lance, it was necessary to ask him afterwards, and also to inform
him about any further ideas for and possible global decisions about the chapter-to-be.
Before the discussion in small groups really started, it was also decided that each chapter team should
spend some part of the evening or the night to discuss a possible set-up of their chapter, and to put the
result of that discussion on 1 or 2 sheets, to be presented by each editor in the PROMOTER meeting
of the following morning, in order to discuss the various set-ups. Moreover it was decided that there
should be three writing and review rounds for each chapter in parallel, followed by the writing of an
introduction and finishing the coherence between the parts of the book. The three rounds for writing
and reviewing were also meant for enabling the various writing groups to establish a sufficient level
of coherence and cross-referencing between the chapters.

During the evening discussion Vicenzo and Luuk started on the idea of having a well-chosen example
as an illustrative answer to the main question of the chapter, where will software processes lead us.
The very mentioning of this example triggered a whole stream of objections against it, but also the
refutations of the objections. So they decided to let these objections and refutations be a substantial
part of the chapter, as they certainly would be clarifying for others too. Moreover, this discussion
actually led them to the formulation of a theorem, the current Theorem 7.5. As at that time they had
no idea of how to prove this theorem, they did not think it probable to find a proof of it before the
final version of the chapter had to be produced. So they decided, instead of proving the theorem, to
give a rather thorough illustration of the theorem by presenting and discussing the example in a
sufficiently instructive manner. In their opinion the collaborative writing of this chapter could very
well serve as such. So formally, their theorem would have the status of a conjecture. Another point in
this part of the discussion was, that by carefully considering the refutations of the objections, one
might be able to find new arguments that could illustrate the theorem. In this way the part of the
process where the process was being described, would lead to a better result, so it would lead to a
better process than before.
On 19940211 in the full PROMOTER meeting the results of this evening discussion were reported by
Luuk as chapter editor. There was an agreement on this first set-up.
Upon returning to Leiden, The Netherlands, Luuk informed Jacques in Nancy, France, about all this,
and asked him whether he would like to participate. Which he liked, viewing the topic of the chapter
as not an easy but an interesting challenge. His reaction too was conveyed by email, not only to Luuk,
but also to Vicenzo in Pisa, Italy.

Then Luuk as the responsible editor was faced with two problems, one, how to organise the writing in
more detail, especially which time period(s) should be reserved for it and who should do what, and
two, how to be as illustrative as possible in representing the example, such that after the
representation the theorem would look like just a straightforward abstraction step further.

Part I: Basic concepts

28/8/97 Blackboard Systems in SOCCA 12

Concerning the first problem, from the beginning it was the idea that Luuk should also be involved in
the writing. This was actually based on an earlier writing and editing experience. Moreover, Luuk had
a few sabbatical months to spend. Why not use two of these, at least partly, to get the job done. So it
was arranged that in September Luuk should visit Vicenzo in Pisa, and in November Jacques in
Nancy.

In trying to find an acceptable solution for the second problem, it became gradually more clear that
such a maximally illustrative representation of this particular co-operative writing example should
also work for other examples from a certain larger class. So the question was, what is a suitable class,
and how to represent it. This actually led to the ideas expressed in Lemma 7.4 and Lemma 7.5
respectively, and thus to the idea how to prove the theorem.

Upon arriving in Pisa on 19940901 Luuk discussed this new idea of proving the theorem with
Vicenzo, and they agreed upon it. The set-up of the chapter was changed accordingly, so from then
on, 19940905 to be precise, the chapter was supposed to consist of more or less ten sections, the first
five presenting the theory, and the last five presenting the example. It remained a somewhat open
question whether the role of the example should indeed be so large as to cover the second half of the
chapter. But they decided to start like this, and to judge from the result.

As Vicenzo was too heavily involved in local duties, Luuk did the writing of the first five sections
while being in Pisa until 19940928, and by using Framemaker.

In the meantime Jacques was being informed about the changed set-up of the chapter. Also the general
co-editor was informed. At the end of his stay in Pisa, Luuk mailed the Framemaker file both to
Vicenzo and Jacques.

This finishes the relevant part of the verbal, informal description of the example.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 13

Part II: Specification of the Blackboard System

Based on the general Blackboard System concept, a new Blackboard System is presented, that is fit to
serve as a organisational model for human collaboration. This part will introduce this human
collaboration Blackboard System and its features. The SOCCA-model of the Blackboard System is
presented in Part III.

2.1. The basic concept of a single human collaboration Blackboard
System

A Blackboard System (BB-system) contains a Blackboard (BB), a Control Blackboard (CBB),
Knowledge Sources (KSs) and a Control Knowledge Source (CKS).

The purpose of a Blackboard System is to solve problems.
The problems to be solved are put on the Blackboard, which can be viewed as the global database of a
Blackboard System.

The Knowledge Sources continuously check the BB to see if there are any unsolved problems.
In order to help solving the problems, a KS can apply his knowledge by proposing actions on an
unsolved problem. The KS has to formulate the proposed actions in a proposal which is to be put on
the Control Blackboard.

The Control Knowledge Source continuously checks the proposals on the CBB.
The CKS decides which proposals are to be executed and in what order.
When a proposal is to be executed, the CKS will activate the KS that created the proposal. The KS
will then execute the proposed action on the BB.

All modifications on the BB will be registered by the CKS in the History on the CBB.

The KSs have special knowledge about the problems. The CKS has special knowledge about the
organisation of the problem-solving activity.

2.1.1. A Blackboard System Process Model

In order to visualise the human collaboration Blackboard System, a special Blackboard System
Process Model is designed. Fig 2.1 presents a Blackboard System Process Model of a single
Blackboard System.
The KSs are represented by the small circles at the side of the BB. The CKS is placed at the bottom of
the BB.
The unsolved problems on the BB are lined up in the top-section of the BB, the CBB is represented by
a box in the bottom section of the BB.
The CBB contains the History and the proposals.

This model is used to register the state of the BB-system at a certain point of time. To show the
evolving of processes, Blackboard System Process Models have to be drawn at fixed points of time.
The presented model is very simple, as it must be fit to represent a complex constellation of
communicating BB-systems.
In section IV, this model is used to represent the evolving of processes as described in the given
example.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 14

BB-sys

Problem 1

Problem 2

Problem n

Proposals

History
CProblem 1: unsolved
CProblem 2: unsolved

CProblem n: unsolved

CBB

KS2

BB

KSm

KS1

CKS

Fig. 2.1. Blackboard System Process Model of a single Blackboard System

2.2. Problems

All information on the BB is stored in the form of problems.
Every problem has to be defined by a problem description and has to be in one of three states:
unsolved, solved or unsolvable. Problems in a solved state contain a ‘solution’ and problems in an
unsolvable state have to contain a ‘failure’, describing the reason why the problem is unsolvable.

A KS can apply his knowledge to an unsolved problem on the BB in the form of a modification of the
BB. The KS can choose from 3 possible modifications of the BB:

1) By putting a new subproblem on the BB

If the KS detects a ‘partial’ problem of the original problem, the KS can modify the BB by

• The addition of a new ‘unsolved’ subproblem on the BB. This way, the KS can
influence the search direction of the KSs in their problem-solving activity.
The division of an unsolved complex problem into several unsolved subproblems also
simplifies the solving of the original problem

• The addition of a new ‘solved’ subproblem on the BB when the KS is also able to
formulate its ‘solution’.

• The addition of a new ‘unsolvable’ subproblem when the KS has detected a ‘partial’

problem that is unsolvable and is able to specify its ‘failure’.

The creation of subproblems can be viewed as the top-down approach of problem-solving.

2) By changing the state of a problem on the BB

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 15

When the solutions of the subproblems together have solved the original problem, all useful
solutions of the subproblems will be attached to the original problem and the state of the
original problem will be changed from ‘unsolved’ to ‘solved’.

If one of the vital subproblems of a problem is ‘unsolvable’, the state of the original
‘unsolved’ problem will be changed from ‘unsolved’ to ‘unsolvable’.

The observation that the solved subproblems have ‘solved’ the original problem can be
viewed
as the bottom-up approach of the problem-solving activity. The same applies to the
observation that an ‘unsolvable’ subproblem has made the original problem ‘unsolvable’.

3) By the deletion of a problem on the BB

In the course of problem-solving, some problems may have become superfluous or irrelevant.
To avoid that KSs continue searching in these no longer relevant directions, these problems
will be deleted.

If all ‘initial’ problems on the BB are ‘solved’ we can say that the BB-system is ‘solved’. On the other
hand, if there are no ‘unsolved’ initial problems left on the BB, and at least one initial problem is
unsolvable, we will say that the BB-system is ‘unsolvable’.

Problem

Problem description:
solve : (1 + 4) 3 + 2/(3 - 3)

State: unsolved

Subproblem 1

Problem description:
solve : (1 + 4) 3

State: unsolved

Subproblem 2

Problem description:
solve : 2/(3 - 3)

State: unsolved

Subproblem 1.1

Problem description:
solve : (1 + 4)

State: solved

Solution 1.1:
1 + 4 = 5

Subproblem 1.2

Problem description:
solve : 5 * 3

State: solved

Solution 1.2:
5 * 3 = 15

Subproblem 2.1

Problem description:
solve : (3 - 3)

State: solved

Solution 2.1:
3 - 3 = 0

Subproblem 2.2

Problem description:
solve : 2/0

State: solved

Solution 2.2:
2/0 = 4

Subproblem 2.3

Problem description:
solve : 2/0

State: unsolvable

Failure 2.3:
2/0 is unsolvable
as division by 0 illegal

Fig. 2.2. Example: Top-down problem-solving

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 16

For example, imagine a BB-system that has to solve a simple mathematical problem.
The KSs attached to the BB-system only have the knowledge to solve ‘parts’ of the problem, for
instance a few KSs can only add up numbers, some can only multiply numbers and some can only
divide numbers. All KSs are able to divide compound mathematical statements into ‘partial’
statements.

First, the problem is divided into subproblems until the KSs can solve the subproblems.
Fig 2.2 illustrates this top-down problem-solving by the KSs by representing the complete tree of
subproblems.

Note that subproblem 2.2 contains a false solution. This has to be recognised by the ‘division’ KSs
and they will see to it that this subproblem is deleted.
A problem can have more than one solution. During bottom-up problem-solving, KSs may have to
choose between the different solutions of a subproblem.

Problem

Problem description:
solve : (1 + 4) 3 + 2/(3 - 3)

State: unsolved

Subproblem 2

Problem description:
solve : 2/(3 - 3)

State: unsolvable

Solution 2.1:
3 - 3 = 0
Failure 2.3:
2/0 is unsolvable
as division by 0 illegal
Failure 2:
2/(3 - 3) is unsolvable
as division by 0 is illegal

Subproblem 1

Problem description:
solve : (1 + 4) 3

State: solved

Solution 1.1:
(1 + 4) = 5
Solution 1.2:
5 * 3 = 15
Solution 1:
(1 + 4) 3 = 15

Problem

Problem description:
solve : (1 + 4) 3 + 2/(3 - 3)

State: unsolvable

Solution 1:
(1 + 4) 3 = 15
Failure 2:
2/(3 - 3) is unsolvable
as division by 0 illegal
Failure:
(1 + 4) 3 + 2/(3 - 3)
is unsolvable
as division by 0 illegal

Fig. 2.3. Example: Bottom-up problem-solving.

Fig 2.3 represents two steps of the bottom-up problem-solving. The final step shows the result of the
problem, containing all ‘solutions’ and ‘failures’ found during problem-solving.
Note that as soon as an essential ‘unsolvable’ subproblem is detected, its original problem can also be
declared ‘unsolvable’ before the other subproblems are solved.

2.3. Child-Blackboards

A subproblem may need other KSs and CKS than those connected to the current Blackboard System.
Or, they may be the same Knowledge Sources, but their roles are different.
If the creation of a subproblem affects the KSs and CKS involved, child-Blackboard Systems can be
created.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 17

For example:
A team of engineers is working on a large software project. They will be divided into smaller teams
that work on specified subprojects.
Sometimes, specialists that are no member of the original team, are needed for special jobs. And some
engineers may have roles in different teams.
This organisation structure can be modelled by giving each team a Blackboard System of its own.

A new child-BB-system is only generated by the creation of a new subproblem by the parent-BB-
system. This subproblem will be the ‘initial’ problem of the child-BB-system.
Like the KSs and CKS, an ‘initial’ problem will be viewed as a part of the Blackboard System.

As child-BB-systems can also create their own child BB-systems, the solving of a problem may cause
the creation of a tree of BB-systems. The root or very first BB-system will be called the root-BB-
system. This is the only BB-system in the tree that has no parent-BB-system.
The parent of the root-BB-system will be referred to as ‘outside’.

During problem-solving, the parent (or ‘outside’) can modify the child-BB-system (or root-BB-
system) by changing its KSs or CKS or its ‘initial’ problems.

KSs can also modify their own BB-system. However, if a child-BB-system modifies the problem
description of its own ‘initial’ problem, or changes its KSs or CKS, this will also affect the problem-
solving of the parent-BB-system. As the parent expects an answer to the ‘initial’ problem by the
chosen KSs and CKS, the child is only allowed to modify its own BB-system if the parent-BB-system
approves with the changes to the BB-system.
This also applies to the root-BB-system: changes to the root-BB-system by its own KSs have to be
authorised by ‘outside’

A modification of an ‘initial’ problem or a change to the KSs and CKS involved is called a
modification of the BB-system.

2.4. Proposals

Before a KS can execute any action that concerns the BB or the BB-system, the KS will have to
propose this action on the CBB first.
In order to do this, the KS will create a proposal.

A KS can create a proposal for:

1) A modification of the BB (as described in section 2.2)
2) The creation of a child-BB-system
3) A modification of a child-BB-system (as described in section 2.3)
4) The termination of a child-BB-system
5) A modification of its own BB-system (as described in section 2.3)
6) The termination of its own BB-system

If the proposal is of type 1, 2, 3 or 4, and the proposal is accepted by the CKS, the KS that created the
proposal, is activated by the CKS to execute the proposed actions.
The proposals of type 5 or 6 can only be activated by the parent. If the CKS of the same BB-system
selects this proposal, the CKS will transfer the proposal to the CBB of the parent-BB-system.
If the BB-system is declared ‘solved’ or ‘unsolvable’, the CKS will create a proposal for the final
result and put the proposal on the CBB of the parent-Blackboard System.
If the parent is ‘outside’ the results have to be related to ‘outside’.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 18

A CKS will accept any proposal of a result of a child-BB-system and put the result on its own BB as
the result contains the answer of the child to an unsolved problem on the BB.

When a child-BB-system is no longer needed, KSs can propose the termination of the child. Usually,
this will be done after the child has delivered its final result. But, even if the child still has unsolved
problems, the child can be terminated, for instance, when the parent has ‘solved’ its own ‘initial’
problems before the child has come to a result.
Obviously, KSs of a child-BB-system can only terminate their own BB-system when this is authorised
by the parent as the termination of a child also affects the problem-solving of the parent.

Note that KSs of a parent BB-system cannot propose modifications of the BB of a child-BB-system.
They can only influence a child by proposing modifications of the child-BB-system.

2.5. Behaviour of the KSs

In a Blackboard System with automated Knowledge Sources, the design of the different KSs is most
essential to the functioning of the BB-systems. Automated KSs may store their knowledge in rule-
bases and make use of inference techniques to apply their knowledge.
Each KS involved must have his own unique knowledge and problem-solving techniques to give
every KS a different view on the unsolved problems.

The proposed concept of a Blackboard System is especially designed to model human collaboration.
As we can assume that humans already have their own unique knowledge and techniques, we do not
have to specify this knowledge of the KSs any further.
The role of the KS defines what special knowledge is required.
Persons can play more than one role at the same time. For instance, it is possible for a person to be a
parent, tennisplayer and programmer at the same time. The person will have to switch between these
roles according to the circumstances. We will assume that persons control this switching between
different roles themselves.

In a Blackboard System, a person can have more than one role. Every different role will be modelled
as a separate KS.
A person can also belong to more than one Blackboard System. A KS, however, can only belong to
one BB-system.
When a person is involved in different Blackboard Systems with the same role, the person will be
modelled as separate KSs: one for every system.

2.6. Behaviour of the CKS

2.6.1 General behaviour of the CKS

Like the KSs, the part of the CKS is also played by a person. All properties of the KSs as described
before, also concern the CKS.
In the context of the Blackboard System, more information is needed about the behaviour of a CKS.
In a Blackboard System, the KSs play the ‘creative’ part and the CKS the ‘controlling’ part of the
problem-solving activity.
The complete control of the BB-system is an interaction between the KSs and the CKS.
The task of the CKS is to check whether the proposals are created by competent KSs and whether the
proposed actions are legal and feasible.
The way the problem-solving takes place, depends highly on the role of the CKS.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 19

If the CKS has the role of a chairman of an assembly, he will have to behave according to the
democratic rules that belong to an assembly, in other cases, when the CKS has a more hierarchic role,
he can lead the problem-solving activity in a more authoritarian way.
A CKS can also influence the amount of alternative solutions on the BB. He can lead a BB-system in
a very permissive way, but he can also lead in a more restrictive way.

2.6.2 The CKS and human roles

So far, this seems to be a ‘natural’ way to model human roles into the KSs or CKSs. However, this
modelling needs some refinement.
This refinement is needed because of the very strict distinction between the possibilities of a KS and
those of a CKS.
A KS can modify the BB, but as the CKS selects the proposals, the KS can only communicate with
other KSs through the CKS. On the other hand, the CKS has only indirect influence on the progress of
the BB by the selection and activation of proposals.
The fact that KSs are restricted by the controlling of the CKS does only affect the problem-solving in
a positive way. The CKS will see to it that the information on the BB is filtered from superfluous and
incorrect information.
On the other side, the limitations of the CKS can be too restrictive to model managing human roles.
For instance, a chairman does not only play a ‘controlling’ role, he can also play a ‘leading’ role in an
assembly. He should be able to influence the direction of the search of the KSs in more ways than just
by selecting proposals.

BB-sys Assembly

Problem

Proposals

History
CProblem : unsolved

CBB

As
controlling
chairman

As member

BB

As member

KS

KS

CKS

BB-sys Assembly

Problem

Proposals

History
CProblem : unsolved

CBB

As chairman

As member

BB

As member

KS

KS

CKS

KS
As
leading
chairman

Fig. 2.4. Process Model of a Blackboard System representing an assembly. In the left Process Model, the CKS plays
the role of chairman. In the right Process Model, the role of chairman is split into a role ‘controlling’
chairman played by the CKS and a role ‘leading’ chairman, played by a KS.

In this case, the role of chairman has to be split into two roles : a role of ‘controlling chairman’
executed by the CKS, and a role of ‘leading chairman’, executed by a KS (Fig. 2.2). As human roles
are hardly ever definite roles, it is also possible to split up the roles of a chairman even further.

This need for distinction between separate roles within a human role is not so important when human
roles are applied to KSs. A KS may play more distinct roles at the same time as long as the KS
controls the switching between the different roles himself.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 20

Note that the more restrictive a human role becomes, the more human behaviour resembles automated
behaviour or the easier the human role is to be automated. As the CKS only plays a controlling role,
the part of the CKS is probably the easiest part to be automated. By splitting up the human roles of the
KSs likewise, the KSs too are easier to be automated.

2.6.3 Multiple CKSs in a BB-system

The proposed Blackboard System model does not exclude the use of multiple CKSs. More than one
CKS can be activated by the same BB-system.
Like the KSs, the CKSs operate completely parallel, but, there is no mechanism provided to control
the parallel behaviour of the CKSs. The parallel behaviour of the KSs is, in a way, controlled by the
CKS.
The use of multiple CKSs probably works best when the roles of the CKSs are not overlapping.
For instance, a Blackboard System representing a project in which several persons are involved could
have a CKS that controls the financial aspects of the proposals and another CKS controlling all other
aspects of the proposals.
In this thesis, only BB-systems with one CKS are discussed.

2.6.4 The CKS and communication between BB-systems

The CKS also plays a major role in the communication between the BB-systems.
Of all participants in a BB-system, the CKS has the best overview concerning the state of the
problem-solving activity on the BB. As the role of a CKS is to control and to monitor the problem-
solving on the BB, the CKS is the most-fit Knowledge Source to control the communication between
the BB-systems.
When the BB-system has solved the ‘initial’ problems, the CKS will put the result on the CBB of the
parent-BB-system. Or, when a KS proposes an ‘illegal’ action, like the modification of the problem
description of an ‘initial’ problem, the CKS will put this proposal on the CBB of the parent-BB-
system.
The CKS also takes care of the input received from the child-BB-systems.

2.7 Information on the BB

Until now, there is only one possible structure to handle the information on the BB: the problem.
Obviously, this information type cannot be sufficient in a normal working Blackboard System.

There are two objections against the addition of information types and in connection with these types,
the definition of the possible modifications of these information types on the BB.
First, the proposed Blackboard System must be able to serve any possible problem-solving activity.
Different problem-solving activities may require different sorts of information types to store the
intermediate and final results.
Secondly, as the roles of the KSs involved in the BB-systems are played by persons, the exact
knowledge of the KSs is indefinite. In connection with this property, too many details concerning the
definition of information types and possible modifications of the BB by the KSs will only confine the
problem-solving activity.
The KSs may invent and create their own necessary information types to store their (intermediate)
results.
A possible approach for working Blackboard Systems may be the definition of a limited number of
‘standard’ Blackboard types as most Blackboards used in human collaboration environments will
probably resemble one of these ‘prototypes’.

Part II: Specification of the Blackboard System

28/8/97 Blackboard Systems in SOCCA 21

In addition to the standard information types, other information types may be defined by the KSs
involved in the BB-system.

2.8. Communication between the BB-systems

Until now, two methods of communication between BB-systems have already been discussed: the
transportation of results of a child to the CBB of the parent-BB-system, the possibility to modify the
child-BB-system or the request from a child to modify its own BB-system.

In addition to these methods, a BB-system is able to ask for information of all other BB-systems. A
BB-system may ask for information without permission from any of its descendants: its child-, grand
child-, grand grand child- systems etc. When a child-BB-system wants information of a parent, the
child will receive the requested information if it is permitted to ask for information.

The proposed ways of communication between the BB-systems seems rather limited. For instance
message passing and information from the ‘outside world’ are not explicitly modelled while they are
essential to human collaboration environments.
They may not be explicitly modelled, but this information can be communicated between the BB-
systems in the form of modifications of the problem description of the ‘initial’ problems of the
Blackboard System. Information from the ‘outside world’ or messages can be passed to the
Blackboard Systems by the modification of the root-BB-system by ‘outside’. The root will pass the
information to its children by the modification of these child-BB-systems and so on.
As the child-BB-systems can ask permission of their parent to modify its own BB-system, the parent
is notified of the changed circumstances of the child. When the parent thinks that the proposed change
also concerns its own BB-system, it can even asks its own parent to modify its own BB-system. This
way, messages that concern the complete tree of BB-systems can be passed from one of the leaf-BB-
systems to the root-BB-system and from the root back to all other BB-systems of the tree of existing
BB-systems.

Note that information of the ‘outside’ world is already gathered by the CKS and KSs as they can ask
for information from the ‘outside’ world freely and at any moment in time.

The passing of information between BB-systems by modifying a BB-system may seem a rather
‘strong’ way to relate information to another Blackboard System. But as only information is passed
that is vital to the problem-solving of the Blackboard System, this is a correct way to deal with
message passing and information from ‘outside’.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 22

Part III The SOCCA model

3.1. SOCCA

This part presents the SOCCA-model of the Blackboard System, described in Part II.

In section 3.2 and 3.3, the data-perspective of the Blackboard System is described.
Section 3.2 presents the EER-diagrams and section 3.3 presents the export-diagrams. Export-diagrams
specify for every object the imported export operations of other objects or the imported export
operations of itself.

In section 3.4, 3.5 and 3.6, the behaviour-perspective is described.
Section 3.4 presents the STD’s of the external behaviour of the objects. The external behaviour of an
object defines the allowed calling sequences of operation calls to the object.
Section 3.5 presents the STD’s of the internal behaviour of the objects. The internal behaviour defines
the possible sequences of calls to itself or other objects.
In section 3.6, Paradigm is applied to the STD’s of the internal and external behaviour of the objects.
Paradigm regulates the coordination between the internal and the external behaviour of an object and
the communication between the objects.

3.2. Class diagrams

Before a model can be made, the classes involved in the SOCCA-model have to be identified. In Fig.
3.1 the classes, BB_sys, Control System, BB, KS, CBB and CKS are drawn in a class diagram.
All relations between these classes are ‘part-of’ relations. A ‘part-of’ relation is indicated by a small
empty diamond at the side of the class that consists of the specified parts.
The classes Control System, BB and KS are parts of the class BB_sys. The classes CBB and CKS are
parts of the class Control System.

Blackboard System (BB_sys)

Control System Blackboard (BB) Knowledge Source (KS)

Control
Blackboard (CBB)

Control
Knowledge
Source (CKS)

1+

1+

1+

Fig. 3.1. Class diagram: classes and part-of relations

The ‘1+’ at the side of KS at the relation between BB_sys and KS denotes that at least one object of
class KS is related to one object of class BB_sys. All relations without the ‘1+’ denote that exactly one
object of the class is involved in the part-of relation. For instance, to an object of BB_sys , exactly
one object of class BB is related.
The class diagram of Fig. 3.1 indicates that more than one CKS can be attached to a BB-system. This
situation can occur, however, in this SOCCA model only BB-systems with one CKS will be
discussed.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 23

The class diagram of Fig. 3.1 shows no ‘is-a’ relations. In the SOCCA-model of a Blackboard System,
no significant is-a relations are identified.

In Fig. 3.2, the general relationships between the classes are given.

BB-sys

KS BB
modifies

finishes

modifies
child-BB-sys

creates

modifies

finishes

Fig. 3.2. Class diagram: classes and general relationships

A general relationship is indicated by a single line labelled with the name of the relation.
A black dot at the end of a line indicates a multiplicity of zero or more. If no dot is drawn at the end of
a line, the multiplicity is exactly one.
The relations drawn in Fig. 3.2 indicate that a KS can modify only one Blackboard and that a
Blackboard can be modified by zero or more KSs.
In the model of Fig. 3.2, a distinction is made between a BB-system and a child-BB-system. The
classes KS and BB are part of BB-sys.
A KS can create or finish zero or more child Blackboard Systems but a child Blackboard System can
only be created or finished by one KS belonging to the parent-BB-system.
A KS can modify zero or more child Blackboard Systems and a child Blackboard System can be
modified by zero or more KSs belonging to the parent-BB-system.
A KS can modify his own BB-system and the BB-system can be modified by zero or more KSs
belonging to the same BB-system.
Finally a KS can finish his own BB-system but a BB-system can only be finished by exactly one of
the KSs belonging to the same BB-system.

Fig 3.3 shows the attributes and export operations of every class. The attributes are given in the
middle section, the operations in the lower section.

The class Control System is not included in Fig. 3.3 because it plays no role in the communication
between the classes.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 24

Blackboardsystem
(BB-sys)

BB-sys_Id
Initial_Problems

create_BB_sys
modify_BB_sys
finish_BB_sys
get_info

Control Blackboard (CBB)

Proposals
HistoryList

select_proposal
delete_nonrelevant_proposals
put_on_CBB
update_HistoryList

Control Knowledge Source (CKS)

Role

activate_CKS
deactivate_CKS

Knowledge Source (KS)

Role
Proposal

activate_KS
deactivate_KS
activate_proposal

Blackboard (BB)

Problems

select_problem
modify_BB
put_on_BB

Fig. 3.3. Classdiagram: Classes with their attributes and operations

The attribute Initial_Problems of the class BB_sys contains the initial problems of the BB-system.
The export operation BB_sys.create_BB_sys creates and activates a new instance of the class BB_sys.
BB_sys.finish_BB_sys finishes, deactivates and deletes an instance of BB-sys.
The operation modify_BB_sys can be called to modify BB_sys
The operation BB_sys.get_info can be used by other BB-systems to get information about the state of
the called BB-system.
The attribute BB_sys.Permission keeps the information concerning the BB-systems that are permitted
to call the operation BB_sys.get_info.

The classes KS and CKS have an attribute Role. The role gives important information about the
knowledge and behaviour of the KS or CKS.
A KS or CKS can only have one role.
The attribute KS.proposal contains the proposal a KS is currently creating.
The operations KS.activate_KS and KS.deactivate_KS regulate the activation and deactivation of the
KS. A KS is activated at the start of a BB-system and deactivated when a BB-system is finished.
These operations can also be called in connection with a modification of the BB-system.
The operations CKS.activate_CKS and CKS.deactivate_CKS are used in the same way.
The operation KS.activate_proposal is called by a CKS that has chosen a proposal to be executed

The attribute BB.problems stores all problems on the BB. If a KS wants to select a problem, he will
call the operation BB.select_problem. The KS can call BB.modify_BB to propose or execute
modifications on a problem on the BB.
The operation BB.put_on_BB is called by a CKS to put a final result of a child-BB-system on the BB,
or by a BB-sys to put a new or modified problem on the BB.

The attribute CBB.HistoryList of the class CBB stores the history of the BB-system. All actions on the
BB are kept in CBB.HistoryList by the CKS. The CKS updates this HistoryList by calling the
operation CBB.update_HistoryList.
The attribute CBB.proposals stores all proposals on the CBB.
The operation CBB.put_on_CBB can be called by a KS or CKS to put a proposal on the CBB of a BB-
system.
The CKS can cleanup the CBB by calling the operation BB.delete_nonrelevant_proposals.
By calling CBB.select_proposal, the CKS can select a proposal on the CBB.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 25

3.3. The Export diagram

The export diagram (Fig 3.4.) shows the uses-relations between the classes. A uses-relation specifies
the export operations a class can use from another class. For instance, uses relation ‘uses 3’ indicates
that BB_sys can call the operations CKS.activate_CKS and CKS.deactivate_CKS of class CKS.
The short arrows that show no particular ‘caller’, indicate that there is also another way to call the
specified export operations. These operations can be called from ‘outside’. This means that there is
also communication possible between a Blackboard System and ‘outside’.
This kind of communication will only take place in exceptional cases, like the creation or termination
of the very first or root-Blackboard System.

KS

BB -sys

CKS

BB CBB

uses 1
create_BB_sys
modify_BB_sys
finish_BB_sys
get_info

uses 2
create_BB_sys
modify_BB_sys
finish_BB_sys
get_info

uses 6
select_proposal
put_on_CBB
update_HistoryList
delete_
nonrelevant_
proposals

uses 7
put_on_CBB

uses 8
select_problem
modify_BB

uses 4
activate_proposal

uses 5
put_on_BB

uses 3
activate_CKS
deactivate_CKS

uses 9
activate_KS
deactivate_KS

uses 11
update_HistoryList

uses 10
put_on_BB

uses 12
activate_
proposal

Fig. 3.4. Export diagram

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 26

KS

BB -sys

CKS

BB CBB

uses 6
select_proposal
update_HistoryList
delete_
nonrelevant_
proposals

uses 7
put_on_CBB

uses 8
select_problem
modify_BB

uses 4
activate_proposal

uses 5
put_on_BB

uses 3
activate_CKS
deactivate_CKS

uses 9
activate_KS
deactivate_KS

uses 11
update_HistoryList

uses 10
put_on_BB

uses 2
modify_BB_sys
finish_BB_sys

Fig. 3.5. Export diagram: Communication between the objects of one BB_sys

3.3.1. The communication between the objects of one Blackboard System.

The export diagram of Fig. 3.4, shows all possible uses-relations between the classes and between the
classes and ‘outside’.
Some operations, however, are only used within one Blackboard System.
Fig 3.5. presents all communication possible within one BB-system.

In Fig. 3.5, we can see that there are two operations that cannot be called within one BB-system. The
export operations BB_sys.create_BB_sys and BB_sys.get_info can only be called by the parent-BB-
system.

3.3.2. Communication between a parent-Blackboard System and a child-
Blackboard System.

The communication between a parent-BB-system and a child-BB-system (Fig. 3.6) is a special case of
communication between two Blackboard Systems.
Nearly all communication between Blackboard Systems occurs between parent- and child-systems.
The only exception on this strict parent-child communication is the operation BB_sys.get_info. This
operation can get information from other Blackboard Systems.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 27

KS

BB-sys

CKS

BB CBB

KS

BB-sys

CKS

BB CBB

uses 2
get_info
create_BB_sys
modify_BB_sys
finish_BB_sys

uses 6
put_on_CBB

Parent_BB_sys

Child_BB_sys

uses 4
activate_
proposal

uses 2
get_info

Fig. 3.6. Communication between parent- and child-Blackboard Systems

Note the similarity between the communication between a BB-system and ‘outside’ (Fig. 3.4) and the
communication between a parent-BB-system and a child-BB-system (Fig. 3.6). ‘Outside’ can use the
export operations BB_sys.modify_BB_sys, BB_sys.create_BB_sys, BB_sys.finish_BB_sys ,
BB_sys.get_info and the operation KS.activate_proposal. A parent-BB-system can use exactly the
same operations of a child-BB-system.
The operation CBB.put_on_CBB is called by a child-BB-system to communicate the final result of the
child-BB-system to the parent-BB-system. There is no export-operation to relate the final result of the
root-BB-system to ‘outside’. This will be handled by an internal operation.

3.3.3 All other communication between Blackboard Systems

In principle, it is not necessary to have this parent-child restriction for communication between BB-
systems.
But, this will raise another problem : if KSs can modify the class BB_sys of every other BB-system,
this can complicate the problem-solving activity of the systems.
To structure this complexity, some hierarchy between the BB-systems had to be defined.

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 28

3.4. STD’s External behaviour

In this section, the STD’s of the ‘external’ or visible behaviour of every class is given.
The external behaviour of a class is defined by the allowed calling sequences of its export operations
and the possible states of the object.

In Fig. 3.7., the external behaviour of BB_sys is presented.
BB_sys has two states: ‘BB_sys non existing’ and ‘BB_sys existing’. When BB_sys is in the state
‘BB_sys non existing’ only operation create_BB_sys can be called. The calling of this operation
causes the state transition to the state ‘BB_sys existing’. From the state ‘BB_sys existing’ , the
operations modify_BB_sys, get_info and finish_BB_sys can be called. By the calling of finish_BB_sys,
BB_sys will transit back to the state ‘BB_sys non existing’.
The calling of the operations modify_BB_sys and get_info do not cause a state transition.

KS and CKS show a similar behaviour in res. Fig. 3.8 and 3.9

The classes BB and CBB only have one state called ‘neutral’. From this state, all export operations
can be called.

BB_sys
non
existing

BB_sys
existing

create_
BB_sys

finish_
BB_sys

modify_BB_sys

get_info

 KS
 non
active

deactivate_
KS

 KS
active

activate_
KS

activate_
proposal

Fig. 3.7. External behaviour BB_sys Fig. 3.8. External behaviour KS

 CKS
 non
active

deactivate_
CKS

CKS
active

activate_
CKS

Fig. 3.9. External behaviour CKS

Part III: The SOCCA model

28/8/97 Blackboard Systems in SOCCA 29

neutral

delete_
nonrelevant_
proposals

put_on_CBB

select_
proposal

update_
HistoryList

neutral

modify_BB

put_on_BB

select_
problem

Fig. 3.10 External behaviour BB Fig. 3.11 External behaviour CBB

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 30

3.5. STD’s Internal behaviour

In this section, the internal behaviour of all objects is described. The internal behaviour of an object is
determined by the separate internal behaviours of its export operations.
In section 3.5.1, the STD’s of the internal behaviour of the export operations of BB_sys are presented.
The sections 3.5.2, 3.5.3, 3.5.4 and 3.5.5 present the internal behaviour of respectively KS, CKS, BB
and CBB.
Within the STD’s, representing the internal behaviour of the objects, two operation-types can be
identified: exported operations and internal operations.
The exported operations are preceded by the word ‘call’. All other operations are internal operations.
An internal operation, preceded by the prefix ‘act’, is used to regulate communication between the
external and internal behaviour of the object (section 3.6).
All other internal operations are highly internal operations within the internal behaviour of an object.

3.5.1. STD’s Internal behaviour Blackboard System (BB-sys)

3.5.1.1. Operation int-create_BB_sys

act_create_
BB_sys

create_and_init_
BB_sys

no
create

create
BB_sys
started

call KS.
activate_KS

next_KS

call CKS.
activate_CKS

creation
ready

activ.
CKS
started

activ.
KS
started

call CBB.update_
HistoryList(new BB_sys)

HList
updated

finish_
creation

problems
on BB

call BB.put_on_BB
(initial_problems)

Fig. 3.12. STD internal behaviour int-create_BB_sys

The operation create_BB_sys regulates the creation and activation of a new Blackboard System.

After activation of create_BB_sys, the operation will proceed with the internal operation
create_and_init_BB_sys .
create_and_init_BB_sys creates and initialises new instances of BB_sys and associated BB and CBB.
The operation create_and_init_BB_sys will also initialise the new BB-system with the initial
problems and KSs and CKS with their roles.

By calling CKS.activate_CKS and KS.activate_KS for every chosen CKS and KSs, the new
Blackboard System is activated.

By calling BB.put_on_BB, the initial problems will be put on the BB.
The HistoryList of the new Blackboard System will be updated for the first time by calling
CBB.update_HistoryList.

The operation create_BB_sys is called by a KS from the internal behaviour of operation
KS.activate_proposal (3.5.2.2) of a parent-BB-system or the call for create_BB_sys is made from
‘outside’.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 31

3.5.1.2. Operation int-modify_BB_sys

The operation modify_BB_sys is called by a KS that is asked to activate a proposed change to a BB-
system.
In principle, only a parent can create, modify or finish a BB-system. If a KS proposes a modification
or the finishing of the BB-system within the same BB-system, this proposal has to be activated by the
parent. The CKS has to control the correct handling of this kind of proposals.

call
BB.put_on_BB
(initial_problems)

call KS.
activate_KS
 (KS, role)

call KS.
deactivate_KS(KS, role)

next_
action

modify_KSs

modify_CKS

modify_
initial_problems

modify
BB_sys
nonact.

modify
BB_sys
active

attr. KS
modified

attr. IP
modified

In.Pr
on BB

KS
activated

KS de-
activated

action
ready

act-modify_
BB_sys modif.

BB_sys
ready

finish_modify_
 BB_sys

call CKS.
activate_CKS(CKS, role)

call CKS.
deactivate_CKS
(CKS, role)

attr. CKS
modified

CKS de-
activated

CKS
activated

action
ready

 next_
action

call CBB.
update_HistoryList

HList
updated

Fig. 3.13. STD internal behaviour int-modify_BB_sys

By calling modify_BB_sys, changes can be made to the KSs, CKS or the initial problems. As there is
no good reason to change a BB or CBB, these parts of the BB-system cannot be changed.

After activation, the operation continues with the chosen modification, which is specified by the
parameter of the operation.
If a change to the KSs is asked, the internal operation modify_KSs is executed. Depending on the
proposed changes, a KS can be deactivated or activated more than once. For instance, if a KS has to
be given an other role, the KS with the old role has to be deactivated first by calling
deactivate_KS(old_role). By executing next_action, the BB-system can continue with the activation
of the KS with his new role by calling activate_KS(new_role).

When the KS has finished the modifications of the BB-system, the HistoryList of the modified BB-
system is updated by calling CBB.update_HistoryList.

The call for modify_BB_sys can be made by a KS from the internal behaviour of operation
KS.activate_proposal (3.5.2.2) from within the parent-BB-system or from within the same BB-system.
The call for modify_BB_sys can also be made from ‘outside’.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 32

3.5.1.3. Operation int-finish_BB_sys

call KS.
deactivate_KS

next_KS

call CKS.
deactivate_CKS deactiv.

CKS
started

deactiv.
KS
started

 no
finish_
 BB

finish_
BB
started

act_finish_
BB_sys

delete_BB_sys

Fig. 3.14 STD internal behaviour int-finish_BB_sys

The operation finish_BB_sys (Fig. 3.14) regulates the deactivation and deletion of a Blackboard
System.
The operation finish_BB_sys will usually be called after the child-Blackboard System has declared its
initial problems solved or unsolvable and notified its parent.
If the proposal for the finishing of BB_sys is made by a KS of the BB-system, the proposal will have
to be activated by the CKS of the parent-BB-system.

The operation finish_BB_sys can be called by a KS from the internal behaviour of operation
KS.activate_proposal (3.5.2.2) from within the parent-BB-system or from within the same BB-system.
The call for finish_BB_sys can also be made from ‘outside’.
When the root-BB-system has declared its initial problem ‘solved’ or ‘unsolvable’, ‘outside’ is
notified. ‘Outside’ can terminate the BB-system by calling finish_BB_sys. This will deactivate and
delete the last or root-BB-system.

3.5.1.4. Operation int-get_info

This is a very simple operation. This operation will be called by a KS of another BB-system that
wants information about the current state of the BB-system. The operation will only return the
information when the BB-system to which the KS is connected has permission to ask for information.
The permission is controlled by BB-sys by checking the attribute BB_sys.Permission.
A BB-system is permitted to receive information from any of its descendants: its child-, grand child-,
grand grand child- systems etc. When a child-BB-system wants information of a parent, the child will
only receive the requested information when it has the right permission.

get_info delivers the information without any further calls. So, we can omit the STD-representation of
int-get_info.

The operation get_info can be called from the internal behaviour of KS.activate_KS or by ‘outside’.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 33

3.5.2. STD’s Internal behaviour Knowledge Source (KS)

3.5.2.1. Operation int-activate_KS

act_activate_KS call BB.
select_problem

create_
proposal

no
activate
KS

KS
activated

problem
selection
ready

proposal
created

selection_failed

next_selection

wait

finish_activation

call CBB.
put_on_CBB
(proposal)

proposal
on BB

proposal_failed

Fig. 3.14 STD internal behaviour int-activate_KS

There can only be ongoing activity in a Blackboard System after the KSs and CKS have been
activated.
The KSs will be activated after the creation of the Blackboard System.
From that moment on, the KSs will continuously check the blackboard (BB) , by calling
BB.select_problem, if there are problems to be solved.
If the KS cannot find a ‘fit’ problem, the KS will execute the internal operation selection_failed and
check the BB later.

If the KS has found a problem, the operation BB_select_problem will make a copy of the chosen
problem. By making a copy of the problem, the problem itself will remain available and unchanged on
the BB for other KSs during proposal-creation and proposal-selection.
The KS will create a proposal for the copied problem by executing the internal operation
create_proposal.
In the proposal, actions on the copied problem can be defined.
If the proposal fails, the internal operation proposal_failed is executed.

If the proposal is created successfully, the KS will put the proposal on the CBB of his own BB-system
by calling CBB.put_on_CBB.

Although not represented in the STD, the call for the operation BB_sys.get_info is also made from int-
KS.activate_KS. BB_sys.get_info can be called from all states of int-activate_KS except the state ‘no
activate KS’. As the calling of BB_sys.get_info does not cause any state-transition, the representation
of this calling is left out.

To regulate the continuous checking of the BB by KSs, the KS can make use of the operation wait.
Usually, the STD of an operation only specifies all possible sequences of events that determine the
behaviour of the operation. There is no information given about the time an operation will remain in a
specific state.
In this special case, we want to be more explicit about the time a KS will remain in the state ‘KS
activated’ before he continues with calling the operation BB.select_problem.
In a BB-system, many KSs can be involved. They all continuously check the BB by calling
BB.select_problem. As this continuously checking of the BB may affect the ongoing activity on the
BB, we may want the KS to ‘wait’ before he checks the BB again, especially when a KS has just
executed the internal operation selection_failed.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 34

After the execution of the wait-function, the KS can decide to ‘wait’ even longer.
A KS will remain active until termination of the BB-sys or until the KS is deactivated in connection
with a modification of the BB-system.
The call for activate_KS will be made from the internal behaviour of BB_sys.create_BB_sys (3.5.1.1)
or BB_sys.modify_BB_sys (3.5.1.2.)

3.5.2.2. Operation int-activate_proposal

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

Fig. 3.15. STD internal behaviour int-activate_proposal

The operation activate_proposal is called by the CKS when the CKS has selected a proposal. By
calling this operation, the KS that created the chosen proposal will activate the proposed actions on
the original problem. The proposed actions are specified by the use of a parameter of the operation.

A proposal can contain one or more of the following actions:

(1) a change of the state of the problem, for instance, the change of state ‘unsolved’ to ‘solved’.
(2) the deletion of the problem on the BB.
(3) the addition of a subproblem of the problem on the BB
(4) the creation of a new child-BB-system to solve a subproblem of the problem
(5) a modification of a BB-system
(6) the termination of a child-BB-system

The actions (1), (2) and (3) are executed by calling BB.modify_BB,
the action (4) is executed by calling BB_sys.create_BB_sys,
the action (5) is executed by calling BB_sys.modify_BB_sys

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 35

and the action (6) is executed by calling BB_sys.finish_BB_sys.
Before a proposal is activated, the CKS will have to check the HistoryList to make sure that the
proposed actions of a chosen proposal do not conflict with proposals that are already activated.
As it is very unlikely that a proposed action fails, no special precautions are taken to handle failed
actions.
If the activation of a proposed action fails, the failure will be registered by the CKS in the HistoryList
on the CBB.

The call for activate_proposal will be made from the internal behaviour of
CKS.activate_CKS (3.5.3.1) belonging to the parent-BB-system or the same BB-system.

KS.activate_proposal can also be called from ‘outside’ in case the BB-system concerned is the root-
BB-system.

3.5.2.3. Operation int-deactivate_KS

This is a very simple operation, called by BB_sys .
This operation is called when the BB-system is finished or when the KS is deactivated as a result of a
modification of the BB-system.

As no calls for other export operations are made from the internal behaviour of KS.deactivate_KS, we
will omit a STD for the internal behaviour of int-deactivate_KS.

The call for deactivate_KS will be made from the internal behaviour of BB_sys.finish_BB_sys
(3.5.1.2.) or BB_sys.modify_BB_sys.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 36

3.5.3 STD’s Internal behaviour Control Knowledge Source (CKS)

3.5.3.1. Operation int-activate_CKS

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

act_activate_
CKS

call KS.
 activate_
 proposal

call CBB.delete_
nonrelevant_
proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_syscall CBB.

put_on_CBB
(proposal)

prop.
sent to
parent

call CBB.
select_proposal

HList
updated

finish_
activation

next_
prop

no_
solution

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

del.
asked

prop.
ready

Fig. 3.17. STD internal behaviour int-activate_CKS

Like the KSs, the CKS is activated after the creation of the BB-system.
After activation, the CKS will try to select a proposal on the CBB by calling operation
CBB.select_proposal. If the selection fails, the CKS will go back to the previous state by executing
the internal operation selection_failed and try again later.
If the selection is successful, the CKS will have to decide what to do next:

(1) : If the selected proposal is a proposal for the result (solution or failure) of a child- BB-
system, created by the CKS of a child-BB-system, the CKS will call the operation
BB.put_on_BB to put the received result on the BB.

(2) If the selected proposal is a proposal for the modification or the termination of the current
BB-system, this proposal can only be activated by the parent of the BB-system.
In this case, the CKS will call CBB.put_on_CBB of the parent-BB-system to put the
proposal on the CBB of the parent-BB-system.
If there is no parent-BB-system, the BB-system in question is the root-BB-system the result

has to be related to ‘outside’. In this case, instead of the operation CBB.put_on_CBB , the
internal operation output_outside will be called.

(3) In all other cases, the proposal will be activated by calling KS.activate_proposal of the KS
that created the proposal.

The CKS will continue with the call for CBB.update_HistoryList, in which all actions are kept. By
doing this, the CKS can keep track with the state of his own Blackboard System. For instance, if all
initial problems are solved, the CKS will know that his own BB-system is ‘solved’.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 37

When the CKS receives no ‘fit’ proposals, the CKS can decide, after a certain period of time, that the
initial problem(s) is (are) unsolvable. The CKS will then execute the internal operation no_solution.
If the BB-system has arrived in a solved or unsolvable state, the CKS will prepare a proposal for the
result of the BB. This proposal, will be put on the CBB of the parent-BB-system.
Again, if there is no parent-BB-system, the result has to be related to ‘outside’. In this case, instead of
the operation CBB.put_on_CBB , the internal operation output_outside will be called.

A CKS will remain active until termination of the BB-system or until the CKS is deactivated in
connection with a modification of the BB-system.

The CKS can clean up the CBB by deleting nonrelevant proposals from the CBB by calling the
operation CBB.delete_nonrelevant_proposals.

The call for activate_CKS will be made from the internal behaviour of
BB_sys.create_BB_sys (3.5.1.1) or BB_sys.modify_BB_sys (3.5.1.2).

3.5.3.2. Operation int-deactivate_CKS

deactivate_CKS is a very simple operation, called by BB_sys .
This operation is called when the BB-system is finished or when the CKS is deactivated as a result of
a modification of the BB-system.

As no calls for other export operations are made from the internal behaviour of CKS.deactivate_CKS,
we will omit the STD of the internal behaviour of int-deactivate_CKS.

The call for deactivate_CKS will be made from the internal behaviour of BB_sys.finish_BB_sys
(3.5.1.2.) or BB_sys.modify_BB_sys (3.5.1.2).

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 38

3.5.4. STD’s Internal behaviour Blackboard (BB)

3.5.4.1. Operation int-select_problem

The operation select_problem is called by a KS in order to select a problem.
In fact, a KS has to check the BB before the KS can select a problem. This checking of the BB is not
explicitly modelled, in order to simplify the model.

As no calls for other export operations are made from the internal behaviour of BB.select_problem,
we will omit a STD for the internal behaviour of BB.select_problem .

The call for BB.select_problem is made from within the internal behaviour of KS.activate_KS
(3.5.2.1) that belongs to the same BB.system.

3.5.4.2. Operation int-modify_BB

The operation modify_BB is called by a KS that is asked to execute a proposed action on the BB.
By calling the operation modify_BB, one of the following actions can be executed on the BB:

(1) a change of the state of a problem, for instance, the change of state ‘unsolved’ to
‘solved’.
(2) the deletion of a problem on the BB.
(3) the addition of a subproblem on the BB

As no calls for other export operations are made from the internal behaviour of BB.modify_BB, we
will omit a STD for the internal behaviour of BB.modify_BB.

The call for BB.modify_BB is made from within the internal behaviour of KS.activate_proposal
(3.5.2.2), that belongs to the same BB-system.

3.5.4.3. Operation int-put_on_BB

This is a simple operation. It puts a problem on the BB.
As no calls are made from the internal behaviour of int-put_on_BB, we will leave out the STD of this
operation.

The call for this operation will be made from within the internal behaviour of CKS.activate_CKS,
BB_sys.create_BB_sys or BB_sys.modify_BB_sys that belongs to the same BB-system.

Part III: The SOCCA model - STD’s internal behaviour

28/8/97 Blackboard Systems in SOCCA 39

3.5.5. STD’s Internal behaviour Control Blackboard (CBB)

All operations of class CBB are very simple operations. As no calls for other export operations are
made from the internal behaviour of the operations of CBB, we will omit the STD’s of the internal
behaviour of the operations of CBB.

3.5.5.1. Operation int-select_proposal

The operation select_proposal is made by a CKS that wants to select a proposal.
Like the operation BB.select_problem, the checking of the CBB by the CKS before the selection is
made, is not included in this model.

The call for select_proposal is made from within the internal behaviour of operation
CKS.activate_CKS (3.5.3.1.) that belongs to the same BB-system.

3.5.5.2. Operation int-put_on_CBB

The call for put_on_CBB is made from within the internal behaviour of operation KS.activate_KS
(3.5.2.1.) of the same BB-system or from within the internal operation of CKS.activate_CKS
(3.5.3.1.) of the parent-BB-system or the same BB-system.

3.5.5.3. Operation int-update_HistoryList

The call for update_HistoryList is made from within the internal behaviour of operation
BB_sys.create_BB_sys (3.5.1.1.), BB_sys.modify_BB_sys (3.5.1.2.) or from within the operation
CKS.activate_CKS (3.5.3.1.) Both calls will be made from within the same BB_sys.

3.5.5.4. Operation int-delete_nonrelevant_problems
The call for delete_nonrelevant_proposals is made from within the internal behaviour of operation
CKS.activate_CKS (3.5.3.1.) of the same BB_sys.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 40

3.6. Subprocesses and traps

The STD’s of the external and internal behaviour only describe the sequential behaviour of the
objects. To regulate the interaction between the internal and external behaviours of the objects and the
communication between the objects, Paradigm is used.
The STD of the external behaviour of an object serves as the manager process of all internal
behaviours of this object as well as manager process of all internal behaviours from other objects that
call some operation provided by this manager in its external behaviour.
The internal behaviours are called the ‘employees’ of the manager process.
The manager process prescribes all permitted state transitions of the employees, however, as the states
of these combined behaviours determine the state of the manager process, we can also say that the
‘manager’ is managed by its ‘employees’.
To coordinate the parallel behaviour of the employees, subprocesses and traps are used.

3.6.1. Subprocesses with respect to Blackboard System (BB_sys)

In Fig. 3.23., the manager process of BB_sys is presented.
In this subsection, we first present the subprocesses and traps with respect to the activation of the
export operations of BB_sys. Next, the subprocesses and traps with respect to the calling of the export
operations of BB_sys are presented.

Subprocesses and traps in connection with the activation of the operations of BB_sys:

The subprocesses S 1 and S 2, and traps T 1 and T 2 of the operation BB_sys.create_BB_sys with
respect to BB_sys, are presented in Fig. 3.18.
If the operation create_BB_sys is called and its internal behaviour is in subprocess S 1 and also in trap
T 1, BB_sys can transit from subprocess S 1 to S 2.
BB_sys will then go through all states of int-BB_sys.create_BB_sys until T 2 is entered.
When T 2 is entered, BB_sys can now transit back to subprocess S 1 where the operation can be
finished.
Note that T 2 coincides with the last state before the operation BB_sys.create_BB_sys is finished. In
this state, the new BB_sys is already created and activated.
If T 2 had been chosen as large as possible, conflicts between the behaviours of BB_sys could arise.
For instance: if BB_sys.finish_BB_sys is called immediately after the calling of
BB_sys.create_BB_sys, BB_sys could call KS.deactivate_KS before KS.activate_KS is called.

act_create_
BB_sys

create_and_init_
BB_sys

no
create

create
BB_sys
started

call KS.
activate_KS

next_KS

call CKS.
activate_CKS

creation
ready

activ.
CKS
started

activ.
KS
started

call CBB.update_
HistoryList(new BB_sys)

HList
updated

problems
on BB

call BB.put_on_BB
(initial_problems)

T 2

S 2

no
create

HList
updated

finish_
creation

T 1

S 1

Fig. 3.18. S 1 and S 2 : subprocesses of int-BB_sys.create_BB_sys with respect to BB_sys

Fig 3.19. and 3.20. represent the subprocesses and traps of respectively the internal behaviours of the
operations BB_sys.modify_BB_sys and BB_sys.finish_BB_sys.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 41

The traps are chosen the same way as the traps of the operation BB_sys.create_BB_sys: T 4 coincides
with the last state before termination of the internal behaviour of the operation.
This way the activation and deactivation of the KSs and CKS are co-ordinated in a correct way.
The trap T 6 also makes sure that the manager process of BB_sys cannot arrive in state ‘BB_sys not
existing’ before BB_sys is actually deactivated and deleted.

Fig 3.21. represents the subprocesses and traps of the operation int-BB_sys.get_info. This time, trap
T 8 is chosen as large as possible. This way the manager process of BB_sys can go back to the state
‘BB_sys existing’ as soon as the internal behaviour of BB_sys.get_info is started.
Other operations can be started when the manager process has arrived back in the state ‘BB_sys.
existing’.

modify
BB_sys
nonact.

finish_modify_
 BB_sys

HList
updated

T 3

S 3

call
BB.put_on_BB
(initial_problems)

call KS.
activate_KS
 (KS, role)

call KS.
deactivate_KS(KS, role)

next_
action

modify_KSs

modify_CKS

modify_
initial_problems

modify
BB_sys
nonact.

modify
BB_sys
active

attr. KS
modified

attr. IP
modified

In.Pr
on BB

KS
activated

KS de-
activated

action
ready

act-modify_
BB_sys modif.

BB_sys
ready

call CKS.
activate_CKS(CKS, role)

call CKS.
deactivate_CKS
(CKS, role)

attr. CKS
modified

CKS de-
activated

CKS
activated

action
ready

 next_
action

call CBB.
update_HistoryList

HList
updated

T 4
S 4

Fig. 3.19. S 3 and S 4: subprocesses of int-BB_sys.modify_BB_sys with respect to BB_sys

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 42

call KS.
deactivate_KS

next_KS

call CKS.
deactivate_CKS deactiv.

CKS
started

deactiv.
KS
started

 no
finish_
 BB

finish_
BB
started

delete_BB_sysBB_sys
deleted

act_finish_
BB_sys

T 6

S 6

 no
finish_
 BB

finish_finish_BB BB_sys
deleted

T 5

S 5

Fig. 3.20. S 5 and S 6 : subprocesses of int-BB_sys.finish_BB_sys with respect to BB_sys.

 read_
attributes

no
get
info

get_
info
started

info
received

get_info finished

T 7

S 7

act_get_
info

 read_
attributes

no
get
info

get_
info
started

info
received

T 8

S 8

Fig. 3.21. S 7 and S 8 : subprocesses of int-BB_sys.get_info with respect to BB_sys.

The subprocesses and traps with respect to the activation and finishing of the internal behaviours of
the export operations are in this SOCCA-model always chosen in one of the two presented ways:
The trap of the subprocess representing the activated behaviour is chosen:

(A1) as large as possible when the internal behaviour of the operation does not interfere in
an illegal way with other operations or

(A2) the last state before the finishing of the internal behaviour if the operation has to be
finished before other operations can be called.

And the trap of the subprocess representing the terminating of the behaviour contains the nonactive
state of the behaviour.

Subprocesses and traps in connection with the calling of the operations of BB_sys:

The subprocesses and traps of the internal behaviour of ‘caller’ operation KS.activate_proposal of
KS within a parent-BB-system are given in Fig. 3.22.
From the internal behaviour of KS.activate_proposal from within the parent-BB-system, the
operations BB_sys.create_BB_sys, BB_sys.modify_BB_sys and BB_sys.finish_BB_sys can be called.
BB_sys.modify_BB_sys and BB_sys.finish_BB_sys can also be called from within the same BB-
system.

In Fig. 3.22. the subprocesses and traps concerning the calls from within the parent-BB-system are
presented.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 43

BB_sys will arrive in trap T 9 when the call for BB_sys.create_BB_sys is made by the parent. When
BB_sys.create_BB_sys is in T 1, the transit can be made from S 9 to S 11.

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

T 9

S 9

T 9 a

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

fin ish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

S 10 (S 13)

T 10 (T 14)

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

T 11
(T 15)

(T 16)
T 12

 S 11 (S 14)

T 11 a (T 15 a)

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

T 13 (T 17)

S 12 (S 15)

Fig. 3.22. S 9, S 10, S11 and S 12: subprocesses of int-KS.activate_proposal within the parent BB-system with
respect to BB_sys.
The subprocesses and traps of int-KS.activate_proposal within the same BB-system with respect to BB_sys
are very similar. S 13 , S 14, and S 15 with traps T 14, T 15, T 15a, T 16 and T 17 are exactly the same as
resp. S 10, S 11, and S 12 with traps T 10, T 11, T 11a, T 12, and T 13. As a BB-system cannot create itself,
the subprocess that corresponds with S 9 is S 13.

When BB_sys is a root-BB-system, BB_sys.create_BB_sys is called from ‘outside’. In this case, int-
KS.activate_proposal has to transit from S 9 to S 10 as no calls can be made for BB_sys from a
parent-BB-system. As a transition from one subprocess to another can only be made when the
subprocess has entered a trap, an additional trap is needed. This trap, T 9a, is used to force the
transition from S 9 to
S 10 before subprocess S 9 has reached T 9. Note, that subprocess S 9 contains a nested trap.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 44

In S 11, the call for BB_sys.create_BB_sys does not need a trap, as BB_sys is already created. Only
calls for the creation of other instances of BB_sys can be made.
In S 11, calls can be made for BB_sys.modify_BB_sys and BB_sys.finish_BB_sys.
When BB_sys.finish_BB_sys is called, int-KS.activate_proposal will arrive in T 11. When
int-BB_sys.finish_BB_sys is in T 5, the transition can be made from S 11 to S 10, where only other
instances of BB_sys can be called. When BB_sys is in T 10 and T 6, the transition can be made back
to S 9 and S 5, where BB_sys is no longer existing .

As the operations BB_sys.modify_BB_sys and BB_sys.finish_BB_sys can also be called by a KS from
within the same BB-system, 3 subprocesses are added that resemble the subprocesses presented in
Fig. 3.22. very much.
S 13 with trap T 14 will be exactly the same as S 10 and T 10 : no calls can be made in connection
with BB_sys if BB_sys is not existing.
S 14 with traps T 15, T 15a and T 16 will be exactly the same as S 11 and T 11, T 11a and T 12: when
BB_sys is existing, calls can be made for the operations BB_sys.modify_BB_sys and
BB_sys.finish_BB_sys.
The traps T 11a and T 15a are needed to regulate the calling for BB_sys.finish_BB_sys by two
different BB-systems. When BB_sys.finish_BB_sys is called by the parent, KS.activate_proposal of a
KS of the child will also have to transit from S 14 to S 13 before reaching a trap as the child cannot
make any calls for a BB_sys that is no longer existing. In this case T 15a will be used to transit from S
14 to S 13.
When BB_sys.finish_BB_sys is called by a child, T 11a is used to force S 11 to transit to S 10.
S 15 with trap T 17 is exactly the same as S 12 and T 13.
As a BB-system cannot create itself, the subprocess corresponding with S 9 will be S 13.

The subprocesses S9-S12 all concern the behaviour of one KS of the parent-BB-system and S13-S15
concern the behaviour of one KS of the same BB-system.
In fact, several KSs can be involved in the parent BB-system. The BB-system itself can also have
several KSs attached to it. As all KSs involved behave in parallel, all KSs should have their own
subprocesses in the manager process of BB-sys.
To simplify the manager process of BB_sys, the subprocesses that are to be multiplied in case of more
than one KS, are indicated by the symbol ‘*’ in the manager process.

The operation BB_sys.get_info is called from within the internal behaviour of KS.activate_KS. As
long as KS is activated, the KS is free to call this operation at any point in time. For this reason, it is
not necessary to include any subprocesses and traps with respect to the calling of BB_sys.get_info.

The manager process of Fig. 3.23 shows that the manager process of a root-BB-system behaves
differently from the manager process of a child BB-system.
The cause of this difference is that all operations of BB_sys can be called from within the internal
behaviours of KSs of a parent-BB-system. As a root BB-system has no parent-BB-system, the
operation BB_sys.create_BB_sys of the root-BB-system has to be called from ‘outside’.
BB_sys.modify_BB_sys, BB_sys.get_info and BB_sys.finish_BB_sys can also be called by ‘outside’ as
these operations can be called by a parent.

The fact that BB_sys can be a root- or a child-BB-system, combined with the fact that
BB_sys.modify_BB_sys and BB_sys.finish_BB_sys can be called from within a parent-system or from
within the same system, complicates the manager process of BB_sys very much.

Note that for every state transition of the external behaviour of BB_sys, two transitions are needed in
the manager process of BB_sys. This difference is caused by the switching between the subprocesses.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 45

BB_sys
not
existing

S 1
S 3
S 5
S 7
S 9*
S 13*

T 5, T 11*,
T 15a*

 T 5, T 15a*

 T 1,
T 9a*

T 6,
 T 10*

 T 6,
T 14*

T 1,
 T 9*

T 3,
T 12*

T 3

T 4

create_
BB_sys
(root)
called by
outside

S 2
S 3
S 5
S 7
S 10*
S 14*

create__
BB_sys
(child)
called

S 2
S 3
S 5
S 7
S 11*
S 14*

finish_
BB_sys
(root)
called by
root

S 1
S 3
S 6
S 7
S 10*
S 13*

finish_
BB_sys
(root)
called by
outside

S 1
S 3
S 6
S 7
S 10*
S 13*

modify_
BB_sys
called by
outside

S 1
S 4
S 5
S 7
S 10*
S 14*

modify_
BB_sys
called by
parent
BB_sys

S 1
S 4
S 5
S 7
S 12*
S 15*

T 2

BB_sys
(root)
existing

S 1
S 3
S 5
S 7
S 10*
S 14*

get_info_
BB_sys
called

S 1
S 3
S 5
S 8
S 11*
S 14*

T 7

T 8

 T 4,
T 13*finish_

BB_sys
(child)
called
by parent

S 1
S 3
S 6
S 7
S 10*
S 13*

 T 5,
T 15*

 T 6,
 T 10*

create_
BB_sys

create_
 BB_sys

finish_
BB_sys

finish_
BB_sys

finish_
BB_sys

modify_
BB_sys

get_info

finish_
BB_sys
(child)
called by
own
BB_sys

S 1
S 3
S 6
S 7
S 10*
S 13*

BB_sys
(child)
existing

S 1
S 3
S 5
S 7
S 11*
S 14*

modify_
BB_sys
called by
own
BB_sys

S 1
S 4
S 5
S 7
S 10*
S 15*

modify_
BB_sys
called by
own
BB_sys

S 1
S 4
S 5
S 7
S 11*
S 15*

get_info_
BB_sys
called

S 1
S 3
S 5
S 8
S 10*
S 14*

T 3, T 16*

 T 4, T 17*

modify_
BB_sys

finish_
BB_sys

T 5, T 15*, T 11a*

T 2

T 6,
 T 10*

modify_
BB_sys

modify_
BB_sys

T 3, T 16*

T 4, T 17*

T 7
get_info

T 8

Fig. 3.23. BB_sys, manager of 6 employees
* : only the subprocesses of one KS per BB-system are drawn in the manager process

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 46

3.6.2. Subprocesses with respect to Knowledge Source (KS)

The manager process of KS is presented in Fig. 3.31.
Every KS object represents one role. So, for each role there is a separate manager process.

Subprocesses and traps in connection with the activation of the operations of KS:

In Fig. 3.24 the subprocesses and traps of int-KS.activate_KS with respect to KS are given.
A KS remains active until deactivation, so, the operation KS.activate_KS cannot terminate before the
operation KS.deactivate_KS is called.
As soon as KS.activate_KS is activated, the internal behaviour of this operation will remain in trap T 2
until KS.deactivate_KS is called. When deactivate_KS is called, the transit from S 2 to S 1 can be
made.
Note that subprocess S1 does not admit any new proposal selection or creation, the behaviour of
KS.activate_KS can only terminate in S 1.

The subprocesses and traps (Fig. 3.25) of int-KS.activate_proposal are chosen as large as possible as
the calls for BB_sys.create_BB_sys, BB_sys.finish_BB_sys, BB_sys.modify_BB_sys and
BB.modify_BB_sys are already controlled by respectively BB_sys and BB.

The subprocesses and traps of int-KS.deactivate_KS (Fig. 3.26) are chosen so that the operation has to
be terminated before a new operation can be handled by the manager process of KS.

no
activate
KS

KS
activated

problem
selection
ready

proposal
created

selection_failed

next_selection

finish_activation

proposal
on BB

proposal_failed

T 1

S 1

act_
activate_KS

call BB.
select_problem

create_
proposal

no
activate
KS

KS
activated

problem
selection
ready

proposal
created

selection_failed

next_selection

wait

call CBB.
put_on_CBB
(proposal)

proposal
on BB

proposal_failed

T 2

S 2

Fig. 3.24. S 1 and S 2 : subprocesses of int-activate_KS with respect to KS

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 47

no prop
activ.

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

 activate_
proposal_succesful

 activate_
proposal_failed

T 3

S 3

no prop
activ.

act_activate_
proposal

act
proposal
activ.

modify_
BB
asked

action
ready

call BB.
modify_BB

 call BB_sys.
create_BB_sys

create
BB_sys
asked

call BB_sys.
finish_BB_sys

finish
BB_sys
asked

call
BB_sys.
 modify_
 BB_sys modif.

BB_sys
asked

next_action

T 4

S 4

Fig. 3.25. S 3 and S 4 : subprocesses of int-KS.activate_proposal with respect to KS

disconnect_
KS

KS
dis_
conn.

deactiv.
KS
started

finish_deactivation

 no
deactiv.
 KS

T 5

S 5

disconnect_
KS

 no
deactiv.
 KS

deactiv.
KS
started

act_deactivate_
KS

KS
dis_
conn.

T 6S 6

 no
deactiv.
 KS

Fig. 3.26. S 5 and S 6 : subprocesses of int-KS.deactivate_KS with respect to KS

Subprocesses and traps in connection with the calling of the operations of KS:

The subprocesses and traps with respect to the calling of KS.activate_KS are given in Fig. 3.27. and
Fig. 3.30. The trap T 8 contains the complete STD of BB_sys.create_BB_sys as the KS can be
activated only once in connection with the same BB_sys. T 17 is chosen as large as possible so that
the manager process of KS can admit another call this operation again as soon as possible.
Note that S 7 has an extra state ‘activ. KS started’, as other KSs may be activated before KS is to be
activated

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 48

act_create_
BB_sys

create_and_init_
BB_sys

no
create

create
BB_sys
started

call KS.
activate_KS

call CKS.
activate_CKS

creation
ready

activ.
CKS
started

activ.
KS
started

T 7S 7

activ.
KS
started

call KS.
activate_KS

next_KS

act_create_
BB_sys

create_and_init_
BB_sys

no
create

create
BB_sys
started

call KS.
activate_KS

next_KS

call CKS.
activate_CKS

creation
ready

activ.
CKS
started

activ.
KS
started

call CBB.update_
HistoryList(new BB_sys)

HList
updated

finish_
creation

problems
on BB

call BB.put_on_BB
(initial_problems)

S 8

T 8

Fig. 3.27. S 7 and S 8 : subprocesses of int-BB_sys.create_BB_sys with respect to KS

call KS.
deactivate_KS

call CKS.
deactivate_CKS deactiv.

CKS
started

deactiv.
KS
started

 no
finish_
 BB

finish_
BB
started

T 9
S 9

deactiv.
KS
started

call KS.
deactivate_KS

next_KS

act_finish_
BB_sys

call KS.
deactivate_KS

next_KS

call CKS.
deactivate_CKS deactiv.

CKS
started

deactiv.
KS
started

 no
finish_
 BB

finish_
BB
started

delete_BB_sysfinish_finish_BB BB_sys
deleted

act_finish_
BB_sys

S 10
T 10

Fig. 3.28. S 9 and S 10 : subprocesses of int-BB_sys.finish_BB_sys with respect to KS

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 49

CKS
non-
active

CKS
active

proposal
selection
ready

act_activate_
CKS

call KS.
 activate_
 proposal

call CBB.delete_
nonrelevant_proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_sys

call CBB.put_on_CBB
(proposal)

prop.
ready

call CBB.
select_proposal

HList
updated

finish_
activation

next_
prop

no_
solution

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

activation
asked

T 11
(T 13)

S 11 (S 13)

CKS
non-
active

CKS
active

proposal
selection
ready

act_activate_
CKS

call CBB.delete_
nonrelevant_proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_sys

call CBB.put_on_CBB
(proposal)

prop.
ready

call CBB.
select_proposal

HList
updated

finish_
activation

next_
prop

no_
solution

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

 result
 child on
 BB

activation
asked

T 12 (T 14)

S 12 (S 14)

Fig. 3.29. S 11 and S 12 : subprocesses of int-CKS.activate_CKS in connection with the calling of
KS.activate_proposal by the CKS of BB_sys.
S 13, S 14 and T 13 and T 14 are subprocesses and traps of int-CKS.activate_CKS in connection
with the calling of KS.activate_proposal by the parent-CKS. They are exactly the same as resp.
S 11, S 12 and T 11 and T 12.

The subprocesses and traps with respect to the calling of KS.deactivate_KS are given in Fig. 3.28.
and Fig. 3.30. The trap T 10 contains the complete STD of BB_sys.finish_BB_sys as a KS can only be
deactivated once in connection with the finishing of BB_sys.

S 11 and S 12 present the subprocesses of int-CKS.activate_CKS in connection with the calling of
KS.activate_proposal by the CKS of BB_sys.

As activate_proposal can be also called by the CKS of a parent-BB-system, extra subprocesses are
needed to handle these calls.
The subprocesses and traps that handle the calls of the CKS of the parent-BB-system, S 13, S14, T 13
and T 14, will be exactly the same as resp. S 11, S 12, T 11 and T 12.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 50

call
BB.put_on_BB
(initial_problems)

call KS.
activate_KS
 (KS, role)

call KS.
deactivate_KS(KS, role)

next_
action

modify_KSs

modify_CKS

modify_
initial_problems

modify
BB_sys
nonact.

modify
BB_sys
active

attr. KS
modified

attr. IP
modified

In.Pr
on BB

KS
activated

KS de-
activated

action
ready

act-modify_
BB_sys modif.

BB_sys
ready

call CKS.
activate_CKS(CKS, role)

call CKS.
deactivate_CKS
(CKS, role)

attr. CKS
modified

CKS de-
activated

CKS
activated

action
ready

 next_
action

T 15

T 16

S 15

finish_modify_
 BB_sys call CBB.

update_HistoryList

HList
updated

call
BB.put_on_BB
(initial_problems)

next_
action

modify_KSs

modify_CKS

modify_
initial_problems

modify
BB_sys
nonact.

modify
BB_sys
active

attr. KS
modified

attr. IP
modified

In.Pr
on BB

action
ready

act-modify_
BB_sys modif.

BB_sys
ready

call CKS.
activate_CKS(CKS, role)

call CKS.
deactivate_CKS
(CKS, role)

attr. CKS
modified

CKS de-
activated

CKS
activated

action
ready

 next_
action

KS de-
activated

KS
activated

T 17

S 16

finish_modify_
 BB_sys call CBB.

update_HistoryList

HList
updated

Fig. 3.30. S 15 and S 16: subprocesses of int-BB_sys.modify_BB_sys with respect to KS

The manager process of KS (Fig. 3.31) shows that the behaviour of KS is also affected by the type of
the BB-system (root or child) the KS belongs to, as KS.activate_proposal can also be called by
‘outside’

The manager process also shows that KS can only transit from S 2 to S 1 when the call for
KS.deactivate_KS is made.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 51

KS
nonactive

S 1
S 3
S 5
S 7
S 9
S 11
S 13
S 15

activate_KS
called by
BB_sys.
create_BB_sys

 S 2
 S 3
 S 5
 S 8
 S 9
 S 11
 S 13

S 15

activate_KS
called by
BB_sys.
modify_BB_sys

 S 2
 S 3
 S 5
 S 7
 S 9
 S 11
 S 13
 S 16

deactivate_KS
called by
BB_sys.
finish_BB_sys

 S 1
 S 3
 S 6
 S 7
 S 10
 S 11
 S 13
 S 15

deactivate_KS
called by
BB_sys.
modify_BB_sys

 S 1
 S 3
 S 6
 S 7
 S 9
 S 11
 S 13
 S 16

KS
active

S 2
S 3
S 5
S 7
S 9
S 11
S 13
S 15

activate_
propasal
called by
own CKS

S 2
S 4
S 5
S 7
S 9
S 12
S 13
S 15

T 1,
T 7 T 8

T 3, T 11

T 4, T 12

 T 2,
 T 16,
T 5

 T 2,
 T 9,
T 5

T 10, T 6

 T 1,
T 15

T 17

activate_KS

activate_KS

deactivate_
KS

deactivate_
KS

activate_
proposal

activate_
propasal
called by
outside

S 2
S 4
S 5
S 7
S 9
S 11
S 13
S 15

activate_
propasal
calle by
parent CKS

S 2
S 3
S 5
S 7
S 9
S 12
S 14
S 15

activate_
proposal

activate_
proposal

T 3

T 4

T 3,
 T 13

T 4,
 T 14

T 17,
 T 6

Fig. 3.31. KS, manager of 8 employees

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 52

3.6.3. Subprocesses with respect to Control Knowledge Source (CKS)

The manager process of CKS is very similar to the manager process of KS
If we leave out the operation KS.activate_proposal and its subprocesses in the manager process of KS
, the remaining manager process is exactly the same as the manager process of CKS. The only thing
left to do is to change ‘KS’ into ‘CKS’. The manager process of CKS is given in Fig. 3.33.
The subprocesses S3, S4, S11, S 12, S 13 and S 14 of KS.activate_proposal are excluded from the
manager process of CKS.
Like the KS, the CKS remains active until deactivation.

Only the subprocesses of CKS.activate_CKS will be presented, as all other behaviours of CKS are
handled exactly the same way as the behaviours of KS.
The subprocesses and traps of int-activate_CKS are presented in Fig. 3.32.
Subprocess S 1 forces the operation KS.activate_KS to terminate as soon as possible, but also gives
the CKS the opportunity to settle the already started actions. For instance, if the BB-system has finally
come to a solution of the initial problems, the CKS can still bring the proposal for the result to the
CBB of the parent-BB-system.

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

call KS.
 activate_
 proposal

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_sys

call CBB.put_on_CBB
(proposal)

prop.
ready

HList
updated

finish_
activation

no_
solution

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outsideT 1

S 1

CKS
non-
active

CKS
active

proposal
selection
ready

act_
activate_
CKS

call KS.
 activate_
 proposal

call CBB.delete_
nonrelevant_proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_sys

call
CBB.
put_
on_CBB
(proposal)

prop.
ready

call CBB.
select_proposal

HList
updated

next_
prop

no_
solution

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

activation
asked

 result
 child on
 BB

T 2

S 2

Fig. 3.32. S 1 and S 2 : subprocesses of int-activate_CKS with respect to CKS

The subprocesses and traps of int-CKS.deactivate_CKS (S 5, S 6, T 5, T 6) and int-modify_BB_sys

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 53

(S 15, S 16) are similar to the subprocesses presented in Fig. 3.26 and 3.30 of KS.
The subprocesses and traps of int_create_BB_sys (S 7, S 8, T 7, T 8) and int-finish_BB_sys
(S 9, S 10, T 9, T 10) are also very similar to the subprocesses presented in Fig. 3.27 and 3.28, only
the traps have to be modified to handle the calls for CKS.activate_CKS and CKS.deactivate_CKS.

CKS
nonactive

S 1
S 5
S 7
S 9
S 15

activate_CKS
called by
BB_sys.
create_BB_sys

 S 2
 S 5
 S 8
 S 9
 S 15

activate_CKS
called by
BB_sys.
modify_BB_sys

 S 2
 S 5
 S 7
 S 9
 S 16

deactivate_CKS
called by
BB_sys.
finish_BB_sys

 S 1
 S 6
 S 7
 S 10
 S 15

deactivate_CKS
called by
BB_sys.
modify_BB_sys

 S 1
 S 6
 S 7
 S 9
 S 16

CKS
active

S 2
S 5
S 7
S 9
S 15

T 1,
T 7 T 8

T 2, T 15, T 5

 T 2,
 T 9,
T 5

T 17,
 T 6

T 10, T 6

 T 1,
T 15

T 17

activate_CKS

activate_CKS

deactivate_CKS

deactivate_CKS

Fig. 3.33. CKS, manager of 5 employees

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 54

3.6.4. Subprocesses with respect to Blackboard (BB)

In Fig. 3.34. The manager process of BB is presented.
In section 3.6.1., the two ways of choosing traps in connection with the activation of an export
operation are already explained.
The way subprocesses and traps are drawn with respect to the calling of an operation are also chosen
in a standard way:

(C1) If the called operation can be called again later in connection with the same instance of
the class, the subprocesses and traps are drawn as S 11 and S 12 of KS as presented in Fig.
3.29:
a subprocess with a trap containing the state immediately following the call for the operation
and
a subprocess with a trap that contains the complete STD of the operation except for the state
from which the subprocess starts.

(C2) If the called operation cannot be called again later in connection with the same instance
of the class, the subprocesses and traps are draw as S 9 and S 10 of BB_sys as presented in
Fig. 3.22:
a subprocess with a trap containing the state immediately following the call for the operation
and
a subprocess with a trap that contains the complete STD.

As the traps of BB and CBB are always chosen in this standard way, the STD’s of subprocesses and
traps in connection with the activation and the calling of BB and CBB are omitted.
For every operation of BB, the subprocesses and traps will only be described

Subprocesses and traps in connection with the activation of the operations of BB:

BB.select_problem : subprocesses S 1 and S 2 with traps T 1 and T 2.
T 2 contains the final state before the finishing of int-BB.select_problem as
caller int-CKS.activate_CKS can only continue when the result of
BB.select_problem is known.

BB.modify_BB : subprocesses S 3 and S 4 with traps T 3 and T 4
T 4 contains the final state before the finishing of BB.modify_BB .
BB.modify_BB is called by KS.activate_proposal, that can transit to another
subprocess before the operation is completely terminated (Fig. 3.25).
As caller int-CKS.activate_CKS has to be able to put the result on the CBB of
the parent when the BB-system is declared solved or unsolvable, the operation
BB.modify_BB has to be ready before the operation CBB.put_on_CBB (from
the state ‘prop. ready’) can be called.

BB.put_on_BB : subprocesses S 5 and S 6 with traps T 5 and T 6
T 6 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operations of BB:

BB.select_problem : subprocesses S 7 and S 8 with traps T 7 and T 8.
BB.select_problem is called by KS.activate_KS.
T 8 is chosen as described in (C1) as BB.select_problem can be called again
in KS.activate_KS in connection with the same BB.

BB.modify_BB : subprocesses S 9 and S 10 with traps T 9 and T 10.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 55

BB.modify_BB is called by KS.activate_proposal.
T 10 is chosen as described in (C1) as BB.modify_BB can be called again in
KS.activate_proposal in connection with the same BB.

BB.put_on_BB : subprocesses S 11 and S 12 with traps T 11 and T 12.
BB.put_on_BB is called by BB_sys.create_BB_sys.
T 12 is chosen as described in (C2) as BB.put_on_BB can only be called once
in connection with the creation of the BB-system.

BB.put_on_BB : subprocesses S 13 and S 14 with traps T 13 and T 14.
BB.put_on_BB is called by BB_sys.modify_BB_sys.
T 14 is chosen as described in (C1) as BB.put_on_BB can be called again in
connection with the modification of the BB-system.

BB.put_on_BB : subprocesses S 15 and S 16 with traps T 15 and T 16.
BB.put_on_BB is called by CKS.activate_CKS.
T 12 is chosen as described in (C1) as BB.put_on_BB can only be called again
in CKS.activate_CKS.

select_
problem
called

S 2
S 3
S 5
S 8*
S 9*
S 11
S 13
S 15

neutral

S 1
S 3
S 5
S 7*
S 9*
S 11
S 13
S 15

modify_
BB
calld

S 1
S 4
S 5
S 7*
S 10*
S 11
S 13
S 15

put_on_BB
called by
BB_sys.
create_
BB_sys

S 1
S 3
S 6
S 7*
S 9*
S 12
S 13
S 15

put_on_BB
called by
BB_sys.
modify_
BB_sys

S 1
S 3
S 6
S 7*
S 9*
S 11
S 14
S 15

put_on_BB
called by
CKS.
activate_
CKS

S 1
S 3
S 6
S 7*
S 9*
S 11
S 13
S 16

T 1,
 T 7*

T 2,
 T 8*

 T 3,
 T 9*

 T 4,
T 10*

T 5,
 T 11

T 6,
 T 12

T 5,
T 13

 T 5,
T 15

 T 6,
T 16

select_problem modify_BB

put_on_BB

put_on_
BB

put_on_BB

T 6,
T 14

 Fig. 3.34. BB, manager of 8 employees
* : only the subprocesses of one KS per BB-system are drawn in the manager process

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 56

3.6.5. Subprocesses with respect to Control Blackboard (CBB)

The manager process of CBB (Fig. 3.37.) is similar to the manager process of BB.

Subprocesses and traps in connection with the activation of the operations of CBB:

CBB.select_proposal : subprocesses S 1and S 2 and traps T 1 and T 2.
T 2 contains the final state before the finishing of int-CBB.select_proposal as
int-KS.activate_KS can only continue when the result of CBB.select_proposal
is known.

CBB.delete_nonrelevant_proposals : subprocesses S 3 and S 4 and traps T 3 and T 4.
T 4 contains the final state before the finishing of int-
CBB.delete_nonrelevant_proposals to prevent that int-CKS.activate_CKS can
select a proposal that is going to be deleted by
CBB.delete_nonrelevant_proposals.

CBB.update_HistoryList : subprocesses S 5 and S 6 and traps T 5 and T 6.
T 6 is chosen as large as possible.

CBB.put_on_CBB : subprocesses S 7 and S 8 and traps T 7 and T 8.
T 8 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operations of CBB:

CBB.update_HistoryList : subprocesses S 9 and S 10 and traps T 9 and T 10.
CBB.update_HistoryList is called by BB_sys.create_BB_sys.
T 10 is chosen as described in (C2) as CBB.update_HistoryList can only be
called once in connection with the creation of a BB-system

CBB.update_HistoryList : subprocesses S 11 and S 12 and traps T 11 and T 12.
CBB.update_HistoryList is called by BB_sys.modify_BB_sys.
T 12 is chosen as described in (C1) as CBB.update_HistoryList can be called
more than once in connection with the modification of a BB-system

CBB.put_on_CBB : subprocesses S 13 and S 14 and traps T 13 and T 14.
CBB.put_on_CBB is called by KS.activate_KS.
T 14 is chosen as described in (C1) as CBB.put_on_CBB can be called more
than once by the KS in connection with the same CBB.

All other calls for operations of CBB are made from the internal behaviour of CKS.activate_CKS.
Note that S 15 allows the calling of 3 different services and that S 17 allows the calling of 2 different
services.

Fig 3.35 presents the subprocesses S 15 and S 16 with respect to the calling of CBB.select_proposal,
CBB.delete_nonrelevant_proposals and CBB.update_HistoryList by the CKS of the same BB-system..

Fig. 3.36 presents the subprocesses S 17 and S 18 with respect to the calling of CBB.put_on_CBB by
the CKS of the parent-BB-system.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 57

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

act_activate_
CKS

call CBB.delete_
nonrelevant_
proposals

call CBB.
update_HistoryList

parent
asked

call CBB.
put_on_CBB
(proposal)

prop.
sent to
parent

call CBB.
select_proposal

finish_
activation

next_
prop

no_
solution

 result
 child on
 BB

 proposal
 fixed

output_
outside

del.
asked

prop.
ready

HList
updated

T 15

T 16

T 17

S 15

HList
updated

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

act_activate_
CKS

call KS.
 activate_
 proposal

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_syscall CBB.

put_on_CBB
(proposal)

prop.
sent to
parent

HList
updated

finish_
activation

next_
prop

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

del.
asked

prop.
ready

T 18

S 16

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

act_activate_
CKS

call KS.
 activate_
 proposal

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_syscall CBB.

put_on_CBB
(proposal)

prop.
sent to
parent

HList
updated

finish_
activation

next_
prop

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

del.
asked

prop.
ready

T 18

S 16

 Fig. 3.35. S 15 and S 16 : subprocesses of int-activate_CKS with respect to the calling of CBB.select_proposal,
 CBB.delete_nonrelevant_proposals and CBB.update_HistoryList by the CKS of the same BB-system.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 58

CKS
non-
active

CKS
active

proposal
selection
ready

activation
asked

act_activate_
CKS

call KS.
 activate_
 proposal

call CBB.delete_
nonrelevant_
proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_syscall CBB.

put_on_CBB
(proposal)

prop.
sent to
parent

call CBB.
select_proposal

HList
updated

finish_
activation

next_
prop

no_
solution

 result
 child on
 BB

 proposal
 fixed

call CBB.
put_on_CBB
(proposal)

output_
outside

output_
outside

del.
asked

prop.
ready

T 19

T 20

S 17

CKS
non-
active

CKS
active

proposal
selection
ready

act_activate_
CKS

call CBB.delete_
nonrelevant_
proposals

call CBB.
update_HistoryList

selection_
failed

call BB.
put_on_BB
(problem)

parent
asked

prepare_
proposal_for_
result_
BB_sys

call CBB.
select_proposal

finish_
activation

next_
propno_

solution

 result
 child on
 BB

 proposal
 fixed

del.
asked

T 21

activation
asked

prop.
ready

HList
updated

prop.
sent to
parent

call KS.
 activate_
 proposal

S 18

activation
asked

prop.
ready

HList
updated

Fig. 3.36. S 17 and S 18: subprocess of int-activate_CKS with respect to the calling of CBB.put_on_CBB by the
 CKS of the parent-BB-system.

Part III: The SOCCA model - Subprocesses and traps

28/8/97 Blackboard Systems in SOCCA 59

neutral

S 1
S 3
S 5
S 7
S 9
S 11
S 13
S 15
S 17

select_
proposal
called

S 2
S 3
S 5
S 7
S 9
S 11
S 13
S 16
S 17

update_
HistoryList
called by
BB_sys.
create_
BB_sys

S 1
S 3
S 6
S 7
S 10
S 11
S 13
S 15
S 17

delete_
nonrelevant_
proposals
called

S 1
S 4
S 5
S 7
S 9
S 11
S 13
S 16
S 17

put_on_
CBB
called by
CKS.
activate_CKS

S 1
S 3
S 5
S 8
S 9
S 11
S 13
S 15
S 18

put_on_
CBB
called by
CKS.
activate_CKS

S 1
S 3
S 5
S 8
S 9
S 11
S 13
S 15
S 18

put_on_
CBB
called by
KS.
activate_KS

S 1
S 3
S 5
S 8
S 9
S 11
S 14
S 15
S 17

T 1,
T 16

T 2,
T 18

 T 3,
T 15

 T 4,
T 18

T 5, T 9

T 6, T 10

T 5,
T 17T 6,

T 18

 T 7,
T 13

 T 8,
T 14

T 7, T 19

T 8, T 21

T 7,
 T 20

T 8,
 T 21

put_on_CBB

put_on_CBB

put_on_CBB

select_
proposal

delete_
nonrelevant_
proposals

update_HistoryList

update_
HistoryList

update_
HistoryList
called by
CKS.
activate_
CKS

S 1
S 3
S 6
S 7
S 9
S 11
S 13
S 16
S 17

update_
HistoryList
called by
BB_sys.
modify_
BB_sys

S 1
S 3
S 6
S 7
S 9
S 12
S 13
S 15
S 17

T 5,
 T 11

T 6,
 T 12

update_HistoryList

Fig. 3.37. CBB, manager of 9 employees

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 60

Part IV: Application of the given example

4.1. Introduction

In this part the SOCCA model is applied to the given example, as described in section 1.5.
Two different representation types will be used to illustrate the way the BB-systems process the
details of the given example.
The actual calling of the export operations is worked out in event traces. In addition to these event
traces, process models will represent the state of the BB-systems at fixed points of time.
The complete event trace is divided into 9 steps. Every step is concluded with the creation of a new
process model. This process model, representing a BB-systems as presented in section 2.1.1, is
shown for every step.

4.2. Event traces

Event traces are a well known common ‘tool’ for case-oriented analysis or specification of
communication triggering. We will use this method to illustrate how the SOCCA-model for a
Blackboard System can handle the writing of a book, as described in the given example.
The details of the given example will be translated into the parameters of the operations.

To simplify the event trace, it is not possible to show parallel communication between objects. Only
one ‘possible’ sequence of events will be shown.

For the sake of ‘readability’ of the event trace, most proposals for an action are followed immediately
by their activation. This is not a very probable sequence in a working Blackboard System. But, if the
actual sequence of proposal-creation and -activation of different proposals does not influence the
problem-solving activity, we will maintain this order of events.

For the same reason, all proposals will be selected and activated by the CKS. A proposal that is
rejected does not show any action, it will only be deleted.

4.3. The export operations and their parameters

The parameters of the operations are given in fig. 4.1.
The given parameters do not represent the actual implementation details. Some parameters are only
shown for the sake of readability.

The parameter ok/not_ok is a boolean parameter of the operations CBB.select_proposal and
BB.select_problem. The returned value indicates whether the selection was successful or not.
The parameter caller of the operations of BB_sys and KS denote the ‘calling BB-system’ or ‘outside’.
The operation BB.put_on_BB can be called by BB_sys or by CKS. A CKS will use this operation to
put a result of a child-BB-system on the BB. BB_sys will use this operation to put new initial
problems on the BB. For this reason, the third parameter of BB.put_on_BB will be either result or
Initial_Problems.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 61

The details in the event trace, representing the parameter actions of the export operation
BB.modify_BB, cannot be traced back in the STD’s of the SOCCA-model. As all modifications on the
BB are executed by internal operations of the internal behaviour of BB.modify_BB, the STD’s do not
specify these operations any further.

BB_sys
create_BB_sys (new-BB_sys, caller, Initial_Problems, KSs + Roles, CKS + Role)
modify_BB_sys (called-BB_sys, caller, modifications)
finish_BB_sys (called-BB_sys, caller)
get_info (called-BB_sys, caller)

KS
activate_KS (BB_sys, KS + Role)
activate_proposal (called-BB_sys, caller, Proposal, KS)
deactivate_KS (BB_sys, KS + Role)

CKS
activate_CKS (BB_sys, CKS + Role)
deactivate_CKS (BB_sys, CKS + Role)

BB
select_problem (BB_sys, ok/not_ok, Problem)
modify_BB (BB_sys , Problem, actions, Proposal)
put_on_BB (BB_sys, Problem, Initial_Problems/result)

CBB
select_proposal (BB_sys, ok/not_ok, Proposal)
put_on_CBB (called-BB_sys , caller-BB_sys, Proposal)
update_HistoryList (BB_sys, Problem, registration_History)
delete_nonrelevant_proposals (BB_sys, Proposals)

fig 4.1. Export operations and their parameters (in the context of the event trace)

4.4. The division of the example into BB-systems, child-BB-systems,
problems and subproblems

The KSs communicate through the BB with other KSs by putting new subproblems on the BB.
The schema’s of appendix A show the translation of the informal description of the given example
into problems and subproblems, BB-systems and child-BB-systems.
Every step will introduce new problems and/or new BB-systems. The schema’s of appendix A can
help to keep track with all these problems and BB-systems.

The division into problems and subproblems must be viewed as only one possible interpretation of the
given example. In connection with the example, innumerable other acceptable interpretations are
possible.
The SOCCA model emphasises the communication between the BB-systems more than the problem-
solving on the BB. For this reason, the selection of the subproblems concentrates on the identification
of the separate BB-systems that model the processes of the given example. The number of
subproblems is kept low to avoid too many details.
Unfortunately, this low number of subproblems complicates a ‘realistic’ representation of the details
of the given example. However, on the basis of the process models and event traces presented in this
section, it is not difficult to imagine a more realistic processing of the details of the example.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 62

4.5. Representation of the example in 9 steps

4.5.1 Step 1: The creation of the root-BB-system Process Creation

In this section we will present the start-up of the activities of the given example.

To start up the process of the collaborative writing of a book, we will first create a root-Blackboard
System that can create and activate metaprocess-like activities.
The root-BB-system will represent Jean-Claude, viewed from the perspective of the PROMOTER
Community. Jean Claude is the coordinator of the PROMOTER community and we are especially
interested in the role that he plays in the start-up and registration of the processes that are described in
the example.

Fig. 4.2. shows the process model of this root-BB-system, named Process Creation . The model
shows the two KSs and their roles: Jean Claude (JC) as ‘Process creator’ and JC as ‘Process Model
creator’.
JC is also the CKS of the BB-system, as he performs the role of ‘co-ordinator’.
As discussed in section 2.5, a person can have more than one role at the same time.

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History
CP0: create new Process (P1),

 unsolved
CP0: create new Process Model (P2,)

 unsolved
CP2: create Process Model step 1 (P3),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC As Process
creator

BB

fig 4.2. Process model step 1

There are two problems on the BB : create new Process and create new Process Model. The first
problem, create new Process can create and start-up any possible new process.
The solving of this problem can be viewed as a meta-activity: the problem can start-up new processes
forever and remain unsolved as long as the KS Jean Claude as Process creator likes.
The same applies to the problem create new Process Model. This problem can register the evolving
of the processes taking place in the example by creating a process model for every significant step.
The KS, Jean Claude as Process Model creator, will create a new process model after every step by
creating and solving a new subproblem named create Process Model Step x.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 63

The process model shows in the HistoryList on the CBB what action has taken place on the BB before
the process model was created.
In the HistoryList we can also trace back the parent-problem of every problem. The parent-problem of
the initial problems is P0, representing the parent-BB-system with the problem that caused the new
BB_systems. The problem create Process Model Step 1 is a sub problem of P2, create Process
Model.
The HistoryList also shows that at the moment the process model is created, the two initial problems
are unsolved and the problem P3, create Process Model Step 1, is solved.

To avoid too many details in the process model, only the unsolved problems will be shown on the BB
of the process model. In addition to this, only the results (solutions or failures) of the child-
BB_systems will be shown on the BB of the process model.
The details of all other solved or unsolvable problems can be found in the HistoryList of the CBB.

There are no proposals on the CBB. The process model was drawn when all proposals were activated
and updated in the HistoryList.
Usually, there may be many proposals on the CBB. We will only show the proposals that will be
activated later. As we want the event trace to show the activation immediately after the proposal of a
new subproblem, there will hardly be any proposal on the CBB in our process models. Again, this not
very likely to happen in a working Blackboard System.

Fig. 4.3 presents the event trace of step1.
Section (1) of the event trace shows the creation and activation of the very first Blackboard System,
Process Creation.
The parameter ‘outside’ that denotes the caller of the operation create_BB_sys shows that the BB-
system to be created is the very first or root-BB-system.
We can see that every KS and CKS involved is to be activated separately. The calls for all activate-
operations are made from the internal behaviour of the operation create_BB_sys. As the dotted
vertical lines indicate the operations of the classes, we can trace back for every call from which
internal behaviour the call is made.

As soon as the problems are put on the BB, they can be selected by the KSs by calling
BB.select_problem.

All remaining operations in the event trace of step 1 show the proposal for and activation of the
creation of the new process model of step 1.
All process models that are created in a later stage, will be made by the calling of exactly the same
operations and parameters.
For this reason, only an empty grey square will be shown when the next process model is being
created.
The only change to the parameters of the operations is the name of the subproblem of the operation
create new process model. The name of this subproblem is in step 1 : create process model step 1, in
step 2: create process model step 2, etc.
The names of these operations can be found in the HistoryList, drawn in the process model.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 64

outside BB_sys KS CKS BB CBB

create_BB_sys (Process_Creation, ‘outside’, create_new_Process, create_new_Process_Model, KSs: JC as Process_creator, JC as Process_Model_creator,
CKS : JC as coordinator)

activate_KS (Process_Creation, JC as Process_creator)

activate_CKS (Process_Creation, JC as Coordinator)

update_HistoryList (Process_Creation, ‘outside’, ‘P0: create new Process, unsolved, P0: create new Process Model, unsolved’)

select_Problem (Process_Creation, ok,create_new_Process_Model)

put_on_CBB (Process_Creation, Process_Creation, prop1)

select_proposal (Process_Creation, ok, prop1)

activate_proposal (Process_Creation, Process_Creation, prop1, JC as Process_Model_creator)

update_HistoryList (Process_Creation, create_new_Process_Model,
‘ P2: create Process Model step1 (A3) solved ‘)

delete_nonrelevant_proposals (Process_Creation, prop1)

‹ Creation Process Model step 1

All operation in this square are related to the creation of a new Process Model.
These operations are texactly the same for each new Process Model

activate_KS (Process_Creation, JC as Process_Model_creator)

modify_BB (Process_Creation, create_new_Process_Model, create_model_step1, solved, prop1)

(1)

(2)

put_on_BB (Process_Creation, create_new_Process, create_new_Process_Model)

 fig 4.3. Event trace step 1

4.5.2 Step 2: Creation and activation of the first child-BB-system
 Promoter Meeting

This step describes the starting of the Promoter meeting.

As the process model shows (Fig 4.4) , JC as process creator has proposed and activated a new
process: the Promoter Meeting. The initial problem on the BB of Promoter Meeting is go through
agenda. The formulation of the initial problem indicates that this problem is solved when the KSs
have made decisions about all topics on the ‘agenda’.
The ‘agenda’ will have to be defined in the problem description of go through agenda. However, like
in usual meetings, a KS can also add a topic to the ‘agenda’.

The KSs of Promoter Meeting are the members of the Promoter community and JC as the leading
chairman. Jean Claude is the CKS as he performs the role of controlling chairman.
We need this refinement of the role of chairman as Jean Claude may also have to influence the
meeting in a more ‘active’ way (see also 2.6).

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 65

The dotted arrow from Process Creation to Promoter Meeting shows that the BB-system Promoter
Meeting is activated by the parent-BB-system Process Creation.
The arrow labelled ‘info’ indicates that the KS, JC as Process Model creator, asked for info about the
new BB-sys in order to make the process model of step 2.

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History
CP0: create new process (P1),

 unsolved
CP0: create new Process Model (P2,)

 unsolved
CP2: create Process Model step 1 (P3),

 solved
CP1: new BB-sys: Promoter Meeting,

 go through agenda (P4),
 unsolved

CP2: create Process Model step 2 (P5),
 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC As process
creator

BB

BB-sys Promoter Meeting

P1: go through agenda

Proposals

History
CP0: go through agenda (P1),

 unsolved

CBB

m26

KSs

JC

CKS

As controlling
chairman

As member

BB

m1

As member

info

activate

JC As leading
chairman

fig 4.4 . Process model step 2

Fig. 4.5. shows the event trace of step 2.
Section (3) of the event trace of step 2 shows the selection of a problem on the BB and the call for
put_on_CBB to put the proposal on the CBB. The proposal concerns the creation of a new BB-
system, named ‘Promoter Meeting’.
In section (4), this proposal is accepted by the CKS. The KS that created the proposal is then asked to
activate the proposal.
The new BB-system is activated and the HistoryList of both Blackboard Systems is updated.
This step ends with the creation of the process model of step 2.
Before JC can make the next model, he receives the most recent information about the new BB-
system by using the operation BB_sys.get_info.
The creation of the new process model is described in section (5)

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 66

outside BB_sys KS CKS BB CBB

select_Problem (Process_Creation, ok, create_new_Proces)

put_on_CBB (Process_Creation, Process_Creation, prop2)

select_proposal (Process_Creation, ok, prop2)

activate_proposal (Process_Creation, Process_Creation, prop2 , JC as Process_creator)

delete_nonrelevant_proposals (Process_Creation, prop2)

create_BB_sys (Promoter Meeting, Process_Creation, go_through_agenda, KSs: m1 as member,.......m26 as member, JC as leading chairman,
CKS: JC as controlling chairman)

activate_KS (Promoter_Meeting, m1 as member)

activate_KS (Promoter_Meeting, JC as leading chairman)

|

put_on_BB (Promoter Meeting, create_new_process, go_through_agenda)

update_HistoryList (Promoter_Meeting, create_new_process, ‘P0: go through agenda (P1)’)

update_HistoryList (Process Creation, create_new_process, created: new BB_sys , Promoter_Meeting)

select_Problem (Process_Creation, ok,create_new_Proces_model)

get_info (Proces_Creation, Promoter_Meeting)

‹ Creation Process Model step 2

(3)

(4)

(5)

activate_CKS (Promoter_Meeting, JC as controlling chairman)

fig 4.5 Event trace step 2

4.5.3 Step 3: BB-system Promoter Meeting makes decisions about the
 second book

In step 3, the first decisions are made by the KSs of Promoter Meeting concerning the questions raised
during the meeting of 19940209 as described in the given example..

The History on the CBB of Promoter Meeting shows all decisions made by the KSs of Promoter
Meeting.
The first new problem, make decisions about Book2, is probably a topic on the ‘agenda’ and put on
the BB by JC as leading chairman.
The first question raised by this new problem is whether the members of the Promoter community
want to make this new Book. In the History on the CBB we can see that a subproblem named make
Book2? is created by a KS with an immediate answer ‘yes’. As this new subproblem has the state
‘solved’, we can say that the KS that created this subproblem ‘posits’ that a new book must be
created.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 67

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History

|
|

CP2: create Process Model step 2 (P5),
 solved

19940209
CP2: create Process Model step 3 (P6),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC As Process
creator

BB

BB-sys Promoter Meeting

P1: go through agenda

P2: make decisions about Book2

P7: make Bookstructure

Proposals

History
CP0: go through agenda (P1),

 unsolved
19940209
CP1: make decisions about Book2 (P2),

unsolved
CP2: make Book2? (P3)

yes, solved
CP2: decide roles Book2 (P4),

JC is general editor,
Ali gives general support,
1 editor, >=2authors and
2 reviewers per chapter,
decide chapter editors and
authors next day,
solved

CP2: make Bookplan (P5),
Book2 is problemoriented,
solved

CP2: decide tools (P6),
use framemaker and email,
solved

CP2: make Bookstructure (P7)
unsolved

CBB

m25

KSs

JC

CKS

As controlling
chairman

As member

BB

m1

As member

info

JC As leading
chairman

fig 4.6. Process model step 3

The decision to make a second book, in these steps referred to as Book2, is the first democratic
decision made by the KSs of Promoter Meeting.
The SOCCA-model does not regulate this democratic decision making. The knowledge of the KSs
and CKS has to define their behaviour in a democratic situation.
The KS Jean Claude as leading chairman has to find out whether a majority of the KSs agrees with a
decision and the KSs have to make sure that their opinion concerning a decision on the BB is known
by JC as leading and controlling chairman. The CKS has to control this democratic decision making.
There are several ways to enforce democratic decision making on the BB.
To simplify the actions on the BB, we will assume that KSs only react to a decision on the BB if they
do not agree completely with the decision and that the KS in the role of leading chairman gives the
KSs time to react on a decision.

The given example only relates ‘vague’ details about the way decisions were made at the Promoter
Meeting. As we are mainly interested in the ‘complete’ process of the collaborative creating of a
book, we will not pay too much attention to the way KSs respond to new subproblems on the BB.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 68

If we want to present a more ‘realistic’ way of decision making at the Promoter Meeting , we would
need many more steps to model the example.
The problem make decisions about Book2 causes many new subproblems like: decide roles Book2,
make bookplan and make Bookstructure.
At the time the process model of step 3 was created, all new subproblems are solved, except make
decisions about Book2 and make Bookstructure.

In the given example, date descriptions are used to indicate at what point of time events took place. It
is a very natural activity of the CBB to register the actual date of the actions on the BB.
As the given example only relates dates occasionally, only the dates mentioned will be processed in
the History of the process models.

A modification of the BB can be represented by the following sequence of events:
select_problem();
put_on_CBB();
select_proposal();
activate_proposal();
modify_BB ();
update_HistoryList();
delete_nonrelevant_proposals();

As we confine ourselves to one sequence of events to simplify the event trace of the example, we
only have to define the parameters of the listed operations that reflect the modification on the BB.
The given order of events is already illustrated in the event trace of step 1 (Fig 4.3). Note that there is
one small difference with the events of the event trace of step 1: the updates in the sections (6) and
(11) show the addition of an ‘unsolved’ subproblem to the BB instead of a ‘solved’ subproblem.
However, the state of the added subproblem does not affect the sequence of events.

In the event trace of step 3 (Fig 4.7), all actions proposed and activated by the KSs are modifications
of the BB.
As the interaction between the objects is already worked out in section (2) of the event trace of step 1,
we will only specify the parameters of the operation CBB.update_HistoryList .
The parameters of CBB.update_HistoryList show all details of the proposed and activated
modifications on the BB.
We will leave out all other operations of the event trace of step 3.
By doing this, some information will be lost, such as the actual KSs that proposed and activated the
modifications of the BB. As the given example does not tell us who took the decisions in the Promoter
Meeting of 19940209, we will just assume that the ‘unsolved’ subproblems are added by JC the
leading chairman and the ‘solved’ subproblems by different members.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 69

outside BB_sys KS CKS BB CBB

update_HistoryList (Promoter_Meeting, go_through_agenda,
‘P1: make decisions about Book2 (P2), unsolved’)

update_HistoryList (Promoter_Meeting, make _decisions _about Book2,
‘P2: decide roles Book2 (P4),
JC is general editor, Ali gives general support,
1 editor, >= 2 authors and 2 reviewers per chapter,
decide chapter editors and authors next day,
solved’)

update_HistoryList (Promoter_Meeting, make _decisions _about Book2,
‘P2:make Bookplan (P5),
Book2 is problemoriented, solved’)

update_HistoryList (Promoter_Meeting, make _decisions _about Book2, ‘
P2: make Bookstructure (P7),
unsolved’)

update_HistoryList (Promoter_Meeting, make _decisions _about Book2, ‘
P2: decide tools (P6),
use framemaker and email, solved’)

select_Problem (Process_Creation, create_new_Proces_model)

get_info (Process_Creation, Promoter_Meeting)

‹ Creation Process Model step 3

(6)

(7)

(8)

(9)

(10)

(12)

update_HistoryList (Promoter_Meeting, make _decisions _about Book2,
‘P2: make Book2? (P3), yes, solved’)

(11)

Fig 4.7 Event trace step 3

4.5.4 Step 4: The creation of more than one child-BB-system to solve
 a single problem.

The problem make Bookstructure remains unsolved in step 3. In step 4, the members are asked to
prepare a bookstructure for the following day.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 70

BB-sys Process Creation

P1: create new process

P2: create new Process Model

Proposals

History

|
|

19940209
CP2: create Process Model step 3 (P6),

 solved
CP2: create Process Model step 4 (P7),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC As process
creator

BB

BB-sys Promoter Meeting

P1: go through agenda

P2: make decisions about Book2

P7: make Bookstructure

Proposals

History
CP0: go through agenda (P1),

 unsolved
19940209

 |
|

CP2: make Bookstructure (P7)
unsolved

CP7: new BB_sys: Member 1
prepare Bookstructure (P8),
ready next day,
unsolved,

|
 new BB_sys: Member 26

 prepare Bookstructure (P8),
ready next day,
unsolved

CBB

m26

KSs

JC

CKS

As controlling
chairman

As member

BB

m1

As member

info

BB-sys Member 1

P1: prepare Bookstructure

Proposals

History
19940209
CP0: prepare Bookstructure (P1),

 unsolved

BB-sys Member 26

P1: prepare Bookstructure

Proposals

History
19940209
CP0: prepare Bookstructure (P1),

 unsolved

BB BB

CBB CBB

m1 m26

m26m1

info

info activate

As member
creator

As member
creator

As member
coördinator

As member
coördinator

KSs KSs

CKS CKS

JC

As leading
chairman

activate

Fig 4.8 Process model step 4

In the BB-sys Promoter Meeting, the new problem prepare Bookstructure is created as a subproblem
of make Bookstructure.
All members are asked to prepare a bookstructure separately. This implicates that every member
needs a separate BB-system as every member, as creator and controller of this activity, has to be the
only KS and the CKS involved in the solving of this new problem.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 71

The process model (Fig 4.8) shows the new BB-systems. The new BB-systems are activated by the
BB-system Promoter Meeting and they all have the unsolved ‘initial’ problem prepare Bookstructure
on the BB.

Section (13) of the event trace of step 4 (Fig 4.9) presents the creation of all new BB-systems and the
activation of all KSs and CKSs involved. In section (14), the HistoryList of Promoter Meeting is
updated.
Section (15) of the event trace shows how JC as process model creator from the BB-system
Process Creation asks information from the BB-systems Promoter Meeting, Member1, and
Member 26 before he creates the process model of step 4.

outside BB_sys KS CKS BB CBB

select_problem (Promoter_Meeting, ok, make_Bookstructure)

put_on_CBB (Promoter Meeting, Promoter_Meeting, prop3)

select_proposal (Promoter_Meeting, ok, prop3)

activate_proposal (Promoter_Meeting, Promoter_Meeting, prop3, m? as member)

create_BB_sys (Member1, Promotor_Meeting, prepare_Bookstructure, KS: m1 as member_creator, CKS: m1 as member_coordinator)

activate_KS (Member1, m1 as member_creator)

update_HistoryList (Member1, make Bookstructure, ’ P0: prepare Bookstructure (P1), unsolved’)

create_BB_sys (act, Member26, Promoter_Meeting, prepare_Bookstructure, KS: m26 as member_creator, CKS: m26 as member_coordinator)

activate_KS (Member26, m26 as member_creator)

activate_CKS (Member1, m1 as member_coordinator)

activate_CKS (Member26, m26 as member_coordinator)

update_HistoryList (Member26, make_Bookstructure, ’ P0: prepare_Bookstructure (P1),, unsolved’)

update_HistoryList (Promoter_Meeting, make_Bookstructure,
 ‘P5: new BB_sys: Member1, prepare_Bookstructure (P6), unsolved,
 |
 P5: new BB_sys: Member26, prepare_Bookstructure (P6), unsolved’)

select_problem (Process_Creation, ok, create_new_Process_Model)

get_info (Process_Creation, Member1)

get_info (Process_Creation, Member26)

get_info (Process_Creation, Promoter_Meeting)

‹ Creation Process Model step 4

(13)

(14)

(15)

put_on_BB (Member1, make_Bookstructure, prepare_Bookstructure)

put_on_BB (Member26, prepare_Bookstructure)

Fig 4.9 Event trace step 4

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 72

4.5.5 Step 5: BB-system Promoter Meeting receives the results of the child-BB-
systems

Fig 4.10. Process model step 5

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History

|
|

19940209
CP2: create Process Model step 3 (P6),

 solved
CP2: create Process Model step 4 (P7),

 solved
19940210
CP2: create Process Model step 5 (P8),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC
As Process
creator

BB

BB-sys Promoter Meeting

P1: go through agenda

P2: make decisions about Book2

P7: make Bookstructure

R1: result Member1

R26: result Member 26

Proposals

History
CP0: go through agenda (P1),

 unsolved
19940209

|
|

CP7: new BB_sys: Member 1
prepare Bookstructure (P8),
ready next day,
unsolved,

|
 new BB_sys: Member 26

 prepare Bookstructure (P8),
ready next day,
unsolved

19940210
CP7: Member1:

prepare Bookstructure (P8)
result Member 1 (R1)
solved

 |
CP7: Member 26:

prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

m26

KSs

JCCKS
As controlling
chairman

As member

BB

m1

As member

info

BB-sys Member 1

Final Result

Proposals

History
19940209
CP0: prepare Bookstructure (P1),

 unsolved
CP1: concept_Bookstructure (P2),

,
 solved

CP1: prepare Bookstructure (P1),
 solved

BB-sys Member 26

Final Result

Proposals

History
19940209
CP0: prepare Bookstructure (P1),

 unsolved
CP1: no Bookstructure (P2),

 need more time, unsolvable
 P1: prepare Bookstructure
 (P1), unsolvable

BB
BB

CBB CBB

m1 m26

m26m1

As member
creator

As member
creator

As member
coördinator

As member
coördinator

KSs KSs

CKS CKS
info

result Member 1

result
Member 26

CBB

JC

As leading
chairman

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 73

The process model of step 5 (Fig 4.10) shows that member 1 has found a solution to the problem
prepare Bookstructure. The BB-system of member 26 indicates that member 26 has declared the
initial problem unsolvable. The reason is that the KS, member 26 ‘needed more time’ to come to a
solution.
There may also be members that still have the problem prepare Bookstructure in an unsolved state.
The given example says that there are two proposals for a possible structure, so, on all BB-systems of
the members together, there must be two solutions.
The CKS of every member puts the result of its BB-system as a proposal on the CBB of the BB-
system Promoter Meeting. The CKS of Promoter Meeting puts the result of every child-BB-system
on the BB.

outside BB_sys KS CKS BB CBB

select_problem (Mem ber1, ok, prepare_Bookstructure)

put_on_CBB(Member1, M ember1, prop6)

select_proposal (Member1, ok, prop6)

activate_proposal (Member1, Member1, prop6, m1 as member-creator)

modify_BB (Member1, prepare_Bookstructure, concept_Bookstructure.,, solved., prop6)

update_HistoryList (Member1, prepare_Bookstructure,
‘ P1: concept_Bookstructure,, solved’)

put_on_CBB (Promoter_Meeting, Member1, prop_result_m1)

select_proposal (Promotor_Meeting, ok, prop_result_m1)

put_on_BB (Promoter_Meeting, prepare_Bookstructure, result_m1)

select_problem (Member26, ok, prepare_Bookstructure)

put_on_CBB(Member 26, Member26, prop7)

select_proposal (Member26, ok, prop7)

activate_proposal (Member26, Mem ber26, prop7, m26 as member-creator)

update_HistoryList (Member26, prepare_Bookstructure,
‘ P1: prepare Bookstructure, unsolvable’)

put_on_CBB (Promoter_Meeting, Member26, prop_result_m26)

select_proposal (Promoter_Meeting, ok, prop_result_m26)

put_on_BB (Promotor_Meeting, prepare_Bookstructure, result_m26)

modify_BB (M ember26, prepare_Bookstructure, prepare_Bookstructure, unsolvable, prop7)

update_HistoryList (M ember1, prepare_Bookstructure,
‘ P1: prepare Bookstructure, solved’)

select_problem (Member1, ok, prepare_Bookstructure)

‹ Creation P rocess Model step 5

(16)

(17)

(18)

(19)

(20)

(21)

Fig 4.11 Event trace step 5

The event trace of step 5 is presented in Fig 4.11.
In the event trace, the activities on the child-BB-systems Member1 are recorded in sections (16) and
(17) and the activities of Member 26 in section (19). In sections (18) and (20), the CKS of the
parent-BB-system Promoter Meeting receives the input from Member1 and Member 26.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 74

Note that the KS of Member 1 needs two sections, section (16) and section (17), to come to a result.
In section (16), he creates a new ‘solved’ subproblem, concept Bookstructure. Later, he will come to
the conclusion that this subproblem has also solved the ‘initial’ problem, prepare Bookstructure. In
section 17, the state of prepare Bookstructure is changed from ‘unsolved’ to ‘solved’.
Member 26 only needs 1 section , section (19), to come to a result, as Member 26 executes two
actions by only making one call for BB_sys.modify_BB_sys. First, he will add an ‘unsolvable’
subproblem to the BB, no Bookstructure, and later he also changes the state of ‘initial’ problem
prepare Bookstructure from ‘unsolved’ to ‘unsolvable’. As a modification of the BB can consist of
more actions, this modification by the KS of Member 26 is permitted.
As Member 1 to Member 26 are intended to solve the same problem in parallel, the sequence of
events as represented in fig 4.11 is not a very ‘probable’ sequence of events.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 75

4.5.6 Step 6: Processing the results of child-BB-systems and the
 termination the child-BB-systems.

In step 6, a decision has to be made about the book structures, prepared by the members. Finally, the
chapter structures have to be made. First, the chapter groups are formed. Later, every group starts
working on the chapter structure of the chosen chapter.

The process model of step 6 is presented by Fig. 4.12 and the event trace of step 6 is presented in Fig.
4.13.
On the BB of Promoter Meeting are the results of the BB-systems Member 1 - Member 26. A KS
proposes and activates the decision that the result of Member 1 , R1, is the best result and with a small
modification, this book structure is accepted as the final book structure.
The original problem make Bookstructure is declared ‘solved’.
As make Bookstructure is solved, all the results of the other BB-systems can be deleted.
Finally, the BB-systems Member 1 - Member 26 are to be terminated. In section (25) of the event
trace, the finishing of Member 1 is worked out.

The event trace of step 6 only represents parts of the complete event trace as most actions are already
worked out in the previous event traces.
The part of the termination of Member 1 is worked out, as this is the only action of a BB-system that
is not worked out before.
The sections (22), (23), (24), (26) and (27) all concern modifications of the BB. The section (28)
represents the creation of a new BB-system. Section (4) of the event trace of step 2 already shows the
creation of a new BB-system.

The second part of the event trace concerns the new subproblem make Chapterstructure. In order to
work in small groups on the problem, a new subproblem form groups of problem make
Chapterstructure is created.
When form groups is solved, a new BB-system, named Chapter 9 Group is created, so that the
members Luuk, Vicenzo and Jacques can work separately on the chapter structure of chapter 9.
During the formation of groups, it was already decided that Luuk should be the editor and Vicenzo
and Jacques should be the authors of chapter 9. As Jacques already left the meeting, Jacques is not
included as KS in the Chapter 9 Group.

Note that the BB-system Chapter 9 Group has two initial problems on the BB, prepare structure
chapter 9 and prepare 1 or 2 sheets.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 76

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History

|
|

19940210
CP2: create Process Model step 5 (P8),

 solved
CP2: create Process Model step 6 (P9),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC
As Process
creator

BB

BB-sys Promotor Meeting

P1: go through agenda

P2: make decisions about Book2

P10: make Chapterstructure

Proposals

History
19940209
CP0: go through agenda (P1),

 unsolved
|
|

19940210
CP7: Member1:

prepare Bookstructure (P8)
result Member 1 (R1)
solved

 |
CP7: Member 26:

prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

CP7: decide Bookstructure (P9),
R 1 best result, modification R1,
solved,
P7: make Bookstructure (P7),
solved

CP7: R2: deleted
|

CP7: R26: deleted
CP7: BB_sys Member 1 terminated,,

|
 BB_sys Member 26 terminated

CP2: make Chapterstructure (P10)
unsolved

CP10: form groups (P11)
...............,
group 9: Luuk as editor,
Jaques and Vicenzo as authors
...............,
solved

CP10: new BB_sys: Chapter 9 group,
prep. structure chapter 9 (P11),
prepare 1 or 2 sheets (P12),
ready next day,
unsolved

m26

KSs

JCCKS As controlling
chairman

As member

BB

m1

As membe

activate

CBB

CBB

LU

KSs

LU As contolling
editor

VI

BB

BB-sys Chapter 9 Group

P1: prepare structure chapter 9

P2: prepare 1 or 2 sheets

Proposals

History
19940210
CP0: prepare structure chapter 9 (P1),

 unsolved
CP0: prepare 1 or 2 sheets (P2),

 unsolved

CKS

info

info

JC

As leading
chairman

As writing
editor

As author

Fig 4.12 process model step 6

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 77

outside BB_sys KS CKS BB CBB

update_HistoryList (Promoter_Meeting, make_Bookstructure,
‘P7: decide Bookstructure (P9),
R 1 is best result, modification R 1,
solved
P7: make Bookstructure (P7), solved’)

update_HistoryList (Promoter_Meeting, make_Bookstructure,
‘R2: deleted ‘)

update_HistoryList (Promoter_Meeting, make_Bookstructure,
‘R26: deleted ‘)

select_problem (Promoter Meeting, ok, make_Bookstructure)

put_on_CBB (Promoter_Meeting, Promoter_Meeting, prop8)

select_proposal (Promoter_Meeting, ok, prop8)

activate_proposal (Promoter_Meeting, Promoter_meeting, prop8, M? as member)

finish_BB_sys (Member1, Promoter Meeting)

deactivate_KS (Member 1, m1 as member_creator)

deactivate_CKS (Member 1, m1 as member_coordinator)

update_HistoryList (Promoter_Meeting, make_Bookstructure,
‘P7: Member 1 terminated,

|
Member 26 terminated')

terminate all other member-BB-systems

update_HistoryList (Promoter_Meeting, make_decisions_about_Book2,
‘P2: make_Chapterstructure (P10),
unsolved’')

update_HistoryList (Promoter_Meeting, make_Chapterstructure,
‘P10: form_groups (P11),
...............,
group 9: Luuk as editor,
Jaques and Vicenzo as authors,
................,
solved')

update_HistoryList (Promoter_Meeting, make_Chapterstructure,
‘P10: new BB_sys: Chapter 9 group

prepare structure chapter 9,
prepare 1 or 2 sheets chapter 9,
ready next day,
unsolved')

‹ Creation Process Model step 6

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Fig 4.13 Event trace step 6

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 78

4.5.7 Step 7: A discussion on Chapter 9 Group and Promoter Meeting
proposes its own termination.

BB-sys Process Creation

P1: create new process

P2: create new Process Model

Proposals

History

|
|

19940210
CP2: create Process Model step 5 (P8),

 solved
CP2: create Process Model step 6 (P9),

 solved
19940211
CP2: create Process Model step 7 (P10),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC
As process
creator

BB

BB-sys Promotor Meeting

Final Solution

Proposals
CP10: terminate Chapter 9 Group
CP0: terminate Promotor Meeting

History
CP0: go through agenda (P1),

 unsolved
19940209

|
19940210

|
CP10: new BB_sys: Chapter 9 group

prep. structure chapter 9 (P11),
prepare 1 or 2 sheets (P12),
to be presented by editor
next day,
unsolved

19940211
CP10: Chapter 9 Group:

prepare structure chapter 9 (P11)
result Chapter 9 Group (R26)
solved
prepare 1 or 2 sheets (P12)
result Chapter 9 Group (R27)
solved

CP10: decide chapter structures (P13)
accept results Chapter 9 Group
solved
P10 : make chapterstructure
(P10), solved

CP2: make decisions about Book2 (P2)
solved

CP1: go through agenda (P1)
solved

m26

KSs

JCCKS As controlling
chairman

As member

BB

m1

As member

CBB

CBB

KSs

LU As controlling editor

VI

BB

BB-sys Chapter 9 Group

Final Solution

Proposals

History
19940210
CP0: prepare structure chapter 9 (P1),

unsolved
CP0: prepare 1 or 2 sheets (P2),

unsolved
CP1: determine strategy Chapter 9 (P 3)

unsolved
CP3: decide using example (P 4)

arguments
 solved

CP4: formulate objections (P5)
arguments
 solved

CP4: formulate refutation objections(P6)
arguments
solved

CP4: decide integration objections (P7)
arguments
solved
CP4: decide using example (P4)
 solved

CP3: choose example (P8)
collaborative writing of chapter 9,
solved

CP3:: formulate theorem(P9)
arguments
 solved

CP3: determintne strategy (P3)
 solved

CP1: prepare chapter 9 (P1)
 solved

CP2: concept sheets (P10)
concept,
solved
P2: prepare 1 or 2 sheets P5)
solved

CKS

result Chapter 9 Group

As
Author

info

result Promotor Meeting

info

JC

As leading
chairman

LU

As writing
editor

Fig 4.14 process model step 7

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 79

The given example relates the discussion of the group that prepares a chapter structure of chapter 9.
The next day, the results of this discussion are related to the members of Promoter. The Promoter
meeting agrees with the chapter structure of chapter 9.
By finishing the decision of the chapter structures, the Promoter meeting has made all necessary
decisions to start up the second book. When all topics on the agenda are finished, the Promoter
meeting is to be terminated.

All details of the given example of step 7 concern features of the SOCCA model that are already
worked out in former steps.
The event trace of step 7 is therefore omitted.

The process model of step 7 (Fig. 4.14), shows all details processed during step 7.
At the moment the process model is drawn, 2 proposals are on the CBB of Promoter Meeting.
The first, is a proposal for the termination of Chapter 9 Group and the second is a proposal for the
termination of Promoter Meeting. In step 8, these proposals are activated.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 80

4.5.8 Step 8: BB-system Chapter 9 changes its own ‘initial’ problem.

This step concerns all remaining details of the given example: the writing of chapter 9 of the second
book

Step 8 starts with the actual termination of Chapter 9 Group and Promoter Meeting. Both proposals
for termination were created by KSs of Promoter Meeting. Although both proposals concern the
termination of a BB-system, they are handled differently. The termination of Chapter 9 Group is
activated and executed by Promoter Meeting. This action is handled in exactly the same way as the
termination of Member 1 as described in section (25) of the event trace of step 6.
The termination of Promoter Meeting however, has to be activated by the parent, Process Creation. In
section (30) of the event trace of step 8 (Fig. 4.16), the termination of Promoter Meeting is worked
out.

Based on the results of Promoter Meeting, Knowledge Source JC as ‘Process creator’ of Process
Creation creates a new process: the actual making of the second book. JC will create a new BB-
system, called Book 2 that is responsible for the writing of the second book. The members of the
Promoter community will be involved in this new BB-system as members.
All decisions made by the members of Promoter Meeting with respect to the writing of the second
book will now be part of the problem description of the ‘initial’ problem of Book 2, named, make
Book2.
The first subproblem of make Book 2 is write round 1.
Book 2 will then create a new separate BB-system Chapter 9 that is responsible for the writing of
chapter 9. Chapter 9’s initial problem is write chapter 9.
Nearly all details described in the given example concerning the writing of chapter 9, can be modelled
as modifications of the BB of Chapter 9. These modifications can be traced back in the History of
Chapter 9 in the process model of step 8, Fig. 4.15.
The only exception is described in the last paragraph of the example: the changed set-up of chapter 9.

In terms of the SOCCA model, the changing of the set-up of chapter 9 is the changing of the problem
description of the initial problem of Chapter 9.
As a modification of an initial problem is a modification of the BB-system involved, this modification
can only be activated by the parent of the BB-system.
In section (31) of the event trace of step 8, this particular modification of the BB-system Chapter 9 is
worked out.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 81

BB-sys Process Creation

P1: create new Process

P2: create new Process Model

Proposals

History

|
|

19940211
|

CP1: Promoter Meeting:
 go through agenda (P4)
 result Promoter Meeting (R1)
 solved

CP1: new BB-sys: Book 2,
 make Book2 (P11),

 unsolved
19940901
CP2: create Process Model step 8 (P12),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC
As Process
creator

BB

BB-sys Book 2

P1: make Book2

P2: write round 1

Proposals

History
19940211
CP0: make Book2 (P1),

 unsolved
CP1: write round 1 (P2),

 unsolved
CP2: new BB_sys: Chapter 9

write chapter 9 (P3),
unsolved,

19940901
CP3: Chapter 9:

Change setup chapter 9 (P4)
............., solved

m25

KSs

JCCKS As controlling
general editor

As member

BB

m1

As member

CBB

CBB

KSs

LU As controlling editor

VI

BB

BB-sys Chapter 9

P1: write chapter 9

P4: work on contents chapter 9

Proposals

History
19940209
CP0: write chapter 9 (P1),

unsolved
CP1: i nform Jaques (P2)

solved
CP1: organise writing (P3)

use sabattical months
 solved

CP1: work on contents chapter 9 (P4)
unsolved

CP4: how to prove theorem (P5)
lemma 7.4 and 7.5
solved

19940901
CP4: sent to parent:

proposal change setup of chapter
CP4: change setup of chapter (P6)

...............,
solved

CKS

As
Author

info

JA

As
Author

info

activate

activate

Alf

Ali

As general
co-editor

As technical
support

As writing
editor

LU

JC
As leading
general editor

Fig 4.15 process model step 8

.

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 82

The event trace of section (31) starts when one of the KSs of Chapter 9 has already created and
posted a proposal for the modification of the initial problem. The CKS of Chapter 9, Luuk as
controlling editor, selects this proposal and puts the proposal on the CBB of the parent-BB-system,
Book2.
The CKS of Book 2 , Jean Claude as controlling editor, selects this proposal and activates the
proposed modification of Chapter 9.
The selection and activation of the proposal triggers 3 calls for CBB.update_HistoryList: the first call
registers the transportation of the proposal to the CBB of the parent. By the remaining calls, the
change of Chapter 9 is registered by Chapter 9 and Book 2. This way the Members of Book 2 are also
informed of the changes of the set up of chapter 9.

outside BB_sys KS CKS BB CBB

select_proposal (Promoter_Meeting, ok, prop9)

put_on_CBB (Process_Creation, Promoter_Meeting, prop9)

select_proposal (Process_Creation, ok, prop9)

activate_proposal (Promoter_Meeting, Process_Creation, prop9, JC as leading chairman)

finish_BB_sys (Promoter_Meeting, Promotor_Meeting)

deactivate_KS (Promoter_Meeting, M1 as member)

deactivate_KS (Promoter_Meeting, JC as leading chairman)

deactivate_KS (Promoter _Meeting, M26 as member)

deactivate_CKS (Promoter_Meting, JC as chairman)

update_HistoryList (Process_Creation, create_new_process,
‘P1: Promoter Meeting: go through agenda (P4),
result Promoter Meeting (R1), solved’)

(30)

select_proposal (Chapter9, ok, prop10)

put_on_CBB (Book2, Chapter9, prop10)

select_proposal (Book2, ok, prop10)

activate_proposal (Chapter9, Book2, prop10, Luuk as writing editor)

update_HistoryList (Chapter9, work_on_contents_chapter9,
‘P4: change setup of chapter (P6),

............,
solved’)

other actions

modify_BB_sys (Chapter9, Chapter9, modified_initial_problem , prop10)

update_HistoryList (Book2, write_chapter9,
‘P3: Chapter 9: change setup of chapter (P4),

............,
solved’)

(31)
put_on_BB (Chapter9, write_chapter9, modified_initial_problem)

update_HistoryList (Chapter9, work_on_contents_chapter9,
‘P4: sent to parent:

proposal change setup chapter’)

Fig 4.16 event trace step 8

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 83

4.5.9 Step 9: Parent Book 2 formulates a second problem for BB-
 system Chapter 9.

This final step is not explicitly described in the given example. It is worked out to demonstrate an
interesting feature of the Blackboard model that is not yet described in one of the previous steps.

BB-sys Process Creation

P1: create new process

P2: create new Process Model

Proposals

History

|
|

19940901
CP2: create Process Model step 8 (P12),

 solved
CP2: create Process Model step 9 (P13),

 solved

CBB

JC

KSs

JC

CKS

As coördinator

As
Process
Model
creator

JC
As process
creator

BB

BB-sys Book 2

P1: make Book2

P6: write round 2

Proposals

History

|
|

19940901
CP3: Chapter 9:

Change setup chapter 9 (P4)
.............,
solved

CP2: Chapter 9:
write chapter 9 (P3)
result Chapter 9 (R9)
solved

CP2: write round 1 (P2)
solved

CP1: review round 1 (P5)
............,

 solved
CP1: write round 2 (P6)

unsolved
CP6: Chapter 9

rewrite chapter 9 (P7)
unsolved

m26

KSs

JC
CKS As controlling

general editor

As member

BB

m1

As member

CBB

CBB

KSs

LU As controlling editor

VI

BB

BB-sys Chapter 9

P7: rewrite chapter 9 first time

Proposals

History

|
|

19940901
CP4: sent to parent:

proposal change setup of chapter
CP4: change setup of chapter (P6)

...............,
solved

CP4: write chapter sections (P7),
solved

19940928
CP4: work on contents chapter 9 (P4),

solved
CP1: write chapter 9 (P1),

solved
CP0: rewrite chapter 9 first time (P7)

unsolved

CKS

As
Author

info

JA

As
Author

info
activate
new problem

Alf

Ali

As general
co-editor

As technical
support

As
writing
editor

LU

result
Chapter 9

JC As leading
general editor

Fig 4.17 process model step 9

Part IV: Application of the given example

28/8/97 Blackboard Systems in SOCCA 84

Chapter 9 has now solved the initial problem write chapter 9 and put the result on the CBB of the
parent, Book2.
The result is accepted and put on the BB of Book 2. Based on the result of Chapter 9, the subproblem
write round 1 is now solved. Book 2 now starts up the review of chapter 9 by creating a new
subproblem, named review round 1. As the given example relates no details of the review of chapter
9, this subproblem of make Book2 is not worked out any further.
When review round 1 is solved, a new subproblem of write Book2, named write round 2 is started.
write round 2 has a new subproblem rewrite chapter 9 first time which is to be the new ‘initial’
problem of Chapter 9.
In this way, the result of Chapter 9 is modified by Book 2 and Chapter 9 in turn.
In section (32) of the event trace of step 9, Book 2 puts the new ‘initial’ problem on the BB of
Chapter 9.

outside BB_sys KS CKS BB CBB

select_problem (Book2, ok, write_round2)

put_on_CBB (Book2, Book2, prop11)

select_proposal (Book2, ok, prop11)

activate_proposal (Book2, Book2, prop11, JC as leading editor)

modify_BB_sys (Chapter9, Book2, rewrite_chapter9_first_time,)

put_on_BB (Chapter9, write_round2, rewrite_chapter9_first_time)

update_HistoryList (Chapter9, write_round2, ‘P0: rewrite chapter 9 first time (P7),
unsolved’)

update_HistoryList (Book2, write_round2, ‘P6: Chapter 9:
rewrite chapter 9 first time (P7),
unsolved’)

(32)

Fig 4.18 Event trace step 9

Part V: Conclusions and further research

28/8/97 Blackboard Systems in SOCCA 85

Part V: Conclusions and further research

Summarising, it can be concluded that non-automated Blackboard Systems can be modelled
successfully in SOCCA.
By applying the Blackboard System to a ‘real-life’ example, it was demonstrated that the proposed
Blackboard System is fit to model even complex human collaboration processes. The simple process
models, that were created at fixed points in time, clearly visualise the evolution on the Blackboards by
means of changes to the problems on the Blackboards and by means of changes to the Blackboard
Systems involved. In the course of the complete process of the collaborative writing of the book,
several different Blackboard Systems were generated of which some were terminated later.
In the event traces, the communication between the objects in their problem-solving activity is
outlined. This way, the actual realisation of evolution is visualised.
Naturally, this evolution can also be visualised in other ways, depending on the type of information
that is to be illustrated.

In the course of the design of the Blackboard-System, some interesting features of human behaviour
were detected.
The notion of human roles is very important when humans are involved in processes. The refinement
of human roles can sometimes clarify the human behaviour that is associated with the human role.
If the relevant, distinct roles of a human can be identified, even human behaviour can be simulated by
means of a Blackboard System. The control of the Blackboard System will be represented by the
human part that personifies the Control Knowledge Source. The coordination between the human
roles is the responsibility of the Control Knowledge Source.

If human behaviour in relation to (evolving) human collaboration processes is to be modelled, this
human behaviour or the coordination of the different human roles has to be modelled more explicitly.
Also the use of multiple control of a Blackboard System needs to be studied further.

As the design of the Blackboard System emphasises its reproductiveness and the communication
between the systems, the evolution on the Blackboard itself remains relatively underexposed.
Especially when Blackboard Systems are used to investigate special cases of human collaboration
processes, this evolution may need more refinemen

References

28/8/97 Blackboard Systems in SOCCA 86

References

[1] Robert Engelmore and Tony Morgan, Blackboard Systems, Addison Wesley Publishing
Company, 1988

[2] Promoter, Software Process Modelling and Technology, Anthony Finkelstein, Jeff Kramer and
Bashar Nuseibeh (eds.), Research Studies Press LTD., Taunton, England, 1994

[3] Promoter, Software Process: Principles, Methodology, Technology, Jean Claude Derniame,
A. B. Kaba and Brian Warboys (eds.), publisher and date of release not yet known

[4] Gregor Engels and Luuk Groenewegen, SOCCA: Specifications of Coordinated and Cooperative
Activities, University of Leiden, Department of Computer Science, 1993

[5] Luuk Groenewegen, Parallel Phenomena 1-14, University of Leiden, Department of Computer
Science, Technical reports, 86-20, 87-01, 87-05, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15,
88-17, 88-18, 90-18, 91-19, 1986-1991

[6] Allen Newell, Some problems of the basic organization in problem-solving programs. In:
Proceedings of the Second Conference on Self-Organizing Systems, Yovits, M.C., Jacobi, G.T.,
and Goldstein (eds.), pp 393-423, Spartan Books, 1962

[7] Daniel D. Corkill, National Science Foundation Phase I Final Report, A Blackboard Based
Collaboration Environment for Human Problem-Solving, Blackboard Technology Group,
Amherst, MA, 1996

[8] Tineke de Bunje, Gregor Engels, Luuk Groenewegen, Aart Matsinger, Mark Rijnbeek, Industrial
Maintenance Modelled in SOCCA, Philips Research Laboratories and Leiden University,
Computer Science Department,

[9] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser and D. Raj Reddy, The Hearsay-II
speech- understanding system: Integrating knowledge to resolve uncertainty, Computing Surveys,
1980

Appendix A

28/8/97 Blackboard Systems in SOCCA 87

Appendix A: Identification of BB-systems and problems
of the given example

In this section, the BB-systems and their child-BB-systems and the problems and their subproblems of the
given example are outlined.

Fig A.1 represents all BB-systems involved in the given example. The BB-system Process Creation is the
root-BB-system. The BB-systems Promotor Meeting and Book 2 are child-BB-systems of Process
Creation. The BB-systems Member1,...., Member 26 and Chapter 9 group are child-BB-systems of
Promotor Meeting. Finally, Chapter 9 is child-BB-system of Book 2.

Process Creation

Promotor Meeting Book 2

Member 1 Member 2 Member 26 Chapter 9 group Chapter 9

fig A.1. All BB-systems of the example

Every Blackboard system has its own tree of subproblems. The name of a Blackboard System is printed at
the top of the tree. The root of the tree of subproblems is the ‘initial’ problem. If a BB-system has more
than one ‘initial’ problem, every ‘initial’ problem has its own tree of subproblems.
If a subproblem causes a child-Blackboard System, the name of the child-BB-system is written below the
subproblem.

In fig A.2, the two initial problems of the root-BB-system and their subprocesses are presented.
The initial problem create new Process creates two new subproblems or processes named ‘go through
agenda’ and ‘make Book2’.
‘go through agenda’ causes the new BB-system Promotor Meeting and the subproblem ‘make Book 2’
causes the child-BB-system Book 2.

Fig A.2. also presents the subproblems of Promotor Meeting and Member 1,, Member 26.
Finally fig A.3. presents the subproblems of Chapter 9 group, Book2 and Chapter 9.

Appendix A

28/8/97 Blackboard Systems in SOCCA 88

create new Process

go through agenda make Book2

Promotor Meeting Book 2

Process Creation

create new Process Model

Process Creation

create Process Model
 step 1

create Process Model
 step 2

create Process Model
 step 3

create Process Model
 step 9

go through agenda

make decisions about Book2

make Book2? make
book
plan

decide
roles Book2

decide
tools

make
book
structure

make
chapter
structure

decide
book
structure

prepare
book
structure

form
groups

prepare
structure
chapter 9

decide
chapter
structures

Member1
Member2
 |
Member26

Chapter 9
group

Promotor Meeting

prepare
1 or 2 sheets
chapter 9

Chapter 9
group

prepare book structure

Member 1

prepare book structure

Member 2

prepare book structure

Member 26

concept book structure

fig A.2. subproblems of the BB-systems Process Creation, Promotor Meeting and Member1,, Member 26

Appendix A

28/8/97 Blackboard Systems in SOCCA 89

determine strategy chapter 9

decide
using example

formulate
refutation
objection

decide
integration
objections
in chapter

choose
example

formulate
theorem

Chapter 9 group

prepare 1 or 2 sheets

Chapter 9 group

concept
sheets

prepare structure chapter 9

formulate
objection

make Book2

review
round 1

write
round 2

review
round 2

write
round 1

write
round 3

review
round 3

finish
coherence

write
introduction

Chapter 9

Book 2

write
chapter 9

Chapter 9

rewrite
chapter 9
first time

Chapter 9

rewrite
chapter 9
second
time

write chapter 9 rewrite chapter 9
first time

rewrite chapter 9
second time

inform
Jaques

organize
writing

work on
contents
chapter 9

change set up
chapter

how to
prove
theorem

Chapter 9 Chapter 9 Chapter 9

write chapter
sections

figA.3. Subproblems BB-systems Chapter 9 group, Book 2

