the decidability

of the boundedness
of functions

on hypergraph
generating

regular

tree

grammars

masters thesis
wilbert schelvis
august 1994
rijksuniversiteit leiden

Preface

This thesis was written as part of the final assignment for my study at the uni-
versity of Leiden. I started this study in October 1988, as a part-time student.
During the course I switched to the full-time study, since I wanted to graduate
in Theoretical Computer Science, which was not possible as part-time student.
Luckily, this switch did not cause any significant interference with my personal
life and with my professional life, which I spent at the research institute of the
PTT in Leidschendam. Up to the final stage of the course. For the final assign-
ment, one has to spent a total of five months at doing research and writing a
thesis, which put quite a heavy load on me. Furthermore, most part of the thesis
was written during the hottest month of July, since they started scoring the daily
temperatures in 1706.

I would like to thank my employer, the Royal PTT Netherlands, for providing
me with the facilities, money for the tuition fees and books, and time to attend
some lectures. Next I would like to thank all teachers at the Computer Science
department of the University of Leiden, for providing me with the basic knowl-
edge and theories needed to write this thesis. Finally, my special thanks are for
my supervisor, Joost Engelfriet. Without his great expertise, helpfulness and
patience, this thesis would not be anything near to what it is now.

Wilbert Schelvis

Abstract

One of the many formalisms to generate sets of labeled hypergraphs is the the-
ory of hyperedge replacement grammars. In such a grammar, hypergraphs are
substituted for hyperedges. Another method for the generation of hypergraph
languages is by defining a set of operations on hypergraphs, generating expres-
sions over these operations and finally evaluating these expressions, yielding hy-
pergraphs. These two methods turn out to be equivalent.

For the purpose of the analysis of hypergraph languages it is important to con-
sider certain predicates and numerical functions on the hypergraphs in the lan-
guages. A number of relevant predicates and functions can be determined from
the derivations of the hypergraphs in the hyperedge replacement grammars or
from the expressions that evaluate to the hypergraphs, instead of from the hy-
pergraphs themselves.

For some important properties of the predicates and functions on the hypergraph
languages, it turns out that they can be determined from the hyperedge replace-
ment grammars and the regular tree grammars that generate the expressions. For
example, whether or not a predicate is true for all hypergraphs in the language
or whether or not a function is bounded on the hypergraph language.

Samenvatting

Een van de vele formalismen om verzamelingen van gelabelde hypergrafen te
genereren, is de theorie van context-vrije hypergraafgrammatica’s. Hierbij wor-
den hypertakken in de hypergrafen vervangen door andere hypergrafen. Een an-
dere methode om hypergrafen te genereren is het definiéren van een aantal oper-
aties op hypergrafen, vervolgens het genereren van expressies over deze operaties
met behulp van reguliere boomgrammatica’s, welke dan vervolgens geévalueerd
worden. Deze twee methoden blijken equivalent te zijn.

Voor de analyse van hypergraaftalen is het van belang om bepaalde predikaten
of numerieke functies op de hypergrafen uit deze talen te beschouwen. Een aan-
tal relevante predikaten en functies kunnen bepaald worden door te kijken naar
de afleidingen van de hypergrafen in de hypergraaf grammatica’s of naar de ex-
pressies die de hypergrafen als betekenis hebben. Dit in plaats van het bepalen
van de predikaten en functies op de hypergrafen zelf.

Nu blijkt het dat sommige belangrijke eigenschappen van de predikaten en de
functies op de hypergraaftalen aan de hand van de hypergraaf grammatica’s en
de reguliere boomgrammatica’s bepaald kunnen worden. Bijvoorbeeld kan het
bepaald worden of een predikaat waar is voor alle hypergrafen uit een hypergraaf-
taal en of een functie op een hypergraaftaal begrend is.

Contents

1 [Introduction

2 Preliminaries
2.1 Mathematical preliminaries
2.2 Trees e e e e

2.3 Universal algebrao

3 Tree automata and tree grammars
3.1 Recognizable tree languages
3.1.1 Finite tree automata and regular tree grammars
3.1.2 Properties of recognizable tree languages
3.2 Finite state tree transformations
3.2.1 Tree transformations oL
3.2.2 Bottom-up and top-down finite tree transducers
323 Comparisonof Band T

3.2.4 Some results on tree transformations

4 Hypergraphs, hypergraph languages and hypergraph expressions
4.1 Hypergraphs o
4.2 Hyperedge replacement oo 0oL
4.3 Hypergraph grammars o o 0oL
4.4 Hypergraph expressions o 0oL

4.5 Hypergraph replacement grammars versus regular tree grammars . . .

5 Numerical functions on hypergraphs

vii

11
12
12
15
16
16
18
23
23

25
26
29
30
35

47

viil Contents

5.1 Number of hyperedges 49
52 Numberofnodes L. 50
53 Numberofpaths. o oL 52
5.3.1 Simple undirected paths in (1, 1)-graphs 53

5.3.2 Simple directed paths in (1, 1)-graphs 54

6 Compatible and realizable functions 57
6.1 Compatible functions, Habel 58
6.2 Compatible functions L. 59
6.3 Realizable functions oo 60
6.4 Realizable predicates Lo oo oL 64

7 Decidability results 67
7.1 Decision problems Lo Lo 68
7.2 Boundedness problems Lo oo oL 69

References 75

one

Chapter one

Introduction

Graphs and their generalized version, hypergraphs, are widely used in Computer
Science, but also in many other scientific disciplines. Various methods for defining
and generating hypergraphs have been proposed. Among the more well-known
methods are the different types of hypergraph grammars, such as node replace-
ment grammars and hyperedge replacement grammars. Especially hyperedge
replacement grammars have nice context-free properties.

When analyzing hypergraphs it is important to determine the values of some nu-
merical functions on these hypergraphs. In [Hab92], a large number of numerical
functions on hypergraphs is presented. It is shown that the boundedness of the
values of these functions on hypergraph languages, which are generated by hy-
peredge replacement grammars, is decidable if the functions are compatible with
the replacement of hyperedges by hypergraphs.

We will investigate another approach to the generation of hypergraphs. We will
not generate hypergraphs using hyperedge replacement grammars, but we will
generate expressions over a special set of hypergraph operators, that evaluate to
hypergraphs. The numerical functions on the hypergraphs can then be computed
by special transformations, that transform the hypergraph expressions into nu-
merical expressions. Evaluating these numerical expressions yields the function
values. We will show that for a special class of sets of hypergraph expressions,
called regular (hypergraph) expression languages, generated by regular expression
grammars, we can obtain similar decidability results as in [Hab92].

In Chapter 2, all the mathematical notions and notations used in this thesis
are presented. In Chapter 3, tree grammars and automata are treated. Since
expressions closely correspond to trees, these devices are relevant for the above
approach. The regular tree grammars are presented, as are tree automata with
output, that realize tree transformations. Furthermore, some decidability results
are presented, that will be used to show the decidability of the boundedness of
functions on hypergraph languages.

two Introduction

In Chapter 4 the two methods for the generation of hypergraphs and hypergraph
languages are presented. It is shown that regular expression grammars generate
the same hypergraph languages as hyperedge replacement grammars do.

Chapter 5 presents some numerical functions on hypergraphs, realized by tree
automata with output, that transform hypergraph expressions in numerical ex-
pressions. These functions are defined in [Hab92] for hyperedge replacement
grammars. In Chapter 6 compatible and realizable functions are presented. A
function on hypergraphs is compatible ([Hab92]) if its value for a hypergraph
can be determined on the derivation of the hypergraph in a hyperedge replace-
ment grammar. A function is realizable if it can be computed for a hypergraph,
by transforming an expression that evaluates to the hypergraph, into a numer-
ical expression that evaluates to the function value for the hypergraph, using a
tree automaton. It is shown that every compatible function is also a realizable
function.

Finally, in Chapter 7 some decidability and boundedness results are presented.
It is shown that it is decidable for a realizable predicate, whether or not a given
regular expression grammar generates expressions that evaluate to hypergraphs
for which the predicate holds. It is also shown that it is decidable for a realizable
numerical function, whether or not the function value for a hypergraph language,
obtained by the evaluation of a regular expression language, grows beyond any
bound. The decidability results in [Hab92] follow from the results in Chapter 4
and Chapter 7, and from the fact that every compatible function is also a realiz-
able function. The proofs of the decidability results in Chapter 7 lean heavily on
the decidability results in Chapter 3.

three

Chapter two

Preliminaries

Reading this thesis requires no knowledge in advance. However, it is assumed
that the reader is familiar with mathematical notation. This chapter presents
all notions that are used throughout the thesis. The first section describes all
preliminaries, the second section describes trees, whereas the last section describes
some basic universal algebra theory.

four Preliminaries

2.1 Mathematical preliminaries

This section summarizes the elementary mathematical notions that are used
throughout this thesis. The main notions are sets, relations, functions, strings,
languages and logic.

Sets

By a set, we mean a collection of objects. When an object s is in a set 5, we
write s € 5, and s is called an element of 5. When s is not in 5, we write
s € 5. If 5 contains no elements at all, we call 5 the empty set, denoted by
S = @. A set is called finite if it contains finitely many elements, otherwise it is
called infinite. If a set is finite and its k elements are enumerable as s, -, ..., sp,
we write S = {s1,8s,...,8,}. Here the number k is called the cardinality of
the set S, denoted by |S]. A set {s} containing only one element is called a
stngleton. If a set is infinite and its elements are enumerable as s;,s$,,..., we
write S = {sy,82,...}. The set of all elements s € S such that property p(s)
holds, is denoted by {s € S| p(s)} or {s | p(s)} if S is understood.

Let S and T be sets. S is called a subset of T, denoted by S C T, if all elements
of § are also in T'. A set U is called the union of § and T', denoted by U = SUT
if U contains all elements that arein S orin 7', thus SUT ={s|s€ Sor s € T}.
A set U is called the intersection of S and T, denoted by U = SNT if U contains
all elements that are in S as well as in 7', thus SNT ={s|s€ S and s € T'}.

If S and T are sets, then the set difference of S and T', denoted by S\ T, is the set
of all elements of S that are not elements of 7', thus S\7T ={s € S| s ¢ T}. The
set difference of S and T is sometimes called the complement of T with respect
to §, or simply the complement of T, if S is understood.

If S is a set, then the powerset of S, denoted by P’(.5), is the set of all subsets of
S, thus P(S)={T|T C S}. If S and T are sets, then the cartesian product of
S and T, denoted by S x T', is the set of all ordered pairs (s,?) such that s € 9
and t € T. This can be extended to finitely many sets by

Slx"'xsk:{(slv"'vsk)|8i€sif0r1§i§k}'

Two special sets are the set of all natural numbers, N = {0,1,2,3,...} and the
set of booleans, B = {false, true}.

Relations and functions

A subset R of a cartesian product 5 x T of two arbitrary sets S and T, is called
a relation from S to T. Let R C .5 x T be a relation. For every subset A C 5,
the image of A under R is defined as R(A) = {t € T | (s,t) € R for at least

Mathematical preliminaries five

one s € A}. For every subset B C T, the pre-image of B under R is defined as
R~ (B) ={s € 5| (s,t) € R for at least one t € B}.

A relation f C 5 x T is called a partial function from S5 to T, denoted by
f:8 = T,if for every s € 5 there is a most one t € T such that (s,?) € f.
Such a t is called the value of s under R. This is usually denoted by f(s) = t.
A function f: S5 — T is called total (or a mapping) if for every s € 5, there is
precisely one ¢ € T'such that f(s) =+¢. If f: 5, x---x 5, — T is a function, then
k is called the arity of the function. The function f is called a k-ary function.
Let S and T be two arbitrary sets. Then the set of all total functions from 5 to
T is denoted by (5§ — T'). Let g: S — T and f : T — U be two total functions.
Then the composition of f and ¢, denoted by f o g is a function fog:5 — U,

defined by fog(s) = f(g(s)).

Let S be a set and R C 5 x 5 a relation on §. Then the transitive closure of R,
denoted by RT, is defined as follows.

i. If (s1,52) € R, then (s;,55) € RT.
ii. If (sy,s2) € RT and (ss,s3) € RT, then (s;,s3) € RY.

ili. Nothing is in R* unless it follows from i and ii.

The reflexive transitive closure of R, denoted by R*, is defined as R* = Rt U
{(s,s) | s € 5}.

Strings and languages

An alphabet is a set of symbols. An alphabet is finite, unless it is explicitly defined
infinite. Let X be an alphabet. A string over X is a sequence of symbols from
3. A string is usually written as oy - - - oy, with o; € ¥ for all 1 < i < k, where k
is the length of the string. A string of length 0 is called the empty string, and is
denoted by A.

Let s =0y---0p and t = 7 -+ -7, be two strings. The concatenation of s and t,
denoted by s-t, is the string oy -- -4 7 - - -7, of length k& + £.

Let ¥ be an alphabet and ¢ € ¥ a symbol. The concatenation of k£ times the
symbol ¢ is denoted by o*. The set of all strings containing only the symbol o,
including the empty string, is denoted by o*. The set o*\ {A} is denoted by o™.
The set of all strings over the alphabet X is denoted by ¥*. Again ¥t = ¥*\ {A}.

Logic and computability

We will use the standard logical notation. The boolean constants are denoted by
false and true. Logical and is denoted by A, logical or by V and negation by —.
We will abbreviate “if and only if” by iff. The existential quantifier is denoted
by 3 and the universal quantifier by V.

six Preliminaries

Furthermore, we will use two notions from computation theory. We say that a
function is computable if there exists an algorithm that computes its value from
a given input. A predicate is called decidable if there is an algorithm that decides
whether or not the predicate holds for a given input.

2.2 Trees

Trees can be represented in a large number of different, but usually equivalent,
ways. The most common representation is probably the graphical representation,
as in Figure 2.1. In this section we present our representation of trees as a
special kind of strings. Trees correspond closely to expressions, as explained in
Section 2.3.

g r a s

A A
%bc%bcaaa %&a

Figure 2.1: Example of a tree

Alphabets and trees

In order to represent trees as strings of symbols, we need to define the number of
subtrees that each symbol can have. Of course, this number need not be restricted
to one single value. We therefore use the notion of ranked alphabets, defined as
follows.

Definition 2.1 (ranked alphabet) An alphabet X is a ranked alphabet if for each
non-negative integer k, a subset X; of X is specified, such that > is nonempty
for a finite number of £’s only, and such that X = Up»¢X;. If @ € X, then we
say that @ has rank k. O

For a ranked alphabet ¥ and a € ¥, we sometimes use rank(a) = k if it is clear
that @ € 3. Union and equality for ranked alphabets are defined as follows.

Definition 2.2 (union and equality) Let ¥ and A be ranked alphabets. The
union of ¥ and A, denoted by ¥ U A, is defined by (XU A), = X, U Ay, for all
k > 0. We say that > and A are equal, denoted by > = A, if, for all & > 0,
Y= Ay O

Now trees are defined as string over a ranked alphabet and the special symbols
[and]. Note that the symbols [and] are not strictly necessary when the rank

Trees seven

of each symbol is unique, but even in that case, this syntactic sugar makes them
far more readable.

Definition 2.3 (trees over a ranked alphabet) Given a ranked alphabet ¥, the
set of trees over X, denoted by Ty, is the language over the alphabet X U {[,]}
defined inductively as follows.

i. Ifa € 207 then a € TE-
ii. Fork>1,ifa € ¥} and t1,...,t;, € Tx, then aftits---t;] € Ts.

The first symbol in a tree is called the root of the tree. The symbols of rank 0
are called the leafs of the tree. O

Using this definition, the tree in Figure 2.1 can be written as a string over the
ranked alphabet X, where X, contains at least the symbols a, b and ¢, >3 contains
at least the symbol r, ¥, the symbol ¢ and X5 the symbols p and s. The tree can
then be written as

plqlabec]qlabec]r[aaalas[abbeal].

A tree language is defined as a subset of the set of all possible trees. This is
equivalent to the usual definition of string languages, considered that trees are
strings.

Definition 2.4 (tree language) Let ¥ be a ranked alphabet. A tree language
over ¥ is any subset of Tx. O

Inductive (or recursive) definitions

When working with trees, proofs and definitions are usually very elegant if re-
spectively inductive proofs and inductive definitions are used.

Principle 2.5 (inductive proof) Let P be a property of trees over a ranked al-
phabet 2. If

i. all elements of ¥y have property P, and

ii. foreach k > 1 and each a € ¥, if ty,...,1; have property P, then a[t; - - -]
has property P,

then all trees in Ty have property P. O

Principle 2.6 (inductive definition) Suppose we want to associate a value h(?)
with each tree ¢ in Tx. Then it suffices to define h(a) for all @ € Xy, and to show
how to compute the value h(a[t,---#;]) from the values h(ty),...,h(tx). More
formally expressed, given a set O of objects, and

eight Preliminaries

i. for each a € 3y, an object o, € O, and

ii. for each k > 1 and each a € ¥, a mapping f, : OF — O,
there is exactly one mapping h : Ty — O, such that

i. h(a) = o, for all a € ¥, and

. halty---t]) = fa(h(t),...,h(tx)) forall £ > 1, a € ¥ and t,,..., 1 €
Ts. O

Two functions on trees that are of special interest are yield, which gives the string
of leafs in a tree, and height, which gives us the longest “distance” from the root
of a tree to a leaf of the tree. These function are defined inductively as follows.

Definition 2.7 (yield) The mapping yield from Ty into 3§ is defined inductively
as follows.

i. For a € ¥, yield(a) = a,

ii. Fora € X and tq,...,1; € Tk,
yield(a[t, - - - tx]) = yield(t,)- yield(ts) - - - yield (ty).

For a tree language I C Ty, we define yield (L) = {yield(t) | t € L}. O

Definition 2.8 (height) The mapping height from T into Nis defined recursively
as follows.

i. For a € X, height(a) = 0.

ii. For a € ¥y and t,...,4; € T, height(a[t, - - -t]) = maz<icpheight(t;) +
1. O

Sometimes we will use the set of trees over a ranked alphabet, that is extended
with a set of symbols of rank 0, for example a set of variables. This set of trees
can be easily defined as follows.

Definition 2.9 (indexed trees) Let ¥ be a ranked alphabet and let S be a set
of symbols or a tree language. Then the set of trees indexed by S, denoted by
Tx(9), is defined inductively as follows.

i SUD, CTx(9).

. Ifk>1,a€ X, and ty,...,t € Tx(9), then aft, ---t;] € Tx(S5).

Note that T (9) = Tk. O

Universal algebra nine

2.3 Universal algebra

The theory of universal algebra is often used in computer science as a device for
the formal definition of semantics. Detailed information about universal algebra
can be obtained from [Wec92] and [GecSte84].

Algebras, expressions and derived functions

The basic notion in the theory of universal algebra is an algebra, which consists
of a set of symbols, represented as a ranked alphabet, and a family of mappings
that assign meaning to the symbols. The syntactic relation between the symbols
stems from the theory of trees, as defined in the previous section.

Definition 2.10 (algebra) Let X be a, possibly infinite, ranked alphabet.

i. A pair % = (V,a), where V is a set of values and «a is a family of mappings
a={a, 3 — (Vk — V) }iso

that assigns to every o € ¥, k > 0, a k-ary total function ay (o) : AVARSES V8
is a Y-algebra, or just algebra if 3 is clear. (o) is also written as ¢®. The
domain of 2, sometimes denoted by dom (), is the set V. X is called the
signature of 2.

ii. A symbol o € ¥ is called an operator and the operation o¥ is called the
realization of o in 2 or the operation corresponding to o in 2.

iii. An element of Ty is called an expression over X.

iv. Let % = (V,a) be a Y-algebra. Then 2l determines a mapping m* : Ty, —
V, which is defined inductively as follows. For o € ¥, m?(c) = 6%, where

0% is a nullary function or constant. For o € ¥, k > 1 and t1,...,t; € Tx,
m*(o[ty -+ t;]) = o (M (t1), ..., m¥* ().
The mapping m? is called the initial homomorphism. O

Expressions can consist entirely of operators, representing functions. In this
case, the meaning of the expression is a value from the domain of the algebra, as
defined in Definition 2.10iv. However, expressions can also contain variables, in
which case the meaning of the expression is a function. This is made clear in the
following two definitions.

Definition 2.11 (XZ-expression) Let 2 be a Y-algebra and Z a set of variables,
such that ¥ NZ = @. A YZ-expression is any element of T5(Z). O

ten Preliminaries

Definition 2.12 (derived function) Let % = (V,a) be a X-algebra, Z a set of
variables, disjoint with ¥, and ¢ € Tx(Z) a YZ-expression. Then the derived
function of t, denoted by ¢*, is the mapping t* : (Z — V) — V, defined induc-
tively as follows. For any mapping v : Z — V, assigning a value to each variable
in Z, let

i. 2%(y) =7(z) for z € Z and

ii. *(y) = 2P (y),...,t3(y)) for t = ofty--+t;], k > 0, o € X and
t, ooty € Ts(Z). O

Every signature, and thus every ranked alphabet, generates an algebra, by using
the set of all expressions over the signature as the domain, and the syntactic rules
for the construction of the expressions as the operations. This algebra is called
the free algebra.

Definition 2.13 (free algebra) Let ¥ be a signature and Z a set of variables,
disjoint with ¥. The free ¥-algebra generated by Z, denoted by Fx(Z), is the
Y-algebra (Tw(Z),), where a is a mapping that assigns to every o € ¥y, k > 0,
a mapping o¥=(%) : Ty (Z)* — Tx(Z), defined by

o2 B (1) = oty 1)

If Z = @, then §x(Z) is written as §x = (I%,a), and it is called the free -
algebra. In this case, o is a mapping that assigns to every ¢ € Y, & > 0, a
mapping o= : T — Ty, (|

Substitution

For a signature X, the free Y-algebra can be used to give a formal definition of
substitution of variables by expressions. Let Z be a set of variables and §x(Z) =
(Tw(Z), @) be the free Y-algebra generated by Z. Furthermore, for k& > 1, let
Z = {z1,...,2} be aset of variables, disjoint with ¥, ¢t € Tx(Z) a YZ-expression
and v : Z — Tx(Z) an assignment function. Then the substitution of v(z;) for z

int, for 1 <i<k,is
Hz1 = 7(21), 00028 = 7 (20)) = 152 (),
where ¢52(%) . (Z — Tx(Z)) — Tx(Z) is the derived function of ¢ in Fg(Z). In

the case where Z = @, it can be shown by induction on ¢, that for any 3-algebra
2l and for each v : Z — Tk,

m¥ (15 (7)) = t*(m™ o 7).

eleven

Chapter three

Tree automata and tree
grammars

As string languages can be generated and recognized by string automata and
string grammars, tree languages can be generated and recognized by tree au-
tomata and tree grammars. Certain types of automata and grammars generate
certain types of tree languages, much similar as in the string case.

Tree automata can also be used to define tree transformations. A tree is then
transformed while the automaton traverses the tree in parallel, either in a top-
down or in a bottom-up direction. Each symbol or subtree of the tree, can then
be replaced by another symbol or subtree, thus realizing the transformation in
an effective, inductive, way.

twelf Tree automata and tree grammars

3.1 Recognizable tree languages

The definitions of tree automata and tree grammars used in this thesis are from
[Eng74]. Nearly the same definitions are used in [Eng75] and [Eng77]. An-
other well known source for the theory of tree automata and tree grammars is

[GecSte84].

3.1.1 Finite tree automata and regular tree grammars

A finite tree automaton is very much like a finite state automaton for the string
case. When the automaton is in a certain state, it can recognize one of several
symbols and jump to a new state, depending on the recognized symbol. The
major difference between a finite state automaton and a finite tree automaton is,
that a finite tree automaton can traverse all the subtrees of a node in parallel.
There are two types of finite tree automata, bottom-up and top-down, each of
which can be deterministic or non-deterministic. A bottom-up finite tree automa-
ton starts at the leafs of a tree and traverses up to the root, while a top-down
finite tree automaton starts at the root, and traverses down to the leafs. We will
first define bottom-up finite tree automata.

Definition 3.1 (deterministic bottom-up finite tree automaton) A determinis-
tic bottom-up finite tree automaton (fta) is a structure M = (Q, X, 4, s, I), where
() is a finite set of states, X is a ranked alphabet of input symbols, ¢ is a family
{65} 151 aex, of mappings 6% : Q¥ — @ (the transition function for a € 3y), s is
a family {s,}.ex, of initial states states s, € @) and F' is a subset of @ of final
states.

The mapping 6 : Tv — Q is defined recursively as follows:

i. for a € Xy, 6(a) = s, and

ii. fork>1,a€ X, and tq,...,1; € ITx,
O(afty - tp]) = 65(8(te), ..., 0(t)).

The tree language recognized by M, denoted by L(M), is defined to be the set
{t e Tx|6(t) € F}. a

Definition 3.2 (non-deterministic bottom-up finite tree automaton) A non-
deterministic bottom-up finite tree automaton is a 5-tuple M = (Q,%,6,5,F),
where @, ¥ and F are as in the deterministic case, S is a family {S5,}.ex,,
such that S, C @ for each a € X, and 6 is a family {65};>1 4ex, of mappings
85 QF - P(Q).

The mapping 6 : Tx, — P(Q) is defined recursively by

i. for a € Xy, 6(a) = 5, and

Recognizable tree languages thirteen

ii. fork>1,a€ X, and tq,...,1; € T,
S(afty ---tx]) = {65 (g1, -y qu) | s € 6(t;) for 1 < i < k}.

The tree language recognized by M, denoted by £(M), is defined to be {t € Ty |

S(t)yNF # o}, O

As is the case with deterministic and non-deterministic finite state automata,
deterministic and non-deterministic bottom-up finite tree automata recognize
the same languages.

Theorem 3.3 For each non-deterministic bottom-up fta, we can find a determin-
istic bottom-up fta that recognizes the same language.

Proof In [Eng74, pages 25-26]. O

The class of tree languages that can be recognized by bottom-up finite tree au-
tomata, turns out to be a very important class. This class is defined as follows.

Definition 3.4 (recognizable tree language) A tree language L is called recog-
nizable or regular if L = L(M) for some deterministic bottom-up fta M. The
class of all recognizable tree languages will be denoted by RECOG. O

As bottom-up finite tree automata start at the leafs and traverse the trees to the
root, top-down finite tree automata traverse them in the other direction, from
the root to the leafs.

Definition 3.5 (deterministic top-down finite tree automaton) A deterministic
top-down finite tree automaton is a 5-tuple M = (Q,%, 6, qo, F), where @ is a
finite set of states, ¥ is a ranked alphabet, 6§ is a family {6f};51 4ex, of mappings
8% Q — QF, qo € Q an initial state, and F is a family {F,}.ex, of sets F, C @
(the set of final states for a € Xg).

The mapping 6 : Tx, — P(Q) is defined recursively by

i. for a € Xy, 6(a) = F, and

ii. fork>1,a€ X, and tq,...,1; € T,
S(afty - t]) = {q] 6a(q) € 6(t1) x -+ x 8(tx)}.

The tree language recognized by M, denoted by L(M), is defined to be {t € Ty |
g0 € 6(1)}. O

Definition 3.6 (non-deterministic top-down finite tree automaton) A non-de-
terministic top-down finite tree automaton is a 5-tuple M = (Q, %, 6,9, F'), where
(), X and F are as in the deterministic case, S is a subset of () and ¢ is a family

{65} 151 aex, of mappings 6F : Q — P(QF).

The mapping 6: T — P(Q) is defined recursively as follows

fourteen Tree automata and tree grammars

i. for a € Xy, 6(a) = F, and

ii. fork>1,a€ X, and tq,...,1; € ITx,
5(@[151) =Hq| g1, q) € 6a(q) 1 qi € 5(152) for all 1 < i< k}.

The tree language recognized by M, denoted by L(M), is defined to be {t € Ty |
()N S # o}, O

The class of deterministic top-down finite tree automata is less powerful than the
class of bottom-up finite tree automata.

Theorem 3.7 There are recognizable tree languages which cannot be recognized
by a deterministic top-down fta.

Proof In [Eng74, pages 28-29]. O

However, the class of non-deterministic top-down finite tree automata is equiva-
lent to the class of bottom-up finite tree automata.

Theorem 3.8 A tree language is recognizable by a non-deterministic bottom-up
fta iff it is recognizable by a non-deterministic top-down fta.

Proof In [Eng74, page 30]. O

Another method of generating or recognizing tree languages is via regular tree
grammars. This method generates the same class of tree languages as do bottom-
up finite tree automata.

Definition 3.9 (regular tree grammar) A regular tree grammar is a tuple G =
(N,X,R,S), where N is a finite set of non-terminals, 3 is a ranked alphabet of
terminals, such that XN N = @, 5 € N is the initial non-terminal, and R is a
finite set of rules of the form A — ¢, with A € N and ¢t € Tx(N).

The tree language generated by (¢, denoted by L(G), is defined to be L(H), where
H is the context free grammar (N, X U{[,]}, R, 5). We shall use =, and =, (or
= and =* when G is understood) to denote the restrictions of =, and =% to
Ts(N).

The set of all regular tree grammars (N, %, R, 5), with 3 C C for some alphabet
C, is denoted by RTGc. O

Theorem 3.10 A tree language can be generated by a regular tree grammar iff
it is an element of RECOG.

For proofs it is convenient to have a normal form for regular tree grammars, such
that each regular tree grammar has an equivalent grammar in normal form.

Definition 3.11 (normal form) A regular tree grammar G = (N, X, R, 5) is in
normal form, if each of its rules is either of the form A — a[B; --- B;] or of the
form A — b, where k > 1,a € 3, A, By,..., By € N and b € 3. d

Recognizable tree languages fifteen

Theorem 3.12 Each regular tree grammar has an equivalent regular tree gram-
mar in normal form.

Proof In [Eng74, pages 32-33]. O

There is a strong relation between tree languages and context-free string lan-
guages, as can be seen from the following theorem.

Theorem 3.13 yield(RECOG) = CFL, or the yield of each recognizable tree
language is context free, and each context free language is the yield of some
recognizable tree language.

Proof In [Eng74, pages 34-35]. O

3.1.2 Properties of recognizable tree languages

We will now give some properties of recognizable tree languages, that will be
used in later parts of this thesis. More properties can be found in [Eng74]. First,
the union and intersection of two regular tree languages is also a regular tree
language, as is the complement of a regular tree language.

Theorem 3.14 RECOG is closed under union, intersection and complementa-
tion (with respect to the set of all trees over the ranked alphabet).

Proof In [Eng74, page 36]. O
In Chapter 7, some decidability results are presented on hypergraph languages,
generated by evaluating hypergraph expressions, which are generated by regular
tree languages. The proofs of these results are based on decidability results on

regular tree languages. For example, it is possible to decide whether or not a
regular tree language contains one or more trees.

Theorem 3.15 The emptiness problem for recognizable tree languages is decid-

able.
Proof In [Eng74, page 59]. O

It is also decidable whether a regular tree language is finite or infinite.

Theorem 3.16 The finiteness problem for recognizable tree languages is decid-
able.

Proof In [Eng74, page 59]. O

Finally, it is decidable whether or not a certain regular tree language is a subset
of another regular tree language.

Theorem 3.17 It is decidable, for arbitrary recognizable tree languages U and
V', whether U C V.

sixteen Tree automata and tree grammars

Proof In [Eng74, page 60]. O

Note that this implies that it is decidable whether or not two regular tree lan-
guages are equal, since U =V it U CV and V CU.

3.2 Finite state tree transformations

Tree transformations are, in general, just relations between trees. A tree trans-
formation can be realized by defining a mapping on the symbols in the tree or by
adding output to the finite tree automata.

3.2.1 Tree transformations

A tree transformation in its most general form is just a relation from some T to
some Ta.

Definition 3.18 (tree transformation) Let X and A be ranked alphabets. A tree
transformation from Ty into T is any subset of T X Tha. O

The composition of two tree transformations, the inverse of a tree transformation
and the image of a tree language under a tree transformation are defined in a
similar way as the composition, inverse and image for functions. Note that the
tree transformations need not be functions.

Definition 3.19 (composition) Let ¥, A and Q be ranked alphabets. If M; C
Ts X Ta and M, C Ta x Tq, then the composition of M, and M;, denoted by
M, o M, is the tree transformation

{(s,t) €Ts X Tq | (s,u) € My and (u,t) € M, for some u € Th}.

If I and GG are classes of tree transformations, then G o F' denotes the class
{Myo M, | M; € F and M, € G}. Furthermore, F* denotes the class

F'={M,o0---oM; |n>0,M;, € Fforl<i<n}

of arbitrary compositions of elements of F. O

Definition 3.20 (inverse tree transformation) Let M be a tree transformation
from T to Ta. The inverse of M, denoted by M~1!, is the tree transformation
{(t,S)ETAXTE|(S,t)EM}. [

Definition 3.21 (image) Let M be a tree transformation and L a tree language.
The image of L under M, denoted by M (L), is the tree language M (L) = {t |
(s,t) € M for some s € L}. If M is a tree transformation from 7% into Ta, then
the domain of M, denoted by dom (M), is M~'(Ta), and the range of M, denoted
by range(M), is M (1T%). O

Finite state tree transformations seventeen

The first and simplest method of defining a tree transformation is via a relabeling.
In a relabeling, only the symbols in a tree are changed. The structure of the tree
remains unchanged.

Definition 3.22 (relabeling) Let ¥ and A be ranked alphabets. A relabeling r
is a family {74}r>0 of mappings 7, : ¥ — P(Ay). A relabeling determines a
mapping r : Ty — P(T'a) by the requirements

i. for a € Xy, r(a) = ro(a),

ii. for k > 1, a € ¥ and ty,..., % € Ts, r(a[ty---t;]) = {b[sy---s¢] | b €
rr(a) and s; € r(¢;)}. O

The image of a regular tree language under a relabeling, is also a regular tree
language.

Theorem 3.23 RECOG is closed under relabelings.
Proof In [Eng74, page 42]. O

A more complicated method of defining tree transformations is with the aid of
tree homomorphisms. With a tree homomorphism, each symbol in a tree is
replaced by a tree, where the subtrees of the symbol can be attached at arbitrary
positions in the tree that replaces the symbol. The subtrees can also be deleted
and /or copied, meaning that the same subtree can be attached at more than one
position.

Definition 3.24 (variables) Let z,,25,23,... be an infinite sequence of differ-
ent symbols, called wvariables. Let X = {a,2q,23,...}, for & > 1, X; =
{z1,249,...,2;} and X, = @. O

Definition 3.25 (tree homomorphism) Let ¥ and A be ranked alphabets. A
tree homomorphism h is a family {hy}r>o of mappings by @ Xy — Ta(Xy). A tree
homomorphism determines a mapping h : Ty, — Ta as follows.

i. For a € Xy, h(a) = ho(a).
ii. Fork>1,a€ X, and tq,...,1; € Tx,

h(alty - 1)) = hi(a) (@1 < hty), ... 25 < h(tp)).

In the particular case that, for each a € ¥4, hi(a) does not contain two occur-
rences of the same z;, ¢ = 1,2,3,..., h is called a linear tree homomorphism. [

Unlike relabelings, tree homomorphisms can lead out of the class of regular tree
languages, due to the fact that a tree homomorphism can copy subtrees.

Theorem 3.26 RECOG is not closed under arbitrary tree homomorphisms.
Proof In [Eng74, page 51]. O

eighteen Tree automata and tree grammars

In a linear tree homomorphism, copying is prohibited, and therefore the image
of a regular tree language under a linear tree homomorphism is a regular tree
language itself.

Theorem 3.27 RECOG is closed under linear tree homomorphisms.
Proof In [Eng74, page 51-54]. O

Notation 3.28 We shall use REL to denote the class of all relabelings, HOM
to denote the class of all tree homomorphisms and LHOM to denote the class
of all linear tree homomorphisms. O

3.2.2 Bottom-up and top-down finite tree transducers

More complicated tree transformations can be defined by using finite tree trans-
ducers. These are much like finite tree automata, but have not only input, but
also output. Since they are like finite tree automata, they also come in two major
flavors, namely bottom-up finite tree transducers and top-down finite tree trans-
ducers. The semantics of the finite tree transducers are defined with the aid of
tree rewriting systems, which are defined as follows.

Definition 3.29 (rewriting system with variables) A rewriting system with vari-
ables is a pair G = (A, R) where A is an alphabet and R is a finite set of “rule
schemes”. A rule scheme is a triple (v, w, D) such that, for some k > 0, v and w
are strings over AU X, and D is a mapping from X into P(A*). Whenever D
is understood, (v, w, D) is denoted by v — w. For 1 <7 < k, the language D(z;)
is called the range or domain of the variable z;.

A relation =, on A* is defined as follows. For strings s,t € A*, s =, t iff
there exists a rule scheme (v, w, D) € R, strings ¢i,...,0r € D(z1),..., D(zy)
respectively (where X, is the domain of D), and strings a and in A* such that

s = a-v<961 S PLy ey Ty £ @k>‘ﬁ and
t = a-w<961 P Ty @k>‘ﬁ'
As usual =7, denotes the transitive-reflexive closure of = . O

Definition 3.30 (tree rewriting system) A rewriting system with variables G' =
(A, R) is called a tree rewriting system if

i. A=XU{[,]} for some ranked alphabet ¥ and

ii. for each rule (v,w, D) € R, v and w are trees in Tx(X}) and, for 1 <17 <k,
D(z;) C Ty, where X}, is the domain of D. O

The bottom-up version of the finite tree transducer is introduced first.

Finite state tree transformations nineteen

Definition 3.31 (bottom-up finite tree transducer) A bottom-up (finite) tree
transducer is a structure M = (Q,%, A, R,Q,), where () is a ranked alphabet of
states, such that all elements of) have rank 1 and no other ranks, ¥ is a ranked
alphabet of input symbols, A is a (possibly infinite) ranked alphabet of output
symbols, @ N (XU A) =g, Qg is a subset of @ (the set of final states) and R is
a finite set of rules of one of the forms

i. a — q[t], where a € ¥y, g € Q and t € Ty, or

ii. a[Ql[xl]Qk[xk]] — q[t]7 where k Z 17 a € Elm qiy---5q8,4 € Q and ¢ €
Ta(X).

M is viewed as a tree rewriting system over the ranked alphabet Q UX U A with
R as the set of rules, such that the range of each variable occurring in R is Th.
Therefore the relations =, and =}, are well defined according to Definition 3.29.
The tree transformation realized by M, also denoted by M, is

M ={(s,t) € Ty x Ta | s =3, q[t] for some ¢ € Q4}.

We shall abbreviate “finite tree transducer” by ftt. O

Remark 3.32 The definition of the bottom-up finite tree transducer allows for an
infinite output alphabet. Since the number of rules is finite, only a finite subset
of the output alphabet will be actually used. O

Remark 3.33 Note that the finite tree transducer and the tree transformation it
realizes are both denoted by M. In general, we shall make no distinction between
a tree transducer and the tree transformation it realizes. O

Note that the bottom-up finite tree transducer defined above is non-deterministic,
since for each state and each input symbol, more than one rule can be applicable.

Definition 3.34 (bottom-up tree transformation) The class of tree transforma-
tions realized by bottom-up ftts will be denoted by B. An element of B will be
called a bottom-up tree transformation. O

We will now define some special classes of bottom-up finite tree transformations.
Each class of bottom-up tree tranducers is able to define a certain class of tree
transformations.

Linear bottom-up finite tree transducers are like linear tree homomorphisms in
the sense that copying of subtrees is prohibited. Linear bottom-up finite tree
transducers are defined with the aid of linear trees.

Definition 3.35 (linear tree) Let X be a ranked alphabet and £ > 0. A tree
t € Tx(Xy) is linear if each element of X, occurs at most once in t. The tree ¢ is
called non-deleting with respect to X, if each element of X;, occurs at least once
in . [l

twenty Tree automata and tree grammars

Definition 3.36 (linear) Let M = (Q,X, A, R,Q4) be a bottom-up ftt. M is

linear if the right hand side of each rule in R is linear. U

In a non-deleting bottom-up finite tree transducer, the deletion of subtrees is
prohibited.

Definition 3.37 (non-deleting) Let M = (Q,%,A, R,Q,) be a bottom-up ftt.
M is non-deleting if the right hand side of each rule in R is non-deleting with
respect to X;,, where k is the rank of the input symbol in the left hand side of
the rule.

Definition 3.38 (one-state) Let M = (Q,%, A, R,Q,) be a bottom-up ftt. M is
one-state (or pure) if () is a singleton.

With some restrictions on the set of rules, the bottom-up finite tree transducer,
which is essentially non-deterministic, can be made deterministic.

Definition 3.39 (partial deterministic) Let M = (Q,3, A, R,Q,) be a bottom-
up ftt. M is (partial) deterministic if

i. for each a € X, there is at most one rule in R with left hand side a and

ii. for each k¥ > 1, a € X} and ¢;,...,q, € @ there is at most one rule in R
with left hand side a[qi[#1] - - - qr[22]]- O

Definition 3.40 (total deterministic) Let M = (Q, %, A, R, Q4) be a bottom-up
ftt. M is total deterministic if

i. for each a € 3y there is exactly one rule in R with left hand side a,

ii. for each k¥ > 1, a € ¥j, and ¢,...,q; € @ there is exactly one rule in R
with left hand side a[gi[21] - - - g [2:]] and

ii. Q4= Q. O

Notation 3.41 The same terminology will be applied to the transformations real-
ized by such transducers. The classes of tree transformations obtained by putting
one or more of the above restrictions on the bottom-up tree transducer, will be
denoted by adding the symbols L, N, P, D and D; (standing for linear, non-
deleting, pure, deterministic and total deterministic respectively) to the letter B.
Thus the class of linear deterministic bottom-up tree transformations is denoted

by LDB. O

Remark 3.42 The total deterministic bottom-up ftts realize tree transformations
which are total functions. O

Now we will define the top-down version of the finite tree transducers.

Finite state tree transformations twentyone

Definition 3.43 (top-down finite tree transducer) A top-down finite tree trans-
ducer is a structure M = (Q,3, A, R,Q,), where Q, ¥ and A are as for the
bottom-up ftt (definition 3.31), Q4 C @ is a set of initial states and R is a finite
set of rules of one of the forms

i. qla[zy---ai]] = t, where k > 1, a € ¥, ¢ € Q and t € TA(Q[Xk]) or
ii. ¢la] = t, where ¢ € Q, a € ¥ and ¢ € Ta.
M is viewed as a tree rewriting system over the ranked alphabet Q UX U A with

R as the set of rules, such that the range of each variable in X is Tx. The tree
transformation realized by M, also denoted by M, is defined as

M ={(s,t) € Ts x Ta | q[s] =3, t for some ¢ € Q4}.

Again, both the finite tree transducer and the tree transformation are denoted

by M. O

Definition 3.44 (top-down tree transformation) The class of tree transforma-
tions realized by top-down ftts will be denoted by T. An element of T will be
called a top-down tree transformation . O

The classes of tree transformations for the bottom-up finite tree transducers are
also defined for the top-down finite tree transducers. Their definitions are as
follows.

Definition 3.45 (linear) Let M = (Q,%, A, R,Q,) be a top-down ftt. M is linear
if the right hand side of each rule in R is linear. U

Definition 3.46 (non-deleting) Let M = (Q,%, A, R,Q,) be a top-down ftt. M
is non-deleting if the right hand side of each rule in R is non-deleting with respect
to X3, where k is the rank of the input symbol in the left hand side of the rule.(]

Definition 3.47 (one-state) Let M = (Q, %X, A, R,Q4) be a top-down ftt. M is
one-state (or pure) if () is a singleton. O

Definition 3.48 (partial deterministic) Let M = (Q, %X, A, R,Q4) be a top-down
ftt. M is (partial) deterministic if
i.)y is a singleton,

ii. foreach ¢ € @, kK > 1 and a € X, there is at most one rule in R with left
hand side g[a[z; - - - 2],

iii. for each ¢ € @ and a € 3, there is at most one rule in R with left hand
side ¢la]. O

Definition 3.49 (total deterministic) Let M = (Q, X, A, R,Q4) be a top-down
ftt. M is total deterministic if

twentytwo Tree automata and tree grammars

i.)y is a singleton,

ii. for each ¢ € @, k£ > 1 and a € ¥, there is exactly one rule in R with left
hand side g[a[z; - - - 2],

iii. for each ¢ €) and a € Y, there is exactly one rule in R with left hand side
qla]. O

Remark 3.50 The total deterministic top-down ftts realize tree transformations
which are total functions. O

We use the same notation to denote the classes of top-down finite tree transfor-
mations as we did for the bottom-up finite tree transformations (Notation 3.41).

Remark 3.51 Tree homomorphisms can be realized by total deterministic one-
state top-down or bottom-up finite tree transducers: PD;B = PD;T = HOM.[

Since a total-deterministic top-down tree transducer realizes a total function for
each state, this function can be defined in an explicit way, as follows.

Definition 3.52 Let M = (Q,%, A, R,{qs}) be a total deterministic top-down
tree transducer. For each ¢ € () and a € X, let rhs, , be the right-hand side of
the unique rule with left-hand side g[a[z; - - - 21]]. Now the function defined by M,
also denoted by M, is the total function M : ¢} x Ty, — Ta, defined recursively as
follows. If s = a[s;---s;], k >0, a € ¥}, and sy,...,8;, € Tx, then for all ¢ € Q,

M(q,alsi -~ sp]) = rhsyo(qlw:] < M(q; $:))geq1<i<k-
Thus each subtree of the form g[z,] in rhs, , is replaced by M (g, s;). O

Without proof we note that M can also be defined by M(q,s) = t, such that
qs] =3, t. Hence, the tree transformation realized by M is M = {(s, M (g4, s)) |
s € Tx}. This corresponds to a kind of “context-freeness lemma” for total deter-
ministic top-down finite tree transducers, as follows.

Remark 3.53 Let M = (Q, 3, A, R,{q4}) be a total deterministic top-down finite

tree transducer and let ¢ € Q and s = a[s; -+ -], k> 0, a € X and sy,...,8; €
T, such that

qlalsy - - sp]] = Thsg o (@i 5i>1§i§k =
Then there exist t;; € Ta, with ¢ €) and 1 < 5 <k, such that
t=(rhsga(vi = si)r1<i<e) (dlsi] < 1gi)aequci<n

and, for all g € Q and 1 < j <k, q[s;] =4 tz; (or M(q,s;) =17;). O

Finite state tree transformations twentythree

3.2.3 Comparison of B and T

The class of bottom-up finite tree transformations and the class of top-down
finite tree transformations are quite different. Two properties that are specific to
bottom-up finite tree transducers are the following.

Property 3.54 (B) Non-determinism followed by copying. A bottom-up ftt has
the ability of first processing an input subtree non-deterministically and then
copying the resulting output tree. O

Property 3.55 (B’) Checking followed by deletion. A bottom-up ftt has the abil-
ity of first processing an input subtree and then deleting the resulting output
subtree. In other words, depending on a (recognizable) property of the input
subtree, it can decide whether to delete the output subtree or to do something
else with it.

Top-down finite tree transducers have the following specific property.

Property 3.56 (T) Copying followed by different processing. A top-down ftt has
the ability of first copying an input subtree and then treating the resulting copies
differently.

The following theorem states that both bottom-up finite tree transducers and
top-down finite tree transducers can define tree transformations that can not be
defined by the other class.

Theorem 3.57 The classes of bottom-up and top-down finite tree transforma-
tions are incomparable. In particular, there are tree transformations in PNB —T
and PNT — B.

Proof In [Eng74, pages 95-97]. O

The composition of finite tree transformations can lead out of the classes to which
they belong.

Theorem 3.58 T and B are not closed under composition. In particular, there
are tree transformations in (HOM o REL) — T and (REL o HOM) — B.

Proof In [Eng74, pages 98-99]. O

3.2.4 Some results on tree transformations

This section contains some closure and decidability results about bottom-up finite
tree transformations and top-down finite tree transformations. Only the results
that are needed in the remainder of this thesis are presented here. Many more,
and the proofs of the ones presented here, can be found in [Eng74], [Eng75] and
[Eng77].

twentyfour Tree automata and tree grammars

Theorem 3.59 RECOG is closed under inverse bottom-up and top-down tree
transformations (in particular under inverse homomorphisms).

Proof In [Eng74, page 112]. O

Definition 3.60 Let K be a class of tree transformations. A K-surface tree lan-
guage is a language M (L) with M € K and L € RECOG. The class of K-surface
languages will be denoted by K—SUR. As a special case, (BUT)*—SUR will
be denoted by SUR. For the definition of (B U T)*, see Definition 3.19. a

Theorem 3.61 The emptiness and membership problems are solvable for SUR.
Proof In [Eng74, page 137]. O

Theorem 3.62 The finiteness problem is solvable for SUR.
Proof In [Eng74, pages 138 and 139]. O

twentyfive

Chapter four

Hypergraphs, hypergraph
languages and hypergraph
expressions

The concepts of graph grammars and graph languages can be seen as a gener-
alization of the concepts of string grammars and string languages. They have
applications in a wide variety of areas, among which are formal semantics and
specifications, pattern recognition and even some branches of biology. Graph
grammars come in three major flavors, edge rewriting grammars, node rewriting
grammars and graph rewriting grammars. We will consider hypergraph gram-
mars of the edge rewriting type, for it turns out that they have nice context-free
properties. Hypergraph grammars and languages are an even more generalized
concept than graph languages. The latter are a special case of the first.

In this chapter, we describe two formalisms for generating hypergraph languages.
The first formalism is a straightforward rewriting grammar, where non-terminal
hyperedges are replaced by hypergraphs, which may contain non-terminal hyper-
edges themselves. The second formalism generates hypergraphs in an indirect
manner. A set of operators on hypergraphs is defined, together with a tree
grammar over this set, which generates hypergraph expressions. The hypergraph
language is generated by evaluating these expressions. It turns out that the two
formalisms generate the same class of hypergraph languages.

twentysix Hypergraphs, hypergraph languages and hypergraph expressions

4.1 Hypergraphs

A variety of different definitions of hypergraphs and hypergraph grammars is in
use. Examples can be found in [EngHey91], [HabKre87], [Hab92] and [BauCou87].
We chose for the definitions in [Hab92] since this book was also the source for the
predicates and numerical functions on hypergraphs and hypergraph languages.
All definitions and theorems in this section and the sections 4.2 and 4.3 are from
[Hab92], sometimes with a minor alteration.

A hypergraph consists of two sets, the set of nodes V' and the set of hyperedges F.
Each hyperedge has a number of incoming tentacles that are attached to nodes,
and a number of outgoing tentacles, also attached to nodes. For each node in F,
the sequence of nodes attached to the incoming tentacles is determined by the
source function s and the ordered set of nodes attached to the outgoing tentacles
is determined by the target function ¢. Furthermore, each hyperedge will be
labelled by the labeling function .

The labels are elements of a fixed infinite set, denoted by €. Every hyperedge
will be labelled with an element from €.

Definition 4.1 (hypergraph) Let C C Q. A hypergraph over C is a 5-tuple
H = (V,F, s,t,1), where V is a finite set of nodes, F is a finite set of hyperedges,
s: F — V*is a mapping, assigning a sequence of sources s(e) to each hyperedge
e € E,t: F — V*is a mapping assigning a sequence of targets t(e) to each
hyperedge and [: F — C is a mapping which assigns a label to each hyperedge.
The sequence att(e) = s(e) - t(e) is called the attachment of e. The set of all
nodes occurring in att(e) is denoted by ATT(e). A hyperedge e € E is called a
(m,n)-edge (for m,n € N) if |s(e)| = m and |t(e)| = n. The pair (m,n) is the
type of e, denoted by type(e). The set

{(7,7) |1 < t,5 <m+n,type(e) = (m,n), att(e); = att(e);}.
is called the relation of e, and is denoted by rel(e). O

As we shall see in later sections, hyperedges will be replaced by hypergraphs.
To accomplish this it is necessary to have some distinguished nodes of a hyper-
graph, that can be attached to the source and target nodes of the hyperedge that
must be replaced. These distinguished nodes are called the external nodes of the
hypergraph.

Definition 4.2 (multi-pointed hypergraph) Let C C Q. A multi-pointed hyper-
graph over C is a 7-tuple H = (V, E,s,t,l, begin, end), where (V, E,s,t,1) is a
hypergraph over C and begin, end € V*. The set of nodes occurring in the se-
quence exty = beging - endy is called the set of external nodes of I, and is
denoted by EXTy. The set Vg — EXTy is called the set of internal nodes of
H, and is denoted by INTy. H is called a (m,n)-hypergraph (for m,n € N) if
|beging| = m and |endy| = n. The type of H, denoted by type(H) is the pair

Hypergraphs twentyseven

(m,n). The set
{(7/7]) | 1 S Zv] S m + n, type(H) = (mvn)v extH,i = e$tH,j} .
is called the relation of H, and is denoted by rel(H). O

In the definitions of hypergraphs and multi-pointed hypergraphs, one hyperedge
can be attached to the same node at a number of tentacles. This turns out to
be undesirable. We will therefore restrict ourselves to hypergraphs where each
hyperedge can be attached to each node at only one tentacle. Hypergraphs with
this property are called repetition-free hypergraphs.

Definition 4.3 (repetition-freeness)

i. A multi-pointed hypergraph H is said to be repetition-free if exty; # exty ;
for all 1 < 4,j < |exty| with ¢ # j. Note that for H a repetition-free
hypergraph, rel(H) = {(¢,¢) | 1 <@ < |exty|}.

ii. Let H be a hypergraph. Then a hyperedge e € Fy is said to be repetition
free if atty(e); # atty(e); for all 1 < ¢, 5 < |attgy(e)| with ¢ # j. If a
hyperedge e is repetition-free, then rel(e) = {(i,¢) | 1 <@ <|atty(e)|}.

iii. A multi-pointed hypergraph H is said to be completely repetition-free if it
is repetition-free and all hyperedges in Fy are repetition-free.

iv. The set of all completely repetition-free hypergraphs over C is denoted by
HGc¢ (HGgq is denoted by HG). The set of all completely repetition-free
hypergraphs over C of type (m,n) is denoted by HGZ" (or HG™", if
CcC=9Q). O

Assumption 4.4 From now on, we will consider completely repetition-free hyper-
graphs only.

An ordinary graph is a special form of a hypergraph.

Definition 4.5 (graph) Let C C Q. A completely repetition-free (m,n)-hyper-
graph H over C is a (m,n)-graph if all hyperedges of H are (1,1)-hyperedges. A
hyperedge in a graph is called an edge. The set of all graphs is denoted by GR.[J

We are usually not interested in the identity of the nodes and hyperedges of
a hypergraph, and therefore do not want to distinguish between hypergraphs
that are “structurally equivalent” and differ only in their nodes and hyperedges.
Hypergraphs that are structurally equivalent, are called isomorphic.

Definition 4.6 (subhypergraphs, morphisms, isomorphisms)

i. Let H, H' € HG. Then H is called a subhypergraph of H', denoted by
HCH,if Vg CVy, Eg C Fyi, and sy(e) = spi(e), ty(e) = ty(e),
lg(e) = lgi(e) for all e € Ey. Note that nothing is assumed about the
relation of the external nodes.

twentyeight _ Hypergraphs, hypergraph languages and hypergraph expressions

ii.

iii.

Let H,H' € HG. A hypergraph morphism h from H to H', denoted by
h : H — H’, consists of a pair of mappings h = (hy : Vg — Vg, hg :
Ey — Eg) satisfying the conditions A3 (sg(e)) = sg(hr(e)), hi (tu(e)) =
ty(he(e)), and ly(e)) = lg (hp(e)) for all e € Ey.

A hypergraph morphism is said to be an isomorphism from H to H' if
hy : Vg — Vg and hg 1 Fyg — Fyo are bijective mappings, hj (beging) =
beging,, and h} (endy) = endy.. If there is an isomorphism from H to H’,
then H and H’ are said to be isomorphic, denoted by H = H'. The class
of all hypergraphs isomorphic to a hypergraph H is denoted by [H].

A set of hypergraphs that is closed under “structural equivalence”, is called a
hypergraph language. If a hypergraph is in the language, then all hypergraphs
that are structurally equivalent to it, are also in the language.

Definition 4.7 (hypergraph language) Let C C Q.

i.

ii.

A set L € HG¢ of multi-pointed hypergraphs is called a hypergraph lan-
guage over C if it is closed under isomorphisms, i.e. if H € L and H = H',
then H' € L. In particular, I. C HG¢ is said to be finite if the number of
non-isomorphic hypergraphs in L is finite.

L C HGe is said to be homogeneous if type(H) = type(H') for all H, H' €
L. In this case, type(L) denotes the type of the hypergraphs in L. Note
that type(H) = type(H') implies rel(H) = rel(H'), since H and H’ are
both repetition-free. O

Finally, a number of special types of hypergraphs will be defined. Ordinary

hypergraphs can contain any number of hyperedges. There are two special types
of hypergraphs, both with only one hyperedge.

Definition 4.8 (singletons and handles)

e H € HG is said to be a singleton if Vg = EXTg and |Fg| = 1. The single

hyperedge is denoted as e(H) and its label as {(H).

A singleton H with Ey = {e}, sy(e) = beging and ty(e) = endy is said
to be a handle. If ly(e) = A, type(e) = (m,n) then H is said to be the
(m,n)-handle induced by A and is denoted by (A, (m,n))* or A(m,n)*. In

this case, H is unique up to isomorphism.

Let H € HG. Then each hyperedge ¢ € Fy induces a handle e* by re-
stricting the mappings sg, tg and [y to the set {e}, restricting the set of
nodes to those occurring in sy (e) and ¢y (e), and choosing begin,. = sy (€)
and end.. = ty(e). Since we assume complete repetition-freeness, e* =
A(m,n)*, where A =1(e) and (m,n) = type(e). O

Hyperedge replacement twentynine

4.2 Hyperedge replacement

The replacement of a hyperedge by a hypergraph is the key construction in hyper-
edge replacement grammars. The replacement of a hyperedge by a hypergraph
consists of the removal of the hyperedge, and the attachment of the hypergraph
at the nodes to which the hyperedge was attached. In order to be replaced, the
hypergraph must “fit” at the position that was previously occupied by the hyper-
edge. The so called “base for replacement” is used to assure that the hypergraph
fits. It also provides a means for the simultaneous replacement of more than one
hyperedge. Hyperedge replacement is defined formally, as follows.

Definition 4.9 (hyperedge replacement) Let H € HG be a hypergraph (com-
pletely repetition-free) and B C Fy be a set of hyperedges to be replaced. A
mapping rpl : B — HG is said to be a base for replacement if for all b € B,
type (rpl(b)) = type(b). Let H € HG, B C Ey and rpl : B — HG be a base
for replacement. Then the replacement of B in H by rpl yields a completely
repetition-free multi-pointed hypergraph X € HG, given by

i Vx = Ve UlUpen INT 10,
ii. Fx = (Eg — B)UUyen Erpis)s
iii. each hyperedge keeps it label,
iv. each hyperedge of g — B keeps its sources and targets,

v. each hyperedge of E,), for all b € B, keeps its internal sources and targets
and the external ones are handed over to the corresponding sources and
targets of b in H, thus for all b € B and e € E, i), sx(e) = b (s,p15)(€))
and tx(e) = h*(t,pis)(€)), where h : Vi 1) = Vi is defined by h(v) = v for
v € INT, 1), h(z;) = s; for 1 < i < m, where begin, i) = ¥1 Ty and
s (b) =81+ 55, and h(y;) =t; for 1 < j < n, where end,) = y1 -+ n
and tg(b) =t ---t, (note that, since both b and rpl(b) are repetition-free,
h(z;) = h(z;) only if z; = z; and h(y;) = h(y;) ouly if y; = y;),

vi. beginy = beging and endx = endy.

The multi-pointed hypergraph X is denoted by RPL(H, rpl). If B ={ey,...,e,}
and rpl(e;) = R; for 1 < ¢ < n we also write H(e; + Ry,...,e, « R,) instead
of RPL(H, rpl). O

Although it is slightly different, this definition coincides with Definition 1.2.1
in [Hab92], since, for repetition-free hypergraphs, type(rpl(b)) = type(b) implies
rel(rpl(b)) = rel(b) if both b and rpl(b) are repetition-free.

Remark 4.10

i. The construction above determines a unique hypergraph X. More precisely,
X is unique up to isomorphism because the construction of the disjoint
union is unique up to isomorphism.

thirty Hypergraphs, hypergraph languages and hypergraph expressions

ii. Let h : H — H'’ be a hypergraph morphism. If rpl : B — HG is a base
for replacement in H, such that if hg(e) = hg(€e’) then rpl(e) = rpl(e’),
and hg(B) is the image of B under h, then rpl’ : hg(B) — HG with
rpl' (hg(€)) = rpl(e) for e € B is a base for replacement in H’. Vice versa,
if rpl’ : B — HG is a base for replacement in H’, then rpl : hz'(B') — HG
with rpl(e) = rpl(hg(e)) for e € hz'(B’) is a base for replacement in H.

4.3 Hypergraph grammars

A hypergraph grammar is similar to a string grammar in the sense that non-
terminals are rewritten by the right-hand sides of the rules or productions. How-
ever, for string grammars, these right-hand sides consist of strings, whereas for
hypergraph grammars, they consist of hypergraphs.

Let Y = {y1,92,¥3,...} C Q be a set of variables. These variables will not be
used until Section 4.4, but they must be defined prior to the definition of the
productions in hypergraph grammars, since we do not allow them to be used as
labels in hypergraph grammars.

Definition 4.11 (productions and derivations)

i. Let N C Q\Y be a set of non-terminals. A production over N is an ordered
pair p = (A, R) with A € N and R € HG. A production (4, R) will usually
be written as A — R. The non-terminal A is called the left-hand side of
p, denoted by [hs(p), and the completely repetition-free hypergraph R is
called the right-hand side of p, denoted by rhs(p).

ii. Let H,H' € HG, p = A — R be a production, and e € Fy be a hyperedge
such that [g(e) = A and rpl : {e} — HG, given by rpl(e) = R is a base
for replacement. Then H directly derives H' by p, applied to e, if H' is
isomorphic to H (e < R). We write H = _ H', H = H'or H =5, H'
provided that p € P.

iii. A sequence of direct derivations Hy =, ., -+ =, ., H; is called a
derivation of length k from Hy to Hy. The derivation is shortly denoted by
Hy =% Hy, provided that pi,...,p, € P. If the length of the derivation
is of interest, we write Hy, =% H,. Additionally, in the case H, = H|, we

speak of a derivation from H, to H| of length 0. g

A hypergraph replacement grammar is a construction, where non-terminal hy-
peredges will be replaced by hypergraphs, by applying the previously defined
productions.

Definition 4.12 (hyperedge replacement grammar)

i. A hyperedge-replacement grammar is a system G = (N,T,P,7), where
N C Q\Y is a set of non-terminals, 7' C Q\ Y is a set of terminals, P is
a finite set of productions over N and Z € HG is the axiom.

Hypergraph grammars thirtyone

ii. The hypergraph language L(G), generated by G consists of all terminal
labeled hypergraphs which can be derived from Z by applying productions
of P, or

L(G)={H€HGy | Z =% HY.

iii. Two hyperedge replacement grammars GG and G’ are said to be equivalent

if £(G) = L(GY).

iv. Let G = (N,T,P,Z) be a hyperedge replacement grammar. The type of
G, denoted by type (), is the type of the axiom, thus type(G) = type(7).

v. The set of all hyperedge replacement grammars is denoted by HRG. For
m,n € N, the set of all hyperedge replacement grammars of type (m,n) is
denoted by HRG™".

vi. Let C C Q. The set of all hyperedge replacement grammars over C, denoted
by HRGc, is defined by HRG¢ = {(N,T,P,7) € HRG | T C C}. For
m,n € N, the set of all hyperedge replacement grammars over C of type
(m,n), denoted by HRGE", is defined by HRGE" = {(N,T,P,7) €
HRG™" |T C C}. O

Remark 4.13 For a hyperedge replacement grammar G, the set £(G) is closed
under isomorphisms. Hence, £(G) is a hypergraph language. Moreover L(G)
is homogeneous because type(H) = type(G) for all H € L(G). Therefore,
non-homogeneous languages cannot be generated by the grammars introduced
above. O

In [Hab92], besides hyperedge replacement grammars, edge replacement gram-
mars are considered, in order to simplify the examples of numerical functions on
hypergraphs. Edge replacement grammars generate ordinary graphs.

Definition 4.14 (edge replacement grammar) A hyperedge replacement gram-
mar G = (N, T, P,7) is an edge replacement grammar if 7 is a (1,1)-graph and
all right-hand sides of productions in P are (1,1)-graphs. The set of all edge
replacement grammars is denoted by ERG. O

In [Hab92] the axiom Z should be a graph, not necessarily a (1,1)-graph. How-
ever, [Hab92] is not always very precise about this distinction.

Example 4.15 This example describes a hyperedge replacement grammar that
generates directed “wheel” graphs. Directed wheel graphs are directed graphs,
consisting of a circular graph, the “rim”, and as many spokes as there are edges
on the rim. Fach spoke connects the hub with one of the edges. The wheel graph
with n edges on the rim is denoted by W,,. For example

W3 = Wy = and Wg =

thirtytwo Hypergraphs, hypergraph languages and hypergraph expressions

In this example, (1,1)-hyperedges are represented by arrows, while hyperedges
with type not equal to (1,1), are represented by a square with the label of the
hyperedge in it. The terminal labels are omitted. Now let G, = (N, T, P, Z) be a
hyperedge replacement grammar where N = {5, A}, T'= {{}, Z is a (0,0)-handle
with label 5" and

4 3 2 1
p= P0:5—>3,P1:A—>“ ,PZ:A%W ,
N

where every (1, 1)-hyperedge is labelled with ¢ (not shown). The relevant external
nodes and source and target nodes are as follows (the other nodes and hyperedges
do not have a name).

| begin end s(a) t(a)
rhs(Py) - - 12 3
rhs(Py) | 42 3 12 3
rhs(Ps) | 12 3 - -

Note that, although the nodes and hyperedges in the various hypergraphs have
the same names, they are not the same nodes and hyperedges. Now, for example,
the derivation of Wy in G}, is

/(5= S%%%@WS.

Clearly, £L(G}) = {W,, | n € N,n > 3}, which is an infinite subset of GR. Note
that, although G/, generates only (0,0)-graphs, it is not an edge replacement
grammar. (|

With the hypergraph grammars, a special class of hypergraph languages can
be defined, namely the class of context-free hypergraph languages. The name
context-free stems from the fact that the replacement process only depends on
the hyperedge that is replaced, and not on its context. This will be made more
precise in Theorem 4.27.

Definition 4.16 (context-free hypergraph language) Let C C Q, m,n € N and
L C HG¢ be a hypergraph language over C.

i. L is called a context-free hypergraph language of type (m,n)if L = L(G) for
some G € HRGE™. Note that this implies that L must be homogeneous.
The set of all context-free hypergraph languages over C of type (m,n) is
denoted by CFHGZ".

ii. L is called a context-free hypergraph language it L =,y Li, with L; €
CFHG/ """, for some k > 1 and m;,n; € Nfor 1 < i < k. The set of all
context-free hypergraph languages over C is denoted by CFHG(.

Hypergraph grammars thirtythree

If C = Q, the subscript ¢ is usually omitted. O

The definition of a context-free hypergraph language as the union of a finite
number of context-free hypergraph languages of different types, seems not very
natural. The reason for this definition becomes apparent in Section 4.5.

As with string grammars, it is often convenient if the constituents of a grammar
comply to certain standards. If this is the case, the grammar is said to be in
normal form.

Theorem 4.17 (normal form theorem) For each hyperedge replacement gram-
mar G = (N,T, P, 7), an equivalent grammar G' = (N', 7", P', Z') can be con-
structed such that N’ and 7" are finite, N and 17" are disjoint, rhs(p) € HG y/ur
for every p € P, and 7' is a handle in HGy.. A hyperedge replacement grammar
satisfying these conditions is said to be a usual hyperedge replacement grammar.

Proof In [Hab92], page 25. O

Example 4.18 The hyperedge replacement grammar in Example 4.15is in normal
form. O

An even stronger standard form of grammars are typed grammars. In a typed
grammar, each non-terminal has a type associated with it. If in a typed grammar,
two hyperedges are labelled with the same non-terminal, they can only be replaced
by hypergraphs of the same type.

Definition 4.19 (typed grammars) A usual hyperedge replacement grammar
G = (N,T,P,7) is said to be typed if there is a mapping ltype : N — N x N
such that for all hypergraphs H in the grammar (i.e. the right-hand sides of
productions as well as the axiom) and all hyperedges e € EFy with label in N,
ltype (g (e)) = type(e), and for all productions A — R € P, ltype(A) = type(R).
For A € N, ltype(A) is said to be the type of A. O

As with the normal form, for every grammar it is possible to find an equivalent
grammar (that is a grammar that generates the same hypergraph language),
which is typed.

Theorem 4.20 (typification theorem) For each hyperedge replacement gram-
mar, an equivalent typed grammar can be constructed.

Proof In [Hab92], pages 26 and 27. O

Remark 4.21

i. Let G = (N,T, P, 7)be atyped hyperedge replacement grammar and ltype :
N — N x N the corresponding type function. Then, for A € N, A* denotes
the handle (A, ltype(A))* induced by A and the type of A. Note that
Z=U7Z).

thirtyfour Hypergraphs, hypergraph languages and hypergraph expressions

ii. A hyperedge replacement grammar G' = (N,T, P, 7) is said to be com-
pletely typed if there is a mapping ltype : N UT — N x N such that for all
hypergraphs H in the grammar and all hyperedges e € Ey, ltype(ly(e)) =
type(e), and for all productions A — R € P, ltype(A) = type(R). It can
be shown that for each hyperedge replacement grammar G, there is a com-
pletely typed grammar G’ such that £(G) is equal to £(G”) up to the added
type information. O

Example 4.22 The hyperedge replacement grammar in Example 4.15 is typed.
The typing function ltype : N — N x N is defined by ltype(S) = (0,0) and
ltype(A) = (2,1). O

In [Hab92], yet another special class of hypergraph replacement grammars is
introduced. This is the class of well-formed hyperedge replacement grammars.
However, since we consider only completely repetition-free hypergraphs, all hy-
peredge replacement grammars are completely well-formed in the sense of the
remark after Theorem 1.4.6 in [Hab92]. From this remark we can see that re-
stricting ourselves to completely repetition-free hypergraphs does not essentially
limit the generative power of the hyperedge replacement grammars.

By the context-free nature of hyperedge replacement, it is possible to simultane-
ously replace an arbitrary collection of hyperedges instead of one single hyperedge.

Definition 4.23 (parallel derivations)

i. Let H € HG, B C Fg and P be a set of productions. A mapping prod :
B — P is called a production base in H if I (b) = lhs(prod(b)) for all b € B
and rpl : B — HG given by rpl(b) = rhs(prod(b)) is a base for replacement
in H.

ii. Let H,H' € HG and prod : B — P be a production base in H. Then H
directly derives H’ in parallel (by prod) if H’ is isomorphic to RPL(H, rpl)
where rpl : B — HG is given by rpl(b) = rhs(prod (b)) for all b € B. In
this case we write H = H’ by prod or H = H'.

iii. A sequence of direct parallel derivations Hy = ---= H} by prod,, ..., prod,
is called a parallel derivation of length k£ from H, to H, and is denoted by
Hy =* Hp. If the length of the derivation shall be stressed, we write
H =% H,. Additionally, in the case H, = H}, we speak of a parallel
derivation from H, to H/ of length 0.

iv. A direct parallel derivation H = H' by the empty base prod : @ — P is
called a dummy. A parallel derivation is said to be valid if at least one of
its steps is not a dummy. [l

Remark 4.24 Parallel derivations generalize the usual sequential derivations in
the following sense: For each direct sequential derivation H =— H' by p € P
applied to e, there is a direct parallel derivation H = H’ by prod : {e} — P with

prod(e) = p.

Hypergraph expressions thirtyfive

Each parallel derivation can be performed by a number of sequential derivations.
The order in which the sequential derivations are performed is irrelevant.

Theorem 4.25 (sequentialization theorem) Let H = H’ by prod : B — P be a
direct parallel derivation. Then, for each enumeration e, ..., ¢, of the elements in
B, there is a derivation H = Hy = --- = H,, = H' by prod(e),...,prod(e,).

Proof In [Hab92], page 45. O

Corollary 4.26 For each parallel derivation H =* H’, there is a sequential deriva-
tion H =" H'. O

From now on we will consider parallel derivations only, and we will use short
double arrows (=) to denote them.

As with string languages, we have a context-freeness lemma (Lemma I1.2.4 in
[Hab92]). This lemma states that derivations in hyperedge replacement grammars
can be decomposed in “thin fibres” (where one starts from the subhypergraph
induced by a hyperedge) without losing information. This context-freeness lemma
can be stated in an alternative way, which is more convenient in proofs. The
decomposition theorem states that each derivation can be decomposed into a
number of smaller derivations. This is a generalization of a property that is
well-known from ordinary context-free grammars.

Theorem 4.27 (decomposition of derivations) Let I, H € HG and F' be a han-
dle. Let £ > 0. Then there is a derivation F' =*** H iff there is a direct derivation
F = G and, for each e € g labelled with a non-terminal, there is a derivation
e* =% H(e) such that H = RPL(G, rpl) with rpl(e) = H (e) for e € Fg.

Proof In [Hab92], page 50. O

Remark 4.28 Given a hypergraph H € HG, each derivation of H induces a
decomposition of H into smaller hypergraphs. Let H be a hypergraph and
F =%t I be a derivation of H from the handle F. Then the derivation de-
composes into a direct derivation F' = G and derivations e* =* H(e) with
H(e) C H (e € Eg). For e € Fg, the derivation e* =* H(e) may be valid or not.
In the first case, it has the same form as the original derivation, but it is shorter
than the original one. In the latter case, H (e) is isomorphic to €* and, hence, a

handle. O

4.4 Hypergraph expressions

In this section, we will define an alternative method for generating hypergraph
languages. The hypergraph languages are not generated by hyperedge replace-
ment grammars, but by evaluating a set of hypergraph expressions that is gener-
ated by a regular tree grammar. For the hypergraph expressions, we define a set
of hypergraph operators, called the substitution operators. Then we use regular
tree grammars over these substitution operators, to generate expressions over the

thirtysix Hypergraphs, hypergraph languages and hypergraph expressions

operators. This method for the generation of hypergraphs was first presented in

[BauCou87].

For the definition of the substitution operators, recall the definition of Y as a set
of variables {yi, ¥, ys,...} C €.

Definition 4.29 (substitution operator) Let & > 0. A completely repetition-free
hypergraph H € HG™" is called a substitution operator of rank k, if there are
distinct hyperedges eq,..., e, € Fg such that

i. lg(e;) =y for 1 <i <k and

. ly(e) g Yife#e forl <i<k.

These hyperedges ey,...,e; are denoted by wvarg(l),...,vary(k) respectively,
thus ly(varg(i)) = y; for 1 < @ < k. A substitution operator of rank k has
precisely k edges which are labeled with a variable from Y. A substitution
operator of rank 0 is a graph constant.

The (infinite) set of all substitution operators will be denoted by SUB. The
set of all substitution operators of rank k& will be denoted by SUB;. Thus
SUB, = HGgq\y is the set of constant multi-pointed hypergraphs. The set
of all substitution operators of type (m,n) for m,n € N is denoted by SUB™".
Clearly for all £ > 0, SUB; C SUB and for all m,n € N, SUB™" C SUB.

For k,m,n € N, a substitution operator H € SUB}"" induces a k-ary mapping
subg : HG™™ x ... x HG™"* — HG™",

defined, if vary (7) = e; and type(e;) = type(H;) = (m;,n;) for 1 <@ <k, by
subg(Hy,...,Hy) = H{ey < Hy,...,ep < Hy),

or suby(Hy,...,Hy) = RPL(H, rpl), where rpl(e;) = H; for 1 <i < k. Note that
suby is a partial function HG* — HG. (|

The name substitution operator stems from their meaning as the substitution of
hypergraphs for the variables.

An expression over SUB is represented by a tree in the usual way, where SUB
is considered to be a ranked alphabet. Expressions over SUB are trees over this
alphabet.

Definition 4.30 (expressions over substitution operators) Tsyp is the set of all
expressions that can be formed with the operators from SUB. If ¥ C SUB, then
Ty is the set of expressions that can be formed with the operators from . If X
is finite, then Ty is a tree language over X. For t € Tsyg, type(t) = type(root(t))
by definition. O

Hypergraph expressions thirtyseven

Each substitution operator of rank k in an expression, has k “arguments” (which
are expressions over substitution operators), of which the values are substituted
for the variables in the substitution operator. But for the value of an expression to
be substituted for a variable, the type of this value and the type of the hyperedge
labelled with the variable, must be equal. Expressions that have this property for
all the substitution operators that make up the expression, are called well-typed
expressions.

Definition 4.31 (well-typed expressions) Let ¥ C SUB be a finite set of sub-
stitution operators. The set of well-typed expressions over 3, denoted by WTy,
is the subset of Ty, defined as follows.
i. Foreach H € g, H € WTy.
ii. For k > 1, H € ¥ and ty,...,t, € WT'y, if type(vary(i)) = type(t;) for
1<i<k, then H[t;---t;] € WTx.

An expression t € Ty is well-typed iff t € WTyg. The set of all well-typed
expressions is denoted by WTgus. O

The set of all well-typed expressions over a finite subset ¥ of SUB, defined above,
is a regular tree language.

Theorem 4.32 For every finite 2> C SUB, WTy € RECOG.

Proof Let X be a finite subset of SUB. Now construct a regular tree grammar

G=(N,X,R,S5), where

N = {type(H)| H € X}
U{type(varg (1)) | k> 1,H € ¥, 1 <i <k}
u{s},
and
R = {type(H) — Hl[type(varg (1)) - - - type(varg (k)] | k > 0, H € Xy}
U{S — type(H) | H € X}.
Clearly, £L(G) = WTs. a

For a well-typed expression over the substitution operators, the evaluation of the
expression, which is performed by the bottom-up substitution of hypergraphs
for variables in the substitution operators, results in a hypergraph, where the
hyperedges are no longer labelled with variables.

Definition 4.33 Let t € Tsyp be an expression over SUB. The hypergraph that
is represented by ¢ is wval(t), where the mapping val : Tsuyp — HG is defined
recursively as follows.

i. For H € %, val(H) = H.

thirtyeight _ Hypergraphs, hypergraph languages and hypergraph expressions

ii. For k > 1, H € SUBy, ty,...,t € Tsup and type(vary (1)) = type(t;) for
1<i<k,val(H[t;---t]) = suby (val(ty),...,val(ty)).

It is easy to see that type(val(t)) = type(t), provided that val(t) is defined. Note
that val(t) is defined iff t € WT'syg. O

The above definitions can also be made using the theory of universal algebra,
by defining $ = (HG, a) as the SUB-algebra where for each # € SUBy, k >
0, ap(H) : HG* — HG is defined by ai(H) = suby. The mapping val can
then be defined as the initial homomorphism m® of . Note that the universal
algebra theory as described in Section 2.3 can not be used, since the types of the
hypergraphs can not be taken into account. This problem can be solved by using
so-called many-sorted algebras (see [Wec92]).

Now the alternative method for generating hypergraph languages is as follows.
Let G € RTGgup be aregular tree grammar over SUB. The expression language
L(G), generated by G, evaluates to the hypergraph language val(£(G)). In this
way, the class of hypergraph languages {val(L) | L C Tsup, L € RECOG} can
be generated, according to Theorem 3.10.

4.5 Hypergraph replacement grammars versus
regular tree grammars

In this section it will be shown that the class of hypergraph languages {val(L) |
L C Tsup, L € RECOG} is equal to the class of context-free hypergraph lan-
guages, CFHG. In order to do so, some difficulties must be overcome. For
example, hyperedge replacement grammars generate only homogeneous hyper-
graph languages, while expressions over substitution operators may generate
mixed typed hypergraph languages. In order to solve this discrepancy, we will
first restrict ourselves to homogeneous hypergraph languages. At the end of this
section, we will generalize the results from the homogeneous case to the case of
mixed typed hypergraph languages. This is why the definition of context-free
hypergraph languages (Definition 4.16) was somewhat unnatural.

The tree languages over substitution operators that we used so far, have mixed
types. We now introduce recognizable tree languages, where all trees have the
same type.

Definition 4.34 (homogeneous regular tree language) A regular tree language
L C Tsup is said to be homogeneous if there is a pair (m,n) € N x N, such that
for every t € L, type(t) = (m,n). From the definition of val, it can be seen that
if L is homogeneous, then val(L) is homogeneous. Conversely, if L C WTsyp
and val(L) is homogeneous, then L is homogeneous. O

Ordinary regular tree grammars over SUB generate mixed typed tree languages.
Therefore, single typed regular tree grammars are defined.

Hypergraph replacement grammars versus regular tree grammars ____ thirtynine

Definition 4.35 (single typed regular tree grammar) Let ¢ = (N, X, R, S) be
a regular tree grammar in normal form, with ¥ C SUB. Then ' is said to be
single typed, if there is a pair (m,n) € N x N, such that for all rules r € R, if
lhs(r) = 5, then type(rhs(r)) = (m,n). The pair (m,n) is called the type of G,
denoted by type(G). It is clear that if ¢t € L(G), then type(t) = type(G). a

From these definitions it can easily be seen, that for every regular tree grammar
G € RTGgyp in normal form, G is single typed iff £(G) is homogeneous. Hence,
L C Tsyp is a homogeneous regular tree language iff L = £(G) for some single
typed regular tree grammar.

Single typed regular tree grammars generate only homogeneous tree languages,
but the trees from these languages are not necessarily well-typed. We now intro-
duce a type of regular tree grammars, that generate homogeneous tree languages,
that are also well-typed.

Definition 4.36 (typed regular tree grammar) A regular tree grammar in normal
form G = (N,X, R, S5), with ¥ C SUB, is said to be typed if there is a mapping
ltype : N — N x N, such that for all rules A — H[A,---A;] € R, with k& > 0,
ltype(A) = type(H) and ltype(A;) = type(vary(i)) for 1 <i < k. O

Note that a typed regular tree grammar is also single typed, and therefore only
generates homogeneous tree languages. Furthermore, for each typed regular tree

grammar G, L(G) C WT'syg.

Theorem 4.37 For each single typed regular tree grammar ¢ € RTGguyg, there
is a typed regular tree grammar G’ € RTGgug, such that £(G") = L(G) N
WT'sus.

Proof Let G = (N,X, R, 5) € RTGguyp be a single typed regular tree grammar.
Now construct G' = (N’, X, R',S"), where N' = N x TYP, with TYP C N x N
the set of all types occurring in G, i.e. the types of all the hypergraphs as well
as the types of all the hyperedges in . Furthermore

R = {(A, type(H)) — H[(A1, type(varg(1))) - - - (A, type(varg (k)))]
| A— H[A,---A;] € R}

and S’ = (9, type(G)). Now G is a typed regular tree grammar, where the typing
function ltype : N' — N x N is defined by ltype((A, (m,n))) = (m,n) for each
(A, (m,n)) € N'. Furthermore, it can be shown with induction to the length
n of the derivations, that for all A € N and all ¢t € Tx, A =7% t and ¢ is well-
typed iff (A, type(t)) =%, t. From this it follows that £(G') = L(G) N WTx.
Note that 7 is the “product” of G and the regular tree grammar in the proof of
Theorem 4.32. U

Now we have that for every homogeneous tree language L, we can find a regu-
lar tree grammar, such that all well-typed trees from I are generated by that
grammar.

fourty Hypergraphs, hypergraph languages and hypergraph expressions

We will now define a relation between regular tree grammars, generating expres-
sions over substitution operators, and hyperedge replacement grammars, such
that if a regular tree grammar and a hyperedge replacement grammar are re-
lated, then the evaluation of the set of expressions generated by the regular tree
grammar equals the hypergraph language generated by the hyperedge replace-
ment grammar.

Definition 4.38 (lead and rank of a production) Let NV be a set of non-terminals
and A — R a production over N. Then the lead of R, denoted by lead(R), is the
set of hyperedges in R which are labeled with elements of N. Thus lead(R) =
{e € Er | lgr(e) € N}. The number of elements in lead(R) is called the rank of
R, denoted by rank(R). O

For each production, we define a related substitution operator such that all hy-
peredges in the right-hand side of the production, labelled with non-terminals,
are labelled with variables.

Definition 4.39 (associated grammars) Let G, = (N;, X, R, 5) € RTGguyg be a
regular tree grammar in normal form with ¥ C SUB and let G, = (N,,,T, P, 7Z) €
HRG be a hyperedge replacement grammar.

i. Aruler = A — o[A;---Ar] € R and a production p = B — H over
Ny, are associated, denoted by r o< p, if A = B, rank(H) = k and H =
(Vo, By, 80,t5,1, begin,, end,), where [: F, — Q is defined by

' e . <<
l(e)—{AZ if e = var, (i) for 1 <i <k,

| l,(e) otherwise,

Note that type (o) = type(H).

ii. G} and (), are associated, denoted by G > Gy, if they are both typed (and
thus in their respective normal form), N, = N,, T = {lg(e) | e € Fy,H €
SINY, P=A{p|reap,r € R} and Z is a handle of type type(G,) with
W(z)y=25.

iii. When r > p, G; < G}, or C; v (', we will also write p > 7, G v Gy or

'}, v Oy respectively. d

The following theorem states, that for every typed hyperedge replacement gram-
mar, we can find an associated typed regular tree grammar, and vice cersa.

Theorem 4.40 (associated grammars)

i. For every typed hyperedge replacement grammar G;, € HRG, there is a
typed regular tree grammar Gy € RTGgysp such that Gy a1 Gy

ii. For every typed regular tree grammar G, € RTGgyg, there is a typed
hyperedge replacement grammar G, € HRG, such that G, > GY.

Hypergraph replacement grammars versus regular treegrammars __ fourtyone

Proof For the first part of the theorem, let G\, = (N, T, P, Z) be a typed hyper-
edge replacement grammar. Construct a regular tree grammar G, = (N, %, R, 5),
where ¥ = {og | A — H € P},

R={A— ogllg(var,, (1)) -lg(var,, (rank(H)))]| A — H € P}

and S = (7). In this construction oy = (Vy, Fy, sy, tu,l, beging, endy), with
the label function [: Py — € defined by

o) = { Ynpey if € € lead(H)

| lg(e) otherwise,

where 7y : lead(H) — {1,...,rank(H)} is an arbitrary but fixed bijection. The
mapping ltype for GGj, can be used to show that G, is typed. Thus G, 1 G,.

For the second part, let G; = (N, X, R, S) be a typed regular tree grammar in nor-
mal form, with ¥ a finite subset of SUB. Now construct a hyperedge replacement
grammar G, = (N,T, P,Z), where T', P and Z are as in Definition 4.39ii. The
typing function for G} can be used to show that G, is typed. Clearly G, < G0

Now it turns out that if a hyperedge replacement grammar and a regular tree
grammar are associated, then the hypergraph language generated by the hyper-
edge replacement grammar equals the evaluation of the tree language over SUB,
generated by the regular tree grammar.

Theorem 4.41 Let G, €¢ HRG and G, € RTGgypg such that G, < G;. Then
L(Gy) = val(L(GY)).

Proof Let G, = (N, T, P,7Z) € HRG be a typed hyperedge replacement grammar
and G; = (N,X,R,5) € RTGsuyp a typed regular tree grammar, such that
Gh D Gt.

We will show first by induction to the length m of a derivation in G}, that for all
AeN,if A* =7 H,with H € HGy, then there is a t € Ty with val(t) = H,
such that A =7, 1.

If A* = H is a direct derivation by a production p = A — H, with rank(H) =
0, then we have a rule r = A — H € R, such that pear, with H € X, so clearly
A=, H with H = val(H).

If A* :>g:’1 H, then, according to Theorem 4.27, there is a direct derivation
A* =, F and, for each e € lead(F)), there is a derivation e* =@ H(e) such
that H = RPL(F,rpl) with rpl(e) = H(e) for e € FEp. For the production
p=A — F, applied in the direct derivation, there is an associated rule r = A —
a[lp(var,(1)) - - -lp(var,(k))] € R, with k = rank(F). By induction hypothesis,
for all e € lead(F), lp(e) =, V', with val(t') = H(e) for some ¢ € Tx. Now,
since war,(i) € Ep, we find that lp(var,(2)) =¢, t;, with t; € Ty, and val(t;) =
H(var,(i)) for all 1 < ¢ < k. Then we can apply the substitution operator a to

fourtytwo Hypergraphs, hypergraph languages and hypergraph expressions

ti, ..., 1y, yielding a[t; - - - ;]. Using the context-freeness of regular tree grammars
and the rule r, we then find that A =, a[t;---#;]. Furthermore

val(afty - --tx]) = suby(val(ty),...,val(ty))
= sub,(H (var,(1)),..., H(var,(k)))
= RPL(a, rpl),
with rpl(var,(i)) = H(var,(z)) for 1 <i <k
= RPL(F, rpl), with rpl(e) = H (e) for e € lead(F)
= M.

So finally we find that there is a ¢ € Ty with val(t) = H and A =, t, namely
t=aft; -1,

Now forall A € N,if A* =, H then A = t, with val(t) = H, for some t € T,
so this holds especially for I(Z) = 5, and therefore £L(G},) C val(L(G)).

Now it remains to show that val(L£(G)) C L(G})). The proof of this inclusion is
the reverse of the first part of the proof.

We will show by induction to the length m of a derivation in G, that for all
AeN,it A=p t, witht € Ts and val(t) = H, H € HG, then A* =}, H.

If A=, twitht e ¥, (thus t = val(t) € HG) is a direct derivation by a rule
r = A — t, then there is a production p = A — H € P, such that r o< p, with
rank(H) =0 and t = H. So clearly A* = H.

Now let A =7+ ¢, with val(t) = H. Since the language generated by G, is
given by L(GY), where G}, = (N, XU {[,]}, R, Z) is a context free grammar, this
derivation can be decomposed to A = a[A, ---A;] =7, t, where k > 1, a € ¥y,
A€ N, Ay =% s;, my <mand s; € Ty for 1 <i <k, and t = afs, ---s;]. The
applied rule for the direct derivationisr = A — a[A,---A;]. Letp=A — F € P
be such that r 0« p. Thus, for all 1 <4 < &, by induction hypothesis A? =7,
val(s;). Now p = A — F gives us a direct derivation A* =, F. Furthermore,
for each e € Ep, if [(e) = A; there is a derivation e* =, wval(s;). Now let
rpl : lead(F') — HG be such that, for all 1 < ¢ <k, rpl(var,(i)) = val(s;). Then

RPL(F,rpl) = RPL

= sub,

(a, ol
(val(sy), ..., val(sy))

= wal(a[s; - s])

= wal(t)

= M.
Thus we have a direct derivation A* =, I and for each e € lead(F)) there is a
derivation e* =, H(e) such that H# = RPL(F, rpl), with rpl(e) = H (e), where,
for each e € Ep labelled with a non-terminal, H(e) = val(s;) if e = var,(7) for

some 1 < ¢ < k. Now we can apply the decomposition theorem for hyperedge
replacement grammars (Theorem 4.27), to find A* =g, I'=, Hor A* =7, H.

Again, if we apply the result to S and [(Z), we find that val(L(G;)) C L(Gh)),
so we finally find that £(G),) = val(L(G)). a

Hypergraph replacement grammars versus regular tree grammars __ fourtythree

The converse of Theorem 4.41 is clearly not true.

We are now in the position to prove the fact, that the two hypergraph language
generating formalisms, generate the same hypergraph languages. First we restrict
ourselves to the homogeneous case.

Theorem 4.42 For every hypergraph language I, L is homogeneous and I €
CFHG iff L = val(L’) for some homogeneous regular tree language L’ C Tsug.

Proof Let . ¢ CFHG be a homogeneous hypergraph language and G, a typed
hyperedge replacement grammar such that L = £(G}). Such a G, exists, since L
is the union of a finite number of homogeneous context-free hypergraph languages
of the same type, and for fixed m,n € N, CFHG"™" is closed under union. Let G,
be a typed regular tree grammar such that G < G;. Such a G, exists according
to Theorem 4.40. From Theorem 4.41 it follows that £(G),) = val(L(Gy)), thus
L = val(L(Gy)), where L£(G}) C Tsyup is a homogeneous regular tree language.

Conversely, let L be such that L = val(L’) for some homogeneous regular tree
language L' C Tsuyp. Let G} be a single typed regular tree grammar such that
L' = L(G,) and let G} be a typed regular tree grammar such that £(G}) =
L(Gy)N WTgyp. Such a (7} exists by Theorem 4.37. By the definition of val, we
find that val(L(G})) = val(L(Gy)). Now let (), be a typed hyperedge replacement
grammar such that G, > G. Such a G}, exists according to Theorem 4.40. From
Theorem 4.41 we find that £(G)) = val(L(GY)) = val(L(Gy)) = wval(L') = L.
Thus G, generates L and therefore . € CFHG. Furthermore, L is homogeneous
since L’ is homogeneous. O

In order to show a generalized version of Theorem 4.42, we must be able to
dissect a non-homogeneous regular tree language into a number of homogeneous
regular tree languages. This can be accomplished by dissecting the regular tree
grammar that generates the language into a number of regular tree grammars,
each generating a homogeneous tree language. In order to dissect the regular tree
grammar, it must have a special property, defined as follows.

Definition 4.43 (proper regular tree grammar) A regular tree grammar G' =
(N,X, R,S) is called proper, if the initial non-terminal S does not occur in the
right-hand side of any rule in R.

This special property does not restrict us, since for each regular tree grammar,
we can find an equivalent regular tree grammar, that has this property.

Theorem 4.44 For every regular tree grammar (¢, there is an equivalent regular
tree grammar G’, such that G’ is proper and in normal form.

Proof Let G = (N,X, R, S) be a regular tree grammar. From Theorem 3.12 we
find that we may assume that ¢ is in normal form. Now construct a regular tree
grammar G' = (NU{S"}, X, R',5"), where S is any symbol such that §" ¢ NUX
and R = RU{S" — rhs(r) | r € R,lhs(r) = S}. Clearly, G’ is proper and in
normal form, and £(G) = L(G"). a

fourtyfour Hypergraphs, hypergraph languages and hypergraph expressions

Now we finally come to the main result of this chapter. For each hypergraph
language, it turns out that the language is a context-free hypergraph language if
and only if it is the evaluation of a regular tree language over SUB.

Theorem 4.45 For every hypergraph language L, . € CFHG iff L = val(L’) for
some regular tree language I/ C Tsusp-

Proof Let L € CFHG. Then by definition, L = Ui<;<xL;, with L, € CFHG™"™
for some k > 1 and m;,n; € Nfor 1 <17 < k. Now each L;, 1 <1 < k, is
homogeneous, so we can apply Theorem 4.42 to find that L, = wal(L}) with
L, C Tsup a regular tree language, for 1 < ¢ < k. Since RECOG is closed
under union, the tree language L', such that L' = U,<;<;L;, is regular. Now
val(L') = val(Ui<i<pL}) = Ui<icpval(L)) = Uii<pl; = L, so L = val(L') for a
regular tree language L' C Tgys.

Conversely, let L be such that L = val(L’) for some regular tree language L' C
Tsus. Let G = (N,X, R, S5) be a regular tree grammar, such that L' = £(G).
From Theorem 4.44 we find that we may assume that & is proper and in normal
form. Let T = {type(rhs(r)) | r € R, lhs(r) = S} be the set of types that occur
in /. Note that Y is finite, since R is finite. Now for each v € T, construct a
G, = (N,X,R,,S5), where R, = {r € R | if lhs(r) = 5 then type(rhs(r)) = v}.
Clearly, L' = Uyex L(G). Now let L, = val(L(G,)) for v € T. Since for each
v €T, d, is single typed, we find that £(G,,) is homogeneous for each v € T, so
we can apply Theorem 4.42 to find that I, € CFHG and L, is homogeneous for
each v € T. Now L = val(L') = val(Uyex £L(G)) = Uperval(L(GL)) = Upex Ly
Thus L is the union of a finite number of homogeneous context-free hypergraph
languages, and thus L € CFHG. O

This theorem will be illustrated by an example.

Example 4.46 Let W = {W, | n € N,n > 3} be the set of directed wheel graphs
from Example 4.15. Since this graph language was generated by the hyperedge
replacement grammar ', from this example, we find that £(G,) = W € CFHG.
Now from Theorem 4.45 we find that there is a regular tree language L C Tsus,
such that W = val(L).

Construct G, = (N, X, R, {5}), where N = {5, A}, ¥y = {00} and 3 = {0,,05},

with
0o = 37 o1 =

with the relevant external nodes and source and target nodes as follows.

| begin end s(a) t(a)
oy - - 12 3
oy 42 3 12 3
09 12 3 - -

Hypergraph replacement grammars versus regular tree grammars ___ fourtyfive

Furthermore, let R = {Ry = 5 — o0o[A],R1 = A — 01[A],R: = A — 03},
Clearly G} o G,. The regular tree language generated by G, is L(G;) =
{o0([o1)"[o2](])™ | m € N}. For example, the derivation of ¢t = oy[o,[0}[05]]]
in G, is

S =g, 00lA] =&, oolo1[A]] =g, oo[o1[o1[A]]] =&, oo[oi[o1[0s]]] = .

Now t evaluates to a hypergraph as follows.

val(t) = wal 3

= 001(00[01[01 [‘72]]])
= sub,, (sub,, (sub,, (02)))
= op(a 0y (a 0y {a ¢+ 02)))

a
L

- W5 .

From this example we can see that val(L(G})) = W = L(G),). Note the strong
similarity between the hypergraph expression oy[o;[0;[02]]] and the derivation of
Wy in Gy, in Example 4.15. O

fourtysix

fourtyseven

Chapter five

Numerical functions on
hypergraphs

In this chapter, a number of numerical functions on hypergraphs is defined, such
as a function for the number of hyperedges in a hypergraph, a function for the
number of nodes in a hypergraph and a function for the number of paths in a
hypergraph. It is shown that these functions can be computed by a top-down
tree transducer that receives a tree, evaluating to the given hypergraph, as input,
and produces as output an expression in an algebra, that represents the arith-
metic calculus with constants, addition, multiplication, maximum, minimum and
raising to a power. The numerical evaluation of these expressions results in the
numerical value of the functions.

fourtyeight Numerical functions on hypergraphs

The numerical functions that are defined in this chapter determine the number
of hyperedges in a hypergraph, the number of nodes in a hypergraph and the
number of undirected and directed paths in a (1,1)-graph.

Before defining the numerical function on the hypergraph expressions, we first
have to define the arithmetic calculus. The calculus is defined for addition, mul-
tiplication, maximum, minimum and raising to a power, but it can easily be
extended with more operations.

Definition 5.1 (arithmetic calculus) The set of arithmetic symbols, denoted by
I'", is the infinite ranked alphabet defined by Ty = {C, | » € N} U {®.®},
I') = {®,®, max,pow} and T} = {®,®, max} for k£ = 1 and for all k& > 3.
The arithmetic calculus is the T -algebra 9t = (N, a), where the operations are
defined as follows.

i. Forall C, € I‘ISI, ag(Ch) = n.
ii. For @ €Ty, ap(B) = 0 and for ® € Ty, ap(®) = 1.

iii. For @ € T}, k> 1, ay(®) : N* = Nis defined by
ap(B) (v, ..,) = Zlgigk v;.

iv. For ®@ €T}, k > 1, a;(®) : N* = N is defined by
ap(@) (v, .., %) = ngz’gk v;.

v. For max € T}, k > 1, ay(max) : N* — N is defined by
ap(max)(vy,...,v;) = maz{vy,..., v }.

vi. For pow € T, ay(pow) : N2 = N is defined by a,(pow)(v,w)=v*. 0O

Since the rules in the top-down finite tree transducers that define the functions
have a tendency to get complicated, and since substitution operators of various
rank occur in the expressions, we will use a short-hand notation like the notation
that is often used for the addition of a large number of values (3°,.,<, v as a

short-hand for vy + vy 4 -+ - 4+ vy).

Notation 5.2 Let k > 1, A € T'})\ {pow}, S a finite set such that |S| =k, ¢ : § —
O a mapping from 5 to some set O of syntactical objects and 7 : {1,...,k} — 5
a bijection. Then we use A7 . [¢(s)] as a short-hand for A[p(7(1)) ---o(x(k))].
Since all operators in I‘l,j \ {pow} are commutative, the order imposed by 7 is
irrelevant. Therefore it will be omitted, yielding A es[e(s)]. If k=0, A € Ty
and § = @, then by A7 [¢(s)] we mean the symbol A. O

Number of hyperedges fourtynine

5.1 Number of hyperedges

In this section we will present a top-down finite tree transducer that realizes a
function, to determine the number of hyperedges in a hypergraph. The finite tree
transducer is defined for an arbitrary subset of SUB. Why this is done will be
made clear in Chapter 6.3.

Let ¥ be a finite subset of SUB. Now construct a top-down tree transducer
ex = (Q, 2, TV, R, Qy), where Q = {¢} and Q4 = {¢}. Furthermore, R is defined

as follows.

i. For each H € X, the rule ¢[H] — Cg, is in R.

ii. Foreach H € ¥, k > 1, the rule

qH [z, - 24])] = B[Cpy—rq[z1] - - - q[]
is in R.

The following theorem states that the above defined top-down finite tree trans-
ducer realizes a function for the number of hyperedges in the evaluated hyper-
graph for a hypergraph expression. The proof of this theorem is given in detail,
as is the proof for the theorem in the next section. Since the proofs of these
theorems are all basically the same, the proofs for the other theorems are not
given in detail.

Theorem 5.3 For all s € T, and ¢ € T, if ¢[s] =

€

t, then |Eyus)| = m™ ().

is a direct derivation and the applied rule is ¢[s] — C|g,|. Now, since val(s) = s

and mm(C|ES|) = ||, clearly |Eyaqs)| = m™(1).

Proof The proof is by induction on s. Assume g[s] =% 1. If s € Xy, then there

Now for s = H[s;---s3], k> 1, H € ¥} and sq,...,8; € Tk, let the first rule
* t be

€

applied in the derivation ¢[H[s; - --s;]] =

qH [z, 2] = OO\ By —rqlz1] - - - ql2s]],

thus

q[H[s1- - s]] = B[C\gg-ralsi] - -qlse]] =7, ¢

Now from Remark 3.53 it can be seen that there exist ¢y,...,4, € Trw such
that t = @[C|gy-st1 -+ -t;] and, for all 1 < ¢ < k, ¢[s;] =% ;. By induction
| Evaicsy] = m™(t;) for 1 <4 < k. So we find that

|Eval(s)| = |Eval(H[sl~~~sk])|

= |EH<varH(1)<—val(sl) varH(k)hval(sk))|

= |EH| —k+ E1gigk |Eval(s,)| (5-4)

fifty Numerical functions on hypergraphs

= m(Cley-p) + Xicicr m™ ()
= mM(@®[Clau-rts - 1))

which proves the theorem. Equality 5.4 follows from the hypergraph theoretical
fact that if X is the hypergraph RPL(H, rpl), that results from the replacement
of B in H by rpl, where rpl : B — HG is a base for replacement, then |Ex| =
|Eu| - [B| + ZeEB |Erpl(e)|- =

The top-down tree transducer ¢ is linear, non-deleting, pure and total determin-
istic, or ex € PNLD,T. Note that also ¢ € HOM, since PNLD,T C PD,T =
HOM (Remark 3.51).

Example 5.5 Let X be a finite subset of SUB such that oy, 0,05 € X, where oy,
o, and o4 are defined in Example 4.46. Then

qs] = qloo[oi[o1[o:]]]] =7, BICB[C2B[CB[C3]]]] = ¢

Furthermore

val(s) = val(oo[oy[o1[02]]]) = = Ws and

m™ (1) = m™(B[CsB[CoB[CoB[CH]]]]) =3+ 24243 =10 = |Ew,|,

so clearly, |Eyqs)| = m™(1). O

5.2 Number of nodes

In this section a top-down finite tree transducer that realizes a function for the
number of nodes in a hypergraph is defined. Let 3 be a finite subset of SUB. Now
construct a top-down tree transducer vy, = (@, %, TV, R, Q,), where Q = {q,i}
and Qg = {q¢}. Furthermore, R is defined as follows.

i. For each H € X, the rules ¢[H] — Cv, and i[H] — Cjint,| are in R.

ii. For each H € ¥, k > 1, the rules
glH [y - 2p]] = B[Clvyiza] - - - il]] and
i[H 2y - 2p]] = B[Chinvrypifaa] - - - iw]]

are in R.

Number of nodes fiftyone

Informally, state ¢ computes an expression for the number of nodes in H, while
state ¢ computes an expression for the number of internal nodes in H.

The proof of the theorem for the function that determines the number of nodes
in a hypergraph is also given in detail. The proof is essentially similar to the
proof of Theorem 5.3, but the finite tree transducer has two states instead of
one. Therefore, the two statements in the proof (one for each state) are proven
by simultaneous induction. This is not really necessary, since the two statements
are not mutually dependent on each other, but it demonstrates the proof method
in general. Also the tree transformation that is realized by the tree transducer is
used as a function, as in Definition 3.52, instead of the more operational method
used for the proof of Theorem 5.3. This is possible since the finite tree transducer
is total deterministic, and therefore the tree transformation is a total function.

Theorem 5.6 For every s € Ty, m™(v5(q,s)) = |Vias)| and m™(vg(i,s)) =
INT yaris)|.

Proof Both statements are proven simultaneously, by induction on s. If s € X,
then there are direct derivations with applied rules g[s] — C)v,| and i[s] = Cjinr,)-
Furthermore, val(s) = s, thus

mm(VE(%S)) = mm(clvsl) =|Vi| = |Vval(8)| and
m™ (vs (2, 8)) = m™ (Cinr,)) = [INT, | = [INTas) |-

If s=H[sy---s], k> 1, HE Xy, s1,...,8, € Tx, then, using the fact that vy is
total deterministic and the induction hypothesis m™(vs (i, s;)) = | INT yai(s | for
1 <5<k, wefind
mM(vg(g,) = mN@BClvrs(i,si) - ve(i,si)])
= mm(CIVHI) + Z1§jgk mm(VE(iv s5))
= |VH| + Z1§jgk |INT’UGI(5]')|
= |V {vars()—vai(s1),..., vars (k) —val(si)) |
= Veaats, -5
= [Viars)
and
Mrs(i9) = mM(BCrvrare(issi) - ve(is i)
= mm(CIINTHI) + Z1§jgk m™ (vs (7, 5))
= [INTx[+ Z1§jgk |INTval(8j)|

= |INTH(U@TH(l)hval(sl),...,varH(k)hval(sk)) |

m

= |INTUGI(H[51...sk])|

= |INTval(s)|'
Here we use the hypergraph theoretical fact that, if X = RPL(H,rpl), re-
sulting from the replacement of B in H by rpl, where rpl : B — HG is
a base for replacement, then |Vx| = [Vi| + > .cp [INT,yo)| and [INTx| =
INTg| 4+ 3. cp INT o] O

fiftytwo Numerical functions on hypergraphs

The top-down tree transducer vy is linear, non-deleting and total deterministic,
or vy € NLD,T.

5.3 Number of paths

In order to define a tree transducer to compute the number of paths through a
hypergraph, we first have to define the notion of a path.

Definition 5.7 (paths) Let H = (V, F, s,t,1, begin, end) be a hypergraph and let
P =wvpeivies e, 10,_16,0, € V(EV)T be a sequence of alternating nodes and
hyperedges. The length of P, denoted by len(P), is the number of hyperedges in
the sequence, thus len(P) = n.

ii.

iii.

iv.

vi.

vii.

Af vy € atty(e;) and v € atty(e;) for 1 < i < n, then P is called an

undirected path through H.

If v,y € s(e;) and v; € t(e;) for 1 <i < n, then P is called a directed path
through H. Note that every directed path is also an undirected path.

P is called simple, if v; = v; only if e =7 for 0 <i,5 <n.

The set of all hyperedges in P is denoted by Fp and the set of all nodes in
P is denoted by Vp.

Af P = vpey -+ -e,v, is a path, then hyperedge e; is denoted by ep; for

1 <1 < n and node v; is denoted by vp, for 0 <7 < n.

For 1 < i,j < |exty| the set of all simple undirected paths through H,
from exty, to exty;, is denoted by UP?}. Since only simple paths are
allowed, UP?} = @ if i = j. The set of all simple undirected paths through
H, between two nodes from ezty, is denoted by UPg. Note that UPy =
UlsingmmUP?f and that UPg is finite.

For 1 <i,j < |exty| the set of all simple directed paths through H, from
exty; to exty ;, is denoted by DP?}. Again, DP}’Ij = @ if + = j. The finite
set of all simple directed paths through H, between two nodes from exty,
is denoted by DPy. O

Example 5.8 Let A be the multi-pointed hypergraph in Figure 5.1, with Vi =

{1,..
Then

and

T} Fg ={a,b,c.d}, beging = 12 and endg = 6. The labels are omitted.

DPyg = {la3c6,ladc6, 1add6,2a3c6,2a4c6,2a4d6,2b4¢6,2b4d6, 265d6,
264d7b5d6,265d7b4c6}

DPy’ = {1a3¢6, 1adc6, 1a4d6}.

Simple undirected paths are, for example, 2b7d4a3¢6 and 2al. (|

Number of paths fiftythree

TN

/3.’\
S
N

Figure 5.1: Hypergraph H

We will restrict ourselves to paths in (1, 1)-graphs. The general case for paths
through arbitrary hypergraphs is very complicated. This is due to the fact that
a non-terminal hyperedge should in general occur more than once on a single
path, in order to generate parts of a path in the terminal graph. If this is the
case and the hyperedge is replaced by a hypergraph, the paths through this
hypergraph may violate the conditions for the resulting paths being simple. This
is illustrated in Figure 5.2. The hyperedge labelled A in Figure 5.2i is twice on the
path 142e3A4. If this hyperedge is replaced by the hypergraph in Figure 5.2ii,
the path 1ab5b2e3d6¢4 will still be simple. However, if the hyperedge is replaced
by the hypergraph in Figure 5.2iii, the conditions for the paths being simple are
violated, since the paths 1a5b2 and 3dbc4 are simple, but the path labb2e3dbcd

is not.
1 : B
o :
\
3
i i

Figure 5.2: Problem with arbitrary paths

5.3.1 Simple undirected paths in (1, 1)-graphs

Let 3 be a finite subset of SUB"' N GR. Now construct a top-down tree trans-
ducer py = (Q,%,T", R,Q,) where Q = Q, = {¢q}. The set of rules R is defined

as follows.

i. For each H € X, the rule ¢[H] — C|up, is in R.
ii. Foreach H € ¥, k > 1, the rule

q[H[zy--2]] — B[O@lpmlep 1) vr(ep, enp))]
Q[@H(erpHm) o '@H(€P|UPH|J€H(P|UPH|))]]

fiftyfour Numerical functions on hypergraphs

is in R, where UPy = {Py,..., Pup,}'. Furthermore, ¢y is defined as

(e) = glz;] if lg(e) = y; forsome 1 < i < k
YE\C) = 4 otherwise.

Theorem 5.9 For all s € T and t € T, if g[s] =% ¢, then [UP | = m™ (2).

Proof The proof is similar to the proof of Theorem 5.3, but now we use the fact
that if X is the graph that results from the replacement of B in H by rpl, where
rpl : B — HG is a base for replacement, then

|[UPx| = ZPeUPH HeeEp D(e),

where ®(e) = |UP, .| if e € B and ®(e) = 1 otherwise. This formula for the
number of paths can be explained as follows. The product term comes from the
fact that if an edge on a path is replaced by a graph, the path is “replaced” by
as many paths as there are through the graph. Clearly the total number of paths
through the graph is the total, over all the paths through H, of all the “replaced”
paths. O

The rules can be denoted in a more compact way, using Notation 5.2. Doing so,
for H € X, k > 1, the corresponding rule is denoted by

glH[z1- - 2i]] = Bpevr,u[®cer. [vn ()],

where g is as defined above.

The top-down tree transducer p is pure and total deterministic, or p € PD,T =
HOM. p need not be linear since one hyperedge may occur on more than one
path. It need not be non-deleting, since not every hyperedge necessarily occurs
on a path.

5.3.2 Simple directed paths in (1, 1)-graphs

The case for directed paths is slightly more complicated, because an edge can be
replaced by a graph that “points in the other direction”. We must therefore use a
weaker form of directed paths, where edges that may be replaced are not used to
determine whether or not the path is directed. At the time of the substitution,
the paths should not be counted if the substitution would yield an undirected
path.

Definition 5.10 Let H € SUB; be a substitution operator of rank k& and let
P be a path through H. Then P is called a partial directed path if, for every
1 < u < len(P) such that lg(epy) € Y, vpu_1 € sy(ep,) and vp, € ty(epy).
For 1 <4,j < |exty|, the set of all simple partial directed paths through H from
exty,; to exty ;, is denoted by PDP?}. O

If UPg = @, the rule reduces to ¢[H[z1 - - zx]] — .

Number of paths fiftyfive

Let 3 be a finite subset of SUB"' N GR. Now construct a top-down tree trans-
ducer 6y, = (Q, %, T, R, Q,) where Q = {q12,¢:1} and Q4 = {q12}. The set of

rules R is defined as follows.

i. For each H € X, the rules qi5[H] = Cpp12 and o1 [H] — C|pp21) are in
R.

ii. Foreach H € ¥, k > 1, the rules
Qa[H [z -2y]] — @PEPDP}f [[G)lsuslen(P) [w (P, u)]] and
g [H[w1 - 23] = Bpepppzy [Or<uciencr)[or (P w)]]
are in R, where g is defined as

qial2;] iflg(e) =y, 1 <i<kAvp,_1 € sglepy)

ep(Pou) =19 qulr] iflgle) =y, 1 <i<kAvpu_y € sulepu)
Cy otherwise.
Theorem 5.11 Forall s € Ty and t € T, if gy5[s] =5 ¢, then |DP£fl(s)| =m™(1).

Proof The proof is almost equal to the proof of Theorem 5.9, but now we must
consider partial directed paths, since hyperedges on a partial directed path la-
belled with a variable from Y will be replaced by a hypergraph, from which only
paths in the proper direction should be counted. Since there are two states, it
must be proven simultaneously that for all s € Ty and t € T, if ¢o1[s] =5 ¢,
then [DPy | = m™ (). O

The top-down tree transducer éx is total deterministic, or 6z € D{T. 6x need
not be linear since one hyperedge may occur on more than one path. It need not
be non-deleting, since not every hyperedge necessarily occurs on a path.

fiftysix

fiftyseven

Chapter six

Compatible and realizable
functions

The numerical functions on hypergraphs of Chapter 5 are all realized by top-down
tree transducers, which translate the expressions that represent the hypergraphs
into numerical expressions, which are then evaluated to obtain the function val-
ues. In [Hab92], numerical functions (and predicates) are defined on the deriva-
tions of hypergraphs in hyperedge replacement grammars. To accomplish this,
the functions had to be “compatible” with the derivation process, which means
that the function value for a hypergraph depends on the hypergraph itself and
on the function values for the hypergraphs that are replaced for the non-terminal
hyperedges of the hypergraph.

In Chapter 4 we have seen that the two formalisms for the generation of hyper-
graphs which were presented, are equivalent. In this chapter we will present the
realizability property for functions on hypergraphs, which is similar to the com-
patibility property but is based on top-down tree transducers. It will be shown
that each compatible function is also a realizable function.

fiftyeight Compatible and realizable functions

Remark 6.1 All functions in the remainder of this thesis are meant to be total.

6.1 Compatible functions, Habel

The definitions of compatible functions and special compatible functions were
introduced in [HabKreVog91] and later recalled in [Hab92]. The definitions, re-
spectively Definition VII.2.1 and Definition VII.2.3 in [Hab92], are as follows.

Definition 6.2 (compatible functions, Habel) Let ¢ C HRG, [a finite index
set and V a set of values.

i. Let f: HGXI — V be afunction on pairs (H,7) € HGx I and f’ a function
on triples (R, ass, i) with R € HG, ass : Fgx I — V and ¢ € I, with values
in V. Then f is called (C, f')-compatible if, for all G = (N, T, P, %) € C
and all derivations of the form A* = R =" I, with A € NUT, H € HGr
and for all ¢ € I, f(H,7) = f'(R,ass,1), where ass : Fr x I — V is given
by ass(e,j) = f(H(e),j7),e € Er and j € I.

ii. A function f, : HG — V is called C'-compatible if functions f and f’ and
an index 17, exist, such that fis (C, f')-compatible and f, = f(—,1i0)".

iii. A function f: HG x I — Nt is said to be (C, min, maz,+, -)-compatible
if there exists a function f’ such that fis (C, f’)-compatible and for each
right-hand side R of some production in C and each ¢ € I, f'(R,—,1)
corresponds to an expression formed with variables ass(e,j), e € Er and
j € I, and constants from N by addition, multiplication, minimum and
maximum. The function fis (C, maz,+,-)-compatible if the operation min
does not occur.

iv. A function f, : HG — N* is (C, min, maz, +, -)-compatible if a function
f and an index i, exist such that f is (C, min, maz,+,-)-compatible and
fo = f(—,). Accordingly, the function f; is (C, maz,+, -)-compatible if f
is (C', maz,+, -)-compatible. O

In this definition, N* = NU {1}, where L is a special value, meaning that the
value is undefined. We will not use this special value.

The compatible functions are defined on a class of hyperedge replacement gram-
mars. The compatibility property must hold for every step of every derivation
in every hyperedge replacement grammar in the class. The parts i and ii of the
definition do not have a restriction on the function f’. In the parts iii and iv,
for the special compatible functions, this function must be representable by an
expression formed with the operators +, -, maz and min.

1 f(—,4o) denotes the function given by f(—,i0)(H) = f(H, i) for all H ¢ HG.

Compatible functions fiftynine

6.2 Compatible functions

It turns out that Definition 6.2 is not suitable for our purposes, without some
changes. We first note that derivations in hyperedge replacement grammars start-
ing in terminal labeled edges, as occuring in part i of the definition, consist of
dummy steps only, and thus are of no interest.

A more serious problem is that the definition of the special compatible functions
(part iii) contains the informal phrase

“for each right-hand side R of some production in C' and each i € I,
f'(R,—,1) corresponds to an expression formed with variables ass(e, j),
e € Fgand j € I, and constants from N by addition, multiplication, mini-
mum and maximum?”

which is not precise enough for our purposes. In [Hab92] this informal definition
did not cause any troubles, but in Section 6.3 we have to use, and manipulate,
these expressions in a proof. Therefore we need a more formal definition of
compatible functions. We define the expressions with the aid of universal algebra
theory (recall Section 2.3), which results in the following definitions.

Definition 6.3 (compatible functions) Let ¢ C HRG, V a set of values and
A= (V,a) a [-algebra.

i. Let I be a finite index set, f: HG x I — V and

['= {frljz : (By x I —=V)—= V}yeuagier

a family of functions. Then f is called (C, f')-compatible if, for all G =
(N,T,P,7Z) € C and all derivations A* =, U = H, with A € N, H €
HGy and for all @ € I, f(H,7) = fi,(7), where the assignment function
v Ey x I — Vis given by v(e,j) = f(H(e),j) for all (e,j) € Ey X I,
where, for each e € Fy, H(e) is defined by the decomposition theorem
(Theorem 4.27). Note that for e ¢ lead(U), H(e) = e* and thus f(H (e),)

is a constant value in V.

ii. Let I be a finite index set. A function f: HG x I — V is called (C,)-
compatible if there exists a family of functions f/ = {f{M}UeHGJE[such that
fis (C, f')-compatible and for each right-hand side U of some production
in C' and each 7 € I, a I'(By x I)-expression sy ; € 11 (Ly X I) can effectively
be found, such that ff;, = S%Z Such an expression sy ; is said to correspond
to U and 4, or to f{;,. Moreover, for each hyperedge e in (' and for each
i € I, Tr must contain an expression &, ; such that m*(k, ;) = f(e*,1).

iii. A function fy : HG — V is (C,)-compatible if a finite index set I, a
function f: HG x I — V and an index ¢y € [exist, such that fis (C,%)-
compatible and fo = f(—, o). O

sixty Compatible and realizable functions

Note that the f’ function in Definition 6.2 is replaced by a family of functions,
which is also denoted by f’. Furthermore, Definition 6.3 is more general than
Definition 6.1, since it allows for expressions in algebras with arbitrary signature,
instead of expressions consisting of only variables, 4, -, maz, min and the con-
stants. When the algebra 2 in the definition is the algebra 9t for the arithmetic
calculus, as defined in Definition 5.1, with the possible addition of min and with-
out raising to a power, the two definitions are almost equivalent. We do not need
the special value for undefined, since all our functions are always defined.

6.3 Realizable functions

As already mentioned in the introduction of this chapter, we will define a property
for functions on hypergraphs that is closely related to the compatibility property.
But where the compatibility property was defined for a class of hyperedge replace-
ment grammars, this new property, called the realizability property, is defined for
a subset of the set of all substitution operators. Informally, a function is realiz-
able if it can be realized by a total deterministic top-down tree transducer, which
transduces expressions over a subset of SUB (which evaluate to hypergraphs),
into expressions in an algebra.

Definition 6.4 (realizable functions) Let 2 = (V,a) be a I-algebra and A C
SUB. A function f; : HG — V is called (A, 2()-realizable, if for every finite 3 C
A, a total deterministic top-down finite tree transducer p = (Q, %, ', R, {q4}) can
effectively be constructed, such that for all t € WT's it holds that m®(u(qa,t)) =

fo(val(t)). O

Remark 6.5 The numerical functions in Chapter 5 are all (SUB, 9t)-realizable.O

The compatibility property is defined on a class of hyperedge replacement gram-
mars, whereas the realizability property is defined on a set of substitution op-
erators. The following definition will associate a class of hyperedge replacement
grammars with a set of substitution operators, in a way similar to the associated
grammars in Definition 4.39.

Definition 6.6 (associated grammars) Let A C SUB. The class of all A-
associated hyperedge replacement grammars, denoted by HRGY, is the class of
all grammars (N, T, P,7Z) € HRG, such that for all A — H with A - H € P or
H = Z, there exists a 0 € A and Ay,..., A; € Q, such that A — o[A; -+ A;]

A — H, where k = rank(c). Clearly, for all A C SUB, HRGY C HRG. O

Intuitively, HRG'Y consists of all hyperedge replacement grammars such that the
axiom and the right-hand sides of the productions are in A (modulo).

Remark 6.7 The two special sets of hypergraph replacement grammars that we
know, HRG and ERG can be “generated” from a set of substitution operators
as follows.

Realizable functions sixtyone

i. For HRGY to be equal to HRG, it is necessary that A contains, for every
rule in HRG, a substitution operator that is associated with the rule. Thus
HRG = HRGZ,3.

ii. For HRGY = ERG the case is more complicated, since in ERG, the
axioms must be graphs, whereas HRG'; has no restrictions on the axioms.
Therefore, we must add this restriction, yielding

ERG = {(N7 T7 P7 Z) 6 HRG?UBI,IQGR | Z 6 G’R}.

From now on we will only consider (C,%)-compatibility for classes C' = HRGY.
This is a restriction with respect to [Hab92], but in [Hab92] the only classes that
are really used, are HRG and ERG. O

Using Definition 6.6, we arrive at the following theorem, which states that every
compatible function over a class of hyperedge replacement grammars, as defined
in Definition 6.6, can be realized by a total deterministic top-down tree trans-
ducer, which transduces an expression over SUB into an expression over the
underlying algebra.

Theorem 6.8 Let A C SUB, 2 = (V,a) a [-algebra and f; : HG — V a
(HRGY,)-compatible function. Then fy is (A,2)-realizable.

Proof Let I be the finite index set, f : HG x I — 'V the function, ¢, € [
the index and f' = {f{M}UeHGJE[the family of functions corresponding to the
(HRGY,)-compatible function fy. Furthermore, let ¥ be an arbitrary finite
subset of A. Now construct a total deterministic top-down tree transducer p =
(1,%3,1, R, {io}) and a hyperedge replacement grammar G = ({4}, Q, P, Z), with
A € Q an arbitrary label and Z an arbitrary singleton such that [(Z) = A, where
R and P are defined as follows. For each H € Y, k > 0 and each ¢z € I,
let A — Ug be a production such that A — H[A---A] = A — Uy and let
Sy € Ir(Ly,, x I) be the I'(Ey,, x I)-expression corresponding to Uy and 1.
Uy can be determined effectively from H, by relabeling the hyperedges vary (¢)
for 1 < ¢ < k. Note that £y = Ey, and type(H) = type(Uy). Now, for each
H €3y, k>0, the production A — Uy is in P. Furthermore, for each H € >,
k > 0 and each 7 € I, the rule

i[Hzy)] = sgn D (o)

is in R, where Fr(/[X;]) is the free ['-algebra which is generated by I[X] and
s;?;(j[xk])(cpm) € Tr(I[Xy]) is the result of the substitution of g ,(e,j) for all
variables (e,j) € Ey x I in sy, ;. The assignment function ¢g; : Ey x I —
Tr(I[Xy]) is defined by

(e,5) = jlz] if e = varg(€) for some 1 < ¢ < k
PHINGT) = Ke; otherwise.

Clearly, the hyperedge replacement grammar G is in HRGY. Note that £(G)
is not uniquely determined since Z, and in particular its type, is arbitrary. This

sixtytwo Compatible and realizable functions

will cause no problems, since we are only interested in the derivations in G, not

in L(G).

We will now show that for every ¢ € I and every t € WTsg, m*(u(i,t)) =
f(val(t),7). The proofis by induction to the structure of ¢, where it is simultane-
ously shown that for every t = o[t; -+ -1;] € WT's, with t,,...,t; € WTyg, there
is a derivation A* = U, =% val(t).

First the case for t € ¥;. Let H = wval(t) = t, thus H € ¥; C Ay. By the
definition of ¢, we have a production A — Uy, with Uy = H since lead(Uy) = @,
and thus a direct derivation A* =, H. Since f is (HRGY, f')-compatible,
G € HRGY and lead(H) = @, we find that f(H,i) = fi,(v), with v(e,j) =
f(e*,j) for all (e,7) € Ex x I. Furthermore, since rank(t) = 0, m* (g (e,j)) =
m¥*(k. ;) = f(e*,) for all (e,j) € Fy x I and thus v = m*o¢g,. So we find that

m* (u(i,t)) = m¥(u(i 1))

= m*(s (eni)

= S%H,i(mm © Qi)
S%H,i('y)
= f(Hv i),

which concludes the induction basis.

Now the case for t = o[t ---t;], k> 1, 0 € Xy, ty,..., 1 € WT's. Let

H = wal(t)
= wal(oft, 1))
= sub,(val(ty),...,val(ty))
= RPL(o, rpl), where rpl(var,({)) = val(t,) for 1 < { < k.

Now, by one of the induction hypotheses, for each val(t,), 1 < ¢ < k, we have
a derivation A* =7, val(t,). By the definition of GG, we have a production A —
Uy, with A — U, =« A — o[A---A]. Recall that Fy, = F, and type(U,) =
type(o). We now have a direct derivation A* = U, and, for all e € lead(U,),
a derivation e* =7, H(e), where H(e) = wval(t,) such that e = var, (). Hence,
RPL(U,, rpl) = H, where for all e € lead(U,), rpl(e) = H(e). We now can apply
the decomposition theorem (Theorem 4.27) to find that there is a derivation
A* =, U, =% val(t). Since fis (HRGY, f')-compatible and ¢ € HRGY, we
have f(H,i) = fi;, ;(7), with v : Ey,, x I — V given by v(e, j) = f(H (e), j) for
all (e,j) € Ey,, x I. So we find that

m¥(p(iyt) = m¥(p(i,oft - 4]))
= m* (s D (p,)30 (1)),

where ¢ : I[[X;] — Tr is defined by ¢ (j[z]) = p(j,t,) for 1 < € < k. Now by
the associativity of the composition of substitutions, we may combine ¢, ; and 9
into one substitution ¢/ ;, yielding

m(u(i 1) = m (st ()T ()

Realizable functions sixtythree

= mm(sgl;z(@;z))

= S%M(mm o @fm)
where c,ofm» : By, x I — Tt is the composition of the substitutions ¢,; and ¥,
defined, for all (e, j) € Ey, x I, by

, ~) oplgty) if e=war,(0) for some 1 < <k
Posle:d) = { Ke j otherwise.

Now we can apply the other induction hypothesis to find that m*(u(j,¢,)) =
f(val(ty),7) = f(H (var,(0)),), so for e € lead(U,), m*(u(j,t)) = f(H(e),j) =
v(e,7), where € is such that e = var,((). For e ¢ lead(U), f(e*,j) is represented
by an expression k. ;, such that m*(k, ;) = f(e*,7) = f(H(e),j) = v(e,j). Thus
forall (e, j) € Ey, xI, m*(¢/, (e, 7)) = 7(e,), thusm*o¢/ ; = 7. Now continuing
the above equations we find that

mm(,u(i,t)) = S%U,i(mmo@;,i)

5%[,,2'(7)
f{]mi(’y)

This concludes the induction step. Thus for every ¢« € I and every t € WTy,
(i, 1)) = f(val (1)).

So clearly, for every finite ¥ C A, we can construct a total deterministic finite
tree transducer g, with initial state iy, such that for all t € WT'g, m*(u(io,t)) =
F(—=.i0)(val(t)) = fo(val(t)). Thus fy is (A, 2A)-realizable. a

The reverse of the theorem does not seem to be true without some restrictions
on the finite tree transducers in the definition of realizable functions.

Since the tree transducers act on expressions that evaluate to hypergraphs, in-
stead of on hypergraphs themselves, it is not guaranteed for all tree transducers
p=(Q,5, 1", R,{qs}) and for all states ¢ € @ \ {qa4}, that if two expressions ¢
and ¢ evaluate to the same hypergraph (val(t') = val(t”)), they have the same
image under p for state ¢ (it is possible that p(q,t') # p(g,t”")). Thus, two
equal hypergraphs could yield different function values, which is not allowed for
compatible functions. To obtain a result for the reverse of Theorem 6.8, a more
restrictive definition of realizable functions can be used.

Theorem 6.4° (strict realizable functions) Let 20 = (V,a) be a I'-algebra and
A C SUB. A function f; : HG — V is called strict (A,®)-realizable, if for
every finite ¥ C A, a total deterministic top-down finite tree transducer p =
(Q,%5, ', R, {qs}) can effectively be constructed, such that for all ¢ € WTy it
holds that m*(u(gq, 1)) = fo(val(t)) and for all ¢/,¢" € WTyx and all ¢ € Q, if
val (') = val (t"), then m*(u(q,t')) = m*(u(q,t")). a

Note that the finite tree transducers that are constructed in the proof of Theo-
rem 6.8 all satisfy the restrictions in Definition 6.4’. This can be seen from the

sixtyfour Compatible and realizable functions

first induction hypothesis, that states that for every ¢« € I and every t € WTy,
m*(pu(i, 1)) = f(val(t),i). Hence, Theorem 6.8 can be strengthened as follows.

Theorem 6.8’ Let A C SUB, 2 = (V,a) a [-algebra and f, : HG — V a
(HRGY,)-compatible function. Then f; is strict (A,)-realizable. a

Clearly, every strict realizable function is also a realizable function.

6.4 Realizable predicates

Besides functions on hypergraphs, Habel also considered predicates on hyper-
graphs. Predicates on hypergraphs are for example the questions whether or not
a hypergraph is totally disconnected, whether or not a hypergraph contains a
Eulerian path or whether or not a hypergraph is k-colorable for a fixed £ € N. To
be able to compute these predicates, and to answer these questions, based on the
derivation of a hypergraph in a hyperedge replacement grammar, the predicates
must be compatible with the derivation proces. The notion of compatible predi-
cates was introduced in [HabKreVog89]%. The definition of compatible predicates
in [Hab92] does not have the flaws that the definition of compatible functions
has. We will therefore use Definition VI.6.1 from this source, which is included
hereafter.

Definition 6.9 (compatible predicates, Habel)

i. Let ' C HRG, [a finite set, called the index set, ¥ a predicate defined
on pairs (H,7) € HG x I and v’ a decidable predicate on triples (R, ass, 1),
with R € HG, a mapping ass : Er — [and i € I. Then 9 is called (C,1)-
compatible if for all G = (N, T, P,Z) € C and all derivations A* =, R =7,
H with A€ NUT and H € HGy, and for all ¢ € I, 1(H,) holds iff there
is a mapping ass : Er — I such that ¢'(R, ass, i) holds and ¥ (H (e), ass(e))
holds for all € € Fg.

ii. A predicate 1y on HG is called C'-compatible if predicates 1 and 7' and an
index ¢y € I exist such that ¢ is (C,¢’)-compatible and 15 = ¥(—,4,). O

Now a predicate on hypergraphs is nothing more than a function from the set of
hypergraphs into the set of boolean constants, B. In fact it turns out that every
compatible predicate can be represented by a compatible function. In order to
show this, we first need an algebra which represents the boolean calculus.

Definition 6.10 (boolean calculus) The set of booleans, denoted by B, is defined
as B = {false, true}. The set of boolean symbols, denoted by ", is the ranked
alphabet defined by T'y = {false, true}, T} = {=} and T} = {V,A} for k > 1.
The boolean calculus is the T'*-algebra B = (B,), where the operations are

defined by

?In contradiction to what this thesis suggests, compatible predicates were introduced prior
to compatible functions.

Realizable predicates sixtyfive

i. ag(false) = false and ag(true) = true,
ii. ay(=):B — B is defined by ay(=)(p) = —p for all p € B,

iii. a;(V):B — B and a;(A) : B — B are respectively defined by a;(V)(p) = p
and ay(A)(p) = p for all p € B,

iv. for k > 2, a;(V) : B* = B and a;(A) : B¥ — B are respectively defined by

ar (V) (P o) = Vicicr Pi

and

ar(N)(prs - 1) = Ni<i<k Pi

for all py,...,py € B. O

Using this algebra, we arrive at the following theorem, which is basically the same
as Theorem VI1.2.4 in [Hab92], but now we do not have to represent predicates as
functions into N, using 0 to represent false, 1 to represent true, max to represent
the logical or (V) and [] to represent the logical and (A), since we can use B for
a more elegant representation.

Theorem 6.11 Let €' € HRG and ¥, be a C-compatible predicate. Then the
function ¢, : HG — B, given by ¢o(H) = true iff 1o(H), is (C,B)-compatible,
where 9B is the boolean calculus.

Proof The proof is very similar to the proof of Theorem VII.2.4 in [Hab92]. Let
1o be a C-compatible predicate, @ and @’ the corresponding predicates, I the
corresponding index set and i, € [the index such that 1y = ¥ (—,4). Then
define the function ¢ : HG x I — B as

(I, 1) = { true if ¢ (H, %) holds

false otherwise,
and the family of functions ¢ as
¢ = {‘P/R,i :(Er X I — B) = B}renc ier

where for each R € HG and i € I, ¢, is defined by

true if '(R, ass, i) holds for some ass : Ep — [
Yri(7) = with v (e, ass(e)) = true for all e € Fp
false otherwise.

Clearly, ¢o(H) = ¢(H,1y). Now we have to show that ¢ is (C, ¢’)-compatible. Let
H € HGy and A* =, R = H be a derivation of H in some G = (N,T,P,7) €

sixtysix Compatible and realizable functions

C. Furthermore, for all e € Eg, let l[g(e)* = H(e) be the fibre of R =§, H,
induced by e.

If p(H,) = true, then ¥(H,1) is satisfied. Since 1 is (C,¢’)-compatible, there is
a mapping ass : I'r — I such that ¢'(R, ass, 1) and ¢ (H (e), ass(e)) forall e € Ep
hold. Thus, ¢(H (e), ass(e)) = true for all e € Er. Now define v : Egp x [— B
by v(e,7) = ¢(H (e),) for (e,j) € Er x I. Then ¢ ,(y) = true.

Conversely, if ¢ ,(v) = true, with y(e, j) = @(H (e),j) for (e,j) € Er x I, then
there is a mapping ass : Er — [such that for all e € Fg, 9/(R,ass,) holds
and ¢(H (e),ass(e)) = true. By definition of ¢, ¥ (H (e), ass(e)) holds for all
e € Fgr. Now since ¢ is (C,9')-compatible, we find that ¢(H,:) holds. Thus
w(H, 1) = true.

Now @(H,1) = ¢ ;(7), where (e, j) = ©(H (¢), j) for (¢,j) € Er x I, thus ¢ is
(C, ¢')-compatible. Moreover, each ¢/, ;(7) can be expressed as ¢ ;(7) = s7,:(7),
where sg; € Tps(Eg x I) is a T"(Ep x I)-expression corresponding to R and .
The expression sg; can be expressed as

SRi = VasseAssR,,[[/\eeER[[(ev ass(e))]],

where
ASSg; ={ass: Er — I | ¢¥'(R, ass, 1) is satisfied }.

If ASSg; = @ then sg; = false. Now ASSp; can be effectively constructed since
Eg and [are finite and v’ is a decidable predicate, and thus sg ; can be effectively
constructed from R and ¢. Hence, the function ¢ is (C, B)-compatible. O

If a predicate 1y on hypergraphs is defined to be equal to a function 1, : HG — B,
then we come to the following corollary.

Corollary 6.12 Let A C SUB and ¢, a HRGX-compatible predicate. Then the
function ¢y : HG — B, defined by ¢o(H) = true iff ¢y(H) holds, is (A,B)-

realizable.

Proof The corollary follows directly from Theorem 6.11 and Theorem 6.8. (|

sixtyseven

Chapter seven

Decidability results

The final chapter of this thesis presents some decidability results on hypergraph
expression languages, which are defined as regular tree languages. It is shown
that it is decidable whether or not a predicate on a hypergraph, that is real-
izable by a finite tree transducer that transforms a hypergraph expression into
a boolean expression, holds for the evaluation of some, or all, expressions in a
regular tree language over SUB. Also it is shown that it is decidable whether
or not the value of a numerical function on hypergraphs, that is realizable by a
finite tree transducer that transforms a hypergraph expression into a numerical
expression, is bounded. The metatheorems in [Hab92] follow from the theorems
in this chapter. The proofs of these results use results from tree language theory.

sixtyeight Decidability results

7.1 Decision problems

In this section it is shown that it is decidable whether or not a regular hyper-
graph expression language generates hypergraph expressions that evaluate to a
hypergraph, for which a realizable predicate holds. The proof uses the tree lan-
guage of all boolean expressions that evaluate to true, which is a recognizable
tree language. Recall the definition of the boolean calculus in Definition 6.10.

Definition 7.1 Let B = (B,) be the T'*-algebra for the boolean calculus and T
a finite subset of T'®. Then the set of expressions over T, which evaluate to true,
denoted by TRUEt, is defined as TRUE = {t € Tt | m®(¢) = true}. O

Lemma 7.2 Let B = (B,a) be the I'"-algebra for the boolean calculus and T a
finite subset of T'®. Then TRUEr € RECOG.

Proof Construct a regular tree grammar G = ({F,T},T, R,T), with the set of
rules R such that

i. if false € T'y then F' — false is in R and if true € T’y then T — true is in R,
ii. if = €Ty then F'— =[T] and T' — —[F] are in R,

iii. for k > 1 and V,A € Ty, F' — V[F---F] and all F' — A[A;---AL], such
that A1 << k: A; = F, are in R and

iv. for k > 1and A,V € Ty, T — A[T---T] and all T" — V[A; --- A;], such
that A1 << k: A, =T, arein R.

It is easy to see that £(G) = TRUEr. a

We are now ready to prove one of the major theorems of this thesis.

Theorem 7.3 (metatheorem for decision problems) Let A C SUB and ¢, :
HG — B a (A, ®)-realizable function. Then for all ¢ € RTGa, it is decidable
whether or not ¢y (val(t)) = true for some t € L(G).

Proof Let G = (N,%, P,S) € RTGa. Clearly X is a finite subset of A. Thus,
since g is (A, B)-realizable, a total deterministic top-down finite tree trans-
ducer M = (Q,%,T, R,{qs}) can be constructed, such that for all t € WTy,
m® (M (1)) = @o(val(t)). T is the finite subset of T", that consists of all symbols
with their rank, that are used in the right-hand sides of the rules in R. Now
M~ (TRUEy) is the set of all ¢ € WTy such that m® (M (¢)) = true. Since
TRUEr € RECOG (Lemma 7.2) and RECOG is effectively closed under in-
verse top-down tree transducers (Theorem 3.59), M~!(TRUEy) is effectively a
recognizable tree language. Now M~ (TRUEr) N L(G) is the set of all t € L(G)
such that m®(M (1)) = true (and thus ¢y(val(t)) = true). Since RECOG is
effectively closed under intersection (Theorem 3.14) and the emptiness prob-
lem for recognizable tree languages is decidable (Theorem 3.15), we find that
it is decidable whether ¢q(val(t)) holds for some ¢ € L(G), since this is true iff
M~ (TRUEr) N L(G) #£ @. a

Boundedness problems sixtynine

Remark 7.4 Note that if ¢ is (A, B)-realizable, then so is =gy (simply “invert”
the rules which have the initial state as left-hand side). Therefore it follows from
Theorem 7.3, that for every G € RT G, it is decidable whether or not g (val(t))
holds for all ¢ € L£(G), since this is equal to the problem whether or not there is
no t € L(G) such that —pq(val(t)). O

The metatheorem for decision problems in [Hab92] (Theorem VI1.4.1) follows from
this theorem, the equivalence between the two formalisms for the generation of
hypergraphs and the relation between compatible and realizable functions.

Theorem 7.5 (metatheorem for decision problems, Habel) Let A C SUB and
1y be a HRG{-compatible predicate. Then for all G}, € HRGY, it is decidable
whether

i. ¥o(H) holds for some H € L(G,) and

ii. 1o(H) holds for all H € L(G}).

Proof According to Corollary 6.12, the function ¢, : HG — B, given by ¢o(H) =
true iff o (H), is (A, B)-realizable, where 9 is the T'"-algebra for the boolean
calculus. Let G, € HRGY be an arbitrary hyperedge replacement grammar.
According to Theorem 4.20 we may assume that G, is typed (the construction
in the proof of this theorem assures that the typed equivalent of G, is still in
HRGY). Let G, = (N,3,R,5) € RTGguyp be a typed regular tree grammar
such that G/, > ;. Such a G exists (and can be found effectively) according to
Theorem 4.40. From Theorem 4.41 we find that £(G)) = val(L(G,)). Further-
more, from Definition 4.39 and the definition of HRGY (Definition 6.6), we find
that X is a finite subset of A and thus G; € RTGA. Hence, the statements in
the metatheorem follow directly from Theorem 7.3 and Remark 7.4. (|

7.2 Boundedness problems

We now will show that it is decidable for a realizable function f,, whether or not a
regular tree grammar, generating hypergraph expressions, generates expressions
that evaluate to hypergraphs whose function values under f; grow beyond any
bound. These results were presented in another form in [Eng94].

We use numerical functions that can be realized by a top-down finite tree trans-
ducer, which transforms the hypergraph expressions into expressions in the I'"'-
algebra 9t = (N,) for the arithmetic caclulus, which was defined in Defini-
tion 5.1. For the simplicity of the proofs, we will use trees in which each node
has at most two subtrees. These trees are called binary trees, defined as follows.

Definition 7.6 A ranked alphabet I' is called binary if I'y = @ for k = 1 and for
all k> 2. A tree over a binary ranked alphabet is called a binary tree. O

seventy Decidability results

We want to make sure that we do not lose any expressive power, and therefore
we prove the following lemma, which states that every expression in 91 can be
transformed into an equivalent binary expression (also in 91).

Lemma 7.7 For each finite I' C TV, there is a binary ranked alphabet I" C T
and a linear tree homomorphism ¢ : T+ — Ty, such that for every t € Tr,

£(t) € Trr and m™(E(1)) = m™(¢).

Proof Let I' be an arbitrary finite subset of I'" and let TV be such that I, = T
and I, = {®, ®, max, pow}. Clearly, I" C I'" and I" is binary. Now construct
a linear tree homomorphism ¢, as follows. & : 'y — 11 is defined by &(0) = o
for all o € 'y and for all & > 1, & : 'y — Tr/(X,) is defined by & (o) =
olzo[zy...o[xr_12¢]..]] for all o € 'y (in particular, & (o) = ;). Since the
operations corresponding to @, ® and max in DT are associative and since pow
has only rank 2, it can be shown by induction to the structure of ¢, that for every

t € Tr, £(t) € Ty and m™(£(t)) = m™(1). a

The value of a function ¢ is bounded on a set S iff the set ¢(9) is finite. If §
has the property that ¢(95) is finite iff S is finite, we only have to show that 9
is finite. If S is a regular tree language, we can use results from the theory of
tree grammars to show its finiteness. To accomplish that a set of hypergraph
expressions has this property, we need to remove all subexpressions that do not
contribute to the function value, e.g. subexpressions of the form 0+ ¢, ¢ 4 0,
1-t,1-1,t* and 1'. Expressions that do not have these subexpressions are called
ascending expressions. Again, each (binary) expression in 9% can be effectively
transformed into an equivalent ascending expression.

Definition 7.8 For ecach T' C T, the set of ascending expressions over I', denoted
by ATr, is defined recursively as follows.

i. IfO' € FO7 then o E ATF

ii. Foro € I'y\{max}, k> landt,,...,ty € ATp, if m™(¢;) < m™(o[t;---11])
forall 1 <7<k, then oft,---t;] € ATy.

ili. If max € I'y, k> 1 and ty,...,t € AT, then max[t; ---1;] € ATr.

Lemma 7.9 For every finite binary I' C T, there is a linear total deterministic
bottom-up finite tree transducer 7 : Ty — T, such that for every t € Tt, 7(¢) €
ATr and m™(7(t)) = m™(1).

Proof Let I' C T be an arbitrary finite binary ranked alphabet. Now construct
a total deterministic bottom-up finite tree transducer 7 = (@, ', I', R, Q)), where
Q@ = {¢, ¢, 9>2} and R has the following rules.

i. Co — q0[00]7 Cl — Q1[C1] and Cn — qu[Cn] for Cn € I' such that n Z 27

ii. & — q[P],

®lgolr1]go[z2]] = q[Col,
Blgolz1]q[z2]] = qlz2] and Blg[z1]qolz2]] = ¢[1] for ¢ € {(]17(]22}7
®lg[z1]q'[za]] = ¢52[B[z120]] for ¢,¢" € {q1, 452},

Boundedness problems seventyone

iii.

iv. pow|[qo[z1]qo

qolz1]q[zs]] = @o[Co] for q € {q1, g2},

qlzi]qlzs]] = @ [Ch] for ¢ € Q,

I>2]71]q0[2:]] = @[C1], pow[gsa[zi]qi[2s]] — g>0[4],
I>o[r1]gsalwa]] — gsa[pow([zias]],

When the tree transducer arrives in state ¢y, the value of the processed subtree
is 0, for state ¢; it is 1 and for state ¢>, it is larger than 1. It can be shown by
induction to the structure of ¢, that for every t € Tr, 7(t) € ATr and m™(7(t)) =
m™(1). a

As was the case with subexpressions of the form 0+ ¢ et cetera, we also have
to remove expressions of the form max[t,t,], since they can lead to infinitely
many trees with the same value. We therefore show that a tree transducer can be
constructed that removes max from the expressions by guessing its value (and
thus the appropriate subtree).

Lemma 7.10 For each finite I' C T, a linear top-down finite tree transducer
n C It X It can be constructed, such that 7(ATr) € AT\ {max} and, for every
L C ATr, m™(L) is finite iff m™(n(L)) is finite.

Proof Let I' C T be an arbitrary finite ranked alphabet. Construct the (non-
deterministic) tree transducer n = ({¢},I',I', R,{¢}), where ¢ is the only state
and R contains the following rules.

i. For o € Ty, the rule ¢[o] — o.
ii. For k> 1, max € I'y, the rule(s) ¢[max[z, - - -2;]] = @;, for 1 <@ < k.

iii. For k> 1, 0 € I'y \ {max}, the rule g[o[z, - -z;]] = olg[z1] - - - qlzk]]-

Note that the non-determinism is caused only by the multiple rules for max.
For every expression of the form o[t ---#;], with o € I'\ {max}, n merely
copies the expression deterministically to the output, computing the value for
m¥(ot; - - -1;]) from the operation corresponding to o and the values m™(¢;) for
1 <4 < k. For expressions of the form max|[t; - - - #;], 77 guesses the subtree which
has the highest value for m™(¢;), 1 < ¢ < k. Among these guesses, there is at least
one good guess for all max expressions in a tree. Thus, if t € AT is an arbitrary

seventytwo Decidability results

ascending expression and 7(t) = {s € AT\ jmax} | ¢[t] =" s} is the image of ¢
under 7, then m™(¢) = maz{m™(s) | s € n(t)}. This uses the fact that the opera-
tions corresponding to @, ® and pow are monotonic in all arguments. Thus, for
all L C ATy, m™(n(L)) is finite iff m™ (L) is finite. Furthermore, by induction to
the structure of ¢ it can be shown that for every t € ATr, n(t) € AT {max}- O

We now have a set of ascending expressions that do not contain the max symbol.
We now find that for this set, the value of the meaning function m” is bounded
iff the set itself is finite.

Lemma 7.11 For each L C AT (max}, M7 (L) is finite iff L is finite.

Proof For each ¢ = o[ty 1] € ATpv\(max}s £ > 1, 0 € {DB,®,pow} and
ti, ...y ty € ATrm (max}, by definition m™(¢;) < m™(o[t; - t;]) for 1 < i < k.
By induction to the structure of ¢, one can show that m™(t) > height(t) for all
t € AT\ [max}- Thus, if L is infinite, there must be trees of arbitrary height,
and thus of arbitrary large value. O

Now we are finally ready to prove one of the most important results in this thesis.
It states that we can decide for a realizable function, given a regular tree grammar,
whether or not the function value can grow beyond any bound for a hypergraph,
that is the result of the evaluation of a hypergraph expression generated by the
grammar.

Theorem 7.12 (boundedness theorem) Let A C SUB and f, : HG — N a
(A, D)-realizable function. Then it is decidable for a regular tree grammar G
over A, whether or not there is a v € N, such that for all ¢t € L(G), fo(val(t)) < v.

Proof The proof is similar to the proof of Proposition 15 in [Eng94]. Let
G = (N,X,R,S5) be an arbitrary regular tree grammar over A. We have to
show that it is decidable for G, whether or not fy(val(L£(G))) is bounded or,
equivalently, whether or not fy(val(£((G))) is finite. Clearly, ¥ is a finite subset
of A, so there exists a total deterministic top-down tree transducer u : Ty — 1T,
where I' C T is the finite set of all operators used in p, such that for all
te Wls, m™(u(t)) = fo(val(t)). Thus m™(u(L(G))) = fo(val(L(G))). Now, by
Lemma 7.7, a binary ranked alphabet IV C TV and a linear tree homomorphism
€ : Tr — T can be constructed, such that for every ¢t € Ty, £(¢) € T and
(1) = M), Thus m(EQILG) = folval(£(G))) and E(u(L(G))) C
Tri. Hence, £(u(L(G))) contains only binary trees. By Lemma 7.9, there is a to-
tal deterministic bottom-up finite tree transducer 7 : T — T/, such that for all
t €T, 7(t) € ATr and m™(7(t)) = m™(¢). Hence, 7(£(p(L(G)))) C ATt and
(€ (u(£(G)))) = M EGLG)) = fo(val(£(G))). Now by Lemma 7.10,
we can construct a non-deterministic top-down finite tree transducer n C Tt X T,
such that for every L C ATy, n(L) C ATrn{max; and m™(L) is finite iff
m%(y(L)) is finite. So n(r(€((L(G))) € AT (max) and fo(val(£(G))) s fi-
nite iff m™ (n(7(£(u(L£(G)))))) is finite. By Lemma 7.11, fo(val(L£(G))) is finite iff
n(T(E(r(L(G))))) is finite. Since £L(G) € RECOG and since norofop € (BUT)™,
it follows from the definition of SUR that n(7(£(u(L£(G))))) € SUR. Now, by

Boundedness problems seventythree

Theorem 3.62, the finiteness problem is solvable for SUR. Hence, the finiteness
problem is solvable for fy(val(L(G))). a

Remark 7.13 Note that if g in the proof of Theorem 7.12 is linear, then so is
nortofopu, and thus n(r({(u(L(G))))) € RECOG, since RECOG is closed
under linear top-down or bottom-up tree transducers. Now the finiteness problem
for RECOG is decidable by Theorem 3.16, so if p is linear, the proof can be
simplified. O

This result is related to the metatheorem for boundedness problems in [Hab92]
(Theorem VIL.3.1). In fact, Habels result follows from Theorem 7.12 for certain
classes of hyperedge replacement grammars.

Theorem 7.14 (metatheorem for boundedness problems) Let A C SUB and
fo : HG — N be a (HRGY, 91)-compatible function. Then for all G; € HRGY,
it is decidable whether or not there is a v € N, such that fy(H) < v for all
H e L(G).

Proof The proof is similar to the proof of Theorem 7.5. According to Theorem 6.8,
fois (A, D)-realizable. Now let (), be an arbitrary hyperedge replacement gram-
mar in HRGY. According to Theorem 4.20 we may assume that G, is typed (the
construction in the proof of this theorem assures that the typed equivalent of G},
is still in HRGY). Let G, = (N,X, R, 5) € RTGgyp be a typed regular tree
grammar such that G o< Gy. Such a G, exists (and can be found effectively) ac-
cording to Theorem 4.40. From Theorem 4.41 we find that £(G}) = val(L(GY)).
Furthermore, from Definition 4.39 and the definition of HRGY (Definition 6.6),
we find that X is a finite subset of A and thus G; € RTGa. Hence, the statement
in the metatheorem follows directly from Theorem 7.12. (|

Corollary 7.15 (metatheorem for boundedness problems, Habel) Let A C
SUB and f; be a (HRGY, maz,+,-)-compatible function. Then, for all G €
HRGY, it is decidable whether or not there is a natural number v € N, such

that fo(H) <o for all H € L(G).

Proof Following our own, equivalent, definition, f; is a (HRGY, 9t)-compatible
function. Therefore the corollary follows directly from Theorem 7.14. (|

Example 7.16 Let f; : HG — N be the function defined by fo(H) = |Fy|. Thus
fo determines the number of hyperedges in a hypergraph. From Section 5.1 we
know that fy is (SUB, 91)-realizable. So from Theorem 7.12 we find that it is
decidable for a regular tree grammar G over SUB, whether or not there is a

v € N, such that for all t € L(G), fo(val(t)) < v.

For the regular tree grammar G from Example 4.46, we find that £(G) =
{o0([o1)"[2](])* | » € N}. Now for n € N, val(oo([o1)"[02](])") = Waia. Fur-
thermore, for all n € N, fo(W,) = 2n. So clearly, for G;, fo(val(G)) is not
bounded since val(G;) contains infinitely many hypergraphs. O

seventyfour

seventyfive

References

[BauCou87]
[Eng74]
[Eng75]
[Eng77]

[Eng94]

[EngHey91]

[GecSte84]

[Hab92]

[HabKre87)

[HabKreVog89]

[HabKreVog91]

[HopUlI79]

[Wec92]

M. Bauderon, B. Courcelle, Graph Ezpressions and Graph Rewritings,
Mathematical Systems Theory, Vol. 20, 1987, pp. 83-127.

Joost Engelfriet, Tree Automata and Tree Grammars, Lecture Notes,
Institute of Mathematics, University of Aarhus, Denmark, 1974.

Joost Engelfriet, Bottom-up and Top-down Tree Transformations - a
Comparison, Mathematical Systems Theory, Vol. 9, 1975, pp. 198-231.

Joost Engelfriet, Top-down Tree Transducers with Regular Look-ahead,
Mathematical Systems Theory, Vol. 10, 1977, pp. 289-303.

Joost Engelfriet, Graph Grammars and Tree Transducers, proceedings
CAAP’94, Sophie Tison (ed.), Lecture Notes in Computer Science, Vol.
787, Springer Verlag, Berlin, Germany, pp. 15-36.

Joost Engelfriet, Linda Heyker, The String Generating Power of Context
Free Hypergraph Grammars, Journal of Computer and System Sciences,

Vol. 43, October 1991, pp. 328-360.

Ferenc Gécseg, Magnus Steinby, Tree Automata, Akadémiai Kiadd, Bu-
dapest, Hungary, 1984.

Annegret Habel, Hyperedge Replacement: Grammars and Languages,
Lecture Notes in Computer Science, Vol. 643, Springer Verlag, Berlin,
Germany, July 1992.

Annegret Habel, H. J. Kreowski, May We Introduce to You: Hyperedge
Replacement, in: Graph Grammars and Their Applications to Computer
Science, Lecture Notes in Computer Science 291, 1987, pp. 15-26.

Annegret Habel, H. J. Kreowski, W. Vogler, Metatheorems for Decision
Problems on Hyperedge Replacement Graph Languages, Acta Informat-
ica, Vol. 26, 1989, pp. 657-677.

Annegret Habel, H. J. Kreowski, W. Vogler, Decidable Boundedness
Problems for Sets of Graphs Generated by Hyperedge Replacement, The-
oretical Computer Science 89, 1991, pp. 33-62.

John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata The-
ory, Languages and Computation, Addison-Wesley Publishing Company,
Reading, Massachusetts, US, 1979.

Wolfgang Wechler, Universal Algebra for Computer Scientists, Springer-
Verlag, Berlin Heidelberg, Germany, 1992.

seventysix

