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Abstract

One of the many formalisms to generate sets of labeled hypergraphs is the the-ory of hyperedge replacement grammars. In such a grammar, hypergraphs aresubstituted for hyperedges. Another method for the generation of hypergraphlanguages is by de�ning a set of operations on hypergraphs, generating expres-sions over these operations and �nally evaluating these expressions, yielding hy-pergraphs. These two methods turn out to be equivalent.For the purpose of the analysis of hypergraph languages it is important to con-sider certain predicates and numerical functions on the hypergraphs in the lan-guages. A number of relevant predicates and functions can be determined fromthe derivations of the hypergraphs in the hyperedge replacement grammars orfrom the expressions that evaluate to the hypergraphs, instead of from the hy-pergraphs themselves.For some important properties of the predicates and functions on the hypergraphlanguages, it turns out that they can be determined from the hyperedge replace-ment grammars and the regular tree grammars that generate the expressions. Forexample, whether or not a predicate is true for all hypergraphs in the languageor whether or not a function is bounded on the hypergraph language.
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Samenvatting

Een van de vele formalismen om verzamelingen van gelabelde hypergrafen tegenereren, is de theorie van context-vrije hypergraafgrammatica's. Hierbij wor-den hypertakken in de hypergrafen vervangen door andere hypergrafen. Een an-dere methode om hypergrafen te genereren is het de�ni�eren van een aantal oper-aties op hypergrafen, vervolgens het genereren van expressies over deze operatiesmet behulp van reguliere boomgrammatica's, welke dan vervolgens ge�evalueerdworden. Deze twee methoden blijken equivalent te zijn.Voor de analyse van hypergraaftalen is het van belang om bepaalde predikatenof numerieke functies op de hypergrafen uit deze talen te beschouwen. Een aan-tal relevante predikaten en functies kunnen bepaald worden door te kijken naarde a
eidingen van de hypergrafen in de hypergraaf grammatica's of naar de ex-pressies die de hypergrafen als betekenis hebben. Dit in plaats van het bepalenvan de predikaten en functies op de hypergrafen zelf.Nu blijkt het dat sommige belangrijke eigenschappen van de predikaten en defuncties op de hypergraaftalen aan de hand van de hypergraaf grammatica's ende reguliere boomgrammatica's bepaald kunnen worden. Bijvoorbeeld kan hetbepaald worden of een predikaat waar is voor alle hypergrafen uit een hypergraaf-taal en of een functie op een hypergraaftaal begrend is.
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Chapter oneIntroductionGraphs and their generalized version, hypergraphs, are widely used in ComputerScience, but also in many other scienti�c disciplines. Various methods for de�ningand generating hypergraphs have been proposed. Among the more well-knownmethods are the di�erent types of hypergraph grammars, such as node replace-ment grammars and hyperedge replacement grammars. Especially hyperedgereplacement grammars have nice context-free properties.When analyzing hypergraphs it is important to determine the values of some nu-merical functions on these hypergraphs. In [Hab92], a large number of numericalfunctions on hypergraphs is presented. It is shown that the boundedness of thevalues of these functions on hypergraph languages, which are generated by hy-peredge replacement grammars, is decidable if the functions are compatible withthe replacement of hyperedges by hypergraphs.We will investigate another approach to the generation of hypergraphs. We willnot generate hypergraphs using hyperedge replacement grammars, but we willgenerate expressions over a special set of hypergraph operators, that evaluate tohypergraphs. The numerical functions on the hypergraphs can then be computedby special transformations, that transform the hypergraph expressions into nu-merical expressions. Evaluating these numerical expressions yields the functionvalues. We will show that for a special class of sets of hypergraph expressions,called regular (hypergraph) expression languages, generated by regular expressiongrammars, we can obtain similar decidability results as in [Hab92].In Chapter 2, all the mathematical notions and notations used in this thesisare presented. In Chapter 3, tree grammars and automata are treated. Sinceexpressions closely correspond to trees, these devices are relevant for the aboveapproach. The regular tree grammars are presented, as are tree automata withoutput, that realize tree transformations. Furthermore, some decidability resultsare presented, that will be used to show the decidability of the boundedness offunctions on hypergraph languages.



two IntroductionIn Chapter 4 the two methods for the generation of hypergraphs and hypergraphlanguages are presented. It is shown that regular expression grammars generatethe same hypergraph languages as hyperedge replacement grammars do.Chapter 5 presents some numerical functions on hypergraphs, realized by treeautomata with output, that transform hypergraph expressions in numerical ex-pressions. These functions are de�ned in [Hab92] for hyperedge replacementgrammars. In Chapter 6 compatible and realizable functions are presented. Afunction on hypergraphs is compatible ([Hab92]) if its value for a hypergraphcan be determined on the derivation of the hypergraph in a hyperedge replace-ment grammar. A function is realizable if it can be computed for a hypergraph,by transforming an expression that evaluates to the hypergraph, into a numer-ical expression that evaluates to the function value for the hypergraph, using atree automaton. It is shown that every compatible function is also a realizablefunction.Finally, in Chapter 7 some decidability and boundedness results are presented.It is shown that it is decidable for a realizable predicate, whether or not a givenregular expression grammar generates expressions that evaluate to hypergraphsfor which the predicate holds. It is also shown that it is decidable for a realizablenumerical function, whether or not the function value for a hypergraph language,obtained by the evaluation of a regular expression language, grows beyond anybound. The decidability results in [Hab92] follow from the results in Chapter 4and Chapter 7, and from the fact that every compatible function is also a realiz-able function. The proofs of the decidability results in Chapter 7 lean heavily onthe decidability results in Chapter 3.
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Chapter twoPreliminaries

Reading this thesis requires no knowledge in advance. However, it is assumedthat the reader is familiar with mathematical notation. This chapter presentsall notions that are used throughout the thesis. The �rst section describes allpreliminaries, the second section describes trees, whereas the last section describessome basic universal algebra theory.



four Preliminaries2.1 Mathematical preliminariesThis section summarizes the elementary mathematical notions that are usedthroughout this thesis. The main notions are sets, relations, functions, strings,languages and logic.SetsBy a set , we mean a collection of objects. When an object s is in a set S, wewrite s 2 S, and s is called an element of S. When s is not in S, we writes 62 S. If S contains no elements at all, we call S the empty set, denoted byS = ?. A set is called �nite if it contains �nitely many elements, otherwise it iscalled in�nite. If a set is �nite and its k elements are enumerable as s1; s2; : : : ; sk,we write S = fs1; s2; : : : ; skg. Here the number k is called the cardinality ofthe set S, denoted by jSj. A set fsg containing only one element is called asingleton. If a set is in�nite and its elements are enumerable as s1; s2; : : :, wewrite S = fs1; s2; : : :g. The set of all elements s 2 S such that property p(s)holds, is denoted by fs 2 S j p(s)g or fs j p(s)g if S is understood.Let S and T be sets. S is called a subset of T , denoted by S � T , if all elementsof S are also in T . A set U is called the union of S and T , denoted by U = S [Tif U contains all elements that are in S or in T , thus S[T = fs j s 2 S or s 2 Tg.A set U is called the intersection of S and T , denoted by U = S\T if U containsall elements that are in S as well as in T , thus S \ T = fs j s 2 S and s 2 Tg.If S and T are sets, then the set di�erence of S and T , denoted by S nT , is the setof all elements of S that are not elements of T , thus S nT = fs 2 S j s 62 Tg. Theset di�erence of S and T is sometimes called the complement of T with respectto S, or simply the complement of T , if S is understood.If S is a set, then the powerset of S, denoted by P(S), is the set of all subsets ofS, thus P(S) = fT j T � Sg. If S and T are sets, then the cartesian product ofS and T , denoted by S � T , is the set of all ordered pairs (s; t) such that s 2 Sand t 2 T . This can be extended to �nitely many sets byS1 � � � � � Sk = f(s1; : : : ; sk) j si 2 Si for 1 � i � kg:Two special sets are the set of all natural numbers , N = f0; 1; 2; 3; : : :g and theset of booleans , B = ffalse; trueg.Relations and functionsA subset R of a cartesian product S � T of two arbitrary sets S and T , is calleda relation from S to T . Let R � S � T be a relation. For every subset A � S,the image of A under R is de�ned as R(A) = ft 2 T j (s; t) 2 R for at least



Mathematical preliminaries �veone s 2 Ag. For every subset B � T , the pre-image of B under R is de�ned asR�1(B) = fs 2 S j (s; t) 2 R for at least one t 2 Bg.A relation f � S � T is called a partial function from S to T , denoted byf : S ! T , if for every s 2 S there is a most one t 2 T such that (s; t) 2 f .Such a t is called the value of s under R. This is usually denoted by f(s) = t.A function f : S ! T is called total (or a mapping) if for every s 2 S, there isprecisely one t 2 T such that f(s) = t. If f : S1�� � ��Sk ! T is a function, thenk is called the arity of the function. The function f is called a k-ary function.Let S and T be two arbitrary sets. Then the set of all total functions from S toT is denoted by (S ! T ). Let g : S ! T and f : T ! U be two total functions.Then the composition of f and g, denoted by f � g is a function f � g : S ! U ,de�ned by f � g(s) = f(g(s)).Let S be a set and R � S � S a relation on S. Then the transitive closure of R,denoted by R+, is de�ned as follows.i. If (s1; s2) 2 R, then (s1; s2) 2 R+.ii. If (s1; s2) 2 R+ and (s2; s3) 2 R+, then (s1; s3) 2 R+.iii. Nothing is in R+ unless it follows from i and ii.The re
exive transitive closure of R, denoted by R�, is de�ned as R� = R+ [f(s; s) j s 2 Sg.Strings and languagesAn alphabet is a set of symbols. An alphabet is �nite, unless it is explicitly de�nedin�nite. Let � be an alphabet. A string over � is a sequence of symbols from�. A string is usually written as �1 � � ��k, with �i 2 � for all 1 � i � k, where kis the length of the string. A string of length 0 is called the empty string, and isdenoted by �.Let s = �1 � � ��k and t = �1 � � � �` be two strings. The concatenation of s and t,denoted by s � t, is the string �1 � � ��k�1 � � ��`, of length k + `.Let � be an alphabet and � 2 � a symbol. The concatenation of k times thesymbol � is denoted by �k. The set of all strings containing only the symbol �,including the empty string, is denoted by ��. The set �� n f�g is denoted by �+.The set of all strings over the alphabet � is denoted by ��. Again �+ = �� nf�g.Logic and computabilityWe will use the standard logical notation. The boolean constants are denoted byfalse and true . Logical and is denoted by ^, logical or by _ and negation by :.We will abbreviate \if and only if" by i�. The existential quanti�er is denotedby 9 and the universal quanti�er by 8.



six PreliminariesFurthermore, we will use two notions from computation theory. We say that afunction is computable if there exists an algorithm that computes its value froma given input. A predicate is called decidable if there is an algorithm that decideswhether or not the predicate holds for a given input.2.2 TreesTrees can be represented in a large number of di�erent, but usually equivalent,ways. The most common representation is probably the graphical representation,as in Figure 2.1. In this section we present our representation of trees as aspecial kind of strings. Trees correspond closely to expressions, as explained inSection 2.3.
a b b c a

p

a b c c a b c c a a a

q q r saFigure 2.1: Example of a treeAlphabets and treesIn order to represent trees as strings of symbols, we need to de�ne the number ofsubtrees that each symbol can have. Of course, this number need not be restrictedto one single value. We therefore use the notion of ranked alphabets, de�ned asfollows.De�nition 2.1 (ranked alphabet) An alphabet � is a ranked alphabet if for eachnon-negative integer k, a subset �k of � is speci�ed, such that �k is nonemptyfor a �nite number of k's only, and such that � = [k�0�k. If a 2 �k, then wesay that a has rank k. �For a ranked alphabet � and a 2 �, we sometimes use rank(a) = k if it is clearthat a 2 �k. Union and equality for ranked alphabets are de�ned as follows.De�nition 2.2 (union and equality) Let � and � be ranked alphabets. Theunion of � and �, denoted by � [�, is de�ned by (� [�)k = �k [�k, for allk � 0. We say that � and � are equal , denoted by � = �, if, for all k � 0,�k = �k. �Now trees are de�ned as string over a ranked alphabet and the special symbols[ and ]. Note that the symbols [ and ] are not strictly necessary when the rank



Trees sevenof each symbol is unique, but even in that case, this syntactic sugar makes themfar more readable.De�nition 2.3 (trees over a ranked alphabet) Given a ranked alphabet �, theset of trees over �, denoted by T�, is the language over the alphabet � [ f[; ]gde�ned inductively as follows.i. If a 2 �0, then a 2 T�.ii. For k � 1, if a 2 �k and t1; : : : ; tk 2 T�, then a[t1t2 � � � tk] 2 T�.The �rst symbol in a tree is called the root of the tree. The symbols of rank 0are called the leafs of the tree. �Using this de�nition, the tree in Figure 2.1 can be written as a string over theranked alphabet �, where �0 contains at least the symbols a, b and c, �3 containsat least the symbol r, �4 the symbol q and �5 the symbols p and s. The tree canthen be written asp[q[abcc]q[abcc]r[aaa]as[abbca]]:A tree language is de�ned as a subset of the set of all possible trees. This isequivalent to the usual de�nition of string languages, considered that trees arestrings.De�nition 2.4 (tree language) Let � be a ranked alphabet. A tree languageover � is any subset of T�. �Inductive (or recursive) de�nitionsWhen working with trees, proofs and de�nitions are usually very elegant if re-spectively inductive proofs and inductive de�nitions are used.Principle 2.5 (inductive proof) Let P be a property of trees over a ranked al-phabet �. Ifi. all elements of �0 have property P , andii. for each k � 1 and each a 2 �k, if t1; : : : ; tk have property P , then a[t1 � � � tk]has property P ,then all trees in T� have property P . �Principle 2.6 (inductive de�nition) Suppose we want to associate a value h(t)with each tree t in T�. Then it su�ces to de�ne h(a) for all a 2 �0, and to showhow to compute the value h(a[t1 � � � tk]) from the values h(t1); : : : ; h(tk). Moreformally expressed, given a set O of objects, and



eight Preliminariesi. for each a 2 �0, an object oa 2 O, andii. for each k � 1 and each a 2 �k, a mapping fa : Ok ! O,there is exactly one mapping h : T� ! O, such thati. h(a) = oa for all a 2 �0, andii. h(a[t1 � � � tk]) = fa(h(t1); : : : ; h(tk)) for all k � 1, a 2 �k and t1; : : : ; tk 2T�. �Two functions on trees that are of special interest are yield , which gives the stringof leafs in a tree, and height , which gives us the longest \distance" from the rootof a tree to a leaf of the tree. These function are de�ned inductively as follows.De�nition 2.7 (yield) The mapping yield from T� into �+0 is de�ned inductivelyas follows.i. For a 2 �0, yield(a) = a,ii. For a 2 �k and t1; : : : ; tk 2 T�,yield(a[t1 � � � tk]) = yield(t1)�yield(t2) � � �yield(tk):For a tree language L � T�, we de�ne yield(L) = fyield(t) j t 2 Lg. �De�nition 2.8 (height) The mapping height from T� into N is de�ned recursivelyas follows.i. For a 2 �0, height(a) = 0.ii. For a 2 �k and t1; : : : ; tk 2 T�, height(a[t1 � � � tk]) = max 1�i�kheight(ti) +1. �Sometimes we will use the set of trees over a ranked alphabet, that is extendedwith a set of symbols of rank 0, for example a set of variables. This set of treescan be easily de�ned as follows.De�nition 2.9 (indexed trees) Let � be a ranked alphabet and let S be a setof symbols or a tree language. Then the set of trees indexed by S, denoted byT�(S), is de�ned inductively as follows.i. S [ �0 � T�(S).ii. If k � 1, a 2 �k and t1; : : : ; tk 2 T�(S), then a[t1 � � � tk] 2 T�(S).Note that T�(?) = T�. �



Universal algebra nine2.3 Universal algebraThe theory of universal algebra is often used in computer science as a device forthe formal de�nition of semantics. Detailed information about universal algebracan be obtained from [Wec92] and [GecSte84].Algebras, expressions and derived functionsThe basic notion in the theory of universal algebra is an algebra, which consistsof a set of symbols, represented as a ranked alphabet, and a family of mappingsthat assign meaning to the symbols. The syntactic relation between the symbolsstems from the theory of trees, as de�ned in the previous section.De�nition 2.10 (algebra) Let � be a, possibly in�nite, ranked alphabet.i. A pair A = (V; �), where V is a set of values and � is a family of mappings� = f�k : �k ! (Vk ! V)gk�0that assigns to every � 2 �k, k � 0, a k-ary total function �k(�) : Vk ! V,is a �-algebra, or just algebra if � is clear. �k(�) is also written as �A. Thedomain of A, sometimes denoted by dom(A), is the set V. � is called thesignature of A.ii. A symbol � 2 � is called an operator and the operation �A is called therealization of � in A or the operation corresponding to � in A.iii. An element of T� is called an expression over �.iv. Let A = (V; �) be a �-algebra. Then A determines a mapping mA : T� !V, which is de�ned inductively as follows. For � 2 �0, mA(�) = �A, where�A is a nullary function or constant. For � 2 �k, k � 1 and t1; : : : ; tk 2 T�,mA(�[t1 � � � tk]) = �A(mA(t1); : : : ;mA(tk)):The mapping mA is called the initial homomorphism. �Expressions can consist entirely of operators, representing functions. In thiscase, the meaning of the expression is a value from the domain of the algebra, asde�ned in De�nition 2.10iv. However, expressions can also contain variables, inwhich case the meaning of the expression is a function. This is made clear in thefollowing two de�nitions.De�nition 2.11 (�Z-expression) Let A be a �-algebra and Z a set of variables,such that � \ Z = ?. A �Z-expression is any element of T�(Z). �



ten PreliminariesDe�nition 2.12 (derived function) Let A = (V; �) be a �-algebra, Z a set ofvariables, disjoint with �, and t 2 T�(Z) a �Z-expression. Then the derivedfunction of t, denoted by tA, is the mapping tA : (Z ! V) ! V, de�ned induc-tively as follows. For any mapping 
 : Z! V, assigning a value to each variablein Z, leti. zA(
) = 
(z) for z 2 Z andii. tA(
) = �A(tA1 (
); : : : ; tAk (
)) for t = �[t1 � � � tk], k � 0, � 2 �k andt1; : : : ; tk 2 T�(Z). �Every signature, and thus every ranked alphabet, generates an algebra, by usingthe set of all expressions over the signature as the domain, and the syntactic rulesfor the construction of the expressions as the operations. This algebra is calledthe free algebra.De�nition 2.13 (free algebra) Let � be a signature and Z a set of variables,disjoint with �. The free �-algebra generated by Z, denoted by F�(Z), is the�-algebra (T�(Z); �), where � is a mapping that assigns to every � 2 �k, k � 0,a mapping �F�(Z) : T�(Z)k ! T�(Z), de�ned by�F�(Z)(t1; : : : ; tk) = �[t1 � � � tk]:If Z = ?, then F�(Z) is written as F� = (T�; �), and it is called the free �-algebra. In this case, � is a mapping that assigns to every � 2 �k, k � 0, amapping �F� : T k� ! T�. �SubstitutionFor a signature �, the free �-algebra can be used to give a formal de�nition ofsubstitution of variables by expressions. Let Z be a set of variables and F�(Z) =(T�(Z); �) be the free �-algebra generated by Z. Furthermore, for k � 1, letZ = fz1; : : : ; zkg be a set of variables, disjoint with �, t 2 T�(Z) a �Z-expressionand 
 : Z! T�(Z) an assignment function. Then the substitution of 
(zi) for ziin t, for 1 � i � k, isthz1  
(z1); : : : ; zk  
(zk)i = tF�(Z)(
);where tF�(Z) : (Z ! T�(Z)) ! T�(Z) is the derived function of t in F�(Z). Inthe case where Z = ?, it can be shown by induction on t, that for any �-algebraA and for each 
 : Z! T�,mA(tF�(
)) = tA(mA � 
):
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Chapter threeTree automata and treegrammars

As string languages can be generated and recognized by string automata andstring grammars, tree languages can be generated and recognized by tree au-tomata and tree grammars. Certain types of automata and grammars generatecertain types of tree languages, much similar as in the string case.Tree automata can also be used to de�ne tree transformations. A tree is thentransformed while the automaton traverses the tree in parallel, either in a top-down or in a bottom-up direction. Each symbol or subtree of the tree, can thenbe replaced by another symbol or subtree, thus realizing the transformation inan e�ective, inductive, way.



twelf Tree automata and tree grammars3.1 Recognizable tree languagesThe de�nitions of tree automata and tree grammars used in this thesis are from[Eng74]. Nearly the same de�nitions are used in [Eng75] and [Eng77]. An-other well known source for the theory of tree automata and tree grammars is[GecSte84].3.1.1 Finite tree automata and regular tree grammarsA �nite tree automaton is very much like a �nite state automaton for the stringcase. When the automaton is in a certain state, it can recognize one of severalsymbols and jump to a new state, depending on the recognized symbol. Themajor di�erence between a �nite state automaton and a �nite tree automaton is,that a �nite tree automaton can traverse all the subtrees of a node in parallel.There are two types of �nite tree automata, bottom-up and top-down, each ofwhich can be deterministic or non-deterministic. A bottom-up �nite tree automa-ton starts at the leafs of a tree and traverses up to the root, while a top-down�nite tree automaton starts at the root, and traverses down to the leafs. We will�rst de�ne bottom-up �nite tree automata.De�nition 3.1 (deterministic bottom-up �nite tree automaton) A determinis-tic bottom-up �nite tree automaton (fta) is a structureM = (Q;�; �; s; F ), whereQ is a �nite set of states , � is a ranked alphabet of input symbols , � is a familyf�kagk�1;a2�k of mappings �ka : Qk ! Q (the transition function for a 2 �k), s isa family fsaga2�0 of initial states states sa 2 Q and F is a subset of Q of �nalstates.The mapping ~� : T� ! Q is de�ned recursively as follows:i. for a 2 �0, ~�(a) = sa andii. for k � 1, a 2 �k and t1; : : : ; tk 2 T�,~�(a[t1 � � � tk]) = �ka(~�(t1); : : : ; ~�(tk)):The tree language recognized by M , denoted by L(M), is de�ned to be the setft 2 T� j ~�(t) 2 Fg. �De�nition 3.2 (non-deterministic bottom-up �nite tree automaton) A non-deterministic bottom-up �nite tree automaton is a 5-tuple M = (Q;�; �; S; F ),where Q, � and F are as in the deterministic case, S is a family fSaga2�0 ,such that Sa � Q for each a 2 �0, and � is a family f�kagk�1;a2�k of mappings�ka : Qk ! P(Q).The mapping ~� : T� ! P(Q) is de�ned recursively byi. for a 2 �0, ~�(a) = Sa and



Recognizable tree languages thirteenii. for k � 1, a 2 �k and t1; : : : ; tk 2 T�,~�(a[t1 � � � tk]) = [f�ka(q1; : : : ; qk) j qi 2 ~�(ti) for 1 � i � kg:The tree language recognized by M , denoted by L(M), is de�ned to be ft 2 T� j~�(t) \ F 6= ?g. �As is the case with deterministic and non-deterministic �nite state automata,deterministic and non-deterministic bottom-up �nite tree automata recognizethe same languages.Theorem 3.3 For each non-deterministic bottom-up fta, we can �nd a determin-istic bottom-up fta that recognizes the same language.Proof In [Eng74, pages 25{26]. �The class of tree languages that can be recognized by bottom-up �nite tree au-tomata, turns out to be a very important class. This class is de�ned as follows.De�nition 3.4 (recognizable tree language) A tree language L is called recog-nizable or regular if L = L(M) for some deterministic bottom-up fta M . Theclass of all recognizable tree languages will be denoted by RECOG. �As bottom-up �nite tree automata start at the leafs and traverse the trees to theroot, top-down �nite tree automata traverse them in the other direction, fromthe root to the leafs.De�nition 3.5 (deterministic top-down �nite tree automaton) A deterministictop-down �nite tree automaton is a 5-tuple M = (Q;�; �; q0; F ), where Q is a�nite set of states, � is a ranked alphabet, � is a family f�kagk�1;a2�k of mappings�ka : Q ! Qk, q0 2 Q an initial state, and F is a family fFaga2�0 of sets Fa � Q(the set of �nal states for a 2 �0).The mapping ~� : T� ! P(Q) is de�ned recursively byi. for a 2 �0, ~�(a) = Fa andii. for k � 1, a 2 �k and t1; : : : ; tk 2 T�,~�(a[t1 � � � tk]) = fq j �a(q) 2 ~�(t1)� � � � � ~�(tk)g:The tree language recognized by M , denoted by L(M), is de�ned to be ft 2 T� jq0 2 ~�(t)g. �De�nition 3.6 (non-deterministic top-down �nite tree automaton) A non-de-terministic top-down �nite tree automaton is a 5-tupleM = (Q;�; �; S; F ), whereQ, � and F are as in the deterministic case, S is a subset of Q and � is a familyf�kagk�1;a2�k of mappings �ka : Q! P(Qk).The mapping ~� : T� ! P(Q) is de�ned recursively as follows



fourteen Tree automata and tree grammarsi. for a 2 �0, ~�(a) = Fa andii. for k � 1, a 2 �k and t1; : : : ; tk 2 T�,~�(a[t1 � � � tk]) = fq j 9(q1; : : : ; qk) 2 �a(q) : qi 2 ~�(ti) for all 1 � i � kg:The tree language recognized by M , denoted by L(M), is de�ned to be ft 2 T� j~�(t) \ S 6= ?g. �The class of deterministic top-down �nite tree automata is less powerful than theclass of bottom-up �nite tree automata.Theorem 3.7 There are recognizable tree languages which cannot be recognizedby a deterministic top-down fta.Proof In [Eng74, pages 28{29]. �However, the class of non-deterministic top-down �nite tree automata is equiva-lent to the class of bottom-up �nite tree automata.Theorem 3.8 A tree language is recognizable by a non-deterministic bottom-upfta i� it is recognizable by a non-deterministic top-down fta.Proof In [Eng74, page 30]. �Another method of generating or recognizing tree languages is via regular treegrammars. This method generates the same class of tree languages as do bottom-up �nite tree automata.De�nition 3.9 (regular tree grammar) A regular tree grammar is a tuple G =(N;�; R; S), where N is a �nite set of non-terminals, � is a ranked alphabet ofterminals, such that � \ N = ?, S 2 N is the initial non-terminal, and R is a�nite set of rules of the form A! t, with A 2 N and t 2 T�(N).The tree language generated by G, denoted by L(G), is de�ned to be L(H), whereH is the context free grammar (N;�[f[; ]g;R; S). We shall use )G and )�G (or) and )� when G is understood) to denote the restrictions of )H and )�H toT�(N).The set of all regular tree grammars (N;�; R; S), with � � C for some alphabetC, is denoted by RTGC. �Theorem 3.10 A tree language can be generated by a regular tree grammar i�it is an element of RECOG.For proofs it is convenient to have a normal form for regular tree grammars, suchthat each regular tree grammar has an equivalent grammar in normal form.De�nition 3.11 (normal form) A regular tree grammar G = (N;�; R; S) is innormal form, if each of its rules is either of the form A ! a[B1 � � �Bk] or of theform A! b, where k � 1, a 2 �k, A;B1; : : : ; Bk 2 N and b 2 �0. �



Recognizable tree languages �fteenTheorem 3.12 Each regular tree grammar has an equivalent regular tree gram-mar in normal form.Proof In [Eng74, pages 32{33]. �There is a strong relation between tree languages and context-free string lan-guages, as can be seen from the following theorem.Theorem 3.13 yield(RECOG) = CFL, or the yield of each recognizable treelanguage is context free, and each context free language is the yield of somerecognizable tree language.Proof In [Eng74, pages 34{35]. �3.1.2 Properties of recognizable tree languagesWe will now give some properties of recognizable tree languages, that will beused in later parts of this thesis. More properties can be found in [Eng74]. First,the union and intersection of two regular tree languages is also a regular treelanguage, as is the complement of a regular tree language.Theorem 3.14 RECOG is closed under union, intersection and complementa-tion (with respect to the set of all trees over the ranked alphabet).Proof In [Eng74, page 36]. �In Chapter 7, some decidability results are presented on hypergraph languages,generated by evaluating hypergraph expressions, which are generated by regulartree languages. The proofs of these results are based on decidability results onregular tree languages. For example, it is possible to decide whether or not aregular tree language contains one or more trees.Theorem 3.15 The emptiness problem for recognizable tree languages is decid-able.Proof In [Eng74, page 59]. �It is also decidable whether a regular tree language is �nite or in�nite.Theorem 3.16 The �niteness problem for recognizable tree languages is decid-able.Proof In [Eng74, page 59]. �Finally, it is decidable whether or not a certain regular tree language is a subsetof another regular tree language.Theorem 3.17 It is decidable, for arbitrary recognizable tree languages U andV , whether U � V .



sixteen Tree automata and tree grammarsProof In [Eng74, page 60]. �Note that this implies that it is decidable whether or not two regular tree lan-guages are equal, since U = V i� U � V and V � U .3.2 Finite state tree transformationsTree transformations are, in general, just relations between trees. A tree trans-formation can be realized by de�ning a mapping on the symbols in the tree or byadding output to the �nite tree automata.3.2.1 Tree transformationsA tree transformation in its most general form is just a relation from some T� tosome T�.De�nition 3.18 (tree transformation) Let � and � be ranked alphabets. A treetransformation from T� into T� is any subset of T� � T�. �The composition of two tree transformations, the inverse of a tree transformationand the image of a tree language under a tree transformation are de�ned in asimilar way as the composition, inverse and image for functions. Note that thetree transformations need not be functions.De�nition 3.19 (composition) Let �, � and 
 be ranked alphabets. If M1 �T� � T� and M2 � T� � T
, then the composition of M2 and M1, denoted byM2 �M1, is the tree transformationf(s; t) 2 T� � T
 j (s; u) 2M1 and (u; t) 2M2 for some u 2 T�g:If F and G are classes of tree transformations, then G � F denotes the classfM2 �M1 jM1 2 F and M2 2 Gg. Furthermore, F� denotes the classF� = fMn � � � � �M1 j n � 0;Mi 2 F for 1 � i � ngof arbitrary compositions of elements of F . �De�nition 3.20 (inverse tree transformation) Let M be a tree transformationfrom T� to T�. The inverse of M , denoted by M�1, is the tree transformationf(t; s) 2 T� � T� j (s; t) 2Mg. �De�nition 3.21 (image) Let M be a tree transformation and L a tree language.The image of L under M , denoted by M(L), is the tree language M(L) = ft j(s; t) 2M for some s 2 Lg. If M is a tree transformation from T� into T�, thenthe domain ofM , denoted by dom(M), isM�1(T�), and the range ofM , denotedby range(M), is M(T�). �



Finite state tree transformations seventeenThe �rst and simplest method of de�ning a tree transformation is via a relabeling.In a relabeling, only the symbols in a tree are changed. The structure of the treeremains unchanged.De�nition 3.22 (relabeling) Let � and � be ranked alphabets. A relabeling ris a family frkgk�0 of mappings rk : �k ! P(�k). A relabeling determines amapping r : T� ! P(T�) by the requirementsi. for a 2 �0, r(a) = r0(a),ii. for k � 1, a 2 �k and t1; : : : ; tk 2 T�, r(a[t1 � � � tk]) = fb[s1 � � �sk] j b 2rk(a) and si 2 r(ti)g. �The image of a regular tree language under a relabeling, is also a regular treelanguage.Theorem 3.23 RECOG is closed under relabelings.Proof In [Eng74, page 42]. �A more complicated method of de�ning tree transformations is with the aid oftree homomorphisms. With a tree homomorphism, each symbol in a tree isreplaced by a tree, where the subtrees of the symbol can be attached at arbitrarypositions in the tree that replaces the symbol. The subtrees can also be deletedand/or copied, meaning that the same subtree can be attached at more than oneposition.De�nition 3.24 (variables) Let x1; x2; x3; : : : be an in�nite sequence of di�er-ent symbols, called variables . Let X = fx1; x2; x3; : : :g, for k � 1, Xk =fx1; x2; : : : ; xkg and X0 = ?. �De�nition 3.25 (tree homomorphism) Let � and � be ranked alphabets. Atree homomorphism h is a family fhkgk�0 of mappings hk : �k ! T�(Xk). A treehomomorphism determines a mapping h : T� ! T� as follows.i. For a 2 �0, h(a) = h0(a).ii. For k � 1, a 2 �k and t1; : : : ; tk 2 T�,h(a[t1 � � � tk]) = hk(a)hx1 h(t1); : : : ; xk  h(tk)i:In the particular case that, for each a 2 �k, hk(a) does not contain two occur-rences of the same xi, i = 1; 2; 3; : : :, h is called a linear tree homomorphism. �Unlike relabelings, tree homomorphisms can lead out of the class of regular treelanguages, due to the fact that a tree homomorphism can copy subtrees.Theorem 3.26 RECOG is not closed under arbitrary tree homomorphisms.Proof In [Eng74, page 51]. �



eighteen Tree automata and tree grammarsIn a linear tree homomorphism, copying is prohibited, and therefore the imageof a regular tree language under a linear tree homomorphism is a regular treelanguage itself.Theorem 3.27 RECOG is closed under linear tree homomorphisms.Proof In [Eng74, page 51{54]. �Notation 3.28 We shall use REL to denote the class of all relabelings, HOMto denote the class of all tree homomorphisms and LHOM to denote the classof all linear tree homomorphisms. �3.2.2 Bottom-up and top-down �nite tree transducersMore complicated tree transformations can be de�ned by using �nite tree trans-ducers. These are much like �nite tree automata, but have not only input, butalso output. Since they are like �nite tree automata, they also come in two major
avors, namely bottom-up �nite tree transducers and top-down �nite tree trans-ducers. The semantics of the �nite tree transducers are de�ned with the aid oftree rewriting systems, which are de�ned as follows.De�nition 3.29 (rewriting system with variables) A rewriting system with vari-ables is a pair G = (�; R) where � is an alphabet and R is a �nite set of \ruleschemes". A rule scheme is a triple (v; w;D) such that, for some k � 0, v and ware strings over � [Xk and D is a mapping from Xk into P(��). Whenever Dis understood, (v; w;D) is denoted by v ! w. For 1 � i � k, the language D(xi)is called the range or domain of the variable xi.A relation )G on �� is de�ned as follows. For strings s; t 2 ��, s )G t i�there exists a rule scheme (v; w;D) 2 R, strings '1; : : : ; 'k 2 D(x1); : : : ; D(xk)respectively (where Xk is the domain of D), and strings � and � in �� such thats = �� vhx1  '1; : : : ; xk  'ki�� andt = ��whx1  '1; : : : ; xk  'ki��.As usual )�G denotes the transitive-re
exive closure of )G. �De�nition 3.30 (tree rewriting system) A rewriting system with variables G =(�; R) is called a tree rewriting system ifi. � = � [ f[; ]g for some ranked alphabet � andii. for each rule (v; w;D) 2 R, v and w are trees in T�(Xk) and, for 1 � i � k,D(xi) � T�, where Xk is the domain of D. �The bottom-up version of the �nite tree transducer is introduced �rst.



Finite state tree transformations nineteenDe�nition 3.31 (bottom-up �nite tree transducer) A bottom-up (�nite) treetransducer is a structure M = (Q;�;�; R;Qd), where Q is a ranked alphabet ofstates , such that all elements of Q have rank 1 and no other ranks, � is a rankedalphabet of input symbols, � is a (possibly in�nite) ranked alphabet of outputsymbols, Q \ (� [�) = ?, Qd is a subset of Q (the set of �nal states) and R isa �nite set of rules of one of the formsi. a! q[t], where a 2 �0, q 2 Q and t 2 T� orii. a[q1[x1] � � �qk[xk]] ! q[t], where k � 1, a 2 �k, q1; : : : ; qk; q 2 Q and t 2T�(Xk).M is viewed as a tree rewriting system over the ranked alphabet Q[� [� withR as the set of rules, such that the range of each variable occurring in R is T�.Therefore the relations)M and)�M are well de�ned according to De�nition 3.29.The tree transformation realized by M , also denoted by M , isM = f(s; t) 2 T� � T� j s)�M q[t] for some q 2 Qdg:We shall abbreviate \�nite tree transducer" by ftt. �Remark 3.32 The de�nition of the bottom-up �nite tree transducer allows for anin�nite output alphabet. Since the number of rules is �nite, only a �nite subsetof the output alphabet will be actually used. �Remark 3.33 Note that the �nite tree transducer and the tree transformation itrealizes are both denoted byM . In general, we shall make no distinction betweena tree transducer and the tree transformation it realizes. �Note that the bottom-up �nite tree transducer de�ned above is non-deterministic,since for each state and each input symbol, more than one rule can be applicable.De�nition 3.34 (bottom-up tree transformation) The class of tree transforma-tions realized by bottom-up ftts will be denoted by B. An element of B will becalled a bottom-up tree transformation. �We will now de�ne some special classes of bottom-up �nite tree transformations.Each class of bottom-up tree tranducers is able to de�ne a certain class of treetransformations.Linear bottom-up �nite tree transducers are like linear tree homomorphisms inthe sense that copying of subtrees is prohibited. Linear bottom-up �nite treetransducers are de�ned with the aid of linear trees.De�nition 3.35 (linear tree) Let � be a ranked alphabet and k � 0. A treet 2 T�(Xk) is linear if each element of Xk occurs at most once in t. The tree t iscalled non-deleting with respect to Xk if each element of Xk occurs at least oncein t. �



twenty Tree automata and tree grammarsDe�nition 3.36 (linear) Let M = (Q;�;�; R;Qd) be a bottom-up ftt. M islinear if the right hand side of each rule in R is linear. �In a non-deleting bottom-up �nite tree transducer, the deletion of subtrees isprohibited.De�nition 3.37 (non-deleting) Let M = (Q;�;�; R;Qd) be a bottom-up ftt.M is non-deleting if the right hand side of each rule in R is non-deleting withrespect to Xk, where k is the rank of the input symbol in the left hand side ofthe rule.De�nition 3.38 (one-state) Let M = (Q;�;�; R;Qd) be a bottom-up ftt. M isone-state (or pure) if Q is a singleton.With some restrictions on the set of rules, the bottom-up �nite tree transducer,which is essentially non-deterministic, can be made deterministic.De�nition 3.39 (partial deterministic) Let M = (Q;�;�; R;Qd) be a bottom-up ftt. M is (partial) deterministic ifi. for each a 2 �0 there is at most one rule in R with left hand side a andii. for each k � 1, a 2 �k and q1; : : : ; qk 2 Q there is at most one rule in Rwith left hand side a[q1[x1] � � �qk[xk]]. �De�nition 3.40 (total deterministic) Let M = (Q;�;�; R;Qd) be a bottom-upftt. M is total deterministic ifi. for each a 2 �0 there is exactly one rule in R with left hand side a,ii. for each k � 1, a 2 �k and q1; : : : ; qk 2 Q there is exactly one rule in Rwith left hand side a[q1[x1] � � �qk[xk]] andiii. Qd = Q. �Notation 3.41 The same terminology will be applied to the transformations real-ized by such transducers. The classes of tree transformations obtained by puttingone or more of the above restrictions on the bottom-up tree transducer, will bedenoted by adding the symbols L, N, P, D and Dt (standing for linear, non-deleting, pure, deterministic and total deterministic respectively) to the letter B.Thus the class of linear deterministic bottom-up tree transformations is denotedby LDB. �Remark 3.42 The total deterministic bottom-up ftts realize tree transformationswhich are total functions. �Now we will de�ne the top-down version of the �nite tree transducers.



Finite state tree transformations twentyoneDe�nition 3.43 (top-down �nite tree transducer) A top-down �nite tree trans-ducer is a structure M = (Q;�;�; R;Qd), where Q, � and � are as for thebottom-up ftt (de�nition 3.31), Qd � Q is a set of initial states and R is a �niteset of rules of one of the formsi. q[a[x1 � � �xk]]! t, where k � 1, a 2 �k, q 2 Q and t 2 T�(Q[Xk]) orii. q[a]! t, where q 2 Q, a 2 �0 and t 2 T�.M is viewed as a tree rewriting system over the ranked alphabet Q[� [� withR as the set of rules, such that the range of each variable in X is T�. The treetransformation realized by M , also denoted by M , is de�ned asM = f(s; t) 2 T� � T� j q[s])�M t for some q 2 Qdg:Again, both the �nite tree transducer and the tree transformation are denotedby M . �De�nition 3.44 (top-down tree transformation) The class of tree transforma-tions realized by top-down ftts will be denoted by T. An element of T will becalled a top-down tree transformation . �The classes of tree transformations for the bottom-up �nite tree transducers arealso de�ned for the top-down �nite tree transducers. Their de�nitions are asfollows.De�nition 3.45 (linear) LetM = (Q;�;�; R;Qd) be a top-down ftt. M is linearif the right hand side of each rule in R is linear. �De�nition 3.46 (non-deleting) Let M = (Q;�;�; R;Qd) be a top-down ftt. Mis non-deleting if the right hand side of each rule in R is non-deleting with respectto Xk, where k is the rank of the input symbol in the left hand side of the rule.�De�nition 3.47 (one-state) Let M = (Q;�;�; R;Qd) be a top-down ftt. M isone-state (or pure) if Q is a singleton. �De�nition 3.48 (partial deterministic) LetM = (Q;�;�; R;Qd) be a top-downftt. M is (partial) deterministic ifi. Qd is a singleton,ii. for each q 2 Q, k � 1 and a 2 �k, there is at most one rule in R with lefthand side q[a[x1 � � �xk]],iii. for each q 2 Q and a 2 �0 there is at most one rule in R with left handside q[a]. �De�nition 3.49 (total deterministic) Let M = (Q;�;�; R;Qd) be a top-downftt. M is total deterministic if



twentytwo Tree automata and tree grammarsi. Qd is a singleton,ii. for each q 2 Q, k � 1 and a 2 �k, there is exactly one rule in R with lefthand side q[a[x1 � � �xk]],iii. for each q 2 Q and a 2 �0 there is exactly one rule in R with left hand sideq[a]. �Remark 3.50 The total deterministic top-down ftts realize tree transformationswhich are total functions. �We use the same notation to denote the classes of top-down �nite tree transfor-mations as we did for the bottom-up �nite tree transformations (Notation 3.41).Remark 3.51 Tree homomorphisms can be realized by total deterministic one-state top-down or bottom-up �nite tree transducers: PDtB = PDtT = HOM.�Since a total-deterministic top-down tree transducer realizes a total function foreach state, this function can be de�ned in an explicit way, as follows.De�nition 3.52 Let M = (Q;�;�; R; fqdg) be a total deterministic top-downtree transducer. For each q 2 Q and a 2 �k, let rhsq;a be the right-hand side ofthe unique rule with left-hand side q[a[x1 � � �xk]]. Now the function de�ned by M ,also denoted by M , is the total function M : Q�T� ! T�, de�ned recursively asfollows. If s = a[s1 � � �sk], k � 0, a 2 �k and s1; : : : ; sk 2 T�, then for all q 2 Q,M(q; a[s1 � � �sk]) = rhsq;ah�q[xi] M(�q; si)i�q2Q;1�i�k:Thus each subtree of the form �q[xi] in rhsq;a is replaced by M(�q; si). �Without proof we note that M can also be de�ned by M(q; s) = t, such thatq[s])�M t. Hence, the tree transformation realized by M is M = f(s;M(qd; s)) js 2 T�g. This corresponds to a kind of \context-freeness lemma" for total deter-ministic top-down �nite tree transducers, as follows.Remark 3.53 LetM = (Q;�;�; R; fqdg) be a total deterministic top-down �nitetree transducer and let q 2 Q and s = a[s1 � � �sk], k � 0, a 2 �k and s1; : : : ; sk 2T�, such thatq[a[s1 � � �sk]])M rhsq;ahxi  sii1�i�k )�M t:Then there exist t�q;j 2 T�, with �q 2 Q and 1 � j � k, such thatt = (rhsq;ahxi  sii1�i�k) h�q[sj] t�q;ji�q2Q;1�j�kand, for all �q 2 Q and 1 � j � k, �q[sj])�M t�q;j (or M(�q; sj) = t�q;j). �



Finite state tree transformations twentythree3.2.3 Comparison of B and TThe class of bottom-up �nite tree transformations and the class of top-down�nite tree transformations are quite di�erent. Two properties that are speci�c tobottom-up �nite tree transducers are the following.Property 3.54 (B) Non-determinism followed by copying. A bottom-up ftt hasthe ability of �rst processing an input subtree non-deterministically and thencopying the resulting output tree. �Property 3.55 (B0) Checking followed by deletion. A bottom-up ftt has the abil-ity of �rst processing an input subtree and then deleting the resulting outputsubtree. In other words, depending on a (recognizable) property of the inputsubtree, it can decide whether to delete the output subtree or to do somethingelse with it.Top-down �nite tree transducers have the following speci�c property.Property 3.56 (T) Copying followed by di�erent processing. A top-down ftt hasthe ability of �rst copying an input subtree and then treating the resulting copiesdi�erently.The following theorem states that both bottom-up �nite tree transducers andtop-down �nite tree transducers can de�ne tree transformations that can not bede�ned by the other class.Theorem 3.57 The classes of bottom-up and top-down �nite tree transforma-tions are incomparable. In particular, there are tree transformations in PNB�Tand PNT�B.Proof In [Eng74, pages 95{97]. �The composition of �nite tree transformations can lead out of the classes to whichthey belong.Theorem 3.58 T and B are not closed under composition. In particular, thereare tree transformations in (HOM �REL)� T and (REL �HOM)�B.Proof In [Eng74, pages 98{99]. �3.2.4 Some results on tree transformationsThis section contains some closure and decidability results about bottom-up �nitetree transformations and top-down �nite tree transformations. Only the resultsthat are needed in the remainder of this thesis are presented here. Many more,and the proofs of the ones presented here, can be found in [Eng74], [Eng75] and[Eng77].



twentyfour Tree automata and tree grammarsTheorem 3.59 RECOG is closed under inverse bottom-up and top-down treetransformations (in particular under inverse homomorphisms).Proof In [Eng74, page 112]. �De�nition 3.60 Let K be a class of tree transformations. A K-surface tree lan-guage is a languageM(L) withM 2 K and L 2 RECOG. The class ofK-surfacelanguages will be denoted by K�SUR. As a special case, (B [T)��SUR willbe denoted by SUR. For the de�nition of (B [T)�, see De�nition 3.19. �Theorem 3.61 The emptiness and membership problems are solvable for SUR.Proof In [Eng74, page 137]. �Theorem 3.62 The �niteness problem is solvable for SUR.Proof In [Eng74, pages 138 and 139]. �



twenty�ve
Chapter fourHypergraphs, hypergraphlanguages and hypergraphexpressions
The concepts of graph grammars and graph languages can be seen as a gener-alization of the concepts of string grammars and string languages. They haveapplications in a wide variety of areas, among which are formal semantics andspeci�cations, pattern recognition and even some branches of biology. Graphgrammars come in three major 
avors, edge rewriting grammars, node rewritinggrammars and graph rewriting grammars. We will consider hypergraph gram-mars of the edge rewriting type, for it turns out that they have nice context-freeproperties. Hypergraph grammars and languages are an even more generalizedconcept than graph languages. The latter are a special case of the �rst.In this chapter, we describe two formalisms for generating hypergraph languages.The �rst formalism is a straightforward rewriting grammar, where non-terminalhyperedges are replaced by hypergraphs, which may contain non-terminal hyper-edges themselves. The second formalism generates hypergraphs in an indirectmanner. A set of operators on hypergraphs is de�ned, together with a treegrammar over this set, which generates hypergraph expressions. The hypergraphlanguage is generated by evaluating these expressions. It turns out that the twoformalisms generate the same class of hypergraph languages.



twentysix Hypergraphs, hypergraph languages and hypergraph expressions4.1 HypergraphsA variety of di�erent de�nitions of hypergraphs and hypergraph grammars is inuse. Examples can be found in [EngHey91], [HabKre87], [Hab92] and [BauCou87].We chose for the de�nitions in [Hab92] since this book was also the source for thepredicates and numerical functions on hypergraphs and hypergraph languages.All de�nitions and theorems in this section and the sections 4.2 and 4.3 are from[Hab92], sometimes with a minor alteration.A hypergraph consists of two sets, the set of nodes V and the set of hyperedges E.Each hyperedge has a number of incoming tentacles that are attached to nodes,and a number of outgoing tentacles, also attached to nodes. For each node in E,the sequence of nodes attached to the incoming tentacles is determined by thesource function s and the ordered set of nodes attached to the outgoing tentaclesis determined by the target function t. Furthermore, each hyperedge will belabelled by the labeling function l.The labels are elements of a �xed in�nite set, denoted by 
. Every hyperedgewill be labelled with an element from 
.De�nition 4.1 (hypergraph) Let C � 
. A hypergraph over C is a 5-tupleH = (V;E; s; t; l), where V is a �nite set of nodes , E is a �nite set of hyperedges ,s : E ! V � is a mapping, assigning a sequence of sources s(e) to each hyperedgee 2 E, t : E ! V � is a mapping assigning a sequence of targets t(e) to eachhyperedge and l : E ! C is a mapping which assigns a label to each hyperedge.The sequence att(e) = s(e) � t(e) is called the attachment of e. The set of allnodes occurring in att(e) is denoted by ATT(e). A hyperedge e 2 E is called a(m;n)-edge (for m;n 2 N) if js(e)j = m and jt(e)j = n. The pair (m;n) is thetype of e, denoted by type(e). The setf(i; j) j 1 � i; j � m+ n; type(e) = (m;n); att(e)i = att(e)jg :is called the relation of e, and is denoted by rel(e). �As we shall see in later sections, hyperedges will be replaced by hypergraphs.To accomplish this it is necessary to have some distinguished nodes of a hyper-graph, that can be attached to the source and target nodes of the hyperedge thatmust be replaced. These distinguished nodes are called the external nodes of thehypergraph.De�nition 4.2 (multi-pointed hypergraph) Let C � 
. A multi-pointed hyper-graph over C is a 7-tuple H = (V;E; s; t; l; begin; end), where (V;E; s; t; l) is ahypergraph over C and begin; end 2 V �. The set of nodes occurring in the se-quence extH = beginH � endH is called the set of external nodes of H , and isdenoted by EXTH . The set VH � EXTH is called the set of internal nodes ofH , and is denoted by INTH . H is called a (m;n)-hypergraph (for m;n 2 N) ifjbeginH j = m and jendH j = n. The type of H , denoted by type(H) is the pair



Hypergraphs twentyseven(m;n). The setf(i; j) j 1 � i; j � m+ n; type(H) = (m;n); extH;i = extH;jg :is called the relation of H , and is denoted by rel(H). �In the de�nitions of hypergraphs and multi-pointed hypergraphs, one hyperedgecan be attached to the same node at a number of tentacles. This turns out tobe undesirable. We will therefore restrict ourselves to hypergraphs where eachhyperedge can be attached to each node at only one tentacle. Hypergraphs withthis property are called repetition-free hypergraphs.De�nition 4.3 (repetition-freeness)i. A multi-pointed hypergraph H is said to be repetition-free if extH;i 6= extH;jfor all 1 � i; j � jextH j with i 6= j. Note that for H a repetition-freehypergraph, rel(H) = f(i; i) j 1 � i � jextH jg.ii. Let H be a hypergraph. Then a hyperedge e 2 EH is said to be repetitionfree if attH(e)i 6= attH(e)j for all 1 � i; j � jattH(e)j with i 6= j. If ahyperedge e is repetition-free, then rel(e) = f(i; i) j 1 � i � jattH(e)jg.iii. A multi-pointed hypergraph H is said to be completely repetition-free if itis repetition-free and all hyperedges in EH are repetition-free.iv. The set of all completely repetition-free hypergraphs over C is denoted byHGC (HG
 is denoted by HG). The set of all completely repetition-freehypergraphs over C of type (m;n) is denoted by HGm;nC (or HGm;n, ifC = 
). �Assumption 4.4 From now on, we will consider completely repetition-free hyper-graphs only.An ordinary graph is a special form of a hypergraph.De�nition 4.5 (graph) Let C � 
. A completely repetition-free (m;n)-hyper-graph H over C is a (m;n)-graph if all hyperedges of H are (1; 1)-hyperedges. Ahyperedge in a graph is called an edge. The set of all graphs is denoted by GR.�We are usually not interested in the identity of the nodes and hyperedges ofa hypergraph, and therefore do not want to distinguish between hypergraphsthat are \structurally equivalent" and di�er only in their nodes and hyperedges.Hypergraphs that are structurally equivalent, are called isomorphic.De�nition 4.6 (subhypergraphs, morphisms, isomorphisms)i. Let H;H 0 2 HG. Then H is called a subhypergraph of H 0, denoted byH � H 0, if VH � VH0 , EH � EH0 , and sH(e) = sH0(e), tH(e) = tH0 (e),lH(e) = lH0(e) for all e 2 EH . Note that nothing is assumed about therelation of the external nodes.



twentyeight Hypergraphs, hypergraph languages and hypergraph expressionsii. Let H;H 0 2 HG. A hypergraph morphism h from H to H 0, denoted byh : H ! H 0, consists of a pair of mappings h = (hV : VH ! VH0 ; hE :EH ! EH0) satisfying the conditions h�V (sH(e)) = sH0(hE(e)), h�V (tH(e)) =tH0(hE(e)), and lH(e)) = lH0(hE(e)) for all e 2 EH .iii. A hypergraph morphism is said to be an isomorphism from H to H 0 ifhV : VH ! VH0 and hE : EH ! EH0 are bijective mappings, h�V (beginH) =beginH0 , and h�V (endH) = endH0 . If there is an isomorphism from H to H 0,then H and H 0 are said to be isomorphic, denoted by H � H 0. The classof all hypergraphs isomorphic to a hypergraph H is denoted by [H ].A set of hypergraphs that is closed under \structural equivalence", is called ahypergraph language. If a hypergraph is in the language, then all hypergraphsthat are structurally equivalent to it, are also in the language.De�nition 4.7 (hypergraph language) Let C � 
.i. A set L � HGC of multi-pointed hypergraphs is called a hypergraph lan-guage over C if it is closed under isomorphisms, i.e. if H 2 L and H � H 0,then H 0 2 L. In particular, L � HGC is said to be �nite if the number ofnon-isomorphic hypergraphs in L is �nite.ii. L � HGC is said to be homogeneous if type(H) = type(H 0) for all H;H 0 2L. In this case, type(L) denotes the type of the hypergraphs in L. Notethat type(H) = type(H 0) implies rel(H) = rel(H 0), since H and H 0 areboth repetition-free. �Finally, a number of special types of hypergraphs will be de�ned. Ordinaryhypergraphs can contain any number of hyperedges. There are two special typesof hypergraphs, both with only one hyperedge.De�nition 4.8 (singletons and handles)� H 2 HG is said to be a singleton if VH = EXTH and jEH j = 1. The singlehyperedge is denoted as e(H) and its label as l(H).� A singleton H with EH = feg, sH(e) = beginH and tH(e) = endH is saidto be a handle. If lH(e) = A, type(e) = (m;n) then H is said to be the(m;n)-handle induced by A and is denoted by (A; (m;n))� or A(m;n)�. Inthis case, H is unique up to isomorphism.� Let H 2 HG. Then each hyperedge e 2 EH induces a handle e� by re-stricting the mappings sH , tH and lH to the set feg, restricting the set ofnodes to those occurring in sH(e) and tH(e), and choosing begine� = sH(e)and end e� = tH(e). Since we assume complete repetition-freeness, e� �A(m;n)�, where A = l(e) and (m;n) = type(e). �



Hyperedge replacement twentynine4.2 Hyperedge replacementThe replacement of a hyperedge by a hypergraph is the key construction in hyper-edge replacement grammars. The replacement of a hyperedge by a hypergraphconsists of the removal of the hyperedge, and the attachment of the hypergraphat the nodes to which the hyperedge was attached. In order to be replaced, thehypergraph must \�t" at the position that was previously occupied by the hyper-edge. The so called \base for replacement" is used to assure that the hypergraph�ts. It also provides a means for the simultaneous replacement of more than onehyperedge. Hyperedge replacement is de�ned formally, as follows.De�nition 4.9 (hyperedge replacement) Let H 2 HG be a hypergraph (com-pletely repetition-free) and B � EH be a set of hyperedges to be replaced. Amapping rpl : B ! HG is said to be a base for replacement if for all b 2 B,type(rpl(b)) = type(b). Let H 2 HG, B � EH and rpl : B ! HG be a basefor replacement. Then the replacement of B in H by rpl yields a completelyrepetition-free multi-pointed hypergraph X 2 HG, given byi. VX = VH [Sb2B INTrpl(b),ii. EX = (EH � B) [ Sb2B Erpl(b),iii. each hyperedge keeps it label,iv. each hyperedge of EH � B keeps its sources and targets,v. each hyperedge ofErpl(b), for all b 2 B, keeps its internal sources and targetsand the external ones are handed over to the corresponding sources andtargets of b in H , thus for all b 2 B and e 2 Erpl(b), sX(e) = h�(srpl(b)(e))and tX(e) = h�(trpl(b)(e)), where h : Vrpl(b) ! VX is de�ned by h(v) = v forv 2 INTrpl(b), h(xi) = si for 1 � i � m, where beginrpl(b) = x1 � � �xm andsH(b) = s1 � � �sm, and h(yj) = tj for 1 � j � n, where end rpl(b) = y1 � � �ynand tH(b) = t1 � � � tn (note that, since both b and rpl(b) are repetition-free,h(xi) = h(xj) only if xi = xj and h(yi) = h(yj) only if yi = yj),vi. beginX = beginH and endX = endH .The multi-pointed hypergraph X is denoted by RPL(H; rpl). If B = fe1; : : : ; engand rpl(ei) = Ri for 1 � i � n we also write Hhe1  R1; : : : ; en  Rni insteadof RPL(H; rpl). �Although it is slightly di�erent, this de�nition coincides with De�nition I.2.1in [Hab92], since, for repetition-free hypergraphs, type(rpl(b)) = type(b) impliesrel(rpl(b)) = rel(b) if both b and rpl(b) are repetition-free.Remark 4.10i. The construction above determines a unique hypergraphX . More precisely,X is unique up to isomorphism because the construction of the disjointunion is unique up to isomorphism.



thirty Hypergraphs, hypergraph languages and hypergraph expressionsii. Let h : H ! H 0 be a hypergraph morphism. If rpl : B ! HG is a basefor replacement in H , such that if hE(e) = hE(e0) then rpl(e) = rpl(e0),and hE(B) is the image of B under h, then rpl 0 : hE(B) ! HG withrpl 0(hE(e)) = rpl(e) for e 2 B is a base for replacement in H 0. Vice versa,if rpl 0 : B0 ! HG is a base for replacement in H 0, then rpl : h�1E (B0)! HGwith rpl(e) = rpl(hE(e)) for e 2 h�1E (B0) is a base for replacement in H .4.3 Hypergraph grammarsA hypergraph grammar is similar to a string grammar in the sense that non-terminals are rewritten by the right-hand sides of the rules or productions. How-ever, for string grammars, these right-hand sides consist of strings, whereas forhypergraph grammars, they consist of hypergraphs.Let Y = fy1; y2; y3; : : :g � 
 be a set of variables. These variables will not beused until Section 4.4, but they must be de�ned prior to the de�nition of theproductions in hypergraph grammars, since we do not allow them to be used aslabels in hypergraph grammars.De�nition 4.11 (productions and derivations)i. Let N � 
nY be a set of non-terminals. A production overN is an orderedpair p = (A;R) with A 2 N and R 2 HG. A production (A;R) will usuallybe written as A ! R. The non-terminal A is called the left-hand side ofp, denoted by lhs(p), and the completely repetition-free hypergraph R iscalled the right-hand side of p, denoted by rhs(p).ii. Let H;H 0 2 HG, p = A! R be a production, and e 2 EH be a hyperedgesuch that lH(e) = A and rpl : feg ! HG, given by rpl(e) = R is a basefor replacement. Then H directly derives H 0 by p, applied to e, if H 0 isisomorphic to Hhe Ri. We write H =)p;e H 0, H =)p H 0 or H =)P H 0provided that p 2 P .iii. A sequence of direct derivations H0 =)p1 ;e1 � � � =)pk;ek Hk is called aderivation of length k from H0 to Hk. The derivation is shortly denoted byH0 =)�P Hk, provided that p1; : : : ; pk 2 P . If the length of the derivationis of interest, we write H0 =)kP Hk. Additionally, in the case H0 � H 00, wespeak of a derivation from H0 to H 00 of length 0. �A hypergraph replacement grammar is a construction, where non-terminal hy-peredges will be replaced by hypergraphs, by applying the previously de�nedproductions.De�nition 4.12 (hyperedge replacement grammar)i. A hyperedge-replacement grammar is a system G = (N; T; P; Z), whereN � 
 nY is a set of non-terminals, T � 
 nY is a set of terminals, P isa �nite set of productions over N and Z 2 HG is the axiom.



Hypergraph grammars thirtyoneii. The hypergraph language L(G), generated by G consists of all terminallabeled hypergraphs which can be derived from Z by applying productionsof P , orL(G) = fH 2 HGT j Z =)�P Hg :iii. Two hyperedge replacement grammars G and G0 are said to be equivalentif L(G) = L(G0).iv. Let G = (N; T; P; Z) be a hyperedge replacement grammar. The type ofG, denoted by type(G), is the type of the axiom, thus type(G) = type(Z).v. The set of all hyperedge replacement grammars is denoted by HRG. Form;n 2 N, the set of all hyperedge replacement grammars of type (m;n) isdenoted by HRGm;n.vi. LetC � 
. The set of all hyperedge replacement grammars overC, denotedby HRGC, is de�ned by HRGC = f(N; T; P; Z) 2 HRG j T � Cg. Form;n 2 N, the set of all hyperedge replacement grammars over C of type(m;n), denoted by HRGm;nC , is de�ned by HRGm;nC = f(N; T; P; Z) 2HRGm;n j T � Cg. �Remark 4.13 For a hyperedge replacement grammar G, the set L(G) is closedunder isomorphisms. Hence, L(G) is a hypergraph language. Moreover L(G)is homogeneous because type(H) = type(G) for all H 2 L(G). Therefore,non-homogeneous languages cannot be generated by the grammars introducedabove. �In [Hab92], besides hyperedge replacement grammars, edge replacement gram-mars are considered, in order to simplify the examples of numerical functions onhypergraphs. Edge replacement grammars generate ordinary graphs.De�nition 4.14 (edge replacement grammar) A hyperedge replacement gram-mar G = (N; T; P; Z) is an edge replacement grammar if Z is a (1; 1)-graph andall right-hand sides of productions in P are (1; 1)-graphs. The set of all edgereplacement grammars is denoted by ERG. �In [Hab92] the axiom Z should be a graph, not necessarily a (1; 1)-graph. How-ever, [Hab92] is not always very precise about this distinction.Example 4.15 This example describes a hyperedge replacement grammar thatgenerates directed \wheel" graphs. Directed wheel graphs are directed graphs,consisting of a circular graph, the \rim", and as many spokes as there are edgeson the rim. Each spoke connects the hub with one of the edges. The wheel graphwith n edges on the rim is denoted by Wn. For exampleW3 = ;W4 = and W8 = :



thirtytwo Hypergraphs, hypergraph languages and hypergraph expressionsIn this example, (1; 1)-hyperedges are represented by arrows, while hyperedgeswith type not equal to (1; 1), are represented by a square with the label of thehyperedge in it. The terminal labels are omitted. Now let Gh = (N; T; P; Z) be ahyperedge replacement grammar where N = fS;Ag, T = f`g, Z is a (0; 0)-handlewith label S andP = 8>><>>:P0 = S ! A
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)P2 = W5:Clearly, L(Gh) = fWn j n 2 N; n � 3g, which is an in�nite subset of GR. Notethat, although Gh generates only (0; 0)-graphs, it is not an edge replacementgrammar. �With the hypergraph grammars, a special class of hypergraph languages canbe de�ned, namely the class of context-free hypergraph languages. The namecontext-free stems from the fact that the replacement process only depends onthe hyperedge that is replaced, and not on its context. This will be made moreprecise in Theorem 4.27.De�nition 4.16 (context-free hypergraph language) Let C � 
, m;n 2 N andL � HGC be a hypergraph language over C.i. L is called a context-free hypergraph language of type (m;n) if L = L(G) forsome G 2 HRGm;nC . Note that this implies that L must be homogeneous.The set of all context-free hypergraph languages over C of type (m;n) isdenoted by CFHGm;nC .ii. L is called a context-free hypergraph language if L = S1�i�kLi, with Li 2CFHGmi;niC , for some k � 1 and mi; ni 2 N for 1 � i � k. The set of allcontext-free hypergraph languages over C is denoted by CFHGC.



Hypergraph grammars thirtythreeIf C = 
, the subscript C is usually omitted. �The de�nition of a context-free hypergraph language as the union of a �nitenumber of context-free hypergraph languages of di�erent types, seems not verynatural. The reason for this de�nition becomes apparent in Section 4.5.As with string grammars, it is often convenient if the constituents of a grammarcomply to certain standards. If this is the case, the grammar is said to be innormal form.Theorem 4.17 (normal form theorem) For each hyperedge replacement gram-mar G = (N; T; P; Z), an equivalent grammar G0 = (N 0; T 0; P 0; Z 0) can be con-structed such that N 0 and T 0 are �nite, N 0 and T 0 are disjoint, rhs(p) 2 HGN 0[T 0for every p 2 P 0, and Z 0 is a handle in HGN 0 . A hyperedge replacement grammarsatisfying these conditions is said to be a usual hyperedge replacement grammar.Proof In [Hab92], page 25. �Example 4.18 The hyperedge replacement grammar in Example 4.15 is in normalform. �An even stronger standard form of grammars are typed grammars. In a typedgrammar, each non-terminal has a type associated with it. If in a typed grammar,two hyperedges are labelled with the same non-terminal, they can only be replacedby hypergraphs of the same type.De�nition 4.19 (typed grammars) A usual hyperedge replacement grammarG = (N; T; P; Z) is said to be typed if there is a mapping ltype : N ! N � Nsuch that for all hypergraphs H in the grammar (i.e. the right-hand sides ofproductions as well as the axiom) and all hyperedges e 2 EH with label in N ,ltype(lH(e)) = type(e), and for all productions A ! R 2 P , ltype(A) = type(R).For A 2 N , ltype(A) is said to be the type of A. �As with the normal form, for every grammar it is possible to �nd an equivalentgrammar (that is a grammar that generates the same hypergraph language),which is typed.Theorem 4.20 (typi�cation theorem) For each hyperedge replacement gram-mar, an equivalent typed grammar can be constructed.Proof In [Hab92], pages 26 and 27. �Remark 4.21i. Let G = (N; T; P; Z) be a typed hyperedge replacement grammar and ltype :N ! N�N the corresponding type function. Then, for A 2 N , A� denotesthe handle (A; ltype(A))� induced by A and the type of A. Note thatZ = l(Z)�.



thirtyfour Hypergraphs, hypergraph languages and hypergraph expressionsii. A hyperedge replacement grammar G = (N; T; P; Z) is said to be com-pletely typed if there is a mapping ltype : N [ T ! N� N such that for allhypergraphs H in the grammar and all hyperedges e 2 EH , ltype(lH(e)) =type(e), and for all productions A ! R 2 P , ltype(A) = type(R). It canbe shown that for each hyperedge replacement grammar G, there is a com-pletely typed grammar G0 such that L(G) is equal to L(G0) up to the addedtype information. �Example 4.22 The hyperedge replacement grammar in Example 4.15 is typed.The typing function ltype : N ! N � N is de�ned by ltype(S) = (0; 0) andltype(A) = (2; 1). �In [Hab92], yet another special class of hypergraph replacement grammars isintroduced. This is the class of well-formed hyperedge replacement grammars.However, since we consider only completely repetition-free hypergraphs, all hy-peredge replacement grammars are completely well-formed in the sense of theremark after Theorem I.4.6 in [Hab92]. From this remark we can see that re-stricting ourselves to completely repetition-free hypergraphs does not essentiallylimit the generative power of the hyperedge replacement grammars.By the context-free nature of hyperedge replacement, it is possible to simultane-ously replace an arbitrary collection of hyperedges instead of one single hyperedge.De�nition 4.23 (parallel derivations)i. Let H 2 HG, B � EH and P be a set of productions. A mapping prod :B ! P is called a production base in H if lH(b) = lhs(prod(b)) for all b 2 Band rpl : B ! HG given by rpl(b) = rhs(prod(b)) is a base for replacementin H .ii. Let H;H 0 2 HG and prod : B ! P be a production base in H . Then Hdirectly derives H 0 in parallel (by prod) if H 0 is isomorphic to RPL(H; rpl)where rpl : B ! HG is given by rpl(b) = rhs(prod(b)) for all b 2 B. Inthis case we write H ) H 0 by prod or H ) H 0.iii. A sequence of direct parallel derivationsH0 ) � � � ) Hk by prod1; : : : ; prodkis called a parallel derivation of length k from H0 to Hk and is denoted byH0 )� Hk. If the length of the derivation shall be stressed, we writeH )k Hk. Additionally, in the case H0 � H 00, we speak of a parallelderivation from H0 to H 00 of length 0.iv. A direct parallel derivation H ) H 0 by the empty base prod : ? ! P iscalled a dummy . A parallel derivation is said to be valid if at least one ofits steps is not a dummy. �Remark 4.24 Parallel derivations generalize the usual sequential derivations inthe following sense: For each direct sequential derivation H =) H 0 by p 2 Papplied to e, there is a direct parallel derivation H ) H 0 by prod : feg ! P withprod(e) = p.



Hypergraph expressions thirty�veEach parallel derivation can be performed by a number of sequential derivations.The order in which the sequential derivations are performed is irrelevant.Theorem 4.25 (sequentialization theorem) Let H ) H 0 by prod : B ! P be adirect parallel derivation. Then, for each enumeration e1; : : : ; en of the elements inB, there is a derivation H = H0 =) � � � =) Hn = H 0 by prod(e1); : : : ; prod(en).Proof In [Hab92], page 45. �Corollary 4.26 For each parallel derivation H )� H 0, there is a sequential deriva-tion H =)� H 0. �From now on we will consider parallel derivations only, and we will use shortdouble arrows ()) to denote them.As with string languages, we have a context-freeness lemma (Lemma II.2.4 in[Hab92]). This lemma states that derivations in hyperedge replacement grammarscan be decomposed in \thin �bres" (where one starts from the subhypergraphinduced by a hyperedge) without losing information. This context-freeness lemmacan be stated in an alternative way, which is more convenient in proofs. Thedecomposition theorem states that each derivation can be decomposed into anumber of smaller derivations. This is a generalization of a property that iswell-known from ordinary context-free grammars.Theorem 4.27 (decomposition of derivations) Let F;H 2 HG and F be a han-dle. Let k � 0. Then there is a derivation F )k+1 H i� there is a direct derivationF ) G and, for each e 2 EG labelled with a non-terminal, there is a derivatione� )k H(e) such that H = RPL(G; rpl) with rpl(e) = H(e) for e 2 EG.Proof In [Hab92], page 50. �Remark 4.28 Given a hypergraph H 2 HG, each derivation of H induces adecomposition of H into smaller hypergraphs. Let H be a hypergraph andF )k+1 H be a derivation of H from the handle F . Then the derivation de-composes into a direct derivation F ) G and derivations e� )k H(e) withH(e) � H (e 2 EG). For e 2 EG, the derivation e� )k H(e) may be valid or not.In the �rst case, it has the same form as the original derivation, but it is shorterthan the original one. In the latter case, H(e) is isomorphic to e� and, hence, ahandle. �4.4 Hypergraph expressionsIn this section, we will de�ne an alternative method for generating hypergraphlanguages. The hypergraph languages are not generated by hyperedge replace-ment grammars, but by evaluating a set of hypergraph expressions that is gener-ated by a regular tree grammar. For the hypergraph expressions, we de�ne a setof hypergraph operators, called the substitution operators. Then we use regulartree grammars over these substitution operators, to generate expressions over the



thirtysix Hypergraphs, hypergraph languages and hypergraph expressionsoperators. This method for the generation of hypergraphs was �rst presented in[BauCou87].For the de�nition of the substitution operators, recall the de�nition of Y as a setof variables fy1; y2; y3; : : :g � 
.De�nition 4.29 (substitution operator) Let k � 0. A completely repetition-freehypergraph H 2 HGm;n is called a substitution operator of rank k, if there aredistinct hyperedges e1; : : : ; ek 2 EH such thati. lH(ei) = yi for 1 � i � k andii. lH(e) 62 Y if e 6= ei for 1 � i � k.These hyperedges e1; : : : ; ek are denoted by varH(1); : : : ; varH(k) respectively,thus lH(varH(i)) = yi for 1 � i � k. A substitution operator of rank k hasprecisely k edges which are labeled with a variable from Y. A substitutionoperator of rank 0 is a graph constant.The (in�nite) set of all substitution operators will be denoted by SUB. Theset of all substitution operators of rank k will be denoted by SUBk. ThusSUB0 = HG
nY is the set of constant multi-pointed hypergraphs. The setof all substitution operators of type (m;n) for m;n 2 N is denoted by SUBm;n.Clearly for all k � 0, SUBk � SUB and for all m;n 2 N, SUBm;n � SUB.For k;m; n 2 N, a substitution operator H 2 SUBm;nk induces a k-ary mappingsubH :HGm1 ;n1 � � � � �HGmk;nk ! HGm;n;de�ned, if varH(i) = ei and type(ei) = type(Hi) = (mi; ni) for 1 � i � k, bysubH(H1; : : : ; Hk) = Hhe1 H1; : : : ; ek  Hki;or subH(H1; : : : ; Hk) = RPL(H; rpl), where rpl(ei) = Hi for 1 � i � k. Note thatsubH is a partial function HGk ! HG. �The name substitution operator stems from their meaning as the substitution ofhypergraphs for the variables.An expression over SUB is represented by a tree in the usual way, where SUBis considered to be a ranked alphabet. Expressions over SUB are trees over thisalphabet.De�nition 4.30 (expressions over substitution operators) TSUB is the set of allexpressions that can be formed with the operators from SUB. If � � SUB, thenT� is the set of expressions that can be formed with the operators from �. If �is �nite, then T� is a tree language over �. For t 2 TSUB, type(t) = type(root(t))by de�nition. �



Hypergraph expressions thirtysevenEach substitution operator of rank k in an expression, has k \arguments" (whichare expressions over substitution operators), of which the values are substitutedfor the variables in the substitution operator. But for the value of an expression tobe substituted for a variable, the type of this value and the type of the hyperedgelabelled with the variable, must be equal. Expressions that have this property forall the substitution operators that make up the expression, are called well-typedexpressions.De�nition 4.31 (well-typed expressions) Let � � SUB be a �nite set of sub-stitution operators. The set of well-typed expressions over �, denoted by WT�,is the subset of T�, de�ned as follows.i. For each H 2 �0, H 2WT�.ii. For k � 1, H 2 �k and t1; : : : ; tk 2 WT�, if type(varH(i)) = type(ti) for1 � i � k, then H [t1 � � � tk] 2WT�.An expression t 2 T� is well-typed i� t 2 WT�. The set of all well-typedexpressions is denoted by WTSUB. �The set of all well-typed expressions over a �nite subset � of SUB, de�ned above,is a regular tree language.Theorem 4.32 For every �nite � � SUB, WT� 2 RECOG.Proof Let � be a �nite subset of SUB. Now construct a regular tree grammarG = (N;�; R; S), whereN = ftype(H) j H 2 �g[ftype(varH(i)) j k � 1; H 2 �k; 1 � i � kg[fSg;and R = ftype(H)! H [type(varH(1)) � � � type(varH(k))] j k � 0; H 2 �kg[fS ! type(H) j H 2 �g:Clearly, L(G) = WT�. �For a well-typed expression over the substitution operators, the evaluation of theexpression, which is performed by the bottom-up substitution of hypergraphsfor variables in the substitution operators, results in a hypergraph, where thehyperedges are no longer labelled with variables.De�nition 4.33 Let t 2 TSUB be an expression over SUB. The hypergraph thatis represented by t is val(t), where the mapping val : TSUB ! HG is de�nedrecursively as follows.i. For H 2 �0, val(H) = H .



thirtyeight Hypergraphs, hypergraph languages and hypergraph expressionsii. For k � 1, H 2 SUBk, t1; : : : ; tk 2 TSUB and type(varH(i)) = type(ti) for1 � i � k, val(H [t1 � � � tk]) = subH(val(t1); : : : ; val(tk)).It is easy to see that type(val(t)) = type(t), provided that val(t) is de�ned. Notethat val(t) is de�ned i� t 2WTSUB. �The above de�nitions can also be made using the theory of universal algebra,by de�ning H = (HG; �) as the SUB-algebra where for each H 2 SUBk, k �0, �k(H) : HGk ! HG is de�ned by �k(H) = subH . The mapping val canthen be de�ned as the initial homomorphism mH of H. Note that the universalalgebra theory as described in Section 2.3 can not be used, since the types of thehypergraphs can not be taken into account. This problem can be solved by usingso-called many-sorted algebras (see [Wec92]).Now the alternative method for generating hypergraph languages is as follows.Let G 2 RTGSUB be a regular tree grammar over SUB. The expression languageL(G), generated by G, evaluates to the hypergraph language val(L(G)). In thisway, the class of hypergraph languages fval(L) j L � TSUB; L 2 RECOGg canbe generated, according to Theorem 3.10.4.5 Hypergraph replacement grammars versusregular tree grammarsIn this section it will be shown that the class of hypergraph languages fval(L) jL � TSUB; L 2 RECOGg is equal to the class of context-free hypergraph lan-guages, CFHG. In order to do so, some di�culties must be overcome. Forexample, hyperedge replacement grammars generate only homogeneous hyper-graph languages, while expressions over substitution operators may generatemixed typed hypergraph languages. In order to solve this discrepancy, we will�rst restrict ourselves to homogeneous hypergraph languages. At the end of thissection, we will generalize the results from the homogeneous case to the case ofmixed typed hypergraph languages. This is why the de�nition of context-freehypergraph languages (De�nition 4.16) was somewhat unnatural.The tree languages over substitution operators that we used so far, have mixedtypes. We now introduce recognizable tree languages, where all trees have thesame type.De�nition 4.34 (homogeneous regular tree language) A regular tree languageL � TSUB is said to be homogeneous if there is a pair (m;n) 2 N�N, such thatfor every t 2 L, type(t) = (m;n). From the de�nition of val , it can be seen thatif L is homogeneous, then val(L) is homogeneous. Conversely, if L � WTSUBand val(L) is homogeneous, then L is homogeneous. �Ordinary regular tree grammars over SUB generate mixed typed tree languages.Therefore, single typed regular tree grammars are de�ned.



Hypergraph replacement grammars versus regular tree grammars thirtynineDe�nition 4.35 (single typed regular tree grammar) Let G = (N;�; R; S) bea regular tree grammar in normal form, with � � SUB. Then G is said to besingle typed , if there is a pair (m;n) 2 N � N, such that for all rules r 2 R, iflhs(r) = S, then type(rhs(r)) = (m;n). The pair (m;n) is called the type of G,denoted by type(G). It is clear that if t 2 L(G), then type(t) = type(G). �From these de�nitions it can easily be seen, that for every regular tree grammarG 2 RTGSUB in normal form, G is single typed i� L(G) is homogeneous. Hence,L � TSUB is a homogeneous regular tree language i� L = L(G) for some singletyped regular tree grammar.Single typed regular tree grammars generate only homogeneous tree languages,but the trees from these languages are not necessarily well-typed. We now intro-duce a type of regular tree grammars, that generate homogeneous tree languages,that are also well-typed.De�nition 4.36 (typed regular tree grammar) A regular tree grammar in normalform G = (N;�; R; S), with � � SUB, is said to be typed if there is a mappingltype : N ! N� N, such that for all rules A ! H [A1 � � �Ak] 2 R, with k � 0,ltype(A) = type(H) and ltype(Ai) = type(varH(i)) for 1 � i � k. �Note that a typed regular tree grammar is also single typed, and therefore onlygenerates homogeneous tree languages. Furthermore, for each typed regular treegrammar G, L(G) �WTSUB.Theorem 4.37 For each single typed regular tree grammar G 2 RTGSUB, thereis a typed regular tree grammar G0 2 RTGSUB, such that L(G0) = L(G) \WTSUB.Proof Let G = (N;�; R; S) 2 RTGSUB be a single typed regular tree grammar.Now construct G0 = (N 0;�; R0; S 0), where N 0 = N � TYP, with TYP � N� Nthe set of all types occurring in G, i.e. the types of all the hypergraphs as wellas the types of all the hyperedges in G. FurthermoreR0 = f(A; type(H))! H [(A1; type(varH(1))) � � �(Ak; type(varH(k)))]j A! H [A1 � � �Ak] 2 Rgand S 0 = (S; type(G)). Now G0 is a typed regular tree grammar, where the typingfunction ltype : N 0 ! N � N is de�ned by ltype((A; (m;n))) = (m;n) for each(A; (m;n)) 2 N 0. Furthermore, it can be shown with induction to the lengthn of the derivations, that for all A 2 N and all t 2 T�, A )nG t and t is well-typed i� (A; type(t)) )nG0 t. From this it follows that L(G0) = L(G) \WT�.Note that G0 is the \product" of G and the regular tree grammar in the proof ofTheorem 4.32. �Now we have that for every homogeneous tree language L, we can �nd a regu-lar tree grammar, such that all well-typed trees from L are generated by thatgrammar.



fourty Hypergraphs, hypergraph languages and hypergraph expressionsWe will now de�ne a relation between regular tree grammars, generating expres-sions over substitution operators, and hyperedge replacement grammars, suchthat if a regular tree grammar and a hyperedge replacement grammar are re-lated, then the evaluation of the set of expressions generated by the regular treegrammar equals the hypergraph language generated by the hyperedge replace-ment grammar.De�nition 4.38 (lead and rank of a production) Let N be a set of non-terminalsand A! R a production over N . Then the lead of R, denoted by lead(R), is theset of hyperedges in R which are labeled with elements of N . Thus lead(R) =fe 2 ER j lR(e) 2 Ng. The number of elements in lead(R) is called the rank ofR, denoted by rank(R). �For each production, we de�ne a related substitution operator such that all hy-peredges in the right-hand side of the production, labelled with non-terminals,are labelled with variables.De�nition 4.39 (associated grammars) Let Gt = (Nt;�; R; S) 2 RTGSUB be aregular tree grammar in normal form with � � SUB and let Gh = (Nh; T; P; Z) 2HRG be a hyperedge replacement grammar.i. A rule r = A ! �[A1 � � �Ak] 2 R and a production p = B ! H overNh are associated , denoted by r ./ p, if A = B, rank(H) = k and H =(V�; E�; s�; t�; l; begin� ; end�), where l : E� ! 
 is de�ned byl(e) = ( Ai if e = var�(i) for 1 � i � k,l�(e) otherwise,Note that type(�) = type(H).ii. Gt and Gh are associated, denoted by Gt ./ Gh, if they are both typed (andthus in their respective normal form), Nh = Nt, T = flH(e) j e 2 EH ; H 2�g n Y, P = fp j r ./ p; r 2 Rg and Z is a handle of type type(Gt) withl(Z) = S.iii. When r ./ p, Gt ./ Gh or Ct ./ Ch, we will also write p ./ r, Gh ./ Gt orCh ./ Ct respectively. �The following theorem states, that for every typed hyperedge replacement gram-mar, we can �nd an associated typed regular tree grammar, and vice cersa.Theorem 4.40 (associated grammars)i. For every typed hyperedge replacement grammar Gh 2 HRG, there is atyped regular tree grammar Gt 2 RTGSUB such that Gt ./ Gh.ii. For every typed regular tree grammar Gt 2 RTGSUB, there is a typedhyperedge replacement grammar Gh 2 HRG, such that Gh ./ Gt.



Hypergraph replacement grammars versus regular tree grammars fourtyoneProof For the �rst part of the theorem, let Gh = (N; T; P; Z) be a typed hyper-edge replacement grammar. Construct a regular tree grammar Gt = (N;�; R; S),where � = f�H j A! H 2 Pg,R = fA! �H [lH(var�H (1)) � � �lH(var�H (rank(H)))] j A! H 2 Pgand S = l(Z). In this construction �H = (VH ; EH; sH ; tH ; l; beginH ; endH), withthe label function l : EH ! 
 de�ned byl(e) = ( y�H (e) if e 2 lead(H)lH(e) otherwise,where �H : lead(H)! f1; : : : ; rank(H)g is an arbitrary but �xed bijection. Themapping ltype for Gh can be used to show that Gt is typed. Thus Gt ./ Gh.For the second part, let Gt = (N;�; R; S) be a typed regular tree grammar in nor-mal form, with � a �nite subset of SUB. Now construct a hyperedge replacementgrammar Gh = (N; T; P; Z), where T , P and Z are as in De�nition 4.39ii. Thetyping function for Gt can be used to show that Gh is typed. Clearly Gh ./ Gt.�Now it turns out that if a hyperedge replacement grammar and a regular treegrammar are associated, then the hypergraph language generated by the hyper-edge replacement grammar equals the evaluation of the tree language over SUB,generated by the regular tree grammar.Theorem 4.41 Let Gh 2 HRG and Gt 2 RTGSUB such that Gh ./ Gt. ThenL(Gh) = val(L(Gt)).Proof Let Gh = (N; T; P; Z) 2 HRG be a typed hyperedge replacement grammarand Gt = (N;�; R; S) 2 RTGSUB a typed regular tree grammar, such thatGh ./ Gt.We will show �rst by induction to the length m of a derivation in Gh, that for allA 2 N , if A� )mGh H , with H 2 HGT , then there is a t 2 T� with val(t) = H ,such that A)�Gt t.If A� )Gh H is a direct derivation by a production p = A! H , with rank(H) =0, then we have a rule r = A! H 2 R, such that p ./ r, with H 2 �0, so clearlyA)Gt H with H = val(H).If A� )m+1Gh H , then, according to Theorem 4.27, there is a direct derivationA� )Gh F and, for each e 2 lead(F ), there is a derivation e� )mGh H(e) suchthat H = RPL(F; rpl) with rpl(e) = H(e) for e 2 EF . For the productionp = A! F , applied in the direct derivation, there is an associated rule r = A!a[lF (vara(1)) � � �lF (vara(k))] 2 R, with k = rank(F ). By induction hypothesis,for all e 2 lead(F ), lF (e) )�Gt t0, with val(t0) = H(e) for some t0 2 T�. Now,since var a(i) 2 EF , we �nd that lF (vara(i)) )�Gt ti, with ti 2 T� and val(ti) =H(vara(i)) for all 1 � i � k. Then we can apply the substitution operator a to



fourtytwo Hypergraphs, hypergraph languages and hypergraph expressionst1; : : : ; tk, yielding a[t1 � � � tk]. Using the context-freeness of regular tree grammarsand the rule r, we then �nd that A)�Gt a[t1 � � � tk]. Furthermoreval(a[t1 � � � tk]) = suba(val(t1); : : : ; val(tk))= suba(H(vara(1)); : : : ; H(vara(k)))= RPL(a; rpl);with rpl(vara(i)) = H(vara(i)) for 1 � i � k= RPL(F; rpl), with rpl(e) = H(e) for e 2 lead(F )= H:So �nally we �nd that there is a t 2 T� with val(t) = H and A )�Gt t, namelyt = a[t1 � � � tk].Now for all A 2 N , if A� )�Gh H then A)�Gt t, with val(t) = H , for some t 2 T�,so this holds especially for l(Z) = S, and therefore L(Gh) � val(L(Gt)).Now it remains to show that val(L(Gt)) � L(Gh)). The proof of this inclusion isthe reverse of the �rst part of the proof.We will show by induction to the length m of a derivation in Gt, that for allA 2 N , if A)mGt t, with t 2 T� and val(t) = H , H 2 HG, then A� )�Gh H .If A )Gt t with t 2 �0 (thus t = val(t) 2 HG) is a direct derivation by a ruler = A ! t, then there is a production p = A ! H 2 P , such that r ./ p, withrank(H) = 0 and t = H . So clearly A� )Gh H .Now let A )m+1Gt t, with val(t) = H . Since the language generated by Gt isgiven by L(G0t), where G0t = (N;� [ f[; ]g; R; Z) is a context free grammar, thisderivation can be decomposed to A)Gt a[A1 � � �Ak])mGt t, where k � 1, a 2 �k,Ai 2 N , Ai )miGt si, mi � m and si 2 T� for 1 � i � k, and t = a[s1 � � �sk]. Theapplied rule for the direct derivation is r = A! a[A1 � � �Ak]. Let p = A! F 2 Pbe such that r ./ p. Thus, for all 1 � i � k, by induction hypothesis A�i )�Ghval(si). Now p = A ! F gives us a direct derivation A� )Gh F . Furthermore,for each e 2 EF , if l(e) = Ai there is a derivation e� )�Gh val(si). Now letrpl : lead(F )! HG be such that, for all 1 � i � k, rpl(vara(i)) = val(si). ThenRPL(F; rpl) = RPL(a; rpl)= suba(val(s1); : : : ; val(sk))= val(a[s1 � � �sk])= val(t)= H:Thus we have a direct derivation A� )Gh F and for each e 2 lead(F ) there is aderivation e� )�Gh H(e) such that H = RPL(F; rpl), with rpl(e) = H(e), where,for each e 2 EF labelled with a non-terminal, H(e) = val(si) if e = var s(i) forsome 1 � i � k. Now we can apply the decomposition theorem for hyperedgereplacement grammars (Theorem 4.27), to �nd A� )Gh F )�Gh H or A� )�Gh H .Again, if we apply the result to S and l(Z), we �nd that val(L(Gt)) � L(Gh)),so we �nally �nd that L(Gh) = val(L(Gt)). �



Hypergraph replacement grammars versus regular tree grammars fourtythreeThe converse of Theorem 4.41 is clearly not true.We are now in the position to prove the fact, that the two hypergraph languagegenerating formalisms, generate the same hypergraph languages. First we restrictourselves to the homogeneous case.Theorem 4.42 For every hypergraph language L, L is homogeneous and L 2CFHG i� L = val(L0) for some homogeneous regular tree language L0 � TSUB.Proof Let L 2 CFHG be a homogeneous hypergraph language and Gh a typedhyperedge replacement grammar such that L = L(Gh). Such a Gh exists, since Lis the union of a �nite number of homogeneous context-free hypergraph languagesof the same type, and for �xedm;n 2 N,CFHGm;n is closed under union. Let Gtbe a typed regular tree grammar such that Gh ./ Gt. Such a Gt exists accordingto Theorem 4.40. From Theorem 4.41 it follows that L(Gh) = val(L(Gt)), thusL = val(L(Gt)), where L(Gt) � TSUB is a homogeneous regular tree language.Conversely, let L be such that L = val(L0) for some homogeneous regular treelanguage L0 � TSUB. Let Gt be a single typed regular tree grammar such thatL0 = L(Gt) and let G0t be a typed regular tree grammar such that L(G0t) =L(Gt)\WTSUB. Such a G0t exists by Theorem 4.37. By the de�nition of val , we�nd that val(L(G0t)) = val(L(Gt)). Now let Gh be a typed hyperedge replacementgrammar such that Gh ./ G0t. Such a Gh exists according to Theorem 4.40. FromTheorem 4.41 we �nd that L(Gh) = val(L(G0t)) = val(L(Gt)) = val(L0) = L.Thus Gh generates L and therefore L 2 CFHG. Furthermore, L is homogeneoussince L0 is homogeneous. �In order to show a generalized version of Theorem 4.42, we must be able todissect a non-homogeneous regular tree language into a number of homogeneousregular tree languages. This can be accomplished by dissecting the regular treegrammar that generates the language into a number of regular tree grammars,each generating a homogeneous tree language. In order to dissect the regular treegrammar, it must have a special property, de�ned as follows.De�nition 4.43 (proper regular tree grammar) A regular tree grammar G =(N;�; R; S) is called proper , if the initial non-terminal S does not occur in theright-hand side of any rule in R.This special property does not restrict us, since for each regular tree grammar,we can �nd an equivalent regular tree grammar, that has this property.Theorem 4.44 For every regular tree grammar G, there is an equivalent regulartree grammar G0, such that G0 is proper and in normal form.Proof Let G = (N;�; R; S) be a regular tree grammar. From Theorem 3.12 we�nd that we may assume that G is in normal form. Now construct a regular treegrammar G0 = (N [fS 0g;�; R0; S 0), where S0 is any symbol such that S0 62 N [�and R0 = R [ fS0 ! rhs(r) j r 2 R; lhs(r) = Sg. Clearly, G0 is proper and innormal form, and L(G) = L(G0). �



fourtyfour Hypergraphs, hypergraph languages and hypergraph expressionsNow we �nally come to the main result of this chapter. For each hypergraphlanguage, it turns out that the language is a context-free hypergraph language ifand only if it is the evaluation of a regular tree language over SUB.Theorem 4.45 For every hypergraph language L, L 2 CFHG i� L = val(L0) forsome regular tree language L0 � TSUB.Proof Let L 2 CFHG. Then by de�nition, L = [1�i�kLi, with Li 2 CFHGmi;nifor some k � 1 and mi; ni 2 N for 1 � i � k. Now each Li, 1 � i � k, ishomogeneous, so we can apply Theorem 4.42 to �nd that Li = val(L0i) withL0i � TSUB a regular tree language, for 1 � i � k. Since RECOG is closedunder union, the tree language L0, such that L0 = [1�i�kL0i, is regular. Nowval(L0) = val([1�i�kL0i) = [1�i�kval(L0i) = [1�i�kLi = L, so L = val(L0) for aregular tree language L0 � TSUB.Conversely, let L be such that L = val(L0) for some regular tree language L0 �TSUB. Let G = (N;�; R; S) be a regular tree grammar, such that L0 = L(G).From Theorem 4.44 we �nd that we may assume that G is proper and in normalform. Let � = ftype(rhs(r)) j r 2 R; lhs(r) = Sg be the set of types that occurin L0. Note that � is �nite, since R is �nite. Now for each � 2 �, construct aG� = (N;�; R�; S), where R� = fr 2 R j if lhs(r) = S then type(rhs(r)) = �g.Clearly, L0 = [�2�L(G�). Now let L� = val(L(G�)) for � 2 �. Since for each� 2 �, G� is single typed, we �nd that L(G�) is homogeneous for each � 2 �, sowe can apply Theorem 4.42 to �nd that L� 2 CFHG and L� is homogeneous foreach � 2 �. Now L = val(L0) = val([�2�L(G�)) = [�2�val(L(G�)) = [�2�L�.Thus L is the union of a �nite number of homogeneous context-free hypergraphlanguages, and thus L 2 CFHG. �This theorem will be illustrated by an example.Example 4.46 LetW = fWn j n 2 N; n � 3g be the set of directed wheel graphsfrom Example 4.15. Since this graph language was generated by the hyperedgereplacement grammarGh from this example, we �nd that L(Gh) =W 2 CFHG.Now from Theorem 4.45 we �nd that there is a regular tree language L � TSUB,such thatW = val(L).Construct Gt = (N;�; R; fSg), where N = fS;Ag, �0 = f�0g and �1 = f�1; �2g,with �0 = 1
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Hypergraph replacement grammars versus regular tree grammars fourty�veFurthermore, let R = fR0 = S ! �0[A]; R1 = A ! �1[A]; R2 = A ! �2g.Clearly Gh ./ Gt. The regular tree language generated by Gt is L(Gt) =f�0([�1)m[�2](])m j m 2 Ng. For example, the derivation of t = �0[�1[�1[�2]]]in Gt isS )R0 �0[A])R1 �0[�1[A]])R1 �0[�1[�1[A]]])R2 �0[�1[�1[�2]]] = t:Now t evaluates to a hypergraph as follows.val(t) = val 0BB@ 1
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+== W5:From this example we can see that val(L(Gt)) = W = L(Gh). Note the strongsimilarity between the hypergraph expression �0[�1[�1[�2]]] and the derivation ofW5 in Gh, in Example 4.15. �
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fourtyseven
Chapter �veNumerical functions onhypergraphs

In this chapter, a number of numerical functions on hypergraphs is de�ned, suchas a function for the number of hyperedges in a hypergraph, a function for thenumber of nodes in a hypergraph and a function for the number of paths in ahypergraph. It is shown that these functions can be computed by a top-downtree transducer that receives a tree, evaluating to the given hypergraph, as input,and produces as output an expression in an algebra, that represents the arith-metic calculus with constants, addition, multiplication, maximum, minimum andraising to a power. The numerical evaluation of these expressions results in thenumerical value of the functions.



fourtyeight Numerical functions on hypergraphsThe numerical functions that are de�ned in this chapter determine the numberof hyperedges in a hypergraph, the number of nodes in a hypergraph and thenumber of undirected and directed paths in a (1; 1)-graph.Before de�ning the numerical function on the hypergraph expressions, we �rsthave to de�ne the arithmetic calculus. The calculus is de�ned for addition, mul-tiplication, maximum, minimum and raising to a power, but it can easily beextended with more operations.De�nition 5.1 (arithmetic calculus) The set of arithmetic symbols , denoted by�N, is the in�nite ranked alphabet de�ned by �N0 = fCn j n 2 Ng [ f�;�g,�N2 = f�;�;max;powg and �Nk = f�;�;maxg for k = 1 and for all k � 3.The arithmetic calculus is the �N-algebra N = (N; �), where the operations arede�ned as follows.i. For all Cn 2 �N0 , �0(Cn) = n.ii. For � 2 �N0 , �0(�) = 0 and for � 2 �N0 , �0(�) = 1.iii. For � 2 �Nk , k � 1, �k(�) : Nk! N is de�ned by�k(�)(v1; : : : ; vk) =P1�i�k vi:iv. For � 2 �Nk , k � 1, �k(�) : Nk! N is de�ned by�k(�)(v1; : : : ; vk) = Q1�i�k vi:v. For max 2 �Nk , k � 1, �k(max) : Nk ! N is de�ned by�k(max)(v1; : : : ; vk) = maxfv1; : : : ; vkg:vi. For pow 2 �N2 , �2(pow) : N2! N is de�ned by �2(pow)(v; w) = vw. �Since the rules in the top-down �nite tree transducers that de�ne the functionshave a tendency to get complicated, and since substitution operators of variousrank occur in the expressions, we will use a short-hand notation like the notationthat is often used for the addition of a large number of values (P1�i�k vi as ashort-hand for v1 + v2 + � � �+ vk).Notation 5.2 Let k � 1, A 2 �Nknfpowg, S a �nite set such that jSj = k, ' : S !O a mapping from S to some set O of syntactical objects and � : f1; : : : ; kg ! Sa bijection. Then we use A�s2S [['(s)]] as a short-hand for A['(�(1)) � � �'(�(k))].Since all operators in �Nk n fpowg are commutative, the order imposed by � isirrelevant. Therefore it will be omitted, yielding As2S [['(s)]]. If k = 0, A 2 �0and S = ?, then by A�s2S [['(s)]] we mean the symbol A. �



Number of hyperedges fourtynine5.1 Number of hyperedgesIn this section we will present a top-down �nite tree transducer that realizes afunction, to determine the number of hyperedges in a hypergraph. The �nite treetransducer is de�ned for an arbitrary subset of SUB. Why this is done will bemade clear in Chapter 6.3.Let � be a �nite subset of SUB. Now construct a top-down tree transducer�� = (Q;�;�N; R;Qd), where Q = fqg and Qd = fqg. Furthermore, R is de�nedas follows.i. For each H 2 �0, the rule q[H ]! CjEHj is in R.ii. For each H 2 �k, k � 1, the ruleq[H [x1 � � �xk]]! �[CjEHj�kq[x1] � � �q[xk]]is in R.The following theorem states that the above de�ned top-down �nite tree trans-ducer realizes a function for the number of hyperedges in the evaluated hyper-graph for a hypergraph expression. The proof of this theorem is given in detail,as is the proof for the theorem in the next section. Since the proofs of thesetheorems are all basically the same, the proofs for the other theorems are notgiven in detail.Theorem 5.3 For all s 2 T� and t 2 T�N, if q[s])��� t, then jEval(s)j = mN(t).Proof The proof is by induction on s. Assume q[s])��� t. If s 2 �0, then thereis a direct derivation and the applied rule is q[s]! CjEsj. Now, since val(s) = sand mN(CjEsj) = jEsj, clearly jEval(s)j = mN(t).Now for s = H [s1 � � �sk], k � 1, H 2 �k and s1; : : : ; sk 2 T�, let the �rst ruleapplied in the derivation q[H [s1 � � �sk]])��� t beq[H [x1 � � �xk]]! �[CjEH j�kq[x1] � � �q[xk]];thus q[H [s1 � � �sk]])�� �[CjEHj�kq[s1] � � �q[sk]])��� t:Now from Remark 3.53 it can be seen that there exist t1; : : : ; tk 2 T�N suchthat t = �[CjEH j�kt1 � � � tk] and, for all 1 � i � k, q[si] )��� ti. By inductionjEval(si)j = mN(ti) for 1 � i � k. So we �nd thatjEval(s)j = jEval(H[s1 ���sk])j= jEHhvarH(1) val(s1);:::;varH (k) val(sk)ij= jEHj � k +P1�i�k jEval(si)j (5.4)



�fty Numerical functions on hypergraphs= mN(CjEHj�k) +P1�i�kmN(ti)= mN(�[CjEHj�kt1 � � � tk])= mN(t);which proves the theorem. Equality 5.4 follows from the hypergraph theoreticalfact that if X is the hypergraph RPL(H; rpl), that results from the replacementof B in H by rpl , where rpl : B ! HG is a base for replacement, then jEX j =jEH j � jBj+Pe2B jErpl(e)j. �The top-down tree transducer � is linear, non-deleting, pure and total determin-istic, or �� 2 PNLDtT. Note that also �� 2 HOM, since PNLDtT � PDtT =HOM (Remark 3.51).Example 5.5 Let � be a �nite subset of SUB such that �0; �1; �2 2 �, where �0,�1 and �2 are de�ned in Example 4.46. Thenq[s] = q[�0[�1[�1[�2]]]])��� �[C3�[C2�[C2�[C3]]]] = t:Furthermoreval(s) = val(�0[�1[�1[�2]]]) = = W5 andmN(t) = mN(�[C3�[C2�[C2�[C3]]]]) = 3 + 2 + 2 + 3 = 10 = jEW5 j;so clearly, jEval(s)j = mN(t). �5.2 Number of nodesIn this section a top-down �nite tree transducer that realizes a function for thenumber of nodes in a hypergraph is de�ned. Let � be a �nite subset of SUB. Nowconstruct a top-down tree transducer �� = (Q;�;�N; R;Qd), where Q = fq; igand Qd = fqg. Furthermore, R is de�ned as follows.i. For each H 2 �0, the rules q[H ]! CjVHj and i[H ]! CjINTH j are in R.ii. For each H 2 �k, k � 1, the rulesq[H [x1 � � �xk]]! �[CjVHji[x1] � � � i[xk]] andi[H [x1 � � �xk]]! �[CjINTH ji[x1] � � � i[xk]]are in R.



Number of nodes �ftyoneInformally, state q computes an expression for the number of nodes in H , whilestate i computes an expression for the number of internal nodes in H .The proof of the theorem for the function that determines the number of nodesin a hypergraph is also given in detail. The proof is essentially similar to theproof of Theorem 5.3, but the �nite tree transducer has two states instead ofone. Therefore, the two statements in the proof (one for each state) are provenby simultaneous induction. This is not really necessary, since the two statementsare not mutually dependent on each other, but it demonstrates the proof methodin general. Also the tree transformation that is realized by the tree transducer isused as a function, as in De�nition 3.52, instead of the more operational methodused for the proof of Theorem 5.3. This is possible since the �nite tree transduceris total deterministic, and therefore the tree transformation is a total function.Theorem 5.6 For every s 2 T�, mN(��(q; s)) = jVval(s)j and mN(��(i; s)) =jINTval(s)j.Proof Both statements are proven simultaneously, by induction on s. If s 2 �0,then there are direct derivations with applied rules q[s]! CjVsj and i[s]! CjINTsj.Furthermore, val(s) = s, thusmN(��(q; s)) = mN(CjVsj) = jVsj = jVval(s)j andmN(��(i; s)) = mN(CjINTsj) = jINTsj = jINTval(s)j:If s = H [s1 � � �sk], k � 1, H 2 �k, s1; : : : ; sk 2 T�, then, using the fact that �� istotal deterministic and the induction hypothesis mN(��(i; sj)) = jINTval(sj)j for1 � j � k, we �ndmN(��(q; s)) = mN(�[CjVHj��(i; s1) � � ���(i; sk)])= mN(CjVH j) +P1�j�kmN(��(i; sj))= jVHj+P1�j�k jINTval(sj)j= jVHhvarH(1) val(s1);:::;varH (k) val(sk)ij= jVval(H[s1���sk])j= jVval(s)jand mN(��(i; s)) = mN(�[CjINTH j��(i; s1) � � ���(i; sk)])= mN(CjINTH j) +P1�j�kmN(��(i; sj))= jINTH j+P1�j�k jINTval(sj)j= jINTHhvarH (1) val(s1);:::;varH (k) val(sk)ij= jINTval(H[s1���sk])j= jINTval(s)j:Here we use the hypergraph theoretical fact that, if X = RPL(H; rpl), re-sulting from the replacement of B in H by rpl , where rpl : B ! HG isa base for replacement, then jVX j = jVH j + Pe2B jINTrpl(e)j and jINTX j =jINTH j+Pe2B jINTrpl(e)j. �



�ftytwo Numerical functions on hypergraphsThe top-down tree transducer �� is linear, non-deleting and total deterministic,or �� 2 NLDtT.5.3 Number of pathsIn order to de�ne a tree transducer to compute the number of paths through ahypergraph, we �rst have to de�ne the notion of a path.De�nition 5.7 (paths) Let H = (V;E; s; t; l; begin; end) be a hypergraph and letP = v0e1v1e2 � � �en�1vn�1envn 2 V (EV )+ be a sequence of alternating nodes andhyperedges. The length of P , denoted by len(P ), is the number of hyperedges inthe sequence, thus len(P ) = n.i. If vi�1 2 attH(ei) and vi 2 attH(ei) for 1 � i � n, then P is called anundirected path through H .ii. If vi�1 2 s(ei) and vi 2 t(ei) for 1 � i � n, then P is called a directed paththrough H . Note that every directed path is also an undirected path.iii. P is called simple, if vi = vj only if i = j for 0 � i; j � n.iv. The set of all hyperedges in P is denoted by EP and the set of all nodes inP is denoted by VP .v. If P = v0e1 � � �envn is a path, then hyperedge ei is denoted by eP;i for1 � i � n and node vi is denoted by vP;i for 0 � i � n.vi. For 1 � i; j � jextH j the set of all simple undirected paths through H ,from extH;i to extH;j , is denoted by UPi;jH . Since only simple paths areallowed, UPi;jH = ? if i = j. The set of all simple undirected paths throughH , between two nodes from extH , is denoted by UPH . Note that UPH =[1�i;j�jextH jUPi;jH and that UPH is �nite.vii. For 1 � i; j � jextH j the set of all simple directed paths through H , fromextH;i to extH;j , is denoted by DPi;jH . Again, DPi;jH = ? if i = j. The �niteset of all simple directed paths through H , between two nodes from extH ,is denoted by DPH . �Example 5.8 Let H be the multi-pointed hypergraph in Figure 5.1, with VH =f1; : : : ; 7g, EH = fa; b; c; dg, beginH = 12 and endH = 6. The labels are omitted.Then DPH = f1a3c6; 1a4c6; 1a4d6; 2a3c6; 2a4c6; 2a4d6; 2b4c6; 2b4d6; 2b5d6;2b4d7b5d6; 2b5d7b4c6gand DP1;3H = f1a3c6; 1a4c6; 1a4d6g:Simple undirected paths are, for example, 2b7d4a3c6 and 2a1. �
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7Figure 5.1: Hypergraph HWe will restrict ourselves to paths in (1; 1)-graphs. The general case for pathsthrough arbitrary hypergraphs is very complicated. This is due to the fact thata non-terminal hyperedge should in general occur more than once on a singlepath, in order to generate parts of a path in the terminal graph. If this is thecase and the hyperedge is replaced by a hypergraph, the paths through thishypergraph may violate the conditions for the resulting paths being simple. Thisis illustrated in Figure 5.2. The hyperedge labelled A in Figure 5.2i is twice on thepath 1A2e3A4. If this hyperedge is replaced by the hypergraph in Figure 5.2ii,the path 1a5b2e3d6c4 will still be simple. However, if the hyperedge is replacedby the hypergraph in Figure 5.2iii, the conditions for the paths being simple areviolated, since the paths 1a5b2 and 3d5c4 are simple, but the path 1a5b2e3d5c4is not.
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5Figure 5.2: Problem with arbitrary paths5.3.1 Simple undirected paths in (1, 1)-graphsLet � be a �nite subset of SUB1;1 \GR. Now construct a top-down tree trans-ducer �� = (Q;�;�N; R;Qd) where Q = Qd = fqg. The set of rules R is de�nedas follows.i. For each H 2 �0, the rule q[H ]! CjUPHj is in R.ii. For each H 2 �k, k � 1, the ruleq[H [x1 � � �xk]] ! �[�['H(eP1;1) � � �'H(eP1;len(P1))] � � ��['H(ePjUPH j;1) � � �'H(ePjUPH j;len(PjUPH j))]]



�ftyfour Numerical functions on hypergraphsis in R, where UPH = fP1; : : : ; PjUPH jg1. Furthermore, 'H is de�ned as'H(e) = ( q[xi] if lH(e) = yi for some 1 � i � kC1 otherwise.Theorem 5.9 For all s 2 T� and t 2 T�N, if q[s])��� t, then jUPval(s)j = mN(t).Proof The proof is similar to the proof of Theorem 5.3, but now we use the factthat if X is the graph that results from the replacement of B in H by rpl , whererpl : B ! HG is a base for replacement, thenjUPX j =PP2UPH Qe2EP �(e);where �(e) = jUPrpl(e)j if e 2 B and �(e) = 1 otherwise. This formula for thenumber of paths can be explained as follows. The product term comes from thefact that if an edge on a path is replaced by a graph, the path is \replaced" byas many paths as there are through the graph. Clearly the total number of pathsthrough the graph is the total, over all the paths through H , of all the \replaced"paths. �The rules can be denoted in a more compact way, using Notation 5.2. Doing so,for H 2 �k, k � 1, the corresponding rule is denoted byq[H [x1 � � �xk]]! �P2UPH [[�e2EP [['H(e)]]]];where 'H is as de�ned above.The top-down tree transducer � is pure and total deterministic, or � 2 PDtT =HOM. � need not be linear since one hyperedge may occur on more than onepath. It need not be non-deleting, since not every hyperedge necessarily occurson a path.5.3.2 Simple directed paths in (1, 1)-graphsThe case for directed paths is slightly more complicated, because an edge can bereplaced by a graph that \points in the other direction". We must therefore use aweaker form of directed paths, where edges that may be replaced are not used todetermine whether or not the path is directed. At the time of the substitution,the paths should not be counted if the substitution would yield an undirectedpath.De�nition 5.10 Let H 2 SUBk be a substitution operator of rank k and letP be a path through H . Then P is called a partial directed path if, for every1 � u � len(P ) such that lH(eP;u) 62 Y, vP;u�1 2 sH(eP;u) and vP;u 2 tH(eP;u).For 1 � i; j � jextH j, the set of all simple partial directed paths through H fromextH;i to extH;j , is denoted by PDPi;jH . �1If UPH = ?, the rule reduces to q[H[x1 � � �xk]]! �.



Number of paths �fty�veLet � be a �nite subset of SUB1;1 \GR. Now construct a top-down tree trans-ducer �� = (Q;�;�N; R;Qd) where Q = fq12; q21g and Qd = fq12g. The set ofrules R is de�ned as follows.i. For each H 2 �0, the rules q12[H ] ! CjDP1;2H j and q21[H ] ! CjDP2;1H j are inR.ii. For each H 2 �k, k � 1, the rulesq12[H [x1 � � �xk]]! �P2PDP1;2H [[�1�u�len(P )[['H(P; u)]]]] andq21[H [x1 � � �xk]]! �P2PDP2;1H [[�1�u�len(P )[['H(P; u)]]]]are in R, where 'H is de�ned as'H(P; u) = 8><>: q12[xi] if lH(e) = yi; 1 � i � k ^ vP;u�1 2 sH(eP;u)q21[xi] if lH(e) = yi; 1 � i � k ^ vP;u�1 62 sH(eP;u)C1 otherwise.Theorem 5.11 For all s 2 T� and t 2 T�N, if q12[s])��� t, then jDP1;2val(s)j = mN(t).Proof The proof is almost equal to the proof of Theorem 5.9, but now we mustconsider partial directed paths, since hyperedges on a partial directed path la-belled with a variable from Y will be replaced by a hypergraph, from which onlypaths in the proper direction should be counted. Since there are two states, itmust be proven simultaneously that for all s 2 T� and t 2 T�N, if q21[s] )��� t,then jDP2;1val(s)j = mN(t). �The top-down tree transducer �� is total deterministic, or �� 2 DtT. �� neednot be linear since one hyperedge may occur on more than one path. It need notbe non-deleting, since not every hyperedge necessarily occurs on a path.



�ftysix



�ftyseven
Chapter sixCompatible and realizablefunctions
The numerical functions on hypergraphs of Chapter 5 are all realized by top-downtree transducers, which translate the expressions that represent the hypergraphsinto numerical expressions, which are then evaluated to obtain the function val-ues. In [Hab92], numerical functions (and predicates) are de�ned on the deriva-tions of hypergraphs in hyperedge replacement grammars. To accomplish this,the functions had to be \compatible" with the derivation process, which meansthat the function value for a hypergraph depends on the hypergraph itself andon the function values for the hypergraphs that are replaced for the non-terminalhyperedges of the hypergraph.In Chapter 4 we have seen that the two formalisms for the generation of hyper-graphs which were presented, are equivalent. In this chapter we will present therealizability property for functions on hypergraphs, which is similar to the com-patibility property but is based on top-down tree transducers. It will be shownthat each compatible function is also a realizable function.



�ftyeight Compatible and realizable functionsRemark 6.1 All functions in the remainder of this thesis are meant to be total.6.1 Compatible functions, HabelThe de�nitions of compatible functions and special compatible functions wereintroduced in [HabKreVog91] and later recalled in [Hab92]. The de�nitions, re-spectively De�nition VII.2.1 and De�nition VII.2.3 in [Hab92], are as follows.De�nition 6.2 (compatible functions, Habel) Let C � HRG, I a �nite indexset and V a set of values.i. Let f : HG�I ! V be a function on pairs (H; i) 2HG�I and f 0 a functionon triples (R; ass; i) with R 2 HG, ass : ER�I ! V and i 2 I , with valuesin V. Then f is called (C; f 0)-compatible if, for all G = (N; T; P; Z) 2 Cand all derivations of the form A� ) R)� H , with A 2 N [ T , H 2 HGTand for all i 2 I , f(H; i) = f 0(R; ass; i), where ass : ER � I ! V is givenby ass(e; j) = f(H(e); j), e 2 ER and j 2 I .ii. A function f0 : HG ! V is called C-compatible if functions f and f 0 andan index i0 exist, such that f is (C; f 0)-compatible and f0 = f(�; i0)1.iii. A function f : HG � I ! N? is said to be (C;min;max ;+; �)-compatibleif there exists a function f 0 such that f is (C; f 0)-compatible and for eachright-hand side R of some production in C and each i 2 I , f 0(R;�; i)corresponds to an expression formed with variables ass(e; j), e 2 ER andj 2 I , and constants from N by addition, multiplication, minimum andmaximum. The function f is (C;max ;+; �)-compatible if the operation mindoes not occur.iv. A function f0 : HG ! N? is (C;min;max ;+; �)-compatible if a functionf and an index i0 exist such that f is (C;min;max ;+; �)-compatible andf0 = f(�; i0). Accordingly, the function f0 is (C;max ;+; �)-compatible if fis (C;max ;+; �)-compatible. �In this de�nition, N? = N [ f?g, where ? is a special value, meaning that thevalue is unde�ned. We will not use this special value.The compatible functions are de�ned on a class of hyperedge replacement gram-mars. The compatibility property must hold for every step of every derivationin every hyperedge replacement grammar in the class. The parts i and ii of thede�nition do not have a restriction on the function f 0. In the parts iii and iv,for the special compatible functions, this function must be representable by anexpression formed with the operators +, �, max and min .1f(�; i0) denotes the function given by f(�; i0)(H) = f(H;i0) for all H 2HG.



Compatible functions �ftynine6.2 Compatible functionsIt turns out that De�nition 6.2 is not suitable for our purposes, without somechanges. We �rst note that derivations in hyperedge replacement grammars start-ing in terminal labeled edges, as occuring in part i of the de�nition, consist ofdummy steps only, and thus are of no interest.A more serious problem is that the de�nition of the special compatible functions(part iii) contains the informal phrase\for each right-hand side R of some production in C and each i 2 I ,f 0(R;�; i) corresponds to an expression formed with variables ass(e; j),e 2 ER and j 2 I , and constants from N by addition, multiplication, mini-mum and maximum"which is not precise enough for our purposes. In [Hab92] this informal de�nitiondid not cause any troubles, but in Section 6.3 we have to use, and manipulate,these expressions in a proof. Therefore we need a more formal de�nition ofcompatible functions. We de�ne the expressions with the aid of universal algebratheory (recall Section 2.3), which results in the following de�nitions.De�nition 6.3 (compatible functions) Let C � HRG, V a set of values andA = (V; �) a �-algebra.i. Let I be a �nite index set, f :HG� I ! V andf 0 = ff 0U;i : (EU � I ! V)! VgU2HG;i2Ia family of functions. Then f is called (C; f 0)-compatible if, for all G =(N; T; P; Z) 2 C and all derivations A� )G U )�G H , with A 2 N , H 2HGT and for all i 2 I , f(H; i) = f 0U;i(
), where the assignment function
 : EU � I ! V is given by 
(e; j) = f(H(e); j) for all (e; j) 2 EU � I ,where, for each e 2 EU , H(e) is de�ned by the decomposition theorem(Theorem 4.27). Note that for e 62 lead(U), H(e) = e� and thus f(H(e); j)is a constant value in V.ii. Let I be a �nite index set. A function f : HG � I ! V is called (C;A)-compatible if there exists a family of functions f 0 = ff 0U;igU2HG;i2I such thatf is (C; f 0)-compatible and for each right-hand side U of some productionin C and each i 2 I , a �(EU�I)-expression sU;i 2 T�(EU�I) can e�ectivelybe found, such that f 0U;i = sAU;i. Such an expression sU;i is said to correspondto U and i, or to f 0U;i. Moreover, for each hyperedge e in C and for eachi 2 I , T� must contain an expression �e;i such that mA(�e;i) = f(e�; i).iii. A function f0 : HG ! V is (C;A)-compatible if a �nite index set I , afunction f :HG � I ! V and an index i0 2 I exist, such that f is (C;A)-compatible and f0 = f(�; i0). �



sixty Compatible and realizable functionsNote that the f 0 function in De�nition 6.2 is replaced by a family of functions,which is also denoted by f 0. Furthermore, De�nition 6.3 is more general thanDe�nition 6.1, since it allows for expressions in algebras with arbitrary signature,instead of expressions consisting of only variables, +, �, max , min and the con-stants. When the algebra A in the de�nition is the algebra N for the arithmeticcalculus, as de�ned in De�nition 5.1, with the possible addition of min and with-out raising to a power, the two de�nitions are almost equivalent. We do not needthe special value for unde�ned, since all our functions are always de�ned.6.3 Realizable functionsAs already mentioned in the introduction of this chapter, we will de�ne a propertyfor functions on hypergraphs that is closely related to the compatibility property.But where the compatibility property was de�ned for a class of hyperedge replace-ment grammars, this new property, called the realizability property, is de�ned fora subset of the set of all substitution operators. Informally, a function is realiz-able if it can be realized by a total deterministic top-down tree transducer, whichtransduces expressions over a subset of SUB (which evaluate to hypergraphs),into expressions in an algebra.De�nition 6.4 (realizable functions) Let A = (V; �) be a �-algebra and � �SUB. A function f0 :HG! V is called (�;A)-realizable, if for every �nite � ��, a total deterministic top-down �nite tree transducer � = (Q;�;�; R; fqdg) cane�ectively be constructed, such that for all t 2WT� it holds that mA(�(qd; t)) =f0(val(t)). �Remark 6.5 The numerical functions in Chapter 5 are all (SUB;N)-realizable.�The compatibility property is de�ned on a class of hyperedge replacement gram-mars, whereas the realizability property is de�ned on a set of substitution op-erators. The following de�nition will associate a class of hyperedge replacementgrammars with a set of substitution operators, in a way similar to the associatedgrammars in De�nition 4.39.De�nition 6.6 (associated grammars) Let � � SUB. The class of all �-associated hyperedge replacement grammars , denoted by HRG./� , is the class ofall grammars (N; T; P; Z) 2 HRG, such that for all A! H with A! H 2 P orH = Z, there exists a � 2 � and A1; : : : ; Ak 2 
, such that A! �[A1 � � �Ak] ./A! H , where k = rank(�). Clearly, for all � � SUB, HRG./� � HRG. �Intuitively, HRG./� consists of all hyperedge replacement grammars such that theaxiom and the right-hand sides of the productions are in � (modulo ./).Remark 6.7 The two special sets of hypergraph replacement grammars that weknow, HRG and ERG can be \generated" from a set of substitution operatorsas follows.



Realizable functions sixtyonei. For HRG./� to be equal to HRG, it is necessary that � contains, for everyrule inHRG, a substitution operator that is associated with the rule. ThusHRG = HRG./SUB.ii. For HRG./� = ERG the case is more complicated, since in ERG, theaxioms must be graphs, whereas HRG./� has no restrictions on the axioms.Therefore, we must add this restriction, yieldingERG = f(N; T; P; Z) 2 HRG./SUB1;1\GR j Z 2 GRg:From now on we will only consider (C;A)-compatibility for classes C = HRG./�.This is a restriction with respect to [Hab92], but in [Hab92] the only classes thatare really used, are HRG and ERG. �Using De�nition 6.6, we arrive at the following theorem, which states that everycompatible function over a class of hyperedge replacement grammars, as de�nedin De�nition 6.6, can be realized by a total deterministic top-down tree trans-ducer, which transduces an expression over SUB into an expression over theunderlying algebra.Theorem 6.8 Let � � SUB, A = (V; �) a �-algebra and f0 : HG ! V a(HRG./�;A)-compatible function. Then f0 is (�;A)-realizable.Proof Let I be the �nite index set, f : HG � I ! V the function, i0 2 Ithe index and f 0 = ff 0U;igU2HG;i2I the family of functions corresponding to the(HRG./�;A)-compatible function f0. Furthermore, let � be an arbitrary �nitesubset of �. Now construct a total deterministic top-down tree transducer � =(I;�;�; R; fi0g) and a hyperedge replacement grammar G = (fAg;
; P; Z), withA 2 
 an arbitrary label and Z an arbitrary singleton such that l(Z) = A, whereR and P are de�ned as follows. For each H 2 �k, k � 0 and each i 2 I ,let A ! UH be a production such that A ! H [A � � �A] ./ A ! UH and letsUH ;i 2 T�(EUH � I) be the �(EUH � I)-expression corresponding to UH and i.UH can be determined e�ectively from H , by relabeling the hyperedges varH(`)for 1 � ` � k. Note that EH = EUH and type(H) = type(UH). Now, for eachH 2 �k, k � 0, the production A ! UH is in P . Furthermore, for each H 2 �k,k � 0 and each i 2 I , the rulei[H [x1 � � �xk]]! sF�(I[Xk ])UH ;i ('H;i)is in R, where F�(I [Xk]) is the free �-algebra which is generated by I [Xk] andsF�(I[Xk])UH ;i ('H;i) 2 T�(I [Xk]) is the result of the substitution of 'H;i(e; j) for allvariables (e; j) 2 EH � I in sUH;i. The assignment function 'H;i : EH � I !T�(I [Xk]) is de�ned by'H;i(e; j) = ( j[x`] if e = varH(`) for some 1 � ` � k�e;j otherwise.Clearly, the hyperedge replacement grammar G is in HRG./� . Note that L(G)is not uniquely determined since Z, and in particular its type, is arbitrary. This



sixtytwo Compatible and realizable functionswill cause no problems, since we are only interested in the derivations in G, notin L(G).We will now show that for every i 2 I and every t 2 WT�, mA(�(i; t)) =f(val(t); i). The proof is by induction to the structure of t, where it is simultane-ously shown that for every t = �[t1 � � � tk] 2 WT�, with t1; : : : ; tk 2 WT�, thereis a derivation A� )G U� )�G val(t).First the case for t 2 �0. Let H = val(t) = t, thus H 2 �0 � �0. By thede�nition of G, we have a production A! UH , with UH = H since lead(UH) = ?,and thus a direct derivation A� )G H . Since f is (HRG./�; f 0)-compatible,G 2 HRG./� and lead(H) = ?, we �nd that f(H; i) = f 0H;i(
), with 
(e; j) =f(e�; j) for all (e; j) 2 EH � I . Furthermore, since rank(t) = 0, mA('H;i(e; j)) =mA(�e;j) = f(e�; j) for all (e; j) 2 EH�I and thus 
 = mA �'H;i. So we �nd thatmA(�(i; t)) = mA(�(i; H))= mA(sF�UH ;i('H;i))= sAUH;i(mA � 'H;i)= sAUH;i(
)= f 0H;i(
)= f(H; i);which concludes the induction basis.Now the case for t = �[t1 � � � tk], k � 1, � 2 �k, t1; : : : ; tk 2WT�. LetH = val(t)= val(�[t1 � � � tk])= sub�(val(t1); : : : ; val(tk))= RPL(�; rpl); where rpl(var�(`)) = val(t`) for 1 � ` � k.Now, by one of the induction hypotheses, for each val(t`), 1 � ` � k, we havea derivation A� )�G val(t`). By the de�nition of G, we have a production A !U� , with A ! U� ./ A ! �[A � � �A]. Recall that EU� = E� and type(U�) =type(�). We now have a direct derivation A� )G U� and, for all e 2 lead(U�),a derivation e� )�G H(e), where H(e) = val(t`) such that e = var�(`). Hence,RPL(U�; rpl) = H , where for all e 2 lead(U�), rpl(e) = H(e). We now can applythe decomposition theorem (Theorem 4.27) to �nd that there is a derivationA� )G U� )�G val(t). Since f is (HRG./�; f 0)-compatible and G 2 HRG./� , wehave f(H; i) = f 0UH ;i(
), with 
 : EUH � I ! V given by 
(e; j) = f(H(e); j) forall (e; j) 2 EUH � I . So we �nd thatmA(�(i; t)) = mA(�(i; �[t1 � � � tk]))= mA(sF�(I[Xk])U�;i ('�;i)F�( ));where  : I [Xk] ! T� is de�ned by  (j[x`]) = �(j; t`) for 1 � ` � k. Now bythe associativity of the composition of substitutions, we may combine '�;i and  into one substitution '0�;i, yieldingmA(�(i; t)) = mA(sF�(I[Xk])U�;i ('�;i)F�( ))



Realizable functions sixtythree= mA(sF�U�;i('0�;i))= sAU�;i(mA � '0�;i)where '0�;i : EU� � I ! T� is the composition of the substitutions '�;i and  ,de�ned, for all (e; j) 2 EU� � I , by'0�;i(e; j) = ( �(j; t`) if e = var�(`) for some 1 � ` � k�e;j otherwise.Now we can apply the other induction hypothesis to �nd that mA(�(j; t`)) =f(val(t`); j) = f(H(var�(`)); j), so for e 2 lead(U�), mA(�(j; t`)) = f(H(e); j) =
(e; j), where ` is such that e = var �(`). For e 62 lead(U), f(e�; j) is representedby an expression �e;j, such that mA(�e;j) = f(e�; j) = f(H(e); j) = 
(e; j). Thusfor all (e; j) 2 EU��I , mA('0�;i(e; j)) = 
(e; j), thusmA�'0�;i = 
. Now continuingthe above equations we �nd thatmA(�(i; t)) = sAU�;i(mA � '0�;i)= sAU�;i(
)= f 0U�;i(
)= f(H; i):This concludes the induction step. Thus for every i 2 I and every t 2 WT�,mA(�(i; t)) = f(val(t); i).So clearly, for every �nite � � �, we can construct a total deterministic �nitetree transducer �, with initial state i0, such that for all t 2WT�, mA(�(i0; t)) =f(�; i0)(val(t)) = f0(val(t)). Thus f0 is (�;A)-realizable. �The reverse of the theorem does not seem to be true without some restrictionson the �nite tree transducers in the de�nition of realizable functions.Since the tree transducers act on expressions that evaluate to hypergraphs, in-stead of on hypergraphs themselves, it is not guaranteed for all tree transducers� = (Q;�;�0; R; fqdg) and for all states q 2 Q n fqdg, that if two expressions t0and t00 evaluate to the same hypergraph (val(t0) = val(t00)), they have the sameimage under � for state q (it is possible that �(q; t0) 6= �(q; t00)). Thus, twoequal hypergraphs could yield di�erent function values, which is not allowed forcompatible functions. To obtain a result for the reverse of Theorem 6.8, a morerestrictive de�nition of realizable functions can be used.Theorem 6.4' (strict realizable functions) Let A = (V; �) be a �-algebra and� � SUB. A function f0 : HG ! V is called strict (�;A)-realizable, if forevery �nite � � �, a total deterministic top-down �nite tree transducer � =(Q;�;�; R; fqdg) can e�ectively be constructed, such that for all t 2 WT� itholds that mA(�(qd; t)) = f0(val(t)) and for all t0; t00 2 WT� and all q 2 Q, ifval(t0) = val(t00), then mA(�(q; t0)) = mA(�(q; t00)). �Note that the �nite tree transducers that are constructed in the proof of Theo-rem 6.8 all satisfy the restrictions in De�nition 6.40. This can be seen from the



sixtyfour Compatible and realizable functions�rst induction hypothesis, that states that for every i 2 I and every t 2 WT�,mA(�(i; t)) = f(val(t); i). Hence, Theorem 6.8 can be strengthened as follows.Theorem 6.8' Let � � SUB, A = (V; �) a �-algebra and f0 : HG ! V a(HRG./�;A)-compatible function. Then f0 is strict (�;A)-realizable. �Clearly, every strict realizable function is also a realizable function.6.4 Realizable predicatesBesides functions on hypergraphs, Habel also considered predicates on hyper-graphs. Predicates on hypergraphs are for example the questions whether or nota hypergraph is totally disconnected, whether or not a hypergraph contains aEulerian path or whether or not a hypergraph is k-colorable for a �xed k 2 N. Tobe able to compute these predicates, and to answer these questions, based on thederivation of a hypergraph in a hyperedge replacement grammar, the predicatesmust be compatible with the derivation proces. The notion of compatible predi-cates was introduced in [HabKreVog89]2. The de�nition of compatible predicatesin [Hab92] does not have the 
aws that the de�nition of compatible functionshas. We will therefore use De�nition VI.6.1 from this source, which is includedhereafter.De�nition 6.9 (compatible predicates, Habel)i. Let C � HRG, I a �nite set, called the index set,  a predicate de�nedon pairs (H; i) 2 HG� I and  0 a decidable predicate on triples (R; ass; i),with R 2 HG, a mapping ass : ER ! I and i 2 I . Then  is called (C;  0)-compatible if for all G = (N; T; P; Z) 2 C and all derivations A� )G R)�GH with A 2 N [ T and H 2 HGT , and for all i 2 I ,  (H; i) holds i� thereis a mapping ass : ER ! I such that  0(R; ass; i) holds and  (H(e); ass(e))holds for all e 2 ER.ii. A predicate  0 on HG is called C-compatible if predicates  and  0 and anindex i0 2 I exist such that  is (C;  0)-compatible and  0 =  (�; i0). �Now a predicate on hypergraphs is nothing more than a function from the set ofhypergraphs into the set of boolean constants, B . In fact it turns out that everycompatible predicate can be represented by a compatible function. In order toshow this, we �rst need an algebra which represents the boolean calculus.De�nition 6.10 (boolean calculus) The set of booleans , denoted by B , is de�nedas B = ffalse; trueg. The set of boolean symbols , denoted by �B, is the rankedalphabet de�ned by �B0 = ffalse; trueg, �B1 = f:g and �Bk = f_;^g for k � 1.The boolean calculus is the �B-algebra B = (B ; �), where the operations arede�ned by2In contradiction to what this thesis suggests, compatible predicates were introduced priorto compatible functions.



Realizable predicates sixty�vei. �0(false) = false and �0(true) = true ,ii. �1(:) : B ! B is de�ned by �1(:)(p) = :p for all p 2 B ,iii. �1(_) : B ! B and �1(^) : B ! B are respectively de�ned by �1(_)(p) = pand �1(^)(p) = p for all p 2 B ,iv. for k � 2, �k(_) : Bk ! B and �k(^) : Bk ! B are respectively de�ned by�k(_)(p1; : : : ; pk) = W1�i�k piand �k(^)(p1; : : : ; pk) = V1�i�k pifor all p1; : : : ; pk 2 B . �Using this algebra, we arrive at the following theorem, which is basically the sameas Theorem VII.2.4 in [Hab92], but now we do not have to represent predicates asfunctions into N, using 0 to represent false, 1 to represent true , max to representthe logical or (_) and Q to represent the logical and (^), since we can use B fora more elegant representation.Theorem 6.11 Let C � HRG and  0 be a C-compatible predicate. Then thefunction '0 : HG ! B , given by '0(H) = true i�  0(H), is (C;B)-compatible,where B is the boolean calculus.Proof The proof is very similar to the proof of Theorem VII.2.4 in [Hab92]. Let 0 be a C-compatible predicate,  and  0 the corresponding predicates, I thecorresponding index set and i0 2 I the index such that  0 =  (�; i0). Thende�ne the function ' :HG � I ! B as'(H; i) = ( true if  (H; i) holdsfalse otherwise,and the family of functions '0 as'0 = f'0R;i : (ER � I ! B ) ! BgR2HG;i2Iwhere for each R 2 HG and i 2 I , '0R;i is de�ned by'0R;i(
) = 8><>: true if  0(R; ass; i) holds for some ass : ER ! Iwith 
(e; ass(e)) = true for all e 2 ERfalse otherwise.Clearly, '0(H) = '(H; i0). Now we have to show that ' is (C; '0)-compatible. LetH 2 HGT and A� )G R)�G H be a derivation of H in some G = (N; T; P; Z) 2



sixtysix Compatible and realizable functionsC. Furthermore, for all e 2 ER, let lR(e)� )G H(e) be the �bre of R )�G H ,induced by e.If '(H; i) = true , then  (H; i) is satis�ed. Since  is (C;  0)-compatible, there isa mapping ass : ER ! I such that  0(R; ass; i) and  (H(e); ass(e)) for all e 2 ERhold. Thus, '(H(e); ass(e)) = true for all e 2 ER. Now de�ne 
 : ER � I ! Bby 
(e; j) = '(H(e); j) for (e; j) 2 ER � I . Then '0R;i(
) = true .Conversely, if '0R;i(
) = true , with 
(e; j) = '(H(e); j) for (e; j) 2 ER � I , thenthere is a mapping ass : ER ! I such that for all e 2 ER,  0(R; ass; i) holdsand '(H(e); ass(e)) = true . By de�nition of ',  (H(e); ass(e)) holds for alle 2 ER. Now since  is (C;  0)-compatible, we �nd that  (H; i) holds. Thus'(H; i) = true .Now '(H; i) = '0R;i(
), where 
(e; j) = '(H(e); j) for (e; j) 2 ER � I , thus ' is(C; '0)-compatible. Moreover, each '0R;i(
) can be expressed as '0R;i(
) = sBR;i(
),where sR;i 2 T�B(ER � I) is a �B(ER � I)-expression corresponding to R and i.The expression sR;i can be expressed assR;i = Wass2ASSR;i [[Ve2ER [[(e; ass(e))]]]];whereASSR;i = fass : ER ! I j  0(R; ass; i) is satis�edg:If ASSR;i = ? then sR;i = false. Now ASSR;i can be e�ectively constructed sinceER and I are �nite and  0 is a decidable predicate, and thus sR;i can be e�ectivelyconstructed from R and i. Hence, the function ' is (C;B)-compatible. �If a predicate  0 on hypergraphs is de�ned to be equal to a function  0 :HG! B ,then we come to the following corollary.Corollary 6.12 Let � � SUB and  0 a HRG./�-compatible predicate. Then thefunction '0 : HG ! B , de�ned by '0(H) = true i�  0(H) holds, is (�;B)-realizable.Proof The corollary follows directly from Theorem 6.11 and Theorem 6.8. �



sixtyseven
Chapter sevenDecidability results

The �nal chapter of this thesis presents some decidability results on hypergraphexpression languages, which are de�ned as regular tree languages. It is shownthat it is decidable whether or not a predicate on a hypergraph, that is real-izable by a �nite tree transducer that transforms a hypergraph expression intoa boolean expression, holds for the evaluation of some, or all, expressions in aregular tree language over SUB. Also it is shown that it is decidable whetheror not the value of a numerical function on hypergraphs, that is realizable by a�nite tree transducer that transforms a hypergraph expression into a numericalexpression, is bounded. The metatheorems in [Hab92] follow from the theoremsin this chapter. The proofs of these results use results from tree language theory.



sixtyeight Decidability results7.1 Decision problemsIn this section it is shown that it is decidable whether or not a regular hyper-graph expression language generates hypergraph expressions that evaluate to ahypergraph, for which a realizable predicate holds. The proof uses the tree lan-guage of all boolean expressions that evaluate to true , which is a recognizabletree language. Recall the de�nition of the boolean calculus in De�nition 6.10.De�nition 7.1 Let B = (B ; �) be the �B-algebra for the boolean calculus and �a �nite subset of �B. Then the set of expressions over �, which evaluate to true ,denoted by TRUE�, is de�ned as TRUE� = ft 2 T� j mB(t) = trueg. �Lemma 7.2 Let B = (B ; �) be the �B-algebra for the boolean calculus and � a�nite subset of �B. Then TRUE� 2 RECOG.Proof Construct a regular tree grammar G = (fF; Tg;�; R; T ), with the set ofrules R such thati. if false 2 �0 then F ! false is in R and if true 2 �0 then T ! true is in R,ii. if : 2 �1 then F ! :[T ] and T ! :[F ] are in R,iii. for k � 1 and _;^ 2 �k, F ! _[F � � �F ] and all F ! ^[A1 � � �Ak], suchthat 91 � i � k : Ai = F , are in R andiv. for k � 1 and ^;_ 2 �k, T ! ^[T � � �T ] and all T ! _[A1 � � �Ak], suchthat 91 � i � k : Ai = T , are in R.It is easy to see that L(G) = TRUE�. �We are now ready to prove one of the major theorems of this thesis.Theorem 7.3 (metatheorem for decision problems) Let � � SUB and '0 :HG ! B a (�;B)-realizable function. Then for all G 2 RTG�, it is decidablewhether or not '0(val(t)) = true for some t 2 L(G).Proof Let G = (N;�; P; S) 2 RTG�. Clearly � is a �nite subset of �. Thus,since '0 is (�;B)-realizable, a total deterministic top-down �nite tree trans-ducer M = (Q;�;�; R; fqdg) can be constructed, such that for all t 2 WT�,mB(M(t)) = '0(val(t)). � is the �nite subset of �B, that consists of all symbolswith their rank, that are used in the right-hand sides of the rules in R. NowM�1(TRUE�) is the set of all t 2 WT� such that mB(M(t)) = true . SinceTRUE� 2 RECOG (Lemma 7.2) and RECOG is e�ectively closed under in-verse top-down tree transducers (Theorem 3.59), M�1(TRUE�) is e�ectively arecognizable tree language. NowM�1(TRUE�)\L(G) is the set of all t 2 L(G)such that mB(M(t)) = true (and thus '0(val(t)) = true). Since RECOG ise�ectively closed under intersection (Theorem 3.14) and the emptiness prob-lem for recognizable tree languages is decidable (Theorem 3.15), we �nd thatit is decidable whether '0(val(t)) holds for some t 2 L(G), since this is true i�M�1(TRUE�) \ L(G) 6= ?. �



Boundedness problems sixtynineRemark 7.4 Note that if '0 is (�;B)-realizable, then so is :'0 (simply \invert"the rules which have the initial state as left-hand side). Therefore it follows fromTheorem 7.3, that for every G 2 RTG�, it is decidable whether or not '0(val(t))holds for all t 2 L(G), since this is equal to the problem whether or not there isno t 2 L(G) such that :'0(val(t)). �The metatheorem for decision problems in [Hab92] (Theorem VI.4.1) follows fromthis theorem, the equivalence between the two formalisms for the generation ofhypergraphs and the relation between compatible and realizable functions.Theorem 7.5 (metatheorem for decision problems, Habel) Let � � SUB and 0 be a HRG./�-compatible predicate. Then for all Gh 2 HRG./�, it is decidablewhetheri.  0(H) holds for some H 2 L(Gh) andii.  0(H) holds for all H 2 L(Gh).Proof According to Corollary 6.12, the function '0 :HG! B , given by '0(H) =true i�  0(H), is (�;B)-realizable, where B is the �B-algebra for the booleancalculus. Let Gh 2 HRG./� be an arbitrary hyperedge replacement grammar.According to Theorem 4.20 we may assume that Gh is typed (the constructionin the proof of this theorem assures that the typed equivalent of Gh is still inHRG./�). Let Gt = (N;�; R; S) 2 RTGSUB be a typed regular tree grammarsuch that Gh ./ Gt. Such a Gt exists (and can be found e�ectively) according toTheorem 4.40. From Theorem 4.41 we �nd that L(Gh) = val(L(Gt)). Further-more, from De�nition 4.39 and the de�nition of HRG./� (De�nition 6.6), we �ndthat � is a �nite subset of � and thus Gt 2 RTG�. Hence, the statements inthe metatheorem follow directly from Theorem 7.3 and Remark 7.4. �7.2 Boundedness problemsWe now will show that it is decidable for a realizable function f0, whether or not aregular tree grammar, generating hypergraph expressions, generates expressionsthat evaluate to hypergraphs whose function values under f0 grow beyond anybound. These results were presented in another form in [Eng94].We use numerical functions that can be realized by a top-down �nite tree trans-ducer, which transforms the hypergraph expressions into expressions in the �N-algebra N = (N; �) for the arithmetic caclulus, which was de�ned in De�ni-tion 5.1. For the simplicity of the proofs, we will use trees in which each nodehas at most two subtrees. These trees are called binary trees, de�ned as follows.De�nition 7.6 A ranked alphabet � is called binary if �k = ? for k = 1 and forall k > 2. A tree over a binary ranked alphabet is called a binary tree. �



seventy Decidability resultsWe want to make sure that we do not lose any expressive power, and thereforewe prove the following lemma, which states that every expression in N can betransformed into an equivalent binary expression (also in N).Lemma 7.7 For each �nite � � �N, there is a binary ranked alphabet �0 � �Nand a linear tree homomorphism � : T� ! T�0, such that for every t 2 T�,�(t) 2 T�0 and mN(�(t)) = mN(t).Proof Let � be an arbitrary �nite subset of �Nand let �0 be such that �00 = �0and �02 = f�;�;max;powg. Clearly, �0 � �Nand �0 is binary. Now constructa linear tree homomorphism �, as follows. �0 : �0 ! T�0 is de�ned by �0(�) = �for all � 2 �0 and for all k � 1, �k : �k ! T�0(Xk) is de�ned by �k(�) =�[x1�[x2 : : :�[xk�1xk] : : :]] for all � 2 �k (in particular, �1(�) = x1). Since theoperations corresponding to �, � and max in N are associative and since powhas only rank 2, it can be shown by induction to the structure of t, that for everyt 2 T�, �(t) 2 T�0 and mN(�(t)) = mN(t). �The value of a function g is bounded on a set S i� the set g(S) is �nite. If Shas the property that g(S) is �nite i� S is �nite, we only have to show that Sis �nite. If S is a regular tree language, we can use results from the theory oftree grammars to show its �niteness. To accomplish that a set of hypergraphexpressions has this property, we need to remove all subexpressions that do notcontribute to the function value, e.g. subexpressions of the form 0 + t, t + 0,1 � t, t � 1, t1 and 1t. Expressions that do not have these subexpressions are calledascending expressions. Again, each (binary) expression in N can be e�ectivelytransformed into an equivalent ascending expression.De�nition 7.8 For each � � �N, the set of ascending expressions over �, denotedby AT�, is de�ned recursively as follows.i. If � 2 �0, then � 2 AT�.ii. For � 2 �knfmaxg, k � 1 and t1; : : : ; tk 2 AT�, if mN(ti) < mN(�[t1 � � � tk])for all 1 � i � k, then �[t1 � � � tk] 2 AT�.iii. If max 2 �k, k � 1 and t1; : : : ; tk 2 AT�, then max[t1 � � � tk] 2 AT�.Lemma 7.9 For every �nite binary � � �N, there is a linear total deterministicbottom-up �nite tree transducer � : T� ! T�, such that for every t 2 T�, �(t) 2AT� and mN(�(t)) = mN(t).Proof Let � � �Nbe an arbitrary �nite binary ranked alphabet. Now constructa total deterministic bottom-up �nite tree transducer � = (Q;�;�; R;Q), whereQ = fq0; q1; q�2g and R has the following rules.i. C0 ! q0[C0], C1 ! q1[C1] and Cn ! q�2[Cn] for Cn 2 � such that n � 2,ii. �! q0[�],�[q0[x1]q0[x2]]! q0[C0],�[q0[x1]q[x2]]! q[x2] and �[q[x1]q0[x2]]! q[x1] for q 2 fq1; q�2g,�[q[x1]q0[x2]]! q�2[�[x1x2]] for q; q0 2 fq1; q�2g,



Boundedness problems seventyoneiii. �! q1[�],�[q0[x1]q0[x2]]! q0[C0],�[q0[x1]q[x2]]! q0[C0] and �[q[x1]q0[x2]]! q0[C0] for q 2 fq1; q�2g,�[q1[x1]q�2[x2]]! q�2[x2] and �[q�2[x1]q1[x2]]! q�2[x1],�[q1[x1]q1[x2]]! q1[C1] and �[q�2[x1]q�2[x2]]! q�2[�[x1x2]],iv. pow[q0[x1]q0[x2]]! q1[C1] (note that we de�ne 00 = 1),pow[q0[x1]q[x2]]! q0[C0] for q 2 fq1; q�2g,pow[q1[x1]q[x2]]! q1[C1] for q 2 Q,pow[q�2[x1]q0[x2]]! q1[C1], pow[q�2[x1]q1[x2]]! q�2[x1],pow[q�2[x1]q�2[x2]]! q�2[pow[x1x2]],v. max[q0[x1]q0[x2]]! q0[C0],max[q0[x1]q[x2]]! q[x2] and max[q[x1]q0[x2]]! q[x1] for q 2 fq1; q�2g,max[q1[x1]q�2[x2]]! q�2[x2] and max[q�2[x1]q1[x2]]! q�2[x1],max[q1[x1]q1[x2]]! q1[C1] and max[q�2[x1]q�2[x2]]! q�2[max[x1x2]].When the tree transducer arrives in state q0, the value of the processed subtreeis 0, for state q1 it is 1 and for state q�2 it is larger than 1. It can be shown byinduction to the structure of t, that for every t 2 T�, �(t) 2 AT� and mN(�(t)) =mN(t). �As was the case with subexpressions of the form 0 + t et cetera, we also haveto remove expressions of the form max[t1t2], since they can lead to in�nitelymany trees with the same value. We therefore show that a tree transducer can beconstructed that removes max from the expressions by guessing its value (andthus the appropriate subtree).Lemma 7.10 For each �nite � � �N, a linear top-down �nite tree transducer� � T� � T� can be constructed, such that �(AT�) � AT�nfmaxg and, for everyL � AT�, mN(L) is �nite i� mN(�(L)) is �nite.Proof Let � � �Nbe an arbitrary �nite ranked alphabet. Construct the (non-deterministic) tree transducer � = (fqg;�;�; R; fqg), where q is the only stateand R contains the following rules.i. For � 2 �0, the rule q[�]! �.ii. For k � 1, max 2 �k, the rule(s) q[max[x1 � � �xk]]! xi, for 1 � i � k.iii. For k � 1, � 2 �k n fmaxg, the rule q[�[x1 � � �xk]]! �[q[x1] � � �q[xk]].Note that the non-determinism is caused only by the multiple rules for max.For every expression of the form �[t1 � � � tk], with � 2 � n fmaxg, � merelycopies the expression deterministically to the output, computing the value formN(�[t1 � � � tk]) from the operation corresponding to � and the values mN(ti) for1 � i � k. For expressions of the formmax[t1 � � � tk], � guesses the subtree whichhas the highest value for mN(ti), 1 � i � k. Among these guesses, there is at leastone good guess for all max expressions in a tree. Thus, if t 2 AT� is an arbitrary



seventytwo Decidability resultsascending expression and �(t) = fs 2 AT�nfmaxg j q[t] )� sg is the image of tunder �, then mN(t) = maxfmN(s) j s 2 �(t)g. This uses the fact that the opera-tions corresponding to �, � and pow are monotonic in all arguments. Thus, forall L � AT�, mN(�(L)) is �nite i� mN(L) is �nite. Furthermore, by induction tothe structure of t it can be shown that for every t 2 AT�, �(t) 2 AT�nfmaxg. �We now have a set of ascending expressions that do not contain themax symbol.We now �nd that for this set, the value of the meaning function mN is boundedi� the set itself is �nite.Lemma 7.11 For each L � AT�Nnfmaxg, mN(L) is �nite i� L is �nite.Proof For each t = �[t1 � � � tk] 2 AT�Nnfmaxg, k � 1, � 2 f�;�;powg andt1; : : : ; tk 2 AT�Nnfmaxg, by de�nition mN(ti) < mN(�[t1 � � � tk]) for 1 � i � k.By induction to the structure of t, one can show that mN(t) � height(t) for allt 2 AT�Nnfmaxg. Thus, if L is in�nite, there must be trees of arbitrary height,and thus of arbitrary large value. �Now we are �nally ready to prove one of the most important results in this thesis.It states that we can decide for a realizable function, given a regular tree grammar,whether or not the function value can grow beyond any bound for a hypergraph,that is the result of the evaluation of a hypergraph expression generated by thegrammar.Theorem 7.12 (boundedness theorem) Let � � SUB and f0 : HG ! N a(�;N)-realizable function. Then it is decidable for a regular tree grammar Gover �, whether or not there is a v 2 N, such that for all t 2 L(G), f0(val(t)) � v.Proof The proof is similar to the proof of Proposition 15 in [Eng94]. LetG = (N;�; R; S) be an arbitrary regular tree grammar over �. We have toshow that it is decidable for G, whether or not f0(val(L(G))) is bounded or,equivalently, whether or not f0(val(L(G))) is �nite. Clearly, � is a �nite subsetof �, so there exists a total deterministic top-down tree transducer � : T� ! T�,where � � �Nis the �nite set of all operators used in �, such that for allt 2WT�, mN(�(t)) = f0(val(t)). Thus mN(�(L(G))) = f0(val(L(G))). Now, byLemma 7.7, a binary ranked alphabet �0 � �Nand a linear tree homomorphism� : T� ! T�0 can be constructed, such that for every t 2 T�, �(t) 2 T�0 andmN(�(t)) = mN(t). Thus mN(�(�(L(G)))) = f0(val(L(G))) and �(�(L(G))) �T�0 . Hence, �(�(L(G))) contains only binary trees. By Lemma 7.9, there is a to-tal deterministic bottom-up �nite tree transducer � : T�0 ! T�0 , such that for allt 2 T�0 , �(t) 2 AT�0 and mN(�(t)) = mN(t). Hence, �(�(�(L(G)))) � AT�0 andmN(�(�(�(L(G))))) = mN(�(�(L(G)))) = f0(val(L(G))). Now by Lemma 7.10,we can construct a non-deterministic top-down �nite tree transducer � � T�0�T�0,such that for every L � AT�0 , �(L) � AT�0nfmaxg and mN(L) is �nite i�mN(�(L)) is �nite. So �(�(�(�(L(G))))) � AT�0nfmaxg and f0(val(L(G))) is �-nite i� mN(�(�(�(�(L(G)))))) is �nite. By Lemma 7.11, f0(val(L(G))) is �nite i��(�(�(�(L(G))))) is �nite. Since L(G) 2 RECOG and since ������� 2 (B[T)�,it follows from the de�nition of SUR that �(�(�(�(L(G))))) 2 SUR. Now, by



Boundedness problems seventythreeTheorem 3.62, the �niteness problem is solvable for SUR. Hence, the �nitenessproblem is solvable for f0(val(L(G))). �Remark 7.13 Note that if � in the proof of Theorem 7.12 is linear, then so is� � � � � � �, and thus �(�(�(�(L(G))))) 2 RECOG, since RECOG is closedunder linear top-down or bottom-up tree transducers. Now the �niteness problemfor RECOG is decidable by Theorem 3.16, so if � is linear, the proof can besimpli�ed. �This result is related to the metatheorem for boundedness problems in [Hab92](Theorem VII.3.1). In fact, Habels result follows from Theorem 7.12 for certainclasses of hyperedge replacement grammars.Theorem 7.14 (metatheorem for boundedness problems) Let � � SUB andf0 :HG! N be a (HRG./�;N)-compatible function. Then for all Gh 2 HRG./�,it is decidable whether or not there is a v 2 N, such that f0(H) � v for allH 2 L(G).Proof The proof is similar to the proof of Theorem 7.5. According to Theorem 6.8,f0 is (�;N)-realizable. Now let Gh be an arbitrary hyperedge replacement gram-mar in HRG./� . According to Theorem 4.20 we may assume that Gh is typed (theconstruction in the proof of this theorem assures that the typed equivalent of Ghis still in HRG./�). Let Gt = (N;�; R; S) 2 RTGSUB be a typed regular treegrammar such that Gh ./ Gt. Such a Gt exists (and can be found e�ectively) ac-cording to Theorem 4.40. From Theorem 4.41 we �nd that L(Gh) = val(L(Gt)).Furthermore, from De�nition 4.39 and the de�nition of HRG./� (De�nition 6.6),we �nd that � is a �nite subset of � and thus Gt 2 RTG�. Hence, the statementin the metatheorem follows directly from Theorem 7.12. �Corollary 7.15 (metatheorem for boundedness problems, Habel) Let � �SUB and f0 be a (HRG./�;max ;+; �)-compatible function. Then, for all G 2HRG./�, it is decidable whether or not there is a natural number v 2 N, suchthat f0(H) � v for all H 2 L(G).Proof Following our own, equivalent, de�nition, f0 is a (HRG./� ;N)-compatiblefunction. Therefore the corollary follows directly from Theorem 7.14. �Example 7.16 Let f0 :HG! N be the function de�ned by f0(H) = jEH j. Thusf0 determines the number of hyperedges in a hypergraph. From Section 5.1 weknow that f0 is (SUB;N)-realizable. So from Theorem 7.12 we �nd that it isdecidable for a regular tree grammar G over SUB, whether or not there is av 2 N, such that for all t 2 L(G), f0(val(t)) � v.For the regular tree grammar Gt from Example 4.46, we �nd that L(Gt) =f�0([�1)n[�2](])n j n 2 Ng. Now for n 2 N, val(�0([�1)n[�2](])n) = Wn+2. Fur-thermore, for all n 2 N, f0(Wn) = 2n. So clearly, for Gt, f0(val(Gt)) is notbounded since val(Gt) contains in�nitely many hypergraphs. �
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